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ABSTRACT

The use of location-based services (LBS) (e.g., Intel'sixgtiinder) is expanding.
Besides the traditional centralized location-based sesyi distributed ones are also
emerging due to the development of Vehicular Ad-hoc NetwdRANETS), a dynamic
network which allows vehicles to communicate with one aantBue to the nature of the
need of tracking users’ locations, LBS have raised incngasoncerns on users’ location
privacy. Although many research has been carried out faisusesubmit their locations
anonymously, the collected anonymous location data m#ybstimapped to individuals
when the adversary has related background knowledge.

To improve location privacy, in this dissertation, the gesb of anonymizing the
collected location datasets is addressed so that they qaunatished for public use without
violating any privacy concerns. Specifically, a privaceg®rving trajectory publishing
algorithm is proposed that preserves high data utility. istereover, the scalability issue is
tackled in the case the location datasets grows gigantida# to continuous data collection
as well as increase of LBS users by developing a distribuegdion of our trajectory
publishing algorithm which leveraging the MapReduce tégphe.

As a consequence of users being anonymous, it becomes maltengfing to
evaluate the trustworthiness of messages disseminatechdnyyi@mous users. Existing
research efforts are mainly focused on privacy-preserauntentication of users which
helps in tracing malicious vehicles only after the damagdase. However, it is still
not sufficient to prevent malicious behavior from happerimghe case where attackers
do not care whether they are caught later on. Therefore, uldvbe more effective to
also evaluate the content of the message. In this dissertatinovel information-oriented
trustworthiness evaluation is presented which enablds isalovidual user to evaluate the

message content and make informed decisions.
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1. INTRODUCTION

The use of location-based services (LBS) such as AT&T TeleBIRS Navigator,
Sprint’s Family Locator, and Intel’s Thing Finder is expamgl Besides these traditional
centralized location-based services, distributed locatiased services are also emerging
attributed to the development of Vehicular Ad-hoc Netwo(MBNETs) which allows
vehicles to communicate with one another and form a dynamiwerk. For example,
through VANETS, a vehicle may send inquiries to vehiclesuatbcertain landmarks to
obtain the up-to-date parking information, the conditiérm@oad, or convenient lodging.
According to Cisco, global mobile data traffic has reachddekabytes a month and is
increasing rapidly. In 2013, 526 million mobile devices eedded to cellular and wifi
networks [81]. Included in this increase in demand for maa&ads the use of location
based mobile applications. Currently, 74% of adults who emartphones use their phone
to get directions and other information based on their cuiezation. 30% of adults with
an account on social media sites say they have at least ohes# accounts include their
current location in their posts [82]. Even if hand held degiare ignored, as many as 96%
of cars mass produced in 2013 are built with event recordtsinclude GPS [83]. This
does not include older cars with other GPS systems or veshigith OnStar technology.
As a result, a huge amount of location information has bedieated and stored for
analysis. More specifically, in centralized LBS, the cerdeaver collects users’ locations;
in distributed LBS like VANETS, there are Road-Side Unitgetihcollects users’ locations
for authentication purposes.

As more and more personal location data being collectedre tiave been
increasing concerns on users’ location privacy. Althougimynresearch has been carried
out to allow users to submit their locations anonymousky,abllected anonymous location

data may still be mapped to individuals when the adversasy retated background



knowledge. For example, a trajectory with an anonymous IDdbarting from one’s
home address can be easily associated with the home owpegthpublic information
such as yellow page. In addition, as a consequence of useesl to be anonymous
in LBS, it becomes extremely challenging to evaluate thetivarthiness of messages
disseminated by anonymous users. Existing research féog mainly focused on
privacy-preserving authentication of users. Such auitetidn would discourage most
users from misbehaving by tracing of the malicious usersradfte damage is done.
However, it is still not sufficient to prevent malicious belwa from happening in the case
of attackers that do not care whether they are caught later on

Bearing the above challenges in mind, in this dissertatibree approaches are
proposed to achieve location privacy and trustworthineasagement in centralized and
decentralized moving object environments. An overviewhaf &pproaches are presented

in the following subsections.

1.1. PRIVACY-PRESERVING LOCATION PUBLISHING UNDER
ROAD-NETWORK CONSTRAINTS

To improve location privacy, in this dissertation, the desb on how to anonymize
the collected location datasets is addressed first so teattn be published for public use
without violating any individual's privacy concerns. Itygrth noting that publishing of

location data can benefit people in many fields.

¢ Intelligent Transportation System [11]: If trajectories consistent with the road
network constraints are published, mining of the trajgctdata enables offline
extraction of interesting patterns with associated temipfactor. These extractions
can help find out which routes are busy at which time of the daighvfurther assists
in estimating potential points of traffic jams. With respircthe public sector, traffic

flow information can be extracted from published IDs and mgwirections. Such



information will play an important role in infrastructurermstruction and traffic light
control. It also helps answering specific query like how maaliicles entered a
certain region and also calculation of effective routestfiane location to another at

certain time instant or in an emergency (e.g., for ambulsnce

¢ Infrastructure Construction : The published trajectory data combined with the
knowledge of spatial databases can help determine whidbnmeg@re most busy
and what times of the day. With respect to the business dqrraific information
can help decide the location of company branches, and aisarteséments can be

customized and disseminated at the most advantageoumltcat

e Traveling [79]: Publishing trajectory data allows the mining of frequenttgras
as well as popular destinations. Such extractions can beeait dpelp if you are
traveling in an unfamiliar region. Extraction of popularstiaations can help you to
decide on places to visit and interesting patterns extracan assist you in efficient
trip planning [71, 72]. Overall these extractions can helprtake your traveling

experiences better.

However, in the meantime, location privacy concerns [37,62] may hinder the
development of the above attractive usage of traffic infélona Therefore, a
privacy-preserving trajectory publishing algorithm iposed that protects individual's
privacy while preserving high data utility rate after anomgation. Unlike previous works
which typically ignore the constraints imposed by roadameks, the approach ensures that
the anonymized trajectories still follow the road netwaaksl does not have any so-called
inference route problem (definition is presented in Se@jo heoretical and experimental
studies have been conducted using both real and synthétiseds to prove the efficiency

and effectiveness of the approach. Details of this workés@nted in Section 3.



1.2. PRIVACY-PRESERVING LOCATION PUBLISHING IN BIG
TRAJECTORY DATASETS

The second challenge tackled in this dissertation is how dioiese privacy
preserving location publishing when the total number ofetrories is extremely large.
As mentioned earlier, LBS users generate 1.5 EB of data ewenth, and this number is
projected to grow to 15.9 EB per month in 2018 [81]. Last yegtbbal mobile internet
traffic, at 18 EB, was 18 times the size it was in 2000. Thisaase is attributed to over
a half a billion mobile devices being added to mobile netwddst year. [81] Much of
that data has location and trajectory information thatasest for analysis. Currently, the
data limit for database type storage systems is in the oifdexabytes [86]. While this is
impressive, the amount of information generated from sdwgties reporting trajectory
data will very quickly exceed this limit. In order to handlatd of this magnitude,
companies rely on hundreds of thousands of computers wgikirparallel [87]. And
even with these resources, processing time can be oftershemdue to the need to access
several machines at once and storing the data on multipkerseto allow fault tolerance
and recovery. With processing times slow enough alreadnynizing the data to protect
privacy will make it take even longer. None of the existingdtion publishing techniques
have considered how to deal with big trajectory datasets.

Therefore, a novel approach is proposed that is able to egfflgi anonymize
a huge amount of trajectory data. Specifically, based on te®iqusly proposed
privacy-preserving location publishing algorithm, a disited version is proposed by
leveraging the MapReduce technique. In Section 4, theldegathis approach will be

elaborated.



1.3. TRUSTWORTHINESS EVALUATION DURING LOCATION-BASED SE R-
VICES

As a consequence of users being anonymous (attributed ootse®f privacy
preserving techniques), it introduces a new challenge mmdeof evaluating the
trustworthiness of messages disseminated by anonymots USesting research efforts
are mainly focused on privacy-preserving authenticatibmsers. Such authentication
would discourage most users from misbehaving by tracindhefralicious users after
the damage is done. However, it is still not sufficient to prévnalicious behavior from
happening in the case of attackers that do not care whetbgratle caught later on. For
example, terrorists may take advantage of Vehicular AdMeiwvorks (VANETS) to send
fake message and create massive car accidents.

Therefore, it would be more effective to also evaluate th&t@at of the message.
However, due to the dynamic nature of moving objects and threamhically changing
topology of VANETS, existing solutions for information v@tion in alternative domains
such as P2P and social network environments [13,14,232840], are not suitable. For
example, in social network sites, users typically gain tapon if they contribute correct
information. Based on one’s reputation (and possibly auraralysis [14]), other users can
determine whether his information is trustworthy. Howeveputation is established using
a stable network over a relatively long period of time (a daweek or even longer), and
neither one of them exists in VANETSs. In VANETS, even if aniindual keeps a historical
database of vehicles that he traveled along with, the dst¢alveay not be useful since he
may not come across the same vehicles again in the futureedver, compared to social
networks, the mobility of vehicles imposes strict time domists on making informed
decisions. Notice that authentication protocols are atstosofficient, as they can only
certify message origin but cannot guarantee that the iyemdider will send truthful and

accurate messages in VANETSs.



In this dissertation, a novel information-oriented trustthiness evaluation
approach is presented which enables each individual usaloate the message content

and make informed decisions. In Section 5, the details sfitlurk are presented.

1.4. DISSERTATION OUTLINE

The rest of the dissertation is organized as follows:

e Section 2 reviews different anonymization techniques t@serve location
privacy, MapReduce technology and different works in ashgpthis technology
for processing big location data and different approachseduto evaluate

trustworthiness in VANETS.

e Section 3 defines a new privacy problem, Inference routelpnoland attempts
to solve it using the proposed clustering-based anonyrizaéchnique, an error
function to control entry of trajectory to various clustensd C-tree for efficient

clustering.

e Section 4 presents the adoption of MapReduce programmirdehto efficiently

anonymize big location data.

e Section 5 presents the proposed real-time trustworthiesasiation scheme which

takes data similarity, data conflict and route similaritipinonsideration.

e Section 6 concludes the work and discusses directions forefuvork.



2. LITERATURE REVIEW

Since k-anonymity is very effective for privacy preservation, aebbackground
information aboutk-anonymity is presented in this section. Then, existingksaon

location privacy protection are discussed.

2.1. k-ANONYMITY

The growing demand for sharing information globally, aidsdthe availability
of huge data warehouses, has led to the release of specific(miétrodata). Unlike
the release of statistical information of the data, relezsenicrodata allows to perform
analysis as required. Both computational power and aatsearch going on in data mining
are ever-increasing. This helps in effective analysis efrileased data. The analysis
may reveal interesting patterns which can be deployed foisaa making. Neither the
removal nor the encryption of explicit identifiers (e.g.¢csbsecurity numbers) is sufficient
in ensuring anonymity for privacy protection. Thereforertain approaches need to be
adopted to preserve privacy. Of these approadhasonymization is one of the most
dominant.

In many cases, information needs to be anonymized befoseshiared with other
people to ensure that privacy is preserved. To protect aglanking attacksk-anonymity
can be used. An example is given in Table 2.1. In this tablpli@kidentifiers, (i.e.,
social security number and name) were removed before theuwats published to preserve
privacy. However, an attacker can still utilize specificoimhation (such as the Voter’s list
as given in Table 2.2) to identify a particular person. Thacker does this by linking a
combination of attributes in Table 2.1 with similar attriesiin Table 2.2 (e.g., date of birth,

sex, zip code and occupation). For example, the attackeintarthat Alice Smith has tax



Table 2.1. De-identified table (tax-return)

SSN Name Date of Birth Sex ZIP Occupation Tax Return($)
82/10/12 M 65401 Professor 3000
83/01/11 F 65402 Software Analyst 4000
82/11/10 F 65400 Student 1000
83/12/25 F 65401 Computer Programmer 4000
83/12/20 F 65400 Marketing Manager 5000

Table 2.2. Public table (Voter’s list)

Name DOB Sex ZIP Occupation

Smith Alice 83/01/11 F 65402 Software Analyst

return of $ 2000, a breach of Alice’s privacy. These attiéisyivhose values are available
from external sources for linking are termed as quasi-iflers.

Thek-anonymization approach ensures that each released suptistinguishable
from at leastt other tuples [18]. The probability of identifying the tup& at most,1 /.
Considerk = 2, the tuples in Table 2.1 can be anonymized as follows. Thibaté “Date
of Birth” is generalized by publishing only the birth yeahdattribute “ZIP” is generalized
by publishing the first four digits and the “Occupation” isngealized as related to either
academics or industry. The anonymization result is preseint Table 2.3 which satisfies
k-anonymity.

Two approaches are commonly employed to achieamonymity: generalization
and suppression. Generalization [6, 24, 60, 66] techniguaast often used to achieve

k-anonymity. Generalization involves substituting theilattte of published data with



Table 2.3. k- anonymized table

SSN Name Date of Birth Sex ZIP Occupation Tax Return($)
82 unknown 6540* Academics 3000
83 F 6540* Industry 4000
82 unknown 6540* Academics 1000
83 F 6540* Industry 4000
83 F 6540* Industry 5000

more general values. Certain outlier tuples with suppas llnant may create a high
generalization. For example if Table 2.1 has a tu@8, M, 68001, Married, Professor,
$3000}, the generalization of attribute “Sex” is increased to wwn and “ZIP code” is
increased to 6**** in certain tuples within the table. Thinee this tuple can be considered
as an outlier and suppressed accordingly. The releasededabtmes less accurate as the
generalization increased. Generalization with suppoess proposed to increase data
utility. Suppressing [1, 5, 41] the outlier tuples helps thiave k-anonymity within an
acceptable generalization. However, the data becomesintanaplete as suppression rate
increases. The maximum number of tuples to be suppressssligad to have been given
and k-Minimal Generalization with Suppression is defined suddt this generalization
satisfiesk-anonymity, the number of tuples suppressed is less thaqual ¢o the given
value; and no other generalization exists with a higherim#tion content [10, 38, 58, 69].
In traditional databases, tuples in a single table share shame set of
guasi-identifiers. However, in trajectory databases, trasidentifiers may vary for each
mobile object. An adversary may know the objects’s locatiatdifferent times. Therefore
k-Minimal Generalization with Suppression is not directlypcable to mobile object
databases. Thk-anonymity approach remains the dominating approach feseswing

privacy due to its practical implications.
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2.2. LOCATION PRIVACY

When a mobile object wishes to use a location-based seiivicegeds to report its
location. These locations are collected ubiquitously atmn-based service providers
such that queries of mobile objects over both mobile objgotanstance, "find my friends
near me”) and static objects (for instance, "find the nealapinese restaurant”) can be
accomplished. However, this reporting poses a risk of midion misuse. Location
information could be linked to real people with the help obficly available information
(e.g., the Yellow Pages). Historical trajectories can heatd and private information
no longer remains private. This privacy violation necedseg some measures for privacy
protection before the location information is reported.

Existing works on location privacy protection generallyl fato two categories:
(1) online location or trajectory anonymization (2) offlitr@jectory anonymization for
trajectory publishing, as shown in Figure 2.1. When a mob#gice wants to use a
location-based service, it has to report its location alwittp the service request. The
online location or trajectory anonymization is implemehbsg anonymizing location and
trajectory while the mobile device is using the service tesprve privacy. The offline
anonymization of trajectories is performed to preservation privacy while publishing
location data collected by various sources (e.g., a locdimsed service provider). The
approach presented here considers a scenario in whichidocgtivacy needs to be
preserved while publishing trajectory information for mmignuseful knowledge.

2.2.1. Online Location and Trajectory Anonymization. A great deal of
research has been conducted to better understand privaggsisn location-aware
mobile devices. Three types of techniques are commonly usedchieve online
location anonymization: (1) Policy-based anonymizat@nSpatial-temporal cloaking (3)

Encryption-based anonymization.
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Figure 2.1. Location Privacy Division

Early works focused on maintaining policies on how a usecstion could be used
by the service providers [33,59]. However it is difficult tefthe such policies clearly, to
enforce them and also to detect the violation of these @dicTherefore a more practical
approach (spatial temporal cloaking) was defined.

Spatial temporal cloaking has been widely used as an anaayion approach for
location privacy [17, 26,29, 30, 32, 36,45]. Gruteser ef3] first introduced the notion of
spatial temporal cloaking. As part of this approach, the’siexact co-ordinate location is
cloaked into a region (either a rectangle or a circle) suel tiie user ig-anonymous in
that region. They proposed a variation to the spatial tealpdoaking by allowing users
to have different values of according to their privacy requirements. For the cloaking

purpose, most approaches [26, 32, 45] used a third partyyampear and the user reported
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its exact location to the anonymizer. Mokbel et al. [45] mreed a grid-based cloaking
algorithm using a third party anonymizer. This algorithmadeed on the granularity metric
to obtain an optimal region witk-anonymity. Using a third party for cloaking require
the anonymizer to be trusted. An anonymizer can be vulnerabhttacks. It can also
be malicious. They only provide protection in a single shapsand are unprotected
against correlation attacks. Recent approaches [17, 2963Gave focused on cloaking
in a peer to peer environment, eliminating the need for arabnéd trusted anonymizer.
Chow et al. [17] proposed a client form a groupkofisers among its peers by multi-hop
communication and report the region covering the groupni&het al. [30] tried to obtain
an optimal cloak region that would satiskranonymity. They proposetlilbASR, an
approach that used a Hilbert space-filling curve to predecadity and sort locations. This
ordering of locations which preserves proximity was stared distributed annotategi-
tree index andk users were grouped in this order. These approaches whidbrimer
cloaking in a peer to peer environment however, still reguirat the exact location be
revealed to the trusted peers. Hu et al. [36] does not rethirexact location of the user
to be exposed. It utilizes the proximity information ga#eéthrough either the received
signal’s strength or the time difference in the beacon digraarival to identify thek
closest peers. A secure bounding protocol is then applied that the cloaked region’s
size is reduced and the exact locations are not exposed.appi®ach is not suitable in
a dynamic environment. No mechanism can monitor the usaeations.to keep track of
the locations of the users. The cloak region may not coritaisers after a certain period
of time. In Gidofalvi et al. [31], segments of mobile objédtajectories are cloaked by a
rectangle. The rectangle’s size and location probabilydie the user’s specific privacy
requirements. Anonymization is done on the client’s sidtmielating the need for a trusted
middleware. However, the cloaking rectangle can be mapp#tketactual trajectory if the

rectangle covers only one road in the real map.
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Ghinita et al. [28] deployed encryption based techniques tised a grid based
framework to preserve location privacy. In this techniqtes user encrypts the cell at
which he is located and he retains the ability to retrieveesrinformation. This process
is based on Private Information Retrieval(PIR) and sumpeprivate nearest neighbor
gueries. Unfortunately this technique requires the emtabase to be encrypted and is
computationally expensive.

A comparative analysis of these three approaches is pezfbiizee Table 2.4).
Comparisons are done with respect to the privacy proteatimael, query accuracy,
complexity and the use of a trusted agent. Policy-basedoappes provide the least
privacy protection as nothing is implemented to presenwapy, they are just policies.
Query accuracy depends on the accuracy of the locationtezpdPolicy-based approaches
provide 100% accurate query results. They also maintaitothiest complexity because
they are simple policies and do not use third party anonyrsiZgpatial-temporal cloaking
provides an in-between privacy protection among the thppeaaches. A cloaked location
is reported and the probability of identifying the locationthe cloaked region fulfils
the privacy requirement. It provides lower query accurd@nteither of the other two
approaches due to the reporting of the cloaked region. Ithigiser complexity than
policy based. A mobile object has to contact a third-partyrggmizer to cloak its location
before using a location-based service. However, it hascl@sgplex than encryption-based
approach as encryption is not used. The encryption-bagadaghes provide the highest
privacy protection as the entire database and location ésypted. They also provide
100% query accuracy. However, they have the highest contyples encryption is
computationally expensive. They do not use any third-pantynymizers.

2.2.2. Offline Trajectory Anonymization for Data Publishing. Privacy
preserving location publishing is a relatively young areawhich little research has
been conducted. Studies conducted on privacy-preseregadibn publishing considered

trajectories that were represented as sequences of cataslinthey utilized output
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Table 2.4. Online Location Privacy Preserving Approachealysis

Approaches Privacy Query Complexity | Use of Trusted
Protection Accuracy Agent
Level
Policy-based Low High (100%) Low No
Spatial-temporal Medium Low Medium Yes
cloaking
Encryption-based High (100%) | High (100%) High No

anonymization results in the form of either cloaking regiocor centers of clusters.
However, these approaches did not generate anonymizedttrags that followed the road
network constraints. These anonymization results presdive user’s privacy but were not
beneficial to the traffic analysis of individual roads. Thalgaf this study was to achieve
both.

Nergiz et al. [51] represented each trajectory an orderedfspatio-temporal 3D
volumes (e.g., points). Their approach adopted a condendadsed grouping algorithm
for trajectoryk-anonymity. Each cluster was then anonymized to ensurehbabptimal
point matching minimized the log cost. Finally, reconstimt was deployed to output
atomic trajectories and ensure privacy. Monreale et al] féstered trajectories and
then transformed them into into a sequence of Voronoi ceitrogds. Such anonymized
trajectories are no longer real trajectories. They can batéml even in the middle of two
parallel roads. Domingo-Ferrer et al. [20] used a distanoetfon to cluster trajectories.
They replaced a location time triple in an anonymized ttapgcwith an existing triple
that was in close proximity to the original trajectory , thiey, satisfying k-anonymity.
Two triples, though close in proximity, may belong to twoféient roads. This will
make make it easier for the adversary to identify fake ttajges given the road map

is publicly available. Abul et al. [1] used a coarsening teilgg to remove one or more



15

spatial points in a trajectory to achieve anonymization. akonymized trajectory may
contain disconnected paths. Similarly, Mohammed et al.4d8pted a greedy algorithm to
suppress locations in the trajectories and achieve ananyridowever, using suppression
alone may decrease the utility of the anonymization restMshammed et al. [43] did
not provide any experimental results that would prove tliecéfeness of their approach.
Abul et al. [3] considered a trajectory to be a cylindricalurae in which the radius
represents the location’s imprecision. They then peraidoed clustered the trajectories
with overlapping volumes to ensure that each releasedctaajevolume enclosed at least
k — 1 additional trajectories. Finally they used the sum of thelidaan distance between
location points at each trajectory’s time points to measieeclusters’ similarities. Rather
than grouping trajectories according to their similastiéarovoy et al. [73] grouped
according to so-called quasi-identifiers . Quasi-iden8fi®IDs) are identified as a set
of time stamps at which the the moving object’s location isuased to be known. Each
moving object has its own set of quasi-identifiers. The prymabjective of grouping
QIDs is to generalize the locations at the QIDs to a regionis Tinouping to achieve
k-anonymity is done such that the induced attacker graphnsvstric. A coordinate
location is converted into a one-dimensional proximitysemring, hilbert index. The top
k candidates available to form a group with a moving objectcamaputed according to
their overall score. This score is defined as the sum of thelatiesdifference between the
hilbert indices of the moving objects’ locations at all tip&nts. It proposes the following

two algorithms

e Extreme union where union of all QIDs of the moving objectsBk) in a group
is computed and then all the MOBs in the group are generabtedl QIDs in the

union.
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e Symmetric anonymization where the QIDs for generalizationfixed and then the
group is adjusted such that the induced attacker graph isnggric. For instance if

MOB A is in group of B, then B should be included in group of A.

However, the selection of these quasi-identifiers is quffeedlt in practice.

Pensa et al. [54] proposed a prefix-tree based anonymizatgorithm. This
algorithm guarantees-anonymity of the published trajectories in such a way that n
trajectories with support less th@nwill be published. Longest Common Subsequence
(LCS) is used as a distance metric to measure the similattyden two trajectories. Pensa
et al. [54] defined the support of a trajectdry; as the number of trajectories containing
Trj. This definition however, causes the inference route problelere, the manner in
which thek anonymity is applied will affect the quality of the anonymiion result.

Additional studies were conducted to examine trajectahas are represented by
either landmarks or locations of interests. Such trajéesphowever, provide primarily
moving patterns. They do not provide real trajectories Bangle, Andrienko et al.
[8] examined the various behaviors of moving objects (ggsitions of start and end,
significant turns, and significant stops) to cluster theetitajries. Monreale et al. [47]
proposed a generalization approach using semantics ofajeetories. They temporally
ordered sequence of important places visited by a movingcolyith the help of a places
taxonomy. However, even though a sensitive location (eag@acology clinic) may be
generalized to Clinic, there may be only one clinic at thaaton and hence an adversary
could still infer the sensitive information. Two related ke used time confusion and path
confusion, respectively. The time confusion approach [BBes the location samples of
different trajectories, and the path confusion approackssas paths in areas in which at
least two users meet. The primary issue with these two appesas that traffic flows are
no longer preserved.

Several researchers assumed that attackers have a cenaimtaof knowledge

prior to their attack. Terrovitis and Mamoulis [63] assuntbdt the adversaries know
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the partial trajectory information of some individuals. rlexample, consider Octopus,
a company based in HongKong [63] keeps track of the customibosuse an Octopus
card in day-to-day transactions. If the company publishescustomers’ trajectories, it
can contribute to mining movement and behavioral pattefirdomgKong’s residents. If,
however, a customer uses the card to pay at convenient siatdselong to the same chain,
the convenient store can extract its transaction histodydaauce a subset of the customer’s
total trajectory. If this partial trajectory uniquely idiires the customer in the trajectories
published by the Octopus company, then the customer’sgyrisgaviolated. The location
points in the trajectories are suppressed to prevent tleeente of new location points
with high certainty. Similarities between the original aartbnymized trajectories are used
to measure the data’s utility. If a point is suppressed, thtadce between the point and
its anonymized counterpart is equal to the maximum distheteeen any two points on
the map. Terrovitis and Mamoulis used the partial trajeetoowned by the adversaries
as part of the input into their anonymization algorithm. ISwsage limits not only the
generality but also the feasibility of their approach. Cheral. [16] proposed an algorithm
to publish differentially private trajectory data. Thigafithm added noise to a prefix tree
under Laplace transform.

Some representative related works [3, 50, 54, 63, 73] haga bemmarized based
on their key ideas in Figure 2.2. The key ideas include théadce metric used to
measure similarity between two trajectories, considenatif road network constraints,
the complexity and the data’s utility. None of the approacbensider the road network
constraints. These approaches do, however, use a varietljstaince metrics (e.g.,
euclidean distance, the hilbert index, the log cost metretlaCS). Data utility is measured
on the basis of how much the results of a common data minifmiqae (e.g., clustering
and range query) differ when both the original and the anongdhdata sets are used. A
worst case complexity analysis of these approaches igllisteéig. 2.2. Hererp is the total

number of trajectories. The complexity of the greedy claste[3] is O(nM) wherelM is
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the number of seeds used in clustering. This value is mucliesntiaann». Range query
distortion is used to measure data utility. The same rangeyqgse applied to the original

and anonymized dataset. In most instances, the distorasrbelow 10%.
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Figure 2.2. Offline Location Privacy Preserving Approachaalysis
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Terrovitis and Mamoulis [63] used the similarity betweer thriginal and the
anonymized trajectories to measure the data utility. Fahedeajectory, the algorithm
iterates through each adversary’s private databases gitleércomplexityO(nA), where
A is the total adversaries.

The complexity of prefix tree anonymization [54]@¥n?). The data utility was
measured by comparing the frequent patterns in the origetaket to the frequent patterns
in the anonymized dataset. Pensa et al. [54] found that dgpiént patterns decreased in
the anonymized dataset.

The complexity of the approach proposed by Yarovoy [731i&nnka(nk)).
The complexity is the summation of disjoint sets union/firetad structure with path
compression’s complexity) (nka(nk)) and generalization’s complexity (mn). Range
query distortion was used to measure data utility. Yarow3} found that the symmetric
anonymization outperformed the extreme union.

The complexity of the approaches as discussed in [50] canubemgd up
from distance computation’s complexity)(n?) in hierarchical clustering and ERP
computation’s complexityO(/?) using dynamic programming whereis the longest
trajectory. Clustering was used to measure the data ufflitg original and anonymized set
of trajectories were grouped respectively using the saostaling approach. Good results
were reported up to a reasonable number of clusters (e)g., 20

None of the aforementioned approaches consider the imgamtaol network
constraints. Hence, their anonymization results are vabyle to attack when the malicious
party either knows the road map or holds other backgrouranmdtion. For example, if a
cloaking region covers only one road, the correspondingdtary can be easily mapped to
the road. To sum up, the privacy preserving location publighpproach proposed in this

dissertation is superior to existing works in terms of théofeing two major aspects.

e The anonymized trajectories follow road-network constimiand hence are more

effective for traffic analysis.
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e The anonymized trajectories prevent inference probleatsidve never been studied

by any others before.

2.3. LOCATION PRIVACY IN BIG LOCATION DATA

The handling of big data requires a scaling up of both stomag® processing
power. Hadoop, an open source system which provides effisterage and processing
(using HDFS and MapReduce respectively) was employed $rstiidy. Works on big data
analysis using MapReduce are also reviewed.

2.3.1. Background in MapReduce. MapReduce is a functional programming
paradigm that enables the parallel programming of large dfiiciently through multiple
nodes. Its programming model is built upon a distributeddylstem (DFS) that provides
distributed storage. Programmers specify two functiokksp and Reduce The Map
function receives a key/value pair as input and generatesniediate key/value pairs to
be processed further. Theeduceunction merges all of the intermediate key/value pairs
associated with the same (intermediate) key and then geseadinal output. In a cloud
computing setting, these functions are orchestrated byihster. They are carried out
by both mappers and reducers. The Master acts as the camrdieaponsible for task
scheduling, job management and so forth.

A Master’'s module (typically the data partitioner) splitetinput data into a set of
M blocks. These blocks will be read by mappers through DFS 1/0. The execution of
map and reduce tasks is automatically distributed acrbésseahodes in the cluster. The
Mapfunction takes as input one of tiié¢ blocks ( defined as a key-value pair) and produces
a set of intermediate key-value pairs. The intermediateltressorted by the keys so that
all pairs with the same key will be grouped together (the #phase). If the memory size
is limited, an external sort can be used to handle large atamirdata at one time. The

intermediate results’ locations are sent to the Master.riiaster then notifies the reducers
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so they can prepare to receive the intermediate result®asriput. The reducers then use
Remote Procedure Call (RPC) to read the data received fremm#ppers. The user-defined
reduce function is then applied to the sorted data; the kag path the same key will be
reduced in some way, depending on the user-defined reducedian Each mapper will
process the data by parsing the key/value pair. It will themegate the intermediate result
that is stored in the local file system. Finally, the output ke written to DFS.

2.3.2. Big Data and MapReduce. Few studies [67, 78, 91] have been focused
on big location data analysis using MapReduce. Wang et all. Zdvang et al. [67, 78]
represented a moving object as a point object with a locaG@dik and Liu [91] simplified
a customizablé:-anonymity-based solution that hides a user’s identity.is Thethod
works well for both small and large datasets. This method ustabases and a group
of computers to compare each piece of trajectory inforrmatiih all other the rest of the
data. Hence, this method becomes very slow for huge amotid&gaand ends up useless
in an environment that demands real time information.

Ene at al. and Zhenhua at al. [22, 40] focused applying popcilastering
algorithms, such ag-means and:-median on big data using MapReduce. However,
these algorithms are supervised and require multiple Mdp&ejobs to accomplish which
increases latency. The approach discussed in the follosuihgections is unsupervised and
can be completed in a single MapReduce job, thus making iereficient.

MapReduce research, thus far, has focused on providing plesityet powerful,
interface for handling large amounts of data. This reseatsh focuses on providing
a dynamic way to handle divide and conquer techniques arichizjptg parallelization.
The goals of MapReduce research are to achieve high penfigenan large clusters of
commodity PCs [92]. MapReduce technology, pioneered byg®8g is an excellent tool
for clustering and simplifying data. However, it has nevefdoe been used to anonymize
trajectories. The focus of this study was on using MapRedmemonymize big trajectory

data.
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2.4. TRUSTWORTHINESS EVALUATION IN VEHICULAR AD-HOC NET-
WORKS

Existing works on information trustworthiness in Vehiaulad-hoc Networks
(VANETS) can be classified into three main categories [7i} erftity-oriented trust model
(ii) data-centric trust model and (iii) combined trust mbde

The trustworthiness of information in an entity-orientedlst model is estimated
according to the message sender's. For example, Raya eb4Hl.ufilized a static
infrastructure, such as a Certification Authority (CA), teiot malicious vehicles in
VANETSs. They made the assumption that most of the users intackar's neighborhood
are honest. Doing so allowed the vehicles to trust their sbneighbors in order to evict
attackers. Raya et al. [55] proposed two methods for mishetyanode revocation by
the CA. The first method is known as Revocation of the Trust gament (RTC). This
method deprives the misbehaving node of its cryptograpéys khus confirming that all
of its messages are disregarded by all other legal nodes. IRT0Gt robust against a
sophisticated adversary that controls the communicaiidrbletween the CA and the TC.
The other method is known as Misbehavior Detection System$Mwith Local Eviction
of Attackers by Voting Evaluators (LEAVE) protocol. The marinciple of LEAVE is that
the neighbors of the misbehaving vehicle temporarily avidh Gerlach et al. and Minhas
et al. [27,42] require a vehicle to build up a profile of eaclhigke it comes in contact
with. This vehicle evaluates the trustworthiness of itsrpdxased on its past interactions.
It then determines whether or not the information receigettustworthy. Despite their
capabilities, however, entity-oriented trust models havaumber of limitations. For
example, VANET is a very dynamic environment and relatigoslamong entities do not
last very long. This short-lived interactions cause difties to collect enough evidences

to trust an interacting entity. Additionally, even if an iytis trustworthy and honestly
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forwards a message it received, the receiver can not detenvtiether or not the message
itself is correct.

To address limitations in entity-oriented trust modelsymber of researchers have
proposed that a message’s content be evaluated directliglitian to validating a message
sender’s identity. Raya et al. [56] used Bayesian inferemzeDempster-Shafer theory to
evaluate the evidence received regarding an event's ecawer Their approach relies on
the availability of trust scores for the individual evider{ce., message) related to an event.
However, the calculation of trust scores is presented aaak tdox, which is considered
system dependent. The work discussed in this dissertatidistinguishable from the Raya
et al. [56] study in several aspects. First, specific fumstiovere designed to compute
the trust score for each message rather than just a frame#@ond, a more thorough
set of factors is explored including similarity among megseaouting paths, rather than
information received from directly interacting nodes [56]

The combined trust model [15, 21, 52] uses opinions gath&oed various peer
vehicles to determine a message’s trustworthiness.Thesrdaation is used to suggest
a vehicle that has been identified as trustworthy by a numb#musted peer vehicles.
A vehicle’s honesty value increases as the number of truggedions increases (the
vehicle becomes more trusted). This process is an itergtiveess that is similar to
the true fact discovery problem in Internet [19, 74], an apph used to evaluate Data
Trustworthiness based on Data Provenance. However, ttdglrhas limitations similar to
the entity-oriented model. This model also assumes theyedidcles have specific methods
they can use to evaluate the message content’s trustwesthinThe work discussed in
this dissertation actually develop a specific approach &buate a message’s content and

guantify the message’s trustworthiness based on this &taiu
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3. PRIVACY-PRESERVING LOCATION PUBLISHING UNDER
ROAD-NETWORK CONSTRAINTS

The challenges on how to wisely use the location data witlvialating each
user’s privacy concerns are addressed in this section. prbldem is termed aprivacy
preserving historical location data publishing

Historical location data forms a sequence of locations iroblogical order,
termed adrajectory. In general, one’s trajectory consists of roads he hasedsitFor
instance, in Figure 3.1, user’s trajectory can be represented B4BC' and useru,’s
trajectory isABD. Many approaches [68] have been proposed to construct gomutes
from trajectory datasets. Publishing trajectories cdastswith the road network will
enable the data mining algorithms to extract more preciggsgpatterns in comparison to
representing a trajectory as a sequence of symbols [8]r tafikeng into account the privacy
concerns, the goal becomes to prevent adversaries frominggppblished locations to a

specific individual.
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Figure 3.1. An Example of Inference-Route Problem

One may think that a trajectory resembles a conventionalesgpl pattern. Hence,
a naturally raised question is that if it is feasible to dieemploy privacy preserving
data publishing approaches [7, 9, 53, 75] developed in patiad-temporal databases?

The answer is negative, and the main reason is that a trajedistinguishes itself
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from the conventional sequential patterns due to additicoastraints (e.g., road-network
information) which do not exist in the traditional sequenc#&lore specifically, elements
in traditional sequences are usually independent of onthanavhile the relationship of

elements in the trajectory sequence is fixed under a paaticahd-network information.

Therefore, traditional algorithms can not be used to abiyr remove or replace elements
in the sequences because such operations will create isticeahjectories consisting of

non-connected road segments.

There have been several recent efforts [3,8, 31,51, 63] onyamnizing trajectories.
Some work [63] considers trajectories as a sequence of larkdne.g., stores and
museums, which ignore the paths connecting these placekersOf3, 8, 31] consider
trajectories as a sequence of coordinates in Euclidearedpaicdo not fully consider
the road-network constraints. Specifically, their anorgation results mainly provide
movement trends (e.g., centroid of clusters of trajecsof#6]). Since the centroid of
clusters could even be off road, e.g., a middle point of twralba roads, it is hard to
tell the actual roads that a group of vehicles are travelioghfthe anonymized results.
Consequently, such anonymization results may not be aslsefeal trajectories in terms
of providing good insight on traffic condition analysis fadividual roads, and traffic lights
placement. Therefore, in this work, the anonymization outp also trajectories on real
road-network.

There are very few works that generate actual road-netwonstrained trajectories
as the anonymization output. The most recent one is by Perda[®4], who anonymize
trajectories based okranonymity [61]. The notion ok-anonymity guarantees that each
anonymized trajectory is a common trajectory of at Idasisers, and such anonymized
trajectories are called frequent trajectories. Howeugjrtapproach may not preserve
trajectory information as much as possible. This can be detnated by the example

given below.
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In [54], trajectories are stored and anonymized by usingefiptree which may
not be an appropriate structure to model the road-netwouk. iristance, consider four
users who leave their homes (/, K, A) and head for work. Lekt be 3, which means a
trajectory can be published if at least three users havérdjectory. Suppose that the input
to their algorithm is the following four trajectories; (I ABC'), us(JABC), us(K ABC)
andu,(ABD)?*, their anonymization result will be an empty set since thefipitree treats
trajectories with different starting points independgntbuch result obviously loses too
much useful information. To achieve better informatioritytian alternative way is to
directly take partial trajectories as input, i.e., considely busy roads with more than
users. In this case, the input become§A BC'), us(ABC), us(ABC) andu,(AB), and the
new anonymization result is; (ABC), uy(ABC), u5(ABC) andu)(AB), which is more
meaningful than the previous empty set.

In addition, since road maps can be found everywhere, in tbmath
of privacy-preserving location publishing, it is reasolealbto assume road-network
information is available to any adversary. Thus, cautiors\ery much needed when
publishing anonymized trajectories. For instance, let ostioue from the previous
example and assume that the road-network in Figure 3.1 esaitite to an adversary Bob.
If Bob observes that Alice passes by rodd and BD at similar time every weekday,
then Bob can infer that/, is Alice who is the only one with trajectory enteririgD in
this published dataset. Upon knowing the anonymous ID afédIBob can track Alice’s
remaining trajectories in the published dataset. Tifisrence-route problens caused by
the fact that an adversary can infer someone’s unpublishgettories from the published
location dataset. Because the inferred trajectories &meqguent (i.e., not many users have
such trajectories), with high probability, these trajee®, combined with certain external
knowledge, can be used to identify a particular individa&lajectory information in the

published dataset. In general, given a thresigld the attacker can link any anonymous

L1, us, us anduy can be thought as either a trajectory ID or a person’s syrotidli
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ID to Alice with probability greater thar% by using the above method, then there is an
inference-route problem.

In this work, the problem of privacy-preserving locationtalgublishing under
the assumption that road-network data are public inforonais addressed. This work
has three main properties: (1) it guarantéemnonymity of published data, (2) it avoids
the inference-route problem, and (3) the anonymizationltg$ollow the road-network
constraints. The basic idea is to employ a clustering-basedhymization algorithm
to group similar trajectories and minimize the data distaricaused by anonymization
through a careful selection of representative trajectoried C-Tree (Cluster-Tree) is
proposed to speed up the clustering process and developodsetb incrementally

calculating error rates.

3.1. PROBLEM STATEMENT

In general, raw data collected by location-based apptinatcontains user (object)
information as a four-tupl€l D, loc, vel,t), where ID is the object ID,loc and vel
are object location and velocity at timestarhpespectively. The anonymized dataset
contains object information in the form ¢fid, rid, dir, t;,;), whereaid is an anonymized
object ID, rid is a road ID,dir is the object’s moving direction, ant},; is a time
interval that includes the object actual traveling time Here, for privacy concerns,
specific locations and velocities are respectively repldyeroad ID and moving direction;
trajectories are anonymized in the same time intetyako preserve the time relationship
among trajectories. Such representation is sufficient tivelérajectories or traffic flow
information.

The road network is modeled as a directed graph, where eayh @responds

to a road with objects moving at one direction, and each nedeesents an intersection.
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Specifically, an edge is representedr@s;, which means objects move from nodgto
noden;. Each directed edge is given a roadsD

The frequent road and inference-route problem are definéallaws.

Definition 1. Let IV be a time interval, and lét be a threshold. A road is a frequent road
if the number of moving objects moving along one directiorttua road is no less thaihn

within time 1W. The frequency of the road is the number of moving object$anrbad.

In case the trajectory dataset covers a long time framedeayg, weeks or months),
the time frame is divided into shorter intervals (e.g., Iwand trajectories falling into
the same time interval are anonymized. The motivation isttlagectories sharing roads
may not have enough impact on each other if they are far apampdrally. The unit of
division of time frame should be selected such that trajeetsharing roads may influence
each other on various conditions like increase in trafficamdents. Two types of time
dimension partitioning are supported. One is to let usdiaela time frame which depends
on their time period of interest and the other is to dividetthree frame uniformy. The unit

of division chosen is one to five hours.

Definition 2. Let T be an intersection of roads, ..., r,,, and letU;", U;” be the sets of
objects moving toward and outwattlon roadr; (1 < i < m) duringW, respectively. If
U U US| >k, US| > k,and (O< U — US| < kor0< [U; — US| < k), thenT

has arninference-route problem.

In the above definition, the constraints;"| > &,

U;| = k ensure that only
frequent road segments are considered, ard|(Q" — U; | < kor 0< |U; — U"| < k)
check if there is an inference-route problem. To have a bettderstanding, let us revisit
the example in Figure 3.1. Nodg is an intersection of three roads. On roa#, U;, =
{u1,ug,u3, us}; on roadBC, Ugp={ui,ug,uz}. SincelUf,; — Ugy = {us}, Uiy — Ugel =

1< k, nodeB has an inference-route problem.
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The methods to evaluate the quality of the anonymized datdgenjectories are
presented. Intuitively, the less difference between tlmgmized dataset and the original
dataset, the better quality the anonymized dataset is.efdre; two commonly accepted
metrics have been used: average error rate and standaatideviSuppose there ané
roads (or edges in a road-network graph) andepresents road Let original,, and
anonymized,, denoter;’s original frequency and frequency after the trajectohiage been
anonymized. Thenin Equation 3.1, the error functiois defined as the average difference
betweenoriginal,, and anonymized,, (i.e., E;), ando is the standard deviation of the
error rates. A low standard deviation indicates that thengnmozation quality of each road

is similar and close to the average error rate.

1 & 1 & lanonymized,., — original
E=— Ei = — o - 3.1
N ; N ; original,, 3-1)
XN
== E; — E)? 3.2
7=\ v L) 32)

3.2. THE APPROACH

In this section, the anonymization algorithm of this worlpigesented. It consists
of two main steps. First, the time axis is partitioned inttermals, and records within
the same interval are grouped . In each obtained sub-datys#ie records that are
associated with infrequent roads, i.e., roads with lesa thabjects within same time
interval are removed. The obtained dataset is denotdd.as D', partial trajectories are
constructed for the remaining objects based on moving tilires. Note that one user may
have several disconnected partial trajectories becausga@evisit some infrequent roads.
Each partial trajectory will be assigned an anonymous ID.tke rest of the dissertation,

words “trajectory” and “partial trajectory” are interchgeable.
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The second step is the core of the anonymization process. ugtecing-based
anonymization algorithm is proposed which guarantees tat achieving strict
k-anonymity (defined in Section 3.2.1.) among partial traees, the anonymization
result is free of the inference-route problem. Compareddditional k-anonymization
approaches, the approach not only needs to minimize erearsed by anonymization
but also needs to satisfy some unique requirements. Rdasbrkeconstraints should
be enforced during the entire anonymization process, edpjeavhen computing the
representative trajectories. The first step is relativétgightforward. Therefore, the
following discussion focuses on the anonymization step.

3.2.1. An Overview of Clustering-based Anonymization. The essential idea
of clustering-based anonymization algorithm is to find t@us of similar trajectories and
anonymize them by using a representative trajectory. Thaldare the following.

First, a proper way to represent trajectories needs to lexteel. Trajectories
are initially represented as a sequence of timestampedidosa In the anonymized
dataset, exact locations are not disclosed because detsibemation increases attackers’
chances to link published location to specific individuaitstead, information about which
object passing by which road is only reported. There are tpt@oos: (i) representing a
trajectory by road IDs; or (ii) representing a trajectory myde IDs. As illustrated in
Figure 3.2, trajectorie§’rj;, Trj, andTrj; can be represented ag s, rir3, andrirs
respectively following the first option. Using the secondiamp, trajectories!'rj;, Trj»
andTrjs can be represented agnons, ninong, andninsng respectively. Both types
of representations well capture the similarity betweefettariesTrj, andTrj; which
share one common road. However, the first option tréais and7'rj, as two irrelevant
trajectories even though they intersect. To better refldetionships among trajectories,
the second option is adopted and a trajectory is represegtagequence of node IDs. The
second issue is to define the distance between traject&irese a trajectory can be seen as

a string of road-segment IDs, tleit distancd64] is employed to compute the amount of
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different road-segment IDs in the two trajectories. Speailfy, the edit distance between
two trajectories is given by the minimum number of operatioeeded to transform one
trajectory into the other, where an operation is an inseyteletion, or substitution of a
node. For example, the edit distance betw&ep, (nsnong) andTrja(ningony) is 4, while
the distance betweéhrj, andT'rjs(ninang) is 2.

The clustering-based anonymization algorithm is preskerite this section.
An outline is given in Figure 3.3. First, same trajectorie® @rouped and the
trajectory’supportis counted. Support is defined as the number of users who have t

same trajectories (Definition 3).

Definition 3. Let u be a user’'s anonymous ID aftj, denote his trajectory i’. The

support of trajectoryrj is as follows: Support(Trj) Fu|Trj, = Trj, ¥V u}|.

Distinct trajectories are arranged in a descending ordeheif supports. If a
trajectory’s support is more than the anonymization thotsh, the trajectory itself forms
a cluster. For the remaining trajectories, dayyj, it is compared with existing clusters.
If there exists a suitable cluster, the new trajectory igiitesl into that cluster and update

the cluster’s information. Otherwise, a new cluster willdseated forl'rj. At the end of

Figure 3.2. Trajectory Representation
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Clustering-based Anonymization ("R.J, k)
Input: TR.J is a set of trajectories to beanonymized

1. Group same trajectories and foffik.J’

2. Sort trajectories i’ R.J' in a descending order of supports
3. for eachTrjin TRJ' do

4 if T'rj.support > k then

5. create a new cluster farrj

6 else

7 check existing clusters

8 if Find_Cluster(’rj,C) then

9. insertT'rj to clusterC

10. SeleciRepresentativdrajectory(C,Trj,)
11. update’’s error rate

12. update”’ — tree

13. else

14, create a new cluster ftrj

[* Clustering Adjustment Phase */
15. for each clustet”
16. if C.Total TRJ > p, thensetC.Total TRJ =k
17.  elseremoveC
/* Data Publishing */
18. Translate representative trajectories into outpumé&atr

Figure 3.3. An Outline of Clustering-based Anonymizatidgd@ithm

clustering, there is alustering adjustment phasehich deals with clusters containing less
thank trajectories. In particular, if a cluster contains lessitha(p, < k) trajectories, it is
directly removed. Otherwise, dummy trajectories are addele cluster by increasing the
support of the representative trajectoryktol he selection of a propex, will be discussed
in Section 3.3. Finally, representative trajectories tbgewith their supports are translated
into output format, which contains object anonymous IDadroames, and objects’ moving
directions. For example, the following intermediate réesuilobtained after anonymizing
the trajectories shown in Figure 3:1;(ABC), u4(ABC), u4(ABC) andu)(ABC), where

k = 3. The published dataset will look like thigz!, Ry, AB), (u}, Ry, BC), (uy, Ry, AB),
(uy, Ry, BC), ...,(u}, Ry, BC), whereR; is the name of a road.
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The algorithms for finding candidate clusters and selectiegresentative
trajectories along with definitions of local error rates d@hieshold will be elaborated in
the following subsections.

3.2.2. Finding Candidate Clusters. Figure 3.4 outlines the procedure to find a
candidate cluster for a new trajectory. The first step is ckhwhether a new trajectory
can be absorbed by an existing cluster. As the number ofechistcreases, comparifigj
with all clusters becomes very costly. Therefore, an in-mgnndex structure, the C-tree
(Cluster-tree) is employed to prune unnecessary comperida particular, each node in
the C-tree contains multiple entries and each entry in a hadawo fields: a pointertr
and a set of road IDs (denoted &$D). In leaf nodes, each entry has a pointer to a cluster
and the IDs of roads occurring in that cluster. In internales each entry has a pointer to
a child node and the union of roads IDs in its child node. It@stiv noting that since roads
are modeled as directed edges, a trajectory can be repedsena set of road IDs without

confusion. For example, the trajectoryr, in Figure 3.2 can be represented{as, r,}

Find_Cluster (Trj,C")
Input: T'rj is a trajectory
Output:C'is a cluster

1. NODE <« {C-tree.roo}

2. while (NODE is not empty)do

3. for each nodeV in NODE do

4, for each entryen in NV do

5. if Sim.(Trj,en.RID) > p, then

6. if IV is not a leaf nodéhen

7. adden’s child node toNODFE
8. elseadden’s cluster to candidate list,.
9. for all clustersinL. do

10. find clusters with smallegt® regardingl'rj
11. if £¢< p.then

12. return the cluster found

Figure 3.4. Algorithm of Finding Clusters
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since there does not exist a trajectogy, that is against the moving direction. The use of
road IDs for representing trajectories here facilitatesyeamparison of supports on each
road as presented below. Such representation is only uséactiing candidate clusters,
thus it does not affect the final selection of the most sintikgectory.

Figure 3.5 illustrates an example C-tree. Given a new trajgdrj, starting from
the root of the C-tree, the similarity betwe@n; and R/ D is calculated in every entry of

the node by using the following similarity function.

|S(Trj) N RID|

S(Tr7) (3:3)

Sim.(Trj, RID) =

Sim,. computes the percentage of common roads includéd jrand R1 D, whereS(1'rj)
denotes the set of road IDs in trajectdty;. If Sim. is above a thresholgd;, the child
node of this entry is visited. This process is repeated @titiéntries in the leaf nodes
with Sim,. above the threshold are found. All the clusters belonginbése entries will be
considered as candidate clusters. For example, suppdsertba trajectory contains roads
r9, s @ndrg, and the threshold, is 60%. The similaritySim,. between the new trajectory
and the first and second entries in the root nadeare 100% and 0% respectively. The
tree below the second entry is pruned and thus ngg@eed not be visited. The child
nodeN, pointed by the first entry is visited. Thgm,. between the trajectory and the first
and second entries iN, are 33% and 67%, respectively. Since the second entry has the
similarity score above the threshold, its correspondingtelrC; becomes the candidate
cluster for further consideration.

Among candidate clusters, the edit distance between #y@iesentative trajectories
and the new trajector{’r; is calculated. Based on the edit distance, a local efior
(defined in Section 3.2.4.) is then computed and the careladaster with the smallegi¢

is selected. Only wheh* is lower than a threshold. (defined in Section 3.3.Y;rj will be
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Figure 3.5. An Example C-tree

inserted into the corresponding candidate cluster. Otiserva new cluster will be created
for T'rj.

When actually adding’rj to a cluster, both the representative trajectory and the
corresponding entries in the C-tree need to be updated. [f§bdathm for computing the
representative trajectory is presented in Section 3.2fter Ahe representative trajectory
is determined, the node in the C-tree is checked if it needeetopdated with respect to
current cluster. If current cluster contains road IDs whacé not included in the road ID
list of the corresponding C-tree entry, the new road IDs apeaded to the road ID list.
This change will be propagated to higher levels of the C-tretl an entry containing all
road IDs in current cluster is reached. Consider the C-tréggure 3.5 and suppose that a
new trajectory that consists of roacds rs andrg will be inserted into clustef’;. A check
is done to the road list af's’s entry in the C-tree, which i§rsrsrsrg} and does not contain
ro. T2 IS then added to the road list. Now the second entriVirbecomes{ryrsrsrgrg }.
Next, its parent entry, the first entry i¥; is checked. Since, is included in the first entry
in Ny, the tree update operation completes.

In the other case when a new cluster is created foy, it requires to insert a new
entry for this new cluster to the C-tree. Recall that eachyantthe node of the C-tree has
two fields: (i) a set of road IDs and (ii) a pointer. The maximouamber of entries in each

node is the same. All insertions start at a leaf node whictestified during the process
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of finding candidate clusters. The new entry is insertedtiné node (denoted &€) with

the following steps:

1. If the nodeN contains fewer than the maximum legal number of entries) there

is room for the new entry. Insert the new entry in the node.

2. OtherwiseN is full, and it is evenly split into two nodes. In particulam entry
is randomly selected as seed. Them, (Equation3.3) is computed between other
entries and the seed. The average ofSath. serves as a separation value. Entries
with Sim,. above the average are put in the nddeand the remaining entries are put

in the new right nodeV’.

3. Next, the entry pointing t&V is updated. The road ID set in the parent is updated to
include all roads occur iV. The update may be propagated to the upper levels of
the tree. Moreover, if there is a split in the previous stepewa entry which includes
road IDs needs to be inserted in the new nddeo the parent level. This may cause
the tree to be split, and so on. If current node has no parenttfie node is the root),

a new root will be created above this one.

3.2.3. Selecting Representative Trajectory. There are two key requirements
when selecting a representative trajectory. First, théaleerror rate £ should be
minimized. Second, the representative trajectory musfgahe road-network constraint.
By keeping these in mind, the following algorithm is designe

In a cluster, the trajectory with the highest support is band then trimmed from
both ends to obtain the final representative trajectorys ltlustrated using example in
Figure 3.6.

The cluster contains three types of trajectoriésry,, Trj, and Trj;. Each
trajectory is associated with a number of support, @wgpport(Trj;) = 10. Numbers on
the last line indicates the original numbers of users on eaath, e.g.original(nyny)=15.

SinceT'rj; has the highest support, it is further looked at. The erner kais computed by
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Trj; (10): nq N o ny ng Ng

TTjg (5) nq N9 n nr
Trjs (6): N9 o ny ng
original: 15 21 21 16 10

Figure 3.6. An Example of Selecting Representative Trajgct

treatingl'rj; as the representative trajectory. The support of the reptasve trajectory is
the sum of the supports of all the trajectories in the clugtke reason behind is to maintain
the same amount of trajectories after anonymization. kn@ékample, iff'rj; is used as the

representative trajectory, the error rate will be= 58%.

E = (En1n2 + En2n4 + En4n7 + Enms + Emsng)/5

21-15 21-21 21-21 21-16 21-10
(15+21+21+16+10)

5

= 58%

Observe thatt,,,,, is higher than 100%. If the roadsng is excluded from the
representative trajectoryrj;, the overall error can be reduced to 34%. Based on this
observation, the second step is to trim the roads in thect@je that can help reduce the
overall error rate. Due to the road-network constraint, ibdes can not be arbitrarily
removed from a trajectory. The strategy is to remove nodesirsg from both ends of the
selected trajectory. Also, too many nodes should not be vethovhich otherwise leads
to poor pattern preservation. To reach the balance, onlypvarg the nodes with error
rate above certain threshold is considered. In this casghtieshold is set to be 100% in
order to ensure that the overall error rate does not exce@th 1Gpecifically, if a road
which is located at the end of the trajectory and has an eaterlarger than 100% (i.e.,
original, < support(Trj;)—original,), this road will be removed from the representative

trajectory. The process continues until such a road canedoind at either end of the
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trajectory. The final representative trajectory for theregbe case s nyngnyng. The
algorithm is summarized in Figure 3.7.

3.2.4. Definitions of Local Error E€. In the following discussion(' is used to
denote a cluster anflrj, to denote its representative trajectory. kgaindanonymizes.
denote the road; andr;’s frequency after anonymization within clustér respectively.
Note that hereanonymized;. is specific to a cluster and it is different from (just a
portion of) globalanonymized,,. Formally, the relationship betweemonymized;. and
anonymized,. 1S given in Equation 3.4, where clustets, ..., C,, are clusters containing
roadr;.

anonymized,, = Z(anonymizedﬁg) (3.4)
j=1

SelectRepresentativeTrajectory (C,1rj,)
Input: C'is a cluster
Output:T'rj, is the representative trajectory

1. support{’rj.)+ 0

2. for eachlrjin C do

3 if support{"rj) >support('rj,) then

4. Trj. < Tryj

5. support{’rj,) < support{’ry)

6. i< 1,75« length(Trj.)-1

7. continue— 1

8. while (i < j andcontinue) do

9. continue— 0

10.  if original(r;) <support{'rj,)-original(r;) then
11. i < i+ 1; continue— 1

12.  if original(-;) <support{'rj,)-original(-;) then
13. j < j —1; continue— 1

14. Trj, «(r;...r;)

15. returni'ry,

Figure 3.7. Algorithm of Selecting Representative Traject
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Given a new trajectoryl’y,..,, £ is computed by assuming thdiy,.,, has been
inserted into cluste€’. The new cluster withlj,.,, is denoted ag” and is assumed that
the representative trajectory 6f is still the same a¢’ but with an increased support by
support( Trine,). The definition of E¢ is shown in Equation 3.5, wherR is the set of
roads appearing in the new clustéf, and|R| denotes the total number of roads /ih
For each road; in R, two values{rans,, andchange,, are calculated. The valdeans,,
is the difference of frequency of, in C' and C’. The valuechange,, is the change of
frequency ofr; in the anonymized results of clustéf, i.e.,change,,= (|an0nymizedﬁ; —
anonymizeds, ).

1

1
E°= I Z E; = I Z (change,, — trans,,)’ (3.5)
r,€R r,€R

For better understanding of Equation 3.5, the calculat®mlustrated through
the following example. Consider the clustér containing two types of trajectories:
Trji1(ninangningng) and'rjo(ninsngny), wheresupport(1Trj;)=10, support(Trjs)=5.
Suppose that the representative trajectoryl'isj,(ninsninng) and support(Trj,.)=
15. Now E° is computed upon the insertion of a new traject@iys(nqngnyng) with
support(Trjs) = 6 into the clusterC. Table 3.1 summarizes the changes for each road
after the insertion of the new trajectory, where roads atdi in the first column of
the table, followed by its original anonymization value.¢nymized®), the anonymized
value in the new clusterfonymized®), and corresponding values wéns andchange
Specifically, after the insertion, the anonymized valueshaf roads in7'rj,. will be
increased byupport(Trjs;) = 6 as shown in the second column in Table 3.1 and the last
columnchange denote the value of this change. The difference betweenfregdency in
clusterC' andC’ is shown in the third column of the table, from which it can tserved
that the insertion of the new trajectory does not changevkeatl frequency of roads; n,

andngng since the new trajectory does not contain the two roads.
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Accordingly, E¢ can be computed as follows.

EC = (EleTLQ _'_ E7?L2n4 + E7CL47L7 + E7CL7TL8

+ B,

TLgTLg)

(6=0)*+ (6= 6)*+ (6 —6)>+ (6 = 6)> + (6 — 6)* _

7.2
3

Compared to the approach using merélyuring clustering £¢ is more effective
since it captures the effect of error change after inseginew trajectory. More specifically,
the value ofE' is dominated byriginal,;. If a cluster contains many roads which have a
large value obriginal,;, the insertion of even a dissimilar trajectory into the tduswill
result in a lowFE. In other words, globabriginal,; does not truly reflect the situation in
a cluster. As more dissimilar trajectories are accumulategtie same cluster, the global
error £ also increases. Unlik&, E¢ is defined with respect to each individual cluster, and
hence conquers the aforementioned problem.

E¢ has another advantage in that it can be quickly computediasedit distance.

In this way, a great number of comparison can be avoided letweiginal number of
objects and anonymized number of objects during error tatlom. Specifically,£° can
be expressed in terms of the edit distance between the egpatise trajectory/’rj, and

the new trajectoryf'rj3 as shown in Equation 3.6, whefeD denote the edit distance.

1
B° = rrED(Trg,, Trjnes) support(T'rj)* (3:6)

Considering the same example discussed in this subseétioantains five roads
and the edit distance betweéirj, andTrj; is 1. Therefore,£° can be computed as

follows, which yields the same result as using Equation B5:= £ (6%) = 7.2
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Table 3.1. An Example of“ Calculation

Road| anonymized® | anonymized | trans | change
ning | 15 15+6=21 0 6
nany | 15 15+6=21 6 6
nsny | 15 15+6=21 6 6
nyng | 15 15+6=21 6 6
ngng | 0 0 0 0

3.3. SELECTION OF THRESHOLD

The threshold selection is a critical task which affectsstdting speed and
anonymization accuracy. This subsection discusses howtasrdine the thresholg, for
the clustering adjustment phase and the thresholdr the clustering process.

After clustering all the trajectories, some clusters maytam less thank
trajectories. For these clusters, the threshglds used to determine whether to remove
the clusters or add dummy trajectories to them. To minimieer @fter the adjustment, the
thresholdp, is set as follows.

Pa = (37)

k
2
The basic idea of Equation 3.7 is that insertion or deletibfewer trajectories induces
less error. Specifically, if the total number of trajectsrie a cluster is less than or equal
to k/2, removing the cluster will introduce less error by addingrenthank/2 dummy
trajectories. In the other case, if a cluster has more thartrajectories, adding less than
k /2 trajectories will introduce less error than removing thérercluster.

The thresholdp. determines whether a new trajectory can be inserted into an

existing cluster or not. If a low threshold is used, fewejetttories will be inserted into a

cluster as only highly similar trajectories will be selattdhis may result in having more
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clusters with less thah trajectories at the end of the clustering. Such clusterkeitiier

be removed or include dummy trajectories, which in turn camaase the error rate. If a
high error threshold is chosen, even the trajectories waiielHess similar may be inserted
into the same cluster which also introduces more errorsedotr a balance, the threshold

p. 1s defined as shown in Equation 3.8.

e = (g)z (3.8)

This threshold is derived according to the clustering adjesit algorithm. As
aforementioned, if a cluster needs to be adjusted, the mawimumber of trajectories
inserted into or deleted from the cluster is equakt@. The value ofp,. is equivalent to
the error £¢ induced wherk /2 trajectories are inserted into or deleted from the cluster
computed using Equation 3.5. Given a new trajectory, if theespondingk© exceeds
pe, this trajectory will not be inserted into the cluster becansidered. Therefore, even
if the cluster needs to be removed during the adjustmentephiawill not introduce an
error more tham.. Moreover, it can be observed that the valugoflepends on the value
of k. That is, a largek yields a higher threshold.. This is beneficial for the clustering
due to the following reason. A largérmay increases the risk of letting more clusters go
to the adjustment phase and hence may increase the global Arhigher threshold will
counteract this effect as it will group more trajectorie®ia cluster and reduce the number
of clusters with trajectories less th&n

3.3.1. Strict k-anonymity. In this section, the notion dftrict k-anonymityis
defined. It is called “strict” because the calculation ofectory supports is based on an

exact match of entire trajectories.

Definition 4. (Strict k-anonymity over trajectories): Létrj be a trajectoryl’r; satisfies

strict k-anonymity if Support(Trj) is no less than
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The anonymization results guarantees stki@nonymity over all trajectories in
datasetD’. In this way, it is ensured that the anonymization result nat contain any

inference-route which is given in the following theorem.
Theorem 1. Trajectories that satisfy striégt-anonymity do not contain any inference-route.

Proof. It is proved by contradiction. It is assumed that tl@m@ymization result contains
at least one intersection (denoted &3 of roadsry, ..., r,,, which has the inference-route
problem. Then by definition 2, among roads...,r,,, there exist at least two roads and
r; such thatU;"| > k, |U| > k, but (0< |U;" — US| < kor0< |U; — U;"| < k) (where
U;" andU; denote the sets of objects moving towards and outwirdsspectively).

If 0< |U;" — U;| < k, that means less thah objects entefl” from roads other
thanr;. Itimplies that the trajectories of objects {V;" — U;") have support less thain
Similarly, if 0< |U; — U;"| < k, that means less thahobjects leavel’ and enter roads
other thanr;. Itimplies that the trajectories of objects (0, — U;") have support less than
k. Both cases contradict with the property of the anonynmaratésult which only contain
trajectories with support no less than Therefore, it is concluded that the approach does

not have any inference-route problem. O

3.3.2. Complexity Analysis. In this section, the time and space complexity of
the approach are analyzed. In what followss used to denote the total number of original
trajectories, andis used to denote the maximum number of roads in a trajeatdhei raw
datasetD.

First, the time complexity is analyzed. The approach cdsmsistwo main phases:
(1) removal of infrequent roads; and (2) the clusteringeblaanonymization. To remove
infrequent roads from the raw dataset, the road segmentained in all the trajectories
need to be scanned just once. The total number of such roateseégisn x [. Givenl

being a small and constant number, the complexity of thediegi isO(n).
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For the clustering-based anonymization, the major costasearch of the C-tree.
Let f denote the average number of entries in a node of the C-tneéedebtk. denote the
average number of trajectories per cluster. The height@®iGtree can be estimated as
logs(n/k.). For each identified candidate cluster, a search is donetiernmoot down the
leaf nodes in the C-tree. The total number of entries to bekgtecan be estimated by
the height of the tree multiplied by the number of entries pade, i.e.log;(n/k.) x f.

If multiple candidate clusters are identified, the cost iy @mcreased by a small constant
number of additional entries being checked. Therefore,tithe complexity of finding
candidate clusters is still(log(n)). The remaining step is to check each trajectory in the
candidate clusters to select a representative trajedtugycost of which is about. x [.
Sincek, is proportional ton and! is a small constant number, the time complexity of
selecting representative trajectory(®n). Summing up the time complexity of the two
steps, obtained is the total time complexity of the clustpithased anonymization, which
isO(log(n)) + O(n).

Finally, the total time complexity of the approach is the sofrthe two phases:
O(n)+ (O(log(n)) + O(n)), which isO(n). This indicates that the time complexity of
the approach is linear to the total number of trajectoridsicivis also confirmed by the
following experimental results.

As for the space complexity, the approach stores all thedtajies and the C-tree.
The total number of road segments in the trajectoriesnasel. The total number of
nodes in the C-tree Efz‘ol /%, wheren is the height of the tree and equald#g;(n/k.) as
previously discussed. Recall théis the average entries per node and is a constant number.

The total space complexity isx [ + >/ f/, which isO(n) + O( fl9().
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3.4. EXPERIMENTAL STUDY

In this experimental study, the two approaches: ClusteBiaged Anonymization
(CBA) [39] and Improved Clustering-Based Anonymizatio6BA) are compared. CBA
usedE (Equation 3.1) during the clustering while ICBA used the meatric £¢ (Equation
3.5). Then, the effect of the C-tree adopted by ICBA is stddiéfter that, ICBA is
compared with the latest related work (denoted as Prefiy [BAfesting the original source
code provided by the authors of [54]. Both synthetic and fnaged datasets are used and
a variety of parameters including the data size, data digidn, average trajectory length
and value of: are varied.

In the synthetic datasets, objects are moving on a randoengrated road map
which has about 700 roads. The roads are generated by randehatting points (which
serve as intersections) in the space and then connectimigyngaints to create the roads.
The average degree of an intersection is 4. Objects can hiweedt speeds which are
controlled by the parameter “average trajectory lengtls fér the map-based datasets, the
generator by Brinkhoff [12] is used. Objects are moving aa read networks. A road
consists of multiple segments and each segment is a stilaght An object is initially
placed on a randomly selected road segment and then mowes @i segment in a
randomly selected direction. When the object reaches tti®Ethe segment, an update is
issued and a connected segment is selected. Object speadsiad within a given speed
range which controls the “average trajectory length”. daslaoted otherwise the data set
containing 50,000 moving objects is used as the defauihgeffThe parameters used in the
experiments are summarized in Table 3.2, where values thdmiote the default values.

The performance is evaluated based on five criteria: (i) awmaration time; (ii)
average error rate as given by Equation 3.1; (iii) standardadion as given by Equation

3.2; (iv) number of inference-routes in the anonymizatiesutt; (v) number of frequent
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Table 3.2. Parameters and Their Settings

Synthetic Dataset
Parameter Setting
k 10,2030,40,50
Number of moving objects 5K, 25K, 50K, 75K, 100K
Average trajectory length (km) 20, 30, 40, 50, 60

Map-based Dataset
Parameter Setting
k 10,20,30,40,50
Number of moving objects 5K, 25K, 50K, 75K, 100K
Average trajectory length (km) 3.8, 5.0, 5.8, 6.4, 9.2
209(St Charles), 434(St Clair
550(Phelps) 874(Jefferson),
1689(St Louis)

Number of roads (Map)

patterns after anonymization. All the experiments wereamia PC with 2.6G Pentium IV
CPU and 3GB RAM.

3.4.1. Anatomy of Our Approaches. The CBA and ICBA approaches are
compared and the results are reported in this section. Tketeadf the C-tree is also
observed.

3.4.1.1 CBA vs. ICBA. The first round of experiments compares the
performance of the two approaches: CBA and ICBA, by usingtisfic datasets.
Figure 3.8(a) shows the average error rate of the anonyimiza¢sults obtained from
CBA and ICBA when varying the number of moving objects from &KL00K. Observe
that the error rate of ICBA is lower than that of CBA for all ess This is because
CBA adopts a fixed threshold which is set to an experiencedevg80%) for all cases,
while ICBA benefits from the optimal threshold selection (&tjon 3.8) as well as the

newly defined metricE® (Equation 3.5). Figure 3.8(b) reports the standard denati
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Figure 3.8. CBA vs. ICBA

where it can be seen that ICBA performs similarly to CBA. Feg3.8(c) compares the
processing time. As shown, ICBA is much faster than CBA. T&ibecause that ICBA
usesE“ to measure the intermediate error afitlcan also be expressed in terms of the
edit distance which has already been calculated in othps st@ring the anonymization. In
other words, ICBA requires less computation than CBA anadted@BA is more efficient.
In summary, the above observations prove that ICBA impra&¥B4a. Therefore, in the
remaining experiments, only ICBA will be considered.

3.4.1.2 Effect of the C-tree. In this set of experiments, the effect of the C-tree
is studied by comparing two versions of the ICBA approache with the C-tree and one
without using the C-tree (denoted as “ICBR_C-tree”). Figure 3.9(a) and (b) report the
average error rate and standard deviation with respecetiwh versions, and Figure 3.9(c)
compares their processing time. It can be observed thatdbh®iuC-tree does not affect

the accuracy of the anonymization result, but significargijuces processing time (more
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Figure 3.9. Effect of the C-tree
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than an order of magnitude for 100K datasets), which dematest the effectiveness of
the C-tree. More specifically, when the C-tree is not usedeva tnajectory needs to be
compared against all existing clusters, which is time carnieag. When the C-tree is used,
the new trajectory just needs to be compared with a fewer euwfcandidate clusters.
3.4.1.3 Measuring the probability of re-identification. The probability of
re-identification of a user is also analyzed in the anonythdataset. Note that, all the
users in the same anonymization cluster will be represeloyetthe same representative
trajectory, and hence they are indistinguishable from avatheer regardless the amount of
prior knowledge that an attacker may have. Thus, the retifitztion rate of each user in
the same cluster is the same and computegc awherek,. is the number of trajectories
in the cluster. As discussed in Section 3.3.1., the apprgaahanteeg-anonymity which
means the re-identification probability will not be higmm%. In the actual experiments,
a much lower re-identification rate is observed as repordeigure 3.10. In particular,
the maximum, the average and minimum probability of re-ifieation rate of all the
clusters are recorded. The minimum re-identification rate lse as good a%th of the
theoretical bound when the dataset is 100K. This is becdugssaumber of trajectories in
each anonymization cluster is usually more tikarand hence it provides better privacy

protection than the theoretical guarantee.
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Figure 3.10. Probability of Re-identification
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3.4.2. Experimental Results in Synthetic Datasets.The experiments are
conducted using synthetic datasets and results are reportieis section.

3.4.2.1 Effect of data sizes. The performance of ICBA is now compared with
Prefix approach by varying the number of moving objects (nember of trajectories)
from 5K to 100K. Figure 3.11(a) shows the average error ritleeoanonymization results
obtained from ICBA and Prefix. It can be observed that ICBAdgenuch less error than
Prefix in all cases. When the dataset is small (e.g., 5K),hbeymization results obtained
from both algorithms have relatively high error rates. Tikisecause the number of objects
on each road is few and even a small change of an object wayday the anonymization
process will have a big impact on the error rate. With thegase of the data sizes, the error
rate caused by ICBA keeps decreasing and it is more than 5 iese compared to that
of Prefix for 100K dataset. The reason of such behavior isIPBA effectively groups
similar trajectories and carefully selects represergatiigjectories, which minimizes the
overall error rate. Also measured is the standard deviaifadhe anonymization results
obtained from two approaches . As shown in Figure 3.11(l®,ahonymization result
generated by ICBA has much lower standard deviation tharbghBrefix, which indicates
that the anonymization result on each road has similarlygpality.

Figure 3.11(c) shows the number of nodes (i.e., road intBs® having the
inference-route problem. It is not surprising to see thatahonymization result produced
by the ICBA algorithm contains O inference-route. HowewBe anonymization result
obtained from Prefix contains a large number of nodes witlinfeeence problems and the
problem becomes more and more severe with the increase @éthsizes, which is caused
by their definition of trajectory support.

The processing time of both approaches is compared. As shmokigure 3.11(d),
ICBA is up to 5 times faster than Prefix. This can be attributethe C-tree that helps

prune the clusters to be compared with each new trajectahhance avoids unnecessary
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Figure 3.11. Effect of Data Size

calculation. The total time is inclusive of the construntand update cost of the C-tree
which is almost negligible compared to the benefits broughhb C-tree.

3.4.2.2 Preservation of frequent patterns. The quality of anonymization
results is evaluated by comparing the anonymized trajestabtained from ICBA and
Prefix with the frequent patterns discovered from originaadets using the traditional
data mining tool (i.e., PADS software [76]) as reported igufe 3.12. When using PADS,
each transaction is corresponding to an original trajgctéach item is corresponding to a
road ID in the trajectory. The anonymization paramétées used as the minimum support
threshold in PADS. The mining results contain sets of safettories, each of which is
represented as sets of road IDs.

In general, the more frequent patterns are preserved, ttex Baonymization result
is. To measure this, the widely adopted F-measure is useéfased below, whereP.
and P, denote the sets of trajectories in the data mining resutlsaaonymization results

respectively)V,, denotes the number of trajectories in the anonymizatiamtethat match
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those in the data mining results, ani and NV, denote the total number of trajectories in

the data mining results and anonymization results respgti

Precision - Recall

F(P.,P)=2- — 3.9

( ) Precision + Recall (3.9)
Ny, N,

Precision = N Recall =

Figure 3.12(a) reports the F-measure values of the Prefisoapp and the ICBA
approach. Observe that the ICBA approach yields much higheeasure values than the
Prefix approach in all cases, which indicates that ICBA presemore frequent patterns.
This is because the Prefix algorithm directly removes infesq trajectories which do
not share the prefix of a frequent trajectory, while ICBA s to preserve the best

possible patterns of the infrequent trajectories withm éinror threshold. Since trajectory
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Figure 3.12. F-measure

anonymization always needs to distort trajectories in thiput, it is unrealistic to expect to
receive a perfect F-measure value which means all anongriagctories fully match the
original frequent trajectories. Therefore, how many tajees that partially match the data

mining results is also evaluated. For this, the anonymizgddtories that have at least 50%
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road segments matching a frequent pattern in the originalmaning results are recorded,
and added tdv,, for computing the F-measure. Figure 3.12(b) shows thetsedtiom this
figure, it can be seen that the F-measure values have beestalmdbled compared to that
in Figure 3.12(a). This indicates that the anonymizati®suits preserve partial frequent
pattern information very well.

3.4.2.3 Effect of parameterk. This set of experiments aims to evaluate the
performance of both algorithms regarding different valféds As shown in Figure 3.13(a),
the error rate increases drastically withby using the Prefix algorithm, whilé has
only minor effect on the ICBA approach. Such behavior can @agned as follows.
Prefix removes all infrequent trajectories and adds thgipstts to most similar frequent
trajectories. Wherk is large, there are more infrequent trajectories, whicts tbauses
more errors. The standard deviation (Figure 3.13(b)) atsoahstrats the similar pattern
as the error rate. Moreover, Prefix again suffers from thererfce-route problem as can

be observed from Figure 3.13(c). Regarding processing(iimféigure 3.13(d)), ICBA has
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a consistent performance and is much faster than Prefix whemsmall. Whenk grows
bigger, the processing time of Prefix decreases. This isusedarefix needs to handle less
number of frequent trajectories for a largemvhich in turn results in higher error rates.
3.4.2.4 Effect of the average trajectory length. The effect of the average
length of the trajectory in terms of number of roads is nowlet®d. The length is
determined by two factors: the length of time interval batogsidered and object moving
speed. As shown in Figure 3.14(a) and (b), Prefix incurs mugheh error rate and
standard deviation than ICBA does for various lengths géttaries. This behavior can
be attributed to the fact that longer trajectories increasepossibility of getting more
trajectory pattern with support less than Using the Prefix algorithm, the support of
a trajectory pattern will be added only to the common prefikneen the trajectories.
Therefore, if the starting node of trajectories differ, gwgport will not be added even
though these trajectories may share the suffix or an infix.n@wther hand, ICBA attempts
to capture similarity between trajectories either as prefiguffix or an infix. This leads to

less error in ICBA than the Prefix algorithm.
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As for the inference-route problem (Figure 3.14(c)), thaltaumber problematic
nodes generated by Prefix decreases as the trajectory |lbegtimes longer. This is
possibly because that the increase of trajectory lengthliteem less frequent trajectories
and reduces the chance of having inference-route problems.

As shown in Figure 3.14(d), there is a drastic increase imamdzation time with
the increase of average length of the trajectory when ubm@tefix algorithm. The reason
is that longer trajectory increases the depth of the predix, iand hence more time is needed
for the anonymization process.

3.4.3. Experimental Results in Map-based Datasets.lhe performance of
ICBA and Prefix is evaluated by using datasets generated lmaseeal road maps using
the generator in [12]. The same four aspects are examinedtiva of data sizes, frequent
patterns, value of and average trajectory length, as that in synthetic datakeaddition,
the effect of data distribution is also studied by usingediéht road maps.

3.4.3.1 Effect of data sizes. In this set of experiments, the datasets are
generated based on the road map of Phelps County (Missdb#i) Which contains about
550 roads. As shown in Figure 3.15 and Figure 3.16, ICBA «testly outperforms Prefix

in terms of both effectiveness and efficiency.
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The reason is similar to that explained when evaluatinghstit datasets. In
addition, both approaches have high error rates when thebeurof objects (i.e.,
trajectories) is small and the error rates go down with treeeiase of objects. This is
because in the same road map, fewer objects result in femeprént trajectories, and hence

the impact of trajectory modification during anonymizatismore severe.
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3.4.3.2 Effect of parameterk. Figure 3.17 shows the performance of ICBA
and Prefix when varying from 10 to 50. From the figure, following observations can
be made. First, both approaches yield more errors vihi@areases. The possible reason
is that largerk results in less frequent trajectories, and hence any chantyajectories
for the anonymization purpose has bigger impact on the fiesllt. Second, it is also
interesting to see that Prefix has lower standard deviatess inference channels and
even faster processing speed with a largerThis is because that Prefix removes more
infrequent trajectories for largétr which means Prefix needs to handle much fewer number
of frequent trajectories. Consequently, the standardatievi regarding each frequent
trajectory pattern is lowered, the total number of node$ witerence-route problems is

reduced and processing time is shorten.
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3.4.3.3 Effect of average trajectory length. This set of experiments evaluates
the effect of average trajectory length. As shown in Figl8ds8 and 3.19, ICBA again
outperforms Prefix in general. It is also observed that thereate increases for both
approaches when the length of trajectory becomes longer.

The reason is similar to that for the case with a laigerthe previous experiments.
That is that the reduced number of frequent trajectory pateith the growth of trajectory

length, in turn increases the impact of trajectory modifaratiuring the anonymization
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process. Moreover, with the increase of trajectory lengttefix suffers more from the
inference-route problem. The possible reason is that imghkroad-network, the number
of roads connected by an intersection is usually small,(eag to four). This increases
the chance of having nodes with inference-route problemeaally in long trajectories. In
addition, the trend of the processing time of two approackssmbles the case in synthetic

datasets and the reason is also similar.
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3.4.3.4 Effect of data distribution. Atthe end, the effect of the data distribution
is studied by using various road maps. The total number cfabbj(or trajectories) is
the same, 50K, in all cases. The result is shown in Figure.3@0en different maps,
the ratio of frequent to infrequent trajectories is diffeire This explains the different
behavior of error rates for each map. In general, when therenare roads, the number
of frequent trajectories becomes less, which may incrdaserror rate in the anonymized
datasets obtained from both approaches. As for the inferemae problem, the more
complex the map is (e.g., St. Louis), the higher chance thefi{°generates more
inference-route problems in its anonymization result. d&bwer, it also takes more time for
Prefix to handle larger and complex maps, while ICBA hasikadtstable and much faster
processing speed. In a summary, the result demonstratd€®8® has better topography

independency compared to Prefix.



58

70 - 5 -5-ICBA
60 - —A—Prefix
o
50 2 4
£ S
g 3
5 —=-ICBA H
g7 g —— Prefix 2
/ g 30
20 o )
10 , , , , | 2%
209(St Charles) 434(St Clair) 550(Phelps) 874(Jefferson}1689(St Louis) 209(St Charles)  434(St Clair) ~ 550(Phelps)  874(Jefferson) 1689(St Louis)
Number of roads Number of roads
(@) Error rate (b) standard deviation
7000 120
6000 100

5000

)
=3

4000 —

@»
=3

3000 — —=-ICBA

—&— Prefix

—5-ICBA

Inference channel
Iy
S

Processing time (s)

2000
—&—Prefix

)
=3

1000 ~

e

209(St Charles) 434(StClair) 550(Phelps) 874(Jefferson)1689(StLouis)
Number of reads

o

0+ = 1= 1= 1= £

209(St Charles) 434(St Clair) ~ 550(Phelps) ~ 874(Jefferson) 1689(St Louis)

Number of roads

(C) inference-route problem (d) Processing time

Figure 3.20. Effect of Data Distribution

3.5. SUMMARY

Privacy preserving location data publishing has receivecreiasing interest
nowadays. In this section, this newly emerging problem idressed by taking into
account an important factor, the road network constrairtickv has been overlooked
by many existing works. A new privacy problem (i.e. the iefece-route problem)
was identified and defined. An efficient and effective clustebased anonymization
algorithm was proposed. It was proved that the clusteriget algorithm guarantees strict
k-anonymity of the published dataset and avoids the infer@aate problem. To minimize
the global error rate after anonymization, the followingjonaaspects were taken into
account: calculation of representative trajectoriesnitedn and employment of local error
rates, and selection of threshold used at different staj@gaanymization. An extensive
experimental study was conducted on both synthetic datasetreal datasets. The results

demonstrated the superiority of the approach comparedtr atorks.
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4. PRIVACY-PRESERVING LOCATION PUBLISHING IN BIG TRAJECTO RY
DATASETS

As aforementioned, the number of LBS users is increasirtgafas the amount of
location data collected by the LBS service providers is gtswing rapidly. In this section,

the scalability issue is tackled in publishing locationadaith privacy preservation.

4.1. THE APPROACH

The privacy-preserving location publishing techniqueSetction 3) is extended to
a distributed version by leveraging MapReduce technoldgy. easy understanding, the
key ideas are illustrated using a simple example as follows.

Suppose that a map and trajectory data from St. Louis, MOsaé. For simplicity,
the map is divided into four aread\W, SW, SE, NHenoted a&\1, A2, A3, Adespectively.
Let £ = 2 and the trajectories in the data setheus, ....,uq. These trajectories come from
a database controlled data center to the Master machineddap Reduce environment.
Suppose these three trajectories were included in parealdha:

Ty = {uy, us, ug, ur}

15 = {Ul, us, U7}

15 = {uy, us, ug, us}

The trajectories would be sent to one or more mappers, wébetlrajectories included,
and the mappers would output key,value pairs that map eajgctory to an area.

(AL, T7), (AL, T2), (A2, T3)

This output is given to one or more reducers which will clusi®jectories
according to area.

(Al! Tl T2)l (A21T3)
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Additionally, the clusters are now anonymized at the redat¢éhe same time. For
A2, it can be seen that there is only one trajectory in thetetu3 he threshold to guarantee
k-anonymity is 2. The algorithm will attempt to add the trageg to another cluster, and
if it cannot find one, then it will be removed from the publigdh@ata. In area one, the
threshold for the number of trajectories are met. HowevVérid left as it is, then there will
be an inference problem. While both trajectories are venylar, Al includesu, while A2
does not. Again, the algorithm would try to find a better mdtstone or both trajectories.
However, if they are this similar, than, is removed froni/; for publishing and now there

arek exact same trajectories that meets the anonymizationresgants.

Definition 5. Let (V/, F) represent a road-network whéras a set of nodes or intersections
andE represents the edges or roads. A road division,is a part of the road-network and
can be represented as.{, £,.;) whereV,, represents the vertices aifl,; represents the

edges in road divisio®D. A road division also has a unique identification numlaé?r,

The MapReduce programming model is adopted for publicadiohig location
data with privacy preservation. This model efficiently pletezes the computations for
such publication. A computation is divided into a map anducedfunction. Each mapper
gets a chunk of input object trajectories. It maps eachdtayg to a suitable reducer. Each
reducer gets its share of the object trajectories, decigigidomappers for clustering and
anonymization. For a given trajectory in a reducer, a sietaluster is found among the
clusters in the reducer. The reducers do not share the cin&emation. Therefore it is
paramount for the mapper to group similar trajectorieséstime reducer. Otherwise many
roads will end up getting trimmed as infrequent in each reduncreasing anonymization
error.

The road map is divided into road divisions, defined in Dabnit5 such that
trajectories in one road division are similar as explairedubsection 4.1.1. Mappers

share the road divisions data. A mapper maps a trajectotyetodad division it closely
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matches. Trajectories in one road division goes to the sadecer. Therefore two
similar trajectories in different mappers gets mapped téosAme reducer. This reduces
the probability of a trajectory being removed as infrequargach reducer though it may
be frequent. This further assists in efficient clusteringfi@ anonymization algorithm.

The MapReduce architecture in this approach is illustratelgigure 4.1. There
are eight input trajectorie®’'l, 72..., T8. Each mapper has the road divisions data

R1, R2, R3, R4 asin Figure 4.1(a).

Mappers Reducers
(1,T1)(2.T2) (1,[T1,T3.T5))
T1 /
T2 Shuffle
and  Sort
(1,T3)(3,T4) (LTY) (2,[12,T7))
T3 ;
(1,13)
T4 el (1,T5)
—2T2) ==
. (2,T7)
T | T amsae (3,T4) (3,[T4,T8))
(3.78)
i (4,76)
LN T7
s i S f-4.- Y o T8 \
su??g;o. 2 / .J' '.;::,4,00 5 (2,T7)(3,T8) (4,[T6])
(&) Road Divisions (b) MapReduce

Figure 4.1. MapReduce Architecture

It maps each trajectory in its input data, a portion of thaltatput data to a<
key, value > pair. Inthe< key, value > pair, key is the suitable road division and/ue
is the trajectory. In the shuffle and sort phase, all théey, value > pairs belonging
to a reducer gets grouped together and sent to the corresgorediucers. The reducer
performs anonymization on its input trajectories. The metvork division algorithm, the

map phase and the reduce phase are further explained inlheifhg subsections.
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4.1.1. Road-Network Division Using Hot Spots, Depth-FirsfTraversal. In
this subsection, the approach for road network divisiorescdbed. It uses hot spots and
depth-first traversal of the road network. Hot spéis;, the frequent nodes or intersections
given a sample trajectory data are extracted. The frequeittye nodes is counted in the
sample trajectory data and sorted in descending order. eS| >> RNO nodes
comprises the hot spots wheRVO is total number of reducers. The trajectories tend to
populate around hot spots. Therefore the idea is to expamtidhspots using the road
network in depth first manner to form a road division. The egian around hot spots and
depth first traversal ensure that popular routes are coverszhd division formation. It
also divides the trajectories fairly among road divisions.

The road division formation is further explained. The hobtsphs,,.. With
maximum frequency is used as the starting node and a depthréiversal of the road
network is performed. The following approaches are used sto@ping criteria of the

traversal.

e The depth of each traversal path from the hot spot exceedavirage number of

nodes per the sample trajectory data.

e The total distance of each traversal from the hot spot excéeel average road

distance per the sample trajectory data.

When each traversal path from the hot spot satisfies the isippteria, a road
division is formed. The road division is represented as wowkt of all the traversed nodes
in the region. Then the next unvisited hot spot is used as ¢estarting node for road
division formation. This process is repeated until theltotenber of road divisions formed
will be equal to the number of reducers.

The depth first traversal using hot spots outputs a tétél,, number of road
divisions. However there may be unvisited nodes which atg/@bincluded in any of the

formed road divisions. For such unvisited nodes, its naiginly nodes are checked. The
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neighboring node with the smallest depth from the hot spahefroad division is found.

The unvisited node is placed in the road division of this hba@ying node as described in
Figure 4.2. This process is continued until there remain masited nodes. Figure 4.3
outlines the detail procedure for road-network division.

4.1.2. Map Phase. Each mapper has the road divisions data. The mapper
decides on the road division for mapping each incomingdtajg. The mapper computes
score for each road division based on the number of nodesedfdfectory that the road
division contains. The mapper then finds the road divisidh tie highest scoré& Dy, score.

If the highest score exceed8% of the total nodes in the trajectory, the mapper outputs a
< key,value > pair as< id of RDpseore, trajectory >. If not, the mapper outputs
< residue, trajectory >, residue is the reducer reserved for trajectories which do not fit
in any of the road divisions. Another approach used to findbt'st matched road division

is to divide the trajectory into partial trajectories. Alfie points in one partial trajectory

FindAreaForUnvisitedNodes({/, Regions)

Input: List of Road DivisionsRegions; road-network {, E)
1. loop < true

2. while loop = true do

3. loop < false

4. for eachnode in V do

5. if node.areaData 1S empty

6. for eachnode,;y, in node. Nbrs do

7. if nodeycign-areaData is not empty

8. for each key imode,,e;gn.areaData do

9. if key innode.areaData

10. update depth ofode.areaData.get(key).area with the smaller depth
11. elseaddnode,ign.areaData.get(key) t0 node.areaData.get(key)
12. if node.areaData is not empty

13. find area with the smallest depthrinde.areaData, area

14. addnode to area

15. elseloop « true

Figure 4.2. Algorithm for Finding Area of Unvisited Nodes
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RoadMapDivision(H S, (V, E), RNO)
Input: List of hot spotsH S; road-network ', £); number of reducerdg NO
Output: List of road map divisiongiegions

1. indest +—0

2. totalArea + RNO

2. startFlag < true

3. while startFlag = true do

4. node <— HS|indexps|

5. if node.areaData is not empty

6. define list of node®S

7. define region

8. addnode to regionr

9. addnode to DS at index0

10. node.depth < 1

11. addr, node.depth to node.areaData with key r.id
12. while DS is not emptydo

13. firstnode <— DS|0]

14. remove element of DS at indéx

15. for eachnode,ig, in firstnode.Nbrs

16. if nodeyeign.areaData does not have key.id
17. if node,.;,r, does not voilate the stopping criteria
18. nodeyeign-depth < firstnode.depth + 1
19. addnode,.;y, to regionr

20. addr, nodey,ign-depth t0 node,eign.areaData With key r.id
21. addnode,.q, to DS at index0

22. addr to Regions

23.  elsetotal Area <+ total Area + 1

24.  if indexys >= HS.size() || indexys >= total Area do
25. startFlag < false

26. FindAreaForUnvisitedNodé&s( Regions)

27. returnRegions

Figure 4.3. Road Map Division Using Depth-first Traversal

belong to a single road division and the partial trajectoaee the longest that can be
mapped in that road division. The map phase is outlined iaildetFigure 4.4.
4.1.3. Reduce Phase.Figure 4.5 explains the reduce phase in detail. All

the trajectories mapped to the same map division are predessthe same reducer.
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Map (key, value)
Input: Object trajectory/'ra ., List of road divisionsRegions
Output: ey, value)

1. NODE < Trajmap-path

2. for eachnodein NODE do

3 for eachregion in Regions do

4 if node is inregion then

5. scorefegion) < scorefegion) + 1

6. find the region with highest sconme;giony;g,

7. if scoretegionygn)> 0.8% of total nodes il 'raj,,q,, then
8 return ¢egionpign.id, Trajmap)

9. elsereturn (esidue, Trajmap)

Figure 4.4. Maf key, value)

Reduce key, value)

Input: Object trajectory list/'raj,.q; ID of road divisionyegion;y; k
Output: ey, value)

1. AnonymizedTraj,.q = Clustering-based Anonymizatichifaj,.q, k)
2. return Cegion;q, AnonymizedTraj,.q)

Figure 4.5. Reducékey, value)

The anonymization algorithm is performed on the trajee®rin each reducer and
k-anonymized trajectories are obtained as described inf€&®3. Here, the anonymization

algorithm is the same as that presented in Section 3.

4.2. EXPERIMENTAL STUDY

In this section, the experimental settings are presentemhrparative study of the

MapReduce-based trajectory anonymization and the cergdahpproach is also reported.
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4.2.1. Experimental Settings. Two MapReduce-based anonymization ap-
proaches were implemented using different stopping @itef1) an approach with
average number of nodes per trajectory as the stoppingiari(®!RAN) and (2) an
approach with average road distance per trajectory (MRAR®}he stopping criteria.
The MapReduce-based anonymization approaches are campatte the centralized

ICBA algorithm in terms of the following two error metrics:

Pairs_of _Matching_Traj
Traj_Output_By_MapReduce

(4.1)

Precision =

Recall — Pairs_Matching_Traj

4.2
Pairs_Matching Traj + Missing Traj (4.2)

In the above two equations, the matching trajectories amgpabed by comparing
the anonymized trajectories obtained from the MapRedugeoagh and that from the
centralized approach. Specifically, for each anonymizegedtory obtained by the
MapReduce approach, the most similar trajectory in therabpéd approach is obtained,
i.e., the trajectory with the largest number of common nodéshe identified pair of
similar trajectories share more thasts, of common nodes, these two trajectories are
considered as a pair of matching trajectories. Then, eachopadentified matching
trajectories will be removed from their datasets when deagcfor the next pair of
matching trajectories. In the following experiments,is set to 80. In Equation 4.2,
the “Missing_Trj” refers to the number of anonymized trajectories in the redized
approach that cannot find a matching trajectory in the resaflithe MapReduce. In a
summary, both precision and recall has a value ranging froamd 1. The precision
metric measures the amount of the false positives in the Mdp& approach while the
recall metric measures the amount of the false negativesanMtapReduce approach.
The higher the precision and the recall, the better the acguof the MapReduce

approach.
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The implementation was performed in Amazon Elastic MapRed(Amazon
EMR) using Hadoop, an open source framework, across a clo§té Amazon EC2
m3.2xlarge instances. Each m3.2xlarge instance is coefigto have High Frequency
Intel Xeon E5-2670 processor and 30GB of memory.

The used test dataset consisted of 5000 real trajectori¥k;sQuare kilometers
area; 2350 roads; and average 17 nodes per trajectory. Aetimtataset of size i.e.,
number of trajectories5(0k, 100k, 1000k, 100000k) was generated using the same real
road map as that of real dataset. The datasets and theiragentivile size in bytes are

as in Table 4.1.

Table 4.1. Experimental Settings

Trajectories in Dataset File Size in Bytes

5k 1.3M
50k 14M
100k 31.3M
1000k 313.2M
100000k 27.4GB

4.2.2. Experimental Results. The accuracy of MapReduce-based algorithms,
MRAN and MRARD are compared in Figure 4.6 for data size It can be observed that
they have almost the same precision. However MRAN has higdeall than MRARD.
This can be attributed to using average nodes as the stoppitegia allows greater
expansion than average road distance. Therefore averalgs per trajectory is used as
the stopping criteria for comparing accuracy and procgssime for bigger data size.
In Figure 4.7, the accuracy and processing time of the Map&ethased approach are
reported as the data size vary fréitito 100k. The accuracy is reported in terms of both

precision and recall. It can be observed that the MapRebased approach parallelizes
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Figure 4.6. MapReduce-Based Approaches

the anonymization with less error as both the precision a&adlr are high irrespective
of the data sizes. This can be attributed to the road netwmikiah algorithm which
efficiently groups similar trajectories. The MapReducsdthanonymization algorithm
was also tested for bigger dataset$00k and 100000k. The centralized approach
failed at 1000k given the available resources. The processing times of ¢héradized
and MapReduce-based distributed anonymization algoritinenalso compared. It is
observed that the change in processing times between theapwmaches increases
with increase in data size. The MapReduce-based approaatoiie efficient when

the data size is huge. Adopting MapReduce programming nmeftleiently parallelizes
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the anonymization algorithm. The results show that usingp®&duce model is very

promising in anonymizing huge amounts of trajectory data.

4.3. SUMMARY

By using Map Reduce to efficiently parallelize the compotadi needed to
simplify data, the amount of data that can be processed wasaged greatly. The
increase was enough to confidently claim that the methoddchahdle the exabytes
of data being produced per month globally and scale to haent® more data in the
future. Additionally, the trajectory data was efficientlganymized and protected from

direct knowledge or inference attacks.
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5. TRUSTWORTHINESS EVALUATION DURING LOCATION-BASED
SERVICES

This section presents the approach on evaluating the toutivess of
messages disseminated during location-based servicesVéricular Ad-Hoc Networks

(VANETS) are used as the background platform to elaborageafiproach.

5.1. SYSTEM OVERVIEW

An overview of the proposed Real-time Message Content &hbd (RMCV)
scheme is given first. Each step of the scheme is then elabldratiuding the associated
trust model.

The core of the RMCV is an information-oriented trust modhiah estimates the
trustworthiness of message content by taking into accowdrigty of VANET-specific
dimensions, such as who handled the message at what locatobrwhat time. The
RMCV scheme consists of two main components: (i) Messagsstieation; and (ii)
Information-oriented Trust Model. The outcome of the schem a “trustworthiness”
value associated to each received message.

The model applies to information inquiry or information shg applications, for

which the following format of messages was adopted:

Definition 1. Let Msg(loc,, loci,:, etype, info,t., mpath) be a message transmitted in

VANETS for information inquiry or sharing:

e loc,: The location of the query issuer or the entity to receiveshared information.

e loc;,;: The querying location that the query issuer would like t@wnabout the

information, or the location of the shared information.

e etype: The event type which could be *“traffic condition”, &@ condition”,

‘coupon”, etc.
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e info: The information about the locatidiac;,;, which could be the query results or

shared information.
e .. The time the query results or the shared information is dé.

e mpath: This records the message propagation path. It is eaxfdrm of [(oc,,,
ts,),(locs,, ts,), ...), which means a vehicle &ic,, generated the messagésg at
ts, and then the message was forwarded by the vehiclecat at ¢,, and so on.
The locations of senders and message sending time are agsoine stamped by a

tamper-proof device installed in the vehicle.

Figure 5.1(a) illustrates an example scenario of inforamatnquiry. VehicleV;
at locationloc; initiates a query on traffic condition at locatider,. The query message
is in the form of M sg¢; (locy, loc,, “traffic”, NULL, NULL, [( locy, t1)]), where two fields
info and ¢, are waiting to be answered. The query was propagated toleshic, V3,
V,4) close to the querying locatiotvc,. V; and Vz honestly reported that there was a
traffic jam by sending back the messagésg, and M sg; respectively:

Msgs(locy, loc,, “traffic”, “traffic jam”, t,, [(locs, t2)])

Msgs(locy, loc,, “traffic”, “traffic jam”, t3, [(locs, t3)])

vy
4
Vg

L
-Jam Msgg -150FF s
f | e h’s e ] | ﬁ” “ ’
he % P o :
f'ug ‘vl':(/)%] Msg,,

’LI 519

Msg,

(@) Information Query (b) Information Sharing
Figure 5.1. Example Scenarios
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However, a malicious nod&, who lied that the traffic was fine and sent the
following messageM sg4(loc, loc,, “traffic”, “traffic fine”, ¢4, [(locs, t4)]). Further, in
order to make the message appear trustworthyforwarded the message to multiple
vehicles {7 and %) instead of the one close fg. A malicious vehicle may not know
how many other malicious vehicles out there. Thus vehiglaas to spread his messages
to more vehicles otherwise his false messages can be eak&ty out based on a simple
majority vote byV;.

Upon receiving the messages initially sentlgy V5 andV, the querying vehicle
V1 needs to analyze the conflicting information carried by thessages. It needs to
figure out which one to trust. The proposed RMCV scheme canxbeugéed byV; to
conduct the trust evaluation, and it is expected that theetmessages provided by and
V3 will receive higher trust scores.

The RMCV scheme also works for scenarios wherein one wolt th share
information with others. As shown in Figure 5.1(b), the owné&vehicle V; would like
to share a coupon from a restaurant that he/she just visitéuals, V5 broadcasts the
coupon code to other vehicles using mess&bgy;, whereloc, is set to NULL as this is
a broadcasting messag&/sg;(NULL, loc,, “coupon”, “15% off code of TJ Restaurant
150FF", t5, [(locs, t5)]).

During the message propagation, some malicious nodes nrapsrly modify
the coupon code to be invalid such as givenMyg,3. However, the malicious node
would not be able to fake location and time information (irepath) which is directly
generated by vehicle’s tamper proof device by using tealesgsuch as [57]. For a
vehicle which receives multiple coupon messages, it wliagitilize the RMCV scheme
to help identify the more trustworthy versiodZsg;;(NULL, loc,, “coupon”, “15% off
code of TJ Restaurant 150FRg, [(locs, ts5),(locs, tg]).
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5.2. MESSAGE CLASSIFICATION

In VANETS, one vehicle may receive multiple messages witfiedint and
possibly contrasting information from different vehicldaring a short period of time.
These messages may be related to different events (or atiffejueries) occurring at
same or different places. Therefore, the first step is totifjethe messages describing
the same event from the potentially large amount of recemexsages so that the
analysis can be conducted separately for each event.

One may think of using clustering algorithms to cluster themssages. Messages
corresponding to the same event may be similar or conflictfirgpurious or inaccurate
messages are included. Direct adoption of conventionaiteling algorithms is likely
to put these related but conflicting messages in differeougs, and hence affect
the construction of the trust model. For example, applyingoaventional K-means
clustering algorithm to messages received by the vehigldlustrated in Figure 5.1,
three clusters may be obtained: clustgr(containing messages of “traffic jam”), cluster
C, of messages about “traffic fine”, and clustey for the coupon code. Such clustering
did not provide any hint that information ii; andCs is in fact responding to the same
query and they are conflicting. Moreover, the clusterCgfdid not identify the false
coupon code either since the messages are very much simitarms of content and
other values of other components (e.g., location, everg)typthe messages.

Thus, in order to better classify messages disseminated\METS, a two-level
clustering algorithm is proposed. The first level clustgrgroups messages describing
the same event regardless the message content. To achievenéissages are clustered
based on their similarity on the three components;,;, t., andetype. Specifically, two
messages{sg; and M sg;) would be placed in the same cluster if they satisfy all the

following conditions:
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o Dy(locin,, lociny,) < pa: Dy is the Euclidean distance of two locations. This
condition requires that the two messages are reportingtevast further than
distancep, so that it can be inferred that the two messages are likelyetabmut
the same event. In this worl, is selected to be the width of a road which is

about 20 meters for a three-lane road.

e |t., —tc;| < pii Messages sent from the same locations may not refer to the sa
event. For example, messages responding to differentegueray be sent from the
same location at different timestamps. Therefore, the timesholdp; is used to
constraint the consideration within messages sent dugaghy timestamps. In the
experimentsy;, is set to be 30s within which most query results would not have

big changes. For example, traffic condition would not chaadet within 30s.

e ctype; = etype;: TWo messages about the same event obviously need to have the

same event type.

For each cluster obtained from the first level clusteringe second level
clustering is conducted. The second level clustering aimsidentify conflicting
information regarding the same event. This clustering i®doated mainly by examining
the message content, i.e., the similarity between the vafusomponent iifo) in the
message. To compute the similarity of message contenttligskeywords are extracted

[T

from info of a message by excluding articles (“a”, “an”, “the”) and nention words
that do not carry important information. For example, givemessage “there is no
traffic jam”, it is converted to a set of keywordsno”, “traffic’, “jam” }. Then, the
keywords in the set are sorted in the alphabetical ordeerAfat, the edit distance [65]
and WordNet [70] are applied to compute the distance betvwegwords belonging to
two messages. The distance calculation of two keyword 5ét§ and KWW, consists of

three steps:
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1. Firstly, the pairs of keywords that fully match each otlee identified and

removed from further consideration.

2. Next considered are the remaining keywords in the two #et are pairs of

synonyms based on WordNet. All such pairs are removed.

3. For remaining keywords, the keywords iV; and KWW, which have small edit
distance are paired. These edit distances are summed upeia tie edit distance

(denoted ad),,).

4. If there is any keyword left unpaired, such as when the tegword sets have
different number of keywords, the total characters of thpaimed keywords are

summed up and added 10.,,.

If the distance D.;) between two message content is smaller thar,, the two
messages will be put in the same cluster. To ensure that cimgliinformation would
have a high probability to be placed in different clustersstact thresholdp;,s, is
adopted which is set to 2 (the length of an important keyward”). For example,
suppose thakWW,={"no”, “traffic’, “jam” } and KW,y={"traffic”, “congestion”}. After
sorting the keywords in each set, step 1 removes the mat&eygord “traffic’. Step 2
removes the synonyms “jam” and “congestion”. Step 3 is skippince there is no more
pair left. Step 4 returns the final distante,; = 2 which is the length of the remaining
keyword “no”. It is worth noting that due to variety of the wayo express the same
information, the distance here is just an estimation and n@ybe always accurate in
some cases when messages have same meaning but are expressgdlifferent ways.
The discussion on advanced natural language processing ¢&f the scope of this work.
To obtain a better understanding of the whole process of thessage
classification, the example scenarios are studied givemgur€& 5.1. Vehiclel; received
7 messages which ar&/sg;, Msgs, ..., Msgi3. Suppose that. in all the messages

are fairly close to one another, i.e., the difference lesth. Applying the three
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conditions onloc;,;, t. and etype, the following two clusters are obtained after the
first-level clustering:

Cy = {Msg7, Msgs, Msgy, Msgio}, Co = {Msgi1, Msgia, Msgis}.

This is because messageginreport the same type of event “traffic” at the same
locationloc, almost at same time, while messagesinare about coupon information
at loc,.

Next, second-level clustering is conducted égrandC; respectively. The cluster
(1 is further divided into two clusters based on the messagtentn

Cn = {Msgqr, Msgs}, Cia = {Msgg, Msgio}.

Similarly, the clustelC; is also divided into two clusters based on the content:

Co = {M5911> MSQ12}. Oy = {M8913}-

5.3. INFORMATION-ORIENTED TRUST MODEL

After the message classification, the next task is to determvhich group
of messages are truth-telling. To achieve this, an infolonadriented trust model is
designed. The overall process is to identify the factors ity be indicative of message
trustworthiness, and then quantify their impact and irdgegitheir effects to generate
an overall trustworthiness score that can be easily urmtstgdby end users for making
decisions. Three important factors are identified thatcaffeessage trustworthiness,
which arecontent similarity content conflicendrouting path similarity In what follows,
an explanation of why they are important, how they affect tilust score is provided.
The trust model is finally derived based on these factors.

5.3.1. Effect of Content Similarity. Given a group of messages associated to
a same event, similar messages are generally consideredsiapiportive to one another.
Moreover, similar to daily life conversations, the more pleosupporting the same fact,

the more likely the fact would have some true ground. Thougd observation may
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not always hold as discussed later in Section 5.3.2., it itaicdy an important factor
to be considered when judging the trustworthiness of a ngessdao model these two
effects, two parameters are used. The first parameter is éixemam distancerfaxD..)

of content between two messages in the same cluster. It ij@arthe similarity of
information in the same cluster. The smaller the distanice,higher support level of
the information given by each other. The second parametreisiumber of messages
(V) in the cluster which models the second effect: the more aggessin the cluster, the
higher support the message received. The two parametetBearéntegrated to compute

the support value by using Equation 5.1.

6%: <§ o mach)

Support(c) = 2 Lo (5.1)
e

wino

The rationale behind Equation 5.1 is explained as follows.

e In the first part of the formula)V, is the total number of messages regarding the
event. Dividing N. by N, is for the purpose of obtaining a normalized value
ranging in 0 and 1, sincé < N. < N.. Such normalization helps make values
obtained from different clusters of messages comparabliie. effect of V. is then
modeled by an exponential functiar™-. The reason to choose the exponential
function is that the resulting value grows faster when tHeotfbecomes more
dominant. This maps the following scenario. For groups af feumber of
messages (e.g., two or three messages), it is hard to say rong ¢¢ more
trustworthy than the other just because of it has one morpatipe message.
Therefore, such groups will have very close trust scores.eW\Miine number of
messages in a group is much bigger, the trust score will grawhnfaster using
the exponential function, and this represents that the ghidity of the message

being true is higher.
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e In ’”‘;LdD maxD,. iS normalized to the range of 0 to 1 by using the possible
maximum distance.,. Recall thatp., is the threshold used to determine whether
two messages can be placed in the same cluster. The galseused for two
purposes. First, it reverses the eﬁectfégfd—m so that when the difference of
messages is greater, the trust score would be lower. Sedoedsures that the
second part will have certain effect on the overall trustsaven if it reaches the
maximum distance. In particular, when messages in thearlase the same, i.e.,

maxD,. = 0, the second part returns a value 1.5. In contrast, whenD, = 1,

the second part returns value 0.5.

e The value obtained from the product of the previous two camepts ranges from
5 to 2e. By dividing the product by2e, the final similarity score is normalized to
be less than 1. It is always greater than O since messages sathe cluster are

expected to have at least some similarity.

5.3.2. Effect of Routing Path Similarity. It is likely for one to trust a message
which has a large number of other similar messages as th@dupfowever, considering
content similarity may not be sufficient to determine thestworthiness of the message
since in some cases a large number of messages may also basis@.i An extreme
case is that if all messages have the same origin and thenasigi malicious vehicle,
these messages should not be trusted. From the example ghéwgure 5.1, the vehicle
V1 received two groups of conflicting messages about the traffiedition. These two
groups of messages have equal content similarity scoresrding to Equation 5.1 in
Section 5.5., making it difficult to tell which is more trusivthy. However, if observed
closely, one may notice that the group of false messaljes;{ and M sg;, are actually
provided by the same source vehicle, while the group of tressages N/sg; and
M sgg) have different source providers. Following a general aggion that majority of

people are honest, it is less likely that the majority of geqpurposely provide wrong
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information. Therefore, the probability of multiple soarproviders reporting the same
wrong information is expected to be lower than that of a €rgglurce provider in most
cases. More generally speaking, if similar messages share ocommon nodes during
their routing paths, the risk of messages being tamperadases.

Based on the above discussion, the effect of routing pathasity is modeled by
using three parameters: the number of messadgpif the cluster, the number of the
origins of the messagesV(,.), and the number of distinct vehicled/{;,) in the routing
paths of messages in the same cluster. Then, the path siynfianction is designed

based on the following guidelines:

e If there are a large number of source provideks, (), the message routing paths

are less likely to be similar.

e If there are common vehicles in multiple paths and the commehicle is
malicious, all messages forwarded by the malicious vehicly be tampered.
To model this, the more distinct vehicled/f;;) involved in the same cluster of

messages, the lower path similarity should be.

The following equation sums up the above effects:

Nsrc Ndif
Path, =1 — (0. )
a (055 + 055

(5.2)

In Equation 5.2,N,; denotes the total number of vehicle nodes involved in fodivey

the messages in the clustér If the same vehicle occurs in different paths, each of its

occurrence would be counted 19,;. Then, ]]\\[,dil{ yields the percentage of the distinct

vehicles in the routing paths. Though this percentage aflects the difference of
source providers to certain degree, an equal weight (0.5ilisassigned to the number
of source providers due to its importance.

The steps of computing the path similarity are illustratesthg the example in

Figure 5.1 . In clustet;; = {Msg7, M sgs}, the routing paths are the following:
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Msg7 : Vo = Vs; Msgs : V3 = V.

Observe that in the above twodV( = 2) messages, there are two different sources
(N = 2), four different nodes N, = 4), and total four nodesN,; = 4). Therefore,
the Path, =1 — (0.5 2 + 0.5 - )=0, which means the paths are totally different.

In clusterCs = {Msg9, M sg1}, the routing paths are the following:

Msgy:Vy = Va; Msgio : Vi — V.

Accordingly, N. = 2, N = 1, Ngiy = 3, Ny = 4 are obtained. Then, the
numbers are plugged into Equation 5.2 and path similarigbigined asPath, = 1 —
(0.5 - % +0.5- %) = 0.375 which has a higher path similarity score compareduster
Chi.

The path similarity serves as a penalty value to the supduevof a cluster of
messages. The more similar the routing paths of messagés isaime cluster, the less
support to each other will be considered. In other wordsnbee independent of routing
paths, the less probability of messages being tampered.Efhation 5.1 is revised as
follows:

Support'(¢) = (1 — Path,) - Support(c) (5.3)

5.3.3. Effect of Content Conflict. The analysis of messages referring to a
same event, may result in more than one cluster of messagessayges in different
clusters indicate the inconsistency of the information e vent. As shown in the
example of Figure 5.1, one cluster of messages claim theraffsc jam while the other
claim the traffic is fine. It is obvious that content conflictsha negative impact on
the trustworthiness of messages, and the more conflictirgsages the heavier impact.
Specifically, letC, ..., C, be the clusters of messages regarding the same event. For

each cluster of messages, a conflicting valte:., is computed given by Equation 5.4.

k romeort! -y
Zj:l Supp()'rtcj Supportci

e Z?:l Supportf:j
Con,, = (5.4)
€
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A higher conflicting value will be obtained if there are moressages against current
clusterC;. The conflicting value is O if there is not any conflicting dkrs. Here, the
exponential function is adopted for the same purpose of ifymg the effect.

5.3.4. Final Trust Score. To obtain the final trust scorérust(c), the
conflicting value is integrated to the support score Sup@rt In particular, the
conflicting value is used to further penalize the support&as given by the following

equation.
(e — e Come) Support'(c)

- (5.5)

trust(c) =

It is modeled based on the following rationale. When the odtify value is small,
its effect should not be very dominant. In this way, if thesesefew false messages,
these false messages would not affect the overall trudtwass of the true messages.
When the conflicting value is big, its effect grows faster fagsimore likely that the
information in the cluster being affected is not true regagdhe existence of a large
number of opponents. Therefore, as can be seen from Equaipn*“°"< models the
impact of the conflicting value whereby the exponential fiorcalong with a parameter
¢ make the resulting value grow faster with the increas€’of.. Here,¢ is a positive
value that helps adjust the importance of the conflictingi#abnd it is set t@ in the
experiments. Finally, the score is normalized to range 0 by Inultiplying 85—1_1 The
higher the trust score, the more trustworthy the messagebmay

Finally, the overall process of estimating the trustwordss of a message is
summarized. Given a bunch of messages received by vehickbthin a short time
interval p;, the RMCV scheme first clusters messages according to thesg\and then
further clusters messages based on their content. Aftér st scores are computed
for all the clusters of messages. For clusters of the samat,etvee one which received

the highest trust score is selected. If its trust score isv@alam experience threshold
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(e.g., 0.5), the system would report that the content of ¢hister may be trustworthy.
Otherwise, the system would report that none of the recaneslsages are trustworthy.
In addition, one more interesting scenario is introduced tan also be handled

by this approach. Suppose that a vehiglesends the following two messages:
e Msg,i: At time tq, there is a traffic jam between exits 25 and 30 in HWY 65.
e Msg.o: At time t,, there is no traffic jam between exits 25 and 30 in HWY 65.

It may be the case that betweénandt, things have changed, or it could be the case
that a vehicle can only observe some partial view and latenay see a complete view
and send a different message for correction.

For the given scenario, the RCMV scheme will deal with it dtofes:

e Case 1. Suppose that is far from ¢; (e.g., 30 minutes later). All messages
(including the one from vehicl&, and others) about traffic jam sent around time
t; would be considered as message for one event. These measagesnpared to
see if there was a real traffic jam#t Messages sent aroungwill be considered

as another event (no jam) which could be true if the traffic wlaar att,.

e Case 2: Suppose thatis close tot; (e.g., only a couple of minutes different), and
there is in fact no traffic jam but vehiclg, made a wrong observation &t In
this case, the message of “traffic jam” will be considered asrdlicting message.
Assuming that majority is honest, more messages of “no ¢rgdfin” is expected

around timestamp,, so that the receiver would not be confused.

5.4. EXPERIMENTAL STUDY

In this section, the experimental settings are presentddaacomparative study

of the approach against the existing work is also reported.
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The implementation is written in JAVA and conducted in a degkof 64-bit
Intel(R) Xeon(R) E5630 2.53GHz machine. The message diss¢ed in VANETS is
simulated as follows. A parameter is adopted that contioés rtumber of hopsVi,,
between the source provider and the query issuer (or tharlassage receiver) being
considered. In the experiments,,,, is varied from 1 to 5. At each hop, 100 vehicles are
generated. For each event, on a randomly selecteddpprcent of malicious vehicles
is selected. For the vehicles at the first hop, true messagegemerated about several
events for honest vehicles, and conflicting messages foicima$ vehicles. Honest
vehicles will honestly forward whatever messages theyivede one vehicle at the next
hop, while malicious vehicles will modify the received magss and forward them to
multiple vehicles (ranging from 1 t&/;) at the next hop.

The approach is compared with the work by Raya et al. [56] Wiscthe latest
representative work on data-centric trust establishmenWANETs. As their work is
based on Bayesian Inference, it is denoted as Bl in the erpatifigures. Since the
Bl work only considers a single event, the messages areelihtib one event when
comparing to them. Also, the Bl work assumes the existendeust scores (probability
of trustworthiness) of each message for computing the fimiak score of the event. In
the simulation in their work, they assume the probabilityrastworthiness of individual
messages follows a Beta distribution with the mean equal®.Goand 0.8. The same
parameters as in their work are adopted in the experiments.

5.4.1. Experimental Results. In the first two rounds of experiments, the
properties of the RMCV are examined. In the last round of @rpents, the RMCV
approach is compared with the Bl work in terms of the abilitypeventing attack.

5.4.1.1 Efficiency. In the first round of experiments, the objective is to
evaluate the efficiency of the RMCV scheme. Unlike the Bl waevkich assumes
the existence of scores of individual messages and just gt@smne equation for the

final trust score, the RMCV scheme offers detailed steps taimkthe trust scores
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of individual messages. These steps include messagefidatisn and routing path
similarity analysis. The Figure 5.2(a) reports the totalditaken by the RMCV scheme
from messages being received till the trust score being abeap The total number of
messages that a vehicle received duringre varied from 100 to 1000. There are five
hops along each routing path. It is not surprising to seeth@aprocessing time increases
with the number of messages to be handled. This is becausmdhe messages, the
more time needed for message classification and path amalyss also observed that
the time for processing 1000 messages is really short (fess 30ms), which indicates
that the scheme is feasible and efficient to meet the stno¢ €onstraint in real-time
applications.
5.4.1.2 Effect of conflicting value and path similarity on tustworthiness

score. In this experiment, it is presented how conflicting values @ath similarity
values affect the overall trustworthiness score. From ieigu2(b), it can be observed
that the trustworthiness score decreases with the incrafasenflicting values or path
similarity values. More importantly, the trust score drdpster when the conflicting
value and path similarity value become larger. Thus, theehisdtolerant to cases when
there are few false reports (i.e., conflicting informatioapd becomes more sensitive

when the number of false reports increases.
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Figure 5.2. The RMCV Approach
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5.4.1.3 Impact of false messages on vehicles accepting timessages. The
RCMV scheme is now compared with the Bl work. The effect ofréase in the
percentage of false messages per vehicle to the percentagmd vehicles accepting
true messages is examined. A simulation of 1000 rounds wagoma group of 100
vehicles. The results are reported in Figure 5.3. From therdigit can be observed
that when the amount of false messages is less than 50%, ®tBlItwork and the
RCMYV approach can very well identify false reports, yielgliclose to 100% acceptance
rate of true messages. However, once there are more than &6&oressages, the Bl
work results in very low (close to 0%) acceptance rate of messages. In fact, the
Bl work almost downgrades to a majority vote. In contrasg¢ RCMV approach yields
much better performance even if there are many false messaljas is attributed to
the way the conflicting information and path similarity aredeled. Specifically, since
false messages tend to have higher path similarity scdnespénalty score from path
similarity decreases the impact of the large amount of falessages on making the

final decision.
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5.5. SUMMARY

This section presents a novel information-oriented schefore evaluating
trustworthiness of messages disseminated in VANETS, whitdorporates content
similarity, content conflict and route similarity into theust model to best suit the

dynamics of VANET environment.
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6. CONCLUSION AND FUTURE WORK

In this dissertation, three works are presented with régpegarivacy management
and trustworthiness evaluation in location-based sesvic8Bpecifically, the first work
addresses the problem on publishing location data withapyivpreservation while
maintaining high data utility rate. The second work extetitks centralized location
data publishing approach to a distributed version by leyiataMapReduce technology,
and is capable of processing a huge amount of location datm iefficient manner.
Finally, the third work addresses an important issue cateel to privacy preservation,
which is the trustworthiness evaluation of messages dissgetd by anonymous users
in location-based service. For all the proposed approaawsensive experiments have
been conducted using both synthetic and real datasetsity trex ideas.

Regarding future research directions, the following areiistoned. First,
fine-grained temporal parameters may be integrated intotrjectory anoymization
algorithm to generate more insight of the traffic flow. Secoadfew other options
of map partitioning may be explored to further reduce th@nmiation loss caused by
the distributed processing in MapReduce. Third, existiatural language processing
techniques may be integrated to the content evaluation fnpoaposed trust model to

improve usability of the system.
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