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ABSTRACT 

The objective of the current work was to fabricate a crack-free functionally 

graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD).  

One potential application for the current material system is the ability to fabricate a 

functionally graded alloy that can be used in a space heat exchanger. The two alloys, 

Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were 

chosen as candidates for grading because functionally grading those combines the 

properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation 

resistance of Inconel 625 into one multifunctional material for the end application. 

However, there were challenges associated with the presence of Ni-Ti intermetallic 

phases (IMPs). The study focused on several critical areas such as (1) understanding 

microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing 

between graded layers. Finite element analysis (FEA) was performed to understand the 

effect of process conditions on multilayer claddings for simplified material systems such 

as SS316L and Inconel 625 where complex microstructures did not form. The thermo-

mechanical models were developed using Abaqus
TM 

(and some of them experimentally 

verified) to predict temperature-gradients; remelt layer depths and residual stresses. 

Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was 

studied under different processing and grading conditions. Thermodynamic modeling 

using Factsage (v 6.1) was used to construct phase diagrams and predict the possible 

equilibrium major/minor phases (verified experimentally by XRD) that may be present 

along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.  
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NOMENCLATURE 

Symbol Description         

FGM   Functionally Graded Material 
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1. INTRODUCTION 

Functionally graded materials (FGMs) [1] are a new generation of high 

performance multi-functional material-systems in which the properties of a component 

are spatially tailored to meet service requirements. This is achieved by doing a smooth 

transition between layers with varying compositions of chosen alloys.  Some of the older 

manufacturing methods for FGMs used wasteful subtractive or forming processes to 

shape parts. This was accomplished by melting and time-consuming heat-treatment 

processes to join dissimilar materials and improve bulk microstructures. With the 

introduction of additive rapid prototyping techniques such as Laser Metal Deposition 

(LMD) the process allows the ability to deposit any alloy into near-net shape parts in a 

single processing step [2, 3]. Heat transfer between meltpool and workpiece is extremely 

localized allowing accurate deposition, low dilution and a small heat affected zone.  

Although FGMs potentially offer attractive application-specific alternatives to 

conventional materials, several aspects important to their design, development and 

functionality (not investigated in this thesis) using LMD processes warrant further 

investigation. These include: 

1. Thermo-physical property mismatch of material-systems such as density, 

coefficient of thermal expansion, thermal diffusivity, etc., results in generation 

of residual internal stress, segregation in the melt pool and de-lamination of 

layers during processing. 

2. Material-systems compatibility, an issue when reaction between components 

results in unwanted intermetallic phases (IMPs, brittle compounds). 

3. Uncontrolled process parameters, which can cause the melt pool to get 
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superheated and result in high temperature gradients. This will enhance 

unwanted mixing between layers and create residual stresses. 

 

Poorly defined FGM deposition strategies manifest themselves as poorly 

controlled microstructural features that adversely impact the desired mechanical 

properties of the end component [4]. The major challenge in fabricating FGMs by LMD 

is cracking as a result of accumulation of internal stresses due to multiple heat-cool 

cycles and formation of un-wanted intermetallic phases (IMPs).  

 

1.1 AIM AND MAJOR CHALLENGES 

 

The goal of this research project was to develop an alloy combination that can 

potentially solve two inter-related problems: (1.) Achieve a high strength/low weight and 

high-temperature oxidation resistant functional material and (2.) Solve processing issues 

associated with generating the aforementioned material-system. Bi-metallic joining or 

laser claddings were not considered as suitable processes for this application. This was 

because of the inability to bring incompatible or functional materials together without 

encountering problems such as de-bonding and cracking due to sharp transitions such as 

hardness or microstructure variation at the interface. It was recognized that functionally 

grading disparate alloys would reduce such sharp transitions and would allow the 

realization of the end application. Material deposition via a laser allowed such grading 

with the accuracy and control required to achieve the desired transition between layers. In 

this project functionally graded high strength/low weight and high-temperature oxidation 

resistant materials were used to potentially fabricate an FGM to be used in a space heat 
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exchanger. Ti6Al4V and Inconel 625 alloys are aerospace alloys and were considered to 

be the suitable candidates for the present study. Ni-Ti alloys are also used as functional 

materials for industrial and medical applications due to their high temperature oxidation 

resistance, shape memory property, and good biocompatibility [5].  

The work reported in this dissertation aims to understand and explain the 

microstructure evolution in the functionally graded alloys Ti6Al4V and Inconel 625 

alloys by LMD. Ti6Al4V/commercially pure-Ti with Inconel 718, Rene88DT, Inconel 

625 has been previously functionally graded by a few researchers only with very limited 

success [6-10]. Previously functionally grading Ti6Al4V and Inconel 625 usually 

resulted in cracking, possibly due to large internal stresses from the multiple heat-cool 

cycles and formation of unwanted intermetallic phases (IMPs). In this work, effects of 

process parameters on the microstructural evolution in the functionally graded Ti6Al4V 

and Inconel 625 have been studied to a good extent. To minimize the occurrence of 

cracks in the fabricated structures different grading schemes were identified and also 

tested in this study.  

 

1.2 PROJECT GOALS 

 

The specific objectives of this research are summarized below: 

 To investigate the effects of processing parameters and their interaction in the 

LMD process. 

 To identify the feasibility of LMD of functionally graded materials Ti6Al4V and 

Inconel 625. 
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 To model, using finite element techniques the thermal and mechanical behavior of 

the multilayer LMD of more compatible systems such as SS316L and Inconel 625 

on SS316L workpiece in order to understand the effect of processing parameters 

on cooling rates, residual strains, etc.,. 

 To understand the microstructure evolution along the Ti6Al4V and Inconel 625 

graded structure under different processing conditions. 

 To attempt to solve the macroscopic cracking during functional grading of 

Ti6Al4V/Inconel 625. 

 To try to explain scientifically the differences between cracked and un-cracked 

Ti6Al4V/Inconel 625 FGMs. 

 

1.3 DISSERTATION LAYOUT 

 

This thesis addresses in detail the microstructural evolution and (and possible 

reasons for cracking) of functionally graded Ti6Al4V and Inconel 625 alloys by laser 

metal deposition (LMD) process. Section 2 gives a general overview of the technology of 

LMD and its application in functionally grading different alloys. Section 3 describes the 

materials, equipment and processing conditions used throughout this project. The 

microstructure and consequent material properties are highly dependent on the 

temperature history of the material. Controlled microstructure development is essential 

when manufacturing high reliability components such as those used for aerospace 

applications. Modeling and simulation are widely used tools in manufacturing design as 

they reduce exhaustive research-experiments and costs. Section 4 presents an 

experimental study on functionally graded Ti6Al4V and Inconel 625 fabricated 
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structures. Results on microstructural evolution along the functionally graded Ti6Al4V 

and Inconel 625 are included in this Section. This section includes results on the finite 

element modeling to understand the effect of processing parameters on multilayer 

deposition of simplified systems such as SS316L and Inconel 625 on SS316L 

workpieces. Also presented in this section is a study on the microstructural evolution of 

the crack-free compositionally graded Ti6Al4V and Inconel 625 alloys. Section 5 is a 

discussion on functionally graded Ti6Al4V and Inconel 625 with supporting arguments 

from literature wherever deemed necessary. The section also covers results from 

thermodynamic modeling of the graded structures and the differences between the 

cracked and un-cracked FGMs. A general summary of the outcomes of the research work 

is then made in Section 6. 
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2. LITERATURE REVIEW 

Functionally graded materials (FGMs) are a new generation of high performance 

materials-systems. In an ideal FGM, the properties of a component are spatially tailored 

to meet service requirements by controlling microstructural details during processing. A 

smooth transition between layers with varying compositions of the chosen alloys will 

result in a multi-functional material. Such multi-functional materials can fulfill more than 

one functional requirement separately. The functions can vary from mechanical to 

electrical to thermal. The concept of FGMs was first proposed around 1984-85 for use in 

aerospace applications [1]. The researchers devised a concept to fabricate a material by 

gradually changing (grading) the material composition, and in this way improve both 

thermal resistance and mechanical properties. Some potential applications for FGMs 

include electronic components, biomedical implants, thermal protective systems in 

spacecrafts and aerospace engines. 

Most of the complex-multifunctional parts are composed of a “single material” 

with nominally uniform properties, but the tribological, fatigue and creep resistance and 

load bearing requirements vary widely throughout the part. Some of the requirements in 

general can be met by modifying the surface only through heat-treating for residual stress 

relief and enhancement of material properties using lasers. Bulk properties are difficult to 

modify or control using surface treatments. As a result the microstructure differs between 

surface and the bulk of material.  High interfacial stresses in the transition zone between 

the surface and the bulk of the material can negatively impact the performance of the 

material over time. An alternative way is to make use of a combination of materials to 

meet the service requirements. Now, it is technically a challenge to produce any type of 
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component with variable microstructure and stress distribution within a single process 

using “different materials”. Conventional manufacturing methods use wasteful 

subtractive (i.e. machining) or forming processes to shape parts and then rely on welding 

and time-consuming heat-treatment processes to join different materials and improve 

bulk microstructures. Within turbine engines for example Waspalloy and Inconel 

superalloy microstructures deteriorate with time and crack due to thermal fatigue that 

originates at regions of discontinuous microstructure such as welded joints. Direct Metal 

Deposition by laser (DMD) is a single-stage layered manufacturing technique which has 

the ability to deposit any metal and many intermetallics into near-net shape parts in a 

single processing step [2]. This technique was developed from single-layer deposition, 

pioneered by the work of W.M. Steen [3], and allows the formation of fully-dense thin 

walled or bulky metallic parts through the pneumatic injection of powder into a moving, 

laser-induced melt pool. Heat transfer is extremely localized allowing accurate 

deposition, low dilution and a small heat affected zone. The final material properties are 

generally excellent due to rapid cooling induced by a self-quenching effect. The 

microstructure is very fine and thereby, an improvement in mechanical properties is 

observed. DMD also allows the manufacture of otherwise unrealizable parts (not related 

to material property changes), such as cooling dies with conformal cooling channels and 

original shapes. It was estimated that the DMD process can reduce the time of die 

production by 40% [11]. 

The successful use of this process in the aerospace sector also adds to its 

usefulness over conventional methods, as it eased the manufacturing of complex parts. 

But some of the challenges with DMD are dimensions and process control. Post process 
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machining and/or heat treatments have to be performed to improve the surface finish and 

reduce internal stresses in the part. This can be reduced by close control of dimension. 

Substantial cost reduction is possible, if desired properties can be achieved through 

process control and minimizing the post-process heat treatment. Microstructure 

manipulation can be achieved by controlling the cooling rates via meltpool size and 

solidification time control. To achieve this, a quantitative understanding of the 

relationship between independent process parameters (e.g., laser power, speed, powder 

deposition rate, etc.,), dimensions, cooling rates, microstructures, and properties is 

required [12].  

 

2.1 PROCESSING OF FUNCTIONALLY GRADED MATERIALS (FGMs) 

 

The ability to bring onto one platform a homogenized design method, 

heterogeneous solid modelling and DMD has been a revolutionary departure from 

traditional material selection methods [12]. The following section discusses two 

interesting types of FGMs- ceramic-metal grading, and metal-metal grading.  

 

2.1.1.  Ceramic-Metal (or CerMets) FGM Processing. CerMet such as SiC 

reinforced Ti6Al4V, TiC reinforced Ti by direct metal deposition (DMD) have been 

widely investigated for enhanced tribological performance [13, 14]. Casting 

methodology for many CerMets is not very effective as it can result in detrimental 

interfacial reactions because ceramic particles spend considerable time in contact with 

molten metal. Moreover, particle segregation can occur during casting and mold filling 

due to density differences between ceramic and metals. In contrast, powder metallurgical 
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methods can be used to attain elevated volume fractions of reinforcement, with limited 

or no interfacial reactions, since relatively lower temperatures can be maintained and 

exposure time controlled. The major disadvantage of powder metallurgical routes is that 

they are relatively complex and limited in terms of product geometry. Therefore, 

summing up the most important factors that need to be controlled to tailor a composite 

layer on to a surface of metallic substrate are: (a) ceramic particle dissolution and 

reaction with the melt at high temperatures; (b) distribution and volume fraction of the 

injected ceramic particles; and (c) thermal stresses built up in the composite layer during 

cooling of the melt pool. The Laser metal injection (LMI) process is one of the potential 

solutions for minimizing the reaction, with which no other process can compete in 

shortening the processing/reaction time. The ceramic particles need to be injected into 

the laser pool just behind the beam in such a way that the powder stream is positioned 

close to the beam, but without interfering it. This permits the particles to penetrate in the 

melt to certain depths and the method also avoids reaction of the particles with the melt 

at higher temperatures.  

The strength and stability of the interfacial region between the ceramic 

reinforcement particles and the metal matrix governs the mechanical and physical 

response of CerMets [15]. Failure processes that are initiated by interfacial de-bonding 

are likely to occur when a composite material with a weak interface is subjected to an 

applied stress. The majority of CerMets are non-equilibrium systems due to the presence 

of a chemical potential gradient across the interface, which drives diffusion and/or 

chemical reactions to take place at the interface. Under controlled conditions such as 

temperature and exposure time, the formation of a limited reaction layer might be 
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desirable in order to obtain strong bonds.  The limited dissolution of the particle results in 

stronger bonds and better mechanical performance. In the case of high levels of 

dissolution of the ceramic particles, which implies the presence of thick reaction layers, 

cracks are often initiated in the matrix.  

Another problem that is associated with the majority of CerMets is a lack of 

wetting of the ceramic particles by metal systems. One of the approaches to mitigate the 

challenge of wetting was to encapsulate the ceramic materials in a metallic coating [16]. 

With metal coated ceramic particles a strong metallic bond can be formed between the 

coating material and the matrix metal. Segregation in the melt pool is another frequently 

observed phenomenon when materials have considerable difference in physico-chemical 

properties [17]. The heat generated from the center of the laser interaction zone lowers 

the density of heated powders. Cooler powders at the edge of the Heat Affected Zone 

(HAZ) will have higher densities. Therefore it will cause molten material at the edge of 

the HAZ to sink within the melt pool due to gravity (buoyancy force). Different material 

densities will cause variations in the movement of material within the melt. Movement of 

particles is also dependent on the viscosity of the melt [13] which again depends on the 

temperature field of the melt pool. Another factor that may contribute to material 

segregation in CerMets is surface tension. The surface tension of a material reduces with 

increasing temperature; cooler material at the edge of a HAZ will pull material from the 

center of the HAZ to the edge (Marangoni convection). There will therefore be a 

variation in movement of materials within melt due to surface tension forces.  

Solidification cracking in CerMets is attributed to residual stresses as a result of 

the rapid cooling and the mismatches in thermal and mechanical properties between the 
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substrate and precursor powders [18]. At the beginning of solidification, the liquid phase 

is dominant in the microstructure, which can be deformed randomly and has good 

plasticity, and the dendrites can grow freely. With increasing percentages of the solid 

phase, a sealed skeleton is formed among solid phases and the residual liquid phase now 

cannot flow freely. At the period of solidification and shrinkage, a strain concentration 

will occur at the locations of non-continuous dendrite boundaries, which may result in 

local cracking. Because of the rapid cooling and solidification rate of this process, the 

initial cracks cannot be refilled by remaining liquid phase. Therefore, solidification 

cracks will be formed with the propagation of small cracks [19].  

 

2.1.2. Metal-Metal FGM Processing. Metal-on-metal FGMs for aerospace 

applications are very sensitive to production methods. The large temperature gradients 

that occur during layered deposition process affect the meltpool size, which in turn 

affects the microstructure and impacts the mechanical properties significantly [4]. During 

layer by layer deposition, the melt-pool volume constantly changes. The fluid flow in the 

melt pool as a result of convection currents and surface tension driven flow can 

significantly affect the heat transfer, melt-pool penetration depths, segregation and 

porosity as already mentioned earlier [20]. This fluid flow results in mixing between the 

graded layers and ‘dilution’ from the substrate. The ‘dilution-D’ is dimensionless 

mathematical term and depends upon several factors such as the thermal conductivity of 

the material, initial temperature of the substrate, reflectivity of the material, powder flow 

rate, interaction time of the powder in the beam and laser power [21].  A relation for 

predicting dilution ‘D’ mathematically for Laser Engineered Net Shaping (LENS, which 
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includes DMD, selective laser sintering (SLS), etc.,) processes as a function of process 

parameters is given by the following equation: 
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where a , d , m  are energy transfer, deposition and  melting efficiencies and Vp, sH , 

pH and P are the volume of powder, melting enthalpy of substrate, melting enthalpy of 

powder and laser power, respectively. Laser energy transfer efficiency is a dimensionless 

parameter that is used to describe the ratio of energy that is absorbed by the workpiece 

over the energy generated by the heat source.  The melting efficiency is used to describe 

the amount of energy that is used to create a molten pool from the energy delivered to 

and absorbed by the workpiece. The deposition efficiency is a parameter that is used to 

describe the ratio of actual deposition rate (i.e., powder that is fused into the melt pool) to 

the total mass flow rate of powder delivered by the system. The values of a , m  do not 

change for single-pass deposits;  however, in the case of multiple layers where more 

significant change in composition and geometry changes are produced a , m  can change 

appreciably [22]. For example, complete construction of a thin wall of copper onto steel 

will eventually produce a local increase in thermal diffusivity and a change in heat-

transfer condition from 3-D to 2-D. This localized increase in thermal diffusivity and 

shift from 3-D to 2-D can either increase or decrease the m .  

The following is a simple model to determine the laser cladding processing 

window using statistical methods. This is obtained by correlating individual processing 
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parameters {P, S, F} with geometric features namely clad height, dilution factor, and α- 

angle related to track overlapping, and are given by following equations [17]: 

Clad Height, 
21

S

PF
       [2.2] 

Dilution Factor, 
F

PS
 2       

[2.3]
 

α- Angle 
F

S
3       

[2.4]
 

where P, S, F stands for laser power, travel speed and feed rate, respectively. In laser 

cladding some dilution between the coating and the substrate is required to ensure a 

metallurgical bond. However, to limit degradation of the coating properties, Felde et al. 

[23] suggested dilution between the workpiece and cladding to be contained between 3 

and 5%. Optimization of the DMD process also requires the necessity to understand the 

powder feeding into the melt pool. Less mixing in the deposit is achieved when the 

powder was placed on the substrate ahead of the laser irradiation position. If there is a 

strong convective flow in the melt pool due to very high temperature gradient between 

the laser irradiated point and the fusion boundary, then it causes a mechanical mixing 

resulting in a heavily diluted clad layer. Again, a low powder feed rate also causes the 

clad layer to be heavily diluted due to the above phenomena [24].  

The large temperature gradients in the meltpool are also responsible for internal 

stresses that occur during solidification. Solidification cracking is a function of 

solidification temperature range and the amount of terminal liquid, both of which are 

controlled by nominal compositions and solidification conditions [25]. If the temperature 

interval between the liquidus and solidus temperature is narrow, the dwell time of the 
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liquid weld metal becomes relatively short. In such cases, it is possible to minimize 

cracks and shrinkage porosity in the intermixing zone [26]. The residual internal stresses 

in the part are responsible for reduced performance as well as warpage, loss of edge 

tolerance and even delamination of layered deposited parts. One way to overcome the 

residual stresses in laser deposited parts is to use materials with a low coefficient of 

thermal expansion (CTE) over a wide temperature range, since internal stresses that occur 

during solidification and cool-down depend strongly on CTE [18]. For example, Invar is 

a 36% nickel–64% iron alloy with a very low coefficient of thermal expansion, near zero 

below temperature of 300°C. Above 300°C the yield strength decreases rapidly. This 

means that during solidification and cool-down of deposited Invar no elastic energy 

originating from thermal stresses can be stored in the material, because down to 300°C, 

the matrix is too soft to store a significant amount of elastic energy. Below this 

temperature, the thermal expansion coefficient is low enough to avoid the buildup of 

further residual stresses. Another method to reduce residual internal stresses is pre-

heating the part prior to deposition. Kelbassa et al. [26] showed that a pre-heating 

temperature between 650-700 
o
C was required to obtain defect free single LMD tracks 

for a γ-TiAl deposit on Ti6Al4V and γ-TiAl substrates. A suitable pre-heating 

guaranteeing a defect free LMD result is still under investigation. 

A fundamental understanding of how process variables relate to deposit 

characteristics determines the quality of the final part. As already mentioned, the most 

important process variables that affect the fabrication of a part and quality are laser input 

energy, travel speed, powder particle size, concentration distribution and powder flow 

rate [26-37]. As the laser power is increased the melt pool size increases up to a certain 
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level beyond which the energy of the laser only drives the melt pool temperature up 

without significant change in the depth of the molten zone. At the interface, the cooling 

rates are substantially higher at the lower power levels, when the molten zone is small. 

As the laser power is increased the quench rate at the interface settles at 1000-1500 K/s. 

At the highest laser power, the cooling rate is much lower, about 500 K/s, because more 

bulk heating of the sample occurs away from the molten zone. This results in a coarsened 

microstructure due to the grain growth. The process has been modeled using finite 

element techniques by Picasso et al. [38] and analytically modeled by Kaplan [39] 

amongst others [40-73]. Due to the additive layered nature of the LENS process the 

thermal cycles associated with the process can involve numerous reheating cycles. The 

complicated thermal cycling affects the material properties, residual stress and 

mechanical strength due to tempering and aging effects [6, 25].  

Finite element modeling can be used as an effective tool to understand the 

multilayered deposition process. From the thermal model it is possible to capture 

information such as peak temperatures [45], melt pool size [46, 47], temperature 

gradients [48], etc from different locations in the thin wall structures. The fluid flow and 

solidification of material in the melt pool cannot be directly considered, as the coupled 

problem between solid and liquid is not included in the ABAQUS
TM 

software at present. 

If the effect of the fluid flow is neglected, the highest temperature in the melt pool 

predicted by a FEA thermal model can be very high - sometimes over 3273
 
K [49,50]. 

The computed values of cooling rates by Neela et al. [51] were greater than 15,000 K/s at 

locations that had experienced the laser beam. However the cooling rates decreased with 

increasing peak temperature. Hofmeister et al. [48] measured the temperature and cooling 
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rate around the melt pool by thermal imaging technology. The measured cooling rates 

ranged from 473 to 6273
 
K/s.  These thermal models can be used to determine the 

locations of the thermal gradients with respect to part geometry. This information can be 

used to modify the processing parameters to reduce the distortion and thermal stress in 

part fabrication [48].  

Other than processing parameters such as laser power and travel speed [49, 50], 

variables such as substrate size, number of clad layers and tool path direction also 

affected the temperature history and residual stresses in a part. Costa et al. [52] showed 

that decreasing substrate size caused the overall temperature to increase. As a result the 

microstructure in the top layers was affected causing a deviation of the process from non-

equilibrium behavior. Hu et al. [53] showed that an increase in the number of clad layers 

or a higher laser power affected the clad height and caused more and more deposited 

layers to remelt. This was because the melt pool size remained constant throughout the 

cladding process.  When the laser travels bi-directionally (start and end positions of the 

laser are different), tensile stresses increased progressively with subsequent layers as they 

were being deposited [54]. This is because the deposits made with a bi-directional tool 

path experienced slow cooling rates and the temperature of the clad steadily increased 

[55]. Zekovich et al. [56] showed that the z-direction stresses were more compressive in 

nature towards the inner regions of the wall for a uni-directional tool path than a bi-

directional tool path. In a uni-directional tool path the start and end position for the laser 

during layered building is the same. The model was in agreement with the experimental 

values reported by Rangaswamy et al. [57, 58]. So far the residual stress distributions in 

the LENS
TM

 process have only been deduced from the measured strains (obtained 
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through X-ray diffraction or neutron diffraction) and then using elastic constants to 

calculate stresses. Moreover, to quantify these stresses within a clad layer has not always 

being straightforward [57-61] because of the requirement for a smaller specimen size. 

Hence, this requires further post-process machining prior to strain measurements using 

these techniques. Also, going from strain to stress using elastic constants is still not a 

reliable procedure since the elastic constants may not be known accurately. 

 

2.2 THERMODYNAMIC MODELING TOOL IN LMD 

 

 In recent years, the application of phase-diagram information obtained from 

calculations to practical processes has increased significantly, as shown in Table 2.1. 

Software for calculation of phase diagrams and thermodynamic properties have been 

developed since the 1970’s. A variety of software packages can be used for the 

calculation of phase diagrams. Frequently used software packages are ChemSage 

[75], Lukas programs [76, 77], MTDATA [74], Thermo-Calc. [78] and FactSage [79-

82].   The computer databases that are available within FactSage are:  SGTE, JANAF, 

FACT, MALT, IVTAN, HSC, etc.  All of these software packages can be used for the 

calculation of phase equilibria. Several thermodynamic databases have been constructed 

from the assessments of binary, ternary, and quaternary systems. For the description of 

commercial alloys, it is quite likely that at least a dozen elements need to be considered. 

The modern developments in modeling and computational technology have made 

computer calculations of multicomponent phase equilibria easy.  

 

http://gttserv.lth.rwth-aachen.de/~sp/tt/chemsage/cs_bro.htm
http://www.npl.co.uk/npl/cmmt/mtdata/mtdata.htm
http://www.met.kth.se/xtc/tc.html
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Table 2.1 A selection of processes and materials for which thermodynamic calculations 

were being used to optimize production parameters [74]. 

 

In the current work FactSage (v 6.1) was employed to perform thermodynamic 

calculations to study the complex Ti-Ni based multicomponent system because of the 

resource availability. The FactSage databases, which have been under development for 

35 years, contain assessed model parameters for thousands of compounds and hundreds 

of solid and liquid solution phases of metallic, salt, oxide, etc. The FactSage 

thermodynamic computer system consists [79-82] of a suite of program modules and 

several large evaluated thermodynamic databases. The program modules access the 

databases to perform chemical equilibrium calculations by means of a general Gibbs 

energy minimization algorithm. The FactSage databases contain the thermodynamic 

properties as functions of temperature, pressure and composition for over 5000 pure 

Processes 

Leaching 

Roasting 

Sintering 

Electrolysis 

Casting 

Vapor Deposition 

Melting 

Refining 

Precipitation 

Hardening 

Combustion 

Waste Incin, 

Nitrate Control 

Recycling 

Etc., 

Materials 

Steels 

Light Metal Alloys 

Superalloys 

Solders, 

Ceramics 

Cermets 

Semiconductors 

Superconductors 

Coatings 

Alloys 

Hard Metal 

Oxide 

Aqueous Solutions 

Molten Salts 

Organic Mixtures 

Slags 

Glasses 

Etc., 
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substances and hundreds of multicomponent solid and liquid solutions of metals, oxides, 

salts, etc. 

The use of thermodynamic modeling to predict most stable phases, low melting 

compositions, etc., in a multicomponent systems [83-90] is not new. Experimental 

determination of these compositions can be very lengthy and expensive and hence this 

tool is very effective in cutting down the costs. Very limited work has been done in 

utilizing thermodynamic modeling to understand the microstructure evolution along the 

compositional gradient in a multicomponent systems produced by DMD. Lin et al. [6, 90] 

are the only ones who used Thermo-Calc with the aid of TTTi alloy database to calculate 

equilibrium liquidus Tl, solidus Ts and eutectic temperature Te for the functionally graded 

Ti6Al4V- Rene88DT by laser metal deposition. The composition of Rene88DT is Ni 

(bal.), Cr (16%), Co (13%), Mo (4%), W (4%) and other minor elements. They showed 

that the equilibrium freezing range (ΔTo) increased with increasing Rene88DT. The 

eutectic reaction initiated when the composition of the material measured by EDS 

showed about 10.4 pct Ni along the graded direction. In the present research work a 

similar attempt was made using measured EDS compositions at varying laser power to 

predict the equilibrium liquidus, solidus and eutectic temperatures by FactSage (v6.1). 

The calculations were performed using FACT and SGTE database. The software was also 

utilized to predict the equilibrium phases at room temperature when compositionally 

different layers were made to react at high temperatures. An X-ray diffraction technique 

was used to identify the presence of non-equilibrium and any equilibrium phases present 

along the graded structure.  
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2.3 RESEARCH SCOPE ON Ti- Ni BASED ALLOY BASED FGMs BY LMD 

 

Most of the earlier research on direct metal deposition (DMD) concentrated on 

understanding the effect of process variables on thermal history of homogenous 

materials. Griffith et al. [91] correlated the build microstructure of H13 tool steel with the 

measured peak temperature thermal cycles, as shown in Fig. 2.1. The complicated 

thermal cycling affects the material properties including stress and mechanical strength 

due to tempering and aging affects. They used the H13 equilibrium phase diagram as a 

general guide to understand build microstructure.  Region I composed of as-solidified 

H13 (last pass) and supercritically reheated material (fully re-austentized). Some amount 

of partitioning was observed as a result of solidification, except for C which was 

uniformly distributed due to the high diffusion rates. Region II of the build corresponded 

to the fifth layer from the top of the build. The region consisted of a mixture of carbides 

and martensite (formed from the austenite present at peak temperatures). Region III of the 

build not only underwent the above two cycles but also experienced subcritical thermal 

cycles. The microstructure consisted of martensite and carbides.  

Kelly et al. [92] studied the microstructural evolution in Ti6Al4V build as shown 

in Fig.2.2. They deposited about 18 layers of Ti6Al4V on Ti6Al4V with each layer 

measuring 3 mm thick. The deposit exhibited layer bands which consisted of a colony of 

Widmanstätten alpha-Ti, while the nominal microstructure between layer bands exhibited 

basketweave morphology. Process parameters such as high power and low translational 

speeds resulted in slower cooling rates.  Kobryn et al [93] observed a fine Widmanstätten 

two phase structure with discontinuous alpha at prior-beta grain boundaries at higher 
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cooling rates, in contrast to a coarse Widmanstätten structure with continuous alpha at 

prior-beta grains at slower cooling rates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Correlation between measured thermal cycles, microstructure, and the phase 

diagram for H13 shell build [91]. 

 

They discussed that the banding essentially caused local changes in the number of 

fine, equiaxed alpha particles in the microstructure. An increase in the number of alpha 

particles was caused by the reheating of previously deposited material that occurred with 

subsequent deposition passes. Similarly Cottam et al. [94] studied the microstructure 

evolution in Ti6Al4V clads by holding the clad height and melt pool depth constant. This 

was achieved by varying the travel speed and adjusting the laser power to maintain 

constant conditions. The resulting microstructure in the clad zone showed a dendritic 
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microstructure whereas a refined Widmanstätten structure in the heat affected zone 

(HAZ) at slower cooling rates. 

Over the period of years a lot of studies on Ti exploited the advantage of Laser 

Engineered Net Shaping (LENS
TM

), which allowed the flexibility to deposit a blend of 

elemental powders and create an alloy in situ. Collins et al [95-98] observed a series of 

interesting microstructures along the graded Ti-xV and Ti-xMo, both being beta 

stabilizers. With the increasing V and Mo the volume fraction of retained beta-Ti was 

shown to increase. The morphology of alpha-Ti precipitates changed from 

Widmanstätten lath-like morphology (colony structure) to basketweave structure with 

change in V and Mo concentration. Further increasing the alloying content also resulted 

in formation of a biomodal distribution of alpha precipitates within the beta matrix for 

both Mo and V additions. The bimodal distribution was a result of longer alpha laths 

breaking up into shorter precipitates with relatively small aspect ratio. These larger laths 

precipitated during primary     transformation during the deposition of a particular 

layer and subsequently break up occurred during the reheating of the same layer when 

new layers were deposited on top.  
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Figure 2.2  Microstructural evolution in Ti6Al4V builds [92]. 

 

Collins et al [96] observations on 90 at. % Ti- 10 at. % Cr graded layer  to –V and 

–Mo was slightly different from their previous studies. Ti-Cr exhibit negative enthalpy of 

mixing and can exhibit rapidly solidified structures in the LENS deposition process. The 

microstructure primarily consisted of a partially decomposed   matrix with precipitates at 

the grain boundaries. In the Cr-depleted regions of the matrix equilibrium microstructure 

was observed; whereas Cr-rich regions showed metastable structures due to rapid 

solidification arising from high temperature gradients with the addition of extra heat to 

the meltpool. The inhomogeneity was observed either due to macrosegregation effects 
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during solidification or inhomogeneous mixing of powders in the LENS powder feeder. 

A further study to understand the effect of enthalpy of mixing in liquid on mixing process 

and consequently the homogeneity of the laser deposited alloys was carried out by 

Schwender et al. [98]. Ti-10 at. % Nb (positive enthalpy of mixing, endothermic) and Ti-

10 at. % Cr (negative enthalpy of mixing, exothermic) were deposited under similar 

conditions by LENS
TM

 process. The microstructures of Ti-10 at. % Cr were fairly 

homogeneous whereas segregation of particles occurred at the layer interfaces in Ti-10 

at.% Nb.  

Most of the studies on FGMs in the literature were either investigated within the 

solid solubility range of the alloying element (ex. Ti-X=Mo, V, Cr, Nb, Co, etc., [92-97]) 

or systems (ex. Fe-Ni (stainless steel 316L-Rene88DT [6,8]) which showed reasonable 

compatibility in thermo-physical properties such as density, thermal diffusivity, 

coefficient of linear expansion, etc.,. There is limited literature available thus far on 

systems like Ni-Ti based alloys which have the tendency to form brittle IMPs beyond the 

solubility range. This is apparently because only partial success in producing this system 

by DMD has been reported due to a variety of metallurgical and mechanical reasons as 

mentioned above. Ni-Ti alloys have potential as functional materials for industrial and 

medical applications due to their high temperature and corrosion resistance, shape 

memory property, and good biocompatibility [8]. There have been a few reports on the 

laser welding of titanium and nickel alloys.  Seretsky and Ryba [101] found that cracks 

occurred with the same frequency in welds made in single passes over one side only and 

multiple passes over both sides of the samples. It was not known if the cracking is due to 

the rapid quenching of the molten metal after irradiation, or to some chemical interaction 
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between titanium and nickel. Chatterjee et al. [102] butt welded Ti/Ni dissimilar materials 

using a CO2 laser to investigate the solidification microstructure. They found that 

macrosegregation, and brittle intermetallic compounds, Ti2Ni and TiNi3, were readily 

generated within the weld with macroscopic cracks. Chen et al [10] developed an 

analytical model from experimental results to understand the relationship between the 

formation of cracks and the melt pool behaviors including the melt pool area, the melt 

ration and cooling rate. When the laser beam is offset to the Inconel 718 side, there was 

significant reduction of the melt area in the Ti-6Al-4V side and the wider melt area in the 

Inconel 718 side. This resulted in a less vigorous convective flow in the molten zone 

around the keyhole, avoiding the formation of intermetallic phases in the weld. As most 

of the heat input was lost quickly on the Inconel 718 side before enough heat is 

transferred into the Ti-6Al-4V side to induce severe microsegregation. In contrast, 

Kamran [103] found that all the Inconel 718 clads on Ti6Al4V whether cracked or un-

cracked indicated presence of Ti2Ni, Ti and Ti3Ni phases. They concluded that an 

appropriate selection of laser parameters may not be sufficient to avoid the production of 

such intermetallics. Similarly,  Xu et al [8] found that increasing scanning velocity and 

decreasing laser power, as deposited microstructure exhibited an evolution from primary 

TiNi dendrite to two phase TiNi+B2 dendrite and finally to TiNi+TiNi2 anomalous 

eutectic in Ti-50 wt% Ni clads.  

There is very limited research available in literature on the functionally grading 

Ni-based superalloys and Ti6Al4V. Domack and Baughman [7] attempted to grade from 

100 percent Ti6Al4V to 100 percent Inconel 718 at interval steps of 10 percent Inconel 

718. Macroscopic cracks formed before the full transition from Ti6Al4V to Inconel 718 
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was achieved. The cracks developed when the target blend was about 40 percent 

Ti6Al4V and 60 percent Inconel 625. They determined that the cracks were not directly 

linked to metallurgical features, although the microstructures showed coarse dendrites 

and significant elemental segregation. They concluded that additional development of 

process parameters and powder feed control were necessary to ensure that target 

chemistry gradients are achieved without excessive material reactions. In another detailed 

study Lin et al. [6, 90] investigated the solidification behavior and phase evolution of Ti-

6Al-4V, and Ti with Rene 88 DT. They presented a detailed microstructural evolution 

along the compositional gradient from 100 percent Ti-6Al-4V to Ti-6Al-4V with 38 

percent Rene 88 DT and Ti with 60 percent Rene88DT. The microstructures consisted of 

anomalous eutectic structures formed as a result of rapid solidification. There was no 

mention of solidification cracking in their study.  

Dong, et al. [104] functionally graded Ti6Al4V-316L using Inconel 625 as a 

transition layer. In their work the transition happened from 90% Inconel 625 to 90 

Ti6Al4V, it was never 100%. The microstructure varied from TiNi + TiNi3 eutectics at 

20% Ti6Al4V + 80% Inconel 625 and 30% Ti6Al4V + 70% Inconel 625; and Ti+Ti2Ni 

eutectics at 90% Ti6Al4V + 10% Inconel 625 and 70% Ti6Al4V + 30% Inconel 625. The 

authors claimed no visible cracks in the transition regions. But Figure 2.3 shows a 

transgranular micro-crack at the transition region of 10% SS316L + 90% Inconel 625 and 

20% Ti6Al4V + 80% Inconel 625. This was further corroborated by the fracture of the 

tensile specimen at the transition of Inconel 625-Ti6Al4V interface. From the 

morphology of the fracture they concluded that cracks that initiated during deposition 

propagated along the interface among the intermetallics under the stress. The stresses can 
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also be generated by constrained elastic expansion or contraction due to transient 

temperature gradients, and thermal expansion coefficient mismatch, and changes in 

specific density due to solid phase transformations. The amount of heat input determines 

the cooling rate, which is inversely proportional to the square of the melt pool length. 

High thermal gradients results in a rapid cooling rate and increase the resistance to 

solidification cracking, alternately the presence of thermal strains caused by rapid cooling 

can also increase the crack initiation rate.  

Although there have been some previous attempts to understand the 

microstructural evolution in these alloys and to transition from 100% Ti based alloy to 

100% Ni based alloy, this objective has not been fully realized due to presence of cracks 

in the transition regions. In summary, this necessitates further research in order to 

establish a correlation between processing parameters and microstructures to attempt to 

obtain crack free compositionally graded Ti6Al4V/Inconel 625 FGMs.   
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Figure 2.3 The boundary at the transition area (a) Ti6Al4V and Inconel 625 

 (b) Inconel 625 and SS316L [104]. 

Transgranular micro-crack 

The boundary at the transition area (a) 

20% Ti64 and 80%  IN 625 

The boundary at the transition area (b) 

IN 625 and SS316L 
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3. EXPERIMENTAL METHODS 

There are four types of experiments that were performed during the scope of this 

research: Materials Processing; Materials Testing and Characterization; Thermodynamic 

Modeling and Thermo-mechanical Modeling. The first section will cover the processing 

techniques used, including descriptions of starting pre-alloyed powders and laser 

deposition parameters for specific powders. The second section will cover the techniques 

used for microstructure and mechanical analysis for the thin wall structures produced by 

LMD. The final two sections will cover the thermodynamic modeling using FACTSAGE 

(v6.1) to evaluate phase-stability along the compositional gradient and thermo-

mechanical modeling using ABAQUS
TM

 (v10.1) to determine the temperature history 

and residual strains in a fabricated structure.  

 

3.1 MATERIALS PROCESSING 

 

3.1.1. Laser Aided Manufacturing Process (LAMP). LAMP system was used 

to deposit the compositionally graded materials and clads in this thesis. The process 

utilized a 1 kW diode laser (Nuvonyx ISL-1000M, 808 nm, spot size 2.5 mm), a laser 

coaxial nozzle, a five-axis numerical control working table, and a powder feeder (as 

shown in Fig. 3.1). In a laser co-axial nozzle, powder and a gas stream can be fed at the 

same time. The functionally graded Ti6Al4V/Inconel 625 were built using argon as an 

assist gas.  This was done to minimize any oxidation of the melt pool. The multilayers 

SS316L and Inconel 625 clads were built without using any assist gas. The argon gas was 

99.99 percent pure.  The flow rate of argon gas is 240 standard cubic centimeters per 
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minute (SCCM). The various compositional powders using Ti6Al4V and Inconel 625 for 

the functionally graded parts were prepared by wt% standard and argon was used to inject 

all the powders into the laser melt pool. Three types of deposition strategies were chosen 

for FGMs with powder compositions changing from nominal 100% (weight percent, 

wt.%) Ti6Al4V to nominal 100% (weight percent, wt.%)  Inconel 625. Figure 3.2 shows 

the schematic of the deposition strategies for FGMs. Table 3.1 and 3.2 lists the process 

parameters that were used to build the thin wall structures. The ‘thin wall’ structures in 

the current research are single track multilayered 3D structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Laser Aided Manufacturing Process (LAMP) System. The powder and gas 

stream act as a single fluid and feed through the coaxial laser nozzle. The laser head is 

fixed and CNC moves in X-Y motion. Note: Powder feeder is not shown in the picture. 

  

The thin wall structure can be made with or without compositional layers. Clads 

are built by laying down the same composition powder for each layer. And the FGM is 

5 axis 

working 

table 

Laser coaxial 

nozzle 
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built by laying variety of compositional layers. For each composition 10 similar layers 

were put down. There was about a 1 minute delay while the powder compositions were 

changed after each compositional layer. This meant that the total process time for 

building an FGM was around 20 minutes, but it varied based on how many compositions 

were chosen. The composition in the FGM can only change as fast as the powder 

compositions are changed at the powder feeder.  A gradient is defined as the highest jump 

in wt% over the deposit height. So there will be a “maximum gradient” in the graded 

structure dependent on both how the powder compositions are changed and on the 

powder yield.  At high powder yield more of each composition will be deposited and so 

the gradient in [wt%/cm] will necessarily be less.   Mixing in and between layers during 

deposition process is also another factor that will lead to a lower gradient than the 

“maximum gradient”. The powder yield for clads was approximately 90%.  For FGMs 

experiments in this study the yield was less than 10%.  This was mainly attributed to the 

inefficiency of powder feeder, complexity involved in feeding the mixed powders, the 

powder capture at melt pool, in-ability to estimate the Z height (laser standoff distance) 

as the chemistry and density of the graded layers changed. As a result, the FGM samples 

were mostly under-built even though the mass per unit length for the layers was 

maintained constant.  

In summary, the complexity involved in depositing mixed powders translated to 

poor process control of (i) powder yield for each powder (which may have been different 

for each powder composition and over time for each set of 10 layers), (ii) the laser 

absorption efficiency which may have varied with time (absorption can also be impacted 

by compositions of the layers), and (iii) the Z height from laser tool to the deposit. 
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Because of the above complexity involved in building FGMs therefore the scope of the 

current work was further constrained to (i) accept the deposits that were obtained and (ii) 

explain their microstructures in terms of the measured composition and process 

parameters.   
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Figure 3.2 Schematic of deposition strategy for Ti6Al4V/Inconel625 FGMs. 

 

90%Ti6Al4V+10%Inconel625 

80%Ti6Al4V+20%Inconel625 

70%Ti6Al4V+30%Inconel625 

60%Ti6Al4V+40%Inconel625 

40%Ti6Al4V+50%Inconel625 

0%Ti6Al4V+100%Inconel625 

50%Ti6Al4V+50%Inconel625 

20%Ti6Al4V+50%Inconel625 

30%Ti6Al4V+50%Inconel625 

10%Ti6Al4V+50%Inconel625 

   (a) Grading Chem I/Linear Grading 

100%Ti6Al4V+0%Inconel625 

90%Ti6Al4V+10%Inconel625 

80%Ti6Al4V+20%Inconel625 

70%Ti6Al4V+30%Inconel625 

60%Ti6Al4V+40%Inconel625 

50%Ti6Al4V+50%Inconel625 

0%Ti6Al4V+100%Inconel625 

   (b) Grading Chem II 
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Figure 3.2 Schematic of deposition strategy for Ti6Al4V/Inconel625 FGMs (Cont.). 

 

  Table 3.1 Deposition parameters for thermodynamic modeling part-1 and part-2 study. 

Exp. No 
Grading 

Chemistry 

Laser 

Power, 

W 

Travel 

Speed, 

mm/s 

Powder 

Feed 

Rate, 

g/min 

Travel Dir. 
No. of 

Layers 

1-Part 1 Chem-I 500 4.23 0.033 
Bi-

directional 

10 ea. Per 

composition 

2-Part 1 Chem-I 700 4.23 0.033 
Bi-

directional 

10 ea. Per 

composition 

3-Part 1 Chem-I 1000 4.23 0.033 
Bi-

directional 

10 ea. Per 

composition 

4-Part 2 Chem II 500 2.2,  0.133 

Uni-

directional, 

Bi-

directional 

10 ea. Per 

composition 

5-Part 2 Chem II 500 8.46 0.033 

Uni-

directional, 

Bi-

directional 

10 ea. Per 

composition 

6-Part 2 Chem II 500 4.23 0.133 

Uni-

directional, 

Bi-

directional 

10 ea. Per 

composition 

100%Ti6Al4V+0%Inconel625 

80%Ti6Al4V+20%Inconel625 

60%Ti6Al4V+40%Inconel625 

40%Ti6Al4V+60%Inconel625 

20%Ti6Al4V+80%Inconel625 

0%Ti6Al4V+100%Inconel625 

(c) Grading Chem III 
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3.1.2.  Pre-Alloyed Powders. The pre-alloyed Ti6Al4V, Inconel 625 and SS316L 

were supplied by Boeing Corporation. The label indicated powders with 45-100 μm sizes 

produced by gas atomization process and were spherical in shape. The nominal 

compositions of the as-received powders are given in Table 3.3.  

 

Table 3.1 The Nominal Chemical Composition (wt%) of the powders
3.1

. 

Type of Powder Composition (wt%) 

Ti6Al4V Ti(Bal.), Al(5.5-6.75), V(3.5-4.5), C (0.1), 

Fe (0.3), O (0.2) 

Inconel 625 

 

SS316L  

Ni (70), Cr (20-23), Mo (8-10), Nb+Co 

(3.15-4.15), Fe (5) 

Fe(bal), Cr(17-19), Ni(13-15), Mo (2.25-

3.50) rest alloying elements 

 

An EJ6100 scale with an accuracy of 0.1g was used to measure the weights of the pre-

alloyed Ti6Al4V and Inconel 625 powders prior to making mixtures of varying 

compositions. In all the cases, the weighing was performed in ambient air. The powder 

blends was charged into 16 oz Fisher-Scientific Nalgene LDPE (low density 

polyethylene) plastic bottles. These bottles were placed into a Turbula
® 

mechanical 

7-Part 2 Chem II 1000 4.23 0.133 

Uni-

directional, 

Bi-

directional 

10 ea. Per 

composition 

8-Part 2 Chem II 1000 8.46 0.133 

Uni-

directional, 

Bi-

directional 

10 ea. Per 

composition 

9-Part 2 Chem III 1000 4.23 0.033 
Bi-

directional 

10 ea. Per 

composition 

Table 3.1 Deposition parameters for thermodynamic modeling part-1 and part-2 

study (Cont.). 
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1
powder mixer, and mixed for 1 hour. The premixed powder blends were subsequently 

fed into the powder hopper (powder feeder) to perform experimentation. In general, the 

denser Inconel 625 powder particles will tend to settle at the bottom of the container and 

hence some amount of powder segregation through settling cannot be ruled out during the 

experimentation.  The output from the powder feeder was not measured experimentally, 

although it has been calibrated previously. One possible way to improve the homogeneity 

of the deposits is to deliver powders from different feeders. This will hopefully prevent 

any of the inhomogeneous distribution in the alloy powders that can result from 

segregation of powders in the powder feeder prior to deposition. 

 

3.2 MATERIALS TESTING AND CHARACTERIZATION 

 

3.2.1. Mechanical Testing. A Struers-Duramin -10 Microhardness Tester was 

used to measure the microhardness for the compositionally graded samples. The indents 

were imparted on the surface at 2N load and a holding time of 15 s. This technique was 

important in analyzing various composition gradients. The indents not only allowed an 

understanding of the trends in mechanical properties, but also acted as markers for 

subsequent SEM and standardless EDS analysis. 

  

                                                 

3.1
 http://www.cartech.com/products.aspx 
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3.2.2. Characterization Techniques. For the metallography studies the graded 

material was sectioned perpendicular to the laser scanning direction, mounted and 

polished by techniques described by Buehler
3.4

 for Ti6Al4V. The final polishing was done 

using 0.05 μm alumina slurry.  A variety of characterization tools such as scanning 

electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction 

(XRD) were used to study the microstructures along the graded direction. The 

compositional layers were not easily distinguishable in SEM. Therefore, in all the clad and 

graded
3.2

 
2
samples a series of indents were imparted on the surface typically 0.1 mm apart. 

The indents in the graded regions were placed more closely than in the parent metal (0.15-

0.3 mm) in order to obtain as much information as possible. But care was taken not to 

place them too close together such as to affect the values that were obtained. After the 

indents were made and the hardness measured, the samples were placed into the SEM. 

Compositions were measured from regions around the indent and the microhardness 

values were directly compared with the composition. The back scattered mode (BSE) in 

SEM was used to study the microstructural evolution in the samples.  

Some of the regions in the compositionally graded samples were further evaluated 

by elemental mapping to better understand the distribution of various elements. There are 

some limitations with using the EDS tool for determining elemental compositions. For 

example, the short time for the EDS maps limits minimum detectability of the elements 

studies, and there may be at least ±5% error in measurements by standardless EDS 

technique.  

                                                 

3.2
 www.mybuehler.com.BUEHLER-SUM-MET

TM 

3.3
ASM Handbooks, Vol. 3 

http://www.mybuehler.com.buehler-sum-mettm/
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Identification of phases along the gradient direction was achieved using X-ray 

diffraction (Philips Xpert X-ray diffractometer, collimated beam spot size: 50-100 

microns). The detection limit for XRD is about 1% .  The phases in a compositional layer 

were identified by grinding the deposit to a certain depth for each layer. The depth of 

grinding for a specific compositional layer in the specimen was approximately identified 

by dividing the total deposit height by the number of compositional layers. In the current 

study every time 400-500 microns of material was removed an XRD was performed on 

the surface of that layer. The height of the deposit after removal of each layer was 

measured using Vernier calipers and digitally measured using Image J software.  Because 

there was no clear delineation in the compositional layers the identification of phases for 

a given layer is only an approximation. And the various phases in the microstructure were 

determined with the help of both SEM images and XRD data. 

 

3.3 THERMODYNAMIC MODELING 

 

The thermodynamic database allows for the prediction of phase equilibrium, 

phase stability, phase transformations, and in turn can link the properties of the multi-

phase materials to the alloy microstructure. In the present work the tool was utilized to 

predict the different phases that would form under equilibrium conditions during the 

various deposition strategies by using commercial software, Factsage (v 6.1). Two types 

of calculations were performed to understand the nature of complex reactions occurring 

in the multicomponent system. In one analysis, the elemental composition data from EDS 

was used as an input to calculate the liquidus temperature (TL) and solidus temperature 

(TS) and construct an equilibrium phase diagram. In a second analysis, the phases in the 



 

 

39 

final compositional layer for each composition were predicted based on the reactions 

between the graded layers at defined temperature conditions, an example of which is 

shown in Fig. 3.3. For the second analysis the nominal powder chemical constituents 

were entered for each of the graded composition layers. 

The solution databases used for all the calculations were [FACT53] and [SGSL 

1991]. The old versions of databases are not adequate enough to perform thermodynamic 

calculations and hence there is some discrepancy in data between the mathematical vs. 

experimental in the present work. The SGTE (2007) is an extensive new update of the 

previous SGTE (2004) and SGSL (1991) alloy database. There are some 300 completely 

assessed binary alloy systems (ca. 155 in the old SGSL database) together with about 120 

ternary and higher-order systems (ca. 70 in the old SGSL database) for which assessed 

parameters are available for phases of practical relevance. The systems now incorporate 

177 different solution phases (64 in SGSL) and 588 stoichiometric intermetallic 

compound phases (263 in SGSL).  

 

 

 

 

 

 

 

Figure 3.3 Schematic representation of the layers for Factsage calculations in the second 

part of thermodynamic modeling. 

 

Layer 2 @ 2273oK 

+ 

Layer 1 @ 1373oK 

= Phases @ 773oK 

Substrate 



 

 

40 

Ti6Al4V-Inconel 625 is a very complex multi-component system. For a phase to 

precipitate in an alloying system, the right thermodynamic and kinetic conditions have to 

be present. In general, the kinetic considerations when it comes to predicting what phases 

will form in an alloying system can be judged based on the driving energy for 

precipitation (DGP) of each phase and the temperature at which those phases are 

thermodynamically stable. In addition to the driving energy for precipitation (DGP), 

another good general predictor about the kinetics of precipitation is the temperature at 

which the phase starts to precipitate upon cooling. The lower the solvus temperature, the 

more sluggish the kinetics will be for the precipitation of that phase. Commercial 

kinetics-based software such as Thermocalc can predict phases based on the DGP and 

solvus-temperature calculations. In the present work whether a particular phase could 

precipitate or not was entirely based on thermodynamic calculations essentially because 

of the inability of Factsage to perform kinetics based calculations. 

 There are about 20 binary and 6 ternary systems known for the Ti6Al4V+Inconel 

625 system. The major alloying elements (> 10 wt%) are Ti, Ni, Cr, Mo and the minor 

alloying elements (<10 wt%) are Fe, Al, V.  Some of the major phase diagrams are 

shown in Fig. 3.4. In the systems like Cr-Ni; Cr-Ti, Cr-Mo, Ti-Mo and Ti-V there is a 

miscibility gap. This means there is a phase separation in solid or liquid.  Also, in the Ti-

Ni phase diagram there are two ordered phases present: (1) TiNi (ordered B2 type, CP2) 

and (2) γ’TiNi3 (ordered L12 type, CP4). In the first part of the thermodynamic modeling 

study, the compositions measured along the graded direction by standardless EDS 

analysis were used to obtain Solidus (Ts) and Liquidus (Tl) temperatures. The conditions 

assigned to the model included 1 atm and 2000 K. The temperature value selected for the 
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model was obtained from the FEA thermal model. The FEA thermal model predicted the 

temperatures of the molten layer to 2000 K. The inputs and boundary conditions for the 

FEA thermal model are discussed later in this Section. The ‘Equilibrium’ module was 

used to obtain Ts and Tl. When the phase has a miscibility gap (solid state or liquid state 

separation) the I-option provided in the module is selected to do more accurate 

calculations. Also, the I-option is required because the system has ordered solid solutions 

such as B2_BCC and L12_FCC, which are based on the BCC or FCC disordered state. 

 In the second part of the study the ‘Reaction’ module in Factsage was utilized to 

predict the phases that would form when two layers with different chemistries were made 

to react with each other. In the DMD process the layers not directly underneath the beam 

undergo solid state annealing as well as some amount of remelting; whereas the new 

layer that is being deposited starts in a totally molten state. This may result in the 

composition and microstructure of the final layer ending up being slightly different from 

the nominal composition. In the model, the remelting process is captured by reacting 

layer-1 with layer-2 as shown in Fig. 3.3. To simplify the model the entire volume of 

layer-1 is reacted with layer-2.  In the calculations the pre-existing layer was assigned 

1373 K whereas the new layer was assigned a temperature above its melting point based 

on the calculation from FEA thermal model. The possible product species for pure liquids 

and solids were selected for each of the graded layers and the outputs were saved as 

different streams under different temperatures. For the short times involved in the LMD 

process not much should happen in the way of microstructural evolution at any 

temperature below 0.4*Tm (K) (Tm, melting point), which is around 500
o
C for Ni and Ti. 

The quantitative data of the phases for the final layer was tabulated at 100
o
C. The 
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equilibrium products satisfied the mass balance and attained minimum Gibbs free energy 

state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Binary phase diagrams of major alloying elements
3.3
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Figure 3.4 Binary phase diagrams of major alloying elements
3.3

 (Cont.). 
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3.3.1. Thermodynamic Modeling Tool Post Experimentation. For the first 

part of the study all the parameters were kept constant and only the laser power was 

changed, as shown in Table 3.1. The composition of the powder was changed every 10 

layers in linear steps of 10% (Fig.2.2 (a)). The base metal was cold rolled Ti6Al4V (12.7 

mm) and the first layer that was deposited on the top had a nominal composition of 90% 

Ti6Al4V+10% Inconel 625. The compositions were linearly changed from nominal 10 

pct by weight of Inconel 625 to 100 pct by weight of Inconel 625. This study also made 

it possible to understand the effect of laser power on ‘dilution’ of Inconel 625 into the 

substrate. The phase diagram (Liquidus temperature, TL and Solidus temperature, TS) 

was constructed using the EDS compositional data along the gradient in fabricated 

structure. This data was acquired from measurements taken along a series of 

indentations along the composition gradient that were used to mark distance for the 

SEM. The indenter spacing in the original base material was varied non-linearly from 

0.15 to 0.3 mm, but was made at intervals of 0.1 mm along the graded direction. The 

heights of the thin wall structures varied across all the experiments even when the mass 

per unit length of powder was held constant for each layer for each parameter. Some of 

the drawbacks in the experimental conditions in current research work have been 

discussed earlier in this Section. 

For the second part of the thermodynamic modeling study the process parameters 

are shown in Table 3.2. After preparing the samples metallographically, the layers in the 

thin wall structure were not distinguishable in SEM. XRD was used to detect the phases 

in the thin wall structure along the graded direction.  The procedure for sample 

preparation for XRD has already being discussed earlier in this Section. The results were 
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quantified and are presented later in Section-4. The microstructures along the graded 

structure can be well understood with the combination of SEM images and XRD data. 

 

3.4 THERMO-MECHANICAL MODELING 

 

During laser deposition process microstructure and residual strains in the 

fabricated part can be simultaneously affected by various process parameters such as 

laser power, travel speed, number of layers, etc. Residual strains are one of the most 

commonly studied factors in predictive models for multilayer deposition. Obtaining 

appropriate experimental data as input to calibrate the model is still an essential part of 

this implementation. 

A nonlinear transient thermo-mechanical model was developed for the simulation 

of the multilayer laser deposition process, using ABAQUS™. In the model the thermal 

and mechanical fields were sequentially coupled. The FEA model was used to perform 

calculations for temperatures and strains for uni-directional and bi-directional tool paths 

under different processing conditions and verified experimentally. For the uni-directional 

tool path, the start point for each layer was the same, whereas in the bi-directional tool 

path the start and end point for each layer were different. The general approach in 

ABAQUS to the solution of nonlinear problems is to apply the loading (boundary 

conditions, heat fluxes, etc.,) in steps, with the load in each step being divided into 

increments. For a computationally efficient solution, the Newton-Raphson iterative 

method was adopted to solve equations after every load increment and the solution was 

checked for convergence. The transient thermal analysis was the first step during which 

the temperature field was calculated and saved for every step and these results were then 
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recorded as a thermal load for the mechanical analysis. The following phenomena were 

addressed within the FE model that was developed: 

Heat Transfer: The laser beam was simulated as a moving heat source by means of an 

imposed flux on the surface of each new element. The units of surface flux are W/mm
2
. 

Cooling of the thin wall structure was simulated by employing convection and radiation 

boundary conditions. Heat transfer into the bulk of the substrate was considered to take 

place by conduction only. Heat transfer along the thin wall occurs by conduction, 

convection and radiation. The effect of latent heat was also accounted for in the 

calculations. The thermal model was used to calculate cooling rates, peak temperature 

distribution and remelted layer depths for different processing conditions. In the LMD 

process the layers not directly underneath the beam undergo solid state annealing as well 

as some amount of remelting; whereas the new layer that is being deposited is in the 

molten state. The amount of the prior layer that remelts and mixes with the new layer can 

cause final layer to have a composition slightly different from the nominal composition. 

Mechanical Analysis: The temperature fields from the thermal model were used as an 

input to perform stress calculations. During laser deposition there occur high temperature 

gradients in the thin walls. These temperature gradients are dependent on the process 

conditions, namely the direction of the tool path, laser power, laser travel velocity, and 

powder feed rate. In the stressed state, plastic strain develops at locations where the yield 

strength of the material has been realized. In the current model elastic-plastic behavior 

was assumed during deformation. Hooke’s Law applies to the elastic strain, while 

nonlinear material behavior such as plasticity was simulated by using the following 

incremental plasticity models: (i) a yield condition, (ii) a yield law, and (iii) a hardening 
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law. The yield condition is based on Von Mises Distortion Energy hypothesis. The yield 

law states the plastic strain increment as coaxial and proportional to the deviatoric stress. 

The equation to predict yielding of materials under multiaxial loading conditions is given 

by: 

    𝜎𝑣 = √3𝐽2      [3.1] 

Where 𝜎𝑣 is Von Mises stress and 𝐽2is second deviatoric stress invariant. In this case, 

yielding occurs when the equivalent stress,  reaches the yield strength of the material in 

simple tension, . A rate independent isotropic hardening model was used because of 

the simplicity of the algebraic equations associated with integrating the model. This 

material model estimates yield stress changes uniformly in all directions as plastic 

straining occurs. The isotropic work-hardening law is shown below: 

    𝜎𝑦(𝜀
𝑝
) =  𝜎𝑜 + ℎ𝜀

𝑝
     [3.2] 

Where 𝜀
𝑝
 is plastic strain and h is hardening modulus. There was no external loading in 

the model calculations and constraints were applied to the workpiece so as to prevent 

rigid body motion.  

 

3.4.1. Issues Not Addressed in Modeling. The FEA study was mainly conducted 

to reduce the experimental time and cost to understand the effect of process parameters 

on residual strains in the part. The model on temperatures and strains for multilayer 

cladding has already being reported in the literature and hence the current study 

undertaken is not original. The effort was mostly driven towards verifying these models 

experimentally by measuring the temperatures and strains using thermocouples and strain 

gages. The objective of the thesis was to successfully grade Ti6Al4V/Inconel 625 FGMs 
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which required some understanding of the process parameters. The FEA study was 

designed primarily around clads and not FGMs due to the complexity around material 

chemistry, nature of grading process, lack of thermo-mechanical data, and computing 

time to name a few. Even within the multilayer cladding via LMD the following aspects 

were not within the purview of this work for the reasons described below: 

 

Kinetics: Phenomena such as grain growth, precipitate coarsening, recrystallization or 

decomposition of metastable phases are all thermally activated and eventually affect the 

stress/strain fields. These issues were not addressed as meaningful information could be 

established from the current 3D FEA models for various processing conditions without 

the necessity for such details. This approach not only reduced the computation time but 

also reduced the complexity to perform the extensive thermo-mechanical calculations. 

Cracking/Failure: When a part is subjected to a series of thermally activated processes, 

there is the possibility of the occurrence of failure at the deposit/substrate interface by 

cracking and/or de-lamination. However, cracking and/or failure were not accounted for 

in 3D modeling. The model was studied solely to understand the effect of processing 

parameters on stresses in thin wall structures.  

Powder Injection: During laser aided powder deposition, the powder particles are injected 

continuously into the melt even as they interact with the focused laser beam. The current 

model does not account for the characteristics of the powder during deposition due to 

computational constraints. The time event for the model begins immediately after a set of 

particles are deposited. The addition of powder particles required continuous updates in 

the solution geometry and was achieved by successive discrete addition of new set of 
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elements into the computational domain using an element activation feature. The distance 

traveled by the laser beam for each layer along the substrate was calculated by dividing 

the total time into a number of small time steps. This time dependent thermal problem 

was solved sequentially by introducing (or activating) a new set of elements at the 

beginning of each time step. This stepwise approach has been schematically presented in 

Fig. 3.5. 

Fluid Mechanics: During laser metal deposition temperatures typically exceed the 

melting point of the material. The current research focused on the estimation of stress 

fields and ignored the effects of fluid flow and melt-pool dynamics. The newly activated 

elements in the computational domain were added “strain free” at their melting point.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Material addition modeled by activating new sets of element [51]. 
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3.4.2. Experimental Validation of FEA Modeling.  A model is useful only if it 

can be experimentally validated. In the current research, in-situ real time strains were 

measured using high temperature strain gages which have been used only in jet engines 

and power plant applications thus far. These high temperature strain gages (HFH-series, 

HITEC PRODUCTS Inc. (USA)) have an operating range of 1375oC and were spot 

welded to the part at the “reference position” shown in Fig. 3.6.  The experimental set-up 

with the thermocouples, High Temperature Strain Gage (HTG) and Room Temperature 

Strain Gage (RTG) to validate the FEA model is presented in Fig. 3.6. The gages were 

located 6 mm away from the centerline of the clad. By doing some thermal calculations it 

was found that the temperatures in that location were safe to place the thermocouple and 

the strain gages. The temperature data were collected from a K-type thermocouple at a 

rate of 1000 samples per second at the “reference position”. In a similar manner the HTG 

and RTG (post processing) were placed at the reference position and the data was also 

acquired at a rate of 1000 samples per second. The comparison of experimental with 

simulated results allowed the estimation of the relative importance and role of the 

complex physical interactions that govern the direct laser metal powder deposition 

process.  
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Table 3.2 Detailed analyses performed under different processing conditions. Sets 1-3 

the substrate material was SS316L, P= power, TS= laser travel speed, FR= powder feed 

rate. 

Set 

No. 

Process 

Parameters 

Experimental FEA Post 

Process 

Machining 

HT Strain 

Gage 

& 

Thermocouple 

1 P: 1000 W 

TS: 4.23 

mm/s 

FR.: 12 

g/min 

15 Layers 

Uni. 

Powder: SS316L 

 

Thermal 

and stress 

model 

Machining 

using LT 

strain 

gages  

Confirmed FEA 

thermal and 

stress model 

2 P: 1000 W 

TS: 4.23 

mm/s 

FR.: 12 

g/min 

15 Layers 

 Bi. 

Powder: SS316L Thermal 

and stress 

model 

 Confirmed FEA 

thermal and 

stress model 

3 P: 1000 W 

TS: 8.46 

mm/s 

FR: 12 g/min 

15 Layers 

Uni. 

Powder: SS316L   

Machining 

using LT 

strain 

gages 

 

 

  

 

 

 

 

 

 

Figure 3.6 Experimental set-up for the thin wall deposition process to validate the 

thermal and stress models. The strain gages were placed on the substrate 6 mm away 

from the centerline of clads (reference position). Note: not drawn to the scale. 
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Table 3.3 Modeled and experimental deposit heights. 

 

The data from thermal and stress models presented in the thesis were obtained at 

the centerline of the clad, as shown in Fig. 3.6. Similarly, the data obtained from 

thermocouple and strain gages were recorded at 6 mm away from the centerline of the 

clad. Both the thermal and stress models were validated experimentally under similar 

deposition conditions, as shown in Table 3.4. The SS316L and Inconel 625 clads were 

built with no cover gas. The powder yield was close to 100% for these clads. In the uni-

directional tool path the start and end position of the laser is the same and in bi-

directional tool path they are different for each pass. All the samples were fabricated with 

a powder mesh size of -100/+325 (particle sizes between 45 and 150 μm) and 

compositions of powder are listed in Table 3.2. The dimensions of the substrate are 

50.8x50.8x12.7 mm. Table 3.5 shows that the measured clad heights are smaller than the 

heights assumed in the model. In the model shrinkage or distortion of the thin wall was 

Set 

no. 

Experimental 

Conditions 
Materials 

Clad Ht. assumed 

in FEA model 

Clad Ht. 

measured 

1 P: 1000 W. 

FR: 12 g/min 

TS: 4.23 mm/s 

No. of Layers: 15 

TD: uni-directional 

SS 316L on 

SS 316L 
15 mm for 15 layers 

10 mm for 15 

layers 

2 P: 1000 W. 

FR: 12 g/min 

TS: 4.23 mm/s 

No. of Layers: 15 

TD: Bi-directional 

SS 316L on 

SS 316L 
15 mm for 15 layers 

 

9 mm for 15 

layers 
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not taken into account which is commonly seen when performing experiments. Hence, 

there are variations in the clad heights between model and experiments. 
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4. RESULTS 

Some of the early experimentation involved multilayer deposition (cladding) of 

100% Inconel 625 onto a Ti6Al4V workpiece under different process conditions. All 

deposits showed severe cracking that originated at the top of the deposit with crack 

lengths corresponding to the entire clad height, an example shown in Fig. 4.1. The crack 

openings became smaller at the interface between the deposit and workpiece. The 

presence of these cracks showed a need for compositionally grading the two alloys to 

minimize the cracking in the layers and also the interfacial stresses. The compositional 

grading of two or more alloys can be easily attempted using laser processes. Some of the 

key parameters that play an important role in deposition processes are laser power, travel 

speed, powder feed rate, Z- height control, etc. And in order to understand the effect of 

laser process parameters, finite element modeling (FEA) was performed in the current 

research work to understand the thermal and mechanical stress fields that originate during 

a multilayer deposition. The FEA modelling was performed on simple materials systems 

that would not show any solid-state phase transformations during or after laser 

processing.  100% Inconel 625 on SS316L and 100% SS316L on SS316L were chosen 

for this reason, as well as the easy availability of thermo-mechanical data for these 

systems.  

Based on the results of the FEA, the parameters that were chosen to be used were 

the ones that would result in lower stresses during deposition; and hence, enable 

Ti6Al4V/Inconel 625 compositionally grading from 100% of one system to 100% of 

other. The research mainly focused on understanding the effect of grading (and process 
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parameters) on microstructures and how to minimize cracks in a graded structure. Only 

partial success was achieved because of various experimental challenges encountered 

during the course of this (as discussed in Section 3) research work. But in this thesis 

some insightful information on the phase transformations is provided. There are four 

sections in this Section. Section 4.1 covers results on cladding 100% Inconel 625 on 

Ti6Al4V workpiece. Section 4.2 covers the results on thermo-mechanical modeling using 

ABAQUS
TM

 and the validation of the FEA results by experiments conducted on simple 

material systems. Sections 4.3 and 4.4 include results on functionally graded 

Ti6Al4V/Inconel 625 thin wall structures and thermodynamic modeling using 

FACTSAGE (v6.1). In these sections a detailed study on the effect of laser process 

parameters on the composition and microstructure of graded Ti6Al4V/Inconel 625 with 

different grading schemes is provided. The section also covers the use of thermodynamic 

modeling on predicting equilibrium microstructure evolution along the graded direction.  

 

4.1 EFFECT OF PROCESS PARAMETERS ON INCONEL 625 CLADS 

 

4.1.1.  Microstructure and Composition. Figure 4.1 on the left shows the 

optical images of Inconel 625 clads deposited on Ti6Al4V workpieces. It is typical to see 

stress induced cracks near the interface between the workpiece and clad or in clads for 

dissimilar systems when cooled down to room temperature. In Figure 4.1, the crack 

lengths correspond to the entire clad height. The macroscopic cracking observed in all the 

deposits can be attributed to certain factors such as hot tearing during solidification, 

thermo-physical properties mismatch between workpiece and clad, intermetallic phases 

(IMPs) formation at the interface and in the clad zone due to mixing of Ti and Ni, and 
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Un-melted 

powder 
Macro-

cracks 

Interface 

(b) 

Macro-

cracks 

(a) 

residual stresses in the final part. The coefficient of thermal expansion (CTE) at room 

temperature of Inconel 625 is higher than Ti6Al4V. Initially thermal strains during the 

melting process are low or zero, but the strains begin to increase as the solidification 

progresses. Because of the differences in CTE, the opposing stresses in the clad (tensile 

stresses) and bulk of workpiece (compressive stresses) could have led to macroscopic 

cracks upon cooling, as shown in the figure 4.1 (a). When preheating temperatures of 

540oC were used during the LMD process fewer cracks with smaller crack openings 

were observed, as shown in the Figure 4.1 (b).   

 

 

 

 

 

 

 

Figure 4.1 Inconel 625 clad deposited on to Ti6Al4V workpiece at 1000 W (a) un-etched 

sample with cracks, and (b) Deposit showing cracks using preheating of 540
o
C during 

LMD process. 

 

While determining a suitable preheating temperature to minimize the cracks in a 

clad, it is necessary to know what kind of solid-state phase transformations might occur 

during cooling process. The Ti-Ni has two types of melting reactions: congruent (TiNi, 

TiNi3) and incongruent (Ti2Ni). These three compounds form directly from the melt and 
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are stable at room temperature. But the liquid must have these specific alloy compositions 

to cause their formation. For the Ti-Ni system higher preheat temperatures (> 540
o
C) may 

not stop the precipitation of Ti2Ni, TiNi or Ti3Ni phases. But it may help minimize the 

sudden change in stress levels and hence reduce the occurrence of cracks in clads. 

Limited by the equipment’s operating temperature (only 540
o
C) the pre-heating 

experiments at higher temperatures were not carried out. The existing process also 

required longer preheating times to achieve equilibrium in the Ti6Al4V workpiece before 

the start of LMD process.  

 

 

 

 

 

 

 

 

Figure 4.2 EDS Compositional maps of Inconel 625 clad on Ti6Al4V under different 

process parameters showing the segregation in the clad zone: (a) 300 W, 4.23 mm/s, (b) 

600 W, 4.23 mm/s, and (c) 1000 W, 4.23 mm/s. 

 

 

Ti Ni 
(a) 

250 X 

250 X 

250 X 
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 Table 4.1 EDS Compositional data of clads processed under different laser conditions. 

 

Figure 4.2 shows the compositional maps of the deposits cross-sectioned along 

the laser travel direction. Table 4.1 shows the average compositional data of clads under 

various processing conditions. The segregation in the clad layer shows that though 

‘mixing’ was initiated, it remained incomplete during the deposition process at lower 

laser power levels. From the compositional data, at higher powers more dilution of the 

clad occurred with the migration of Ti from the workpiece into the clad. But more Ti in 

the clad with increasing travel speed was apparent only at low power. The ‘Geometric 

dilution’ D- is similar to ‘mathematical dilution’ described in Equation [2.1] and [2.3] in 

Section 2. The ‘Geometric dilution’ D is defined as the ratio between the melted 

workpiece and deposited powder which is given by the equation 

                                                           =
  

       
                                                    [4.1] 

Where As is the cross-sectional area of melted workpiece and Ap is the cross-sectional 

area of deposited powder. The amount of dilution of Ti in Inconel 625 clads is examined 

at different processing conditions. At constant power and powder feed rate dilution 

increased with the increasing travel speed and saturates at higher travel speed, as shown 

No. 
Power, 

W 

Trvl. Speed, 

mm/s 
Fe Al Mo V Cr Ni Ti 

1 300 4.23 1.06 0.80 3.06 0.67 13.02 57.19 24.47 

2 600 4.23 1.80 0.56 2.62 1.48 11.34 51.59 30.62 

3 600 8.47 2.63 1.52 1.92 2.35 6.49 30.42 54.69 

4 1000 4.23 1.29 1.17 2.28 1.97 8.54 36.67 48.07 

5 1000 8.47 2.03 1.52 1.92 2.35 6.49 30.42 54.68 

6 1000 12.7 1.61 2.06 1.84 2.46 5.84 26.66 59.51 

7 1000 16.9 1.29 1.55 2.08 2.26 7.06 32.99 52.76 
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in Fig. 4.3 (a). This trend was most apparent at 600 W. Also, at a constant travel speed 

and powder feed rate the dilution increased with the increasing laser power as shown in 

Figure 4.2 and 4.3 (a). The experimental data presented here agrees to the relationship 

identified between Dilution and laser power, travel speed using a statistical model 

described in Equation [2.3].  

There are three dimensionless process efficiencies that can affect the heat flow 

and solidification behavior in the Laser Engineered Net Shaping (LENS)
TM

 process. They 

are the laser energy transfer efficiency, melting efficiency and deposition efficiency 

already described in Section 2.  The experimental and mathematical modeling studies 

conducted by Dupont et al [22] showed that average energy transfer efficiency is only 40 

pct. For the laser deposition process to be efficient, the total energy transferred from the 

laser source to the workpiece must possess enough energy to melt the underlying 

workpiece and the incoming powder flux. More than half of the laser beam energy is 

never transferred to the workpiece but is reflected by the meltpool and powder particles. 

The research also showed that the powder mass flow rate and the type of powder 

delivered to the pool have only a small effect on energy transfer efficiency. They 

observed that the type of workpiece material and to some extent the surface quality 

contributed most to laser beam absorption.  

The melting efficiency is defined as the ratio of energy required for melting 

( 𝑝   , per unit length) to actual absorbed energy (ℎ 
 

 
, per unit length) [22].  

                ℎ =
  

 𝑦
=

      

   
                               [4.2]      
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                                            ℎ =
    

         [4.3] 

                                            =
    

     
        [4.4] 

where S is the heat-source travel speed, Ap is the total deposit cross-section, ΔHm is the 

melting enthalpy, ha is the laser energy efficiency (40 pct; which is suggested from 

literature [22], α is the thermal diffusivity of the workpiece, and P is the laser power. The 

melting efficiency is strongly affected by processing parameters and the material thermo-

physical properties. The equations in the literature were primarily derived for single pass 

clads; except for the Inconel 625 cladding which is a single pass all of the experiments in 

this thesis are on multilayer deposition process.  For materials with dissimilar thermo-

physical properties [Inconel 625 (2.67 J/mm
3
) onto Ti6Al4V (13 J/mm

3
) workpiece], an 

average value of melting enthalpy between the two was used, 7.8 J/mm
3
. Using the 

equation [4.2] the melting efficiency was calculated for various process parameters. A 

plot of Ch versus Ry as shown in Fig. 4.3 (b) gave the following relation.  

                             ℎ =                                       [4.5]                                               

Since the ratio of Ch/Ry yields the melting efficiency, Equation [4.5] can be manipulated 

to yield the following: 

ℎ =      
    2 

  
     [4.6] 

 The following equation for melting efficiency is reported in the literature
 
[22] and is used 

with current data from thesis to compare to Equation [4.5].  

                                     ℎ =   3  
    

  
                                   [4.7] 
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Equation 4.6 or 4.7 can be used to estimate melting efficiency when processing 

parameters and material thermophysical data are known. In theory, the melting efficiency 

increases with the increasing rate of energy (i.e. laser input power) delivered to the 

workpiece
 
[22]. When energy is distributed to a localized region at a much faster rate (i.e. 

higher laser power and/or travel speed), there is effectively less time available for the 

energy to be transported away from the molten region by thermal conduction to the 

surrounding material. Therefore, more total energy is used to create and maintain the 

molten weld pool. Therefore, melting efficiency increases as well. In Figure 4.3(c) 

melting efficiency is plotted as a function of laser input power at a constant powder mass 

flow rate (0.083 g/s). The results show that the calculated melting efficiency using 

Equation [4.6] tends to stay constant at 1000 W but shows a drop at 600 W for higher 

travel speeds. At a combination of higher travel speeds and higher laser power, a larger 

fraction of the total energy is retained to melt the underlying workpiece. If the travel 

speed becomes too high, eventually there is less time available for transferring energy to 

the workpiece and hence melting efficiency will decrease. The melting efficiency 

computed from Equation [4.7] derived from literature shows to saturate with increasing 

travel speeds at 600 W. Overall a combination of higher power (1000 W) and higher 

travel speed (15 mm/s) showed higher melting efficiency.  

As already described earlier in Equation [2.1] the dilution is also affected by 

melting efficiency. The process parameters that affect dilution and melting efficiency are 

laser power and travel speed. For example, at a constant powder feed rate, more of the 

incoming laser power is available for melting the underlying substrate and increasing 

dilution. One of the differences between single and multipass will be that dilution in clads 
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by workpiece and in/between layers will increase with increasing number of passes. 

There are no models available thus far in the literature to calculate dilution with 

increasing number of passes.  

 

 

 

 

 

 

 

 

Figure 4.3 (a) Effect of dilution of workpiece and clad on laser process parameters,  

(b) Plot of Ch versus Ry, (c) melting efficiency of the workpiece and incoming flux at 

varying laser speed. 
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Figure 4.3 (a) Effect of dilution of workpiece and clad on laser process parameters,  

(b) Plot of melting efficiency versus Ry, (c) melting efficiency of the workpiece and 

incoming flux at varying laser speed (Cont.). 

 

(c) 

(b) 
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4.1.2. Mechanical-Microhardness. Figure 4.4 shows a plot of hardness as a 

function of depth for Inconel-625 clad on a Ti6Al4V workpiece. The hardness line 

profile can be divided into three distinct regions: the clad-region, and the dilution and 

the workpiece region. The hardness of the clad is 11 GPa and is 3 times more than the 

workpiece. The cracks shown in Fig. 4.1 are a result of the sharp transition in both the 

metallurgical (dilution by Ti, possible formation intermetallic phases (IMPs) at the 

interface and clad) and mechanical properties across the interface.   

In summary the data on clads shows a lack in understanding of the effect of 

process parameters on both metallurgical and mechanical (i.e. residual strains) properties 

in this complex structure. A significant amount of cracking was seen in all clads under 

different processing conditions. The Inconel 625 clads were diluted with high amounts of 

Ti. This shows a need for grading Ti6Al4V and Inconel 625 together in order to minimize 

the cracking in clads, and sharp transition of compositional and mechanical properties at 

the interface; and also minimize dilution in Inconel 625 layers by Ti. The following items 

have been identified as a pathway to gain understanding and achieve the objective of 

successfully grading Ti6Al4V and Inconel 625 together:  

(1) Perform Finite Element Analysis (FEA) on clads to understand the effect of process 

parameters on thermal and mechanical strains. (2) Understanding and tailoring the 

microstructure of compositionally graded Inconel 625 to Ti6A4V by performing a series 

of experiments. 3D thermo-mechanical models can help understand the effect of process 

parameters such as laser power, travel speed, tool path direction on peak temperatures, 

cooling rates, remelted layer depths and residual strains for the LMD process. For the 

thermo-mechanical models the multilayer deposition of SS316L and Inconel 625 on 
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SS316L workpiece will be studied. The above material-systems are simple to handle in 

ABAQUS
TM

 as “liquid” and “solid” are the only two phases that are formed during 

melting and cooling. This thesis will not cover the topic of modeling on functional 

grading of Ti6Al4V and Inconel 625 mainly because of unavailability of thermo-

mechanical data for this complex system. The rule of mixtures has been applied to 

generate thermal and mechanical inputs for the two material systems used by Borjesson 

and Lindgren
18

, viz. ; =1; where , were volume fractions 

and , were thermal properties of the two materials at the given temperature. But the 

model is not very reliable as it will not take into account the effect of phase 

transformations in the liquid and solid state on the instantaneous strains and final residual 

strains that will develop in a part. As we already know, Ti6A4V and Inconel 625 when 

mixed together in different proportions form a multitude of metallurgical compounds and 

will also contribute to stresses. ABAQUS
TM 

(V 10.1) modeling software is not designed 

to handle or incorporate microstructural phase transformations of this level of 

complexity. Performing thermo-mechanical modeling without incorporating the 

metallurgical transformations will not provide any useful information.  

As mentioned above in the second bullet, the microstructures can be tailored very 

well by using different compositions and/or process parameters. In this thesis both routes 

were investigated. Each route showed certain degree of feasibility, but the process 

parameters to obtain a crack-free Inconel 625 deposit on Ti6Al4V were not optimized in 

the research work. This is because of certain experimental challenges that were 

encountered during this research and have been discussed in Section 2. 
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Figure 4.4 Hardness plotted as a function of depth of Inconel 625 clad on Ti6Al4V 

workpiece. 

 

4.2 FEA MODELING AND EXPERIMENTAL VALIDATION ON CLADS 

 

An experimental and numerical investigation of the effects of the laser process 

parameters on the residual strain distribution has been performed previously, but residual 

stress distributions in the Laser Engineered Net Shaping (LENS
TM

) process have only 

been deduced from the measured strains (obtained through X-ray diffraction or neutron 

diffraction) and then using elastic constants to calculate stresses. Moreover, to quantify 

these stresses within a clad layer has not always being straightforward [45, 49, 51, 52, 

106]. Also, going from strain to stress using elastic constants is not a reliable procedure 

since the elastic constants may not be known accurately.  

In this research work, a 3D thermo-mechanical finite element model was 

developed to simulate multilayer deposition of SS316L and Inconel 625 clads on stainless 

steel workpieces. The development of the model was carried out using the ABAQUS
TM 

Clad 

Substrate 
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(V 10.1) software package. The model has been used to estimate the temperature 

distribution, peak temperatures, cooling rates and remelted layer depths as a function of 

process parameters, such as laser power and traverse velocity during actual fabrication. 

The thermal behavior during the deposition process was experimentally measured in-situ 

using K-type thermocouples. The results from the model heat transfer analysis were used 

as inputs to compute residual strains in multilayer clads and workpiece. Some of the 

stress models were qualitatively compared with experiments using High Temperature Fe-

Cr-Al strain gages. The data from numerical modeling was used to understand the 

microstructure, phase and composition in clads.  

 

4.2.1. Governing Equations and Boundary Conditions. A nonlinear transient 

thermo-mechanical model was developed for the simulation of the laser deposition 

process, using ABAQUS
TM 

(V 10.1). In the model, the thermal and mechanical fields 

were sequentially coupled. The transient thermal analysis was the first step during which 

the temperature field was calculated and saved for every step and these results were then 

used as thermal inputs for the mechanical analysis. The addition of powder particles in 

the LMD process required continuous updates in the solution geometry and was achieved 

by successive discrete addition of a new set of elements into the computational domain 

using an element activation feature. The generic 3D heat conduction governing equation 

Eq. (4.7) was solved to obtain the transient thermal distribution within the part:   

                  ) + ) + ) = pcp )                    [4.7] 

where ρ, Cp and k refer respectively to density, specific heat and thermal conductivity; T 

and t refer to temperature and time variables respectively. The term on the right side of 
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Eq. [3.6] depicts the thermal energy at a point in the clad while the first three terms on the 

left side of the equation refer to the conductive heat transfer in the x, y and z directions 

respectively. To model the deposition process the following assumptions were made: 

 An initial temperature of 300 K was assumed for the entire work piece. Both the 

work piece and the coordinate mesh were fixed. The laser moved in positive and 

negative x- direction with a constant speed v; and for every new layer that got 

deposited the laser moved in positive z- direction. 

 The displacements of the bottom edge nodes in X-; Y-; and Z- directions of the 

workpiece were all restricted to zero to prevent rigid body motion. 

 The model takes into account the effects of conduction, convection and radiation 

during LMD processing.  

 The following boundary conditions were applied to the deposit wall and top of the 

workpiece: 

                                      =  -   -  )                                           [4.8] 

                                      =  𝜎        
                                  [4.9] 

Where q is heat flux per unit area,  is the convective heat transfer coefficient,  is 

emissivity, σ is the Stephan-Boltzmann constant and T0 is ambient temperature.  

 All thermo-physical properties for Inconel 625, and SS316L were considered to be 

temperature-dependent and found in the literature
 
[64]. 

 No phase transformation phenomena were considered in the current model. The 

model does not take into account thermal shrinkage, distortion and poor powder yield 

that were observed while conducting experiments. 
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The structure for clads in the modeling was built by cladding 15 single layer 

tracks on top of each other with a length of 25.4 mm, a thickness of 1 mm, and a width of 

2.5 mm. The layer thickness in the FEA model as mentioned was fixed to 1 mm and the 

powder feed rate in the experimental conditions was adjusted to attain a 1mm thick layer 

during each pass. This made a deposit wall nominally of 15-mm tall in the FEA model. 

The wall was fabricated on the surface of a workpiece that was 12.7-mm thick, 50.8-mm 

wide, and 50.8-mm long. To simulate mass addition (powder deposition), the “Birth and 

Death” feature in ABAQUS
TM 

(V 10.1) was used per pass. Initially all elements in the 

track were “killed”, a process which multiplies the heat capacity matrix or the stiffness 

matrix of these elements by a very small value, usually on the order of 10
−6

, so they 

virtually disappear from the simulation. The first born sets of element were positioned 

onto the workpiece with a set of initial boundary conditions. Of the subsequent elements, 

the model used the results from the previous step as the initial condition for the birth of 

each new set of elements. In the modeling each clad layer was divided into 8 small slices 

containing a set of elements of 3.175 mm long.  

Finally the moving heat source was simulated by applying a concentrated surface 

heat flux on the model for a time equal to the distance between model nodes of the slice 

divided by the laser velocity. The laser power efficiency used in the deposition model 

was 40 per cent which was derived from studies conducted by Dupont [22]. The powder 

deposition efficiency was assumed to be 100%. A convective heat transfer coefficient 

was applied to the external surfaces of the deposit wall with a value of 30 Wm
−2

 K
−1

 and 

a fluid temperature of 300 K, whereas for the end faces of the workpiece-plate a 

coefficient of 300 Wm
−2

 K
−1

 was assumed to account for faster cooling by the fixture-
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vice. During the laser cladding experiments a fixture-vice was used to hold the 

workpieces in place. A radiation boundary condition was applied to the entire deposit 

wall and the emissivity was assigned a value of 0.4 referred from literature [22]. The 

workpiece for the entire thermo-mechanical model was meshed using a quadratic 

reduced-integration hexahedral element. The mechanical analysis was a simple static 

analysis. In the model the bottom edge nodes of the workpiece were fixed to prevent rigid 

body motion. The total strain ε is composed of elastic strain εe , conventional plastic 

strain εp, plastic strain from transformation plasticity εtp, and thermal strain εt:  

                                               ε=εe+εp+εtp+εt                                                 [4.10] 

Plastic strain from transformation induced plasticity was not considered in the current 

model as there are no known phase transformations to occur in SS316L or Inconel 625 in 

solid state. Hooke’s Law applies to the elastic strain while the combination of yield 

condition, yield law and hardening law applies to the plastic strain. The yield condition 

used was von Mises distortion energy hypothesis. A rate independent isotropic hardening 

model was used because of the simplicity of the algebraic equations associated with 

integrating the model. All the equations for above theories are presented earlier in Section 

3. In the above analyses, the failure criterion was not implemented. As a result the 

analyses do not predict the cracking tendency, but only the stress magnitudes.  

 

4.2.2 Thermal and Stress Models and Experimental Validation. Figure 4.5 

shows a simulated temperature distribution along the clad towards the end of deposition 

and with the conditions specified in the caption. The temperature of each nodal point 

within the solid was calculated as a function of time. There are significant temperature 
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gradients along the height of the clad. The model predicts high temperatures in the top 

most layers. The temperatures shown here have exceeded the melting point of SS316L 

(1600 K). The upper layers retain the heat from the laser for a longer time as they are not 

in good thermal contact with the workpiece, which acts as a heat sink [105]. And the 

bottom of the clad always cooled faster due to conduction of heat to the workpiece. The 

fluid flow and solidification of material in the melt pool cannot be directly considered as 

the coupled problem between solid and liquid is not included in the ABAQUS
TM 

(V 10.1) 

software at present. If the effect of the fluid flow is neglected, the highest temperature in 

the melt pool predicted by FEA thermal model can be very high - sometimes it is over 

3273
 
K [49, 105]. Fig.4.6 shows result from the simulation of the peak temperature 

distribution calculated at the centerline of the clad for the conditions given in the 

captions. More figures can be found in Appendix A. During multi-layer cladding, initially 

the workpiece serves as the main heat sink. As the clad height increases its cooling occurs 

through the deposit layers resulting in a decrease in cooling rate. After certain number of 

passes a quasi-steady state condition can exist between the clad and the surroundings and 

the layers will eventually take much longer to cool down. The models showed peak 

temperatures reaching as high as 3500-4000 K, which is 1000-1500 K more than the 

melting point of the stainless steel. In the model, by the end of deposition of 15
th

 layer all 

the layer remelted for the conditions described in the caption. 
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Figure 4.5 Transient temperature history of thin wall at the end of deposition @ 1000 W, 

4.23 mm/s, tool path= Bi-directional; Materials: SS316L on SS316L workpiece: (a) t = 

130 s, (b) t = 142 s. 

 

Interestingly, the peak temperatures predicted in the layers were lower at a 

combination of low temperature and higher travel speeds or for uni-directional laser tool 

path. Wang et.al [45] from their thermal model predicted a similar behavior and showed 

that the peak temperatures calculated during thin wall deposition were dependent on laser 

travel velocity and laser power. The addition of more layers and subsequent laser passes 

alters the peak temperature distribution in the preceding layers, resulting in secondary 

peaks in the temperature histories which can again go beyond the melting point of the 

material. For example the layer-1 in Fig 4.6 at the end of deposition cool down to 500 K, 

but as layer-2 is deposited on the top the layer-1 again reheats to temperatures slightly 

above the melting point of the material. As more and more layers are deposited on the 

top, even if most of the layers do not remelt the temperatures in the layers can still be 

above 800 K. For the upper layers, the effect of substrate is reduced and the accumulation 

of thermal energy at the end of each cycle causes the primary and secondary peak 
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temperatures to be somewhat higher than that at the end of its previous cycle.  These 

thermal models are useful in situations where it is very hard to monitor the peak 

temperatures attained by each layer during deposition. This is because even the high-end 

thermocouples or temperature sensors that are currently available in the market are not 

designed to withstand such a high temperatures during the thermal processes.  

The temperature history of the workpiece during the multilayered deposition was 

measured both experimentally and recorded numerically at the “reference” position. A 

more detailed description of the location of the reference position on the workpiece, 

different tool path directions, etc., is already described previously in Section 2. In short 

the reference position is 6 mm away from the centerline of clad. Figure 4.7 shows a 

typical example of a temperature profile predicted by the FEA model on the workpiece 

using the conditions defined in the caption. There is an initial10 second delay in the 

simulation model due to the user defined input condition and has no impact on the 

thermal output from FEA. The model predicts that the workpiece retains more heat with 

increasing the laser power or number of clad layers represented by the number of peaks 

in the Figs. 4.7a, b and c. The simulation and experimental results agree very well with 

each other. Interestingly, the workpiece size is initially a determining factor in effective 

heat extraction. A faster heat extraction from, and more effective cooling of the deposited 

material, can be achieved by using larger workpiece. Conversely, a small workpiece will 

heat up rapidly, reducing its heat extraction capability. Costa et al.[52] predicted from 

their FEA model that decreasing the workpiece size caused the average temperature to 

increase in the deposit. As a result, the material in the upper layers of their part could not 

cool down below the Ms temperature and the microstructure remained fully austenitic in 
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their study. As the amount of residual heat increases it can potentially initiate solid-state 

transformations to occur in the workpiece and within the deposit which can be 

detrimental to the overall structure. 

The thermal model has also been used to understand the effect of laser tool path 

on temperature distribution in the workpiece at the reference position, as shown in Fig. 

4.7 (b and c). The experimental results show a dependency of the tool path direction on 

the heat transfer rate (
  

  
 ) and the fluctuations in temperature keep increasing with layers; 

whereas the simulation reaches a steady state by the end of deposition of the 7
th

 clad 

layer. In other words, the amount of heat extraction in thermal model is the same whether 

we add 10 layers or 20 layers, as it is happening through a narrow region of thin wall 

structure than the bulk of substrate. The model showed smaller temperature gradients in 

the workpiece for uni-directional laser tool path. In the uni-directional tool path the start 

and end position of the laser beam does not change. The low temperature gradients in the 

uni-directional tool path are primarily because the workpiece had sufficient time to cool 

between the layers when compared to the bi-directional tool path where the laser is 

rastering back and forth. There is a good agreement between the experiments and FEA 

model for uni-directional tool path; whereas small temperature gradients continued to 

exist in the workpiece for the bi-directional tool path. Overall, in both the cases the heat 

accumulation in the workpiece increased with increasing number of clad layers.  

The output from the thermal model was only peak temperatures at each node. 

Cooling rates of each layer in the current FEA model were computed from the time 

difference when the nodes in the center region of the clad were seen at the last liquidus 

temperature and next solidus temperature. Calculations for nodes in the center of the thin 
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wall were computed using the following expression after the laser beam has moved away 

from that node:  

             
  

   
= 

|     |

|     |
       [4.11]  

Where 
  

  
 is the cooling rate, (   -  ) is the difference between the liquidus and solidus 

temperatures and (tl-ts) is the time interval between recording Tl and Ts. The calculated 

results of the FEA model are shown in Fig. 4.8. The thermal model further reinstates the 

earlier discussion that cooling rates in the thin wall are affected by the number of clad 

layers, laser tool path direction, processing parameters and thermo-physical properties of 

the materials. The predicted cooling rates ranged anywhere from 473 to 6000 K/s. In the 

case of Inconel 625 clad on an SS316L workpiece (Fig. 4.8(b)) the cooling rate was 

initially high in the first 1 or 2 layers and decreased thereafter. This is because the 

thermal conductivity of the stainless steel 316L workpiece is slightly higher than Inconel 

625.  
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Figure 4.6 Peak temperature history predicted for each layer of thin wall at the end of 

deposition at the reference position @ 1000 W, 4.23 mm/s, tool path= Bi-directional; 

Materials: SS316L on SS316L workpiece. 
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Figure 4.7 Predicted at the reference position which is 6 mm away from centerline of 

clads  (a) FEA thermal model 500 W, 4.23 mm/s (b) & (c) Simulation and experimental 

comparison1000 W, 4.23 mm/s, 12 g/min; 15 layers Materials: SS316L on SS316L 

workpiece.  

(b) 1000 W, Bi-directional tool path 

(a) 500 W, Bi-directional tool path 

Simulated 

model 

(c ) 1000 W, Uni-directional tool path 
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In literature [51] the computed values of cooling rates were greater than 15,000 

K/s at locations that had experienced the laser beam. However the cooling rates decreased 

with the increasing peak temperature. Another research group [48] experimentally 

measured the temperature and cooling rate around the melt pool by thermal imaging 

technology. The measured cooling rates ranged anywhere from 473 to 6273
 
K/s [48] and 

agrees very well with FEA predictions made in the current research work. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Cooling rates of each layer computed for thin wall deposits at the reference 

position at a laser scan speed of 4.23 mm/s for (a) SS316L on SS316L (b) SS316L on 

SS316L and Inconel 625 on SS316L. 

 

The thermal model was also used to predict the remelting depth of the already 

deposited layer when a new layer is being added. The remelted layer depth is a very 

important output from the model and requires some understanding as it greatly influences 

the microstructure and chemistry of the deposited structure. Frequent remelting of prior 

layers not only increases mixing between layers but may homogenize the composition of 

(a) (b) 
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a functionally graded structure, negatively effecting the grading.   Also remelting can 

lead to unwanted precipitation of solute phases which can make the structure prone to 

brittle failures.  

Figure 4.9 shows the remelted layer depths computed from the thermal model for 

different clads. The output from the thermal model was only peak temperatures at each 

node. The remelted depths were calculated from the model whenever the solidified node 

re-melts (T≥Tm) every time the laser passes over the nodes at the centerline of clad. The 

remelted layer depths were generally high except in the first layer that was being 

deposited. This is because of its proximity to the workpiece which acts as a large heat 

sink [105]. The remelted layer depth and ‘Geometric Dilution’ described in a previous 

section show some similarity. This is because the factors that control the two outputs are 

the same: laser power, travel speed, number of clad layers, powder feed rate, etc. A 

research
 
[53] group showed that an increase in the number of clad layers or higher laser 

power affected the clad height and caused more and more deposited layers to remelt. This 

was because they observed that the melt pool size remained constant throughout the 

cladding process. Another research group [105] predicted that faster laser scanning 

speeds produce an insignificant remelted layer depth which can cause a failed 

metallurgical bond between the clad and workpiece. This is because [53] with the 

increasing travel speeds the molten pool depth became shallower and unstable as the heat 

input was insufficient to maintain the melt. 

As the first deposit layer was laid down a portion of the workpiece remelted. 

Based on the computational results the meltpool depth in the workpiece is smaller at 

higher cooling rates for lower laser power.  In the current model the remelted layer depth 
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was not predicted for a combination of lower laser power and uni-directional tool path. 

The amount of remelting in the previous layer steadily increased as more and more layers 

were deposited on top of each other. There is some fluctuation in the data, but overall 

continuously increasing trends in the amount of remelted layer depth with increasing 

number of passes was observed. In one of the FEA models [55],
 
it was shown that not 

only did hot-clads (bi-directional deposits) experience slow cooling rates, but also the 

ambient temperature of the clad steadily increased. In the current model study, initially 

the remelted layer depth was slightly lower for the uni-directional tool path when 

compared to the bi-directional tool path. As the number of passes increase, the depths 

look more or less the same for the two tool paths. 

Figure 4.9 also shows the Inconel 625 deposition on SS316L workpiece to 

initially have lower values for the remelted depths, eventually exceeding that of the 

SS316L deposition on SS316L workpiece. This may be because the SS316L workpiece 

conducts heat faster and better from the initial few layers; whereas conductivity slows 

down as more and more layers of Inconel 625 are laid on top of each other. There is a big 

limitation of the current thermal model as the nodes for computing the cooling rates and 

remelted layer depth were pre-determined. Further refinement in the mesh could have 

captured the subtle details more efficiently, but this could only be achieved at the expense 

of computing time and was not considered in the current research work.  
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Figure 4.9 Computed remelted layer depth for thin wall deposits at the reference position 

(a) 4.23 mm/s, 15 layers; SS316L on SS316L (b) 4.23 mm/s, 15 layers; SS316L on 

SS316L and Inconel 625 on SS316L.   

(b) 

(a) 
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Figure 4.10 Stress σz in thin wall (a) bi-directional tool path (b) uni-directional tool path; 

SS316L on SS316L, 15 layers, 1000W and 4.23 mm/s. 
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During 3D fabrication by laser processing, a complex thermal and strain history is 

experienced in different regions of the build depending upon the process parameters. This 

is because the molten metal will not support a load, therefore the stresses underneath the 

laser beam is zero. As a consequence of the thermal expansion during heating, a plastic 

compressive zone occurs ahead of the beam, and as a result of thermal contraction during 

cooling, a plastic tensile zone occurs behind the molten pool. After the deposition and 

cooling sequences, the inhomogeneous temperatures disappear and so does the elastic 

thermal stress. The stress that remains is residual stress. The instantaneous strain and 

residual strain accumulation in the structure is the main cause of cracking during and 

after fabrication. The management of residual stress and the resulting distortion is a 

critical factor for the success of a process.  

Figure 4.10 shows the distribution of stresses obtained by finite element modeling 

under the conditions described in the caption. The instantaneous thermal strains in a part 

are zero at melting but tend to increase as the part begins to solidify. In the current model 

the instantaneous strains during the solidification were not monitored and only final 

stresses in the part are reported. Localized high tensile stress values were observed at the 

corners of the thin wall as shown in Fig. 4.10 and are comparable for both the tool paths. 

According to the Von Mises yield criterion, a material is said to start yielding when its 

Von Mises stress reaches a critical value known as the yield strength σy. The Von Mises 

stress is used to predict yielding of materials under multiaxial loading condition from 

results of simple uniaxial tensile tests. Figure 4.11 (a) and 4.12 (a) shows that Von Mises 

stresses were lower than yield strength of SS316L which is ~300 MPa. Therefore, no 

yielding occurred in the model and no cracks were observed in the fabricated parts at the 
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end of deposition. Figure 4.11 and 4.12 show the three stress components (σx, σy,, and σz) 

for the left, right, and center-region of the thin wall along the entire length of the deposit 

with respect to the scanning direction. The stress distribution in the vertical-center line 

(Fig 4.11 (d) and 4.12 (d)) show that the compressive stress σz is increasing towards the 

substrate while the stress σy is almost zero (Fig. 4.11 (c ) and 4.12 (c )) which is in good 

agreement with the stress distribution shown in the literature [56-58]. The distribution of 

stress in the σx direction appears to be very complex at the vertical center line for the two 

tool paths.  The σx stresses for the uni-directional tool path is uniaxial in the x-direction at 

the center of the wall; whereas the stresses are biaxial in the x- and z-direction at the 

center of the wall for the bi-directional tool path. In general, the uni-directional tool path 

created stress values slightly lower than the bi-directional tool path which is expected 

according to the lower temperature differences during deposition (Fig. 4.7). There may be 

a possibility of greater remelt at the ends for the bi-directional tool path, although this 

was not evaluated in the current model. At the side walls a complex triaxial stress state is 

present close to the workpiece while the stresses close to the free end away from the 

workpiece converge to zero. 

 The instantaneous stresses developed in the workpiece during laser deposition 

were recorded using high temperature (HT) strain gages placed at the reference position-

as shown in Fig.4.13. The gages were placed at 6 mm away from the centerline of clad. 

More details on the location of gages are presented earlier in Section 3. The strain gages 

recorded a progressive increase in instantaneous tensile stress in the workpiece for the bi-

directional tool path as the layers were being deposited (Fig. 4.13(a)). A research group 

[54]
 
showed in their FEA model that there was a progressive increase in the level of 
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tensile stress as subsequent layers (10 layered models) were deposited for the bi-

directional tool path. In the model, stresses in the layers reached as high as 700 MPa and 

in the workpiece about 200 MPa during the deposition processes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11(a-d) Stress in thin wall for bi-directional tool path; SS316L on 

SS316L, 15 layers, 1000W and 4.23 mm/s.  
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Figure 4.11 (a-d) Stress in thin wall for bi-directional tool path; SS316L on 

SS316L, 15 layers, 1000W and 4.23 mm/s (Cont.).  
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Figure 4.12 (a-d) Stress in thin wall for uni-directional tool path; SS316L on 

 SS316L, 15 layers, 1000W and 4.23 mm/s.   
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Figure 4.12  (a-d) Stress in thin wall for uni-directional tool path; SS316L on  

SS316L, 15 layers, 1000W and 4.23 mm/s ( Cont.). 
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Figure 4.13 Instantaneous stress recorded at reference position by HT strain gages in thin 

wall for (a) bi-directional and (b) uni-directional tool path, (c) FEA model ; SS316L clad, 

15 layers, 1000W, 4.23 mm/s; 12g/min, strain gages aligned in laser travel direction. 

(a) 

σf = final stress in the 
workpiece = -154 MPa 

(b) 
σf = final stress in the 
workpiece = -65 MPa 
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Figure 4.13 Instantaneous stress recorded at reference position by HT strain gages in thin 

wall for (a) bi-directional and (b) uni-directional tool path, (c) FEA model ; SS316L clad, 

15 layers, 1000W, 4.23 mm/s; 12g/min, strain gages aligned in laser travel direction 

(Cont.). 

 

In the case of the uni-directional tool path, because of lower temperature gradients 

in the deposited layers, the instantaneous stresses were progressively compressive in the 

workpiece as more and more layers were added to the wall (Fig. 4.13(b)). The FEA 

model at the reference position computed a final compressive residual stress of -80 MPa 

for the uni-directional tool path and -82 MPa for the bi-directional tool path (Fig. 

4.13(c)); whereas the HT strain gages recorded -65 MPa for the uni-directional tool path 

and -154 MPa for the bi-directional tool path. The FEA results at the reference position 

did not show significant difference between the two tool paths. Also, the trends were 

(c ) 

σf = final stress in the workpiece 
= -80 MPa 
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similar between FEA and the experimental values recorded by the HT strain gages at the 

reference position.  

Typically the residual stresses in clads [69, 106] have been experimentally 

measured using hole-drilling techniques by a placing a strain-gage on the clad surface at a 

distance from the hole.  In the current study post-clad machining operations were 

performed on clads and the stresses relieved from the workpiece were recorded using low 

temperature strain gages placed at the reference position. Figure 4.14 shows the stresses 

measured in the workpiece as the layers were machined away one by one. A clear 

relationship between the stress relieved due to machining of each layer and the deposition 

conditions could not be established. The only takeaway was that as the layers were 

machined one after the other, the final stresses that remained in SS316L workpiece were 

more or less compressive at all the deposition parameters.  

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Post clad machining operation on the 15 clad layers under different 

processing conditions (along the laser travel direction). 
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4.2.3. Microstructure, Phase and Composition of SS316L and Inconel 625 

Clads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Transverse section microstructure at 1000W, 12 g/min, 4.23 mm/s and 15 

layers, (a) SS316L on SS316L workpiece, uni-directional tool path; and (b) Inconel 625 

on SS316L workpiece, bi-directional tool path. 
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Figure 4.15 Transverse section microstructure at 1000W, 12 g/min, 4.23 mm/s and 15 

layers, (a) SS316L on SS316L workpiece, uni-directional tool path; and (b) Inconel 625 

on SS316L workpiece, bi-directional tool path (Cont.). 
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Laser cladding could present a heterogeneous microstructure that can differ from 

point to point. Figure 4.15 describes the macrostructure of 316 SS and Inconel 625 clads. 

Planar, columnar and equiaxed dendritic structures were visible at various locations. In 

all the deposits, the macrostructures were columnar in nature, with the axis of the 

columnar grains parallel to the build direction of the deposit. The columnar grain 

morphology indicates that the heat flow is parallel to the build direction and that the 

thermal gradient was likely very high. All the macrostructures exhibited columnar 

morphology in the bottom-most regions of the clad. The columnar grains grew epitaxially 

from the planar interface between clad and the workpiece, and the growth directions of 

the columnar grains were tied to the laser scanning direction. In the laser deposition 

process very rapid solidification rates are attained and therefore the layers in proximity to 

the workpiece would cool faster [70]. Because of such high temperature gradients the 

interface is usually planar. The upper part of the deposit cooled more slowly compared to 

the bottom. The top most layers of the clad showed a fine dendritic structure with 

classical secondary dendrite arms. Due to the very high solidification velocity in the 

bottom layers the secondary dendrites could not grow. The microstructure transitioned 

from fully columnar to equiaxed dendritic from bottom to the top of clad layers.  

The effect of laser tool path on the grain orientation was determined by {111} 

pole analysis, as shown in Fig. 4.16. For the analysis the sample orientation is shown in 

Fig. 4.16. When we measure the {111} pole figure, what we actually measure is the 

distribution of directions normal to the {111} plane in each grain. This direction is also 

called {111} pole. There was no significant texture in the specimens as no special pattern 

can be seen in the pole figures. Figure 4.17 shows the standardless EDS compositional 
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analysis along the length of the clad. The distribution of elements such as Fe, Cr and Ni is 

uniform in the SS316L clad and workpiece; whereas a gradual transition in composition 

from the workpiece to the clad can be seen in the Inconel 625 clad which is to be 

expected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Pole figure analysis of (111) plane, 1000W, 12 g/min, 4.23 mm/s, 15 layers, 

Materials SS316L on SS316L workpiece (a) bi-directional,  

(b) uni-directional; Materials: 2 g/min, Inconel 625 on SS316L workpiece (c) bi-

directional, (d) uni-directional. 
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Figure 4.16 Pole figure analysis of (111) plane, 1000W, 12 g/min, 4.23 mm/s, 15 layers, 

Materials SS316L on SS316L workpiece (a) bi-directional,  

(b) uni-directional; Materials: 2 g/min, Inconel 625 on SS316L workpiece (c) bi-

directional, (d) uni-directional (Cont.). 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Composition line scans, bi-directional tool path (a) Materials SS316L clad, 

1000W, 12g/min, 4.23 mm/s, 5 layers, bi-directional, (b) Materials: Inconel 625 clad, 

1000 W, 4.23 mm/s, 15 layers, 2 g/min. 
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Figure 4.17  Composition line scans, bi-directional tool path (a) Materials SS316L clad, 

1000W, 12g/min, 4.23 mm/s, 5 layers, bi-directional, (b) Materials: Inconel 625 clad, 

1000 W, 4.23 mm/s, 15 layers, 2 g/min (Cont.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 X-ray diffraction pattern for (a) SS316L clad, (b) Inconel 625 clad. 
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Figure 4.18 shows the XRD patterns for SS316L and Inconel 625 clads deposited 

on stainless steel 316L workpiece. For the analysis the sample orientation is shown in 

Fig. 4.18. The texture effects were found in the XRD patterns, but were not found in the 

pole figures for the processing conditions described above. Because of directional 

solidification arising due to high temperature gradients and rapid cooling rates it is 

possible to achieve a more uniform microstructure in laser cladding. The XRD patterns 

show mono phase γ for SS316L clad, whereas the γ, γ”, and Ni2(Cr, Mo) phases were 

observed in Inconel 625 clad [70]. The peaks of γ” (BCT DO22 structure), and Ni2(Cr, 

Mo; Orthorhombic Pt2Mo structure) overlapped with the peaks of the γ matrix.  

 

4.3 EFFECT OF PROCESS PARAMETERS ON FUNCTIONALLY GRADED 

TI6AL4V/INCONEL 625  

 

The Ti6Al4V and Inconel 625 systems were functionally graded in order to 

minimize the interfacial stresses due to the sharp transitions at the interface. The 

microstructural transitions were studied as a function of grading with different 

compositions and laser process parameters such as laser power, travel speed, tool path 

direction, powder feed rate, etc. The deposition conditions were never optimal because 

the powder yield was only 6.5 percent; more details on the experimental conditions were 

already presented earlier in Section 2. 

4.3.1. Microstructure, Composition and Phase. The microstructure, 

composition and phase for various processing conditions are discussed in this section. 
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Indentation 

line 

Deposit 

Banding 

4.3.1.1 Linear grading chem-I under varying laser power. All the samples 

showed macrocracks; Fig.4.19 is an example of cross-section perpendicular to the laser 

scanning direction showing macrocracks half- way through the deposit. A 2 mm banding 

can be seen near the region where cracks terminated. The banding was seen in all the 

deposits. Further discussion of the cracks in the deposits is presented in a later section of 

the results. 

 

 

 

 

 

 

 

Figure 4.19 Example cross-section of Ti6Al4V/Inconel 625 graded deposit at 700 W. 

Note the presence of macro-cracks. The composition of the deposit was recorded along 

the indentation line. The (a)-(l) correspond to the locations where the data were 

acquired in SEM as presented in the Fig.4.24. 

 

Figure 4.20 (a -c) shows the results obtained from standardless EDS 

compositional analysis of the various elements along the graded direction as a function of 

laser power. The final deposit heights varied between the processing conditions partly 

due to poor powder capture efficiency (<10%) even when the mass per unit length for 
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each layer was held constant. Also, the measured composition changed linearly over a 

certain distance and thereafter remained constant through the remainder of the graded 

layers. The compositional layers at higher laser powers appeared to be completely mixed 

during the deposition process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 (a-c) Compositional gradient of the LMD Ti6Al4V/Inconel 625 

functionally graded deposit as a function of laser power, distance measured from the 

initial substrate-deposit interface (0 mm). 
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Figure 4.20 (a-c) Compositional gradient of the LMD Ti6Al4V/Inconel 625 

functionally graded deposit as a function of laser power, distance measured from the 

initial substrate-deposit interface (0 mm) (Cont.). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 (a-c) FactSage calculation of equilibrium liquids, TL, and solidus 

temperature, TS, as function of laser power, distance measured from the initial substrate-

deposit interface (0 mm). Note: Bold arrow indicates location along the gradient; BCC is 

Cr and Mo rich beta Ti based compounds, i.e. β-Ti or TiNi.  
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Figure 4.21 (a-c) FactSage calculation of equilibrium liquids, TL, and solidus 

temperature, TS, as function of laser power, distance measured from the initial 

substrate-deposit interface (0 mm). Note: Bold arrow indicates location along the 

gradient; BCC is Cr and Mo rich beta Ti based compounds, i.e. β-Ti or TiNi (Cont.). 

 

 

(a)  

(b)  

(c)  

(b)  

(c)  

T
e
m

p
er

a
tu

re
, 

o
C

 
T

e
m

p
er

a
tu

re
, 

o
C

 



 

 

103 

In general the compositional data showed that decreasing laser power 

significantly reduced the amount of mixing in/between the layers. The thermal models 

showed that the degree of remelting of prior layers decreased with decreasing laser 

power. Therefore, it becomes more imperative to explore a process window with higher 

cooling rates so as to result in lesser mixing for functional grading.  

The elemental composition data from EDS was used as an input to calculate the 

liquidus temperature (TL) and solidus temperature (TS) under equilibrium conditions 

using the commercial software, FactSage, as shown in Fig. 4.21. The data can also be 

used to interpret the equilibrium freezing ranges (     ) in the graded alloy. The results 

showed that the       increased rapidly when the amount of Inconel 625 increased; at 

the initial stage       of Ti6Al4V was only about 5 K, while after the addition of 

Inconel 625, at a distance of ~0.6 mm from the substrate,       reached 200 K. 

Moreover, the results of equilibrium thermodynamic predictions obtained from using the 

Factsage software showed that the eutectic reaction of    +   2   is initiated at that 

location. The       slightly varied as a function of the laser power from anywhere 

between150 to 200 K. The composition of the graded material at this position measured 

by the EDS analysis was also found to vary between Ti-2.36Ni-X (remaining elements) at 

700 & 1000 W to Ti-10.43Ni-X at 500 W. Further increasing the amount of Inconel 625 

would result in an increase in       by 300 K. This corresponds to a distance of 3 mm 

from the substrate. The composition at this position measured by the EDS analysis was 

found to vary between Ti-20 to 24.8 Ni-X. Such high freezing ranges can potentially 

result in hot cracking or tearing or solidification cracking during solidification. 

Solidification cracking is generally a function of composition and the resulting 
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temperature range, where compositions that exhibit large solidification temperature range 

are generally crack susceptible. In hot tearing, lliquid cannot reach the regions where it is 

needed due to blockage or narrow channels between solidifying grains.  According to the 

thermodynamic calculations for 500, 700 and 1000 W, one of the primary phases 

changed from Ti2Ni to TiNi at a composition of 30.79 pct Inconel 625. Further increase 

in nominal Inconel 625 content beyond this point resulted in no significant change in 

     . This flat response may be mainly due to mixing in/between layers. Other 

experimental factors that could have contributed to this lack of grading can be poor 

powder capture efficiency, lack of control over Z-height, etc. More details have been 

described earlier in Section 3. 

The thermodynamic calculations also predicted the formation of other compounds 

such as a BCC Cr and Mo phase and AlNi. With further increase in nominal Inconel 625 

content in the layers, the thermodynamic calculations predicted three different types of 

solidification reactions occurring in the final layers:  

, at 1000 W and 3.6 mm from interface           

, at 700 W and 3.75 mm from interface             

, at 500 W and 4 mm from interface                                 

The composition in the layers did not change for 700 W and 1000 W from a 

distance of 3 mm from substrate and may be due to mixing in/between graded layers. The 

composition at this location is Ti-23Ni-X at 700 & 1000 W whereas it was Ti-56Ni-X at 

500 W. This significant difference in composition can also be due to more mixing 

occurring in the layers at high heat input. At a nominal concentration of 100 percent by 

weight Inconel 625, under equilibrium conditions Factsage predicted the following 

NiTiAlNiBCCL 

NiTiAlNiBCCL 

FCCNiTiL 
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reaction:  (gamma Ni) which is rich in Ni, Cr and Mo. The primary phase 

predicted by thermodynamic calculations at different laser powers in the final layer was 

only TiNi due to the presence of significant amount of Ti in the matrix. 

 

 

 

Figure 4.22 X-ray diffraction patterns at 500 W along the composition gradient 

measured perpendicular to the laser scanning direction. 

FCCL 
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Figure 4.22 X-ray diffraction patterns at 500 W along the composition gradient 

measured perpendicular to the laser scanning direction (Cont.). 
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Figure 4.22 X-ray diffraction patterns at 500 W along the composition gradient 

measured perpendicular to the laser scanning direction (Cont.). 
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Figure 4.23 X-ray diffraction patterns at 1000 W along the composition gradient 

measured perpendicular to the laser scanning direction. 
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Figure 4.23 X-ray diffraction patterns at 1000 W along the composition gradient 

measured perpendicular to the laser scanning direction (Cont.). 
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Figure 4.23 X-ray diffraction patterns at 1000 W along the composition gradient 

measured perpendicular to the laser scanning direction (Cont.). 
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Figure 4.23 X-ray diffraction patterns at 1000 W along the composition gradient 

measured perpendicular to the laser scanning direction (Cont.). 

 

Figure 4.22 and 4.23 show the XRD patterns of locations along the compositional 

gradient at 500 and 1000 W. The analyses were performed on cross sections 

perpendicular to the laser scanning direction. These results indicate that a series of phase 

evolutions occurred at 500 W: 

 α+β to α+β+Ti2Ni (minor phase) 

 α+β+Ti2Ni (minor phase) to β+Ti2Ni (major phase) 

 β+Ti2Ni+TiNi (major phase) to Ti2Ni+TiNi (major phase) 

And at 1000 W the evolution along the composition gradient was: 

 α+β+Ti2Ni (minor phase) to α+β+Ti2Ni (major phase) 

 α+β+Ti2Ni (major phase) to α+β+Ti2Ni + TiNi (major phase) 

At 1000 W no compositional grading was observed at approximately 3 mm away from 

the workpiece-deposit interface, similarly XRD analysis showed no apparent change in 
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phase evolution from nominal 40 pct Ti6Al4V + 60 pct Inconel 625 to nominal 100 pct 

Inconel 625.   

More detailed investigation of phase transformations in the Ti6Al4V-Inconel 625 

graded material was studied by evaluating the microstructural changes along the 

compositional gradient using scanning electron microscopy. Figure 4.24(a through m) 

shows back scattered electron (BSE) micrographs of the microstructures at 500 W at 

various locations as the nominal powder composition was varied from 10 to 100 pct by 

weight of  Inconel 625. The microstructure of the workpiece shows typical 

Widmanstätten α-Ti laths in prior β grains. The Ti6Al4V has both the α-stabilizers such 

as Al and β-stabilizers such as V. The Widmanstätten α-Ti laths (from transformed prior 

β) lay at different orientations in the matrix with β-Ti found at the interfaces between α-

Ti laths. The phase of light contrast in between the α-laths is the β-phase. The width of α-

Ti laths on average is about 1 μm. With the addition of Inconel 625, the volume fraction 

of β-Ti increased, as shown in Fig. 4.24(b). Also, the       increased with the addition 

of Inconel 625 in the layers, as shown in Figure 4.21. This also resulted in a substantial 

decrease in the average aspect ratio of α-laths. The microstructure consists of a duplex 

mixture of coarser α-precipitates and a substantially refined distribution of α-laths.  

There is a noticeable change in microstructure in Figure 4.24 (a) and (b). During 

multilayer deposition process, the solid state annealing of existing layers occurs because 

of the deposition of subsequent layers on top of the existing layers. This could result in 

secondary precipitation within the retained β matrix. Thus, the coarser α-precipitates are 

possibly a result of solid state primary precipitation of α within β that formed initially 

during the deposition process. The finer scale α-laths are possibly a result of secondary 
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decomposition of the β matrix during post-deposition annealing. The aspect ratio of 

primary α precipitates is smaller when compared to secondary α laths. The secondary 

precipitation can also be due to an incomplete martensitic transformation from β to α’. 

This phenomenon could be caused by the relatively high martensitic transformation 

temperature (Ms) due to enrichment of the alloying element in the interlath β regions. In 

contrast to the bimodal structure in Fig. 4.24(b), there is a substantial decrease in the 

volume fraction of α phase. The microstructure primarily consists of β phase with small 

volume fraction of α precipitates dispersed uniformly within the matrix. 

Figure 4.24 d, e, f and g shows the microstructure corresponding to a nominal 

composition of 90 pct Ti6Al4V-10 pct Inconel 625. The microstructure consisted of a 

mixture of refined α-Ti precipitates in the β phase and discrete Ti2Ni laths and particles 

all over. It is possible that α-Ti + Ti2Ni eutectoid transformation has begun at grain 

boundaries of β phase. The grain boundary Ti2Ni particles are nicely shown in the 

elemental maps in Fig. 4.25(a). The EDS analysis measured the composition of the 

graded material at this level of Inconel 625 to be Ti-10.17 pct Ni-2.32Cr- 1.02Mo-

3.48Al-3.24V.  

The volume fraction of Ti2Ni phase was found to increase gradually when alloy 

Inconel 625 was increased (Fig. 4.24(e). Apart from being at the boundaries, more Ti2Ni 

precipitates were developed within the matrix. Further increase in Inconel 625 powder 

from nominal 20 to 40 pct by weight resulted in a significant change in the 

microstructure: the β cellular growth changed to β dendritic. The cellular to dendrite 

transition (CDT) occurs at some critical conditions relating to thermal gradient (G), the 

growth rate (V), and alloy composition (Co). The change from cells to dendrites is 



 

 

114 

probably associated with supercooling arising from compositional effects, i.e. 

constitutional supercooling in the liquid between the cells causing interface instabilities 

in the transverse direction. The microstructure consists of β dendrites with β+Ti2Ni 

divorced eutectic in the inter-dendritic regions. The elemental maps indicate the β-Ti to 

be enriched in Cr and Mo, as shown in Fig. 4.25(b). The volume fraction of Ti2Ni further 

increased as the nominal Inconel 625 powder composition was increased to 40 and 50 

pct. The microstructure also shows presence of β Ti dendrites.  

As the nominal content reached to 60 pct by weight of Inconel 625, the 

microstructure consisted of some β Ti dendrites and discontinuous TiNi particles in 

theTi2Ni matrix. At a nominal content of 70 pct by weight of Inconel 625 (Figure 

4.24(h)), the microstructure consisted of a mix of two phase TiNi + β-Ti dendrites and 

anomalous eutectic of TiNi + Ti2Ni. The anomalous structures are formed as a result of 

rapid solidification and are discussed in more detail in Section 5. The results of the EDS 

analysis shows the TiNi phases to be enriched in Cr and Mo (white color); and the β- Ti 

phase is rich in Ni. The size of the dendrite arms appears to be dependent upon the 

cooling rate of the thin wall structure. Figure 4.25 (c, d, e, f) shows the elemental map of 

the microstructure shown in Fig. 4.24(j).  As the nominal powder composition changed 

from 80 to 100 pct the microstructure consisted of a mix of two phase equiaxed TiNi + β-

Ti dendrites in an anomalous eutectic structure of Ti2Ni+TiNi (continuous major phase).  

Figure 4.26 shows the microstructural changes along the graded material at 700 

W. The microstructures from a through i are comparable to 500 W. The microstructure at 

a nominal 60 pct by weight of Inconel 625 (Fig. 4.26(h) shows a two phase mix of TiNi + 

β-Ti particles in an anomalous eutectic structure of TiNi+Ti2Ni. As the nominal 
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composition of Inconel 625 reached 70 pct by weight the microstructure consists of TiNi 

rod and plate like particles in a continuous matrix of Ti2Ni. When the nominal 

composition reached 80 wt% (Fig.4.26 (j) the matrix showed a two phase structure of 

Ti2Ni + TiNi with TiNi particles in the Ti2Ni phase. As the composition changed from 90 

to 100 pct by weight a fine lamellar eutectic structure of Ti2Ni+TiNi can be seen in the 

matrix. Some transgranular cracks can be seen along the TiNi particles. Figure 4.27 

shows the microstructural changes along the graded material at 1000 W. The 

microstructures from a through d in Fig. 4.27 are again comparable to 500 and 700 W. At 

a nominal composition of 60 and 70 pct by weight of Inconel 625 (Fig. 4.27 e and f) the 

microstructure consisted of a mixture of TiNi and β-Ti particles in a Ti2Ni matrix. When 

the nominal composition changed from 80 to 100 pct by weight (Fig. 4.27 g to i) the 

microstructure consisted of a two phase mix of TiNi and β-Ti dendrites and an anomalous 

eutectic of TiNi + Ti2Ni. The matrix transformed from a non-lamellar to a lamellar 

structure consisting of Ti2Ni + TiNi, which looks like a "Chinese-script". There is some 

influence of laser power on the microstructure along the graded structure. The elemental 

analysis at 500 W showed lower concentrations of Ti, Al, and V in the top most layers of 

the graded structure when compared to 700 and 1000 W (Fig.4.20). Despite its higher 

melting point, Ti melts more than Ni due to its lower thermal diffusivity, making the 

average composition of each deposited layer richer in Ti. Therefore, in order to reduce 

mixing between layers and successfully transition to100 pct by weight to Inconel 625 it is 

necessary to control the heat input to layers by optimizing laser process parameters. 

The change in hardness along the gradient direction as a measure of distance from 

the interface (0 mm means initial substrate-deposit interface) is shown in Fig. 4.28. When 
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Inconel 625 was introduced into the graded layers, a noticeable increase in hardness was 

observed, but the hardness was virtually unchanged with the change in laser power. 

When the nominal composition of Inconel 625 reached 10 pct by weight the hardness 

reached a local maximum value at 1 mm from the substrate and stayed constant.  It is 

considered that the initial increase in the hardness curve with increasing Inconel 625 was 

a result of (i) increase in of the amount of β phase and Ti2Ni precipitates (ii) decrease in 

volume fraction and refinement of α-Ti laths, and (iii) the increase in content of Inconel 

625 resulted in solid solution hardening with β phase being enriched with Cr, Mo and Ni. 

Beyond this, the hardness increased sharply with the formation of β-Ti + Ti2Ni 

anomalous eutectic and precipitation of TiNi particles. When the nominal composition of 

Inconel 625 changed from 70 to 100 pct by weight the formation of anomalous eutectic 

of TiNi + Ti2Ni and a two phase mix of TiNi + β-Ti dendrites resulted in only a very 

slight change in the hardness values.  
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Figure 4.24 Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 500 W (a-c) Widmanstätten structure in 

melt zone of base plate. Note: all the compositions are nominal and calculated from 

measured data. 
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Figure 4.24 Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 500 W (a-c) Widmanstätten structure in 

melt zone of base plate. Note: all the compositions are nominal and calculated from 

measured data (Cont.). 
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Figure 4.25 X-ray elemental maps showing the elemental distribution in the various 

phases along the composition gradient for different laser processing conditions. Note: all 

the compositions are nominal and calculated from measured data. 

(a) 10 wt% Inconel 625 

(b) 20 to 50 wt% Inconel 625 
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Figure 4.25 X-ray elemental maps showing the elemental distribution in the various 

phases along the composition gradient for different laser processing conditions.  

Note: all the compositions are nominal and calculated from measured data (Cont.). 

(c ) 70 wt% Inconel 625 

(d) 80  wt% Inconel 625 at 1000 W 
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Figure 4.25 X-ray elemental maps showing the elemental distribution in the various 

phases along the composition gradient for different laser processing conditions.  

Note: all the compositions are nominal and calculated from measured data (Cont.). 

(e) 80  wt% Inconel 625 at 700 W 

(f ) 80  wt% Inconel 625 at  500 W  
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Figure 4.25 X-ray elemental maps showing the elemental distribution in the various 

phases along the composition gradient for different laser processing conditions. 

Note: all the compositions are nominal and calculated from measured data (Cont.). 
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Figure 4.26 Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 700 W (a-d) Widmanstätten structure in 

melt zone of base plate.  Note: all the compositions are nominal and calculated from 

measured data. 

(e ) 10 wt% Inconel 625 (f ) 20 to 30  wt% Inconel 625 
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Figure 4.26  Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 700 W (a-d) Widmanstätten structure 

in melt zone of base plate.  Note: all the compositions are nominal and calculated from 

measured data (Cont.). 

(h) 60 wt% Inconel 625 

(i) 70 wt% Inconel 625 (j) 80 wt% Inconel 625 

(l) 100 wt% Inconel 625 (k) 90 wt% Inconel 625 

(g) 40 to 50 wt% Inconel 
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Figure 4.27 Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 1000 W (a) Widmanstätten structure 

in melt zone of base plate. Note: all the compositions are nominal and calculated from 

measured data. 

(a)  (b) 10 wt% Inconel 625 

(c ) 20 wt% Inconel 625 
(d) 30 to 50 wt% Inconel 625 
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Figure 4.27 Back Scattered Electron images (b through e) of Chem I showing 

microstructure along the composition gradient at 1000 W (a) Widmanstätten structure 

 in melt zone of base plate. Note: all the compositions are nominal and calculated  

from measured data (Cont.). 
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Figure 4.28 Hardness values of the functionally graded material measured along the 

composition gradient for Chem I, *0 mm = means initial substrate-deposit interface. 

 

 

4.3.1.2 Non –linear grading under different processing conditions. The non-

linear grading in this section refers to Chem II and Chem III. Figure 4.29 (a -i) shows 

composition profiles of the measured data obtained from standardless EDS analysis of 

elemental Ni (other elements not shown) along the graded direction compared against the 

nominal value under different processing conditions. The nominal value here is the wt% 

of Ni that was experimentally added during the grading process. From the EDS results for 

all the process parameters shown in Fig. 4.29, we observed that it was not possible to 

achieve the ‘staircase-level’ type of transition because of remelting and mixing of 

previous layers. To achieve a more ‘staircase-level’ grading it is necessary to minimize 

α + β + 

Ti2Ni 
α + β 

β + Ti2Ni 
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the ‘Delta’. The difference between nominal and experimental wt% Ni is defined as 

‘Delta’. And the ‘Delta’ was assigned as the response or output in the factorial design. In 

order to understand mixing in layers the process parameters like laser power, travel 

speed, and feed rate were used to construct a 2 level 3-factorial design using Minitab 16.  

For all the process settings the value for ‘Delta’ was obtained from the difference 

in nominal and experimental wt% Ni from the top-most layer of the deposit. Because no 

further layers will be added to the top-most layer hence the chances of mixing will be 

minimized.  In the design we assumed  that the speed 2.12 mm/s for one of the process 

setting was comparable to 4.23 mm/s and hence assigned a value of 4.23 mm/s; and 

similarly we assumed 6.75 mm/s for one of the process setting to be comparable to 8.46 

mm/s and assigned a value of 8.46 mm/s. When the factorial design was analyzed the 

‘Pareto’ chart showed that none of the parameters had any statistical significance i.e. p > 

0.05 in minimizing the ‘Delta’, as shown in Fig. A.1 (a) attached in the appendix A. In 

the chart we see that factor-A which is the power (W) has the least influence on the 

design. Hence the factor-A along with interaction terms AC and AB were removed from 

the design. This generated a ‘Pareto’ chart with p-values although slightly > 0.05, but 

gave an R-sq of 89.09 % as shown in Fig. A.1 (b). This means that this DOE has a 

statistical significance of 89.09 % and not 100 %. The factorial plots in Fig. A.2 show a 

very flat response for power, but the increasing speed and powder feed rate decreases the 

‘Delta’. The contour plots provide an operating window for laser processing to minimize 

the mixing between layers. In Fig. A.3 with increasing speed and feed rate the ‘Delta’ 

decreases. And at constant speed the ‘Delta’ decreases with increasing power and feed 

rate; while no clear relation could be established between power and speed. In summary, 
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the ideal “stair-case” level grading was attained at only high power and faster travel 

speeds as shown in Fig. 4.29 (d). But the “delta” was lowest at low power and faster 

travel speeds (Fig. 4.29 (h)). The compositional data shown in Fig. 4.29 h agrees well 

with peak temperatures in the thermal model, as shown in Appendix A. At higher powers 

and faster travel speed the peak temperatures predicted in the layers decreased, the lowest 

recorded was for low power and faster travel speed. 

In reality composition in the FGM can only change as fast as the powder 

compositions are changed.  A gradient is defined as the highest jump in wt% over a 

certain distance. So there is a “maximum gradient” dependent on both how fast the 

powder compositions are changed and on the powder yield.  At high powder yield more 

of each composition will be deposited and so the gradient in [wt%/cm] will necessarily be 

less.   Mixing will lead to a lower gradient than the “maximum gradient”.  Total mixing 

prevents any grading, but once the ability to achieve some composition gradient is 

achieved then there are many factors to consider.  If the mixing is “moderate” it will 

require more material to be deposited to get from say pure A to almost pure B.  But the 

gradient will be less steep and that may lead to lower stresses. If the mixing is “low” then 

the gradient will be steeper leading to less material being deposited to get from 

composition A to composition B. In terms of compositions that cause problems because 

they are favorable for the formation of brittle phases, moderate and low mixing seem to 

be no different.  In the case of Ti6Al4V/Inconel 625 FGMs, close to the same Ti/Ni ratios 

will occur somewhere in the deposit whether the mixing is moderate or low.  But 

composition gradients and thermal history will be different in the case of different mixing 

levels.  The grading strategy was primarily changed from linear to non-linear to see if the 
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microstructure could be tailored to minimize the precipitation of Cr and Mo enriched 

TiNi phase in the graded layers. 
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Figure 4.29 Plot against nominal composition vs. measured elemental Ni obtained 

 from EDS of Ti6Al4V-Inconel 625 FGM for various processing parameters and  

grading styles. 

 

 

                                                 

“Fig. A.X” refers to figures attached in the appendix 

(b) 700 W, 3 g/min, 4.23 mm/s 

 

Linear Grading-Chem I 

(a) 1000 W, 3 g/min, 4.23 mm/s 

Linear Grading-Chem I 
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Figure 4.29 Plot against nominal composition vs. measured elemental Ni obtained  

from EDS of Ti6Al4V-Inconel 625 FGM for various processing parameters and  

grading styles (Cont.). 

(c) 500 W, 3 g/min, 4.23 mm/s 

 

Linear Grading- Chem I 

(d) 1000 W, 8 g/min, 8.46 mm/s 

 

Non- Linear Grading-Chem II 
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Figure 4.29 Plot against nominal composition vs. measured elemental Ni obtained 

 from EDS of Ti6Al4V-Inconel 625 FGM for various processing parameters and 

 grading styles (Cont.). 

(e) 500 W, 8 g/min, 2.12 mm/s 

 

Non- Linear Grading-Chem 

(f) 500 W, 2 g/min, 8.46 mm/s 

 

Non- Linear Grading-Chem 
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Figure 4.29 Plot against nominal composition vs. measured elemental Ni obtained 

 from EDS of Ti6Al4V-Inconel 625 FGM for various processing parameters and  

grading styles (Cont.). 

(g) 1000 W, 2 g/min, 6.75 mm/s 

 

Non- Linear Grading-

Chem II 

(h) 500 W, 8 g/min, 8.46 mm/s 

 

Non- Linear Grading-

Chem II 
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Figure 4.29 Plot against nominal composition vs. measured elemental Ni obtained  

from EDS of Ti6Al4V-Inconel 625 FGM for various processing parameters and 

 grading styles (Cont.). 

. 

Figure A.4, A.5 & A.6 shows the XRD patterns of locations along the 

compositional gradient for Chem II and Chem III. The analyses were performed on cross 

sections parallel to the laser scanning direction. This means that the layers were ground to 

a certain depth prior to performing XRD analysis. The experimental data was compared 

to the thermodynamic modeling results achieved using FactSage V 6.0. The calculations 

were performed to predict the phases that would precipitate if two layers with different 

compositions reacted under equilibrium conditions. More details on the model are 

discussed in Section 2. The solution databases used for the calculations were [FACT] and 

[SGSL]. In the modeling only the nominal chemical constituents were entered for each of 

the graded composition layers. The pressure was fixed at 1 atm. The possible product 

(i) 1000 W, 2 g/min, 4.23 mm/s 

 

Non- Linear Grading-Chem 
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species for pure liquids and solids were selected for the graded layer and the outputs were 

saved as different streams. For the short times involved in the LMD process not much 

would happen in the way of microstructural evolution at any temperature below 0.4*Tm 

(K) (Tm, melting point), which is around 500
o
C for Ni and Ti. The quantitative data of the 

phases was tabulated at 100
o
C. The equilibrium products satisfied the mass balance and 

attained minimum Gibbs free energy state.  

The quantitative data obtained from Factsage was experimentally verified with the 

XRD. Tables A.1 and A.2 show the quantitative data for the two deposition strategies. 

Factsage predicted a lot of minor and major phases that would form under equilibrium 

conditions. The Factsage prediction for Chem II showed the following major phases 

along the graded structure:  

 α-Ti (major phase) + Ti2Ni  

 to α-Ti + Ti2Ni  

 to α-Ti + Ti2Ni (major phase)  

 to Ti2Ni (major phase) + TiNi  

 to TiNi3.  

The Chem III showed phase evolution from  

 α-Ti (major phase) + Ti2Ni  

 to Ti2Ni (major phase) + α-Ti  

 to Ti2Ni (major phase) + TiNi  

 to TiNi (major phase) + TiNi3  

 to TiNi3 finally at the top most region of the graded structure.  
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Apart from the above major phases the modeling also predicted Ti3Al, V, Cr, Mo, Fe2Ti, 

NbCr2, Cr3Mn5, AlNi, CoAl, Ni24Cr20Mo12, Ni, MoNi4, NbFe2, Ni3Al and Fe. Most of the 

phases predicted by the model were present in the minority except for Ti3Al, V, Cr and 

Mo. The XRD quantitative analysis was performed for the above to confirm the data 

predicted by the thermodynamic modeling. Tables A.1 and A.2 also show the quantitative 

representation of the XRD data. The deposition strategy Chem II at 1000 W laser power 

showed phase evolution from: 

 α-Ti + β-Ti  

 to  α-Ti + β-Ti “*”
4
+ Ti2Ni to (minor) 

 to α-Ti (major phase) + β-Ti”*” + Ti2Ni + TiNi (< <) 

 to β-Ti”*” + Ti2Ni  + TiNi  

 to Ti2Ni  + TiNi + Ti3Ni (major phase).  

In case of deposition strategy Chem II at 500 W the phases evolved from: 

 α-Ti + β-Ti  

 to  α-Ti + β-Ti”*” + Ti2Ni to (minor) 

 to β-Ti”*”  + Ti2Ni   

 to β-Ti”*” + Ti2Ni  + TiNi  

 to Ti2Ni  + TiNi + Ti3Ni (major phase).  

In case of deposition strategy Chem III the phases evolved from:  

 α-Ti + β-Ti  

                                                 

“*”β-Ti was not quantifiable by XRD software. The equilibrium predictions by Factsage 

did not indicate the presence of β-Ti either. The only evidence found is presence of β-Ti 

in microstructures and supported by literature. 
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 to α-Ti (major phase) + β-Ti”*”  + Ti2Ni  

 to β-Ti β-Ti”*”  + Ti2Ni  

 to β-Ti”*” + Ti2Ni (major phase) + TiNi.  

Unlike Factsage the XRD showed 2θ peaks for Cr5Al8, V5Al8, AlNbTi2; and FeTi 

and Mo0.84Ni0.16 instead of Fe2Ti and MoNi4. Some of the major 2θ peaks of Ti3Al 

overlapped with Ti2Ni; and V and FeTi overlapped with TiNi and hence could not be 

quantified. Therefore, their presence in the graded layers cannot be ruled out. Also, β-Ti 

could not be very well quantified by the software. Gamma prime (γ’, Ni3 (Ti,Al)), and 

gamma (γ, Ni) phase were detected by the XRD in the top-most layer of the graded 

structure for deposition strategy Chem II at 500 and 1000 W. Since mixing occurs in the 

melt pool it is impossible to restrict the movement of various alloying elements across the 

graded layers in the laser metal deposition process. Therefore, only a 95 percent grading 

to Inconel 625 was achieved in the top-most region.  
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Figure 4.30 Back Scattered Electron images of chem II (a through k) showing 

microstructure along the composition gradient at 500 W; (a-g) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data. 
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Figure 4.30 Back Scattered Electron images of chem II (a through k) showing 

microstructure along the composition gradient at 500 W; (a-g) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data (Cont.). 
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Figure 4.31 Back Scattered Electron images of Chem II (a through l) showing 

microstructure along the composition gradient at 1000 W; (a-f) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data. 
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Figure 4.31 Back Scattered Electron images of Chem II (a through l) showing 

microstructure along the composition gradient at 1000 W; (a-f) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data (Cont.). 
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Figure 4.32 Back Scattered Electron images of Chem III (a through h) showing 

microstructure along the composition gradient at 1000 W; (a-c) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data.  
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Figure 4.32 Back Scattered Electron images of Chem III (a through h) showing 

microstructure along the composition gradient at 1000 W; (a-c) microstructure in melt 

zone of base plate. Note: all the compositions are nominal and calculated from measured 

data (Cont.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Hardness values of the functionally graded material measured along the 

composition gradient for Chem II, *0 mm = means initial substrate-deposit interface. 

. 

α
 +

 β
 +

T
i 2

N
i 

α
 +

 β
  T
i 2

N
i 
+

 T
iN

i 
+

 N
i 3

T
i 
+

N
i 

 β
 +

T
i 2

N
i 

 β
 +

T
i 2

N
i 
+

 T
iN

i 

(g) 

100 wt% Inconel 625 80 wt% Inconel 625 

70 wt% Inconel 625 TiNi 

Ti2Ni 

Β-Ti 

(h) (g) 



 

 

144 

A more detailed analysis of the phase transformations in the Ti6Al4V-Inconel 625 

non-linearly graded-Chem II material was performed by evaluating the microstructural 

changes along the compositional gradient using scanning electron microscopy. Figure 

4.30 (a through l) and 4.31 (a through l) shows micrographs of the microstructures at 500 

W and 1000 W at various locations as the nominal powder composition was varied from 

10 to 50 wt. % and 100 wt. % Inconel 625. The mass per unit length for the builds were 

kept the same and the travel speed was adjusted to attain the same build height. The 

microstructure in Fig. 4.30 (a) and 4.31 (a) shows typical Widmanstätten α-Ti laths in 

prior β grains. The Widmanstätten α-Ti laths (dark phase) lay at different orientations 

with respect to each other in the matrix with β-Ti (light phase). The width of α-Ti laths on 

an average is about 1 μm. With the addition of Inconel 625, the microstructure consists of 

a duplex mixture of coarser α-precipitates and a substantially refined distribution of α-

laths, as shown in Fig. 4.30 (b through g) and Fig. 4.31 (b through f). The volume 

fraction of β-Ti increased and there is a decrease in the average aspect ratio of α-laths. 

These microstructures are comparable to the linearly graded Ti6Al4V-Inconel 625 

structures discussed in previous section. 

Figure 4.30 (h) and 4.31 (g) shows the microstructure corresponding to a nominal 

composition of 90 pct Ti6Al4V-10 pct Inconel 625. The microstructure consists of Ti2Ni 

phase present at the grain boundaries of β phase. The corresponding elemental map is 

shown in Fig. A.7 (b). The presence of Ti2Ni shows that α-Ti + Ti2Ni eutectoid 

transformation occurred at grain boundaries of β phase, although, the α-Ti precipitates in 

the β phase were difficult to resolve in SEM micrographs. The EDS analysis measured 
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the composition of the graded material at this level of Inconel 625 to be Ti-10.64 pct Ni-

2.3Cr- 1.6Mo-2.7Al-1.9V.  

Further increase in Inconel 625 powder from nominal 20 to 30 pct by weight 

resulted in a significant change in the microstructure: the β cellular growth changed to β 

dendritic. The microstructure consists of β dendrites with β+Ti2Ni divorced eutectic in 

the inter-dendritic regions. In case of 1000 W the XRD detected a possibility of presence 

of small amounts of α-Ti, but this phase was not seen under SEM. The elemental maps 

indicate the β-Ti to contain Cr and V, as shown in Fig. A.7 (c). The volume fraction of 

eutectic-Ti2Ni increased slightly as the nominal Inconel 625 powder composition was 

increased to 40 pct. The size of eutectic-β-Ti remained unchanged. When the nominal 

content reached 50 pct the microstructure of the 500 W deposition consists of a mix of 

two phase TiNi + β-Ti dendrites and anomalous/abnormal eutectic of TiNi + Ti2Ni. The 

results of the EDS analysis shows the TiNi phases to be enriched in Cr and V (white 

color); and the β- Ti phase is rich in Ni as shown in the elemental map in Fig A.7 (e). The 

microstructure of 500 W and 100 pct by weight of Inconel 625 is comparable to 1000 W 

and 50, 100 pct by weight of Inconel 625 (Fig. 4.30 (k) and Fig. 4.31 (k) and (l)). The 

microstructure consists of a matrix phase of Ni3Ti+TiNi eutectic. The XRD detected 

small amounts of Ti2Ni and Ni-(Cr, Mo) (γ) peaks. Ti2Ni was difficult to differentiate in 

the microstructure. A hard face such as Ni3Ti, TiNi will abrade differently versus a soft 

phase such as Ni-(Cr, Mo) (γ).  Deducing from XRD Ni-(Cr, Mo) (γ) being a softer phase 

is seen showing recessed features in Fig. 4.30 (k) and Fig. 4.31 (k) and (l). The 

corresponding elemental map is shown in Fig A.7 (f). 
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Figure 4.32 shows the microstructure of the Chem III deposit at 1000 W as a 

function of depth along the graded material. The microstructures shown in the 

micrographs from a through c are comparable to the prior ones showing the decreasing 

volume fraction and size of the α-Ti laths. The composition in the graded layers in Chem 

III was changed each time by a step of 20 pct of Inconel 625 by weight. But similar to 

Chem I and Chem II,  the α-Ti + Ti2Ni eutectoid transformation in Chem III occurred at 

the grain boundaries of the β phase as shown in the insert of Fig. 4.32 (d) around 10 pct 

of Inconel 625. The microstructure consists of a mix of coarse α-Ti precipitates with 

refined α-Ti precipitates in the remaining β and discrete Ti2Ni laths and particles.  The 

corresponding elemental map is shown in Fig A.8 (a). The microstructure at a nominal 20 

pct of Inconel 625 (Fig. 4.32 (d) shows some continuous and discrete Ti2Ni phase 

delineating the boundaries of prior β grains. Fig. 4.32 (e) shows β dendrites with β+Ti2Ni 

divorced eutectic in the inter-dendritic regions. As the nominal composition of Inconel 

625 reached 60 pct the microstructure consists of mix of β-Ti and TiNi rod and plate like 

particles in a continuous matrix of Ti2Ni. The corresponding elemental maps are shown 

in Fig A.8 (c). Both intergranular and transgranular cracks can be seen in the matrix. 

When the nominal composition changed from 60 to 100 pct of Inconel 625 (Fig. 4.32 (f-

h), the microstructure consists of a two phase mixture of β-Ti and TiNi dendrites in the 

Ti2Ni matrix. The corresponding elemental map is shown in Fig A.8 (d). 

The change in hardness along the gradient direction as a measure of distance from 

the interface (0 mm means initial substrate-deposit interface) is shown in Fig. 4.33. The 

behavior is similar to the data already reported in the previous section. When Inconel 625 

was introduced into the graded layers, a noticeable increase in hardness was observed, 
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but the hardness virtually remained unchanged with any change in the process 

parameters. When the nominal composition of Inconel 625 reached 10 pct the hardness 

reached a local maximum value at 1 mm from the substrate and stayed flat.  A gradual 

increase in hardness with increasing Inconel 625 is likely the result of (i) an increase in 

the amount of β phase and Ti2Ni precipitates (ii) a decrease in the volume fraction and 

concomitant refinement of the α-Ti laths, and (iii) the increase in the content of Inconel 

625 resulting in solid solution hardening of the β phase by the enrichment with Cr, Mo 

and Ni. A sharp increase in the slope of hardness curve is due to the formation of β-Ti + 

Ti2Ni anomalous eutectic and precipitation of TiNi particles. No further increase in 

hardness occurred as the nominal composition of Inconel 625 changed from 50 to 100 

pct. This showed that the formation of the anomalous eutectic of TiNi + Ni3Ti phase 

contributed to only a slight change in the hardness values. Appendix A shows similar 

hardness values along the graded direction for some of the process parameters not 

discussed here. 
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5. DISCUSSION 

This Section includes discussion on the results from Ti6Al4V/Inconel 625 FGMs 

fabricated under different laser processing conditions and grading chemistries. The 

section covers in more detail about the phase transformations that occurred along the 

compositional gradient and provides supporting arguments from the literature that have 

attempted to do a similar work. Also to be discussed are the microstructures fabricated 

from ‘successful’ FGM experiments where no observable cracks were detected in the 

parts. However, because of the complexity involved in building FGMs and some of 

challenges encountered during the experimentation, the scope of current work is 

constrained to (i) accept the deposits that were obtained and (ii) recognize that the 

process was uncontrolled and hence the resulting microstructure studies reported here are 

centered primarily around observing compositional changes.   

Before going into detail further on the functionally graded Ti6Al4V/Inconel 625, 

we summarize here the relevant features of the Ti/Ni system. The thermo-physical 

properties are listed in Table 5.1. An important property pertaining to the transport of 

heat in the melt zone is thermal diffusivity (α) of the material. From the table 5.1 we can 

see that the thermal diffusivity Ni ≈ 2 Ti, and also the density of liquid nickel is higher 

than liquid titanium (≈ twice).  Both these factors will influence the fluid flow in the melt 

pool and may govern mixing and segregation in the melt pool, as shown in Fig. 4.2 in the 

previous Section. Figure 5.1 summarizes the relative stability of different phases in the 

Ti–Ni system as a function of composition and temperature. There are three intermediate 

phases in the system which can form directly from the liquid: Ti2Ni, NiTi, and Ni3Ti. The 
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phases NiTi and Ni3Ti are congruently solidifying, whereas Ti2Ni forms via a peritectic 

reaction involving the liquid and the NiTi phase. 

 

 Table 5.1 Thermo-physical properties of titanium and nickel [107] 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Equilibrium phase diagram of Ni-Ti. Note the intermetallics Ti2Ni, TiNi, 

TiNi3, Source : ASM handbooks Vol 3
3.3

. 

Properties Titanium Nickel 

Melting Temperature, 
o
C 1668 1445 

Thermal Diffusivity, µm
-

2
·S

-1
  

8.85 20.11 

Thermal Coefficient of 

Expansion,  µm·m
−1

·K
−1

 

8.6  13.4 

Liquid Density, g/cm
3
 4.11 7.81 
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5.1 PHASE DIAGRAM 

 

Graded Ti6Al4V-Inconel 625 is a complex system and the microstructure 

evolution along the composition gradient should be considered in terms of multi-

composition phase equilibria. There is no available quaternary system with Ti, Ni, Cr, 

and Mo for describing the phase equilibria in the Ti6Al4V-Inconel 625 graded material. 

When considering the Ti-Ni, Ti-Cr, Ti-Mo, Ti-Ni-Cr and Ti-Ni-Mo, it is found that only 

Ti-Mo and Ti-Cr have slightly similar phase equilibria characteristics at the Ti-rich 

corner. Nevertheless, in the Ti-Ni-Cr
3.3

 and Ti-Ni-Mo
3.3

 materials, as well as the 

Ti6Al4V-Inconel 625 graded material, the main phases present are the Ti-rich solid 

solution and (Ti, Ni) compounds, but there is a multitude of other minor phases that could 

also form from the multi-component system: Ti-Al-V-Ni-Cr-Mo-Fe-Nb-Co. The 

thermodynamic modeling software predicted about 23 intermetallic phases that could 

form under equilibrium conditions; whereas XRD identified only a small number of these 

phases that formed under the non-equilibrium conditions of laser deposition.  Solvus 

temperature is a good predictor to distinguish between the phases that are likely to form 

and those that are rather unlikely to form. In general, the lower this solvus temperature, 

the more sluggish the kinetics will be for precipitation of a phase.  

In order to determine the precipitation of a phase from liquid or solid it is 

imperative to know the liquidus temperature, TL, and solidus temperature, Ts. If the 

solvus temperature of a particular phase is lower than the solidus temperature it will not 

precipitate from liquid phase directly. 
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Figure 5.2 Calculated equilibrium liquidus, TL, and solidus, TS, as a function of 

percentage of Rene88DT. The first arrow indicates the eutectic reaction, while the 

 second arrow indicates the beginning of hypereutectic region [90]. 

 

Because the kinetics are slow for solid-state transformations the phase may not 

precipitate at all. In two of the linearly graded structures at 700 W and 1000 W the 

maximum measured Inconel 625 in the “linearly” graded structure did not exceed beyond 

35 pct by nominal weight even when the nominal composition in the layer was deposited 

to yield 100 pct by weight. This was attributed to mixing in/between layers. And hence in 

general, the computed values of TL and Ts in Fig. 4.21 (a to c) using Factsage from 

measured elemental Ni along the compositional gradient and the microstructures were 

comparable to Lin, et al. [90] The only caveat here was that at 500 W the composition 

along the graded layer reached 80 pct by nominal weight, but the microstructures were 

still very much comparable to 700 and 1000 W up to a nominal weight of 100%. The 
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complexity involved in depositing mixed powders translated to poor process control as 

discussed in more detail in earlier Sections.  

XRD was performed to identify and quantify the phases along the graded 

structure. This is done by analysis software which tries to match all the major 2-  peaks 

in the diffraction patterns found in Joint Committee on Powder Diffraction Standards 

(JCPDS) to the measured data. A limitation of the quantification tool in XRD is the 

inability of the software to quantify the data if there is a shift in 2-  peaks either due to 

expansion or contraction of the lattice in the presence of other alloying elements. In the 

study, during the quantification analysis some of the phases had to be manually 

eliminated due to the shift in 2-  peaks in order to allow the software to compute the 

data. Because of this severe limitation there is some discrepancy between the quantified 

data shown in Table 5.2 and 5.3 and Figures A.4-A.6. Therefore, the data presented in 

Tables 5.2 and 5.3 should be taken with a lot of caution by the reader. Powder diffraction 

patterns shifted by ± 0.5-1.0
o
 from the original position along the compositionally graded 

structure. Given below is some discussion on various phases that were presented in Table 

5.2 and 5.3.  

 

Table 5.2 Phases predicted along the compositionally graded direction. 

Phase Solvus 

Temperature, 
o
C 

Phase 

Formation 

Comments 

Ti3Al 

(hp8): 

1150 Sluggish, not 

likely to form  

 May only precipitate from the 

solid solution 

  size distribution may be fine 

V, Cr, 

Mo, Nb, 

Co and 

Fe 

   Both Ni and Ti have very high 

solubility for these elements at 

higher temperatures. These 

elements would probably exist as 

solid solutions. 
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Fe2Ti 

(hp12) 

1427 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of Fe is less than < 5 

wt%. May likely remain in the 

solid solution of Ni and Ti. 

NbCr2 

(hp12) 

1770 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of Nb is less than < 3 

wt%. May likely remain in the 

solid solution of Ni and Ti. 

NbCo2 

(hp12) 

1480 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of Nb and Co is less 

than < 3 wt%. May likely remain 

in the solid solution of Ni and Ti. 

NbCo3 

(hp24) 

1247 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of Nb and Co is less 

than < 3 wt%. May likely remain 

in the solid solution of Ni and Ti. 

Co2Ti 

(hP24) 

1235 Sluggish, not 

likely to form 

 

 May only precipitate from the 

solid solution 

 size distribution may be fine 

 Amount of Co is less than < 1 

wt%. Most likely it will remain in 

the solid solution of Ni and Ti. 

NiCrMo 

(fcc) 

 Will form  A nickel-based austenitic phase 

that usually contains a high 

percentage of solid solution 

elements such as Co, Cr, and Mo. 

The phase has a face centered 

cubic structure. 

Cr3Mn5 ND ND ND 

AlNi 

(cP2) 

1638 Likely to form 

from liquid  

 size distribution may be coarse 

 Amount of available Al is a 

limiting factor for how much of 

AlNi will precipitate.  

CoAl ND ND ND 

MoNi4 

(tI10, 

cF4) 

867 Sluggish, not 

likely to form 

 Llikelihood of MoNi4 intermetallic 

phase is low. 

  size distribution may be fine 

 May remain in the solid solution 

of Ni and Ti. 

NbFe2 

(hp12) 

1627 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of Nb and Fe is less 

than < 5 wt%.  

 May likely remain in the solid 

solution of Ni and Ti. 

Ni3Al 1350 Likely to form  size distribution may be coarse 

Table 5.2 Phases predicted along the compositionally graded direction (Cont.). 
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(cP4) from liquid   The amount of available Al is a 

limiting factor for how much of 

Ni3Al will precipitate.  

 

AlNbTi2 ND  ND ND 

FeTi 

(cp2) 

1315 Sluggish, not 

likely to form 

 Likelihood of FeTi intermetallic 

phase is low. 

  size distribution may be fine 

 The amount of available Al is a 

limiting factor for how much of 

FeTi will precipitate.  

Cr5Al8 

(hR26) 

1350 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of available Al and Cr 

is a limiting factor for how much 

of Cr5Al8 will precipitate.  

V5Al8 

(cI52) 

1670 Likely to form 

from liquid  

 size distribution may be coarse 

 The amount of available Al and V 

is a limiting factor for how much 

of V5Al8will precipitate.  

 

 

 

Apart from the major Ni-Ti phases, most of the minor phases that are discussed 

above were not identified by XRD. This is not a surprise because of the non-equilibrium 

nature of the LMD process. However, there were still few equilibrium minor phases that 

were predicted by thermodynamic modeling and were present in extremely small 

amounts and also identified by XRD in the graded layers. These equilibrium phases are 

NbCr2, NbCo2, MoxNiy, CoAl, FexTi, NixAl and NbFe2. Interestingly it was found that 

some of these equilibrium phases began to appear when the nominal composition in the 

graded layer exceeded 20 pct by weight of Inconel 625 and almost all were present when 

the composition reached 100 pct by weight of Inconel 625, as shown in the Tables 5.2 

and 5.3. Apart from increasing volume fraction of Inconel 625 in the graded layers one of 

Table 5.2 Phases predicted along the compositionally graded direction (Cont.). 
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the factors that can influence ‘the equilibrium’ behavior is the high temperature gradients 

in the graded structure. 

 The FEA modeling on multilayer clads (Fig. 4.8) showed that the cooling rates 

decreased by an order of magnitude as each new layer was deposited on the pre-existing 

layer. The predicted cooling rate for the very first few layers was as high 6000 K/s and 

became as low as 473 K/s for the top layer in the clad. Initially, the workpiece serves as 

the main heat sink and effectively extracts the heat from the very first few layers. This 

rapid cooling can enable us to achieve non-equilibrium phases in the very early phase of 

deposition process. The microstructure is extremely refined in such cases, i.e. the second 

phases and the matrix have a fine structure. As more layers are added the cooling rate 

decreases rapidly, and the behavior can be more equilibrium in nature. Also, there is 

more time available for solid state transformations to occur in the graded layers. 

Therefore the microstructures from the “non-equilibrium” process are more or less 

comparable to as-cast microstructures. However, the amounts of each element present 

will be a limiting factor in determining how much of a certain phase will precipitate in the 

graded layers. 
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5.2 MICROSTRUCTURE EVOLUTION ALONG THE GRADED DIRECTION 

 

5.2.1. Early Phase Transformations. Based on the experimental observations 

from Fig. 4.24 (a to c), 4.26 (a-d), 4.27 a, 4.30 (a to g), 4.31 (a to f) and 4.32 (a to c), it is 

possible to propose a sequence of transformations leading to microstructural development 

in these graded layers.  The observations are similar to prior research work conducted by 

Collins, et al. [95-97] on Ti-X (X = Mo, V, and Cr) systems. For convenience to the 

reader the discussion will be limited to Fig. 4.31 (a to f) because all the graded layer 

microstructures can be discussed by this particular one. There will be occasional 

references to other figures wherever it is necessary during the discussion. 

In the initial stages of deposition with relatively low alloying content of Inconel 

625, the microstructure primarily consisted of a large volume fraction of α in the form of 

Widmanstätten laths (Fig. 4.31 (a). Increase in the alloying content results in an increase 

in the volume fraction of β. The α-laths are unable to thicken to the same extent and are 

forced to retain larger volume fractions of inter-lath β phase (Fig. 4.31 (b)
 
[95-97]. A 

further increase in alloying content led to a larger volume fraction of β, this is 

microstructurally manifested with a reduction in the density of large primary α laths (Fig. 

4.31 (c and d). A few primary laths grow and thicken significantly during the 

solidification of the same layer, still retaining a large volume fraction of β.  

Reheating of existing layers occurs when more layers are being deposited. 

Subsequently, during re-heating of the same layer, two secondary solid state 

transformation processes occur. First, there is the precipitation of secondary α laths 

within the regions of retained β phase. Second, there is a re-precipitation of β at the 

primary α lath/β matrix interface that grows into the laths eventually breaking up laths 
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into more equiaxed-like α precipitates
 
[95-97]. Collins et al.

 
[95-97] observed as a result 

of above processes that the primary α laths were supersaturated with alloying elements 

and the β phase being under-saturated at room temperature. As a result biomodal 

distribution of α precipitates were observed in the microstructures. 

 Similar results were obtained in this work and the resulting microstructure 

consisted of a bimodal distribution of α precipitates as shown in Fig. 4.31 (c-f). The 

volume fraction of β phase is relatively large, and only a small fraction of α, distributed 

as fine precipitates is visible in the microstructure. Also interesting to note was a thick 

continuous layer of α was observed along the grain boundary (Fig. 4.30 a) at relatively 

low alloying concentrations, similar to observations made by Collins, et al. [95-97]. As 

the concentrations of Inconel 625 alloying elements in the layer increased, discrete α 

precipitates which are substantially smaller in size, are formed along the grain boundary 

(Fig. 4.30 f). Similar observations were made in the microstructures as well by Lin, et al.
 

[90].   
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5.2.2. Decomposition of β-TI. Figure 5.3 presents a reproduced schematic 

diagram [90] showing the possible metastable phase boundaries that may be present 

under non-equilibrium conditions resulting from rapid cooling.  The discussion below is 

in line with that suggested by Lin et al. [90]. For relatively pure Ti, the martensitic 

transformation temperature (Ms) will be comparatively high. On fast cooling the 

microstructure would transform from β to martensitic structure at point A in Fig. 5.3. 

With the increase in alloying elements the Ms temperature will decrease, represented by 

points B to D. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Schematic diagram showing the possible metastable phase boundaries 

arising from rapid cooling, which indicates both the equilibrium phase boundaries 

(solid lines) and the non-equilibrium ones (dash lines). Superimposed on these 

phase boundaries is the Ms curve (dash-dotted line) for martensitic transformation 

of the β phase [90]. 

 

At point A and B, α phase is supersaturated with the alloying elements whereas 

the Ti2Ni phase remains unsaturated relative to β. Therefore, the decomposition of β 
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phase by the eutectoid reaction will not occur. At point C, both the phases are 

supersaturated with the alloying elements and hence the decomposition of β   α + Ti2Ni 

will occur. At point D the Ti2Ni phase is supersaturated with the alloying elements and α 

phase does not occur. Also, increasing the alloying elements further stabilizes the β phase 

in the microstructure.  

In the current work Point A and B shows the diffusional transformation of β   β 

+ α and this is represented in Figure 4.24 (a to b), 4.26 (a to b), 4.27 a, 4.30 (a to b), 4.31 

(a to b) and 4.32 (a to b). Point C is very well captured in the Figure 4.31 d (insert). Point 

D is again very well captured by Figures 4.24 (e), 4.26 (e), 4.27 ©, 4.29 (h), 4.31 (g), and 

4.32 (d).  
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5.2.3. Lamellar/Non-Lamellar Microstructure from Eutectoid Reaction. The 

products of eutectoid decomposition of β phase may decompose in to [108-110]: bainite 

mode and pearlite mode. Bainite is a non-lamellar product of eutectoid decomposition 

wherein the two low temperature phases precipitate sequentially, rather than 

synchronously, and do so in a manner which results in the development of non-lamellar 

particles of the minority phase amongst crystals of the majority phase formed. The 

microstructure would usually consist of a non-lamellar dispersion of Ti2Ni intermetallic 

compound particles amongst proeutectoid α
 
[108]. The eutectoid decomposition in 

pearlite mode occurs as a lamellar, cooperative transformation. The transformation into 

either lamellar or non-lamellar mode in a number of Ti-X alloys was studied by Franti et 

al. [109], and was found essentially to be independent of reaction temperatures. This is 

quite different from analogous ones in Fe-C alloys, where pearlite is the principal 

eutectoid structure formed at high temperatures and bainite plays this role at low 

temperatures. Figure 5.4 and 5.5 shows the TTT-curves for the initiation of the 

proeutectoid and the bainite reactions in the hypoeutectoid alloys and near eutectoid Ti-

Ni alloys. In the hypoeutectoid Ti-X alloys, much smaller undercoolings below the β 

transus were normally sufficient to make Widmanstätten α the dominant morphology in 

hypoeutectoid alloys. Hence the formation of pearlite is usually prevented whereas the 

precipitation of isolated compound particles at α plate to form bainite can still occur at 

reasonable rates; as shown in Fig. 5.6. In Ti-Ni near-eutectoid alloys, the proeutectoid α 

reaction is so very fast that sideplate formation will begin to appear prior to the 

nucleation of Ti2Ni intermetallic compound; hence bainite forms instead of pearlite. 
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In the present study, below a nominal composition of 10 pct by weight of Inconel 

625 the decomposition of β phase resulted in the formation of Widmanstätten α dominant 

morphology, as shown clearly in Fig. 4.32 (d, insert). In this hypoeutectoid alloy there is 

the precipitation of isolated Ti2Ni compound particles at the α plate in the form of bainite. 

When the measured composition was above Ti-10.17 pct Ni-2.32Cr- 1.02Mo-3.48Al-

4.24V in Fig. 4.31 (g) and 4.32 (d), there was no evidence of decomposition of product 

phase into either bainite or pearlite mode. These results are in good agreement with Lin, 

et al. [90]. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 TTT-diagram for the initiation of the proeutectoid α reaction and the 

beginning of the bainite and/or pearlite reaction in the hypoeutectoid alloys. B = 

bainite. Hollow, sputniked and filled data points indicate reaction times prior to, at the 

beginning of, and subsequent to initiation of the proeutectoid α reaction (circles), and 

compound precipitation in either the bainitic or pearlitic modes (squares)
 
[109]. 
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Figure 5.5 TTT-diagram for the initiation of the proeutectoid α reaction or 

proeutectoid compound reaction and the beginning of the bainite and/or pearlite 

reaction in the neareutectoid alloys. B = bainite. Hollow, sputniked and filled data 

points indicate reaction times prior to, at the beginning of, and subsequent to initiation 

of the proeutectoid α reaction (circles), and compound precipitation in either the 

bainitic or pearlitic modes (squares) [109]. 

 

 

 

 

 

 

 

 

 

Figure 5.6 Start of bainite reaction in Ti-3.3 at. pct Ni with compound particles 

nucleated at intragranular α plates and at αallotriomorphs [109]. 
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5.2.4. Formation of Anomalous/Abnormal Eutectic Structures from Rapid 

Solidfication. When the nominal composition in the graded layers was increased beyond 

50 pct by weight of Inconel 625, the Ni in the graded layers reached more than 30 pct 

(max being 50 pct in Chem II and III) by weight in grading Chem I when measured by 

standardless EDS analysis.  The microstructure showed presence of a mixture of two 

phase TiNi + β-Ti dendrites and anomalous Ti2Ni + TiNi eutectics, as  shown in Fig. 4.24 

(j to l), 4.27 (g to i), and 4.32 (g to h). The Ti-Ni binary phase diagram in Fig. 5.7 shows 

that a composition greater than 40 pct by weight of Ni would likely initiate an 

equilibrium peritectic reaction. The calculated equilibrium phase diagram in the current 

study shown in Fig. 4.20 predicts a peritectic reaction at around 22 pct by weight of 

measured elemental Ni. In an equilibrium peritectic reaction one solid phase reacts with a 

liquid phase on cooling to produce a second solid phase. The usual product of peritectic 

solidification is a primary phase surrounded by peritectic/secondary phase and remaining 

liquid, due to the difficulty of diffusion in the solid primary phase. The possibility of 

coupled growth in peritectic systems has been reported by several researchers [111-114]. 

There is a possibility of coupled growth of primary and peritectic phase also called as a 

‘metastable eutectic reaction’ in peritectic alloys if the growth of primary phase can be 

slowed down by a high temperature gradient. The slowdown of primary phase is possible 

with rapid solidification.  

These metastable reactions as a result of rapid solidification can be predicted from 

an equilibrium data. Perepezko and Boettinger [115] showed a simple way of finding the 

To curve is to draw the To curve connecting the midpoints between the liquidus and 

solidus lines at a given temperature. The minimum degree of undercooling which is 
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thermodynamically necessary for the diffusionless transformation of a liquid alloy to a 

solid solution, for a given alloy composition, is expressed by the To curves in the phase 

diagram. Such a condition is shown in Fig. 5.7, where the metastable liquidus of Ti2Ni 

and TiNi intersect with contrary slopes [90]. As the Ni is rejected in front of the Ti2Ni 

interface and Ti rejected in the front of TiNi interface, this will result in an evolution of 

Ti2Ni-TiNi eutectic (cooperative growth) structures.  Lin et al. [90] stated that the 

liquidus of Ti2Ni and TiNI will be further shifted to a lower temperature region as a result 

of a strong kinetic undercooling and the capillary effect.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 A phase diagram of the Ti-Ni system, the figure also shows the 

extension of possible phase fields and the To curves of the phases [90]. 

 

Now, whether the growth would be metastable lamellar eutectic or anomalous 

eutectic will depend on the growth velocity in the melt pool. Lin et al. [90] saw very high 

growth velocities in their melt pool for Ti6Al4V-Rene88DT multicomponent system. The 

conditions for anomalous eutectic to become the unique microstructure were [113, 114] 
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large undercooling’s such that the phases are capable of nucleating independently with 

sufficiently large growth velocities.  Because of this large undercooling the eutectic takes 

on a mode of divorced growth as compared with the normal cooperative lamellar growth. 

Large undercooling’s are most commonly observed in LMD process. And the laser 

process parameters greatly influence the solidification process and microstructures. Xu, et 

al. [8] studied the influence of vs and P on microstructure in Ti-50 wt% Ni, as shown in 

Fig. 5.8. The laser energy density (De) was defined as the following: 

                                         =  
 

  𝑣 
                                       [4.1]  

where d is the laser spot area that can be calculated by the laser beam diameter, M is the 

deposition amount of powders, and De is a dimensionless parameter, which expresses the 

energy to melt the unit powder in unit time and area. They found that the dendrite arm 

spacing decreased with increasing the scanning velocity and decreasing the laser power. 

Divorced eutectic structures were obtained in the resulting microstructure. 

Similar metastable eutectic byproducts were observed in the microstructures in 

the current research work. Both the metastable lamellar eutectic or anomalous eutectic 

structures were observed based on the processing conditions. The representative figures 

are shown in Fig. 4.24 (l), 4.26 (l) and 4.27 (i). In the current work, with the increase in 

nominal composition of Inconel 625 beyond 50 wt% dendritic structures were observed 

in the microstructure. From the mathematical equation described above if the beam spot 

size and mass per unit length of powder deposited in each layer were to be the same, with 

the change in energy density for grading chem I (with increasing power at constant 

velocity) the microstructure showed two phase TiNi + β-Ti eutectic dendrites at both 500 

W and 1000 W, as shown in Fig. 4.24 and 4.27, although Figure 4.26 (i) at 700 W does 
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not show presence of any two phase TiNi + β-Ti eutectics dendrites but only divorced 

TiNi eutectics. The secondary dendrite arm spacing appears to remain unaltered with the 

processing parameters, as shown in Fig. 4.24 (i, taken at lower magnification) and Fig. 

4.27 (i, taken at higher magnification). Interestingly the microstructure in Chem I 

changed from divorced to pseudo-normal cooperative mode at 500 W and 1000 W along 

the graded layers in Fig 4.24 and 4.26. In summary, except for the differences in 

composition between 500 W and 700 W, 1000 W the effect of laser power on 

microstructure evolution is very inconclusive. The microstructures along the graded 

direction were initially similar for all the three laser powers, and varied towards the end 

of deposition process. This could have occurred due to lack of a better control over the 

process as discussed in earlier Sections. As a result of it there may have been some 

variations in solidification times or cooling rates along the deposit height during and after 

deposition process. From the FEA thermal model (Fig. 3.8) we know that the rate of 

cooling in the layers is initially driven by the proximity to the workpiece. Also, the ability 

of the clad to cool down dropped by an order of magnitude with increasing number of 

layers.  
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Figure 5.8 Schematic diagram showing the solidification processes and the 

forming mechanisms of as-deposited microstructures which vary with the 

processing parameters
 
[8]. 

 

 

 

 

 

 

 

 

Figure 5.9 Image of a defect-free functionally graded Inconel 625/Ti64 fabricated 

using Chemistry I (70 layers) composition by LMD @ 1000 W, tool path=Bi-

directional, 8 g/min, and 8.46 mm/s. 

 

100% Inconel 625 on the top-

most layers 

100% Ti6Al4V on the bottom-

most layers 
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Figure 5.10 Image showing a machined cross-section of the non-linearly graded 

Chem I (1000 W, 8 g/min, and 8.46 mm/s). Note: no cracks can be seen in the 

deposit. 

 

5.3 DIFFERENCES BETWEEN LINEAR AND NON-LINEAR GRADING 

 

The main difference between graded chem I, II and III is the absence of macro 

and micro-cracks in Chem II. Figure 5.9 and 5.10 shows a macrostructure of a crack-free 

graded Chem II thin wall structure.  As the nominal composition reached beyond ~50 pct 

by weight of Inconel 625 cracks were observed in the graded Chem I and Chem III thin 

wall structures. Figure 4.19 shows macro-cracks in the linearly graded structure; whereas 

Figure 4.26 h and k and Figure 4.32 f shows micro-cracks along the TiNi precipitate 

phase in the microstructure. The microstructures in the graded Chem III structures (Fig. 

4.32 (a to h) are comparable to the linearly graded structures and were discussed already 

in the above section.  However the microstructures in the Chem II were only comparable 

up to 50 pct by weight with the Chem I and Chem III.  
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Domack and Baughman [7] also observed macro-cracks when the target blend 

was about 40 percent Ti6Al4V and 60 percent Inconel 625. They determined that the 

cracks were not directly linked to metallurgical features. But the microstructures showed 

coarse dendrites and significant elemental segregation. They concluded that additional 

development of process parameters and powder feed control were necessary to ensure 

that target chemistry gradients are achieved without excessive material reactions. A 

Similar research work by Dong et al. [104] showed micro-cracks at the transition region 

of 10% SS316L + 90% Inconel 625 and 20% Ti6Al4V + 80% Inconel 625. They saw 

fracture of the tensile specimen at the transition of Inconel 625-Ti6Al4V interface. From 

the morphology of the fracture they concluded that cracks that initiated during deposition 

propagated along the interface among the intermetallics under the stress. In both these 

studies little attempt was made to understand the reason behind the solidification cracks 

and the resulting microstructures.  

In the present study we observed that the microstructures for the graded Chem II 

structures (Fig. 4.30 and 31) are slightly different as the composition changed from 50 to 

100 pct by weight of nominal 625.  In Chem I at 500 W the composition of Ni in the final 

layers was ~15-20 percent lower than that at 1000 W, and hence the microstructures are 

slightly different. But in general the microstructures transformed from anomalous 

eutectic structures of Ti2Ni + TiNi to Ti3Ni + TiNi two phase structures and possibly 

presence of γ phase based on the XRD. The measured Ni in the Chem I and Chem III at 

nominal of 50 to 100 pct by weight of Inconel 625 was in the range of 30 to 50 pct as 

compared to 30 to 70 pct Ni for Chem II. In other words, no cracks were present in all the 

grading’s of Chem II but a transition to almost 100 pct by weight of nominal Inconel 625 
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was achieved only at a combination of high laser power, high travel speed and high 

powder feed rate, as shown in Fig. 4.29 (d). But the conditions that “worked” involved a 

very low powder efficiency, a very long manufacturing time (~20 minutes), and a very 

“low” deposit height (~6mm). Chen et al. [10] from their analytical and experimental 

work on Ti6Al4V/Inconel 718 laser welding also showed that a combination of high laser 

power and welding speed and offsetting the laser beam approximately from the interface 

to the Inconel 718 side minimized cracking in the welds.  

One thing to note when grading Chem II is compared to Chem I and Chem III is 

that between 50 to 100 pct by weight of nominal Inconel 625 the number of 

compositional steps decreased from 4 to 1. This probably minimized the formation of 

coarse equiaxed dendrites or faceted structures of TiNi phase resulting from an increase 

of thermal gradient due to accumulation of heat as the deposit grew thicker. Figure 4.26 h 

and k, and Figure 4.32 f show microcracks present near the semi-coherent structures in 

the graded Chem I and Chem III. Although circular precipitates minimizes the interfacial 

energy but the coherency strains increases. The elemental mapping in general showed the 

dendritic and faceted TiNi phase to be rich in Cr. Lin et al. [90] considered the Cr-

enriched TiNi phase to be a pre-martensitic rhombohedral phase (R-phase). This phase 

was found at the interdendritc regions of Co enriched TiNi dendrites, at which lower 

cooling rate was experienced. The Cr-enriched TiNi phase formed at the interdendritic 

regions resembled the form of a block or lath. In the current work, whether the TiNi 

phase is R-phase has not been confirmed by TEM, but is deduced from the above 

author’s study. 



 

 

171 

R-phase is a martensitic phase, but is not "the" martensite(soft, ductile B19’)  that 

is responsible for the shape memory and superelastic behavior. Commercially available 

50:50:: Ti:Ni alloy is responsible for the shape memory (in which recovery to original 

shape can happen by heating)  and superelastic effect (exhibit enormous elasticity when 

worked at temperatures slightly above transformation temperature). Partial substitution of 

Ni with some other alloying elements such as Fe, Co, and Cr in TiNi or annealing in the 

range of 350-500°C can decrease the Ms temperature more strongly than the 

"premartensitic" R phase start temperature (Rs). When austenite (B2, cubic structure) 

transforms to the R-phase (rhombohderal distortion of cubic structure, equivalent d-

spacing) its energy is reduced and its propensity to transform to martensite (soft, ductile 

B19’) is lessened. Brachet et al. [116] showed that the addition of 2%Fe on a TiNi alloy 

induced formation of R-phase that resulted in brittle failure during charpy tests conducted 

in the temperature ranging from -25 to 0°C.  

In summary it is possible to achieve a 100% grading of Ti6Al4V and Inconel 625 

at higher laser powers, faster travel speeds and higher powder feed rate. The cracks in the 

fabricated structure can be minimized by controlling the formation of R-phase in the 

microstructure. 

http://en.wikipedia.org/wiki/Martensite
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6. CONCLUSIONS AND FUTURE WORK 

6.1 CONCLUSIONS 

 

This thesis has tried to cover a broad range of topics such as finite element 

modeling, thermodynamic modeling of multicomponent system, microstructure evolution 

in the functionally graded Ti6Al4V and Inconel 625 alloys, etc. Brief summary of the 

findings are as follows: 

 

 Current literature available on Titanium based and Nickel based alloy FGMs is 

very limited and the potential of these alloys has not been fully utilized. It has 

been shown in the present work that LMD is capable of producing functionally 

graded multi-component systems for a wide range of applications. However, 

because of the complexity involved in building FGMs and some of challenges 

encountered during experimentation, the scope of the current work was 

constrained to (i) accept the deposits that were obtained in this research work and 

(ii) recognize that the process was uncontrolled and hence the resulting 

microstructure studies reported here are centered primarily around observing 

compositional changes and identifying the phases by XRD.   

 In Domack et al.
 
[7] words “A refined experimental program is needed to resolve 

technical issues like macroscopic cracking, elemental segregation etc.,” in multi-

component Ti-Ni FGMs. In this research work an attempt was made to understand 

the effect of process parameters on achieving 100 pct nominal Inconel 625 

grading in the thin wall structures. A combination of high laser power, faster 
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travel speed and high powder feed rate was found to be beneficial in achieving the 

goal. 

 3D thermo-mechanical models were built to understand the effect of process 

parameters such as laser power, travel speed, tool path direction, etc., on peak 

temperatures, cooling rate and remelted layer depths, residual strains, etc., for the 

LMD process. The models were constructed on the multilayer deposition of 

SS316L and Inconel 625 on SS316L workpiece. The above material-systems are 

simple to handle in ABAQUS
TM

 as “liquid” and “solid” are the only two phases 

that are formed during melting and cooling. These models were experimentally 

verified in-situ using K-type thermocouples and high temperature strain gages. 

The results from these models were used in this thesis to interpret the structure-

property relationships in the functionally graded Ti6Al4V and Inconel 625 FGMs. 

The thermal profiles and strain measurements of the FEA models were in 

agreement with the experiments. The thermal profiles showed very high initial 

cooling rates and as the number of layers increased in the thin wall structure the 

cooling efficiency dropped by an order of magnitude. This kind of behavior 

resulted in a deviation from non-equilibrium conditions, not typical for LMD 

process. Some of the minor phases predicted from thermodynamic modeling 

under equilibrium conditions were detected in the functionally graded Ti6Al4V 

and Inconel 625 structures because of equilibrium behavior. The mechanical 

models were in agreement with experiments within 5-10% of each other. Not 

much information could be gained from modeling as to why solidification 

cracking occurred in the functionally graded Ti6Al4V and Inconel 625 FGMs. 
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 The microstructure evolution in the functionally graded Ti6Al4V and Inconel 625 

FGMs agreed very well with the data provided in literature. Also, some process 

parameters were identified in this research work that could achieve transition 

from 100 % nominal Ti6Al4V to 95-100% nominal Inconel 625. Further 

repetitions at these parameters were impeded by process stability and 

experimental setup. The cracks in the FGMs were believed to be a result of 

precipitation of coarse circular and dendritic precipitates of pre-martensitic R-

phase TiNi in the anomalous eutectic of TiNi + Ti2Ni matrix. This usually 

occurred as the nominal composition of Inconel 625 exceeded 50 pct by weight in 

the graded layers during deposition. In the non-linear grading Chem II, 

precipitation of R-phase was minimized. Thus, no observable cracks were 

identified and a transition to 95-100% nominal Inconel 625 was achieved.  

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

 

In the research work presented in this dissertation a lot of problems were encountered 

during functional grading of Ti6Al4V and Inconel 625 and warrants further investigation. 

The results of this dissertation point to several interesting directions for future work: 

 

 The probability of success in obtaining a defect free Ti6Al4V and Inconel 625 

FGM is dependent on choosing optimal process parameters, process stability and 

reproducibility. Even in conditions that “worked” a very low powder efficiency 

and long manufacturing time (~20 minutes), and “low” deposit heights (~6mm) 

were issues.  In summary, the complexity involved in depositing mixed powders 
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translated to poor process control of (i) powder yield for each powder (which may 

have been different for each powder composition and over time for each set of 10 

layers), (ii) the laser absorption efficiency which may have varied with time 

(absorption can also be impacted by compositions of the layers), and (iii) the Z 

height from laser tool to the deposit. These factors need to be a considered in 

future research work on the production of Ti-Ni based alloys FGMs. 

 The possibility of using Inconel 625 workpiece for grading from 100 pct nominal 

Inconel 625 to Ti6Al4V should be explored. The hypothesis is that with lower 

melting point and higher thermal conductivity of Inconel 625 over Ti6Al4V the 

heat will dissipate faster. This may result in lower thermal gradients and a wider 

fusion zone and minimize the likelihood of formation of Ti-Ni intermetallics.  
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APPENDIX   

THIS IS AN APPENDIX CONTAINING ADDITIONAL FIGURES FROM  

RESULTS SECTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Pareto chart showing the effect of processing parameters in 

minimizing mixing in the layers. 
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Figure A.2  Plot shows the effect of processing parameters in minimizing mixing in 

thelayers. 

 

Figure A.3 Contour plot shows the effect of processing parameters in minimizing 

mixing in the layers. 
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Figure A.3 Contour plot shows the effect of processing parameters in minimizing mixing 

in the layers (Cont.). 
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Table A.1 Factsage Modeling and XRD Verification for deposition Strategy Chem II at 

1000 W, ND=not detected, *= overlap with Ti2N/ not resolved, **=overlap with 

NiTi/not resolved, No database= no peak patterns at room temperature. 100 represents 

100 wt.% Ti6Al4V-0 wt% Inconel 625, 80 represents 80 wt.% Ti6Al4V-20 wt.% 

Inconel 625. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Chem I Ti3Al                                Ti-α                                   NiTi2                               V Cr Mo Fe2Ti NbCr2                                       NbCo2                          Cr3Mn5 AlNi CoAl NiTi Ni

34.85 51.97 9.09 4.8 0.7 0.10 0.26 0.01

    <hcp-82%, c-<1% <4% ** ND <7% ND ND ND ND ND ND ND ND

32.91 28.63 28.78 5.4 3.0 0.81 0.78 0.02 0.04

* <50.5 <24.8 ** ND <6.9% ND <5% ND ND ND ND <1% ND

32.00 9.90 49.46 3.0 2.0 0.5 0.05 2.31 0.04 0.42

* <14% <19% ** <2% <4% ND <12% <3% ND ND <3% <10% ND

18.71 61.99 1.20 4.7 4.4 2.43 2.84 0.55 1.16 1.13 0.29

* ND <14.9% ** <2% <2% ND <7.9% <3% ND ND <2% <4% ND

2.17 80.40 1.00 4.1 2.0 3.29 1.67 0.06 0.19 4.07 0.36

* ND <5% ** <2% <3% ND <13% <4% ND ND <45 <13% ND

1.0 4.17 6.14 0.12 1.18 6.7

* <9.2% ** <1%<4.1% ND <12,2% <3.1% ND ND <2% <2% ND

Factsage                                                                            

[0]+ [100]                       

XRD

Factsage                  

[80]+ [20]          

XRD

Factsage                               

[90]+ [10]                                 

XRD

Factsage              

[70]+ [30]             

XRD

Factsage              

[60]+ [40]       

XRD

 Factsage                 

[50]+ [50]      XRD
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Table A.1 Factsage Modeling and XRD Verification for deposition Strategy Chem II at 

1000 W, ND=not detected, *= overlap with Ti2N/ not resolved, **=overlap with NiTi/not 

resolved, No database= no peak patterns at room temperature. 100 represents 100 wt.% 

Ti6Al4V-0 wt% Inconel 625, 80 represents 80 wt.% Ti6Al4V-20 wt.% Inconel 625 

(Cont.). 

 

 

 

 

 

 

 

 

 Chem I MoNi4                       NbFe2                                 Ni3Al                                                                          Fe(bcc)                                             NbCo3                        Ni3Ti                                       Ni24Cr20Mo12                                                         FeTi                            Cr5Al8                    AlNbTi2          V5Al8 Mo0.84Ni0.16 Co2Ti

ND ND ND ND ND ND NDB ** ND <6% ND ND ND

ND <6.9% ND ND ND ND NDB ** ND <1% ND <2% <2%

ND <11% <7% ND ND ND NDB ** ND ND ND <4% <9%

ND <7.9% <7.9% ND ND <23.8% NDB ** ND ND <15.8% <2% <6.9%

ND <7% <6% ND ND <23% NDB ** ND ND <10% <3% <7%

0.12 45.27 30.17 4.85

ND <8.2% <6.1% ND ND <39.8% NDB ** ND ND <4.1% <2% <6.1%

Factsage                                                                            

[50]+ [0]                       

XRD

Factsage                               

[100]+ [90]                                 

XRD

Factsage                  

[90]+ [80]          

XRD

Factsage              

[80]+ [70]             

XRD

Factsage              

[70]+ [60]       

XRD

 Factsage                 

[60]+ [50]      XRD



 

 

181 

Table A.2 Factsage Modeling and XRD Verification for deposition Strategy Chem III at 

1000 W, ND = not detected, *= overlap with Ti2N/ not resolved, **= overlap with 

NiTi/not resolved, No database (NDB) = no peak patterns at room temperature. 100 

represents 100 wt.% Ti6Al4V-0 wt% Inconel 625, 80 represents 80 wt.% Ti6Al4V-20 

wt.% Inconel 625. 

 

 

 

 

 

 

Chem II Ti3Al                           Ti-α                           NiTi2                                V Cr Mo Fe2Ti NbCr2                                       NbCo2                          Cr3Mn5 AlNi CoAl NiTi Ni

30.55 42.37 18.2 4.6 1.56 0.21 0.02 0.52 0.52 0.67

* <86% <9% ** ND ND ND ND ND ND ND ND ND ND

17.18 13.60 48.0 1.20 6.2 3.10 5.43 2.34 0.02 0.15 0.66 0.29

* <85% <15% ** ND ND ND ND ND ND ND ND ND ND

47.7 1.30 4.86 2.40 4.14 4.50 1.54 1.23 5.26 0.94 24.17

* <47% <40% ** ND ND <4.2857 ND ND ND ND ND ND ND

0.40 11.2 3.91 5.36 4.98 0.08 0.49 3.33 1.08 45.10

* <50% <11% ** ND ND ND <5% ND ND ND ND ND ND

0.37 15.0 5.07 0.14 2.42 17.8

* ND <79.2% ** ND <0.9% ND ND ND ND ND ND <3% ND

Factsage                                        

[20] +[80]                                     

XRD

 Factsage                                                   

[0]+ [100]                            

XRD

Factsage                                     

[80] +[20]                                   

XRD

Factsage                                         

[60] +[40]                                 

XRD

Factsage                                

[40] + [60]                                       

XRD
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Table A.2 Factsage Modeling and XRD Verification for deposition Strategy Chem III at 

1000 W, ND = not detected, *= overlap with Ti2N/ not resolved, **= overlap with 

NiTi/not resolved, No database (NDB) = no peak patterns at room temperature. 100 

represents 100 wt.% Ti6Al4V-0 wt% Inconel 625, 80 represents 80 wt.% Ti6Al4V-20 

wt.% Inconel 625 (Cont.). 

Chem II MoNi4                       NbFe2                                 Ni3Al                                                                          Fe(bcc)                                             NbCo3                        Ni3Ti                                       Ni24Cr20Mo12                                                         FeTi                            Cr5Al8                    AlNbTi2          V5Al8 Mo0.84Ni0.16 Co2Ti

ND ND ND ND ND ND NDB ND ND ND ND <5% ND

ND ND ND ND ND ND NDB ND ND ND ND ND ND

ND <4% ND ND ND ND NDB ND ND <2% ND ND ND

22.89

ND ND ND ND ND ND NDB ** <21% ND <9% <4% ND

22.95 0.14 15.90 0.10 0.76 11.04 7.32

ND ND <1% ND ND ND NDB ** <11.9% ND <4% ND ND

Factsage                                        

[20] +[80]                                     

XRD

 Factsage                                                   

[0]+ [100]                            

XRD

Factsage                                     

[80] +[20]                                   

XRD

Factsage                                         

[60] +[40]                                 

XRD

Factsage                                

[40] + [60]                                       

XRD
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Figure A.4  XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 1000 W. Note: all the compositions are 

nominal and calculated from measured data. 
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Figure  A.4 XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 1000 W. Note: all the compositions are 

nominal and calculated from measured data (Cont.). 
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Figure  A.4 XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 1000 W. Note: all the compositions are 

nominal and calculated from measured data (Cont.). 
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Figure  A.5  XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 500 W.  Note: all the compositions are 

nominal and calculated from measured data.  
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Figure A.5 XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 500 W.  Note: all the compositions are 

nominal and calculated from measured data (Cont.). 

TiNi 
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Figure A.5 XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem II at 500 W.  Note: all the compositions are 

nominal and calculated from measured data (Cont.). 
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Figure  A.6  XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem III at 1000 W.  Note: all the compositions are 

nominal and calculated from measured data. 
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Figure A.6 XRD patterns measured perpendicular to the laser scanning direction in the 

compositionally graded material for chem III at 1000 W.  Note: all the compositions are 

nominal and calculated from measured data (Cont.). 
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Figure A.7 X-ray elemental maps of Chem II showing elemental distribution along the 

composition gradient. Note: all the compositions are nominal and calculated from 

measured data. 

Ni3Ti ? 
NiTi + 

Ni3Ti 

(k) (l) 

(b) 10 wt% Inconel 625 

(a) Melt Zone 

NiTi 



 

 

192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7 X-ray elemental maps of Chem II showing elemental distribution along the 

composition gradient. Note: all the compositions are nominal and calculated from 

measured data (Cont.).  

(d) 40 wt% Inconel 625 

 © 30 wt% Inconel 625 
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Figure  4.38 (Cont.) X-ray elemental maps of Chem II showing elemental distribution 

along the composition gradient. Note: all the compositions are nominal and calculated 

from measured data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7 X-ray elemental maps of Chem II showing elemental distribution along the 

composition gradient. Note: all the compositions are nominal and calculated from 

measured data (Cont.). 

 

(e) 50 wt% Inconel 625 

(f) 100 wt% Inconel 625 
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Figure A.8 X-ray elemental maps of Chem III showing elemental distribution along the 

composition gradient. Note: all the compositions are nominal and calculated from 

measured data. 

(b) 20 wt% Inconel 625 

(a) 10 wt% Inconel 625 
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Figure A.8 X-ray elemental maps of Chem III showing elemental distribution along the 

composition gradient. Note: all the compositions are nominal and calculated from 

measured data (Cont.). 

(d) 100 wt% Inconel 625 

© 60 wt% Inconel 625 
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Figure A.9 Hardness values of the functionally graded material measured along the 

composition gradient, *0 mm = means initial substrate-deposit interface. 
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Figure A.10 Peak temperature history calculated for each layer of thin wall at the end of 

deposition.   

(a) 1000 W, 8.46 mm/s, Uni-directional tool path, 

SS316L  clad on SS316L workpiece 

(b) 500 W, 8.46 mm/s, Uni-directional tool path, 
SS316L  clad on SS316L workpiece 

(c) 1000 W, 4.23 mm/s, Bi-directional tool path, 
Inconel 625 clad on SS316L workpiece 
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