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ABSTRACT 

 

 

 

Time-dependent uncertainties, such as time-variant stochastic loadings and 

random deterioration of material properties, are inherent in engineering applications. Not 

considering these uncertainties in the design process may result in catastrophic failures 

after the designed products are put into operation. Although significant progress has been 

made in probabilistic engineering design, quantifying and mitigating the effects of time-

dependent uncertainty is still challenging. This dissertation aims to help build high 

reliability into products under time-dependent uncertainty by addressing two research 

issues. The first one is to efficiently and accurately predict the time-dependent reliability 

while the second one is to effectively design the time-dependent reliability into the 

product. For the first research issue, new time-dependent reliability analysis 

methodologies are developed, including the joint upcrossing rate method, the surrogate 

model method, the global efficient optimization, and the random field approach. For the 

second research issue, a time-dependent sequential optimization and reliability analysis 

method is proposed. The developed approaches are applied to the reliability analysis of 

designing a hydrokinetic turbine blade subjected to stochastic river flow loading. 

Extension of the proposed methods to the reliability analysis with mixture of random and 

interval variables is also a contribution of this dissertation. The engineering examples 

tested in in this work demonstrate that the proposed time-dependent reliability methods 

can improve the efficiency and accuracy more than 100% and that high reliability can be 

successfully built into products with the proposed method. The research results can 

benefit a wide range of areas, such as life cycle cost optimization and decision making. 
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1. INTRODUCTION 

 

 

 

1.1. BACKGROUND 

Natural variations or uncertainties are inevitable in engineering systems. The 

uncertainties are in-eliminable but usually reducible. Some examples include 

manufacturing variations in dimensions, variations in material properties, and noises in 

loadings. Accounting for such uncertainties in the design is vital for the safety of many 

complex engineering systems such as aircraft [1], automobiles [2], and offshore 

structures [3]. As an effective way of mitigating the effects of design bias stemmed from 

the inherent uncertainties in the design environment, probabilistic engineering design 

methodologies have been increasingly used in recent years [4-7]. In the probabilistic 

engineering design, uncertainties in the design environment are addressed through three 

ways. The first one is uncertainty propagation, which propagates uncertainties through 

the design models to investigate the effects of uncertainties on designs. The second one is 

uncertainty quantification, which quantifies the uncertainty in simulation or analysis 

results. The third one is calibration under uncertainty, which is an inverse uncertainty 

propagation process. The focus of this work is the uncertainty propagation.  

There are many kinds of uncertainties. According to the time variant 

characteristics, the uncertainties can be grouped into two categories: time-independent 

uncertainties and time-dependent uncertainties. The time-independent uncertainties are 

usually described as random variables while time-dependent uncertainties are modeled as 

stochastic processes. For example, the manufacturing tolerance is a typical time-

independent uncertainty; the stochastic wind loading, river flow loading, and 

aerodynamic loading, on the other hand, are time-dependent uncertainties. The reliability 

of systems subjected to time-dependent uncertainties is also time dependent [8, 9]. Even 

for some systems with only time-independent uncertainties, their reliability may also be 

time dependent due to the responses are time dependent [8]. Time-dependent reliability 

methodologies should be employed for systems under time-dependent uncertainties or 

with time-dependent responses.  
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The time-dependent reliability gives the reliability of the system over a specific 

time interval instead of the reliability at a certain time instant. For instance, the time-

dependent reliability of a vehicle over ten years indicates the probability that there is no 

failure over the ten years’ operation. It is different from the conventional time-

instantaneous reliability, which only tells the reliability at a time instant. Time-dependent 

reliability is directly related to the lifecycle cost (LCC) of a product [10, 11]. Based on 

the relationship between reliability and time, failure rates of the system can be easily 

obtained. Moreover, in order to guarantee the reliability of a system over a certain time 

interval and maintain a low operation cost, engineers can schedule maintenance activities 

with reference to the time-dependent reliability.  It is of great interest to not only 

designers with concerns about reliability, but also decision makers focusing on product 

lifecycle costs. The prediction of time-dependent reliability is therefore vital.  

In the past decades, many efforts have been devoted to evaluating the time-

dependent reliability. For example, the time-dependent reliability model developed in the 

area of reliability engineering based on post-design failure rates [12]. The time-dependent 

reliability analysis method proposed by researchers using the Rice’s formula in the area 

of probabilistic engineering design [8]. Even if the failure rate based time-dependent 

reliability model can effectively predict the time-dependent reliability, it is not applicable 

in the early design stage as no failure data are available. The Rice’s formula based 

method is applicable to some problems. But its accuracy and efficiency are not 

satisfactory for many problems with low failure thresholds [8, 13, 14]. How to effectively 

quantify and mitigate the effects of time-dependent uncertainties is still an ongoing 

research issue. There are many challenges need to be solved.  

To accurately and efficiently approximate the time-dependent reliability and 

effectively build the time-dependent reliability into the design, the underlying statistical 

characteristics of time-dependent uncertainties need to be understood. Technical 

developments in new reliability analysis methodologies are required. This dissertation 

contributes to solving these problems. The technical developments of probabilistic 

engineering analysis and design under time-dependent uncertainties in this work will 

bridge the gap between engineering design and reliability engineering. It makes the 
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design with an optimal lifecycle cost possible. The outcomes will benefit many areas, 

such as aerospace engineering, automobile engineering, and marine engineering.  

 

1.2. RESEARCH OBJECTIVES 

The main objective of this research is to explore new analysis and design 

methodologies for the quantification and mitigation of the effect of time-dependent 

uncertainties. Four research tasks are carefully studied to achieve this overall objective. 

The first research task concentrates on the time-dependent reliability analysis. Based on 

the outcomes of the first research task, the second research task focuses on reliability-

based design optimization (RBDO) with time-dependent reliability constraints.  Since 

fatigue reliability is a very important issue for structures under stochastic loadings, the 

third research task studies the fatigue reliability analysis method under stochastic 

loadings. Research results from the first three research tasks are then evaluated through 

engineering design examples in the fourth research task.  

More specifically, research task 1 (RT1) answers the following question: Given 

the information of time-independent and time-dependent uncertainties in the input 

variables, what is the uncertainty in the output of a system. The main challenge for 

answering this question is how to account for the time-varying statistical properties of the 

response with the minimal computational cost. The widely used Rice’s formula based 

method is efficient, but it overestimates the time-dependent probability of failure [8]. 

Directly solving the time-dependent reliability is computationally expensive. To address 

these challenges, the joint-upcrossing rate method is employed to release the independent 

assumption used in the Rice’s formula based method [15]. The correlations between 

upcrossing events are considered to obtain an accurate first-time failure rate. With the 

first-time failure rate, the time-dependent reliability is approximated. In addition to that, 

an efficient global optimization reliability analysis method is proposed for time-variant 

problems with random variables and time [16]. A mixed efficient global optimization 

method is developed to identify the global extremes. Surrogate model of the extreme 

value response is then established. Time-dependent reliability is estimated by performing 

Monte Carlo sampling on the surrogate model. The applications of series expansion 
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method and sampling approach to the time-variant problems are investigated as well [17, 

18].  

Research task 2 (RT2) addresses the question of how to design specific time-

dependent reliabilities into a product.  The way of designing high reliability into a 

product is achieved by optimally changing the design variables to satisfy reliability 

constraints. Design optimization algorithms are usually used to adjust the design 

variables and check the constraints. Since time-dependent reliability analysis is 

computationally expensive, design optimization with time-dependent reliability 

constraints is far more computationally costly. A time-dependent sequential optimization 

and reliability assessment (t-SORA) approach is proposed by decoupling the design 

optimization model into a deterministic design optimization model and a time-dependent 

reliability analysis model. The design optimization and reliability analysis are performed 

sequentially and thus improves the efficiency of time-dependent reliability based design 

optimization. The most critical part of the method is the identification of an equivalent 

Most Probable Point (MPP). The equivalent MPP is obtained using the inverse 

saddlepoint approximation method and series expansion method.  

RT1 and RT2 concern about the global extreme values of the time-variant 

response. For structures subjected to stochastic loadings, the local extreme values are also 

very important as they are related to the fatigue life of the structure. Research Task 3 

(RT3) studies the fatigue reliability analysis method. The challenge is how to efficiently 

obtain the stress cycle distribution of the structure and incorporate uncertainties of 

material properties and experimental data into the analysis. A design oriented fatigue 

reliability analysis method is developed based on the peak counting method [19]. An 

efficient numerical algorithm is proposed to approximate the fatigue reliability. 

Considering the stress-dependent uncertainties in the S-N curve of material fatigue 

properties, an efficient reliability analysis method is developed for structures with known 

loading trend [20].  

Research Task 4 (RT4) applies the developed methodologies to the reliability 

analysis of hydrokinetic turbine blades under stochastic river flow loadings. It is a typical 

time-variant problem. The uncertainties in the composite material of the turbine blades 

and river velocity are considered. The reliability of the turbine blades is evaluated using 
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the joint-upcrossing rate method proposed in RT1. Two failure modes of the turbine 

blades are investigated. The extension of the proposed method to other similar problems 

is also studied. A random field approach is developed for the reliability analysis under 

mixture of random and interval variables by extending the series expansion method from 

time-dependent problems to interval problems.  

The outcomes of above research tasks are expected to advance the knowledge of 

probabilistic engineering design under time-dependent uncertainties. The technical 

developments may benefit not only the area of engineering design, but also other areas 

such as engineering management, statistics, and reliability engineering. 

 

1.3. ORGANIZATION OF DISSERTATION  

Many technical developments have been made in this study on above research 

objectives. In this dissertation, only the five major developments are presented due to the 

page limit. The five articles are organized in the way shown in Fig. 1.1. Paper I and II 

focus on the time-dependent reliability analysis. Paper III is an application of the 

proposed method to a composite hydrokinetic turbine blade. Paper IV is an extension of 

the proposed method to the reliability analysis under mixture of random and interval 

variables. Paper V studies the time-dependent reliability-based design optimization 

method.  

All of the five articles share a same research topic: the time-dependent reliability 

analysis, while each of them has a different focus. Paper I presents a joint-upcrossing rate 

method which is applicable for general problems with random variables, stochastic 

processes, and time. The Poisson assumption is released in the join-upcrossing rate 

method by considering the correlation of upcrossing events at different time instants. For 

problems with only random variables and time, a surrogate model method is given in 

Paper II. Even if the method presented Paper I can also be applied to the problems with 

only random variables and time, its accuracy and efficiency are worse than the method 

given in Paper II. The joint upcrossing rate method is applied to the reliability analysis of 

a composite hydrokinetic turbine blade in Paper III. The uncertainties in the design 

environment of the hydrokinetic turbine blades are investigated and summarized. The 
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reliability of the turbine blades is analyzed according to two kinds of failure modes. Since 

the time-dependent reliability problem is very similar as the reliability analysis problem 

under random and interval variables, in Paper IV, the series expansion method developed 

for the time-dependent reliability analysis is extended to the reliability analysis with 

random and interval variables. In order to incorporate the time-dependent reliability 

analysis method into design optimization, Paper V develops a time-dependent sequential 

optimization and reliability assessment approach for structures under stationary stochastic 

loadings. The approach is developed based on the new time-dependent reliability analysis 

method.  

 

 

Figure. 1.1 Framework of this dissertation 
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Abstract  

In time-dependent reliability analysis, an upcrossing is defined as the event when 

a limit-state function reaches its failure region from its safe region. Upcrossings are 

commonly assumed to be independent. The assumption may not be valid for some 

applications and may result in more than 50% errors. In this work, a new method that 

relaxes the assumption by using joint upcrossing rates is developed. The method extends 

the existing joint upcrossing rate method to general limit-state functions with both 

random variables and stochastic processes. The First Order Reliability Method (FORM) 

is employed to derive the single upcrossing rate and joint upcrossing rate. With both 

rates, the probability density of the first time to failure can be solved numerically. Then 

the probability density leads to an easy evaluation of the time-dependent probability of 

failure. The proposed method is applied to the reliability analysis of a beam and a 

mechanism, and the results demonstrate improvements in accuracy. 

Keywords: Time-dependent reliability, stochastic processes, first passage, 

autocorrelation 

 

1. Introduction 

Reliability is the probability that a product performs its intended function over a 

specified period of time and under specified service conditions [1]. Depending on 

whether the performance of the product is time-dependent or not, reliability can be 
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classified into two types: time-variant (time-dependent) reliability and time-invariant 

reliability.  

For a time-invariant performance, its reliability and probability of failure remain 

constant over time. The time-invariant probability of failure
 
is defined by 

  Pr ( )Xfp D g e    (1)  

where 1 2( , , )X nX X X
 

is a random vector, ( )g 
 

is a time-invariant performance 

function or limit-state function, D is a performance variable, e is a limit state, and Pr{}  

stands for a probability. Many reliability methods are available for calculating the time-

invariant reliability, including the First Order Second Moment Method (FOSM), FORM, 

and Second Order Reliability Method (SORM) [2-8].  

On the other hand, limit-state functions may vary over time. For instance, over the 

service life of the Thermal Barrier Coating (TBC) of aircraft engines, the stresses and 

strains of the TBC are time dependent [9]. Many mechanisms also experience time 

varying random motion errors due to random dimensions (tolerances), clearances, and 

deformations of structural components [10-14]. In the systems of wind turbines, 

hydrokinetic turbines, and aircraft turbine engines, the turbine blade loading always 

varies over time. Likewise, the wave loading acting on offshore structures fluctuates 

randomly with time [15-17]. Almost all dynamic systems involve time-dependent 

parameters [18-20]. For all the above problems, reliability is a function of time and 

typically deteriorates with time.  

Therefore, a general limit-state function is a function of time t. In addition to 

random variables 1 2( , , )X nX X X , stochastic processes 1 2( ) ( ( ), ( ), ( ))Y mt Y t Y t Y t  

may also appear in the limit-state function. A stochastic process can be considered as a 

random variable that varies over time. Hence a general time-dependent limit-state 

function is given by 

 ( ) ( , ( ), )X YD t g t t  (2) 

If the likelihood of failure at a particular instant of time t is expected to be 

evaluated, the time-invariant probability of failure can still be used because t is fixed at 

the instant. Using Eq. (1), the instantaneous probability of failure is obtained by 
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  ( ) Pr ( , ( ), ) ( )X Yfp t g t t e t   (3) 

The aforementioned methods, such as FOSM, FORM, or SORM, are ready to 

calculate ( )fp t .  

For time-dependent problems, the time-dependent probability of failure is of great 

interest because it provides engineers with the likelihood of a product performing its 

intended function over its service time, or a system fulfilling its task during its mission 

time. The time-dependent probability of failure over a time interval 0[ , ]st t  is defined by 

  0 0)( , ) Pr ( , ( , ( ), [ , ])X Ysf sp t t g e t t        (4) 

where 0t  is the initial time when the product is put into operation, and st  is the endpoint of 

the time interval, such as the service time of the product.  

Let the first time to failure (FTTF) be 1T , which is the time that ( )g   reaches its 

limit state  for the first time. 1T  is also the working time before failure and is obviously a 

random variable. 0( , )f sp t t  can also be given by 

  
10 1(( , ) Pr)ss Tf stp t t F T t   (5) 

where 
1
( )TF   is the cumulative distribution function (CDF) of the FTTF. 

Time-dependent reliability methodologies are classified into two categories. The 

first includes the extreme-value methods, which use the time-invariant reliability analysis 

methods (FOSM, FORM, SORM, etc.) if one can obtain the distribution of the extreme 

value of ) (( , )( )X Yg e  over 0[ , ]st t  [21-24]. The reason is that the failure event 

 0( , ( , ( ), [ ]) ,)X Y sg e t t     is equivalent to the event 

  0)) ( )max ( , ( , [ ,0 ]X Y sg t te


      . However, it is difficult to obtain the 

distribution of the extreme value. The extreme distribution may be available for limit-

state functions in the form of ( ) ( , )D t g t X  [24] or ( ) ( , ( ))D t g Y t X [25]. The 

associated methods, however, are not applicable for the general problems as indicated in 

Eq. (2). Therefore, in most cases, the methods in the second category are used. 

The second category includes the first-passage methods because they directly use 

the first-passage time or the first time to failure (FTTF) 1T  in Eq. (5). The failure event 
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 0( , ( , ( ), [ ]) ,)X Y sg e t t      is equivalent to the event that at least a failure occurs 

over 0[ , ]st t  or equivalent to the event of 0 1 st T t  . The most commonly used method is 

the Rice’s formula [26], which is based on the concept of upcrossing.  

Define 0( , )sN t t  as the number of upcrossings that ( )g   reaches the limit state e 

from the safe region ( ) 0g  
 
over the time period 0[ , ]st t . The basic probability theory 

shows that 0( , )sN t t  follows a binomial distribution. When the probability of upcrossing is 

very small, it is equal to the mean number of upcrossings per unit time (the upcrossing 

rate). Because the binomial distribution converges to the Poisson distribution when the 

time period is sufficiently long or the dependence between crossings is negligible, the 

upcrossings are assumed to be statistically independent [27]. With this assumption, the 

upcrossing rate becomes the first-time crossing rate or the failure rate. Then the 

probability of failure can be estimated from the upcrossing rate.  

Since the development of the Rice’s formula, many improvements have been 

made [28-40]. For example, an analytical outcrossing rate [31] has been derived for 

Gaussian stationary processes. An analytical outcrossing rate has also been given for 

general Gaussian stochastic processes [32, 33] and has been applied to mechanism 

analysis [34]. An important sampling method has been proposed to approximate the 

outcrossing rate [41], and a lifecycle cost optimization method was developed using the 

outcrossing rate as the failure rate [42]. If upcrossing events are rare over the considered 

time period [34], the Poisson assumption-based approaches [28-40] have shown good 

accuracy. 

When upcrossings are strongly dependent, however, the above approaches may 

leads to large errors. In this case, the memory of failure should be considered to 

guarantee that the obtained first passage failure is indeed the first. Even though the 

Markov process methods have a property of memory, such memory is weak and is only 

valid for Markov or similar processes [43, 44]. Vanmarcke [45] and Preumont [46] have 

made some empirical modifications to the Poisson assumption-based formulas. These 

modifications are good for Gaussian processes.   

A promising way to improve accuracy is to relax the independent assumption for 

upcrossing events. In other words, considering the dependence between two or more 
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instants of time [47, 48], instead of considering a single upcrossing at one instant. The 

accuracy improvement has been shown in [48] for a Gaussian process in vibration 

problems.  

Inspired by the work in [48], a time-dependent reliability analysis method with 

joint upcrossing rates is developed, which extends the method in [48] to more general 

limit-state functions that involve time, random variables, and stochastic processes. 

Because the method combines the joint upcrossing rates (JUR) and First Oder Reliability 

Method (FORM), it is called JUR/FORM.  

In section 2, the commonly used time-dependent reliability analysis methods is 

reviewed, upon which JUR/FORM is built. The JUR/FORM is then discussed in Section 

3 followed by two case studies in Section 4. Conclusions are made in Section 5.  

 

2. Review of time-dependent reliability analysis methods 

In this section, the integration of the Poisson assumption based method with the 

First Order Reliability Method (FORM) is reviewed. By this method, 
0( , )f sp t t  is 

calculated by [34, 48, 49] 

  
0

00 ( )]( , ) 1 [1 exp ( )
s

f

t

f s
t

p t t p v t tt d     (6) 

where 
0( )fp t

 
is the instantaneous probability of failure at the initial time point 0t , and 

( )v t  is the upcrossing rate at t. 

0( )fp t
 
can be calculated by any time-invariant reliability methods, such as FOSM, 

FORM, and SORM. If ( )v t  is known, then 0( , )f sp t t  can be calculated by integrating 

( )v t  over 0[ , ]st t  as indicated in Eq. (6). 

For a general limit-state function ( ) ( , ( ), )X YD t g t t , at a given instant t, the 

stochastic proceses ( )Y t  become random variables. If FORM is used, random variables 

( , ( ))X Y t  are first transformed into standard normal variables ( ) ( , ( ))
X Y

U U Ut t [2-6, 34].  

Then the Most Probable Point (MPP) ( ) ( , ( ))
X Y

U U Ut t  is searched. The MPP is a point 

at the limit sate, and at this point the limit-state function has its highest probability 
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density. After the limit-state function is linearized at the MPP, the failure event 

( , ( ), ) ( )X Yg t t e t  is equivalent to the event given by [1]. 

  ( ( ), ) ( ) ( ) ( )U U
TW t t t t t   (7) 

where  

 ( ) ( )

( [ ( )], ) ( [ ( )], )
( )

( ) ( )

( [ ( )], ) ( [ ( )], )

t t

T t t T t t
t

t t

T t t T t t

 


 

  

U U

g U g U

U U

g U g U

 (8) 

( )t  is the reliability index, which is the length of ( )U t . ( )T   is the operator of 

transforming non-Gaussian random variables ( , ( ))X Y t  into Gaussian random variables 

( )U t .   stands for the magnitude of a vector.  

Then the upcrossing rate ( )v t  is [50] 

  ( ) ( ) ( ( )) ( ) / ( )v t t t t t      (9) 

where ( )t  and ( )t  are the derivatives of ( )t  and ( )t , respectively, with respect to 

time t, and ( )   is a function defined by 

 ( ) ( ) ( )x x x x      (10) 

in which ( )x  and ( )x   stand for the probability density function (PDF) and cumulative 

density function (CDF) of the standard normal random variable, respectively.  

As mentioned previously, the above method may produce large errors if 

upcrossings are strongly dependent. Next the joint upcrossing rate is used to improve the 

accuracy of time-dependent reliability analysis.  

 

3. Time-dependent reliability analysis with joint upcrossing rates and FORM 

In this section, the equations given in [48] is provided first for a Gaussian 

stochastic process. Based on these equations and FORM, complete equations are then 

derived in the subsequent subsections. 
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3.1. Time-dependent reliability analysis with joint upcrossing rates 

Now the methodology in [48] is summarized, where the joint upcrossing rates are 

used. Based on the methodologies, necessary equations are developed in Secs. 3.2 and 

3.3.  

For a general stochastic process ( )Q t , suppose its failure event is defined by 

{ ( ) ( )}Q t e t .  0 0)( , ) Pr ( ,( , [) ]f sp t Q e tt t     
 
is then given by 

      0 0 00 0 0( , ) Pr ( ) ( Pr ( ) ( Pr ( ( ,) ) ) ) ,[ ]f s sp t t Q t e t Q t e t Q e t t          (11) 

or 

      
1

0
0 00 00( ) Pr ( ) ( Pr ( ) (, ) )

st

f s
t

Tp t t Q t e t Q t e t f t dt      (12) 

where 
1
( )Tf t  is the probability density function (PDF) of the first time to failure (FTTF). 

The first term in the above equation is the probability of failure at the initial time, and the 

second term is the probability of failure over 0[ ], st t  and no failure occurs at 0t . 

The upcrossing rate ( )v t  is the probability that an upcrossing occurs at time t per 

unit of time. It is equal to the summation of two probabilities. The first probability is the 

PDF 
1
( )Tf t , which is the upcrossing rate occurring for the first time at t. The second 

probability is the probability rate that the upcrossing occurred at time t given that the 

first-time upcrossing occurs at time   prior to t. Thus [48]   

  
1 1

0

( ) ( ) ( )
t

t
T Tv t f t v t f d       (13) 

According to the characteristics of conditional probability for two events A and B, 

the probability is given by (A B) (A,B) (B)P P P . Thus, the conditional probability 

( )v t 

 

is equal to ( , ) ( )v t v   , and Eq. (13) is rewritten as 

 
1 1

0

( ) ( ) ( , ) ( ) / ( )
t

T T
t

v t f t v t f v d         (14) 

where ( , )v t   is the second order upcrossing rate or the joint outcrossing rate at t and  . 

It indicates the joint probability that there are outcrossings at both t and  .  

Eq. (14) is a Volterra integral equation, for which a closed-form solution may not 

exist. Numerical methods are therefore necessary [51-55]. In this work, the compounded 
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trapezoidal rule method [53] is used. Other integration methods can also be used. How to 

solve the Volterra integral equation is briefly presented below.  

The time interval is first discretized into p  time intervals or 1p   time instants 

with 0
0 ( 1) , where and 1, 2, , 1s

i

t t
t t i h h i p

p


      . With the compounded 

trapezoidal rule [53], 
1

0

( , ) ( ) / ( )
st

s T
t

v t f v d    

  is approximated as follows: 

 
1

0

1 1 1

0
0

20

( , ) ( ) / ( )

( , ) ( , ) ( , )1 1
( ) ( ) ( )

2 ( ) ( ) 2 ( )

st

s T
t

p

s s i s s
T T i T s

i i s

v t f v d

v t t v t t v t t
h f t h f t h f t

v t v t v t

    

  

  


  




  (15) 

Combining Eq. (15) with (14) yields 

 
1 1 1

0
0

20

( , ) ( , )1
( ) (1 ) ( ) ( ) ( )

2 2 ( ) ( )

p

s s i
s T s T T i

i i

v t t v t th
v t f t h f t h f t

v t v t

 


 


       (16) 

Applying Eq. (16) to every time instant it , 1, 2, , 1i p  ,  it is given by 

 

1

1 1

1 1 1

1 1 1

1 1

2 1
2 2 1

1

3 2 3 1
3 3 2 1

2 1

4 3 4 2
4 4 3

3 2

( ) ( )

( , )1
( ) (1 ) ( ) ( )

2 2 ( )

( , ) ( , )1
( ) (1 ) ( ) ( ) ( )

2 ( ) 2 ( )

( , ) ( , )
( ) (1 ) ( ) ( ) (

2 ( ) ( )

T

T T

T T T

T T T

v t f t

v t th
v t f t h f t

v t

v t t v t th
v t f t h f t h f t

v t v t

v t t v t th
v t f t h f t h f

v t v t








 


 

 


 



  

   

   
1

1 1 1

4 1
2 1

1

1 1 1

1 1 1

2 1

( , )1
) ( )

2 ( )

( , ) ( , )1
( ) (1 ) ( ) ( ) ( )

2 ( ) 2 ( )

T

p
p i p

p T p T i T

i i

v t t
t h f t

v t

v t t v t th
v t f t h f t h f t

v t v t





 

 

   


















    





  (17) 

Eq. (17) forms a matrix given by 

 

1

1

1

11 2 1

1 22

1 1 1 1 2 1

1 2

1 0 0 0

( )( ) ( , )
1 0 0

2 ( ) 2 ( )( )

0

( ) ( , ) ( , ) ( )
1

2 ( ) ( ) 2

T

T

p p p T p

f tv t hv t t h

v t f tv t

v t hv t t hv t t f th

v t v t

 



  
   

 

 
                                  
  

  (18) 
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The discretized 
1
( )Tf t  is then be solved by the following equation: 

 

1

1

1

1

1 12 1

12 2

11 1 1 21

1 2

1 0 0 0

( ) ( )( , )
1 0 0

2 ( ) 2( ) ( )

0

( )( , ) ( , )( )
1

2 ( ) ( ) 2

T

T

pp pT p

f t v thv t t h

v tf t v t

v thv t t hv t tf t h

v t v t





 

 
 

 

 
                             
  

  (19) 

After 
1
( )Tf t   is solved numerically, 

0( , )f sp t t  can be obtained with Eq. (12). 

The above methodology is applicable for a single stochastic process. It is 

extended to a general limit-state function ( ) ( , ( ), )X YD t g t t . As ( )D t  can be converted 

into a Gaussian process at the MPP, the extension is possible. From Eq. (19), it can be 

found that the single upcrossing rate ( )v t  and joint upcrossing rate ( , )v t   are the 

bases for solving 
1
( )Tf  , equations are first derived for these two rates by using FORM 

and Rice’s formula. After that, it discusses how to obtain the time-dependent probability 

of failure based on these rates.  

 

3.2. Single upcrossing rate ( )v t

 
 

Recall that after the MPP is found, the general limit-state function ( , ( ), )X Yg t t  

becomes ( ( ), )UW t t , and the failure event is ( ( ), ) ( ) ( ) ( )U U
TW t t t t t  . According to 

the Rice’s formula [26, 56], the single upcrossing rate ( )v t  is given by  

      ( ) ( ) ( ) / ( )v t t t t t        (20) 

where ( )t  is the standard deviation of ( )W t , which is the time derivative process of ( )W t .  

2( )t  is given in terms of the correlation function 1 2( , )t t  of ( )W t  as follows: 

 
1 2

2 2

1 2 1 2( ) ( , ) / ( )
t t t

t t t t t 
 

     (21) 

The finite difference method is used to estimate ( )t . This means that the MPP 

search needs to be performed twice. Ref. [50] also uses the finite difference method but 

introduces additional random variables for the second MPP search. As will been seen, the 

method presented here does not introduce any extra random variables.  
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As mentioned above, ( ) ( ) ( )U
TW t t t , and from Eq. (8),  it gives ( ) 1t  . ( )W t

 

is therefore a standard normal stochastic process, and its coefficient of correlation is 

given by 

 1 2 1 1 2 2( , ) ( ) ( , ) ( )C
Tt t t t t t   (22) 

where 1 2( , )C t t  is the covariance matrix of 1( )U t  and 2( )U t .  

Since ( ) ( , ( ))
X Y

U U Ut t  is a vector of standard normal random variables and 

stochastic processes, 1 2( , )C t t  is given by: 

 
1 2

1 2

0
( , )

0 ( , )

I
C

C

n n

Y
t t

t t

 
  
 

 (23) 

where In n  is an n n  identity matrix, which is the covariance matrix of the normalized 

random variables X
U  from X. The covariance matrix of the normalized stochastic 

processes ( )
Y

U t  from ( )Y t  is given in terms of its correlation coefficients as 

 

1 1

1 2

1 2

1 2

( , ) 0 0 0 0

0 0 0 0
( , )

0 0 ( , ) 0 0

C

m m

Y Y

Y

Y Y

C t t

t t

C t t





   
   
    
   
   

  

 (24) 

where ( , )C    standard for the covariance, 1 2( , )iY
C t t  is the covariance of the normalized 

stochastic process ( )
iYU t  at time instants 1t  and 2t . iY is the corresponding correlation 

function of the normalized stochastic process ( )
iYU t  at these two time instants and is 

given by 

 1 2( , )i iY Y
t t   (25) 

Substituting Eq. (22) into Eq. (21) yields 

 

1 2

2 2

1 2 1 2

2

12 1

( ) ( , ) / ( )

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

t t t

T T

T T

t t t t t

t t t t t t t t

t t t t t t t t

 
 

   

 

 

 (26) 

Since the MPP search is performed at two instants and Eq. (26) also needs two 

instants ( , )t t , equations are now derived for two general instants 1t  and 2t . For time 

derivatives, such as ( )t , let 1 1t t , 2 1t t t  , where t  is a small step size.  
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Differentiating Eq. (23), it yields 

 
1 1 2 1 2 1

1 1 2

0
( , ) ( , ) /

0 ( , )

0
C C

C
Y

t t t t t
t t

 
     

 
 (27) 

 
2 1 2 1 2 2

2 1 2

0
( , ) ( , ) /

0 ( , )

0
C C

C
Y

t t t t t
t t

 
     

 
 (28) 

and 

 
12 1 2

12 1 2

0
( , )

0 ( , )

0
C

C
Y

t t
t t

 
  
 

 (29) 

1 1 2( , )C
Y t t , 2 1 2( , )C

Y t t , and 12 1 2( , )C
Y t t  are given by 

 1 1 2 1 2 1( , ) ( , ) / , 1, 2, ,i iY Y
C t t t t t i m     (30) 

 2 1 2 1 2 2( , ) ( , ) / , 1, 2, ,i iY Y
C t t t t t i m     (31) 

and 

 2

12 1 2 1 2 1 2( , ) ( , ) / ( ), 1, 2, ,i iY Y
C t t t t t t i m      (32) 

Specially, for a pair of the same time instant ( , )t t ,  

 ( , ) 1iY
t t   (33) 

 ( , )C In mt t   (34) 

  1( , ) / ( ), ( ) 0iY
t t t C W t W t     (35) 

 1( , )C On mt t   (36) 

  2( , ) / ( ), ( ) 0iY
t t t C W t W t     (37) 

and 

 2( , )C On mt t   (38) 

Therefore, Eq. (26) is rewritten as 

 2

12( ) ( ) ( ) ( ) ( , ) ( )C
T Tt t t t t t t    (39) 

where 12( , )C t t  is computed by substituting 1 2( , )t t with ( , )t t in Eq. (29), ( )t  and ( )t are 

calculated by 
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 ( ) ( ( ) ( )) /t t t t t     (40) 

and 

 ( ) ( ( ) ( )) /t t t t t       (41) 

All the equations are obtained for the single upcrossing rate ( )v t  in Eq. (20).   

 

3.3. Joint upcrossing rate 1 2( , )v t t
 

Now the joint upcrossing rate 1 2( , )v t t  is derived between two arbitrary time 

instants 
1t  and 

2t .  The joint upcrossing rate 1 2( , )v t t , which indicates the joint probability 

that outcrossing events occur at both 1t  and 2t , is defined by the Rice’s formula as follows 

[26, 56] :  

  
1 2

1 2 1 1 2 2 1 2( , ) , ( )( )zZ
WW

v t t f z dz dz
 

 
 

      (42) 

where ( , )
WW

W Wf  is the joint normal density function of 1 2( ( ), ( ))W W t W t , and 

1 2( ( ), ( ))W W t W t , 1 2( , )  , 1 1( )t  , and 2 2( )t  . The covariance matrix of W 

and W is given by [48]   

 

2

1 12 1

2

21 2 2

2

1

( ) 0

( ) 0

0 1

0 1

WW WW

WWWW

c c
c

c c

t

t

  

  

 

 

 
 

        
 
 

 (43) 

in which  

 1 2( , )t t   (44) 

 1 1 2 1( , ) /t t t     (45) 

 2 1 2 2( , ) /t t t     (46) 

 2

12 1 2 1 2( , ) / ( )t t t t      (47) 

and 

 
2

21 1 2 2 1( , ) / ( )t t t t      (48) 

Substituting Eq. (22) into Eqs. (45)-(48) yields 

 1 1 1 2 2 1 1 1 2 2( ) ( , ) ( ) ( ) ( , ) ( )C C
T Tt t t t t t t t    (49) 



  19 

 

 2 1 1 2 2 1 2 1 2 2( ) ( , ) ( ) ( ) ( , ) ( )C C
T Tt t t t t t t t    (50) 

                                     
12 1 2 1 2 2 1 1 2 2

1 12 1 2 2 1 1 1 2 2

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

T T

T T

t t t t t t t t

t t t t t t t t

  

 
  (51) 

and 

 
21 1 1 2 2 1 1 1 2 2

1 21 1 2 2 1 2 1 2 2

( ) ( , ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( , ) ( )

C C

C C

T T

T T

t t t t t t t t

t t t t t t t t

  

 
 (52) 

in which 

 
21 1 2

21 1 2

0
( , )

0 ( , )

0
C

C
Y

t t
t t

 
  
 

 (53) 

and 

 2

21 1 2 1 2 1 2( , ) ( , ) / ( ), 1, 2, ,i iY Y
C t t t t t t i m      (54) 

1 2( , )C t t , 1 1 2( , )C t t , 2 1 2( , )C t t ,
 
and 12 1 2( , )C t t  in Eqs. (49)-(52) are computed using 

Eqs. (23), and (27) through (29). 

With the above equations derived, the equations in [48] can now be used directly 

to calculate 1 2( , )v t t . The equations are summarized blow. 

 

     

     

     

1 2 1 2 1 1 1 2 2 2

1 2 1 1 1 2 2 2

2 2

1 2
0

( , ) ( ) / ( ) /

( ) / ( ) /

| ;

W

W

W W W

v t t f

f

f K f K dK


       

        

  

     

    

 

 (55) 

in which 

  2 2 2 2

1 1 2 2(exp(( 2 ) / (2 2 ))) / (2 1 )Wf                        (56) 

1 2and  , 1 2and ,    are the mean values, standard deviations, and correlation 

coefficient of 1( )W t

 

and 2( )W t , respectively.  They are calculated by substituting the 

covariance matrix in Eq. (43) into the following equations 

 
1 1 22 1 1

2 1 2 2

( )
/ (1 )

( )

   


   


  

     
   

WWWW
μ c c  (57) 

 
2

1 1 1 2

2

1 2 2
W W

WWWW WW WW
c c c c c

  

  


 

     
 

  (58) 
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After the derivation of ( )v t  and 1 2( , )v t t , 
0( , )f sp t t  is computed with Eqs. (12), 

(19), (20), and (55).  

 

3.4.  Numerical implementation 

There are many equations involved in JUR/FORM. In this section, its numerical 

implementation is summarized. From Eq. (11) and (12), it is known that to obtain 

0( , )f sp t t , the PDF 
1
( )Tf t  needs to be integrated over 0[ , ]st t  numerically. At each of the 

integration point between 0t  and st , the integral equation in Eq. (14) should be solved. To 

maintain good efficiency, the following numerical procedure is proposed. 

It starts to evaluate the PDF at the last instant st . To do so, the time interval 0[ , ]st t  

is discretized into 1p   instants it  ( 0,1, 2, ,i p ), at each of which the integral equation 

in Eq. (14) for 
1
( )sTf t  will be solved. The PDFs at all these instants are then obtained. 

Thus the total number of the MPP will be 2( 1)p . This procedure is summarized below, 

and the associated flowchart is given in Fig. 1.  

 Step 1: Initialize the random variables and stochastic processes, including 

transforming non-Gaussian variables into Gaussian ones, discretizing the time 

interval 0[ , ]st t  into 1p   time instants 
0 1 1, , , , , pi st t t t t  ,

 
and setting a time step 

t  for the MPP search at ( 1, 2, , 1)it t i p   .  

 Step 2: Perform the MPP search at every discretized point it , as well as at it t  ; 

calculate ( )it ,
 

( )it , ( )it , ( )it , covariance matrix ( , )C i jt t  ( , 1, 2, , 1i j p  ), 

and c by using Eqs. (23), (40), (41) and (43)-(54).  

 Step 3: Solve for the single upcrossing rate ( )iv t  using Eq. (20), joint upcrossing 

rate ( , )i jv t t  ( , 1, 2, , 1i j p  ) using Eq. (55), and compute the PDF 
1
( )T if t

 
at 

each time instant using Eq. (19).  

 Step 4: Calculate 0( , )f sp t t . 
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Fig. 1 Flowchart of the JUR/FORM 

 

4. Numerical Examples 

In this section, two examples are used to demonstrate the developed methodology. 

The first one is the reliability analysis of a corroded beam under time-variant random 

loading, and the second one is the reliability analysis of a two-slider crank mechanism. 

The two examples are selected because they represent two kinds of important 

applications. Specifically, the first example involves both of a stochastic process and 

random variables in the input of the limit-state function. The stochastic process is the 

time-variant random load acting on the beam. In the second example, there are no 

Step 1: Initialize parameters 

Reliability analysis at it and it t  

 

Step 2: Perform the MPP search 

Solve for i i i i(t ), (t ), (t ), (t ), i j(t , t )C and c  

Solve for 

upcrossing 

rate ( )iv t
 Solve for joint upcrossing rate ( , )i jv t t  

Solve for PDF 
1
( )T if t  

Step4: Calculate 0( , )f sp t t  

Solve for i j  ,
2

i ,
2

j , i  
and j  

Step 3: Compute PDF 
1
( )T if t  

Initial reliability 0( )R t  

0( , )f sp t t
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stochastic processes in the input of the limit-state function. But the limit-state function is 

still time-dependent because it is an explicit function of time.  

To show the accuracy improvement of JUR/FORM, its results are compared with 

those of the traditional Poisson assumption based single upcrossing rate method, which 

has been reviewed in Sec II. Because the exact solutions are not available, the Monte 

Carlo Simulation (MCS) is used as a benchmark.  

In order to investigate the effects of parameter settings on the accuracy of 

JUR/FORM, numerical studies were also performed for Example 1. The effects studied 

include the effects of number of discretization points for the time interval  0[ , ]st t , the time 

step size t , the level of probability of failure, and the dependency of the limit-state 

function between two successive time instants.  

Next the MCS is briefly reviewed. 

 

4.1.  Monte Carlo Simulation 

When there are stochastic processes involved in the limit-state function, to 

generate the samples of the stochastic process iY , the stochastic process is treated as 

correlated random variables 1 2,( ( ) ( ), , ( ))Y
T

i i i i NY t Y t Y t  after discretizing the time 

interval 0[ , ]st t
 
into N instants. For a Gaussian stochastic process, the correlated random 

variables Yi are generated after transforming the correlated random variables into 

uncorrelated ones as follows [57] 

 Y L
ii y   (59) 

where 1 2,( , , )T

N    is the vector of N independent standard normal random 

variables; 1 2,( ( ) ( ), , ( ))
i i i i

T

Y Y Y Y Nt t t    are the vector of mean values of 

1 2,( ( ) ( ), , ( ))Y
T

i i i i NY t Y t Y t ; and L is a lower triangular matrix obtained from the 

covariance matrix of Yi. 

Let matrix AN N  be the covariance matrix of Yi. L can be obtained by 

 1
A PDP LL

T

N N



    (60) 

in which D is a diagonal eigenvalue matrix of the covariance matrix A, and P is the 

N N  square matrix whose i-th column is the i-th eigenvector of A.  
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4.2. Example 1: Corroded beam under time-variant random loading 

4.2.1. Problem statement 

The beam problem in [50] is modified as the first example. As shown in Fig. 2, 

the cross section A-A of the beam is rectangular with its initial width a0 and height b0. 

Due to corrosion, the width and height of the beam decrease at a rate of r. A random load 

F acts at the midpoint of the beam. The beam is also subjected to a constant load due to 

the weight of the steel beam. 

 A failure occurs as the stress of the beam exceeds the ultimate stress of the 

material, and the limit-state function is given by   

     2

0 0 0 0( , , ) ( ) / 4 / 8 2 2 / 4X Y st ug t F t L a b L a rt b rt       (61) 

where u  is the ultimate strength, st  is the density, and L is the length of the beam.  

 

Fig. 2 Corroded beam under time-variant random loading  

The variables and parameters in Eq. (61) are provided in Table 1.  

Table 1 Variables and parameters of Example 1 

Variable Mean Standard deviation Distribution Autocorrelation 

0a  0.2 m 0.01 m Lognormal N/A 

0b  0.04 m 4×10
-3

 m Lognormal N/A 

u  2.4×10
8
 Pa 2.4×10

7
 Pa

 
 Lognormal N/A 

( )F t  3500 N
 

700 N Gaussian In Eq. (63) 

L 5 m 0 Deterministic N/A 

st  78.5 kN/m
3
 

0 Deterministic N/A 

r 5×10
-5

 m/year 0 Deterministic N/A 

A 

L/2 
F A-A 

a0 

 

b0 

 

rt 

 

rt 

 

L 

A 
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The covariance function of ( )F t  is given by 

 1 2 1 2 1 2( , ) ( , ) ( ) ( )F F F FC t t t t t t     (62) 

where 

 2

1 2 2 1( , ) exp( (( ) / ) )F t t t t     (63) 

where 1 year   is the correlation length. The auto-correlation becomes weaker with a 

longer time interval 2 1t t , 1 2( ) ( ) 700F Ft t N    is the standard deviation of ( )F t  at 

time instants t1 and t2.  

Since ( )F t  is a Gaussian stationary stochastic process, it has  

 1 2 1 2( , ) ( , )
F

F

U t t t t    (64) 

in which 1 2( , )
FU t t  is the auto-correlation function of the underlying Gaussian standard 

stochastic process ( )FU t . 

4.2.2. Results   

Following the numerical procedure of JUR/FORM in Fig.1, the time-dependent 

probabilities of failure over different time intervals up to [0, 30] years were computed. 

The time intervals were discretized into 80 small intervals, and the time size for the 

second MPP search was taken as 0.001 years. To eliminate the accuracy difference 

caused by different numerical integration methods, for the traditional method, the same 

integration method was used as the proposed method to eliminate the accuracy difference 

caused by different numerical integration methods; namely, the time interval was 

discretized into 80 small intervals and then used the rectangle integration method to 

calculate the integral in Eq. (6). For MCS, the evaluated time intervals were discretized 

into 600 time instants with a sample size of 2×10
6 

at each time instant to generate the 

stochastic loading ( )F t . The results of the three methods are plotted in Fig. 3 and are 

given in Table 2. The relative errors,  , with respect to the MCS solutions, and the 

confidence intervals (CI) of the MCS solutions, are also given in Table 2. 



  25 

 

0 5 10 15 20 25 30
0

0.5

1

1.5
x 10

-3

Time interval [0, t] years

P
ro

b
a
b

il
it

y
 o

f 
fa

il
u

re

 

 

Traditional Method

JUR/FORM

MCS

 

Fig. 3 Probability of failure of the beam over different time intervals 

Table 2 Time-dependent probabilities of failure 

TI 
Traditional  JUR/FORM MCS 

fp    (%) fp    (%) fp  95% CI 

[0, 5] 0.309×10
-4

 6.55 0.292×10
-4

 0.69 0.29×10
-4

 [0.215×10
-4

, 0.365×10
-4

] 

[0, 10] 0.864×10
-4

 25.22 0.727×10
-4

 5.36 0.69×10
-4

 [0.575×10
-4

, 0.805×10
-4

] 

[0, 15] 1.930×10
-4

 31.29 1.450×10
-4

 1.36 1.47×10
-4

 [1.302×10
-4

, 1.638×10
-4

] 

[0, 20] 3.924×10
-4

 44.80 2.669×10
-4

 1.51 2.71×10
-4

 [2.482×10
-4

, 2.938×10
-4

] 

[0, 25] 7.553×10
-4

 50.76 4.706×10
-4

 6.07 5.01×10
-4

 [4.700×10
-4

, 5.320×10
-4

] 

[0, 30] 14.027×10
-4

 62.73 8.393×10
-4

 2.63 8.62×10
-4

 [8.213×10
-4

, 9.027×10
-4

] 

- “TI” stands for time interval 

 

The results indicate that the proposed JUR/FORM method is much more accurate 

than the traditional method. The traditional method leads to unacceptable errors while 

JUR/FORM shows excellent agreement with the MCS solution 

Table 3 gives the numbers of function calls, funcN ,  as measures of efficiency. The 

number of function calls is defined as the times that the limit-state function is evaluated 
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with the inputs of , ( ) andi it tx y . The actual computational cost (times) is also given. The 

computational times were based on a Dell computer with Intel (R) Core (TM) i5-2400 

CPU and 8GB system memory.  

 

Table 3 Number of function calls and computational times 

Time 

interval 

Traditional Method JUR/FORM MCS 

Time (s) funcN  Time (s) funcN  Time (s) funcN  

[0, 5] 4.85 5495 6.19 5560 127.66 2×10
8
 

[0, 10] 4.59 5220 6.16 5280 1.29×10
3
 4×10

8
 

[0, 15] 4.55 5115 6.27 5175 2.08×10
3
 6×10

8
 

[0, 20] 4.55 5135 6.26 5195 2.70×10
3
 8×10

8
 

[0, 25] 4.43 5070 6.23 5125 4.19×10
3
 10×10

8
 

[0, 30] 4.36 4955 6.17 5005 4.51×10
3
 12×10

8
 

 

With the same integration method, the results show that the accuracy 

improvement from JUR/FORM indeed comes from the consideration of the dependencies 

between upcrossing events. Table 3 also indicates that the numbers of function calls by 

both methods are almost the same. This is because of the use of the same integration 

method. 

The traditional method, however, may need less number of function calls because 

other integration methods could be used. The cursive adaptive Lobatto quadrature method 

was also applied to the traditional method. The probabilities of failure obtained are 

identical to those given in Table 2, but with fewer numbers of function calls and less 

computational time as shown in Table 4. This means that the traditional method is more 

efficient than the proposed method for this example.    

The results given in Tables 1 to 4 demonstrated that JUR/FORM produced much 

higher accuracy with a cost of increased computational effort, but the increased 

computational cost is moderate.   

4.2.3. Numerical studies   

(a) Effect of discretization and time step size 
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As shown in the numerical procedure, the time interval 0[ , ]st t  is discretized into 

1p   time instants  it  ( 0,1, 2, ,i p ) or p small intervals. The number of discretization 

points may affect the accuracy of the analysis result. If the number is too small, the error 

will be large. On the contrary, if the number is too large, the error will be small but the 

efficiency will be low. To study the effect of the number of discretization points, the time 

interval [0, 30] years was discretized into 20, 30, 40, 50, 60, 70 and 80 small intervals.   

 

Table 4 Number of function calls and computational times of traditional method using 

direct integration method 

Time interval [0, 5] [0, 10] [0, 15] [0, 20] [0, 25] [0, 30] 

Time (s) 1.07 1.04 1.02 1.03 0.99 2.61 

funcN  1250 1170 1155 1165 1135 2965 

 

Table 5 shows the results from JUR/FORM with different numbers of 

discretization points. When the time interval is divided into 20 small intervals, as 

expected, the error is the largest; however, the result is still more accurate than the 

traditional method. With the higher number of discretization points, the accuracy of 

JUR/FORM is higher. 

 

Table 5 Time-dependent probability of failure with different discretization points 

 MCS 
Traditional 

Method 

JUR/FORM with p small intervals 

20 30 40 50 60 70 80 

fp
 
(10

-4
) 8.6 14.027 7.83 7.98 8.09 8.13 8.21 8.24 8.25 

 (%) N/A 62.73 9.16 7.42 6.15 5.68 4.76 4.41 4.33 

 

In addition to the number of discretization, there is another parameter that may 

affect the performance of JUR/FORM. This parameter is the time-step size t , which is 

used for numerically evaluating the derivatives ( )it  and ( )it  in Eqs. (40) and (41), 

respectively.  0.0005, 0.001, 0.005t   and 0.01
 
were used to study its effect. Table 6 

provides the results, which show that the time-step size does affect the accuracy, but the 
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effect is not significant. The general discussions regarding the effect of a step size for 

numerical derivatives can be also found in [48-50]. 

 

Table 6 Time-dependent probability of failure with different t  

Method MCS 
Traditional 

Method 

JUR/FORM with different t  

5×10
-4 

0.001 0.005 0.01 

fp (10
-4

) 8.62 14.03 8.41 8.25 8.0 7.98 

  (%) N/A 62.73 2.47 4.33 7.16 7.40 

 

(b) Effect of larger probability of failure 

To investigate the accuracy of JUR/FORM when the probability of failure 

becomes larger, the results of MCS, JUR/FORM and traditional method were compared 

for six cases at different probability levels. Table 7 show that the larger is the probability 

of failure, the worse is the traditional method, while JUR/FORM is always much more 

accurate than the traditional method.   

 

Table 7 Time-dependent probability of failure JUR/FORM at different probability 

levels  

Traditional Method JUR/FORM MCS 

fp    (%) fp    (%) fp  95% CI 

14×10
-4

 71.15 8.25×10
-4

 0.86 8.18×10
-4

 [7.62×10
-4

, 8.74×10
-4

] 

19×10
-4

 72.73 10×10
-4

 9.09 11×10
-4

 [10.4×10
-4

, 11.6×10
-4

] 

95×10
-4

 93.88 46×10
-4

 6.12 49×10
-4

 [47.6×10
-4

, 50.4×10
-4

] 

176×10
-4

 97.75 83×10
-4

 6.74 89×10
-4

 [87.2×10
-4

, 90.8×10
-4

] 

1083×10
-4

 127.52 444×10
-4

 6.72 476×10
-4

 [472×10
-4

, 480×10
-4

] 

3101×10
-4

 137.81 1246×10
-4

 4.44 1304×10
-4

 [1297×10
-4

, 1311×10
-4

] 

 

(c) Effect of the auto-covariance of the limit-state function 

JUR/FORM is developed to better account for dependent failures over a time 

period. To demonstrate this, the accuracy of JUR/FORM was analyzed for five cases with 
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different levels of dependency. In the five cases, the coefficients of auto-correlation , 

ranging from 0.108 to 0.961, between two successive time instants [ it , 1it  ], 1, 2, , 99i   

over [0, 30] years. Note that the coefficient of auto-correlation of the limit-state function 

is almost constant given the auto-correlation function of the stochastic process for the 

external force in Eq. (62).    

Table 8 shows that the error of the traditional method decreases when the 

dependency becomes weaker while the accuracy of JUR/FORM method is always better 

than the traditional effort.  

 

Table 8 Time-dependent probability of failure with different dependencies  

 

Traditional 

Method 
JUR/FORM MCS 

fp
 
(10

-4
)   (%) fp

 
(10

-4
)   (%) fp (10

-4
) 95% CI (10

-4
) 

0.961 4.756 24.5 5.83 7.46 6.30 [5.81, 6.79] 

0.914 6.952 23.18 8.52 5.86 9.05 [8.46, 9.64] 

0.698 13.54 20.07 16.60 2.01 16.94 [16.13, 17.75] 

0.368 22.32 17.27 27.36 1.41 26.98 [25.96, 28.00] 

0.108 33.29  12.12 38.65 2.03 37.88 [36.68, 39.08] 

 

4.3. Example 2: Two-slider crank mechanism 

A two-slider crank mechanism is shown in Fig. 4. This type of mechanism is 

widely used in engines. The crank is rotating at an angular velocity of . The motion 

error is defined as the difference between the desired displacement difference and the 

actual displacement difference between sliders A and B. The error should not exceed 0.94 

mm over one motion cycle.  

The limit-state function is given by 

 ( , , )X Y desired actualg t s s    (65) 

in which 
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2 2 2

1 0 2 1 0

2 2 2

3 1 0 0 4 3 1 0 0

cos( ) sin ( )

cos( ) sin ( )

actuals R R R

R R R

   

       

     

        
 (66) 

 

2 2 2

0 0

2 2 2

1 0 0 1 0 0

108cos( ) 211 108 sin ( )

100cos( ) 213 100 sin ( )

desireds    

       

     

        
 (67) 

 

Fig. 4. Two-slider crank mechanism    

 

The variables and parameters in the limit-state function are given in Table 9. 

 This mechanism problem is different from the beam problem in the follow two 

aspects. First, this problem does not involve any input stochastic processes, but the limit-

state function is still a stochastic process because it is a function of time. Second, the 

dependence of the limit-state function at any two time instants is strong. The auto-

dependence does not decay with a longer time period. On the contrary, in the first 

problem, the auto-dependency between the performance values at 1t  and 2t  will be weaker 

and weaker when 2 1t t  becomes larger and larger as indicated in Eq. (62).  

The angular velocity of the crank is    rad/s, and the time period of one 

motion cycle is then [0, 2] seconds. Following the numerical procedure of JUR/FORM, 

 

As  Bs  

R1 

R2 

R3 

R4 


 

0  

A 

B 

  

0  

1  
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the probabilities of failure were computed over different time intervals. Each of the 

evaluated time intervals were discretized into 60 smaller intervals. The step size for the 

second MPP search was 8×10
-5

 seconds. The traditional method and MCS with a sample 

size of 10
6
 were also applied. The same integration method was used for both the 

traditional method and the proposed method to eliminate the accuracy difference caused 

by different numerical integration methods. The time interval was discretized into 60 

small intervals and then used the rectangle integration method to calculate the integral in 

Eq. (6). The results from the three methods are plotted in Fig. 5 and are given in Table 

10.   

 

Table 9 Variables and parameters in Example 2 

Variable Mean Standard deviation Distribution 

R1 108 mm 0.05 mm Normal 

R2 211 mm 0.2 mm  Normal 

R3 100 mm 0.05 mm Normal 

R4 213 mm 0.2 mm Normal 

0  45 0 Deterministic 

1  60 0 Deterministic 

0  10 0 Deterministic 


 

  rad/s 0 Deterministic 

 

Table 10 Time-dependent probabilities of failure 

Time 

interval 

Traditional JUR/FORM MCS 

fp
 
(10

-3
)   (%) fp

 
(10

-3
)   (%) fp

 
(10

-3
) 95% CI (10

-3
) 

[0, 0.4] 1.76 22.03 1.51 4.27 1.45 [1.37, 1.52] 

[0, 0.8] 3.06 53.84 1.97 1.01 1.99 [1.90, 2.08] 

[0, 1.2] 3.92 81.48 2.16 0.17 2.16 [2.07
3
, 2.25] 

[0, 1.6] 4.67 112.27 2.31 4.92 2.20 [2.10, 2.29] 

[0, 2.0] 6.01 161.30 2.33 1.14 2.30 [2.20, 2.39] 
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Fig. 5. Time-dependent probabilities of failure 

 

The results indicate that JUR/FORM is significantly more accurate than the 

traditional method. With the same integration method, Table 10 indicates that the 

accuracy improvement is indeed due to the consideration dependent upcrossings by 

JUR/FORM.  

The number of function calls and the computational time are given in Table 11, 

which shows that the proposed method is almost as efficient as the traditional method.   

As what has been done in Example 1, Eq. (6) was also solved using the direct 

cursive adaptive Lobatto quadrature method. The probabilities of failure obtained are 

almost identical to those in Table 10. Contrary to Example 1, The efficiency of the 

traditional method, however, varies for different time periods as shown in Table 12.   

The results show that the increased computational cost by JUR/FORM is 

reasonable given its significantly improved accuracy.  
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5. Conclusion 

Time-dependent reliability analysis is needed in many engineering applications. 

When multiple dependent upcrossings occur over a time interval, the single upcrossing 

rate method with Poisson assumption may produce large errors in estimating the time-

dependent probability of failure.    

 This work demonstrates that the joint upcrossing rates proposed in [48] can be 

extended to a general time-dependent limit-state function with much higher accuracy. 

This work integrates the FORM with the joint upcrossing rates so that high computational 

efficiency can be maintained. Analytical expressions of the single and joint upcrossing 

rates are also derived based on FORM.  

 

Table 11 Number of function calls and MPP searches 

Time 

interval 

Traditional JUR/FORM MCS 

MPP 

searches 

Function 

Calls 

MPP 

searches 

Function 

Calls 

MPP 

searches 

Function 

Calls 

[0, 0.4] 122 2394 122 2452 N/A 6×10
7 

[0, 0.8] 122 2398 122 2455 N/A 1.2×10
8 

[0, 1.2] 122 2394 122 2437 N/A 1.8×10
8 

[0, 1.6] 122 2400 122 2451 N/A 2.4×10
8 

[0, 2.0] 122 2391 122 2437 N/A 3.0×10
8 

 

Table 12 Number of function calls of traditional method using direct integration method 

Time interval [0, 0.4] [0, 0.8] [0, 1.2] [0, 1.6] [0, 2.0] 

funcN  1927 720 4320 3140 16531 

 

The proposed method has shown good accuracy when the probability of failure is 

small and the dependency between failures is strong. When the probability of failure 

becomes larger or the dependency becomes weaker, the proposed method remains more 

accurate than the traditional upcrossing rate method. Since the proposed method requires 
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a numerical method in solving the integral equation and derivatives, its accuracy may be 

affected by the number of discretization points and the time size between two consecutive 

MPP searches. The proposed method can be used for general stochastic processes, 

including non-Gaussian non-stationary processes. To do this, a general stochastic process 

at first needs to be transformed into a standard Gaussian process. The transformation 

should make not only the CDF functions but also the auto-covaraince functions be equal 

to each other before and after the transformation. 

Possible future work includes improving the efficiency and robustness of the 

method and applying it to time-dependent reliability-based design optimization.  
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Abstract 

If a limit-state function involves time, the associated reliability is defined within a 

period of time. The extreme value of the limit-state function is needed to calculate the 

time-dependent reliability, but the extreme value is usually highly nonlinear with respect 

to random input variables and may follow a multimodal distribution. For this reason, a 

surrogate model of the extreme response along with Monte Carlo simulation is usually 

employed. The objective of this work is to develop a new method, called the Efficient 

Global Optimization Reliability Analysis (EGORA), to efficiently build the surrogate 

model. EGORA is based on the Efficient Global Optimization (EGO) method. Different 

from the current method that draws samples of random variables and time independently, 

EGORA draws samples of the two types of input variables simultaneously and therefore 

accounts for their interaction effects. The other improvement is that EGORA only 

focuses on high accuracy at or near the limit state. With the two improvements, the new 

method can reduce the number of samples to almost half of that of the traditional method. 

Once the surrogate model of the extreme response is available, Monte Carlo simulation is 

applied to calculate the time-dependent reliability. The accuracy and efficiency of 

EGORA are demonstrated by three examples. 

 

 

                                                 

1
400 West 13th Street, Toomey Hall 290D,Rolla, MO 65409, U.S.A., Tel: 1-573-341-7249, e-mail: 

dux@mst.edu 

 



  41 

 

1. Introduction 

If a response variable is a function (limit-state function) of time, the associated 

reliability is defined within a period of time and usually decreases over time. For this 

case, time-independent reliability analysis methodologies [1,2] are not applicable. Even 

though other methods [3-5] exist, the first passage methods and extreme value methods 

are usually used to calculate time-dependent reliability. The former methods are easier to 

use and are more popular, but may not be as accurate as the latter methods. The two types 

of methods are briefly reviewed below. 

The first-passage methods calculate the probability that the response exceeds its 

failure threshold (limit state) for the first time in the predefined period of time. The event 

that the response reaches its limit state is called an upcrossing, and the upcrossing rate is 

the rate of change of the upcrossing probability with respect to time. If the first-time 

upcrossing rate is available, the time-dependent probability of failure can be easily found. 

But it is difficult to obtain the first-time upcrossing rate. For this reason, approximation 

methods are widely applied. The most commonly used method is the Rice’s formula [6], 

which uses upcrossing rates throughout the entire period of time and assumes that all the 

upcrossings are independent.  

Many latter methods have been developed based on the Rice’s formula. For 

instance, an asymptotic outcrossing rate for stationary Gaussian processes was derived by 

Lindgren [7] and Breitung [8, 9]. The bounds of the upcrossing rate of a non-stationary 

Gaussian process were given by Ditlevsen [10]. To solve general time-dependent 

reliability problems, Hagen and Tvedt [11, 12] proposed a parallel system approach. A 

PHI2 method was then developed by Sudret [13]. Hu and Du also developed a time-

dependent reliability analysis method based on the Rice’s formula [14]. Even if some 

modifications have been made [15-18], the upcrossing methods may produce large errors 

when upcrossings are strongly dependent. 

The extreme value methods approach the time-dependent reliability from another 

aspect – using the extreme value of the response with respect to time. If the extreme 

value and its distribution can be found, the accuracy will be higher than the upcrossing 

methods since the independent upcrossing assumption is eliminated. The distribution of 
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the extreme response, however, may not be obtained accurately and efficiently without 

using expensive global optimization repeatedly.  

In general, the extreme value of the response is much more nonlinear than the 

response itself with respect to the input random variables. For many problems, the 

distribution of the extreme response is multimodal with different modes (peaks of 

probability density) even though the response itself follows a unimodal distribution [19]. 

For this reason, using Design of Experiments (DOE) to obtain a surrogate model of the 

extreme response becomes promising and practical. For example, Wang and Wang [20] 

proposed an extreme response method using the Efficient Global Optimization (EGO) 

approach [22], which is a DOE method. Chen and Li [21] also studied how to evaluate 

the distribution of the extreme response using the probability density evolution method 

[21]. 

The efficiency of the existing extreme value methods with DOE, such as the 

approach in [20], can be improved. Suppose the response Y is computed though a limit-

state function ( , )g tX , where X  is a vector of random variables and t is time. The 

current methods draw samples of X  first. Then at each sample point of X , samples of t 

are drawn through EGO [22], which produces the extreme response with respect to time. 

Then the values of the extreme response are available at all the sample points of X , and a 

surrogate model of the extreme response is built. Sampling on X  and t is performed at 

two nested and independent levels, and the method is therefore called the independent 

EGO method. The interaction effects of X  and t are not considered at the two separate 

sampling levels. The efficiency could be improved if X  and t are simultaneously 

sampled. This motivated us to develop a new method with higher efficiency.  

This work develops a new time-dependent reliability method based on EGO, and 

the strategy proposed in [19] is also employed. The new method is named the Efficient 

Global Optimization Reliability Analysis (EGORA). The contributions of this work 

consist of the following elements:  

 A new efficient sampling strategy for generating samples of random input 

variables X  and time t simultaneously so that the interaction effects of both 

types of variables can be considered. The strategy significantly increases the 

efficiency of the existing independent EGO method. 
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 The extension of the sampling update approach proposed in [19] for time-

independent problems to time-dependent problems. This makes the surrogate 

model of the extreme response accurate near or at the limit state and therefore 

makes the reliability obtained later by Monte Carlo simulation accurate. 

 A complete numerical algorithm that implements the new sampling strategy 

robustly. 

 The integration of the above algorithm and Monte Carlo simulation.  

Time-dependent limit state functions may be given in different forms [23, 24]. 

This work is concerned with limit-state functions in the form of ( , )Y g tX , where 

1 2[ , , , ]nX X XX  is a vector of random variables.  

The remainder of this paper starts from Section 2 where the EGO is reviewed and 

time-dependent reliability. The new method is discussed in Section 3 followed by its 

numerical algorithm in Section 4. Three examples are presented in Section 5, and 

conclusions are given in Section 6.    

 

2. Background 

The Efficient Global Optimization (EGO) is used for time-dependent reliability 

analysis in this work. The EGO is first reviewed and then discuss the definition of the 

time-dependent reliability. The current method or the independent EGO method is also 

discussed in Section 1. 

 

2.1. Efficient Global Optimization (EGO) 

Since being proposed by Jones in 1998 [22], EGO has been widely used in 

various areas [25-28]. It is based on the DACE model [29] or the Kriging model. Both of 

the EGO and DACE methods update their models by adding training points gradually. 

The two methods use different criteria for model updating. The EGO model is updated 

with a new training point that maximizes the expected improvement function (EIF) while 

the DACE model is updated with a new training point that minimizes the mean square 

error. A maximum EIF helps find a point with the highest probability to produce a better 
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extreme value of the response than the current ones. Many studies have demonstrated that 

EGO can significantly reduce the number of function evaluations for global optimization.  

EGO at first constructs a Kriging model using initial training points. The expected 

improvements (EI) is calculated using the mean and covariance of the Kriging model. 

The model is then updated by adding a new point with the maximum EI. The procedure 

continues until convergence.   

The Kriging model ˆ( )g x  is given by 

 ˆ ˆ( ) ( ) ( )Ty g Zx h x β x     (1) 

in which ( )h   is called the trend of the model, β  is the vector of the trend coefficients, 

and ( )Z   is a stationary Gaussian process with a mean of zero and the covariance given 

by 

 2[ ( ), ( )] ( , )ZCov Z Z Ra b a b   (2) 

where 2

Z  is the variance of the process, and ( , )R a b  is the correlation function. The 

commonly used correlation functions include the squared-exponential and Gaussian [29].  

At a general point x , ŷ  is a Gaussian random variable denoted by 

 2ˆ ˆ( ) ~ ( ( ), ( ))y g Nx x x    (3) 

in which ( , )N    stands for a normal distribution; ( )   and ( )   are the mean and 

standard deviation of ŷ , respectively.  At a training point x , ( ) ( )gx x   and ( ) 0x  . 

This means that ˆ( )g x  passes all the sampled points { , ( )}gx x .  

When EGO is used to find the global maximum of ( )g x , the improvement at x  is 

defined by *max( , 0)I y y  , where *y  is the current best solution (the maximum 

response) obtained from the existing training points. The expected improvement EI is 

given by [22] 

 
* *

* ( ) ( )
EI( ) ( ( ) ) ( )

( ) ( )

y y
y

x x
x x x

x x

 
  

 

    
      

   
  (4) 
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where     and     are the Cumulative Distribution Function (CDF) and Probability 

Density Function (PDF) of a standard Gaussian variable, respectively, and *y  is 

computed by 

 * ( )

1, 2, ,
max { ( )}i

i k
y g x


   (5) 

in which k is the number of current training points.  

By maximizing EI, a new training points is then identified as follows 

 ( 1) arg max EI( )k

x X
x x   (6) 

Algorithm 1 describes the procedure of EGO. More details can be found in Refs. 

[22]  and [29].  

 

Algorithm 1 Efficient Global Optimization (EGO) 

1 Generate initial samples (1) (2) ( )[ ; ; ; ]s k
x x x x  

2 Compute (1) (2) ( )[ ( ), ( ), , ( )]s kg g gy x x x ; set 1m  

3 While { 1m } or { max EI( ) EI
x X

x } do 

4 Construct a Kriging model ˆ ˆ( )Xy g  using { , }s s
x y  

5 Find * ( )

1, 2, , 1
max { ( )}i

i k m
y g x

  
  

6 Search for 
( ) arg max EI( )k m

x X
x x , where EI( )x  is computed by Eq. (4) 

7 Scale max EI( )= max EI( ) / (1)
x X x X

x x , where (1)  is the first element of the 

trend coefficients β  given in Eq. (1)  

8 Compute ( )( )k mg x
 ; update ( )[ , ( )]s s k mgy y x  and ( )[ ; ]s s k m

x x x  

9 1m m  

10 End While 

 

In Step 3, EI  is the convergence criterion of EI . The maximum EI  is scaled in 

Line 7 as suggested in [19].  
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2.2. Time-dependent reliability 

For a general limit-state function ( , )Y g tX , a failure occurs if 

 ( , )Y g t eX   (7) 

in which e  is the failure threshold.  

For a time interval 0[ , ]st t , the time-dependent reliability is defined by [5] 

  0 0( , ) Pr ( , , [ , ])s sR t t Y g et t t tX       (8) 

where Pr   stands for a probability, and 0[ , ]st t t   means all time instants on 
0[ , ]st t . 

The time-dependent probability of failure is defined    

  0 0( , ) Pr )( , , [ , ]f s sp t t Y g e t t ttX      (9) 

where   stands for “there exists”. 

0( , )f sp t t  is a non-decreasing function of the length of 0[ , ]st t . The longer is the 

period of time, generally, the higher is 0( , )f sp t t .  

 

2.3. Time-dependent reliability analysis with surrogate models 

The failure event in Eq. (7) is equivalent to maxY e , where maxY  is the global 

maximum response on 0[ , ]st t  and is given by 

 
0

max
[ , ]

arg ma , )x{ ( }
st tt

Y g tX   (10) 

Then 0( , )f sp t t  is rewritten as  

  0 max( , ) Prf sp t t Y e    (11) 

For many problems, maxY  is highly nonlinear with respect X  and may follow a 

multimodal distribution. Using the current approximation reliability methods, such as the 

First and Second Order Reliability Methods (FORM and SORM), may result in large 

errors. Monte Carlo simulation becomes a choice if a surrogate model, max max
ˆ ( )Y g X , of 

maxY , can be built. As discussed previously, the direct EGO method, e.g., the approach in 

[20], builds max max
ˆ ( )Y g X  at two nested loops. The outer loop generates samples of X . 
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At each sample of X , the inner loop is executed to find the time maxt  when the response 

is maximum. Samples of t  are generated by EGO in the inner loop.  

A more direct and general independent EGO procedure is summarized below. 

 Outer loop: Sampling on X  for building max max
ˆ ( )Y g X . 

 Inner loop: EGO for 
0[ ,

ma
]

x max{ ( , })
st tt

y g tx  at x , which a sample of X . 

The associated algorithm or Algorithm 2 is shown as follows. 

 

Algorithm 2 Independent EGO method 

1 Generate initial samples (1) (2) ( )[ ; ; ; ]s k
x x x x  

2 Solve for (1) (2) ( )

max max max max[ ( ), ( ), , ( )]s kg g gy x x x , where 

0

( ) ( )

max
[ , ]

( ) max{ ( , )}
s

i i

t t t
g g tx x


 , using EGO; set 1m   

3 While { 1m } or { max MSE( ) MSE
x X

x  } do 

4 Construct a Kriging model max max
ˆ ( )Y g X  using  

max{ , }s s
x y  

5 Find ( ) arg max{MSE( )}k m

x X
x x  

6 Search for 
0

( ) ( )

max
[ , ]

( ) max{ ( , )}
s

k m k m

t t t
g g tx x

 


  using EGO 

7 Update ( )[ ; ]s s k m
x x x  and ( )

max max max[ , ( )]s s k mgy y x
  

8 1m m  

9 End While 

10 Reliability analysis using max max
ˆ ( )Y g X  

 

In Step 3, MSE  is a small positive number used as the convergence criterion of 

MSE , where MSE  stands for the mean square error.   

The independent EGO method may not be efficient because of the following two 

reasons. First, the one-dimensional EGO with respect to t is performed repeatedly at each 

sample point of X . As mentioned previously, X  and t  are treated independently at two 

separate levels, the interaction of X  and t  cannot be considered at either level. The 

efficiency will be low. Second, the surrogate model should have a very small MSE  when 
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it is applied to the reliability analysis. If maxY  is highly nonlinear or its distribution is 

multimodal, constructing a surrogate model with a low MSE  is computationally 

expensive.  

 

3. Efficient Global Optimization Reliability Analysis (EGORA) 

In this section, the EGORA method that overcomes the drawbacks of the 

independent EGO method is discussed. The new method builds a surrogate model 

max max
ˆ ( )Y g X  for the global extreme response through another surrogate model 

ˆ( ),Y g tX  for the original limit-state function ( ),Y g tX . The new method is still 

based on EGO and is much more efficient than the independent EGO method. It is 

therefore called the Efficient Global Optimization Reliability Analysis (EGORA) 

method. It is efficient because of the following reasons: 

 With the use of the surrogate model ˆ( ),Y g tX , the interaction effects of X  

and t  can be effectively considered. This will reduce the numbers of samples 

of both X  and t . 

 EGORA employs the convergence criterion developed in [19] and can 

efficiently and accurately approximate the extreme responses at or near the 

limit state without using the MSE . High accuracy at or near the limit state 

also helps reduce the number of samples of X . 

 

3.1.  Overview 

Let the surrogate model of the extreme response be max max
ˆ ( )Y g X . As discussed 

in [19], the accuracy of reliability analysis is only affected by the accuracy of the 

surrogate model at the limit state or max max ( )Y g e X . For this reason, achieving high 

accuracy for max max
ˆ ( )Y g X  at or near the limit state is the focus. By doing so, the 

number of samples can be reduced. Since the limit-state max max ( )Y g e X  is of the 

greatest concern, the sample updating criterion needs to be modified. In this work, the 
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modified Expected Improvement (EI) in [19] is extended  for time-independent problems 

into present time-dependent problems.  

The overall procedure of EGORA is provided in Table 1, and the detailed 

algorithm will be discussed in Subsections 3.3 and 3.4 and will be summarized in 

Section. 4. 

 

Table 1 Major Procedure of EGORA 

Step 1: Initial sampling 

1. Generate initial samples s
x  and s

t  

Step 2: Build initial extreme response model (Algorithm 3) 

2. Build time-dependent surrogate model ˆ( , )Y g tX    

3. Solve for the maximum responses maxY  at s
x  based on ˆ( , )Y g tX  

4. Build initial extreme response model max max
ˆ ( )Y g X  

Step 3: Update extreme response model (Algorithm 4) 

5. Adding new samples of X  though updating and using ˆ( , )Y g tX  

6. Obtain final model max max
ˆ ( )Y g X  

Step 4: Reliability analysis 

7. Monte Carlo simulation based on max max
ˆ ( )Y g X . 

 

The major difference between the independent EGO method and EGORA is that 

X  and t  are sampled at two separate levels in the former method while X  and t  are 

sampled simultaneously in the latter method.  

 

3.2. Initial sampling 

The initial samples s
x  are used to create an initial surrogate model for maxY . The 

commonly used sampling approaches include the Random Sampling (RS), Latin 

Hypercube Sampling (LHS), and Hammersley Sampling (HS) [30]. In this work, the HS 

method is used as it is better than LHS and RS in providing uniformity properties over 

multi-dimensional space [31]. 
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Suppose that the dimension of X  is n and that k initial samples are generated. The 

samples s
x  are 

 

(1) (1) (1)

1 2

(2) (2) (2)

(1) (2) ( ) 1 2

( ) ( ) ( )

1 2

; ; ;

n

s k n

k k k

n

x x x

x x x

x x x

x x x x   (12) 

in which ( ) ( ) ( ) ( )

1 2[ , , , ]i i i i

nx x xx  is the i-th sample point. 

k initial samples of t are also generated along with those of X . The combined 

initial samples are then given by 

 

(1) (1) (1) (1)

1 2

(2) (2) (2) (2)

1 2

( ) ( ) ( ) ( )

1 2

,

,
[ , ]

,

n

s s n

k k k k

n

x x x t

x x x t

x x x t

x t   (13) 

The limit-function is called to obtain responses at the above samples and build a 

mixed EGO model ˆ( , )Y g tX  with respect to X and t. ˆ( , )Y g tX  is called a mixed 

model because it is a function of X and t. Then, the extreme value responses 
max

s
y  at s

x  

are identified by the mixed EGO model that will be discussed in the following section.  

 

3.3. Construct initial max max
ˆ ( )Y g X  with the mixed EGO model 

This is Step 2 of EGORA in Table 1. With t, the EI in Eq. (4) is rewritten as 

 
( ) * ( ) *

( ) ( ) * ( )

( ) ( )

( , ) ( , )
( , ) ( ( , ) ) ( , )

( , ) ( , )

i i
i i ii i

i i i

t y t y
EI t t y t

t t

x x
x x x

x x

 
  

 

    
      

   
  (14) 

where *

iy  is the current best solution (maximum response), and ( )( , )i tx  and ( )( , )i tx  

are the mean and standard deviation at ( )[ , ]i tx . 

The expressions of EI are the same for the independent EGO method and the 

mixed EGO model. The difference lies in the way of computing ( )( , )i tx  and ( )( , )i tx . 

For the independent EGO method, ( )( , )i tx  and ( )( , )i tx  are obtained from the one-

dimensional Kriging model ˆ( )Y g t , which is constructed in the inner loop for t when X   
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is fixed. For the mixed EGO model, they are computed from the Kriging model 

ˆ( ),Y g tX , which is constructed when X  and t change simultaneously.  

Once convergence is reached, the maximum responses with respect to s
x  will be 

available. Then the initial model max max
ˆ ( )Y g X  can be built.  

The algorithm (Algorithm 3) for the initial max max
ˆ ( )Y g X  is given as follows. 

 

Algorithm 3 Mixed EGO model for initial 
max max

ˆ ( )XY g  

1 At initial samples points, compute ( ) ( )

, ,

( )

1, 1,[ ] [ ( , ])y x
i

k

s i i

i kiy tg     

2 Set s s

tx x , 1m , and the initial current best solution vector 
maxy y
s s  

3 While { 1m } or { max EII } do 

4 Construct Kriging model ˆ( ),XY g t  using {[ , ], }s s s

tx t y  

5 Find a point with maximum EI: EI

0

( ) EI ( )

[ , ]1, 2, ,

[ , ] arg max{ max {EI( , )}}x x
s

i i

t t ti k

t t


 , 

where EI [1, , ]ki    and ( )EI( , )i tx  is computed based on ˆ( ),Y g tX ; 

calculate EI( ) EI

max ( , t)EI( , ) / (1)
i

I t xx  .   

 

 

6 Compute EI( )EI EI( , )x
i

y g t  

7 Update current best solution 

EI EI

max

max

ma

EI

EI

x EI

( )
( )

( ) otherwise

if s

s

s

y y y i
y i

y i

 
 


 

8 Update data points EI( )
[ ; ]x x x

is s

t t , EI[ ; ]t t
s s t , and EI[ , ]y y

s s y  

9 1m m  

10 End While 

11 Record maxy
s , [ , ]s s

tx t , and s
y  

12 Construct max max
ˆ ( )XY g  using max{ , }s s

x y  

 

In Line 2, s
x  contains initial samples used to construct mmax ax

ˆ ( )Y g X , and s

tx  

contains s
x  and added samples of X  for model ˆ( ),Y g tX . In Line 3, EI  is the 
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convergence criterion of maximum EI. In Line 5, ( )EI( , )i tx  is computed by plugging 

max ( )sy i , ( )( , )i

Y tx  and ( )( , )i

Y tx , which are obtained from ˆ( ),Y g tX , into Eq. (14).  

In the mixed EGO model, all the sampled data of both X  and t are used to update the 

training points of t. But in the independent EGO model, only the sampled data of t are 

used to update training points of t.  This is the reason why the mixed EGO model is more 

efficient.  

From the outputs of the mixed EGO model, the extreme values 
max

s
y  are obtained 

corresponding to the samples ( )i
x , 1, 2, ,i k . In the following section, it discusses 

how to get a new training point ( 1)k
x

  and the associated ( 1)

max ( )kg x
 . 

 

3.4. Update max max
ˆ ( )Y g X  

The initial model of the extreme response max max
ˆ ( )Y g X  obtained above may not 

be accurate. This work now discusses how to update the model. The criterion originally 

developed in [19] is adopted, where the expected improvement function (EIF) is modified 

to the expected feasibility function (EFF). The method is for only time-independent 

problems. It is now extended to time-dependent problems.  

Other than the use of EFF, the other steps are the same as the EGO model. 

Specifically, an initial Kriging model is built first. Then a new training point is identified 

by maximizing the expected feasibility (EF). The advantage of using the EF is that it 

helps generate new training points near the limit state. Consequently, the surrogate model 

is accurate near the limit state; other regions away from the limit state are not concerned.  

This allows for an accurate surrogate model for reliability analysis with reduced samples.   

As mentioned previously, the EF in [19] is for  a time-independent problem, 

where the following probability needs to be approximated. 

 Pr{ ( ) }P g eX    (15) 

The surrogate model ĝ( )X  for ( )g X  is to be constructed. EF is defined by [19] 



  53 

 

 

( ) ( ) ( )
EF( ) ( ( ) ) 2

( ) ( ) ( )

( ) ( ) ( )
( ) 2

( ) ( ) ( )

( )

( )

g g g

g

g g g

g g g

g

g g g

g

g

e e e
e

e e e

e e

x x x
x x

x x x

x x x
x

x x x

x

x

  


  

  
   

  






 

 



        
               

       

        
             

       

 
    

 

( )

( )

g

g

x

x





  
   
   

  (16) 

where ( )g x  and ( )g x  are mean and standard deviation at point x  obtained from the 

outputs of predictor ĝ( )x , e e    , e e    , and   is a parameter which is 

proportional to ( )g x .  

The new training point of x  is then identified by maximizing EF. After the new 

training point is identified, a new surrogate model is constructed. Then, new training 

point is obtained based on EF again. The iteration continues until the convergence 

criterion is satisfied. More details are available in [19].  

The same strategy can be used for present time-dependent problem for finding a 

training point. As discussed in Sec. 3.1, an initial Kriging model max max
ˆ ( )Y g X  is first 

constructed using max{ , }s s
x y . By using the EFF, a new training point of x  is obtained as 

follows 

 ( 1) arg max{EF( )}k

x X

x x



   (17) 

where EF( )x  is obtained by plugging 
max

( )y x , 
max

( )y x , e , e    , and e    into 

Eq. (16). 
max

( )y x  and 
max

( )y x  are outputs of the predictor max
ˆ ( )g X . 

With the new training point ( 1)k
x

 , the associated extreme response ( 1)

max ( )kg x
  is 

needed to update the surrogate model for maxY .  

Obtaining ( 1)

max ( )kg x
  is equivalent to solving the following one dimensional 

global optimization problem: 

 
0

( 1) ( 1)

max
[ , ]

arg max{ ( , )}
s

k k

t t t

t y g tx
 



    (18) 
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To reduce the number of function calls, the mixed EGO model presented in the 

last subsection is still used, and the data set of [ , ]s s

tx t  and s
y  obtained as discussed in 

Section 3.3 are used as well. Algorithm 4 presents the procedure for the sampling update 

on ( 1)k
x

  and associated ( 1)

max ( )kg x
 . 

 

  Algorithm 4  Sampling update 

1: Set p=1 

2: While { 1p } or { max ( ) EFEF
x X

x 


 } do 

3: Construct a Kriging model of max max
ˆ ( )Y g X  using max{ , }s s

x y  

4: Find a point with maximum EF: ( ) arg max{EF( )}k p

x X
x x   

5: Generate a new random rt  that follows uniform distribution on 0[ , ]st t  

6: Compute EF ( )( , )k p

ry g tx ; Update ( )[ ; ]s s k p

t tx x x [ ; ]s s

rtt t  and 

EF[ , ]s s yy y   

7: Set EF

max ( )sy k p y   and 1q  

8: While { 1q } or {
0

( )

[ , ]
max EI( , )

s

k p

EI
t t t

tx } do 

9: 

Construct an 1n  dimensional Kriging model ˆ( ),Y g tX  using 

{[ , ], }s s s

tx t y  

10: Find a point with maximum EI: 
0

EI ( )

[ , ]
max {EI( , )}

s

k p

t t t
t tx




 , where 

( )EI( , )k p tx
  is computed based on ˆ( ),Y g tX   

11: Scale ( ) EI ( ) EI

( , t)EI( , ) EI( , ) / (1)k p k pt t xx x   , where ( , t) (1)
x

  is the first 

element of the trend coefficients of ˆ( ),Y g tX  model  

12: Compute EI ( ) EI( , )k py g tx
  

13: Update current best solution 

EI EI

max

max

max

( )
( )

( ), other

, i

w

f 

ise

s

s

s

y y y k p
y k p

y k p

  
  



 

14: Update data points ( )[ ; ]s s k p

t tx x x , EI[ ; ]s s tt t , EI[ , ]s s yy y  
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15: 1q q  

16: End While 

17: Record 
max

s
y , ( )[ ; ]s s k p

x x x , s

tx , s
t , and s

y  

18: 1p p  

19: End While 

 

In Line 10, ( )EI( , )k p tx
  is computed by plugging 

max ( )sy k p , ( )( , )k p

Y tx   and 

( )( , )k p

Y tx  , which are obtained from ˆ( ),Y g tX , into Eq. (14). When the convergence 

criterion is satisfied, the surrogate model max max
ˆ ( )Y g X  is obtained.   

MCS is then used to calculate reliability. As max max
ˆ ( )Y g X  is accurate, so will be 

the reliability calculated by MCS with a sufficiently large sample. Note that MCS will 

not call the original limit-state state function any more.   

All the algorithms for the new method are now available. Next everything is put 

together and give the complete algorithm.   

 

4. Summary of EGORA 

Combining Algorithms 3 and 4 yields the complete algorithm of EGORA, or 

Algorithm 5, given below.  

Algorithm 5  Efficient Global Optimization Reliability Analysis (EGORA) 

1) Step 1: Initialization 

 
a) Generate initial samples (1) (2) ( )[ ; ; ; ]s k

x x x x  and 

(1) (2) ( )[ ; ; ; ]s kt t tt   using the Harmmersley sampling method. 

2) Step 2: Build initial model max max
ˆ ( )Y g X  (Algorithm 3) 

 

a) Compute 
( ) (1) (1)

1, , 1, ,[ ] [ ( , )]s i

i k i ky g ty x  

b) Set s s

tx x , 1m , and the initial current best solution vector max

s s
y y  

 c) While { 1m } or { max EII } do 

 i) Construct an 1n  dimensional Kriging model ˆ( ),Y g tX  
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using{[ , ], }s s s

tx t y  

 

ii) Find a point with maximum EI: 

EI

0

( ) EI ( )

[ , ]1, 2, ,

[ , ] arg max{ max { ( , )}}
s

i i

t t ti k

t EI tx x


 , where EI [1, , ]i k ; 

calculate EI( ) EI

max ( , t)( , ) / (1)
i

I EI t xx  . 

 iii) Compute EI( )EI EI( , )
i

y g tx  

 iv) Update current best solution 

EI EI

max EI

max EI

max EI

( )
( )

( ), oth

, if

erw s

 

i e

s

s

s

y y y i
y i

y i

 
 


 

 v) Update data points max( )
[ ; ]

is s

t tx x x , EI[ ; ]s s tt t , EI[ , ]s s yy y  

 vi) 1m m  

      End While 

 d) Record 
max

s
y , [ , ]s s

tx t  and s
y ; Set 1p . 

3) Step 3: Update max max
ˆ ( )Y g X  (Algorithm 4) 

 While { 1p } or { max ( ) EFEF
x X

x 


 } do 

 a) Construct a Kriging model max max
ˆ ( )Y g X  using max{ , }s s

x y  

 b) Find a point with maximum EF: ( ) arg max{EF( )}k p

x X
x x  

 c) Generate a new random rt  that follows uniform distribution 0[ , ]st t  

 
d) Compute EF ( )( , )k p

ry g tx  and update ( )[ ; ]s s k p

t tx x x , [ ; ]s s

rtt t , 

and EF[ , ]s s yy y  

 e) Set EF

max ( )sy k p y   and 1q  

 f) While { 1q } or {
0

( )

[ , ]
max ( , )

s

k p

EI
t t t

EI tx } do 

 

i) Construct an 1n  dimensional Kriging model ˆ( ),Y g tX  using 

{[ , ], }s s s

tx t y  

 

ii) Find a point with maximum EI: 
0

EI ( )

[ , ]
max {EI( , )}

s

k p

t t t
t tx




 , 

( )EI( , )k p tx
  is computed based on ˆ( ),Y g tX  
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iii) Scale ( ) EI ( ) EI

( , t)EI( , ) EI( , ) / (1)k p k pt t xx x   , where ( , t) (1)
x

  is the 

first element of the trend coefficients of ˆ( ),Y g tX  

 iv) Compute EI ( ) EI( , )k py g tx
  

 

v) Update current best solution 

EI EI

max

max

max

( )
( )

( ), other

, i

w

f 

ise

s

s

s

y y y k p
y k p

y k p

  
  



 

 vi) Update data points ( )[ ; ]s s k p

t tx x x , EI[ ; ]s s tt t , EI[ , ]s s yy y  

 vii) 1q q  

 End While 

 g) Record max

s
y , ( )[ ; ]s s k p

x x x , s

tx , s
t , and s

y ; 

 h) 1p p  

 End While 

4) Step 4: Reliability Analysis 

 a) Reliability analysis using max max
ˆ ( )Y g X  

 

5. Numerical examples 

In this section, three numerical examples are employed to demonstrate the 

effectiveness of the proposed approach. Each of the examples is analyzed using the 

following four methods.  

 The outcrossing rate method based on the Rice’s formula and First Order 

Reliability Method (FORM) [14, 32]. 

 The independent EGO method.  

 The proposed EGORA method.  

 Direct MCS using the original limit-state function.  

The reason other methods is used is to evaluate the accuracy and efficiency of 

EGORA. 
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5.1. A nonlinear mathematical model 

A function of X  and t  is given in Eq. (19), where X  is a random variable 

following a normal distribution 2~ (10, 0.5 )X N .  

 2

2

1
( , ) sin(2.5X)cos( 0.4)

4
y X t t

X
  (19) 

The time-dependent probability of failure is given by  

 0( , ) Pr{ ( , ) 0.014, [1, 2.5]}f sp t t y X   (20) 

According to Eq. (8), 0( , )f sp t t  is equivalent to the following probability: 

 0 max( , ) Pr{ 0.014}f sp t t Y   (21) 

Before calculating reliability, the mixed EGO model (i.e. Algorithm 3) was at first 

evaluated because it is the core component of the proposed EGORA method. Different 

numbers of initial samples of X  and t were generated. 
max

s
y  corresponding to s

x  were 

then identified using the existing independent EGO method and the mixed EGO method, 

respectively. The convergence criterion of the two methods was 510EI .  The 

numbers of initial samples of X  were set to 10, 15, 18, and 20. The numbers of function 

evaluations (NOF) required for identifying max

s
y  for different numbers of initial samples 

of X  are given in Table 2. Fig. 1 shows the values of maxY  (i.e. max

s
y ) obtained from the 

two methods, as well as the true maxY , for the case that the number of initial samples of X  

is ten.  

 

Table 2 NOF required for different number of samples of X  

Number of 

samples of X  

NOF 

Independent EGO Mixed EGO 

10 85 49 

15 127 59 

18 153 66 

20 170 69 
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Fig. 1 maxY  obtained from different methods 

The results show that both models could accurately extract the extreme responses. 

The number of function evaluations by the mixed EGO model, however, is less than that 

by the independent EGO method. This indicates that the mixed EGO model is more 

efficient. This becomes more apparent when the number of samples of X becomes larger.  

EGORA was then performed. The number of initial samples of X was ten. Fig. 2 

shows the constructed surrogate model from EGORA and the true function of the 

extreme response. The initial samples and the added new samples are also plotted in the 

figure. The total number of samples of X  was 18.  
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Fig. 2 Surrogate model from EGORA and the true extreme response  

 

The figure shows that the proposed method adds more new samples near the limit 

state. As revealed in the enlarged section near the limit state in Fig. 2, the surrogate 

model and the true extreme response curve overlap and are not distinguishable. This 

makes the surrogate model highly accurate near the limit state and therefore ensures the 

high accuracy of the reliability analysis.  

The surrogate model was also constructed using the independent EGO method. 25 

samples of X  were used and a maximum mean square error less than 510  was achieved. 

Fig. 3 gives the constructed surrogate model and the true extreme response function. 

Although the overall accuracy of the surrogate model is better than the one from 

EGORA, the former is less accurate than the latter near the limit state.   

The two surrogate models from independent EGO and EGORA were then used to 

calculate the time-dependent probability of failure. The calculations were through Monte 

Carlo simulation (MCS) with sample size of 610 . To evaluate the accuracy, MCS was 

also performed using the original limit-state function and used it as a benchmark for the 

accuracy comparison. The percentage of error is computed by 

Limit State 
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 % 100%

MCS

f f

MCS

f

p p

p
  (22) 

where MCS

fp  is from MCS based on the original limit-state function, and fp  is from other 

methods.  
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Fig. 3 Surrogate model from independent EGO and the true response  

 

The Rice’s formula with FORM was also employed for the accuracy comparison. 

The results are shown in Table 3.  

The results show that the accuracy and efficiency of EGORA are much better than 

the outcrossing rate method (Rice’s formula) and the independent EGO method.  

 

Table 3 Results of example 1 

Method NOF 0( , )f sp t t  (×10
-4

) Error (%) 

Rice 1017 0 100 

Independent EGO 212 1.31 20.18 

EGORA 69 1.09 0 

MCS 5×10
8 

1.09 N/A 

 

Limit State 
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5.2. A vibration problem 

A vibration problem as shown in Fig. 4 was modified from Ref. [33] by treating 

the stiffness of spring 2k , damping coefficient 2c , and mass 2m  as deterministic 

parameters and the stiffness of spring 
1k  and mass 1m  as random variables. The variables 

are given in Table 4.  

Table 4 Variables and parameters of Example 2 

Variable Mean Standard deviation Distribution 

1k  (N/m) 63 10  42 10  Normal 

1m (kg) 41.6 10  22 10  Normal 

2k (N/m) 48.5 10  0
 

Deterministic 

2m (kg) 480  0 Deterministic 

2c  (Ns/m)
 300

 
0 Deterministic 

 

The amplitude of the vibration of mass 1m  subjected to force 0 sin( )f t  is given 

by 

 

1/2
2 2 2 2

2 2 2
1max 0 2 2 2 2 2 2 2 2 2

2 1 1 2 2 2 1 1 2 2

( )

( ) ( ( )( ))

c k m
q f

c k m m k m k m k m
 (23) 

where  is the excitation frequency, which is considered as time, or t . 

Eq. (23) can be nondimensionalized using a ‘static’ deflection of the main system. 

The non-dimensional displacement of 1m  is given by [33] 

 
1/2

2

1 1 2 3( , ) /Y g k K K KX   (24) 

where 1 1[ , ]k mX , and iK , 1, 2, 3i , are given by 

 2 2 2 2

1 2 2 2( )K c k m   (25) 

 2 2 2 2 2

2 2 1 1 2( )K c k m m   (26) 

 2 2 2

3 2 2 1 1 2 2( )( )K k m k m k m   (27) 
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Fig. 4 A vibration problem 

Y is considered over a wide excitation frequency band, 8 28  (rad/s). Since 

 is treated as t , the period of time is [8, 28]  rad/s. A failure is defined as the event 

when Y is larger than 31. The probability of failure on [8, 28]  rad/s is given by 

 (8, 28) Pr{ ( , ) 31, [8, 28]}fp g X   (28) 

Fig. 5 shows one response of Y  at fixed values of 1k  and 1m . It is highly 

nonlinear.  
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 

 Y

 

Fig. 5 One response Y  at a given set of 1k and 1m    

1k  
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0 sin( )f t  
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The maximum response maxY  is even more highly nonlinear as shown by its 

contours in Fig. 6 and the 3-D plot in Fig. 7. 
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Fig. 6 Exact contours of extreme response maxY  

 

EGORA was used to construct an accurate surrogate model of maxY   in spite the 

high nonlinearity. 30 initial samples were used, and additional samples were added 

afterwards. The total number of function calls was 704, and the convergence criterion 

was 510EI  and 210EF . The independent EGO method with 140 initial samples 

was also used, the number of function calls was 2663.  

Figs. 8 and 9 show the samples, the contours of the extreme responses, and the 

limit state from independent EGO and EGORA, respectively. EGORA effectively 

generated more samples near the limit state as shown in Fig. 9. The independent EGO 

method produced more evenly distributed samples over the entire design region than the 

proposed method, but the samples far away from the limit state are not useful. Figs. 10 

through 12 give the contours of the extremes responses in the entire design space and 
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near the two limit state boundaries. The figures indicate that EGORA is more accurate 

than the independent EGO method near the limit state. 

The results of the reliability analysis are given in Table 5, which confirms that 

EGORA is more accurate than the independent EGO method and the upcrossing rate 

method.  

 

Fig. 7 Three dimensional plot of the extreme response maxY  
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Fig. 8. Samples and contours of maxY  from the independent EGO 
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Similar to Example 1, the effectiveness of the mixed EGO method was studied by 

identifying extreme responses under different number of samples of X . The numbers of 

function calls in Table 6 indicate that the mixed EGO is more efficient than the 

independent EGO method. The mixed EGO actually reduced more than half of the 

function evaluations required by the independent EGO method. The former method 

becomes much more efficient than the latter method when more samples of X  are used. 
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Fig. 9. Samples and contours of maxY  from EGORA   

Table 5 Results of Example 2 

Method NOF fp  ( 510 ) Error (%) 

Rice 34235 0 100 

Independent EGO 2663 3.9 20 

EGORA 704 3.25 0 

MCS 1×10
9 

3.25 N/A 
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Fig. 10. Contours of extreme response from independent EGO and EGORA at limit state 

 

5.3. A function generator mechanism 

A function generator mechanism in Fig. 13 [32] is designed to realized a 

functional relationship between motion input and motion output. The limit-state function 

is given by 
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Fig. 11. Enlarged region A 
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2 2 2

( , ) 2arctan (60 60 sin[0.75( 97 )])o o oE E D F
t t

F D
X   (29) 

where the 1 2 3 4[ , , , ]L L L LX , 4 1 22 ( cos( ))D L L L t , 
2 42 sin( )E L L t ,  

2 2 2 2

1 2 4 3 1 22 cos( )F L L L L L L t , and the time t  represent the motion input, or the 

angle between links AB and AD.  

The time-dependent probability of failure is computed by 

 0( , ) Pr{ ( , ) 0.75, [97 , 217 ]}f sp t t X   (30) 

The distributions of random variables are given in Table 7.  
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Fig. 12. Enlarged region B 

 

The results from different methods are given in Table 8. 25 initial samples were 

taken for EGORA and the independent EGO method. As the nonlinearity of the extreme 

response is not high, both methods converged with the initial samples and produced 

identical solutions. The number of function evaluations indicates that EGORA is still 
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more efficient than the independent EGO method for the case where the nonlinearity of 

the extreme response is not high.  

 

Fig. 13. A four-bar function generator mechanism 

 

Table 6 Number of function evaluations required for different number of samples of X  

Number of 

samples of X  

NOF 

Nested Mixed EGO 

30 579 156 

80 1521 482 

110 2142 513 

140 2663 588 

 

Table 7 Variables and parameters of Example 3 

Variable Mean Standard deviation Distribution 

1L  (mm) 100  0.05  Normal 

2L (mm) 55.5  0.05  Normal 

3L (mm) 144.1  0.05  Normal 

4L (mm) 72.5  0.05  Normal 

   

A 

B 

C 

D 

2L  

1L  

3L  

4L  
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6. Conclusion 

The distribution of the extreme value of a time-dependent limit-state function is 

required to evaluate the reliability defined within a period of time. The extreme value 

may be highly nonlinear with a multimodal distribution with respect to random input 

variables. For this reason, existing approximation methods, such as FORM, SORM, and 

the upcrossing method, may produce large errors. Using Monte Carlo simulation based 

on the surrogate model of the extreme response becomes more practical.   

 

Table 8 Results of Example 3 

Method NOF fp  ( 110 ) Error (%) 

Rice 21677 1.986 10.86 

Independent EGO 181 2.231 1.3 

EGORA 123 2.231 1.3 

MCS 5×10
8 

2.228 N/A 

 

This works develops a new reliability method that can efficiently and accurately 

construct surrogate models of extreme responses. The Efficient Global Optimization 

(EGO) is employed, and the sample points of both the input random variables and time 

are simultaneously generated. With this treatment, the new method is much more 

efficient than the existing method where the two sets of samples are generated 

independently in two nested loops. The surrogate model from the new method is accurate 

near or at the limit state, and its accuracy in other area is not important for the reliability 

assessment. This is another reason for the high efficiency. After the surrogate model is 

available, the reliability can then be easily estimated by Monte Carlo simulation, which 

will not call the original limit-state function any more.   

The new method is based on the Kriging model, and during the sampling and 

model updating process, the Kriging model is called repeatedly with the cost of 

computational time. The cost, however, is minor or moderate compared to the time for 

calling a limit-state function whose evaluation may be computationally expensive. 

Besides, as a fundamental drawback of Kriging based approaches, high dimensionality 
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might be a problem. In future, how to overcome this drawback by employing other 

surrogate model methods will be investigated.   
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Abstract 

    The reliability of blades is vital to the system reliability of a hydrokinetic 

turbine. A time-dependent reliability analysis methodology is developed for river-based 

composite hydrokinetic turbine blades. Coupled with the blade element momentum 

theory, finite element analysis is used to establish the responses (limit-state functions) for 

the failure indicator of the Tsai-Hill failure criterion and blade deflections. The stochastic 

polynomial chaos expansion method is adopted to approximate the limit-state functions. 

The uncertainties considered include those in river flow velocity and composite material 

properties. The probabilities of failure for the two failure modes are calculated by means 

of time-dependent reliability analysis with joint upcrossing rates. A design example for 

the Missouri river is studied, and the probabilities of failure of the turbine blade over 

twelve months are studied.  

 

1. Introduction 

River-based hydrokinetic turbines extract kinetic energy from flowing water of a 

stream, river, or current [1, 2]. They have similar working principles as wind turbines. 

The main difference between hydrokinetic turbines and wind turbines is their working 

environment. The density of water, in which hydrokinetic turbines are put into operation, 

is about 800 times higher than that of air.  Hydrokinetic turbines are advantageous over 

conventional hydro-power and wind power in the following aspects [3]: A hydrokinetic 
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turbine does not alter natural pathways of rivers; its energy extraction is much higher than 

the other renewable power technologies; it requires less civil engineering work and 

introduces less hazards to the environment; the application of hydrokinetic turbines is 

more flexible. Due to the significant advantages of hydrokinetic turbines, this technology 

has attracted increasing attention of researchers in recent years [4, 5]. 

As the most important part of the hydrokinetic turbine system, the turbine blade 

has a high requirement for its performance and strength [6]. Composite materials offer 

several advantages, such as high ratio of strength to weight, resistance to corrosion, 

excellent fatigue resistance, and design flexibility. These make composite materials an 

attractive choice for the construction of turbine blades. Besides, applications of 

composite materials in the marine and ocean engineering demonstrated that the load-

induced deformations of composite elliptic hydrofoils can delay cavitation inception 

while maintaining the overall lift and drag [7].  

Due to the complex manufacturing process, the material properties of composites 

tend to be more random than metallic materials [8]. For instance, the overall performance 

of composite turbine blades can be affected by fiber misalignments, voids, laminate 

properties, boundary conditions and so on [9-11]. There are also many uncertain factors 

existing in the working environment of turbines and composite structures. In recent years, 

efforts have been made to reduce the effects of uncertainties on the performance of 

composite structures and turbine blades. For example, Toft and Sørensen [12] established 

a probabilistic framework for design of wind turbine blades by adopting a reliability-

based design approach. Val and Chernin [13] assessed the reliability of tidal turbine 

blades with respect to the failure in bending. Motley [14] presented a reliability-based 

global optimization technique for the design of a marine rotor made of advanced 

composite. Similarly, Young et al. [8] used a reliability-based design and optimization 

methodology for adaptive marine structures. They mitigated the influence of composite 

material uncertainty on the performance of self-adaptive marine rotors. Christopher and 

Masoud [15] applied the probabilistic design modeling and reliability-based design 

optimization methodology to the optimization of a composite submarine structure. More 

developments about the probabilistic design method in the design and optimization of 

composite structures can be found in [16]. 
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The most commonly used methods for the probabilistic design of composite 

structures and turbine blades can be classified into two categories: reliability-based 

design optimization (RBDO) and the inverse reliability design (IRD). RBDO is a 

methodology that ensures the reliability is satisfied at a desired level by introducing the 

reliability constraints into the design optimization framework [17]. IRD identifies the 

design loading using the inverse reliability analysis method [18]. Even though the 

existing RBDO and IRD methods can be employed for the design of regular composite 

structures and wind turbine blades, it is hard to use them to guarantee the reliability of 

composite hydrokinetic blades over the service life. The reason is that most existing 

RBDO and IRD methods employed for the design of composite structures and turbine 

blades are based on time-invariant reliability analysis, while the uncertainties in 

hydrokinetic turbine blades always change with time. For instance, the river flow climate, 

which governs the loading of turbine blades, is a stochastic process with strong auto-

correlations [19, 20]. This means that the monthly river flow velocity has much longer 

memory than the wind climate and that the reliability of hydrokinetic turbine blades is 

time dependent. The Monte Carlo simulation (MCS) can be used for time-dependent 

reliability analysis, but it is computationally expensive. Efficient time-dependent 

reliability analysis methods, therefore, need to be employed for the probabilistic design of 

composite hydrokinetic turbine blades.  

In the past decades, many methods have been proposed for the time-dependent 

reliability analysis, such as the Gamma distribution method, Markov method [21], and 

the upcrossing rate method [22]. Amongst the above methods, the upcrossing rate method 

is the most widely used one [23, 24], which has been applied to the time-dependent 

reliability analysis for function generator mechanism [25], steel beam under stochastic 

loading [26], and hydrokinetic turbine blades [27]. As the method in [25-27] is based on 

the simple Poisson assumption, it cannot well take into account the correlation of river 

velocities at different time instants. A more accurate method called the first order 

reliability method with joint upcrossing rate (JUR/FORM) has been recently developed 

[28]. This method combines the joint upcrossing rates (JUR) with First Order Reliability 

Method (FORM). It is suitable for the time-dependent reliability analysis of composite 

hydrokinetic turbine blades in this work.   
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The objective of this work is to develop a reliability analysis model for composite 

hydrokinetic turbine blades by quantifying the effects of uncertainties in river flow 

velocity and composite material properties on the performance of hydrokinetic turbine 

blades over the design life. It is an improved work of the reliability analysis method of 

hydrokinetic turbine blades presented in [27]. The finite element method (FEM) is 

employed to analyze the performances of the hydrokinetic turbine blade. The JUR/FORM 

reliability analysis method is adopted for reliability analysis. A three-blade horizontal-

axis hydrokinetic turbine system developed for the Missouri river is studied. The 

probabilities of failure of turbine blades according to the Tsai-Hill failure criterion and 

excessive deflections are analyzed.  

The remainder of the paper is organized as follows: In Section 2, the state of the 

art of the time-dependent reliability analysis methods is provided. Following that, in 

Section 3, uncertainties that affect the performance of composite hydrokinetic turbine 

blades are analyzed and the potential failure modes of turbine blades are studied. In 

Section 4, the way of modeling the loading of turbine blades and the methods employed 

to establish the limit-state functions are discussed. A design example is given in Section 5 

and conclusions are made in Section 6. 

 

2. The State of the Art of Time-Dependent Reliability Analysis Methods  

Reliability analysis problems can be divided into the following two categories:  

 Time-invariant reliability problems with random variables   

 Time-dependent reliability problems with stochastic processes  

In the past decades, many methods have been developed for time-invariant 

reliability problems. These methods include FORM, Second Order Reliability Analysis 

Method (SORM), and Importance Sampling Method (ISM).  

For the time-dependent reliability analysis problems, such as the reliability 

analysis of composite hydrokinetic turbine blades under stochastic river flow loading, are 

much more complicated. To show the complexities, in the following subsections, this 

work first discusses the differences between the two reliability problems and then reviews 

several methodologies for time-dependent reliability analysis.  
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2.1. Time-dependent reliability and time-invariant reliability  

Time-invariant reliability does not change over time while the time-dependent 

reliability does. Let a general limit-state function be 

 ), )( , (G tg t X Y  (1) 

in which 1 2[ , , , ]nX X XX  is a vector of random variables, and 

1 2) [ ( ), ( ), ( )]( mY t Yt t Y tY  is a vector of stochastic processes.  

(a) Time-dependent reliability  

For the general limit-state function in Eq. (1), the response variable G  is a 

random variable at any instant of time. Let the threshold of a failure be e . If a failure 

occurs when ( , ( ), )G g t t e X Y , the time-dependent probability of failure over a time 

interval 0[ , ]st t  is given by 

  0 0( , ) Pr ( , ( , [ , ]))f s sP t t g t e t t t  X Y  (2) 

where Pr   stands for the probability. 

The corresponding time-dependent reliability is given by 

  0 0( , ) Pr ( , ( ) , [ , ])s sR t t g t e t t t  X Y  (3) 

The time-dependent reliability tells us the likelihood that no failure will occur 

over a time period. 

(b)  Time-invariant reliability 

At a specified time instant it , the reliability is given by 

  ( ) Pr ( , )( )i iR t g t e X Y  (4) 

This reliability is called instantaneous reliability or time-invariant reliability. It is 

the probability that the response variable is not greater than the threshold at it , thereby 

not in the failure region, regardless whether a failure has occurred or not prior to it . It is 

meaningful for only time-invariant limit-state functions ( )g X , which does not depend on 

time, resulting a constant reliability. For a time-dependent problem over 0[ , ]st t , the 

instantaneous reliability is only used for the initial reliability at 0t t . 



  80 

 

The methods for the time-invariant reliability, however, may not be directly used 

to calculate the time-dependent reliability. The major reason is that the time-dependent 

reliability is defined over a time period, which consists of infinite numbers of time 

instants where the response variables are dependent.  

 

2.2. Methodologies for time-dependent reliability analysis  

2.2.1.  MCS for time-dependent reliability analysis  

The implementation of MCS for time-dependent reliability analysis is quite 

different from that for time-invariant one. The differences lie on the ways of counting 

failure events and generating random samples.  

If stochastic processes are involved, trajectories (sample traces) of the processes 

need to be generated first. Since a trajectory is a continuous function of time, many 

discretization points (time instants) need to be used to accurately represent the function. 

At each of the time instants, a stochastic process is a random variable and the random 

variables at all the time instants are usually dependent. As a result, the random samples 

are stored in a two-dimensional array – one is indexed by time instants, and the other is 

indexed by random trajectories. For a time-invariant problem, the samples are 

represented by just a one-dimensional array because no time is involved. The size of the 

samples of a time-dependent problem is therefore much higher than that of a time-

invariant one. 

After the samples are generated, a limit-state function will be evaluated at all the 

sample points. Compared to a time-invariant problem, the number of function calls for a 

time-dependent problem will be much higher because of the above reason. By comparing 

the value of a limit-state function against the failure threshold, if a failure occurs will be 

known. If the limit-state function value is greater than the threshold at any discretized 

time instant, the event is considered as a failure. The details of MCS for time-dependent 

reliability analysis are provided in Appendix A.  

Due to its high computational cost, MCS is not practically used for time-

dependent reliability analysis, but may be used as a benchmark for the accuracy 

assessment for other reliability analysis methods.  
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2.2.2.  Poisson assumption based upcrossing rate method  

 Given its high efficiency, the Poisson assumption based upcrossing rate method 

has been widely used [25-27]. With this method, the time-dependent probability of failure 

over time interval 
0[ , ]st t  is computed by 

  
0

0 0( )]( , ) 1 [1 exp ( )
st

ff s
t

p t t p t v t dt     (5) 

in which ( )v t  is the upcrossing rate at time t, and 0( )fp t  stands for the instantaneous 

probability of failure at the initial time.  

It is difficult to obtain the upcrossing rate ( )v t .  One effective way is using 

FORM. FORM transforms random variables { ), ( }tX Y  into the standard normal 

variables ( ) [ , ( )]t t X YU U U . Then the limit state function becomes ( ( ), )G g t t U  [25]. 

After the linearization of the limit-state function at the Most Probable Point (MPP) *( )tu , 

the upcrossing rate ( )v t  is computed using the Rice’s formula [29, 30] as follows: 

  ( ) ( ) ( ) { ( ( ) / ( )) [ ( ) / ( )] ( ( ) / ( ))}v t t t t t t t t t               (6) 

where ( )  and ( )   represent the probability density function (PDF) and cumulative 

distribution function (CDF) of a standard normal random variable, respectively, 

and 

 *( ) ( )t t  u  (7) 

in which 
 
stands for the magnitude of a vector.  

( )t  is given by  

 2

12( ) ( ) ( ) ( ) ( , ) ( )T Tt t t t t t t  α α α C α  (8) 

where 

 * *( ) ( ( ), ) / ( ( ), )t t t t t α g u g u  (9) 

and  
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in which ( , )iY
t t  is the autocorrelation coefficient function of stochastic process iY .  

  ( )tα  and ( )t  are the derivatives of ( )tα  and ( )t , respectively.  

Even if the Poisson assumption based upcrossing rate method has been widely 

used, large errors have been reported for this method by Madsen etc. [31-34]. One of the 

main error sources is the Poisson assumption, which assumes that the events that the 

response upcrosses the failure threshold are completely independent from each other. 

This assumption does not hold for many cases because there are always some correlations 

between the failure events and failures may occur in clusters. To overcome this 

drawback, Madsen [31] proposed a method to consider the correlation between two time 

instants of a Gaussian process. His method focuses on only Gaussian processes. 

Vanmarcke [32] has made some empirical modifications to the Poisson assumption based 

method. His modifications, however, are limited to stationary Gaussion process. Most 

recently, Singh [34] has established a “composite” limit-state function method, which can 

accurately estimate the time-dependent reliability problems with limit-state functions in a 

form of ( ),G tg X , where there are no input stochastic processes. The JUR/FORM [28] 

method has recently been developed by extending Madsen’s method [31] for more 

general problems with both random variables and non-stationary stochastic processes. 

The main idea of the JUR/FORM is then reviewed.  

2.2.3. JUR/FORM 

JUR/FORM aims to release the Poisson assumption by considering the 

correlations between the limit-state function at two time instants. It can be applied to 

general problems with both random variables and stochastic processes. Since it is based 

on FORM, it is much more efficient than MCS while the accuracy is higher than the 

traditional upcrossing method. With this method, the time-dependent probability of 

failure 0( , )f sp t t  is computed by 
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      
1

0
0 0 0 0 0( ) Pr ( , ( Pr ( , (, ), ) ), )

st

f s T
t

p t t g t t e g t t e f t dt    X Y X Y  (11) 

where 
1
( )Tf t  is the PDF of the first-time to failure.  0 0Pr ( , ,( ) )g t t eX Y

 
is the 

probability of failure at the initial time, and    
1

0
0 0), )Pr ( , (

st

T
t

g t t e f t dt X Y
 
is the 

probability of failure over 0[ ], st t   given that no failure occurs at the initial time. 

 
1Tf t  can be obtained by solving the following integral equation [31]: 

 
1 1

0

( ) ( ) ( , ) ( ) / ( )
t

T T
t

v t f t v t f v d         (12) 

in which ( )v   is given in Eq. (6), and ( , )v t   stands for the joint probability that there 

are upcrossings at both t and  .  The equations for  ( , )v t 

 
are given in Appendix B.  

Given its advantages, JUR/FORM is used for the reliability analysis of the 

composite hydrokinetic turbine blades. MCS is also used to verify the accuracy of 

JUR/FORM.  

Fig. 1 shows the three steps of JUR/FORM [28]. In the first step, the time-interval 

is divided into discretized time instants. FORM is then used to search for MPPs at every 

time instant and calculate α β α βi i i i(t ), (t ), (t ), (t ) and i j(t , t )C . The PDF 
1
( )Tf t  can then 

be obtained using Eqs. (6) and (12), and the formulas in Appendix B. Finally, the time-

dependent probability of failure is calculated by Eq. (11).   

In the following section, this work discusses how to apply the time-dependent 

reliability analysis method to evaluate the reliability of composite hydrokinetic turbine 

blades over the design life.  

 

3. Uncertainty and Failure Modes Analysis for Composite Hydrokinetic Turbine 

Blades 

 

3.1. Uncertainty analysis 

3.1.1. River flow velocity 

Due to the natural variability, the river flow velocity is the major uncertainty 

inherent in the working environment of hydrokinetic turbine blades. It is directly related 

to the safety of the turbine blade. Analyzing the uncertainty of the river flow velocity is 
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critical to the reliability analysis of hydrokinetic turbine blades. The river flow velocity, 

however, is difficult to be modeled exactly since it varies both in space and time. To 

present the variation of river flow velocity over space and time, many historical river 

flow velocity data at different locations of the river cross section are needed. This kind of 

data is not available at most of the time. In order to overcome this limitation, Hu and Du 

[27] proposed to present the river flow velocity in the form of river discharge, of which 

the data have been recorded for many rivers.  

 

 

Fig. 1. Numerical procedure of JUR/FORM  

 

With the river discharge and the assumption that the shape of a river bed is a 

rectangle, the cross section average river flow velocity is calculated by the Manning-

Strickler formula as follows [35-37]:  

 1 2/3 1/2( ) ( )rv t n Q t S  (13) 

Step 1: Initialize parameters 

Reliability analysis at it and 

it t  

 

Step 2: Perform the MPP search 

Solve for 

upcrossing 

rate ( )iv t
 

 

Solve for joint upcrossing 

rate ( , )i jv t t  

Solve for PDF 
1
( )T if t  

Step4: Integration of 
1
( )T if t  

Step 3: Compute PDF 
1
( )T if t  

α β α βi i i i(t ), (t ), (t ), (t )  

Calculate 0( , )f sp t t  

Initial 

reliability 

0( )R t  
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in which ( )v t  is the river water flow velocity (m/s) , rn  is the river bed roughness, S  is 

the river slope (m/m), and ( )Q t  is given by [27, 37]  

 
0.898

0.341 0.557

0.946
( )

0.698 2.71

m

m m

d
Q t

d d



 (14) 

where md
 
is the monthly discharge of the river 3(m /s) . 

The distribution of md  is lognormal [38, 39], and its CDF is given by 

 
ln( ) ( )

( )
( )

m

m

m

m D

D m

D

d t
F d

t





 
  

 
 

 (15) 

in which ( )
mD t

 
and ( )

mD t are the mean and standard deviation of  ln md , respectively. 

These two parameters are time-dependent because the river discharge varies seasonally. 

The autocorrelation coefficient of the normalized and standardized monthly river 

discharge is approximated by [20, 40] 

 

2

2 1
1 2( , ) exp

mD

t t
t t



  
      

 (16) 

where   is the correlation length. Therefore, after normalization and standardization, the 

monthly river discharge can be presented by its underlying Gaussian process with 

autocorrelation coefficient function given in Eq. (16). 

3.1.2. Uncertainties in composite materials 

The hydrokinetic turbine blade is made of fiberglass/epoxy laminates with 

[0/90/0/90/0]s symmetric configurations. Due to the natural variability in laminate 

properties, fiber misalignment, and the fabrication process of composite materials, 

uncertainties exist in the stiffness of composite materials. Herein, four variables are 

represented by probability distributions. These random variables are E11 and E22 (E33) 

(elastic modulus along direction 1, 2 and 3), G12 (G13), and G23 (shear modulus). All the 

random variables are normally distributed. As suggested in [8], a 2% coefficient of 

variation was assigned to the material parameters of the composite material as shown in 

Table 1. The coefficient of variation is the ratio of the standard deviation to the mean of a 

random variable.   

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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Table 1. Distributions of random variables of the composite material 

Variable 
Value 

Distribution type 
Mean Coefficient of variation 

Young’s modulus 
E11=45.6 GPa 0.02 Gaussian 

E22=E33=16.2 GPa 0.02 Gaussian 

Shear Modulus 
G12= G13=5.83 GPa 0.02 Gaussian 

G23=5.786 GPa 0.02 Gaussian 

 

After identifying the uncertainties in the composite hydrokinetic turbine blade, the 

potential failure modes that may occur during the operation of turbine blades are 

identified. 

 

3.2. Failure modes of composite hydrokinetic turbine blades 

The failure modes of wind turbine blades have been reported in literature. They 

can be used as a reference for analyzing hydrokinetic turbine blades because both wind 

and hydrokinetic turbine blades share similar working principles. For wind turbine 

blades, the commonly studied failure modes include failures due to fatigue [41, 42], 

extreme stresses [43, 44], excessive deflections [45], corrosion [46, 47], and so on. Based 

on the studied failure modes, in this work, the failure modes with respect to the Tsai-Hill 

failure criterion and excessive deflection are the main focuses. The major reason of doing 

this is that the extreme stress and deflection can be obtained from static analysis and that 

the two failure modes can be analyzed using the same kind of reliability analysis method. 

The fatigue of turbine blades is also critical to the reliability of a turbine system. 

The fatigue reliability analysis requires a stress cycle distribution of blades obtained from 

a large number of simulations or experiments. It also needs stochastic S-N curve to 

account for uncertainties in material fatigue tests. It is a much more challenging task and 

will be one of the future works.  

3.2.1. The Tsai-Hill failure criterion for composite turbine blades  

For plane stresses, the failure indicator of the Tsai-Hill criterion is  

 
2 2 2

1 1 2 2 12

2 2 2 2ind

L L T LT

f
s s s s

    
     (17) 
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where 1 , 2  and 12  are local stresses in a lamina with reference to the material axes. 

Ls , 
Ts  and LTs  are the failure strengthes in the principal material directions. 

Ls  stands for 

the longitudinal strength in fiber direction (direction 1), Ts  denotes transverse strength in 

matrix direction (direction 2), and LTs  indicates the in-plane shear strength (in plane 1-2).  

If 1 0  , use longitudinal tensile strength for Ls ; if 2 0  , use transverse tensile 

strength for 
Ts ; otherwise, use the compressive strength for 

Ls  and 
Ts . To determine 

whether the composite blade laminate will fail due to applied loading, the method first 

calculates stresses across the different plies, followed by applying the Tsai-Hill 

interactive failure criterion based on these stress levels. The composite blade laminate is 

considered to fail when a first ply fails. This point of failure is the first ply failure (FPF) 

[48, 49], beyond which the laminate may still carry the load. For a safe design, the 

composite laminates should not experience stress high enough to cause FPF. Fig. 2 shows 

a failure evaluation of hydrokinetic turbine blade using the Tsai-Hill criterion in 

ABAQUS.  

 

 

 

Fig. 2. Blade failure evaluation under hydrokinetic loadings (based on the Tsai-Hill 

criterion) 

 

The limit-state function with respect to the Tsai-Hill failure criterion is defined by 

  1 0, ( ), ( , ( ,) [) , ]b b ind b b allow sg t t f t t f t t t  X Y X Y  (18) 

where ( , ( ) ),ind b bf t tX Y  is the failure indicator of the composite blade based on the Tsai-

Hill criterion, allowf  is the allowable value, 11 22 12 23[ , , , ]b E E G GX  is the vector of 
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random variables, and ( ) [ ( )]b t v tY  is the vector of stochastic process. When 

 , ( ), 0b bg t t X Y , a failure occurs based on the Tsai-Hill criterion.  

3.2.2. Excessive deflection of turbine blades 

 Fig. 3 shows the deflection of the hydrokinetic turbine blade due to the river flow 

loading. The deflection of the blade is inevitable during the operation. It is correlated 

with various turbine performances, such as the power production, cavitation 

characteristics, possible failure modes of composite materials, and so on [7, 8]. It is one 

of the critical parameters that need to be investigated during the turbine blade design 

phase. 

Since the river climate varies over time, it results in the variation of the tip 

deflection of the turbine blade during operation. The actual deflection of the turbine blade 

should not exceed the allowable one. The following limit-state function is then defined:  

  2 0, ( ), ( , ( , , [ ]) ,)b b actual b b allow sg t t t t t t t   X Y X Y  (19) 

where )( , )( ,actual b b t t X Y  and allow  are the actual and allowable deflections of the turbine 

blade at time t , respectively.  

 

 

 

Fig. 3. Deformed and un-deformed geometry of the hydrokinetic turbine blade 

 

Based on the failure modes and limit-state functions defined, the reliability 

analysis of the composite turbine blade is then discussed.  

 

 

Un-deformed 

Deformed 
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4. Simulation-Based Time-Dependent Reliability Analysis for Composite 

Hydrokinetic Turbine Blades 

To perform the time-dependent reliability analysis for the composite hydrokinetic 

turbine blades, two more challenges need to be addressed. The first one is how to analyze 

the performance responses of turbine blades under the stochastic river flow loading. The 

other one is how to build the limit-state functions in terms of the blade response for 

reliability analyses. In this paper, the BEM-FEM coupled method was used to compute 

the responses of composite turbine blades. By applying the simulation results from BEM-

FEM, surrogate models were built for the responses through the stochastic polynomial 

chaos expansion (SPCE) method. Finally, the time-dependent reliability analyses are 

performed on these surrogate models.  

 

4.1. Construction of surrogate models 

4.1.1.  BEM-FEM coupled method 

The blade element momentum theory (BEM), proposed by Glauert in 1935, has 

been widely used to calculate the load of turbine blades. It is applicable to estimate the 

steady loads, the thrust and power for different settings of speed, rotational speed and 

pitch angle of turbines [50]. Since it is based on the momentum theory and the local 

events taking place at the blade elements, it may not be as accurate as that from the 3-

dimentional computational fluid dynamics (CFD) simulations. However, the BEM 

calculation is much faster than the CFD simulation. Given its high efficiency and many 

corrections to the original model, BEM provides engineers with an effective way of 

approximating the aerodynamic/hydrodynamic loadings on turbine blades. 

In the present work, BEM is employed to compute the loadings on the composite 

hydrokinetic turbine blades in reliability analysis. The load produced by BEM serves as 

the input of FEM, which generates the stress distribution of the turbine blade. This 

procedure is referred as the BEM-FEM coupled method.  

Fig. 4 shows the flowchart of the BEM-FEM coupled method. For BEM, it 

assumes that there is no-radial-dependency among blade elements. However, the 

Prandtil’s tip loss, Glauert correction, and hub loss are incorporated into the model to 

ensure reliable results. The hydrodynamic loadings obtained from BEM codes have been 

validated with Blade Tidal, which is a design tool for tidal current turbines [51].  
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Fig. 4. Flowchart of the BEM-FEM  

 

Fig. 5 presents the finite element mesh of the blade, which is divided into eight 

stations, and each station is applied with concentrated hydrodynamic forces on the blade 

surface using multipoint constraints (MPC) technique.  

 

Fig. 5. Finite element mesh of the blade 

 

If BEM-FEM is directly employed for the time-dependent reliability analysis, the 

efficiency will be very low, as the number of FEM runs is much higher than that of the 

time-invariant reliability analysis. Since the time-dependent reliability analysis will be 

later integrated into an optimization framework, the direct use of BEM-FEM may not be 

affordable in terms of computational efforts. Therefore, surrogate models are constructed 

Hydrofoil 

Datasheet 

River Velocity 

Blade Geometry 

(Radius, chord, 

twist, pitch, etc.) 
Bending Moments, 

Forces, Power 

Coefficient 

Blade Stress and 

Deflection (Critical 

region identification, 

failure evaluation) 

Post 

Process 

Blade Structure 

(Material, number of plies, 

ply orientation, stacking 

sequence, ply thickness) 

BEM 

FEM 

MATLAB 

MATLAB 

ABAQUS 



  91 

 

based on limited and selected BEM-FEM analyses. In the next section, a method will be 

introduced to construct the surrogate models based on the FEM simulations.  

4.1.2. SPCE method 

Since the uncertainties are all modeled by random variables, the SPCE method is 

used to get the surrogate models for the two limit-state functions. As an efficient tool for 

multi-disciplinary design optimization (MDO) in various engineering applications, SPCE 

has drawn much attention in the past decades. With SPCE, the chaos expansion for a 

response Z  is given by [52, 53] 

 
0

( )
P

i i

i

Z 


  ξ  (20) 

where i  are deterministic coefficients, ( )i ξ  are the i-th
 
order random basis functions, 

1 2[ , , ]n  ξ
 
is a vector of independent standard random variables, and P is the 

number of terms. The total number of terms for a complete polynomial chaos expansion 

of order p and n random variables is given by 

 
( )!

1
! !

n p
P

n p


   (21) 

The use of independent standard random variables in Eq. (20) is critical because it 

allows decoupling of the multidimensional integrals in a mixed basis expansion [54]. 

( )i ξ
 

are multivariable polynomials, which involve products of one-dimensional 

polynomials. For the expansion of a response with different kinds of random variables, 

mixed bases will be used. There are different kinds of basis functions for different 

uncertainty distributions [52]. For a normal (Gaussian) uncertain variable, the ideal basis 

function is the Hermit polynomial. For a uniform or exponential distribution, the ideal 

basis function is Legendre or Laguerre polynomial.  

In this work, the point collocation method is applied to get the deterministic 

coefficients i  in Eq. (20). For the point collocation method, sampling of input random 

variables is the key to ensure the efficiency and accuracy of the approximation. The most 

commonly used sampling methods include the Random Sampling (RS), Latin Hypercube 

Sampling (LHS), and Hammersley Sampling (HS) [55]. HS is used to generate samples 
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for input random variables because it is capable of providing better uniformity properties 

over multi-dimensional space than LHS and RS.  

For the time-dependent reliability analysis of composite hydrokinetic turbine 

blades, the uncertainties in the material are modeled as Gaussian random variables, which 

can be expanded using the Hermit polynomial basis. The flow velocity is a stochastic 

process that varies randomly over time. As a result, at different time instants, the velocity 

distributions will be different. There is no single distribution that can be used for the 

expansion. Therefore, the flow velocity is treated as a variable with unknown distribution 

and then it is treated with a uniform distribution bounded by the cut-out and cut-in 

velocity as shown in Fig. 6. This treatment is similar to expand a general variable. As 

shown in the example in this paper, this treatment works well for the reliability analysis 

of turbine blades. For stochastic polynomial chaos expansion, the Hermit polynomials are 

therefore used for E11, E22 (E33), G12 (G13), and G23; and Legendre polynomials for the 

river velocity. For multivariate basis functions, the mixed bases are used for expansion.  

 

Fig. 6. Distribution of river flow velocity 

 

With the expansion order of two, the polynomial chaos expansion model for the 

studied problem in this work is given by 
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j
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j

X
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j




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 ξ  (23) 

and  

 
5

2 ( )
( ) L U

U L

v t v v
t

v v

 



ξ  (24) 

in which 

 , 1, , 4j j ξ , are the standard normal random variables corresponding to 

material strengths 

 5( )tξ  is a  normalized uniform random variable bounded in [-1, 1], which 

is associated with the stochastic process of river velocity ( )v t  at time t 

 1 2 3 4[ , , , ]x x x xx  is a vector of specific values for random variables 

11 22 12 23[ , , , ]E E G G  

 
jX  and 

jX  are the mean and standard deviation of random variable jX , 

respectively 

 Lv  is the lower bound of tip river velocity expansion interval 

 Uv  is the upper bound of river velocity expansion interval 

 ( ), 1, 2iH i  , is the i
th

 order Hermit polynomial basis 

 ( ), 1, 2iL i  , is the i
th 

order Legendre polynomial basis 

   , 1, 2sZ s  , represents the limit-state functions, s=1 for limit-state 

function 1 in Eq. (18), and s=2 for limit-state function 2 in Eq. (19) 

 , 1, 2 and 0,1, 2, , 20s

i s i   , stand for the deterministic coefficients of 

the surrogate models. s=1 for surrogate model associated with limit-state function 

1 and s=2 for surrogate model associated with limit-state function 2 
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Assume that pN  simulations are performed for the turbine blades at the sample 

points generated from HS, the deterministic coefficients , 1, 2 and 0,1, 2, , 20s

i s i   , 

are then solved by the point collocation method as follows: 

 

1 1 1 1

0 1 20 0

2 2 2 2

0 1 20 1

200 1 20
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    
               

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

 (25) 

where 1 2 3 4 5[ , , , , ( )], 1, ,i i i i i i

pt i N ξ ξ ξ ξ ξ ξ  is the i
th

 group of sample points generated 

from HS, and ( )s iZ ξ  is the blade response of sZ  with the i
th

 group of sample points 

obtained from the simulation.  

 

4.2. Reliability analysis of composite hydrokinetic turbine blades 

It assumes that the seasonal effects of river flow velocity repeat in the same time 

periods of any year. This assumption is reasonable given the fact that the Earth circulates 

around the Sun annually with the same seasonal effects. Based on this assumption, the 

probability of failures during T-years operation can be calculated by 

 ( ) 1 [1 ( )]i i T

f f ep T p Y    (26) 

where ( )i

fp T  is the probability of failure during T years; ( )i

f ep Y  is the annual probability 

of failure. i stands for the two failure modes as follows: 

 1i   for the failure with respect to the Tsai-Hill failure criterion 

 2i   for the failure of excessive deflection 

In Eq. (26) the annual probability of failure ( )i

f ep Y  is defined over a time interval 

[0, ]t , where t is equal to one year. The anuual probability of failure ( )i

f ep Y
 
can be 

solved by applying JUR/FORM given in Section 2 and using the surrogate models in 

Section 4.1.  
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4.3. Numerical procedure 

In this section, the numerical implementation of the reliability analysis method 

discussed above is summarized. Fig. 7 depicts the procedure of the implementation. 

 

 

Fig. 7. Flowchart of simulation-based time-dependent reliability analysis  

 

 Step 1: Sample generation: generate the samples of random variables using 

the Hammersley Sampling method based on their distribution.  

 Step 2: BEM-FEM coupled analysis: with the input samples from step 1, 

analyze the failure indicator with respect to the Tsai-Hill failure criterion and 

deflection of the hydrokinetic turbine blade using BEM-FEM. 

 Step 3: Design of experiments: construct surrogate models using the outputs 

from simulations and approximate the responses with the stochastic 

polynomial chaos expansion method.  

 Step 4: Reliability analysis: Perform time-dependent reliability analysis by 

applying the JUR/FORM method.  
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5. Case study  

A one-meter long composite hydrokinetic turbine blade with varying chord 

lengths, cross sections and an eight-degree twist angle was studied. This blade is for a 

hydrokinetic turbine system that is intended to put into operation in the Missouri River. 

During the design process, the reliability of the hydrokinetic turbine over a 20-year 

design period was evaluated.  

 

5.1. Data  

5.1.1.  River discharge of the Missouri River          

Based on the historical river discharge data of Missouri river from 1897 to 1988 at 

Hermann station, the mean and standard deviation of the monthly river discharge were 

fitted as functions of t as follows [27]  
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( ) [ cos( ) sin( )]
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mean mean mean

D i mean i mean

i

t a a i t b i t  
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where 
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 (29) 
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3 4 5
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203.1, 99.47, 82.58, 19.06,

178.7, 36.15, 52.47, 0.5887
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    

      
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 (30) 

The auto-correlation coefficient function of the normalized and standardized 

monthly discharge was assumed to be 

 
2

1 2 2 1( , ) exp{ [20( ) / 3] }
mD t t t t     (31) 
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5.1.2. Deterministic parameters for time-dependent reliability analysis            

Table 2 presents the deterministic parameters for the reliability analysis, which 

include the limit states and time step size.  

 

Table 2. Deterministic parameters used for reliability analysis 

Parameter 
allowf  

allow  t  

Value 1 3.5×10
-2

 (m) 5×10
-3

 (month) 

 

5.2. Sampling of random variables 

According to the distributions of random variables and their bases for expansion, 

samples were generated. Since there are five variables to be expanded using the SPCE 

method and the expansion order is two, the minimal number of samplings required is 21 

according to Eq. (21). To achieve a good accuracy of approximation, more samples (32 

samples) were generated. The samples are depicted in Fig. 8.   
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Fig. 8. Samples of random variables 

 

5.3. Responses from FEM simulation 

BEM-FEM coupled simulations were performed at the sample points generated in 

Section 5.2. Based on the simulation results, surrogate models were constructed. Fig. 9 
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presents the failure indicators of the Tsai-Hill failure criterion from simulations versus 

the predicted ones from the surrogate model. Fig. 10 shows the deflections obtained from 

simulations versus the predicted ones from the surrogate model.  
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Fig. 9. Values of failure indicators from simulation and predicted values 
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Fig. 10. Deflections from simulation versus predicted deflections 

 

The figures indicate that the SPCE method well approximates the responses 

because the two curves are almost linear. Thus the approximated models could be 

confidently used for assessing the reliability of the turbine blade. Figs. 11 and 12 

illustrate the response of failure indicator of the Tsai-Hill failure criterion and that of the 

deflection versus the river velocity and composite material property, respectively.  
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Fig.11. Failure indicator for Tsai-Hill failure criterion  

 

5.4. Reliability analysis and results 

The probability of failure of the hydrokinetic turbine blade over a one-year time 

period 0[ , ] [0,1]st t  yr was calculated. The probability of failure over the life time 

0[ , ] [0, 20]st t 
 
yr was then computed using Eq. (26).  

5.4.1. Time-dependent probabilities of failure 

Figs. 13 and 14 give the time-dependent probabilities of failure of composite 

hydrokinetic turbine blades over a one-year time period with respect to the failure modes 

of the Tsai-Hill failure criterion and excessive deflection, respectively. To verify the 

accuracy of the reliability analysis, MCS with a sample size of  2× 610  was also 

performed.  
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Fig.12. Deflection of turbine blades 

       

The results indicate that the accuracy of the reliability analysis from JUR/FORM 

is good. The probability of failure for the Tsai-Hill failure criterion is 5.6312×10
-4

 over a 

one-year period. The probability of failure due to excessive deflection is 11.0843×10
-4

 

over a one-year time period. The failure mode of the Tsai-Hill failure criterion is less 

likely to happen than that of excessive deflection for this design. The probabilities of 

failure for the Tsai-Hill failure criterion and excessive deflection over a 20-year life 

period are 1.12×10
-2

 and 2.19×10
-2

, respectively.  

Tables 3 and 4 present the actual computational costs and numbers of function 

calls required by JUR/FORM and MCS for the two failure modes, respectively. The 

analyses were run on a Dell personal computer with Intel (R) Core (TM) i5-2400 CPU 

and 8GB system memory. The results indicate that JUR/FORM is much more efficient 

than MCS. This means that the computational effort will decrease significantly when 

JUR/FORM is employed to substitute MCS for the time-dependent reliability analysis. 

This is especially beneficial when the time-dependent reliability analysis is embedded in 
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the hydrokinetic turbine blade optimization framework where the reliability analysis is 

called repeatedly.  

0 2 4 6 8 10 12
0

1

2

3

4

5

6
x 10

-4

[0, t] month

P
ro

b
a
b

il
it

y
 o

f 
fa

il
u

re

 

 

JUR/FORM

MCS

 

Fig. 13 Time-dependent probabilities of failure with respect to Tsai-Hill failure criterion 
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Fig. 14 Time-dependent probabilities of failure with respect to excessive deflection 
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Table 3 Number of function calls and actual computational cost for Tsai-Hill failure 

criterion 

[t0, ts] 

months 

JUR/FORM MCS 

Time 

(s) 

Function 

Calls 
Time (s) 

Function 

Calls 

[0, 4] 27.83 11403 1.47×10
3
 2×10

8 

[0, 6] 30.55 11167 2.03×10
3
 3×10

8
 

[0, 8] 30.20 11427 3.26×10
3
 4×10

8
 

[0, 10] 26.45 11870 4.91×10
3
 5×10

8
 

[0, 12] 28.69 11821 6.89×10
3
 6×10

8
 

 

Table 4 Number of function calls and actual computational cost for excessive deflection 

[t0, ts] 

months 

JUR/FORM MCS 

Time 

(s) 

Function 

Calls 
Time (s) 

Function 

Calls 

[0, 4] 23.97 9449 1.28×10
3
 2×10

8 

[0, 6] 23.64 9692 2.86×10
3
 3×10

8
 

[0, 8] 25.95 9625 3.87×10
3
 4×10

8
 

[0, 10] 23.04 9933 5.67×10
3
 5×10

8
 

[0, 12] 23.72 9827 7.78×10
3
 6×10

8
 

 

5.4.2. Sensitivity analysis of random variables 

Sensitivity factors [56] are used to quantify the importance of random variables to 

the probability of failure. Given the transformed limit-state function ( ( ), )t tg U  and MPP 

*( )tU , the sensitivity factor of random variable ( )iU t  at time instant t is given by [56] 

 * * 2 0.5

1

( ) ( ) / [ ( ( )) ]
n m

i i j

j

s t U t U t




    (32) 

Based on this, the sensitivities factors of random variables were obtained at every 

time instant.  
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Figs. 15 and 16 show sensitivity factors of the five random variables for the Tsai-

Hill failure criterion and excessive deflection, respectively.  
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Fig. 15. Sensitivity factors for the Tsai-Hill failure criterion 
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Fig. 16. Sensitivity factors for the excessive deflection failure 

With the results of sensitivity analyses in Figs. 15 and 16, the major findings are 

summarized as follows: 
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 The river velocity makes the highest contributions to the probability of failure, 

while the uncertainties in material properties make smaller contributions.   

 The river velocity always makes negative contribution to the reliability of 

composite turbine blades. This means that an increase in velocity will result in a 

decrease in reliability.  

 With respect to the failure mode of excessive deflection, elastic modulus along 

direction 1 (i.e. E11), irrespective of river velocity, makes the highest positive 

contributions to the reliability of composite hydrokinetic turbine blades. It is 

followed by the shear modulus G12 (G13).   

 For the failure mode of the Tsai-Hill failure criterion, E22 turns out to make 

negative contributions to the reliability of turbine blades while the sensitivity with 

respect to E11 is positive and the largest.  

 The shear modulus G23 always makes negligible contributions to both of the 

failure modes.  

 

6. Conclusions 

Using an appropriate reliability analysis method is critical for the probabilistic 

design of composite hydrokinetic turbine blades. In this work, a simulation based time-

dependent reliability model was developed for composite hydrokinetic turbine blades. 

The BEM-FEM coupled method was used to get the responses of failure indicator of the 

Tsai-Hill failure criterion and deflections of turbine blades. The SPCE method was 

adopted to establish the limit-state functions, and JUR/FORM was employed to perform 

time-dependent reliability analysis. By incorporating these analysis methods, the 

influence of uncertainties in river flow velocity and composite material properties on the 

performance of turbine blades was evaluated.  

The results illustrated that the composite hydrokinetic turbine blade has larger 

probability of failure for the excessive deflection than that due to the Tsai-Hill failure 

criterion. The former, therefore, needs to be paid more attention during the design phase.  

Sensitivity analysis of random variables showed that the river flow velocity 

makes the highest contribution to the probability of failure of the composite hydrokinetic 
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turbine blade for both failure modes. The sensitivity analysis of the composite material 

parameters showed that E11 always makes a positive contribution and is the most 

important composite material parameter for the reliability of turbine blades. Therefore, 

this parameter should be focused on during the design stage. The shear modulus G23 

makes negligible contributions to the two failure modes. E22 makes a positive 

contribution to the reliability of turbine blades against excessive deflection while this 

contribution turns to be negative for the reliability against the failure mode of Tsai-Hill 

failure criterion. This demonstrated that the material parameters of the composite material 

make different contributions to the reliability of turbine blades.  

The future work includes coupling the CFD simulation with FEM to improve 

accuracy and applying the developed method to the reliability-based design optimization 

(RBDO) of composite hydrokinetic turbine blades. Fatigue reliability analysis will also 

be the future work.  

 

Appendix A: MCS for time-dependent reliability analysis 

 The MCS for time-dependent reliability analysis involves both a stochastic 

process (river flow discharge) and random variables. To generate samples for the 

stochastic process, the time interval 0[ , ]st t  is discretized
 
into N points. Then the samples 

of the normalized and standardized river flow discharge process mD  is generated by  

 
mD 

m
D Mς  (33) 

where 1 2,( , , )T

N  ς  is the vector of N independent standard normal random 

variables; 1 2,( ( ) ( ), , ( ))
m m m m

T

D D D D Nt t t    is the vector of mean values of 

1 2,( ( ) ( ), , ( ))T

m m m ND t D t D tmD ; and M is a lower triangular matrix obtained from the 

covariance matrix of mD . 

Let the covariance matrix of mD  at the N points be N NC , it gives 
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Then M  can be obtained by 

 1 T

N N



  C PDP MM  (35) 

in which D  is a diagonal eigenvalue matrix of the covariance matrix N NC , and P  is the 

N N  square matrix whose i-th column is the i-th eigenvector of N NC .      

After samples of the stochastic process of river flow discharge are generated, they 

are plugged into the limit-state functions, and then the samples (trajectories) of the limit-

state functions are obtained. A trajectory is traced from the initial time to the end of the 

time period. Once the trajectory upcrosses the limit state, then a failure occurs; and the 

remaining curve will not be checked anymore. The process is illustrated in Fig. 17.  

 

Fig. 17. A trajectory of a limit-state function 

 

Appendix B: Computation of 1 2( , )v t t
 

Madsen has derived the expression for 1 2( , )v t t  as follows [31] 

Time t 

Limit state 

g 

t1 

Upcrossing: failure 

occurs 
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 (36) 

in which
 
 

   2 2 2 2

1 1 2 2{exp[( 2 ) / (2 2 )]}/ (2 1 )f           W β  (37) 

1 2, β  represents the time-invariant reliability index at time 1t  and 2t . 1 2and  , 

and 1 2and ,   are the mean values, standard deviations, and correlation coefficient 

of
1( )L t β

 
and 

2( )L t β , respectively.  They are calculated by the following equations [28]:  
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Abstract 

Reliability analysis with random and interval variables predicts the lower and 

upper bounds of reliability. The analysis is computationally intensive because the global 

extreme values of a limit-state function with respect to interval variables must be 

obtained during the reliability analysis. In this work a random field approach is proposed 

to reduce the computational cost. This work consists of two major developments. The 

first development is the treatment of a response variable as a random field, which is 

spatially correlated at different locations of interval variables. Equivalent reliability 

bounds are defined from a random field perspective. The definitions can avoid the direct 

use of the extreme values of the response. The second development is the employment of 

the First Oder Reliability Method (FORM) to show the feasibility of the random field 

modeling. This development results in a new random field method based on FORM. The 

new method converts a general response variable into a Gaussian field at its limit state 

and then builds surrogate models for the auto-correlation function and reliability index 

function with respect to interval variables. Then Monte Carlo simulation is employed to 

estimate the reliability bounds without calling the original limit-state function. Three 

examples demonstrated the effectiveness of the proposed method. 

 

1. Introduction 

The major task of reliability analysis is to predict reliability in a design stage. 

Because of this advantage, reliability analysis has been used in many applications, such 
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as those of automobile vehicles [1], wind/hydrokinetic turbines [2], and airplanes [3]. The 

reliability analysis requires knowing a limit-state function, which specifies the functional 

relationship between input variables and output variables (responses), and the joint 

probability distribution of the input variables.  

In many applications, the data of some input variables are too limited to fit 

probability distributions. For this situation, the fuzzy set [4], evidence theory [5], and 

intervals  [6, 7] are employed to model the uncertainty in these input variables. Interval 

variables are used for the highest degree of uncertainty – only the lower and upper 

bounds of an input variable are available. For instance, the contact resistance in the 

vehicle crash [8] and the parameters of a new design [9] are examples of interval 

variables. As a result, the input variables of a limit-state function may contain both 

random and interval variables, and the reliability is therefore also bounded within its 

minimum and maximum values.  

 Many methods are available for the reliability analysis with the mixture of 

random and interval variables. For example, Jiang et al. [10] developed a reliability 

analysis method based on a hybrid uncertain model. In their model, parameters such as 

mean and standard deviation of some random variables are described as interval 

variables. Adduri and Penmetsa [11] investigated the method of approximating the 

bounds of structural system reliability in the presence of interval variables. Luo et al. [12, 

13] developed an iterative procedure to obtain the worst-case point of interval variables 

and the Most Probable Point (MPP) using a probability and convex set model. Penmetsa 

and Grandhi [14] used function approximation methods to improve the efficiency of 

reliability analysis with random and interval variables. By combining simulation process 

with interval analysis, Zhang et al. [15] proposed an interval Monte Carlo method to 

estimate the interval probability of failure. In order to perform reliability-based design 

optimization for problems with interval variables, Du et al. developed a sequential single 

loop (SSL) procedure [16, 17]. To improve the stability of SSL, Jiang et al designed a 

new algorithm [9].  

Although many reliability methods are available for interval variables as reviewed 

above, there are still some challenges that need to be resolved. First, the reliability 

analysis requires global extreme values of a response with respect to interval variables. 
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As a result, the reliability analysis usually involves two loops. In the inner loop, global 

optimization is used to find the extreme values of the response with respect to interval 

variables while the outer loop is responsible for reliability analysis with respect to 

random variables. Even though single loop procedures have been proposed [9, 16, 17], 

efficient global optimization is still indispensable. Second, the extreme values of the 

response may be highly nonlinear with respect to interval variables and may have 

multiple MPPs. This may lead to large errors if the First Order and Second Order 

Reliability Methods (FORM and SORM) are used based on the extreme values of the 

response. Third, most of current methods only focus on the worst case reliability, or the 

lower bound of the reliability. To understand the uncertainty in the reliability, the upper 

bound of reliability is also needed.   

The objective of this work is to deal with above challenges by developing a new 

random filed approach for reliability analysis with both random and interval variables. 

The contributions and significance of the new method are as follows: (1) This work 

develops a new way to model the reliability with random and interval variables. A 

response variable is viewed as a random field that is spatially correlated at different 

locations of interval variables. This allows for using random field methodologies to 

calculate the lower and upper bounds of reliability. (2) A new FORM-based random field 

approach is developed for the reliability analysis with random and interval variables. The 

method transforms the general random filed of the response into a Gaussian field, which 

is then expanded as a function of a number of Gaussian variables. This avoids the use of 

global optimization and makes it possible to use Monte Carlo simulation to obtain both 

the maximum and minimum values of the reliability simultaneously. (3) An efficient 

algorithm of the Kriging model method is developed to build the mean and 

autocorrelation functions of the transformed Gaussian field. This makes it accurate and 

efficient to fully define the transformed Gaussian field.  

The remainder of this paper is organized as follows. Sec. 2 reviews the methods 

of reliability analysis with both random and interval variables. Sec. 3 discusses the idea 

of reliability analysis with a random field approach, followed by the numerical 

implementation in Sec. 4. Three examples are presented Sec. 5. Conclusions and future 

work are given in Sec. 6.  
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2. Review of Reliability Analysis with Random and Interval Variables 

A response variable G  may be a function of random variables 1,[ ]i i nXX  and 

interval variables 
1,[ ]j j mYY .  If only Y  exists, the response is given by 

 ( )G g Y   (1) 

where [ , ]Y Y Y ; 1,[ ]j j mYY  and  1,[ ]j j mYY  are the lower and upper bounds, 

respectively.   

G  is also an interval, whose lower and upper bounds are defined by 

 
[ , ]

min { ( )}G g
Y Y Y

Y   (2) 

and 

 
[ , ]

max { ( )}G g
Y Y Y

Y   (3) 

respectively. Fig. 1 shows an interval response for a two-dimensional case. 

 

Fig. 1. Limit-state function with interval variables 

If both X   and Y   exist, the response is given by  

 ( ),G g X Y   (4) 

The extreme responses G   and G   are now random variables. If a failure occurs 

when G e , where e   is a limit state, the probability of failure is defined by 

 ( ) Pr{ ( , ) }fp g eY X Y   (5) 

2Y

 

1Y  

1Y  

1Y

 

2Y  2Y  

G  

G  

G  

0
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Since fp   depends on Y , fp  is bounded between its lower and upper bounds 

given below. 

 
[ , ]

Pr{ } Pr{ max { ( , )} }fp G e g e
Y Y Y

X Y   (6) 

and 

 
[ , ]

Pr{ } Pr{ min { ( , )} }fp G e g e
Y Y Y

X Y   (7) 

As obtaining the extreme responses G  and G  requires the global optimization on 

[ , ]Y Y , calculating fp  and fp  is extremely costly in computation. Next two common 

types of reliability analysis methods for problems with both random and interval 

variables are briefly reviewed. 

The first type includes methodologies that combine reliability analysis (RA), such 

as FORM, and interval analysis (IA). If FORM is used for RA, X  is transformed into 

standard normal variables U  [18], and the transformation is denoted by [ ]TX U  . Then 

the reliability indexes (  and ) are searched for by 

 
min

s. t. max{ ( [ ], )}

T

g T e

U

Y

UU

U Y
  (8) 

and 

 
min

s. t. min{ ( [ ], )}

T

g T e

U

Y

UU

U Y
  (9) 

Then the probabilities of failure are given by 

 ( )fp   (10) 

and 

 ( )fp   (11) 

The optimal point from Eq. (8) or (9) is called a MPP, denoted by *
u  for Eq. (8) 

and *
u  for Eq. (9).   
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Evaluating the equality constraint functions in Eqs. (8) and (9) requires global 

optimization on [ , ]Y Y Y , and the entire analysis needs a double-loop optimization 

process, thereby computationally expensive. The following are some examples of the first 

type methodologies. An iterative procedure [12] using a probability and convex mixed 

model was reported in [13]. By applying the performance measure approach, the method 

transforms the nested double-loop optimization problem into an approximate single-loop 

minimization problem. Similarly, a SSL method, as mentioned in the introduction 

section, decouples the double loop procedure into a sequential single loop [16, 17].  

After the SSL method, Jiang et al.[9] proposed an equivalent model method to 

improve the robustness of the single loop algorithm. The method demonstrates that 

solving Eq. (9) is equivalent to solving a general MPP problem after treating the interval 

variables as uniformly distributed random variables [9]. The method is efficient 

compared with other single loop methods, but similar to other methods that uses FORM, 

its accuracy may not be good. When G  is highly nonlinear with respect to Y , the 

linearization of the limit-state function at the MPP with respect to Y  will result in large 

errors. The above methods also need to be performed twice to obtain the lower and upper 

bounds of fp , thereby increasing the computational cost. 

The second type of methodologies uses design of experiments. A surrogate model 

of ( ),G g X Y  is built first, and then the extreme probabilities of failure are estimated 

by MCS. In this group of methods, interval variables are usually treated as variables 

following uniform distributions. For instance, Zhuang and Pan approximate limit-state 

functions with interval variables using the Kriging method [19]. Li et al. [20] also use the 

Kriging method to build a surrogate model for a bi-level limit-state function with only 

random variables. The function is constructed by applying the probability theory at the 

random variable level and non-probabilistic reliability method at the interval variable 

level. Yoo and Lee [21] perform the sensitivity analysis with respect to interval variables, 

and surrogate models are employed to approximate the reliability. Zhang and Hosder [22] 

expand the random and interval variables using the stochastic expansion methods.  

Although all the aforementioned methods can deal with both random and interval 

variables, their accuracy and efficiency may still need to be improved. From a different 

perspective, this work views limit-state functions with interval variables as general 
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random fields, and this leads to a new modeling and analysis method that can potentially 

improve the efficiency and accuracy of reliability analysis.   

 

3. Reliability Modeling from a Random Field Perspective 

This work now shows that the reliability analysis problem can be approached 

from a random field perspective. The advantages of doing so are discussed as well. A 

random filed is essentially a spatial-variant random variable [23]. In other words, its 

distribution changes at different locations, and the random variable at one location is 

usually dependent on that at another location. Random fields have been used to describe 

spatially varying and dependent quantities, such as mechanical properties of materials, 

including Young’s modulus, Poisson’s ratio, and yield stress [24], as well as temperature, 

deformation, and surface forces. 

For example, the thickness, D , of a metal sheet shown in Fig. 2, is a random 

field.   At a specific location 2( , )1y y , D  is a random variable with a specific 

distribution. The distribution of D  is different at another location 1 2( ,y y  ), and 2( , )1D y y  

is dependent on 1 2( , )D y y  . In this case, the spatial variables are 1Y - and 2Y -coordinates. 

 

 

Fig. 2. Random field thickness of a metal sheet 

 

The response ( , )G g X Y   is considered as a random field. The reasons are 

below. 

1Y

 

D  

2( , )1D y y  

1 2( , )D y y  

2Y

 



  121 

 

 G   is a random variable. If Y  is fixed at y  , ( , )G g X y   is random, and its 

distribution is determined by ( )·g  and the joint probability density function 

(PDF) of X .   

 The distribution of G  changes with respect to Y . The distribution at y  may be 

different from that at y  because ( , )G g X y  may be different from 

( , )G g  X y  as shown in the metal sheet example in Fig. 2 and another two-

dimensional example in Fig. 3.  

 ( , )G g X y  and ( , )G g  X y  may be dependent because they share common 

random variables X . 

 For any given X x , ( , )G g x Y  is a realization of the field; 

 

 

Fig. 3. Responses with both random and interval variables 

 

For the above reasons, G  is indeed a random field whose spatial variables are 

intervals Y . G  is actually a general non-stationary random field since its distributions are 

not constant (varying with respect to Y ) and the dimensions of the spatial variable Y  is 

m , maybe greater than two or three. 

The random field perspective allows us to use random field methodologies to 

calculate the probability of failure. To do so, the bounds of the probability of failure are 

redefined as follows. 

2Y
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 Pr{ ( , ) , [ , ]}fp G g eX y y Y Y   (12) 

where  stands for “for all”. The minimum probability of failure is the probability that all 

the interval bounds are completely in the failure region.   

 Pr{ ( , ) , [ , ]}fp G g eX y y Y Y   (13) 

where  stands for “there exists at least one”. The maximum probability is the probability 

that the interval bounds intersect with in the failure region.   

Let us examine why the new definitions are equivalent to the original definitions 

given in Eqs. (6) and (7). Recall that the original maximum probability of failure  fp  is 

defined as 
[ , ]

Pr{ min { ( , )} }fp G g e
Y Y Y

X Y  in Eq. (7). The definition is equivalent to 

the definition given in Eq. (13). The reason is that the two events  A G e  in Eq. (7) 

and ( , ) , [ , ]B G g eX y y Y Y  in Eq. (13) are equivalent.  For event B, at least 

at one point of Y , G e . There are two cases. 

Case 1: There is only one point y  where G e, and event B becomes 

( , )B g eX y . This mean that at other points on [ , ]Y Y , except at y , G e. Then 

y  is the point where G  is minimum, or ( , )gG X y . Thus event A becomes 

( , )A gG eX y . Event A is therefore equivalent to event B. 

Case 2: There are multiple points 1,[ ]ii hy 
  where G e. Event B is then an 

intersection expressed by 
1

( , )i

h

ii
B g eX y . At all the other points on [ , ]Y Y , 

G e. Let 1,[ ]ii i hyy 
    be the point where G  is minimum, or ( , )gG X y . Event B 

can be rewritten as ( , )m n , )i (
i

iB g e G g e
y

X yXy , which is equivalent to 

event A. 

Similarly, the original minimum probability of failure fp , defined as 

[ , ]
Pr{ max { ( , )} }fp G g e

Y Y Y
X Y  in Eq. (6), is equivalent to the definition given in Eq. 

(12) because event C G e  in Eq. (6) is equivalent to event 

( , ) , [ , ]D g eX y y Y Y  in Eq. (12). The equivalency holds because  
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( , )g GX y  for all [ , ]y Y Y , and thus 

( , ) , [ , ]C G e g G e DX y y Y Y . 

The advantages of the new definitions are multifold. First, it avoids the direct use 

of the global responses with respect to interval variables. The elimination of global 

optimization can improve the computational efficiency significantly for responses that are 

highly nonlinear with respect to interval variables. Second, defining the probability of 

failure with a random field approach enables us to use existing random field 

methodologies to estimate the bounds of the probability of failure differently, potentially 

more accurately and efficiently than the traditional methods. Third, as discussed in the 

next section, the definitions also make it easy to integrate the traditional reliability 

methods and a random field approach to solve the problems with both random and 

interval variables. 

As the second task of this work, the feasibility of the proposed random approach 

is demonstrated by developing a new numerical procedure that employs FORM and a 

random field expansion method. The details are given in the next section.  

 

4. First Order Reliability Method Using Random Field Approach 

As indicated in Eqs. (12) and (13), the lower and upper bounds of fp  can be 

calculated by considering G  as a random field. Directly using random field G , however, 

is difficult because it is in general a non-Gaussian and non-stationary random field and no 

analytical solutions exist. One possible way is using the direct MCS, but it will be 

computationally expensive. 

In this work, FORM is used to transform G  into a Gaussian random field G . A 

similar strategy has been applied to the time-dependent reliability analysis involving 

stochastic processes [25]. Herein, the strategy is extended to the problem with interval 

variables. Based on the probability equivalency between G  and G , samples are 

generated on G  by discretizing G . With the samples, the probability of failure is then 

estimated. In the following subsections, the discretization methods of a Gaussian field are 

introduced first and then the details of the implementation procedure are discussed.  
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4.1. Discretization methods of a Gaussian random field 

The discretization of a Gaussian field has been extensively studied. There are 

three groups of discretization methods, including the point discretization method, the 

average discretization method, and the series expansion method [24]. The review of the 

discretization methods is available in [26]. Herein, the expansion optimal linear 

estimation method (EOLE) [26] that used in this work is briefly reviewed. Let G  be a 

Gaussian field with mean ( )y , standard deviation ( )y , and autocorrelation function 

( , )y y . After discretizing [ , ]Y Y  into p points iy , 1, 2, ,i p , EOLE expands G  as 

follows: 

 
1

( ) ( ) ( ), [ , ]
r

Ti
i G

i i

G y y φ ρ y y Y Y   (14) 

where i  and T

iφ   are the eigenvalues and eigenvectors of the correlation matrix ρ  with 

element ( , )ij i jy y , , 1, 2, ,i j p , 1 2( ) [ ( , ), ( , ), , ( , )]T

G pρ y y y y y y y , and 

r p  is the number of terms of expansion. Note that the eigenvalues i  are sorted in 

decreasing order.  

As discussed above, a Gaussian field can be completely characterized and 

discretized once its mean value function ( )y , standard deviation function ( )y , and 

autocorrelation function ( , )y y  are known. Next it discusses how to obtain G  and its 

mean, standard deviation, and autocorrelation functions.  

 

4.2. Construction of an equivalent Gaussian field G  

To use EOLE in Eq. (14), t the general random field G  needs to be transformed 

into an equivalent Gaussian field G . This work does so by using FORM.  

4.2.1. Transformation by FORM 

FORM has been widely used in reliability analysis with only random variables 

[27-29]. It can also be used for problems with both random and interval variables. It 

requires searching for the MPP. For a given [ , ]y Y Y , the MPP of ( , )g X y  is obtained 

by  
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min

s. t. ( ( ), )

T

G g T e

u
UU

U y

  (15) 

where  ( )T U  is an operator that transforms standard normal variables U  to X  [18]. 

After the MPP search, ( ( ), )g T U y  is linearized at the MPP point *( )u y  using 

Taylor’s series expansion as follows: 

 * * *ˆ( ( ), ) ( , ) ( ( ), ) ( ( ), )( ( ))Tg T g g gU y U y u y y u y y U u y   (16) 

where  

 
* * *

*

1 2( ) ( ) ( )

( , ) ( , ) ( , )
( ( ), ) , , ,

n

g g g
g

U U U

   
  
   
 u y u y u y

U y U y U y
u y y   (17) 

The accuracy loss of the Taylor expansion is minimal at the MPP, where 

*( ( ), )g eu y y , for [ , ]y Y Y . It gives  

 * *Pr{ ( , ) } Pr{ ( ( ), )( ( )) 0}TG g e gX y u y y U u y   (18) 

Eq. (18) is rewritten as 

 
* *

*

* *

( ( ), ) ( ( ), )
Pr{ ( , ) } Pr{ ( ) }

( ( ), ) ( ( ), )

T Tg g
g e

g
G

g

u y y u y y
X y U u y

u y y u y y
  (19) 

At the MPP point, it also has 
* *

* *

( ( ), ) ( )

( ( ), ) ( )

g

g

u y y u y

u y y u y
; Eq. (19) then becomes 

 
* *

*

* *

( ) ( )
Pr{ ( , ) } Pr{ ( ) }

( ) ( )

T TG g e
u y u y

X y U u y
u y u y

  (20) 

Define 
*

*

( )
( )

( )

u y
α y

u y
 and *( ) ( )y u y , it gives 

 Pr{ ( , ) } Pr{ ( ) ( )}TeG g X y α y U y   (21) 

Thus the probability if failure is 

 Pr{ ( ( ), ) } Pr{ ( , ) ( ) ( ) 0}TG g T e G gU y U y α y U y   (22) 

The mean and standard deviation functions of G  are then given by 
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 ( ) { ( ) } ( ) ( )T

G
Ey α y U y y   (23) 

  ( ) ( ) 1
G

y α y   (24) 

where  {}E  stands for expectation.  

Eqs. (23) and (24) indicate that for any [ , ]y Y Y , the equivalent response G  is 

a Gaussian random variable with mean ( ) ( )
G

y y  and standard deviation ( ) 1
G

y .  

4.2.2. Properties of G  

If the MPP search is performed at two points, , [ , ]y y Y Y , it has 

 Pr{ ( ( ), ) } Pr{ ( ) ( ) ( ) 0}TG g T e GU y y α y U y   (25) 

 Pr{ ( ( ), ) } Pr{ ( ) ( ) ( ) 0}TG g T e GU y y α y U y   (26) 

Since ( )G y  and ( )G y  share common random variables U , they are generally 

correlated. The correlation coefficient between ( )G y  and ( )G y  is given by 

 
( ) ( )

{ ( ) ( )} { ( )} { ( )}
( , )

G G

E G G E G E G

y y

y y y y
y y   (27) 

The above expression can be simplified as  

 ( , ) ( ) ( ) , , [ , ]T
y y α y α y y y Y Y   (28) 

From the above discussions, it is known that G  has he following properties: 

 G   is a Gaussian random variable for any given [ , ]y Y Y . 

 The distribution of G  changes with respect to y  as its mean ( ) ( )
G

y y  is 

a function of y . 

 For any two points , [ , ]y y Y Y , ( )G y  and ( )G y  are in general correlated 

with correlation coefficient given in Eq. (28). 

 The properties of  G  show that G  is indeed a Gaussian field with mean 

( ) ( )
G

y y , standard deviation ( ) 1
G

y , and autocorrelation function ( , )y y . By 

performing FORM at every point [ , ]y Y Y , the random field G  can be mapped to an 

equivalent Gaussian field G .  
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Based on the equivalency given in Eq. (22), the minimum and maximum 

probabilities of failure are then computed with G  as follows: 

  
Pr{ ( , ) , [ , ]}

Pr{ ( , ) 0, [ , ]}

f e

G g

p G g X y y Y Y

U y y Y Y
  (29) 

 
Pr{ ( , ) , [ , ]}

Pr{ ( , ) 0, [ , ]}

fp e

G g

G g X y y Y Y

U y y Y Y
  (30) 

The task now is to obtain ( )
G

y (or ( )y ) and ( , )y y  as a function of y  

because they fully define G . One possible way to determine ( )
G

y  and ( , )y y  is to 

perform the MPP search at a number of points of interval variables that are uniformly 

distributed on [ , ]Y Y . This approach, however, is not efficient. In this work, the Kriging 

method is used to create models for ( )y  and ( , )y y . This approach is much more 

efficient as discussed next. 

4.2.3. Surrogate models of ( )y  and ( , )y y  

As discussed previously, if the MPP search is performed at y , ( )y  is obtained. 

If the MPP search is also performed at y , ( , )y y  is obtained. In this work, the Kriging 

model method [30] is used, which determines the locations of y  and y  iteratively 

without using uniformly distributed points of y  and y . This way the number of MPP 

searches can be reduced. 

The output of a Kriging model is assumed to be a stochastic process [30-33]. The 

Kriging model of a function ( )f y  is given by 

 ˆ( ) ( ) ( )Tf y υ h y y   (31) 

where 1 2[ , , , ]T

pυ  is a vector of unknown coefficients, 

1 2( ) [ ( ), ( ), , ( )]T

ph h hh y y y y   is a vector of regression functions, ( )T
υ h y  is the 

polynomial parts and the trend of prediction, and ( )y  is a Gaussian process with zero 

mean and covariance [ ( ), ( )]i jCov y y . Reviews of the Kriging model are available in 

[34, 35], and a Kriging toolbox DACE is also available [36]. Herein the application of the 

Kriging model for ( )y  and ( , )y y  is the focus.  
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Even if ( )y  and ( , )y y  are two different functions, they share common input 

variables on [ , ]Y Y .  The result of the MPP search for ( )y  can also be used for 

( , )y y . Surrogate models for ( )y  and ( , )y y  are therefore constructed 

simultaneously.  In addition, Eq. (28) gives ( , ) 1y y  for any y y . Taking 

advantage of these features of ( )y  and ( , )y y , an efficient algorithm can be designed 

to create the surrogate models. Fig. 4 shows such a procedure. The detailed steps are 

explained below.  

Step 1 through Step 3: Create initial Kriging models 

Step 1: Generate evenly distributed initial samples 1,[ ]s s

i i ky y  on [ , ]Y Y . 

Step 2:  Obtain initial samples of β  and ρ  for surrogate models 

(1) Perform MPP searches at s

iy , 1,i k , using Eq. (15); obtain ( )s

iα y  and 

( )s

iy . 

(2) Obtain 1,[ ]i i k β , , 1,[ , ]s s s

i j i j kyy y y , and , 1,[ ( , )]s s

i j i j k ρ y y  using Eq. 

(28). 

Step 3: Construct the initial Kriging models of ( )y  and ( , )y y  using { , }s
y β  

and { , }s
yy ρ , respectively.  

Step 4 through Step 8: Update models and create final models 

Step 4: Identify the maximum mean square error and the associated new sample 

point  

(1) Find the maximum mean square errors of ( )y  and ( , )y y  using 

max

[ , ]

[ , ] arg max MSE ( )
L U

y Y Y

y y


 


  and 
1 2

max

1 2 1 2
, [ , ]

[( , ), ] arg max MSE ( , )
L U

y y Y Y

y y y y
 

 


 , 

respectively.  

MSE ( ) y  and 1 2MSE ( , ) y y  are obtained from the outputs of Kriging model 

directly [36].   

(2) If 
max max

   , let 
max max

  , new

1 2[ , ]y y y
  ; otherwise, let 

max max

  , 

new
y y

 . 
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Step 5: Check convergence: If max

MSE  , go to next step; otherwise, obtain 

surrogate models of ( )y  and ( , )y y . 

Step 6: Perform MPP searches at new
y , and obtain new( )α y  and new( )y  

Step 7: Update s
y , β , s

yy , and ρ : new[ , ]s s
y y y , new[ , ( )]β β y , 

, 1,[ , ]s s s

i j i j hyy y y , and , 1,[ ( , )]s s

i j i j h ρ y y , where h  is the number of samples of s
y .  

Step 8: Construct new Kriging models ( )y  and ( , )y y  using { , }s
y β  and 

{ , }s
yy ρ , and then go to Step 4.  

 

 

Fig. 4. Flowchart of constructing surrogate models of ( )y  and ( , )y y  

 

In Step 1, many sampling generation methods can be used, such as the Random 

sampling method (RS) [37], the Latin hypercube sampling (LHS) method [38], and the 

Hammersley sampling method (HS) [39]. In this work, the HS method is used as it is 
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y  on [ , ]Y Y   

Step 2: Obtain training points 
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points 

max

MSE   
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capable of generating more evenly distributed samples than other methods. In Step 2, 

MPP searches are performed at a number of y . To reduce the number of function calls, a 

good starting point should be carefully selected for the MPP search. The MPP that has 

been already obtained is picked as the starting point. The MPP of the sample point, which 

is the closest to the current sample point s

iy  , is selected as the starting point of s

iy . In 

Step 4, the maximum mean square errors are used as the stopping criteria. Since they are 

calculated by the Kriging models, there is no need to call the limit-state function in this 

step. Any optimization methods can be used to determine the maximum mean square 

errors, for example, the DIRECT algorithm [40].  

The numerical procedure shows that MPP searches are performed in Steps 2 and 

6.  

 

4.3. Discretization of G  

Once the surrogate models of ( )y  and ( , )y y  are obtained, the equivalent 

Gaussian field G  is fully defined. The original limit-state function is no longer needed 

for the reliability analysis. G  is usually a non-stationary Gaussian field, and there is no 

analytical solution available to find whether there exists an instant of y  on [ , ]Y Y  when 

a failure occurs. For this reason, G  needs to be approximated or discretized with respect 

to Y  so that the instants of Y , where failure occurs, can be captured. As discussed in 

Sec. 4.1, there are many discretization methods available. Here, the EOLE [41] method is 

used.  

s  points for the interval variables  are first generated on [ , ]Y Y  using the HS 

sampling method. Let the s  points be iy , 1,i s , using the Kriging model of ( , )y y , 

the correlation matrix of these points is obtained as follows:  

 

     

     

     

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

s

s

s s s s s s

y y y y y y

y y y y y y
Σ

y y y y y y

  

  

  


 
 
 
 
  
 

  (32) 
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where  ,i jy y  , , 1,i j s , are correlation coefficients of ( )iG y  and ( )jG y , 

which are obtained by plugging iy  and jy  into surrogate model ( , )y y . 

Based on the correlation matrix and Eq. (14), G  is then discretized as 

 
1

( ) ( ), [ , ]
s

Ti
i G

i i

Z
G y φ ρ y y Y Y   (33) 

where iZ , 1,i s , are independent standard normal variables, i  and iφ  are eigenvalues 

and eigenvectors of correlation matrix Σ , and 1 2( ) [ ( , ), ( , ), , ( , )]T

sG
ρ y y y y y y y .  

Upon the discretization of G , MCS can be performed by plugging random 

samples of iZ , 1,i s , and samples of Y  into Eq. (33). Suppose MCSn  samples are 

generated for each random variable iZ  and yn  samples are generated for Y  on [ , ]Y Y  

using the HS method, the following sampling matrix of G  is then obtained. 

 

     

     

     

1 2

1 2

1 2

,1 ,1 ,1

, 2 , 2 , 2

, , ,

Y

Y

Y
MCS Y

n

n

MCS MCS n MCS
n n

G G G

G G G

G n G n G n

y y y

y y y
G

y y y


 
 
 
 
 
 
 
 

  (34) 

 

4.4. Reliability analysis 

To approximate the lower and upper bounds of the probability of failure, the 

following indicator function is first defined: 

 
1, if ( , ) 0, 1, ; 1, ;

( , )
0, otherwise

j MCS YG i i n j n
F i j

   
 


y
 (35) 

According to Eqs. (29) and (30), fp  and fp  are then estimated by 

 
1

1
( )

MCSn
L

f

iMCS

F ip
n 

   (36) 

 
1

1
( )

MCSn
U

f

iMCS

F ip
n 

    (37) 
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where 

 1

1, if ( , )
( )

0, otherwise

Yn

YL
j

F i j n
F i 




 




  (38) 

 1

1, if ( , ) 0
( )

0, otherwise

Yn

U
j

F i j
F i 




 




  (39) 

As indicated above, with the new approach, fp  and fp  can be estimated 

simultaneously, and no global optimization with respect to interval variables is required.  

 

5. Examples 

In this section, three examples are used to demonstrate the accuracy and 

efficiency of the proposed method. Each example is solved using the following four 

methods: 

 The proposed random field approach, denoted by Random Field.  

 The direct Kriging model method, denoted by Direct Kriging, which 

constructs a surrogate model of the response with respect to both random and 

interval variables and then uses Monte Carlo simulation (MCS) to calculate 

the extreme probabilities of failure.  

 The equivalent model method proposed by Jiang et al. [9], denoted by 

Equivalent MPP.  

 The direct Monte Carlo simulation (MCS).  

The solution from MCS with a sufficiently large sample size is used as a 

benchmark for the accuracy comparison, and the efficiency is measured by the number of 

function calls for the response variable. 
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5.1. A mathematical example 

The model is given in Eq. (40) with four random variables and one interval 

variable defined in Table 1. The response function is nonlinear with respect to the 

interval variable. 

 2 2 2

1 2 1 3 1 1 4 1( , ) 10.5 2.1 sin ( 0.3) 2 ( 0.3) ( )( 0.7)g X X Y X Y X X YX Y  (40) 

The limit state is 10e   , and thus the probability of failure is given by 

 Pr{ ( , ) 10}fp g X Y   (41) 

where 1, 4[ ]i iXX . 

In the table, for a random variable, parameters 1 and 2 are the mean and stadard 

deviation, repectively. For an interval varaible, the two parameters are the lower and 

upper bounds, respectively.  

Building the surrogate models for ( )y  and ( , )y y  is critical for the proposed 

random field approach, and the results of the two models are now shown in Figs. 5 and 6. 

The initial training points and added training points of Y  are also plotted in the figures. 

The convergence criterion of the two surrogate models is 41 10MSE   . 13 training 

points, in total, were used, and thus the MPP search was performed 13 times. The results 

show that both  ( )y  and ( , )y y  are nonlinear with respect to the interval variable. 

 

Table 1 Variables and parameters of Example 1 

Variable Parameter 1 Parameter 2 Distribution 

1X  2 0.2 Normal 

2X  3 0.3 Normal 

3X  3.5 0.35 Normal 

4X  2 0.4 Normal 

1Y  0 1.5 Interval 
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Fig. 5 Surrogate model of ( )y  

Recall that the probability of failure fp  can be evaluated with the equivalent 

Gaussian random field G  through Eqs. (29) and (30). With  ( )y  and ( , )y y  available, 

G  is fully defined. Then G  could be expanded, followed by MCS. The final results are 

given in Table 2, where NOF is the number of function calls. The random field approach 

called the function 335 times.  

For a fair comparison, 500 training points were used for the direct Kiging method 

to generate a direct Kiging model for the response with respect to  X  and Y. The number 

of the training points was much higher than that of the random field approach. The range 

of a random variable X was set to [ 5 , 5 ]X X X X , and the training points were 

generated by the Hammersley sampling (HS) method. The equivalent MPP method and 

MCS were also executed.  

All the results are given in Table 2.  and  are the percentage errors of the 

lower and upper probabilities of failure with respect to MCS solutions, respectively. The 

results show that the proposed random field approach is more efficient and accurate than 

the direct Kriging method. Note that the equivalent MPP method used the fewest number 
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of function calls, but this does not mean it is more efficient than the random field 

approach because it calculated only the upper probability of failure, and its accuracy is 

much worse. If they had been used to calculate lower and upper probabilities of failure, 

the number of functions would have doubled and would be therefore be higher than that 

of the random field approach. 
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Fig. 6 Surrogate model of ( , )y y  

 

Table 2 Results of Example 1 

Method [ , ]f fp p  [ , ] (%)  NOF 

Random field 4 2[4.21 10 ,1.25 10 ]  [0.94, 2.8]  335 

Direct Kriging 4 2[3.50 10 ,1.08 10 ]  [17.65,16.18]  500 

Equivalent MPP [N/A, 1.0 210 ] [N/A, 22.48]  242 

MCS 4 2[4.25 10 ,1.29 10 ]  N/A 84 10  
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5.2. A cantilever tube 

The cantilever tube example shown in Fig. 7 is modified from [16]. The 

component is subjected to three forces 1F , 2F , and P ; and torque T . A failure occurs 

when the maximum von Moses stress 
max

 is larger than the yield strength yS . The limit-

state function is given by 

 max( , ) yG g SX Y   (42) 

where 1 2[ , , , , , , ]yS t d F F P TX , 
1 2[ , ]Y , and 

max
 is given by 

 2 2

max 3x zx   (43) 

in which 

 
x

P M

A I
  (44) 

 1 1 2 2[2 sin( ) sin( )]

8
xz

T F d F d d

I
  (45) 

 4 4[ ( 2 ) ]
64

I d d t   (46) 

 2 2[ ( 2 ) ]
4

A d d t   (47) 

and 

 
1 1 1 2 2 2cos( ) cos( )M F L F L   (48) 

where 1 120L  mm and 2 60L  mm. 

All the input variables are given in Table 3. Parameters 1 and 2 have the same 

meanings as those in Example 1. The probability of failure is defined by 

Pr{ ( , ) 0}fp G g X Y  , and the limit state is 0e  . This problem involves seven 

independent random variables and two interval variables. 

Fig. 8 shows the maximum von Moses stress with respect to interval variables 1  

and 2  while all the random variables are fixed at their mean values. The surface is quite 
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nonlinear. Given that the maximum von Moses stress is part of the response, the response 

is therefore also highly nonlinear with respect to the interval variables.  

The results of all the methods are provided in Table 4. For the direct Kriging 

model method, 400 training points were used, which are more than the training points 

used by the random field approach.  

Table 3 Variables of Example 2 

Variable Parameter 1 Parameter 2 Distribution 

t (mm) 6 0.2 Normal 

d (mm) 43 0.2 Normal 

1F (N) 1000 50 Normal 

2F (N) 1700 80 Normal 

P (N) 1000 50 Normal 

T (Nm) 350 20 Normal 

yS (MPa) 360 0 Normal 

1
(
o
) -5 10 Interval 

2
(
o
) -10 6 Interval 

 

 

Fig. 7 A cantilever tube 
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Fig. 8 Maximum von Moses stress of the tube for a given 1  and 2  

 

Table 4 Results of Example 2 

Method [ , ]f fp p  [ , ] (%)  NOF 

Random field 4 4[2.07 10 , 9.86 10 ]  [1.90,1.89]  371 

Direct Kriging 4 3[1.2 10 , 7.10 10 ]  [43.13, 576.19]  400 

Equivalent MPP 4[N/A, 5.64 10 ]  [N/A, 43.62] 257 

MCS 4 3[2.11 10 ,1.0 10 ]  N/A 93 10  

The results also show the high accuracy and efficiency of the random field 

method.  

 

5.3. A ten-bar aluminum truss 

This example is modified from Refs. [9, 13, 42]. As shown in Fig. 9, a ten-bar 

aluminum truss is subject to forces 1F , 2F , and 3F . The vertical displacement of joint 2 is 

of interest. Its allowable value is max 0.046d  m. The Young’s modulus of the material 

is 68.948E  GPa. The lengths of the horizontal and vertical bars are all 9.144L  m.  
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Fig. 9 A ten-bar aluminum truss 

 

The probability of failure is given by 

 maxPr{ ( , ) 0}fp G g d dX Y   (49) 

in which d  is computed by [42] 

 
0 06 10

1 7
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i ii i

N N N N L
d

A A E
  (50) 

where  
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  (52) 

and 0

iN , 1, 2, ,10i  are obtained by plugging 
1 3 0F F  and 

2 1F  into Eqs. (51) 

and (52). 

There are 10 independent random variables and 3 interval variables as shown in 

Table 5. The results are provided in Table 6. For the direct Kriging model method, the 

HS method was used to generate 1000 training points, which were more than the training 

points used by the random field approach. This example again shows the high accuracy 

and efficiency of the random field approach.    

 

6. Conclusions 

Interval variables are usually used to model uncertain with limited information. 

As a result, the probability of failure is also an interval variable. Most of reliability 

analysis methods for both random and interval variables rely on the global extreme 

values of a response with respect to interval variables. When the response is a nonlinear 

function of interval variables, the accuracy and efficiency of reliability analysis are not 

good. This work shows that the response is a random filed with respect to interval 

variables. From this perspective, the reliability or probability of failure can be redefined 

using a random field approach. The new definition allows for a new reliability analysis 

method that maps the random field response into a Gaussian field through the First Order 

Reliability Method (FORM). The Kriging model method is employed to determine the 

mean and autocorrelation functions of the Gaussian field, which is then expanded with a 
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number of Gaussian variables. Then the bounds of the probability of failure are estimated 

by Monte Carlo simulation. 

The proposed method avoids global optimization with respect to interval variables 

and therefore avoids performing FORM on the extreme values of the response. In 

addition, the proposed method obtains the lower and upper bounds of the probability of 

failure simultaneously. As the three examples demonstrate, the proposed method is 

accurate and efficient.  

Table 5 Variables of Example 3 

Variable Parameter 1 Parameter 2 Distribution 

1A   (mm
2
) 4000 50 Normal 

2A   (mm
2
) 4000 50 Normal 

3A   (mm
2
) 4000 50 Normal 

4A   (mm
2
) 4000 80 Normal 

5A   (mm
2
) 4000 80 Normal 

6A   (mm
2
) 4000 80 Normal 

7A   (mm
2
) 4000 100 Lognormal 

8A   (mm
2
) 4000 100 Lognormal 

9A   (mm
2
) 4000 100 Lognormal 

10A   (mm
2
) 4000 100 Lognormal 

1F   (N) 442800 446800 Interval 

2F   (N) 442800 446800 Interval 

3F   (N) 1709200 1849200 Interval 

 

It is critical to construct the models of the mean and autocorrelation functions of 

the Gaussian field. The Kriging method is used in this work for this task. Other surrogate 

model methods can also be employed. When the dimension of interval variables is high, 

the proposed method may not perform well because the Kriging method may not be 

efficient for large scale problems. Large number of interval variables, however, should be 
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avoided because this situation will lead to too conservative reliability analysis results. 

More information should be collected to reduce the number of interval variables. The 

future work in this area is the sensitivity analysis that identifies the most important 

interval variables, for which more information needs to be collected.  

 

Table 6 Results of Example 3 

Method [ , ]f fp p  [ , ] (%)  NOF 

Random field 3[0, 4.153 10 ]  [0,1.49]  401 

Direct Kriging 3[0, 3.88 10 ]  [0, 5.18]  1000 

Equivalent MPP 2[N/A, 4.82 10 ]  [N/A,1077.91]  605 

MCS 3[0, 4.092 10 ]  N/A 93 10  

 

Although the FORM-based random field approach does not approximate the 

limit-state function with respect to interval variables, it linearizes the limit-state function 

with respect to the transformed random variables. Even though the accuracy of FORM is 

acceptable for many engineering problems, its error will be large if the limit-state 

function is highly nonlinear with respect to the transformed random variables. The future 

work is to use more accurate reliability method, such the Second Order Reliability 

(SORM) method, to replace FORM.  
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Abstract 

Form time-dependent engineering problems, time-dependent reliability-based 

design ensures reliability requirements are met for a given period of time, but it is 

challenging to maintain high efficiency and accuracy. This work develops an accurate 

and efficient reliability-based design methodology for problems whose responses are 

nonlinear functions of both stationary stochastic processes and random variables. The 

high efficiency is achieved by performing deterministic design optimization and time-

dependent reliability analysis with sequential single loops where optimization and 

reliability analysis are completely decoupled. The time-dependent reliability analysis 

method employed in this work also helps reduce the computational cost. Its accuracy is 

ensured by using the Orthogonal Series Expansion (OSE) method. Two numerical 

examples demonstrated that the proposed method is able to design the product to specific 

reliabilities with less than 10% error. 

 

1. Introduction 

Stochastic processes, such as time-variant random excitations and loadings, are 

commonly encountered in aerospace applications. For problems with input stochastic 

processes, the responses are also stochastic processes. To quantify the effects of time-

dependent uncertainties in the input stochastic processes, time-dependent reliability 
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methods should be employed [1-3] because they can provide the probability that a system 

or component still works properly after it has been put into operation for a period of time 

[0, ]t .  

Let 1 2[ , , , ]nX X XX  be a vector of random variables and 

1 2( ) [ ( ), ( ), , ( )]mt Y t Y t Y tY  be a vector of stochastic processes, the time-dependent 

reliability  ( )R t  over [0, ]t  is defined by 

 ( ) Pr{ ( ) ( , ( )) 0, [0, ]}R t G g tX Y   (1) 

where ( , ( ))g X Y  is the limit-state function, ( )G   is the response variable, [0, ]t  

stands for all time instants over [0, ]t , and ( , ( )) 0g X Y  indicates a working state.  

The time-dependent probability of failure is 

 ( ) 1 ( )
f
p tt R   (2) 

It can also be computed by 

 ( ) Pr{ ( , ( )) 0, [0, ]}fp t g tX Y   (3) 

The probability of failure indicates that if there exists one time instant  in [0, ]t  , 

such that ( , ( )) 0g X Y , a failure occurs. It is therefore also called the probability of 

the first-passage failure.  

For special problems with only random variables X , the reliability becomes time 

independent or constant. Many reliability-based design optimization (RBDO) methods 

are for only time-independent reliability problems [4-7].  A typical time-independent 

RBDO model is given by 

 

( , )
min ( )

s.t.

Pr{ ( , ) 0} [ ], 1, 2, ,

( ) 0, 1, 2, ,

Pi fi p

Dj d

f

g p i n

g j n

Xd μ
d

d X

d

  (4) 

In the above model, ( )f d  is the objective function, and d  is a vector of 

deterministic design variables. [ , ]R PX X X  is a vector of random variables with RX  

being random design variables and PX  being random parameters. The difference 
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between RX  and PX  is that the distribution parameters of the former are controllable 

while those of the latter are uncontrollable. The mean values of RX , Xμ , are also usually 

treated as design variables. ()Pg  is a constraint function for which reliability is 

concerned, and [ ]fp  is the permitted probability of failure. ()Djg  is a constraint function, 

for which no reliability is required.   

Solving the above RBDO model is time consuming because the reliability 

analysis for Pr{ ( , ) 0}Pig d X  is embedded within the optimization. Many methods 

have been proposed for improving computational efficiency. The commonly used 

methods is the sequential single-loop methods, including the efficient reliability and 

sensitivity analysis method [8, 9] and the Sequential Optimization and Reliability 

Analysis (SORA) method [10]. The methods decouple the RBDO process into a 

deterministic optimization process and reliability analysis process. The decoupling 

enables a RBDO problem to be solved in a sequential single-loop process with a reduced 

computational cost. Other progresses have also been made based on SORA [11-16].  

When time-dependent uncertainties are involved [3], the RBDO model for a 

period of time [0, ]t  becomes 

 

( , )
min ( )

s.t.

Pr{ ( , , ( )) 0, [0, ]} [ ], 1, 2, ,

( ) 0, 1, 2, ,

Pi fi p

Dj d

f

g t p i n

g j n

Xd μ
d

d X Y

d

  (5) 

The time-dependent reliability constraint 

Pr{ ( , , ( )) 0, [0, ]} [ ( )]P fg t p td X Y  is included in the above model.  

Solving time-dependent RBDO problems are much more difficult than solving 

time-independent RBDO problems. There are two primary reasons. The first reason is 

that many time-dependent reliability analysis methods are not accurate. Developing 

accurate and efficient time-dependent reliability analysis methods is still a research issue 

[17-21]. Even if many methodologies have been developed in recent years, they are 

limited either by their assumptions or by their application scopes [1-3, 22-25]. A brief 

review about time-dependent reliability analysis methods is available in [26].   
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The second reason is that solving time-dependent RBDO is much more time 

consuming than solving time-independent RBDO. The higher computational cost is due 

to the higher computational demand by the time-dependent reliability analysis [1-3].  

Methodologies for time-dependent RBDO have been proposed and used in many 

applications. For instance, Kuschel and Rackwitz [27] developed a structure design 

optimization model by using the outcrossing rate method for time-dependent reliability 

analysis. Mourelatos et al. [1] introduced the time-dependent reliability analysis into the 

lifecycle cost optimization. Based on a nonlinear interior point algorithm and a line 

search strategy, Jensen et al. [28] carried out RBDO for structural systems under 

stochastic excitations. Wang and Wang [3] proposed a sequential design optimization 

method based on a nested extreme response method. A RBDO model was also developed 

in [29] for the degradation of reliability over time.  

The accuracy and efficiency of above time-dependent RBDO methodologies can 

be further improved. For example, most of the current methods imbed the reliability 

constraints in the optimization framework [1, 27-29], and this may increase the number 

of function evaluations significantly. SORA is a feasible way to improve the efficiency 

by decoupling the reliability analysis model from the optimization framework [3]. The 

direct application of SORA to problems with stochastic processes, however, may not be 

accurate. In this work, a new time-dependent SORA method is developed to accurately 

and efficiently solve time-dependent RBDO problems.  

The main contributions of this work include the following: (1) the extension of 

SORA so that stationary stochastic processes can also be accommodated in RBDO, (2) a 

concept of the equivalent Most Probable Point (MPP), which allows for decoupling 

deterministic optimization and time-dependent reliability analysis, (3) an efficient 

approach to the equivalent MPP search, and (4) a new efficient time-dependent reliability 

analysis approach. The developed method is applicable to the general time-dependent 

RBDO problems with nonlinear response functions in the time-dependent reliability 

constraint functions.   

The paper is organized as follows: The original SORA is reviewed in Section 2, 

and the new time-dependent SORA is discussed in Section 3, followed by the detailed 

http://www.scopus.com/authid/detail.url?authorId=7003333772&amp;eid=2-s2.0-84863215539
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numerical procedure in Section 4. Two numerical examples are given in Section 5, and 

conclusions are made in Section 6.  

 

2. Review of SORA 

The original Sequential Optimization and Reliability Analysis (SORA) method is 

for the time-independent RBDO defined in Eq. (4) [10]. It is based on the First Order 

Reliability Method (FORM), which approximates a limit-state function in the space of 

standard normal random variables.   

SORA performs RBDO with sequential cycles of deterministic optimization and 

reliability analysis. After an optimal design point is found in the deterministic 

optimization loop, at this point FORM is employed in the reliability analysis loop. The 

output of the reliability analysis is then used to reformulate the deterministic optimization 

model for the next cycle so that the reliability will be improved. The process continues 

cycle by cycle till convergence as shown in Fig. 1.  

 

 

Fig. 1 Flowchart of SORA 

 

The deterministic optimization in the k-th cycle is formulated as  

 

μ[ , ]

( 1)
MPP

min ( )

s.t.

( , [ ]) 0, 1, 2, ,

( ) 0, 1, 2, ,

k
Pi p

Dj d

f

g T i n

g j n

Xd
d

d u

d

  (6) 

Deterministic 

optimization 
Reliability analysis 
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Formulate a new 

optimization model 
Y N 

d , 
X

μ  

MPP
u  

Initial 

design 
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design 
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where 
( 1)
MPP,
k

iu  is the Most Probable Point (MPP) in the standard normal variable space 

for the i-th probabilistic constraint from the reliability analysis in the (k-1)-th cycle. [ ]T  is 

the transformation operator given by [ ]Tx u  [30]. The result of the optimization is the 

optimal point μ
( )( )[ , ]kk
Xd .  

Then reliability analysis or the inverse MPP search is perform at μ
( )( )[ , ]kk
Xd  for 

each of the probabilistic constraint functions The MPP 
( 1)
MPP,
k

iu  the solution to the 

following MPP search model:   

 
,

( )
,

,

max ( , ( ))

s.t.
i

k
Pi i

i i

g T
X

X
u

X

d u

u

  (7) 

in which  stands for the determinant of a vector, and  is called a reliability index and 

is given by 

 1([ ])i fip   (8) 

in which 1() is the inverse cumulative density function (CDF) of a standard normal 

variable. The approximation of the probability of failure is by means of a standard normal 

distribution as indicated in Eq. (8). The obtained CDF of the limit-state function this way, 

however, is not necessarily normally distributed. 

The MPP 
( 1)
MPP,
k

iu  corresponds directly to the permitted probability of failure  

[ ]fip  as shown in Eq. (8). If the constraint function at 
( 1)
MPP,
k

iu  is less than 0, fip  will be 

less than [ ]fip . Therefore, 
( 1)
MPP( , [ ]) 0k

Pig Td u  in the deterministic optimization leads 

to the satisfaction of reliability. 

After the k-th cycle, if no convergence is reached, the (k+1)-th cycle is performed.  

SORA has been proofed efficient for time-independent RBDO [14-16]. It might 

also be efficient for time-dependent RBDO. However, there is no direct correspondence 

of the MPP to the permitted time-dependent probability of failure. Major modifications of 
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SORA are needed for time-dependent RBDO. In this work, modifying SORA for time-

dependent RBDO problems involving only stationary stochastic processes and random 

variables is the focus. 

 

3. Time-Dependent SORA (t-SORA) 

In this section, the main idea of SORA for time-dependent RBDO is first 

introduced. The new method is called the time-dependent SORA (t-SORA). Details of t-

SORA are then discussed.  

 

3.1. Overview of t-SORA 

In this work, limit-state function ( , ( ))Pg X Y  where the components of  ( )Y  are 

independent stationary stochastic processes, whose distributions do not change with time, 

are of interest. ( )Y  may or may not include Gaussian stochastic processes. Since the 

distributions of ( )Y  at all the instants of time over [0, ]t  are the same, the MPP of 

( , ( ))Pg X Y  is also identical at all the instants of time over [0, ]t .  

Fig. 2 shows the flowchart of t-SORA. As the new method inherits from the 

original SORA, the steps are very similar to those in Fig. 1. The entire optimization is 

still performed cycle by cycle till convergence. Each cycle consists of decoupled 

deterministic optimization and time-dependent reliability analysis. However, the major 

difference or challenge is that the MPP corresponding to the permitted probability of 

failure [ ]fp   cannot be directly used in the deterministic optimization. Its direct use cannot 

ensure that the reliability requirement be met. The reason is explained as follows. 

With the involvement of ( )Y , the random variables at  become [ , ( )]Z X Y . If 

the inverse MPP search is performed as in the original SORA, the MPP Zu  can be 

obtained from 

 

1

max ( , ( ))

s.t.

([ ])

P

fi

g T

p

Z
Z

u

Z

d u

u

  (9) 

Then at the MPP Zu , 
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 Pr{ ( , , ( ) ( , ( ))} [ ])
iP P fg g T pZd X Y d u   (10) 

However, the probability Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u  over [0, ]t  

is always greater than or equal to the instantaneous probability 

Pr{ ( , , ( ) ( , ( ))) }P Pg g T Zd X Y d u  [1, 2, 31], and therefore 

   Pr{ ( , ( )) ( , ( )), [0, ]} [ ]
iP fg g T t pZX Y d u   (11) 

 

 

Fig. 2 Flowchart of t-SORA 

 

As a result, the constraint ( , ( )) 0Pg T Zd u  in the deterministic optimization can 

only satisfy Pr{ ( , , ( ) 0}) [ ]
iP fg pd X Y  at , and it may not satisfy the time-

dependent reliability requirement Pr{ ( , ( )) 0, [0, ]} [ ]
ifg t pX Y . 

To address the above challenge, a concept of equivalent MPP is proposed and 

denote it by Zu . It is the MPP at which the limit-state function satisfies 

   Pr{ ( , ( )) ( , ( )), [0, ]} [ ]
iP fg g T t pZX Y d u   (12) 

Zu  can be obtained by adding the above condition to the inverse MPP search 

model. The new model is given by 

 

][ ,
max ( ( ))

s.t.

Pr{ ( , ( )) ( ( )), [0, ]} [ ]
i

P

P f

g T

g g T t p

Z

Z

Z
u

Z

u

u

X Y u

  (13) 
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The reliability index   is also treated as a design variable in the MPP search since 

it cannot be predetermined.  

Then the task of time-dependent reliability analysis is to search for the equivalent 

MPPs based on Eq. (13) for all the reliability constraint functions. Solving for the MPP 

using Eq. (13), however, is too computationally expensive. The details of developing an 

efficient algorithm for Eq. (13) will be presented in Section 3.3. 

Now that the equivalent MPP Zu  is directly associated with [ ]fp . Its use in the 

deterministic optimization can therefore guarantee the satisfaction of the reliability 

requirement. The deterministic optimization model with the equivalent MPPs will be 

given in the next section. 

 

3.2. Deterministic optimization 

With the equivalent MPP, for the k-th cycle, the deterministic design optimization 

is formulated as 

 

( , )

( 1)
,

min ( )

s.t.

( , ( ) 0, 1, 2, ,

( ) 0, 1, 2, ,

k
Pi pi

Dj d

f

g T i n

g j n

Xd

Z

d

d u

d

μ

  (14) 

in which 
( 1)
,
k
iZu  is the equivalent MPP for the i-th reliability constraint. How to obtain  

( 1)
,
k
iZu  will be discussed in Section 3.3. The optimization model is similar to the 

optimization model in the original SORA. The only difference is that the MPPs are 

replaced by the equivalent MPPs. As discussed above, the use of the equivalent MPPs in 

constraints 
( 1)
,( , ( ) 0, 1, 2, ,k

Pi pig T i nZd u , will satisfy the time-dependent 

reliability requirements. 

 

3.3. Time-dependent reliability analysis 

The purpose of the time-dependent reliability analysis is to identify the equivalent 

MPPs. For a general limit-state function ( , ( )) ( )P Pg gX Y Z , where [ , ( )]Z X Y , the 

task is to search for the equivalent MPP Zu  given the design variables [ , ]Xd μ . As 
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indicated in the new inverse MPP search model in Eq. (13), there are two research issues. 

The first is how to calculate the time-dependent probability 

Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u , and the second is how to solve Eq. (13) 

efficiently.  

 

3.3.1. Calculation of Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u  

The task is to calculate the time-dependent probability 

Pr{ ( , ( )) , [0, ]}g c tX Y , where ( , ( ))Pc g T Zd u  on the condition that c  is 

known. It is nothing but the time-dependent analysis with the limit state c .  

Time-dependent reliability analysis methods have been extensively studied [1-3, 

32-39]. Amongst them, the most commonly used one is the upcrossing rate method that 

integrates the Rice’s formula [36, 37] and FORM. An upcrossing is defined as the event 

that the limit-state function upcrosses the failure threshold from the safe region to the 

failure region. The method assumes that upcrossings are independent. The time-

dependent probability of failure can then be approximated easily. Even though the Rice’s 

formula is based on Gaussian processes, its integration with FORM and the upcrossing 

rate method makes it applicable to general problems with non-Gaussian stochastic 

process responses.  

The upcrossing rate method is accurate when the probability of failure is low, but 

inaccurate when the probability of failure is high. Many improvements have been made 

for the Rice’s formula, such as considering the correlation between upcrossing events 

[40], making empirical corrections to the formula of upcrossing rate [41], employing the 

important sampling method [1, 2], and constructing surrogate models for the extreme 

response [3]. Since the Rice’s formula based upcrossing rate method is widely used and 

is also compared with the new method, its brief review is given in Appendix A.  

In this work, a first order sampling method is used, which approximates the limit-

state function at the MPP and then use an efficient sampling approach based on the 

Orthogonal Series Expansion (OSE) method to estimate the probability of failure. A brief 

review about the OSE method is given in Appendix B.  
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3.3.2.  MPP search 

It is computationally costly to directly search for the equivalent MPP using Eq. 

(13) because it involves the probability calculation for 

Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u , and the probability calculation itself is also 

a reliability analysis. The other disadvantage is that the existing efficient MPP search 

algorithms cannot be used because of the constraint 

Pr{ ( , ( )) ( , ( )), [0, ]} [ ]P fg g T t pZX Y d u  in the MPP search model. The MPP 

search then becomes a double-loop procedure. To ease the computational intensity, using 

the same strategy as SORA, the MPP search is performed with a sequential procedure. 

The idea is to separate the MPP search from the probability calculation. Both of them are 

described below. 

The analysis that is performed first is the inverse MPP search without the 

probability calculation. It is conditional on a known reliability index . The inverse MPP 

search is given by 

 

max ( ( ))

s.t.

Pg T
Z

Z
u

Z

u

u

  (15) 

It is the regular MPP search, and any existing MPP search algorithms can be used. 

The solution is the MPP Zu  given  .  

Then the next analysis is performed to update the reliability index  on the 

condition that Zu  is known. The task is to find a new reliability index so that the time-

dependent probability of failure is equal to its permitted value, or 

Pr{ ( , ( )) ( , ( )), [0, ]} [ ]P fg g T t pZX Y d u . How to update   will be discussed 

in Sec. 3.3.3. The result of the MPP search is the equivalent MPP Zu . Then the 

convergence is checked. If convergence is not reached, the process repeats. The 

procedure of time-dependent reliability analysis is illustrated in Fig. 3.  

 



  158 

 

 

Fig. 3 Time-dependent MPP search 

 

3.3.3.  Reliability index updating 

This section now discusses how to obtain the reliability index so that 

( ) Pr{ ( ( )) 0, [0, ]} [ ]P ffp t g T t pZU . Since FORM is used, the limit-state 

function ( ( ))Pg T ZU  is approximated at Zu  for updating . As shown in Appendix A, 

after approximation, the time-dependent probability is 

  Pr{ ( ( )) 0 [0, ]} Pr{ ( , [0, ]}( ) )f
T

Pp g T t Lt tZZZU U u  (16) 

where )( TL ZU  is a linear combination of ZU , and  is a constant vector evaluated 

at Zu  and is given in Eq. (A4). If ( ) [p ]f ftp , a new reliability index  is obtained so 

that ( ) [ ]f ftp p . 

Note that original limit-state function ( ) ( ( ))PG g T ZU in general is a non-

Gaussian process, after the approximation, its new version )( TL ZU  becomes a 

stationary and standard Gaussian process. Given a different limit state, 

( ) ( ( ))PG g T ZU  will be approximated by another Gaussian process )( TL ZU  

with a difference vector . With the different coefficients , the approximated limit-

state function this way will not be in general a Gaussian process.   

Let the global maximum of )(L  over [0, ]t  be W ; namely 
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 max{ ( ), [0, ]}W L t   (17) 

 ( )fp t  can then be calculated by 

 Pr{( ) }fp Wt Zu   (18) 

If ( ) [p ]f ftp , the old reliability index Zu  should be reduced and an updated 

reliability index   is obtained such that 

 Pr{ ( ) , [0 p ], ]} [ fL t   (19) 

or 

 Pr{W } [ ]fp   (20) 

It is obvious that Zu . 

The problem now becomes to find the percentile value of W  given a probability 

level [ ]fp  . It is a difficult task because there may not be a close-form solution to the 

distribution of the extreme value W . Wang [3] proposed a kriging model method to 

approximate the extreme value distribution, but the method is limited to limit-state 

functions in the form of ( , )g tX  without any input stochastic processes. Herein a 

sampling method is used.  

Recall that )( TL ZU  is a stationary Gaussian process with known coefficients 

. Simulations can then be used to obtain its sample trajectories, and for each trajectory, 

the maximum value can be found. Then the samples of W  will be available for the 

estimation of the CDF of W . The CDF will then produce  as indicated in Eq. (20). The 

samples can be efficiently generated using the Orthogonal Series Expansion (OSE) [42], 

which is given in Appendix B. 

Once the samples of W  are available, the percentile value of W  in Eq. (20) is 

approximated. Since [ ]fp  is small,  is in the far right tail of the distribution of W . To 

obtain an accurate result, the saddlepoint approximation (SPA) method [43] is used. The 

details are provided in Appendix C. Since the sampling approach is based on 

)( TL ZU , the original limit-state function ()Pg  will not be called.  
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3.3.4. Numerical procedure of the time-dependent reliability analysis 

The strategy of the time-dependent reliability analysis and its procedure are now 

summarized. As discussed above, the analysis is an iterative process. For a general limit-

state function ( , ( )) ( )P Pg gX Y Z , when it is approximated at an MPP, a number of 

iterations are needed to solve the following model: 

 

[ , ]
max ( ( ))

s.t.

Pr{W } [ ]f

Pg T

p

Z
Z

u

Z

u

u
  (21) 

It is derived from the original model in Eq. (13) when FORM is employed. The 

model is solved with the procedure shown in Fig. 3 where the MPP search and reliability 

index updating are performed separately and sequentially. The main steps are as follows:  

Step 1: Initialization: set the initial reliability index . The following initial value 

is recommended: 

 11.2 ]( )[ fp   (22) 

Step 2: MPP search: Search for the MPP using Eq. (15). The results are the MPP 

Zu  and vector  (given in Eq. (A4)). 

Step 3: Update the reliability index: (1) Construct ( )L  by )( TL ZU .  (2) Use 

the OSE method to generate samples for ( )L  over [0, ]t  . (3) Obtain the samples of the 

extreme value of W . (4) Use SPA to compute the reliability index . 

Step 4: Check convergence: If the difference between the current  value and 

previous  is larger than a predefined tolerance, repeat Steps 2 through 4; otherwise, set 

the equivalent MPP Z Zu u  and stop. The convergence tolerance can be set as 0.01 or 

0.001 or other small numbers.  

A more detailed flowchart is given in Fig. 4. The above procedure is for a general 

limit-state function. It should be executed for all the limit-state functions in the overall 

RBDO model. 
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Fig. 4 Detailed flowchart for time-dependent reliability analysis 

 

4. Summary of Numerical Procedure 

The procedure of the entire RBDO is now summarized and is shown in Fig. 5. 

Step 1: Initialize parameters. (1) Define the initial design variables.  (2) Set the 

cycle counter 1k .  

Step 2: Perform deterministic optimization. If 1k , solve deterministic 

optimization at mean values of random variables and main functions of stochastic 

processes. If 1k , formulate the deterministic optimization model using the equivalent 

MPPs 
( 1)
,
k
iZu , where 1,2, , pi n , obtained from the ( 1k )-th cycle; then solve the 

optimization model given in Eq. (14). The optimal solution is 
( )( )[ , ]kk
Xd μ .   

Step 3: Perform time-dependent reliability analysis at 
( )( )[ , ]kk
Xd μ  following the 

procedure in Fig. 4. The solution is the equivalent MPPs 
( )
,
k
iZu , where 1,2, , pi n . 

Step 4: Check convergence. If the limit-state functions satisfy 
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 ( ) ( )

,
( , ( ))k k

Pi i
g T

Z
d u   (23) 

where  is a small positive number, then the optimal solution is found and stop. 

Otherwise, update the cycle counter by 1k k , and repeat Steps 2 through 4. 

Similar to the original SORA, the efficiency of t-SORA is high because it can 

converge within a few cycles, and the typical number of cycles is between three and five. 

In addition to the decoupling between optimization and reliability analysis, the proposed 

approach to the equivalent MPP search converges quickly, and this also makes t-SORA 

fast.  

 

5. Numerical Example 

Two examples are presented. In example one, there are one stochastic process and 

two time-dependent reliability constraints. In example two, there are two stochastic 

processes and one time-dependent reliability constraint.  

 

5.1. A two-bar frame under stochastic force 

A two-bar frame is subjected to a stochastic force ( )F t  as shown in Fig. 6. The 

distances O1O3 and O1O2 are random parameters and are denoted by 1l  and 2l , 

respectively. Failures occur when the maximum stresses of the two bars are larger than 

their material yield strengths 
1
S  and 

2
S . The diameters D1 and D2 of the two bars are 

random design variables.  

The limit-state functions are given by 

 

2 2

1 2

1 2

2 1 1

4 ( )
( , , ( )) 1

F l l
g

l D S
d X Y   (24) 

 1
2 2

2 2 2

4 ( )
( , , ( )) 1

F l
g

l D S
d X Y   (25) 

where [ , ]
R P

X X X , 
1 2

[ , ]
R

D DX , 
1 2 1 2

[ , , , ]
P
l l S SX ,  

1 2
[ , ]
D D

d , and 

( ) [ ( )]t F tY .  
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The information known is given in Table 1, where STD and GP stand for a 

standard deviation and a Gaussian process, respectively.  

 

 

Fig. 5 Numerical procedure of t-SORA 

Table 1. Random variables and stochastic process 

Variable Mean STD Distribution Autocorrelation 

1
D  

1D
 31 10 m  Normal N/A 

2
D  

2D
 31 10 m  Normal N/A 

1
S  81.7 10  Pa  7101.7  Pa  Lognormal N/A 

2
S  81.7 10  Pa  7101.7  Pa  Lognormal N/A 

1
l  0.4m 

31 10 m  Normal N/A 

2
l  0.3m 

31 10 m  Normal N/A 

( )F t  62.2 10  N 52 10  N GP Eq. (26) 

 

 

The auto-correlation coefficient functions of ( )F  is 

Step 2 

 Deterministic Optimization 

μ[ , ]

( 1)
,

min ( )

s.t.

( , ( ) 0, 1, 2, ,

( ) 0, 1, 2, ,

k
Pi pi

Dj d

f

g T i n

g j n

Xd

Z

d

d u

d
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parameters 

1k  

 

Step 3  

Time-
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Step 4 

( ) ( )

,
( , ( ))k k

Pi i
g T

Z
d u ? 1k k   

( )
,
k
iZu  

Y N 

μ
( )( )[ , ]kk
Xd

  

Optimal 

design 

[ , ]Xd μ  

0
d , 

0

Z
u  and 
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2

2 1
1 2

( )
( , ) expF   (26) 

in which 0.1 year  is the correlation length.  

 

Fig. 6 A two-bar frame under stochastic force 

 

The objective is to minimize the weight of the two bars, and the RBDO model for 

a service period of [0,10]  years is formulated as 

 

1 2 21 1

1

2

2 2 22

( , )
min ( )

4 4

s.t.

Pr{ ( , , ( )) 0, [0, ]} [ ], 1, 2

0.07 m 0.25 m

0.07 m 0.25 m

l l Dl D

i fi

D

D

f

g t p i

Xd μ
d

d X Y   (27) 

where 
1

[ ] 0.01
f
p , 

2
[ ] 0.001
f
p , and 10t  years. 

To evaluate the accuracy and efficiency of t-SORA, three methods were used to 

solve the problem with the same starting point. The three methods are the t-SORA with 

the Orthogonal Series Expansion (OSE) method presented in Appendix B, the double-

loop method using the same time-dependent reliability analysis method as t-SORA, and 

l2 

 

l1 

O1 

O2 

O3 

D1 

A 

A 

A-A 

B 

B 

D2 

B-B 

F(t) 
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the double-loop method with the Rice’s formula for time-dependent reliability analysis 

presented in Appendix A. Next the latter two methods were called the Double (OSE) and 

Double (Rice).  

The parameters of OSE used by t-SORA and Double (OSE) are given below. 

 The number of time instants dividing: [0, ]t , 500Q  

 The number of samples generated at each time instant: 610N  

 The number of  terms used in the OSE model: 200M  

Table 2 shows the convergence history of t-SORA. The optimal solution was 

obtained within three cycles. After the first cycle, the two limit-state functions were much 

larger than zero, and this is the indication that the reliability requirements were not met. 

After the third cycle, the two limit-state functions were close to zero. Then the time-

dependent probabilities of failure were almost at their target values.  

 

Table 2 Convergence history of t-SORA 

k f (m
3
) 

1 2
( , )
D D

 (m) 
1
 

2
 1 ,1

( , ( ))
P
g T

Z
d u  

2 ,2
( , ( ))

P
g T

Z
d u  

1 0.0173 (0.0831, 0.0743) 3.5662 4.2095 0.6049 0.7541 

2 0.0290 (0.1051, 0.0981) 3.5715 4.2111 9.44×10
-4

 9.24×10
-4

 

3 0.0290 (0.1051, 0.0982) 3.5721 4.2138 2.50×10
-4

 4.88×10
-4

 

 

Table 3 shows the final results from the three methods. The number of function 

calls (NOFC) is used to measure the efficiency.  t-SORA and Double (OSE) produced 

almost identical results. t-SORA is much more efficient than the Double (OSE) and 

Double (Rice) methods. The fourth and fifth columns of Table 3 present the probabilities 

of failure after the optimization. Since t-SORA does not compute the probabilities of 

failure directly, their values are not available. The probabilities of failure of the Double 

(OSE) and Double (Rice) methods are computed by the OSE-based sampling method 

(Appendix B) and Rice’s formula (Appendix A), respectively. The results show that the 

reliability constraints were satisfied by the three optimization methods.  
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Table 3 Optimal results 

Method f (m
3
) 

1 2
( , )
D D

(m) 
1
( )

f
p t  

2
( )

f
p t  NOFC 

t-SORA 0.0290 (0.1051, 0.0982) N/A N/A
 

715 

Double (OSE) 0.0290 (0.1051, 0.0982) 0.0099 0.0010 18840 

Double (Rice) 0.0297 (0.1066, 0.0990) 0.0100 0.0010
 

11050 

 

To verify the accuracy, Monte Carlo Simulation was also performed at the 

optimal design points in Table 3 from the three methods. In MCS, the time interval [0, ]t  

was discretized into 200 time instants, and 10
6
 samples were generated at each time 

instants. Table 4 gives the percentage errors, and Table 5 gives the 95% confidence 

intervals of the MCS solutions.   

The percentage error is computed by 

 

MCS

MCS

( ) ( )
100%

( )

f f

f

p t p t

p t
  (28) 

For t-SORA and Double (OSE), ( )
f
p t  is calculated by the OSE-based sampling 

method, and for Double (Rice), it is calculated by the method based on Rice’s method. 

MCS( )
f
p t  is the probability of failure obtained from MCS.  

Table 4 Accuracy comparison 

 1
( )

f
p t  MCS

1
( )

f
p t  Error (%) 2

( )
f
p t  MCS

2
( )

f
p t  Error (%) 

t-SORA 0.01 0.0094 5.3 0.001 9.4×10
-4

 6.38 

Double (OSE) 0.01 0.0094 5.3 0.001 9.4×10
-4

 6.38 

Double (Rice) 0.01 0.0046 117.39 0.001 5.4×10
-4

 85.19 

 

The results indicate that the accuracy of t-SORA is good. It is more accurate than 

the Double (RICE) method. For the t-SORA and Double (OSE) methods, at the optimal 

design points, the actual time-dependent probabilities of failure are very close to the 

permitted ones. The probabilities of failure from the Double (Rice) method are much 

lower than the permitted ones. The reason is that the Rice’s formula overestimates the 
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probability of failure [3], which resulted in an over-design for this problem because the 

cross-sectional area is larger than those of the other two methods as indicated in Table 3.  

 

Table 5 95% confidence intervals of MCS solutions 

 t-SORA Double (OSE) Double (Rice) 

MCS

1f
p  [0.0092, 0.0096] [0.0092, 0.0096] [0.0044, 0.0047] 

MCS

2f
p  [8.77, 9.97] ×10

-4
 [8.77, 9.97] ×10

-4
 [4.96, 5.88]×10

-4
 

 

 

5.2. A simply supported beam under stochastic loadings 

A simply supported beam shown in Fig. 7 is subjected to two stochastic loadings, 

which are the stochastic force F(t), and the uniformly distributed loading ( )q t . The cross 

section of the beam is rectangular. The height a and width b are random design variables. 

A failure of the beam occurs when the stress exceeds the ultimate strength of the material 

S . The weight of the beam is expected to be minimized under the constraint that the 

time-dependent probability of failure of the beam over 30 years is less than 0.05.  

 

 

Fig. 7 A beam under stochastic loadings  

 

The limit-state function of the beam is given by   

 

2 2

2

( )( ) 4
( , , ( )) 1

4 8 8
st

q l ablF l
g

ab S
d X Y   (29) 

A 

l/2 
F(t) 

A-A 

a 

b 

 

l 

q(t) 

A 
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where [ , ]
R P

X X X , [ , ]
R
a bX , [ ]

P
SX , [ , ]

a b
d , and ( ) [ ( ), ( )]F qY , S  

is the ultimate strength, 
st

 is the density, and l  is the length of the beam.  

Table 6 gives the random variables, parameters, and stochastic processes. 

The auto-correlation coefficient functions of ( )F  and ( )q  are 

 

2

2 1
1 2

( , ) exp
F

  (30) 

and 

 
1 2 2 1

( , ) cos( ( ))
q

  (31) 

respectively, where 0.8 year is the correlation length of ( )F .  

Table 6 Variables, parameters, and stochastic processes 

Variable Mean STD Distribution Autocorrelation 

a  a
 -35 1 m0   Lognormal N/A 

b  b
 -35 1 m0   Lognormal N/A 

S  82.4 10  Pa  7102.4  Pa Lognormal N/A 

( )F
 6000 N 600 N GP Eq. (30) 

( )q
 900 N/m 90 N/m GP Eq. (31) 

l
 

15 m N/A Deterministic N/A 

st  78.5 kN/m
3 

N/A Deterministic N/A 

 

The RBDO model is given by 

 

[ , ]
min ( )

s.t.

Pr{ ( , , ( )) 0, [0, ]} [ ]

4

0.04 m 0.15 m

0.15 m 0.25 m

a b

f

b a

a

b

f

g t p

Xd μ
d

d X Y
  (32) 
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where [ ] 0.05
f
p  and 30 yearst . 

The RBDO model was solved by the t-SORA, Double (OSE), and Double (Rice) 

methods with the same initial design point. Table 7 gives the convergence history of t-

SORA. The results show that t-SORA converged with three cycles.  

 

Table 7 Convergence history of t-SORA 

k f (m
2
) ( , )

a b
(m)  ,1

( , ( ))g T
Z

d u  

1 0.0065 (0.0403, 0.1613) 2.2726 0.4384 

2 0.0085 (0.0460, 0.1840) 2.2887 0.0036 

3 0.0085 (0.0461, 0.1842) 2.2887 1.29×10
-5 

 

Table 8 presents the final results from the three methods. The results show that t-

SORA is much more efficient than the other two methods.   

 

Table 8 Optimal results 

Method f (m
2
) ( , )

a b
(m) ( )

f
p t  NOFC 

t-SORA 0.0085 (0.0461, 0.1842) N/A 156 

Double (OSE) 0.0085 (0.0463, 0.1836) 0.0500 7756 

Double (Rice) 0.0092 (0.0478, 0.1914) 0.0500 1612 

 

Table 9 gives the probabilities of failure from MCS at the optimal design points 

from the three aforementioned methods. Table 10 presents the 95% confidence intervals 

of the MCS solutions. The time interval [0, 30] year was divided into 600 time instants, 

and 10
6
 samples were generated at each time instant for MCS.  

The t-SORA and Double (OSE) methods are more accurate than the Rice’s 

formula, which overestimated the probability of failure. The optimal design obtained 

from the Double (Rice) method is therefore conservative.  
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6. Conclusion 

In this work, the time-dependent Sequential Optimization and Reliability Analysis 

(t-SORA) method is developed for problems with both random variables and stochastic 

processes. To address the limitation that there is no direct connection between time-

dependent reliability and the Most Probable Point (MPP), t-SORA uses the equivalent 

MPP, which directly corresponds to the required time-dependent reliability. This ensures 

that the overall optimization be solved sequentially in cycles of deterministic 

optimization and reliability analysis. The results show that t-SORA can effectively solve 

design optimization with time-dependent reliability constraints.  

 

Table 9 Accuracy comparison 

 ( )
f
p t  MCS( )

f
p t  Error (%) 

t-SORA 0.05 0.0522 4.2 

Double (OSE) 0.05 0.0522 4.2 

Double (Rice) 0.05 0.0093 440.96 

 

 

Table 10 95% confidence intervals of MCS solutions 

 t-SORA Double (OSE) Double (Rice) 

MCS( )
f
p t  [0.0517 0.0526] [0.0518 0.0527] [0.0091 0.0094] 

 

The proposed method is based on the First Order Reliability Method (FORM). Its 

accuracy is then affected by the linearization made by FORM [30, 44]. However, the 

proposed method may not be limited to FORM. If the limit-state function in the 

transformed normal variable space is highly nonlinear, more accurate reliability analysis 

methods, such as the Second Order Reliability Method (SORM), can also be used.  

t-SORA is for problems with only stationary stochastic processes. When the 

stochastic processes are non-stationary, the method may be extended. Future work can be 

conducted with the following two tasks. The first task is to extend t-SORA to problems 

with non-stationary stochastic processes. This task is much more challenging because the 
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MPPs will change over time, and it will be more difficult to obtain the equivalent MPPs. 

The second task is to extend t-SORA to problems where time-dependent system 

reliability is concerned.   
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Appendix A. Reliability analysis with the Rice’s formula and FORM 

For a limit-state function ( , , ( )) ( , ( ))
P P
g t g td X Y d Z , where ( ) [ , ( )]t tZ X Y , 

its Most Probable Point (MPP) is obtained from 

 

min

s.t.

( [ ( )]) 0
P
g T t

Z

Z

U

U

  (A1) 

where ( ) [ , ( )]
X Y

t t
Z
U U U  is the vector of standard normal variables associated with X  

and ( )tY .  

After the MPP ( ) [ , ( )]
Y

t t
X

u u u  is found,  the limit-state function 

( , , ( )) ( , ( ))
P P
g t g td X Y d Z  is linearized at the MPP, the time-dependent probability of 

failure given in Eq. (5) is then approximated by [20, 32]: 

 ( ) Pr{ ( , , ( )) 0, [0, ]} Pr{ ( ) ( ) ( ), [0, ]}T

f P
p t g t L t

Z
d X Y U

 (A2) 

in which  and  are given by [22, 24] 

 ( ) ( )u    (A3) 

 
( )u

  (A4) 



  172 

 

The Rice’s formula gives the upcrossing rate by [36, 37] 

 
( )

( ) ( ) ( ( ))
( )

t
v t t t

t


  



  
  

 
  (A5) 

where ( )   is the probability density function (PDF) of a standard normal variable, and  

 
( )

( )
t

t
t








  (A6) 

 ( ) ( ) ( )x x x x       (A7) 

and 

 2

12( ) ( , )C
T Tt t t     (A8) 

in which 

 
t

t





  (A9) 

and 

 
1 2

1 2

2
1 1 2

1 2
12 1 2

2
1 2

1 2

0 0 0
( , )

0 0 0

0 0 0( , )

( , )
0 0 0

t t t

m

t t t

t t

t t
t t

t t

t t

0

C  (A10) 

in which 1 2( , )l t t , 1, 2,l m , are the coefficients of the autocorrelation of stochastic 

process ( )
lY

U t , and m is the number of stochastic processes. Since the stochastic 

processes ( )tY  are assumed to be stationary, 0 , and 0  .  

fp  is computed by [32] 

 
0

(t) 1 exp ( )(0)
t

fp R v d   (A11) 

where ( )0R  is the time instantaneous reliability at the initial time instant and is computed 

by 

 (0) ( )R   (A12) 
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Appendix B. Orthogonal Series Expansion (OSE) 

As shown in Eq. (A2), the time-dependent probability of failure ( )fp t  is 

approximated by 
( ) Pr{ ( ) ( , , ( )) 0, [0, ]}

Pr{ ( ) ( ) , [0, ]}
f P

T

p t G g t

L t
Z

d X Y

U
, where ( )G  is a 

non-Gaussian stochastic process and ( )L  is a standard Gaussian stochastic process. If 

the maximum value of )(L  over [0, ]t  , W , is available, according to Eq. (18), 

Pr( }) {fp t W .  The distribution of W  can be obtained from the samples of )(L , 

and the samples may be generated from the OSE method. 

OSE approximates ( )L  as follows [42]: 

 
0 0

( ) ( ( ))
M M

i

i i j j
i j

L P h   (B1) 

in which 
i
 is the i-th eigenvalue of covariance matrix Σ , i

j
P  is the projection of the i-th 

eigenvector of covariance matrix Σ  on the j-th Legendre polynomial, and ( )
j
h t  is the j-th 

Legendre polynomial, 
i
, where  1, 2, ,i M , are M independent standard normal 

variables, and Σ  is a matrix with element 
ij

 given by [42, 45] 

 
1 2 1 2 1 20 0

( ) ( )
t t

ij t t i j
h t h t dt dt   (B2) 

where   

 
1 2 1 2

( , ) TC  (B3) 

and 
1 2

( , )C  is a diagonal matrix with the diagonal element being the covariance of 

1
( )
Z
U  and 

2
( )T

Z
U . 

Once the approximated response ( )L  is available, N  samples can be generated 

at Q  discretizing instants over [0, ]t  [45]. The samples are given in matrix 
N Q
L  as below. 



  174 

 

 

1 2

1 2

1 2

( , 1) ( , 1) ( , 1)

( , 2) ( , 2) ( , 2)

( , ) ( , ) ( , )

Q

Q

N Q

Q N Q

l t l t l t

l t l t l t
L

l t N l t N l t N

  (B4) 

N  samples of the extreme value W  can then available through the following 

equations:  

 
1 2

max{ ( , ), ( , ), , ( , )}, where 1, 2, ,
j Q
w l t j l t j l t j j N   (B5) 

 

Appendix C. Saddlepoint Approximation (SPA) 

At first, the cumulants of W  are computed from the samples and are computed by 

[46]  

 

1
1

2

2 1
2

3 2

1 1 2 3
3

4 2 2

1 1 2 2
4

2

1 3 4

( 1)
2 3

( 1)( 2)
6 12 3 ( 1)

( 1)( 2)( 3)
4 ( 1) ( 1)

( 1)( 2)( 3)

m

N
Nm m

N N
m nm m N m

N N N
m nm m N N m

N N N N
N N m m N N m

N N N N

  (C1) 

where i  is the i-th cumulant of W , sm  (
 

1,2,3,4s ) are the sums of the s-th power of 

the samples W  and are given by 

 
1

N
s

s i
i

m w   (C2) 

in which 
i
w  is the i-th sample of W  given in Eq. (B5). 

In this work, the first four moments are used because numerical examples show 

the good accuracy. Higher order may also be used.   

Once 
j
, 1, 2, 3, 4j , are available, the reliability index  is updated by 
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2 3

1 2 3 4
1! 2! 3!

  (C3) 

where  is the saddlepoint, which satisfies the following equations: 

 
1 1

1 [ ] ( ) ( )fp z z
z v

  (C4) 

 
1/2

'sign( ) 2 ( ) ( )
L L

z K K   (C5) 

 
1/2" ( )Lv K   (C6) 

 
4

1

( )
!

i

L i
i

K
i

  (C7) 

and 

 

24
"

2
3

( )
( 2)!

j

L j
j

K
j

  (C8) 

where sign( )   1,    1, or 0, depending on whether  is positive, negative, or zero.   
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SECTION 

2.   CONCLUSION 

 

 

 

Time-dependent uncertainties such as stochastic loadings and time-dependent 

performances are very common in practical engineering applications. The uncertainties in 

the design environment result in biases of actual designs from the nominal design. To 

quantify the effect of time-dependent uncertainties on the system performance, time-

dependent reliability analysis method needs to be employed. Time-dependent reliability 

provides the probability that a system can operate without failure over a certain lifetime 

cycle. It is directly related to the product lifecycle cost and maintenance activities. 

Accurate and efficient time-dependent reliability analysis methods are required to design 

high reliability into the product. It is essential to the design optimization of a product with 

the optimal lifecycle cost and guaranteed reliability targets. 

Based on the independent assumption of upcrossing events, reliability analysis 

methods have been proposed for the time-dependent problems in the past decades. The 

independent assumption, however, does not hold when the failure threshold is low or the 

correlation of response at time instants is strong. In this dissertation, a joint-upcrossing 

rate method was presented to release the independent assumption. Expressions for the 

joint-upcrossing rate were derived. Numerical algorithm was developed to estimate the 

first-passage rate. The join-upcrossing rate method is applicable to general problems with 

non-stationary stochastic processes, non-Gaussian random variables, and time. In 

addition to the join-upcrossing rate method, an efficient global optimization reliability 

analysis method was proposed for problems with only random variables and time. The 

surrogate model of extreme value response was constructed based on the extreme values 

identified from a newly developed mixed efficient global optimization method. The 

developed reliability analysis methodologies were evaluated through classical 

engineering design problems as well as a composite hydrokinetic turbine blade. The 

results of engineering application examples demonstrated that the proposed methods can 

approximate the time-dependent reliability efficiently and accurately. Since there is a 

similarity between the time-dependent reliability problem and the reliability analysis with 

mixture of random and interval variables, the series expansion method was successfully 
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extended to problems with both random and interval variables. In order to design the 

time-dependent reliability into product, a time-dependent sequential optimization and 

reliability analysis (t-SORA) method was developed for problems subjected to stationary 

stochastic loadings. Numerical examples demonstrated that the new method can 

efficiently and accurately perform design optimization with time-dependent reliability 

constraints. 

Four kinds of time-dependent reliability analysis method were developed by 

employing the joint-upcrossing rate, surrogate model method, series expansion method, 

and sampling approach. One optimization approach was developed for special problems 

under stationary stochastic loadings. More generalized time-dependent reliability-based 

design optimization methods for problems with non-stationary stochastic loadings and 

random variables will be one of the future works. As most of current time-dependent 

reliability analysis methods were developed based on the First-Order Reliability Method 

(FORM), the accuracy of reliability analysis methods is affected by the drawbacks of 

FORM. Improving the accuracy of time-dependent reliability analysis methods by 

overcoming the drawbacks of FORM is also one of the future works.  
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