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ABSTRACT

Wireless sensor networks are composed of a fewwveral thousand sensors
deployed over an area or on specific objects teesdiata and report that data back to a
sink either directly or through a series of hop®sas other sensor nodes. There are many
applications for wireless sensor networks includngironment monitoring, wildlife
tracking, security, structural heath monitoringojp tracking, and many others. The
sensors communicate wirelessly and are typicalty small in size and powered by
batteries. Wireless sensor networks are thus cftestrained in bandwidth, processor
speed, and power. Also, many wireless sensor nktagplications have a very low
tolerance for latency and need to transmit the mhateal time. Data compression is a
useful tool for minimizing the bandwidth and powegquired to transmit data from the
sensor nodes to the sink; however, compressiomitdges often add a significant
amount of latency or require a great deal of addéi processing. The following papers
define and analyze multiple approaches for achgeeifective compression while
reducing latency and power consumption far belowatwiould be required to process
and transmit the data uncompressed. The algoritArget many different types of sensor
applications from lossless compression on a sisghsor to error tolerant, collaborative
compression across an entire network of sensargrtgpression of XML data on sensors.
Extensive analysis over many different real-liféadsets and comparison of several
existing compression methods show significant couation to efficient wireless sensor

communication.
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SECTION

1. INTRODUCTION

Wireless sensors are used for a great host ofrdiftepplications such as
environment monitoring, health care, security, tarl, structural health, social behavior
analysis, and vehicular networks. Wireless senstwarks are well known to be much
more constrained than traditional computers. Tharebe thousands of wireless sensors
in the same network all communicating with relagMew speed radios making
bandwidth very limited. Most wireless sensors are/gred by batteries. Changing the
batteries in a sensor can be difficult, expensiveven dangerous (especially in military
uses) so the power consumption is a critical aspfactany wireless sensor deployments.
Many wireless sensor networks also have a neec&btime delivery of data; thus,
minimizing latency is important.

Effective data compression is therefore imperdaiivan efficient deployment of a
wireless sensor network. This document presenerakesompression algorithms
targeting a wide variety of use cases for sensowar&s. The algorithms are designed to
be effective and simple to implement. Extensivdyamisand experimentation show

excellent results when compared to the state oatheesearch in the field.



PAPER

I. ENERGY-EFFICIENT REAL-TIME DATA COMPRESSION IN WIRELESS
SENSOR NETWORKS

Wireless sensor networks possess significant ltraita in storage, bandwidth, and
power. Additionally, real-time sensor networks caintolerate high latency. While some
good compression algorithms exist specific to senstworks, in this paper we present
an energy-efficient method with high-compressidiorthat reduces latency, storage and
bandwidth usage further in comparison with someitbcently proposed algorithms.
Our Huffman style compression scheme exploits tealpocality and delta compression
to provide better bandwidth utilization in the netW, thus reducing latency for real time
applications. Our performance evaluations show @ratge compression ratios and
energy savings with a significant decrease in @t@ompared to some other existing

approaches.

1. INTRODUCTION

Many real-time systems incorporate wireless senstwsheir infrastructure. For
example, some airplanes and automobiles use selsm@nitor the health of different
physical components in the system, security systesasensors to monitor boundaries
and secure areas, armies use sensors to tracls @modpgargets. It is well known that
wireless sensor networks possess significant ltiaita in processing, storage,
bandwidth, and power. Therefore a need existsffmient data compression algorithms
which do not require delays in processing or comoation while still reducing memory

and energy requirements.

This research is supported by DOE grant number R2D0359.



Data compression has existed since the early day@aputers [1][2][3]. Many new
compression schemes [5][6][7][8][9] for wirelessiser networks have been proposed.
These schemes address specific challenges andtopities presented by sensor data
and provide significant reductions in required atm, bandwidth, and power. However,
most of these methods require a fair amount of takee collected before compressing.

We propose TinyPack, a compression scheme fotirealsensor networks.
TinyPack reduces the amount of data flowing throtighnetwork without introducing
delays. First the data is transformed by expregsiagensed values as the change in
value from the previous sensed reading. This exredl to as delta compression. We
demonstrate its effectiveness for any generic tigsd-sampled dataset. Second, the
individual delta values are then compressed usihgrizative of Huffman coding [1].
Huffman codes express more frequent data valudsshitrter bit sequences and less
frequent values with longer ones. The codes arergésd and updated dynamically so no
delay is needed. TinyPack is a lossless compressgomithm and the data can be
decompressed at the sink or base station withgukoss of granularity or accuracy.

Standard Huffman and Adaptive Huffman [2] codingéda high RAM overhead and
require transmitting either the entire tree or sahveopies of a ‘new symbol’ code. We
begin with a static initial code set similar to thee used in the LEC algorithm [8]. We
then examine two different methods of adaptingcibdes. For datasets where the range
of possible values is relatively low compared te storage capability of the sensors, the
actual frequencies can be counted and used toarbgupdate the codes. For data with a
high (or unknown) variance or low RAM environmetitse frequencies can be

approximated using running statistics on the da&mam. This method easily scales to be



effective on any size data set with any range skfide values. We introduce the notion
of an all-is-well bit and perform initial analys$ error detection constructs.

We compare the results to the performance of tHaf@ealgorithm (used in gzip and
most operating systems) and S-LZW [7] to measusaditywof the compression. S-LZW
is an adaptation of standard LZW compression sigatlif designed for sensor networks.
S-LZW is a string based compression scheme whitthedenew characters for common
sequences of characters. It is designed to funatehfor any generic sensor dataset and
is very effective at compression and energy redactseveral variations of S-LZW are
developed in [7]. In an effort to be fair we havmsen the variation that performs best
for each dataset studied. We also compare with B algorithm [8] which supports
real-time data.

In summary, this paper makes the following contidms:

An improved set of static codes optimized for semlsta and efficiency in
processing

Hybrid adaptations of delta and Huffman compressibrch significantly reduce
latency and RAM requirements over traditional Hudfimcodes while achieving
comparable and improved compression ratios andygregficiency compared to other
existing methods

An additional all-is-well bit construct that furthimcreases compression performance
and efficiency

A novel and effective error detection method



2. BACKGROUND

2.1. HUFFMAN TREES

Huffman-style coding [1] converts each possiblaieahto a variable length string
(sequences of bits) based on the frequency ofdtee Higher frequency values are
assigned shorter strings. So the more concenttiagedata is over a small set of values,
the more the data can be compressed. Huffman cadelse generated by building a
binary tree where the nodes at each level arelydealf as frequent as the nodes at the
next level up. For example, the values and fregiesnn Table 12 generate the codes
using the Huffman tree in Figure 19. Huffman codese shown to be optimal for

symbol by symbol compression in [1].

Table 1 Huffman codes
\(;;l Frequency | Code
-7 14653 111111
-6 16661 111101
-5 19983 111011
-4 23760 111001
-3 31124 11011
-2 35636 11001
-1 88845 101
+0 350429 0
+1 87956 100
+2 38942 11000
+3 31809 11010
+4 20563 11100(¢
+5 17241 111010
+6 14171 11110(¢
+7 12716 11111¢




Figure 1 Huffman tree

2.2. TEMPORAL LOCALITY AND DELTA VALUES

Real-time wireless sensor networks generally exképnporal locality (data from
readings taken in a small time window are correlatdny type of data which changes in
a continuous fashion will be temporally locatedrsas temperature, location, voltage,
velocity, timestamps, etc. In fact, it can be dest@ted that any sensor sensing at non-
random intervals will either generate temporallgaied data or random noise.

Consider an arbitrary sensor sensing a streamloésfv,,v,,...,v,, } sensed at
times{tl,tz,...,tm} where N is an integer. Assume the values areorotlated. Then
sampling afft, t,,...,t,y,} and{t,.t,.....t,,} would yield completely different values.

So offsetting the sample period would generate@gtdifferent data.

Therefore, excluding applications which generatee pwise, we can assume that
successive readings at each sensor will be cogtkl&telta compression (storing the data
as the change in value from the previous readiragldvthen increase the frequency of
certain values thus increasing the compressilolitye data.

Note that this does not apply to event driven samggwhere time between samples

is random) such as a sensor that measures the speedor each passing automobile.



These applications do not necessarily exhibit teraddocality and were not included in

this study.

2.3. FRAMES

In delta compression (as with most compressionmsebg a dropped packet can
render following packets useless or at least caraf@d to decompress. So in systems
where data loss is probable, data should be cosgutesnd sent in chunks (usually called
frames). Additionally, in sensor networks, datarelteristics can change drastically as
time progresses. So sending independently compréssaes of data also allows
additional flexibility for the compression to be mapecific to the current state of the

system.

3. RELATED WORK

31.SLZW

In [7] an adaptation of standard LZW compressiomsisd to address the specific
characteristics of a sensor network. S-LZW comm®$se data by finding common
substrings and using fewer bits to represent ti&®irZW maintains two sets of up to 256
eight-bit symbols: The original ASCII charactergsldhe set of common strings. A bit is
appended to the beginning of each encoded symlodlicate which set it is from. A
dictionary is maintained that tracks which stringepresented by which eight-bit
sequence.

They also propose Sensor-LZW with the notion ofiaiHtache to capitalize on the
frequent recurrences of similar values in a shore in sensor data. Recent strings are

stored withN bits in the mini-cache dictionary whexe< 8 (for a maximum size of*2



entries in the mini-cache). An additional bit igpapded to the beginning of each symbol
to note whether the symbol is from the main diciignor the mini-cache. Different data
sets had different optimal values fér The cache is implemented as a hash table for

efficient lookup times.

Table 2 S-LZW with mini-cache
Encoded New New Dict. Mini-Cache | Total | Total
String Output Entry Changes Bits: Bits:
LZW | Mini-
Cache
A 65,0 256-AA 0-256, 1-65 9 10
AA 0,1 257-AAA 1-257 18 15
A 65,0 258-AB 1-65,2-258 27 25
B 66,0 259-BA 2-66,3-259 36 35
AAA 257,0 260-AAAB | 1-257,4-260 45 45
B 2,1 261-BC 5-261 54 50
C 67,0 262-CC 3-67,6-262 63 60
C 3,1 72 65

Table 13 shows S-LZW and LZW compressing the sStNAAABAAABCC. Every
known symbol encountered is encoded into the owgjpeam (choosing the longest string
possible from the dictionary). Then a new dictignantry is added by concatenating the

next character in the input stream to the previpaskcoded symbol.

3.2.LEC

A lightweight sensor network compression technidu€C, is presented in [8]. LEC
compresses a stream of integers by encoding the vidles with a static, predetermined
set of Huffman codes shown in Table 14 with anydtpast level 7 following the pattern

of the last three levels.



Table 3 LEC codes

Level | Bits | prefix suffix range values

0 2 00 0

1 4 010 0...1 -1.1

2 5 011 00...11 -3,-2,2,3

3 6 100 000...111 -1,..,-4,4,..7

4 7 101 0000...1111 -15,...,-8,8,...,15

5 8 110 00000...11111 -31,...,-16,16,...,31

6 10 1110 | 000000...111111 -62,...,-32,32,...,63

7 12 11110 0000000...1111111 -127,...,-64,64,7.,12
3.3. GAMPS

Many lossy compression schemes have also beengeopoich as [9]. GAMPS
compresses the data from multiple sensors whickeseorrelated data using
mathematical techniques to group the sensors wiaeh highest correlation to each
other. One sensor in each group is selected dsatdaine and the rest of the sensors in
the group report the difference in their sensedesfrom the baseline. The values are
rounded based on an error threshold parametehteveeccompressed sizes under 1% of

the original size.

3.4. ROUTING METHODS

Other schemes have been introduced which depetftearetwork topology and
routing [5][6]. In this paper, we focus on methadgerform lossless compression at a

single sensor.

4. EXPERIMENTAL DATA SETSUSED

The data sets used for simulation were pulled faomide variety of domains which
utilize wireless sensor networks including envir@minmonitoring, tracking, structural

health monitoring, and signal triangulation. Allcept the environment monitoring data
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are from applications where low latency is criticall are from real deployments of
wireless sensors for academic, military, and consrakpurposes. In every experiment,
the entire datasets were used.

Environment monitoring data was drawn from the GBazck Island [10] and Intel
Research Laboratory [12] experiments. On the isBhdensors monitored the conditions
inside and outside the burrows of storm petrelssmeag temperature, humidity,
barometric pressure, and mid-range infrared liglhe Intel group deployed 54 sensors to
monitor humidity, temperature, and light in the.lApproximately 9 million sensed
values were generated on the island and over 1®mitom the lab.

For tracking, data was taken from two differentgts. Princeton researchers in the
ZebraNet project [11] tracked Kenyan zebras gemgratver 62,000 sensor readings.
The U.S. Air Force’s N-CET [13] project tracked hams and vehicles moving through
an area.

The structural health data is comprised of neaalf d million packets send by a
network of 8 sensors fused to an airplane winglmaversity of Colorado study [14].

Half the data was generated by a healthy wing hedther half by a wing with
simulated cracking and corrosion.

Signal triangulation data came from another portibthe N-CET project, in which a
network of sensors mounted on unmanned aerial eshilatercepted and collaboratively

located the sources of RF signals.

5. OUR PROPOSED APPROACH

We propose multiple versions of our TinyPack corapi@n algorithm. First we

introduce a static set of initial codes which asedias a starting point for the other
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methods. These codes by themselves provide googdression with excellent efficiency.
Next we achieve greater compression at the castroe RAM and processing by
maintaining dynamic frequencies of the streamedeaslThe third approach
approximates the frequencies with running stagstic the data, significantly decreasing
the RAM requirements while only slightly increasithg size and processor utilization.
We modify each of the above approaches by addiralasrwell bit that gives a small
boost to the compression ratio. We conclude byudisiag error detection, how to adjust

for real numbers instead of integers, and experiaieesults.

5.1. TINYPACK INITIAL FRAME STATIC CODES (TP-INIT)

We begin with a set of initial codes similar to$kaised in LEC; however, the static
codes used in LEC were optimized for jpeg compoesgihereas the TinyPack initial
codes are designed to perform well on time-samgdedor data with absolute minimum
processing time required.

Since we are using delta compression, the datgpieesed as the change in value
from the previous sample. The reported values egpositive or negative. In many
applications such as temperature sensing the vaheesyclic so the frequency of
positive changes is similar to the frequency ofati¥g changes. In general highest
frequencies appear in the smaller values (e.g.eeatyre usually changes fairly slowly
so most changes reported are small). Also theesatato scale to any number of values.
Based on these characteristics, we construct taliset of codes as follows:

Table 4 Initial default codes

Value | +0 | -1 +1 | -2 +2 -3 +3
Code | 1 | 011 010 00101 00100 00111 o00110




12

With all other values continuing the pattern: Defihas the base of the delta vallie

where

. { floor (log, ((d[) |d| >0
-1 d=0

The code C is constructed as a string®#23 bits. The firsB+1 bits are Os followed
by the binary representation df (which will beB+1 bits), and a sign bit. For example, if
dis 57 therBis 5. So C is constructed as 6 0 bits, followedHgybinary representation
of |57| (111001), followed a 0 sign bit since 5pasitive. SAC is 0000001110010.

If the minimum and maximum allowed for the value Bnown, then the 1 bit in the
center can be removed for the longest set of cétwsexample, in the codes for -3 to +3
above, if the 1 bit in the center of the codes-P#2,-3, and +3 was removed, the leading
00 would be enough for the decoder to accuratetpdie those symbols. The initial static
codes for values ranging from -127 to 127 are shiowirable 5. The leading 1 bit in the

number is considered to be part of the prefix sihtestatic for the entire level of the

tree.
Table 5 Default codes
Level | Bits | prefix suffix range Values
0 1 1 0
1 3 01 0...1 -1.1
2 5 001 00...11 -3,-2,2,3
3 7 0001 000...111 -7,.,-44,...,7
4 9 00001 0000...1111 -15,...,-8,8,...,15
5 11 000001 | 00000...11111 -31,...,-16,16,...,31
6 13 0000001 000000...111111 -62,...,-32,32,...,63
7 14 0000000 0000000...1111111 -127,...,-64,6487.

Using bitwise operators the floor (round down)ad base 2 can be calculated in

logarithmic time with respect to the maximum vati@l using Algorithm 1. The
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example shows getting the base for a one byte v@ihenotation bxxxx is used to

indicate a binary number so b10000 = 16.

Algorithm 1 FloorLog2Byted)

Objective: Calculate the base of a value
Input: Delta valual
Output: The basB of valued
B=0
ifd=0
B=-1
Else
d:= (|
If d >=b10000
rightBitShift(d, 4)
B :=B bitwiseOr b100
End If
If d>=b100
rightBitShift(d, 2)
B := B bitwiseOr b10
End If
If d >=b10
B := B bitwiseOr 1
End If
End If

The value is then bit shifted to fill in thg+ 1 prefix bits and appended to the output
stream.

In order to test the validity of this initial defaset, we compressed each of the
datasets using only these codes. Figure 2 showsshds of the TinyPack initial codes
(TP-Init) compared to the standard Deflate algonitis-LZW, and the LEC codes. For all
the datasets our initial codes actually compresightly better than any of the other
methods except for the N-CET Track dataset whelt@\W; LEC, and our initial codes
had nearly identical performance. As expectedDiiate algorithm, which does not
specifically target sensor network data, performsigdificantly worse for most of the

datasets. The ZebraNet and aircraft health dathsétscontain significant runs of
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unchanging data which the Deflate algorithm taldsaatage of so it performed

relatively well on those datasets compared to émsar network specific algorithms.
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Figure 2 Initial codes compared to deflate, S-LZW, and LEC

5.2. TINYPACK WITH DYNAMIC FREQUENCIES (TP-DF)

In order to use Huffman-style compression, thedesggies of the different data
values must be known. However, in real-time systtmaee is often no time collect all
the data to count the total frequencies of alMaleles before sending the currently
collected data. So the frequencies from the lashé of data can be used. The
frequencies are calculated both at the sourcetanddstination to avoid the need to
transmit the frequency tables. The trees and caaesgpdated at the beginning of each
frame. Naturally, values that are in the possiblege but do not appear in a frame are
assigned a frequency of zero.

Since the values are typically densely clusteredraat O and sparsely scattered far
from O, the frequencies are stored in a hash tdlble.hash for the value is the last eight
bits using 2’s compliment for negative numberstsoualues from -128 to 127 fit neatly

into the table. The hash table is chained so thifitlimg values are stored in a list in the
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hash table bucket. This keeps the RAM requiremeatsonably low while still allowing
for fast lookups.

In order to capitalize on the dynamic charactersstif sensor data we add weight to
the most recent values so recent occurrences hiaigher impact than past occurrences
but the history is not entirely forgotten. We re@dhe frequency table with a weighted
frequency table and define a weighting fadtbsuch the occurrence of a new value is
given twice the weight of the value obserMdamples ago. So the weighted frequency

F[d] for a valued appearing in the™ sample is updated by the following equation:

F[d] = Fld]+ 2v

Algorithm 2 CountAndEncodef, n, M, S F)

Objective: Maintain count of frequencies and enctaka
Input: Delta valuel, countn, weighting factoM
frame size5 frequency tablé&
Output: Frequency table updated and code appendsecetm
If Hash@) in F
F[d] := F[d] + 2*(n/M)
Else
F[d] := 2Mn/M)
End If
C := LookupCod&)
AppendToStreand)
n:=n+1
If n=S//New frame
n=0
For everyF[x] in F
FIX] := F[X/(2NSM))
If F[x] <.001
F[x]:=0
End If
End For
UpdateCodes)
End If

In our experiments we sbt equal to the one quarter of the frame size. Aetie of a

frame when the tree is updated, the weighted frecjae are normalized to reseto 0
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and prevent overflow. Also any values with a noimed frequency less than .001 are
assigned a frequency of 0 and removed from thefisbunted values.

So Algorithm 2 runs for each delta value in a sdngtor.
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Figure 3 Frame size analysis for tinypack with dynamic frengies

We ran TP-DF on all the datasets with a varyinghgaize. Results are shown in
Figure 3. When the frame size was small, the otlier creating a new frame had a
significant impact on the compressed size. Wherirdree size was very large, the codes
were not updated frequently enough to keep up thighdynamic characteristics of the
data.

Frame sizes between 500 and 1500 samples per setsooughly the same impact.

For our experiments, we set the frame size to ab¥tes.

5.3. TINYPACK WITH RUNNING STATISTICS (TP-RYS)

In cases where the number of possible values ishigh or memory is very limited,
storing the frequency table can be too costly ssmstandard Huffman tree on that much
data would require more RAM than many sensors haadable. For example, storing
the frequency table for a single 4-byte integéné values covered the entire possible

range would require over 8MB of RAM while Crossb®echnology’s [15] popular
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Mica2 and MicaZ motes have less than 1MB of totahmary. In these cases the
frequencies can be approximated by maintainingingnstatistics such as the mean and
standard deviation. Because we use delta valussnat necessary to know the
distribution of the data. Only the distributionladw the data changes is important. This
remains much more consistent in all of our datasets

Beginning with the average and standard deviahahthe default codes would
produce the running average and standard devie#inrbe calculated over a window of
sizeW. The running averade(d) updates when thath valued is sampled by the simple
equation:

E(d) =id +W—_1

n W n W E(d)n—l

In the same way, the average of the squares ofdlbes can be maintained. So we

can compute the standard deviattoausing the well known formula:

o =E(d?)-(E@)y

The frequency of a value occurring in a streamddigiby the total number of values

in the stream is referred to as the probabilityhat value. In a Huffman tree the
probability of each leaf node is the probabilitytiedt value occurring in the stream and
the probability of a non-leaf node is the sum @f pnobabilities of each child node. So
the probability of the root is 1. The probabilitiyeach node was shown by Shannon [4]
to be ideally half the probability of its parenttbe level of a node in the tree should be —
logz(P) whereP is the probability of the node. Using the statsttalculated the
probabilities of each value can be approximate@nTthe tree can simply be expressed

as a table containing the number of leaf nodessthaitild be at each level. So the
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Huffman tree in Figure 19 can be compressed intiel@ where the table is stored on
the sensor as an array 1l-indexed on the tree level.

The code strings for the values can then be gestena logarithmic time.

Table 6 Compressed tree
Level | Count
1 1
2 0
3 2
4 0
5 4
6 8

These codes are generated by creating a baseioutie £ a prefix for each level in
the tree and using the position of each node &vel. The binary base for all nodes at a
level in the tree is generated by adding the badecaunt of the previous level and
multiplying by 2 (appending a 0) with the basetfo root initialized to 0. For example,
suppose the statistics approximated a tree withhode at level 1 and 1, 3, 4, and 4
nodes at levels 3, 4, 5, and 6 respectively foneslof 0 to 12. The base generation for

these values is shown in Table 7.

Table 7 Base generation
Level | Count | Binary Generation Base
1 1 1 0 0
2 0 0 (0+1)*10 10
3 1 1 (10+0)*10 100
4 3 11 (100+1)*10 1010
5 4 100 (1010+11)*10 11010
6 4 100 (11010+100)*10 111100

The code for a value is generated by adding thetsposition in the level to the
group’s base. Again, all the arithmetic is donéimary. Continuing the above example,

the generation for the codes of these values s Table 8.
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Table 8 Code generation
Value | Level | Position | Base | Generation | Code
0 1 0 0 0+0 0
1 3 0 100 100+0 100
2 4 0 1010 1010+0 1010
3 4 1 1010 1010+1 1011
4 4 2 1010 1010+10 1100
5 5 0 11010 | 1101040 11010
6 5 1 11010 | 11010+1 11011
7 5 2 11010 11010+10 11100
8 5 3 11010 | 11010+11 11101
9 6 0 111100 111100+0 111100
10 6 1 111100 111100+1 111101
11 6 2 111100 111100+10 111110
12 6 3 111100 111100+11 111141

The probability of a level is computed as the suhe probabilities of the nodes in
the level. Since the probability of a node at ldvéd ideally 2-, the probability of a level
is defined by:

P(L) = (Count(L))(2)

The probability of the tablB(T) is defined as the sum of the probabilities otlad
levels. So for the table to generate accurate ¢&f&€s must be less than one; however,
the higher it is, the more compact the code argh&dollowing relationship should hold

(whereH is the height of the tree):

P(T) = i (Count(L))2) =1

L=1

Events such as changes in values are often asgonf@tbw exponential
distributions. Experiments confirmed this in outagts. So confidence intervals can
then be used to approximate the ideal number oésiatieach depth of the tree. The

values are assigned to their ideal levels roundmgn so thaP(T) remains less than 1.
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Then the table is adjusted from the top down ugilggrithm 3 so that nodes are pushed

upward in the tree unt®(T) = 1.

Algorithm 3 FilterUp(T, H)

Objective: Produce optimal codes by getti#(d@) = 1
Input: TableT whereT is simply the array of the counts
Height of treeH
Output: T adjusted so tha&(T) =1
P(T):=0
ForL From 1 toH
P(T) := P(T) + T[L]*2/(-L)
End For
ForL From 1 toH-1
//Get the highest number that can possibly move
move_count := Floor( (IR(T))/(2"(-L-1)))
//Don’t move more than are there
move_count := Max(move_couffL])
//If move_count is 0 the next two lines do nothin
T[L] := T[L] + move_count
T[L+1] :=T[L+1] — move_count
End For

The window size analysis for the running statisties almost identical to the frame
size results using dynamic frequencies (shownguiféi 3). So again the experiments
were run with a window size of 512.

Figure 4 shows the results of running both the dyndrequencies (TP-DF) and

running statistics (TP-RS) over the datasets coetptr the other methods.
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Figure 4 Tinypack with dynamic frequencies and running stes
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The running statistics generally performed sligiphprer than dynamic frequencies
except on the Intel Labs dataset. The data insetiss more precise and follows a cleaner

statistical pattern than the others.

54. ALL-ISWELL BIT

Most sensor applications send a vector of valugs, @@mestamp, temperature,
humidity) at each sampling interval. Often in tladalsets studied all the values in a
sample were exactly equal to the previous corredipgrvalue. Similar to the methods in
[19], a bit can be appended to the beginning opteket indicating whether or not this
has occurred (obviously if it has, no more datadsde be sent for that packet). In
protocols with variable sized packets or packeds éine small compared to the size of a
vector of readings, this could introduce additiosetings.

The datasets were affected differently by adding fhigure 5 shows the effects of
the all-is-well bit (AIW). TP-DF and TP-RS were yeasimilar, so TP-RS was removed to
avoid cluttering the graph. In each of the TinyPalgorithms the all-is-well bit
improved performance for all the datasets exceptticraft health and N-CET tracking
sets. This is due to the higher level of precisiothose datasets. The datasets had a very
small number of packets where all the values wagatical to the previous packet. In
general, if the application is designed such tkased values will rarely be exactly equal

to the previous value (as in high precision date,all-is-well bit should not be used.
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Figure 5 Effects of all-is-well bit

Additionally, if the sensors send on a predeterchisehedule or if the packet headers
contain consecutive sequence numbers, simply néfigairom sending data could be
used to indicate the same thing as the all-is-hiellThis would remove the overhead so
no decision would need to be made whether or nos¢oit. These intentionally unsent
packets would be easily differentiated from actiralps based on the sequence numbers

or the error detection discussed in the next sectio

5.5. ERROR DETECTION

The first packet in a new frame is sent with uncoesped values. Each additional
packet is sent using the delta (change) valudkelfast value is repeated in the first
packet of the next frame, the values can be condpareheck for the presence of errors
due to dropped packets or corrupted values in dlokqds.

For example, suppose a temperature sensor sernseg aa23, 25, 28, and 29 with a
frame size of 4. The first frame contains [23, +2, and +1]. Assuming packet
corruption changed the +3 to -3, the receiver woeltl the values as 23, 25, 22, and 23.

When the second frame was sent with 29 as thev/fitae the receiver could see that an
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error had occurred since the last value (23) doegqual the first value of the next
frame (29).

This successfully detects all single bit errors simgjle dropped packets; however, it
is possible that multiple errors could cause tHaesof the compared packets to actually
be equal although the errors existed. For examp and a -2 could both be dropped. In
this case the drops would be undetected.

Since the codes are dynamic, the chances of urtddteor constantly changes but
the codes in all cases were consistently distribabtmilarly to the static default codes so
those were used for error analysis.

Assuming the values occur with the probability estpd by the default codes, the
probability of a bit error occurring in the baseg(jix) of a code can be determined by
calculating the expected number of prefix and guffts in a code.

From Table 18 it can be seen that a code at lehel a prefix length+1 and suffix
lengthL. The count of nodes at that level fss? the probability of a random sampled
value being on that level is'2"). Therefore the expected number of prefix Ei8) for

an arbitrarily large set of possible values is:

E(P):i[l‘+1j=1+g+§+i+...

L+
o\ 2

2E(P)-E(P) =2

Similarly, the expected number of suffix bEES) is:

£8)=3 5 =3 55

L=0
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So as the height of the tree approaches infikifl) approaches 2 arte(S)
approaches 1. So the probability of a bit erromuatng in the prefix for large trees
approaches 66.67%. Calculating for the case winergdlues can range from -127 to 127
gives 66.98%. Such errors would change the expéeterth of the code and would be
detected at the end of the packet transmission.

For bit errors in the suffix of a code and for dsdpe probability of a subsequent
error “correcting” the value and causing the ertorbe undetected is roughly 3.57%.
This was calculated by an extensive state tramsgtiagram and a transition matrix which
were excluded due to space constraints. Since seasbrs send a vector of values at
each sample the probability of detecting multipi®ies from dropped packets is (.03%7)
where Y| is the vector size of the sample.

For example, the Intel Labs dataset contains 2llBomsamples with six values in
each sample s¥| = 6. In the worst case there will be exactly tivops per frame. So
assuming 10% packet loss, there would be approgignai 5,000 frames each

containing two dropped packets. The chance of tdateevery drop would be

- (0357° J*** = 99976%

The worst case probabilities are shown for eadhetatasets in Table 9.

Table 9 Probability of drop detection
Dataset [V| | frames | probability
ZebraNet 6 284 99.9999%
Great Duck Island | 8 38226 >99.9999%

Intel Labs 6 115123| 99.9762%
N-CET Track 4 23143 96.3106%
6
2

N-CET Triangulate 11123 99.9977%
Aircraft Health 22937 <0.00001%
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Experiments were conducted with errors generatsgnaimg Poisson inter-arrival
times and results were consistent with the aboatysis.

The aircraft health data has only two values petoreand so in the worst case, at
10% drop rate, errors would undoubtedly go undetedtor such datasets, it would be
effective to define a smaller frame size to redineeprobability of multiple errors
occurring in the same frame or to send error deteg@ackets in the middle of the frame

instead of always sending them at the end.

5.6. WORKING WITH REAL VALUES

TinyPack works most effectively with integers. Guoproach could fairly intuitively
be extended into the real numbers; however, fopkaity in our experiments, we
expressed reals as integers. In the case wheredhealues were rounded in the dataset
to some low number of decimal places, we simplftethithe decimal point. In the case
of higher precision reals, we split the values i exponent and mantissa and

compressed them separately.

6. EXPERIMENTAL RESULTS

Experiments were performed using TOSSIM [17], whsghulates the open source
TinyOS operating system that runs on many sen$@SSIM simulated Crossbow
Technology’s MicaZ motes [15] and was used topestormance of compression as well
as accuracy, RAM usage, and processor utilizatioaddition to TOSSIM the
PowerTOSSIM [18] simulator was used. PowerTOSSIiugt on top of TOSSIM and

is capable of also measuring simulated energy copsan and latency.
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6.1. COMPRESSION

To summarize, we calculate the entire compresdiatl the data across every
dataset. Figure 6 shows the compressed size thieatlata using the standard Deflate
algorithm used in most operating systems, S-LZWC|.&nd our approaches: The static
initial codes (TP-Init), dynamic frequencies (TPJIDRinning statistics (TP-RS), and

each of the TinyPack methods with the all-is-wdélldolded (-AIW).

Compression

compressed size

g 3 8§ E gz 6 4=z 8 ¢=
g8 5 S
Figure 6 Compression summary

6.2. ACCURACY

Since the TinyPack algorithms produce approximatioithe frequencies of the
values, a measure of accuracy can be calculatedroparing the lengths of the
generated codes for each frame to the optimal lsvdghs determined by generating
standard Huffman codes. Figure 7 shows the perfocmaf the TinyPack algorithms
compared to the performance of a theoretical optaig@rithm. It should be noted that
while standard Huffman coding would produce optic@des, the overhead for sending
the new tree at every frame would cause the algarto perform much worse than any
of the others. No algorithm currently exists whprbbduces optimal codes with no

overhead.
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The data in both Intel Labs and aircraft healtha®® fairly consistent throughout

the entire dataset so the approximated codes aheased the optimal level.

Accuracy
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Figure 7 Accuracy

6.3. LATENCY

Sending the uncompressed data takes less timedessing but more time in
transmission so the latency depends on the moesk rsgeneral, however, processor
speed is exponentially faster than radio datafcateireless sensors (for example, the
MicaZ mote [15] has a 7 MHz processor and a 25G kiygh data rate radio). So for the
MicaZ motes latency is decreased proportionallheocompressed size of the data. So

TinyPack has a decrease in latency of 80-85% cosdtaruncompressed data.

Latency
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Figure 8 Latency
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For comparison, the S-LZW algorithm was modifiedémd data as soon as possible
and it was assumed packets were sent in a corsttaatn. Figure 8 shows the relative
latencies scaled to the uncompressed data. Invegision of TinyPack adding the all is
well bit decreased the latency by less than hpHraent and so data for the all-is-well bit
is not shown separately. Deflate is not shown sinEguires collecting all of the data

prior to compressing.

6.4. ENERGY

Energy consumed for compressing, writing to memang transmitting was
measured using PowerTOSSIM. Results are showrgur&9. Results are again scaled
to uncompressed and averaged over the datasetgttAlatency, the all-is-well bit in
each case decreased the energy usage by lessatharpbrcent. Deflate was used only
as a compression benchmark and was not implementaverTOSSIM so energy

usage data was not collected for the Deflate alyori

Energy Usage
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Figure 9 Energy usage

6.5. RAM

The maximum amount of RAM utilized by each algantfor each dataset is shown

in Figure 10. S-LZW is designed to work on any geneataset and uses the same
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compressor for every value in a sensed vectors®&®&iM usage was constant for S-
LZW. As expected, TP-DF had the highest RAM usagmabse it stores the frequency
tables; however, the RAM was still well within theits of the Mica2, MicaZ, and most
other sensors. LEC and TP-Init both use very IRFM since the codes are static and

generated at runtime for each value.
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Figure 10 Ram usage

6.6. PROCESSOR UTILIZATION

In order to measure processor utilization, the @gcounters on each sensor were
accessed at the start and end of each simulatiwrthEse simulations, the data was
compressed and not transmitted so that the praceskpation would not be affected by
the compression ratio. Figure 35 shows the insbnatount for each algorithm scaled to
show the average instruction count per byte of omessed data. As with RAM, the
static codes used in LEC and TP-Init cause thegssmr utilization to be very low. TP-
DF and TP-RS required significantly higher processoe than the other algorithms;
however, due to the nature of the sensor hardwlaeesavings in energy and latency from
the reduced data size far outweigh the costs dfenigrocessor utilization. The energy

usage in Figure 11 includes energy spent processing
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Processor Utilization
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Figure 11 Processor utilization

7. CONCLUSIONS AND FUTURE WORK

TinyPack effectively compresses data while nobidiicing delays and even reduces
latency compared to sending uncompressed dataPaakyis effective on all sensor
networks which use time-based sampling and is eslpeeffective on systems with high
granularity or low local variance.

TP-Init required the least RAM and by far the |lgasicessing time of all the
TinyPack algorithms but resulted in the poorest paassion. TP-DF achieved the
greatest compression ratios, but required more RiAd the other methods. TP-RS
compressed almost as well and required much le$d.F5 while TP-DF compressed
most effectively, systems with low RAM would bendfom using TP-RS and systems
with very low RAM or high cost for processor utdizon could use TP-Init for best
results.

While the focus of this paper has been losslesgpoession, TinyPack could be
modified to continue sending change values of petd the change exceeded some

threshold. Additionally, packets could be droppedhtdicate no change had occurred. In
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systems which could tolerate some rounding erréossiness, this could dramatically
increase the compression with a small degree of.err

In many applications sensors are not only tempplatlated but also spatially located
(sensors sense data similar to that of a nearlspseiit could prove effective to express
the delta values as the change from the valuenebaby sensor instead of the change

from previous value or some hybrid of the two.
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[I. TINYPACK XML: REAL TIME XML COMPRESSION FOR WIRELESS
SENSOR NETWORKS

Wireless networks possess significant limitatianbandwidth. Additionally, real-
time networks cannot tolerate high latency. Whdeme good XML compression
algorithms exist, there remains a need for methioaisreduce latency and bandwidth
usage further in real time wireless applicatiortispaper presents a new compression
scheme which reduces bandwidth while minimizingnaty of XML data while in transit.
XML structural data is reduced to format stringd anguments are sent as they are
generated using modifications of real-time compogsgechniques specific to each data
type. Methods are introduced to gracefully handst tata in environments where
delivery of all packets is not guaranteed. Perfaroeaevaluations show increased
compression ratios and a decrease in latency argd\efor our method compared to

existing XML data compression approaches.

1. INTRODUCTION

XML is designed to be a universal format for stgrand transmitting data. XML it is
inherently redundant and requires an inflated arhotimemory to store and bandwidth
to transmit. Also, many of these applications aediin wireless environments which
generally have relatively low bandwidth capabisti&lthough other more compact
formats have been proposed, XML remains heavilg iséoth old and new
applications. Efficient data compression shoul@dudiebe considered for these
applications. Many compression algorithms have lissigned which are specific to
XML data [23][24]. Unfortunately, most only work We all of the XML data is

collected prior to compression which is not pogsihlmany data streaming applications.
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The U.S. Air Force uses XML for many real-time apgiions. These are
characterized by an extremely low tolerance faray. For example: if a collection of
unmanned aerial vehicles (UAVS) are being usedaitkta ground object, each UAV
must communicate the current location and movemector of the object as soon as
possible or it may be too far away before anoth&¥Wnows to look for it. So there
exists a need for a fast, efficient, XML compreasscheme which relies only on current
and previous data. The N-CET project [22] incorpesaeveral of these real-time,
wireless, XML applications and was the primary mation and source of data for this
work. This project is explained further in Sect®where the datasets are discussed.

We propose TinyPack XML, a novel compression methbath capitalizes on the
redundancy in XML structure and the similarity beem XML packets sent by wireless
devices. TinyPack XML compresses each packetiasitated without any need for
delay. TinyPack XML compresses using format strifigee portions of the XML
structure which are common to many packets arergegteon the fly oa priori and the
values which vary from packet to packet are congm@sising techniques specific to the
type of data being sent. Some pre-existing methoglsised and others are modified to
better fit the specific characteristics of the Wass networks. We consider correlated and
uncorrelated numeric data and short and long texigs. In every experiment, the
compressed data actually arrived faster than unoesepd since data transmission was
more expensive than processing. We compare TinyRitikto several existing XML
compressors using metrics such as latency, RAMcantpression ratio. Experiments
show that it achieves compression ratios compatalded better than that of related

methods which require all the data to compress.
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2. EXISTING COMPRESSORS FOR XML DATA

2.1. DEFLATION

The deflation algorithm is a used in many commaom@eession programs (including
gzip and WinZip) and is often used as a comparisonompression algorithms since it

performs fairly well on most types of data and idely used.

22. XMILL

XMill [23] compresses XML data by separating itarthree components: The
element and attribute names, the text values, lanttée structure of the XML document.
The text values are grouped by parent element @manti¢he three components are then

compressed using standard text compression teawmiqu

2.3. XMLPPM

XMLPPM [24] uses a similar restructuring as XMilltouses predictive arithmetic
coding to compress the transformed data. Each dyfolbaracter or string of characters)
has a certain probability of appearing after exagther symbol. These probabilities are

calculated and arithmetic encoding is used to stach symbol.

24. WBXML

WBXML [25] is a binary XML format maintained by tH@pen Mobile Alliance used
on many mobile phones. It converts all the piedesML into binary tokens and

preserves the structure of the XML document.
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2.5. XAUST

XAUST [26] generates a model for the compressiahdeacompression of XML
documents based on the schema. It then uses tratitally generated model along

with arithmetic compression techniques to comptiessilocument.

2.6. PAQ

PAQ [27] is a constantly evolving compression suitech generally produces the
best compression ratios for most types of datcHhieves this by using enormous
amounts of RAM and requiring much more time thdareotnethods. PAQ can be
configured to consume between 233 and 1712 MB d¥IRKis entirely impractical for

real-time wireless systems and is included as eal idwer bound for compressed size.

3. OUR APPROACH

While XML is defined as being only semi-structurétg data from most wireless
applications including N-CET tend to be highly stured. Subsequent packets often had
identical or nearly identical XML tree structur&ge also examined several common
benchmark XML datasets (which could be intuitiveigken into packets) and found that
most also exhibited this structural similarity betm packets.

We generate format strings (similar to the well\wngorintf function in the C
programming language) for each type of packet.foh®at string expresses the structure
of the XML data in the packet and the portions wrddfer from packet to packet
(arguments) become all that must be transmitteddbsequent packets. For example,
assume a target tracking application generatetbtloaving two data packets for a

target’s location at separate times:
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<target><lat>45</lat><lon>50</lon></target>

<target><lat>43</lat><lon>55</lon></target>

The format string could be expressed as
<target><lat>[argl]</lat><lon>[arg2]</lon></targetd the wireless device could just
send the arguments [45, 50] and [43, 55] aftefdhmat string was established.

We use standard text compression to compress timafstrings and various
compression schemes for the arguments specifltettype of data they contain. These

are detailed in the following section.
4. ARGUMENT COMPRESSION

4.1. CORRELATED NUMERIC DATA

For arguments containing numeric data where thebewusntended to be correlated
between successive packets (such as location iat@m timestamp, size of tracked
object in window, etc) the values were expressdti@shange from the previous value
and encoded using TinyPack compression with RunBtagstics [28]. Smaller change
values are assigned shorter bit strings basedeoouiient mean and variance of the data.
Change values are initially encoded based on THbknd then modified as the running
average and standard deviation change.

Table 10 Default codes

Level | Bits | prefix suffix range values

0 1 1 0

1 3 01 0..1 -1.1

2 5 001 00...11 -3,-2,2,3

3 7 0001 000...111 -7,.,-44,...,7

4 9 00001 0000...1111 -15,...,-8,8,...,15

5 11 000001 | 00000...11111 -31,...,-16,16,...,31
6 13 0000001 000000...111111 -62,...,-32,32,...,63
7 14 0000000 0000000...1111211 -127,...,-64,687.,
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4.2. UNCORRELATED NUMERIC DATA

Uncorrelated numeric arguments (such as targetviEd® converted to appropriately
sized integer types and sent using the numbert®téquired to send the maximum
possible value for that argument. So, for exampkeyalue could range from 0 to 1000,

it would be sent with 10 bits per packet.

4.3. LONG TEXT STRINGS

Arguments which contained long or unstructured $#hgs (such as comments)
were compressed using regular SLZW compression 28 dictionary begins with the
common alphanumeric characters and punctuatiom ¢bemon subsequences of
characters or uncommon characters are added thdiienary as they are encountered.
The system was designed to support pre-loadingitdtenary with application specific

symbols or by building the initial dictionary basead sample data.

4.4, SHORT AND SINGLE-WORD TEXT STRINGS

For arguments where the strings were comprisedsaiall subset of words (such as
status and target name) each possible value wagedd The dictionary could be
preloaded or built on the fly using the last ingisition to indicate a new entry. New
entries were compressed in the same manner astiongs and the index positions were
sent with the minimum number of bits required. Tiishown in Algorithm 21. So if the
dictionary had seven entries, only three bits wdiddequired. Note that if the dictionary
had eight entries, four bits would be needed tafbr the new entry symbol to be

encoded.
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Algorithm 1 CompressShort(str, dict)

Objective: Compress short strings
Input: Stringstr, current dictionarglict
Output: Encoded index value and updated dictionary
/[The +1 is for the new entry symbol
bits = floor(log(count of items irdict + 1))
If stris indict
code = index ofdict padded with Os to lengthits
Add code to output stream
Else
code = index count of items idict padded with Os
Updatedict by addingstr to the end
Add code to output stream
End If

5. FORMAT STRINGS

5.1. STRUCTURE

Format strings are simply the element structurdn@fXML packet with the escape
characters shown in Table 11.

In practice, the escape characters are actualljesanaracters and are themselves
compressed during the compression of the formiagstdiscussed previously. The
length and index parameters are expressed by ke singracter with the integer encoded
as the dictionary index position of the charadter. example, an integer with a fixed
length of 4 would be encoded as the fixed lengtibger escape character followed by the
fourth character in the dictionary.

Recall the sample XML packets from the previousepia:

<target><lat>45</lat><lon>50</lon></target>

<target><lat>43</lat><lon>55</lon></target>

So the actual format string generated would begeta<lat>\I\E<lon>\I\E\E.
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Table 11 Escape characters

Character Description

\I Integer argument

\F[X] Fixed length integer argument. Padded withx0is the length.

\D Decimal (floating point) argument.

\T Text (long string) argument

\L List (short and single-word string) argument

\? Optional. Following portion may or may not appéancode Q
or 1 in compressed stream).

\* Multi. Following portion can be repeated (encodember of
repetitions).

\{ and \} Open and close bracket. Enclose portiohstring for optional
and multi.

\P[X] Previous. Argument is equal to previous arguatnat index X
(need not encode).

\E End tag. Serves to help compress format string.

5.2. GENERATION

We developed four different ways for the formairgfs to be generated. Each has its
positive and negative sides and the decision fachvto use is left up to the user.

First, the format string can be generated on thelthe parser assumes that all non-
structural data is arguments in the initial packed adds optional and multi characters as
the need arises. Also, arguments which never ch@ige a threshold) are moved from
the argument list into the format string. This noetmequires no additional input from the
user but has additional overhead since the fortmaganust be transmitted and will
often need to be modified.

The tags in the first packet are initially assurteetle part of the static structure of the
format string and all the attributes and elemehiesare assumed variable and are set up
as arguments. The type of each attribute and eleimerferred by the characters and
length. As additional packets are sent, portionhefstructure can be flagged as optional

and other optional pieces can be added. If anypaté or element remains unchanged, it
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is added to the structure of the format string amygl changes in type are made as needed.
The format string update messages are descrikthe imext subsection.

Next, sample data could be used instead. This wsnkgarly to the first method but
removes the overhead for transmitting format stidgring runtime and still doesn’t
require much of the user. Of course this is onBfuisf good representative sample data
is available.

Third, the format strings can be automatically gatesl by the XML schema. This
ensures that the string should never need to bategénd also requires little from the
user. This works well if the XML schema is carejudlefined; however, in the datasets
we studied this frequently created unused argunardsinnecessarily long format
strings since the schemas often allowed for muctertian was actually used.

Finally, the user can simply write the format sgsrmanually for each type of packet.
If written well, this will be optimal and allow fahe highest compressibility; however
this would require more training than many usery mant to do. We created a parser to

check the validity of user-written format stringedato test them against sample data.

5.3. UPDATES

If the format string is built on the fly or if isibuilta priori and the data changes in
some significant way or if it was built incorrectiynen it needs to be able to be modified
in real time.

Special format string modification packets can é&et $hrough the network to alert
the receiver of the necessary changes. These gaaieeinarked as high priority and

should never be dropped.
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The modification could consist of any number ofetie] insert, and replace messages.
The replace messages contain an index and lengthioh portion of the format string
is being replaced. These two numbers are followea format string fragment that is
added into the format string. In our implementatiosert messages are simply replace
messages with a zero length and delete messagesptaee messages with an empty

fragment.

6. LOSS AND ERROR

In the N-CET application, packets that are unirgiing can be dropped and errors
can occur. Since the compression of the packetsnispon the previous packet, any loss
of a packet causes all the following packets toneaningless. Instead of reporting the
value at each packet as the change in value fremriwvious packet, we occasionally
send baseline packets and all subsequent packetxaressed as the change in value
from the last baseline. These baseline packetthesmbe flagged as high priority so that
the application will not drop them. Also in lossyvdonments, these baseline packets can
require acknowledgement to ensure delivery.

Figure 12 shows results of experiments comparirs) @backnowledging and
resending lost packets with loss of compressiontdyrackets being further from the
baseline. If every packet is a baseline, then epacket must be sent and acknowledged,
but if a packet uses a baseline from many packgtsthen correlation diminishes and
compression is reduced. As the number of packetsetween baselines increases, the
compression increases until it reaches a point evties benefit of correlation is lost. For

our datasets (discussed in section 8) this poistr@ached between 90 and 120 packets.
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The optimal number of packets between each basslsdound to be somewhere

between 15 and 30. In our experiments, 20 packets sent between each baseline.
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Figure 12 Baseline period

7. PACKET HEADER

In order to encode the extra information requidake the algorithm work, we
append one byte of header information to each Xidtiaghacket sent over the network.

The first two bits indicate whether the packet iseav baseline, a format string
update, a standard packet, or the beginning ofratremsmission.

The next two bits represent the format string \ersio that if a format string update
gets lost, the receiver will be able to detect thet using an outdated version of the
format string. It can then request a retransmissfdhe update from the sender or any
neighboring nodes that may have heard the broadt#st number of versions exceeds
eight then the version number simply wraps backeto. In the case where four or more
format string update packets are lost in a rowdoeiver will use the wrong format
string to attempt to decompress the data. All thekpts will seem corrupted or will be
erroneously decompressed. In a highly lossy enmint, the number of bits can be

increased to eliminate the errors.
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The last four bits of the header byte are useth®baseline index and are handled
similarly to the format string version bits. Morgsbare used for the baseline index since
it is expected to change much more frequently. mae difference is that missing a set
of baseline updates will not make the data appa&aupt but will only cause the data to
be decompressed incorrectly. In high loss envirarimyehe baseline packets can be sent
both as baselines and as regular packets so theeghnlar packet can be decompressed
and compared against the baseline packet to datectin much the same way as the

errors are detected in [28]

8. DATASETS

The N-CET project produced four different XML dagtswith various types of data.
We also used one dataset from a joint project batvilee U.S. Navy and Air Force

which tracked aircraft and ships.

8.1. RFINTERCEPT

The UAVs were equipped with Electronic Intelligersmnsors capable of intercepting
RF signals (radio communications). These rfinterpeygkets were sent at the beginning
and end of each intercepted transmission and (dépgion the duration) at several
points in the middle of the transmission. The p#&ckentain several pieces of
information including ID, position, and headingtbé UAV; radio frequency and

transmission duration; and a line of bearing frbm $peaker to the UAV.

8.2. RFTARGET

If multiple UAVs intercepted the same transmissite, lines of bearing were used to

triangulate the source of the communication andngé&t packets were generated
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containing data such as the estimated positioheo§peaker and the IDs of the

rfintercepts used in the triangulation.

8.3. SPEAKERID

The audio from the intercepted communications veespared to a database of
previously captured voice samples to identify theaker. The speakerID packets
contained identifying data on the transmission wedD and name (if known) of the

speaker as well as the output of the voice matchiggrithm such as the confidence.

8.4. SNARESULT

The N-CET project also utilized social network as&d techniques to identify the
importance of the various speakers. The snaReacdkigps generated for each contain the
list of related speakers who communicated on theedaequency during the same time

period and the output of the Key Player Algorithmieh assigns a rank to each speaker.

8.5. TRACKS

The joint tracking project produced XML data packet a significantly higher
complexity than the N-CET data. The packets coethumique IDs of the tracked vessel,
the tracking entity, and the last entity that teatkhe vessel; timestamps; position,
direction, and speed of the tracked vessel; the tfsensor and platform used; and many
identifying features of the vessels. The datasbt load a limited number of packets of
real data so we generated 10,000 synthetic pabkstd on the real data to make the

track dataset closer to the size of the others.
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9. RESULTS

We compared the compression of TinyPack XML agdiedtation, XMill,

XMLPPM, and PAQ over the four datasets in both yiedderant and real time
experiments measuring compression, latency, processge, RAM requirements, and
energy consumption.

The first result set in Figure 13 shows the redutisy the delay tolerant study. All
the data was collected prior to compression andpcession was done on the entire
dataset at once. (XMill and XMLPPM require a singiet tag so an arbitrary <r> </r>
tag pair was added around the rest of the datdnéze algorithms). Results show
Deflation and WBXML performing somewhat worse tttag others with TinyPack XML
slightly outperforming XMill and XMLPPM and slightlunderperforming the expensive
“ideal” PAQ algorithm. WBXML and TinyPack are desig for smaller XML
documents and were not expected to perform idéabydelay tolerant environment. The
dataset schemas were very complex which negatafédgted XAUST. To be fair, DTDs

were rewritten in order to more closely match tbwial data.

9.1. COMPRESSION RATIO
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Figure 13 Delay tolerant compression results



46

The next experiments considered real-time enviroriswhere each data sample was
compressed and transmitted as it was collectec Was collected by compressing each
sample individually. PAQ also has an incrementlbstructure for using data from
previously compressed samples to assist in the @ssjon of future samples. Results
are shown in Figure 14 for real-time compressiangiall the algorithms and the PAQ

incremental version.
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Figure 14 Real-time compression results

As expected, the incremental nature of TinyPack Xddused it to significantly
outperform the other algorithms run on the indiabdsamples; however, TinyPack XML
also surpassed the incremental PAQ algorithm. Efeydolerant PAQ algorithm makes
multiple passes through the data so restrictifigim looking at past samples reduces its
performance. TinyPack XML was designed specificilyreal-time systems so it

performs identically in both environments.

9.2. LATENCY AND PROCESSING TIME

The results for latency did not differ greatly beem the datasets. In order to reduce

clutter on the graph, the results are shown aaikeage across all four datasets.
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In the delay tolerant experiments, all the data eadlected before sending so latency
was not considered.

Real time experiments for latency were performedgu$OSSIM [31], which
simulates the open source TinyOS operating sydtabrans on many sensors. TOSSIM
simulated Crossbow Technology’s MicaZ motes [3@leJe motes are an example of a
resource constrained system where bandwidth andyaee limited. PAQ required
more RAM than the motes have available and in @3t standard desktop computer
took over twice as long to send due to the greatlseased processing time and is not
included in the results. Latency results are shimafigure 15 in terms of both processing
and sending time. Since TinyPack requires more taxgarsing of the XML data, the

processing time is significantly higher, but th@atdime is lower since less time is
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Figure 15 Latency
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Figure 16 Processing time

Processing time is shown separately in Figure X6m0Ost systems (especially
wireless networks), processing speed is expongntilher than transfer speed so it is
almost always beneficial to sacrifice some processe to reduce the amount of data that

would need to be sent.

9.3. ENERGY CONSUMPTION

The energy required to compress the data is bsecélinction of the processing and
sending time. Energy is primarily important in Wwags networks in which the nodes run

on batteries. Results are similar to that of layesnad are shown in Figure 17.
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Figure 17 Energy consumption
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9.4. RAM USAGE
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Figure 18 Ram usage

For all the methods except for PAQ, RAM requireddmnpress each individual
packet naturally was highly dependent on the oailgsize of the packet. RAM
requirements for the largest packet in each datasethown in Figure 18. With the
exception of PAQ which requires at least 233 MBR@&M, TinyPack XML uses a little
more RAM than the other methods for most of thaskts since it maintains lightweight
compressors for each argument in the format stiihg. SNAResult and track data
contained more static structure than the otherséétaand required less RAM for
TinyPack since the static portions of the strucareonly stored in one place and are

only compressed once.

10. CONCLUSIONS AND FUTURE WORK

TinyPack XML quickly and effectively compresses satnuctured, XML data. It is
very useful for the N-CET project and other apglmas in reducing required bandwidth
and storage in the network without introducing glelawould be interesting to see how

TinyPack XML performs on poorly structured data.
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The other existing compression methods could beflraddo only use current and
previous data to compress. This would make the eoisgns more accurate and would
better show the benefits of TinyPack XML.

TinyPack XML successfully exploited the correlatminconsecutive samples taken
from a single sensor and the redundancy in siniié. Jocuments; however, samples
taken from nearby sensors at the same time (orwsttme time range) also can be
heavily correlated. Similarly, the XML data frometlarious types of data also contained
some correlations. Cross referencing other padkats other sensors or other types of

data could further increase the compression.
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[11.ON COMPRESSING DATA IN WIRELESS SENSOR NETWORKS FOR
ENERGY EFFICIENCY AND REAL TIME DELIVERY

Wireless sensor networks possess significant Itrarta in storage, bandwidth,
processing, and energy. Additionally, real-timessemetwork applications such as
monitoring poisonous gas leaks cannot tolerate laggmcy. While some good data
compression algorithms exist specific to sensowvais, in this paper we present
TinyPack, a suite of energy-efficient methods wittph-compression ratios that reduce
latency, storage, and bandwidth usage further mmpasison with some other recently
proposed algorithms. Our Huffman style compressidremes exploit temporal locality
and delta compression to provide better bandwitlization important in the wireless
sensor network, thus reducing latency for real @esor-based monitoring applications.
Our performance evaluations over many differentdata sets using a simulation
platform as well as a hardware implementation shomparable compression ratios and
energy savings with a significant decrease in @t@ompared to some other existing
approaches. We have also discussed robust erm@ction and recovery methods to

address packet loss and corruption common in sereaork environments.

1. INTRODUCTION

Many real-time systems incorporate wireless senstworks (WSNSs) into their
infrastructure. For example, some airplanes andnaobiles use wireless sensors to
monitor the health of different physical componentthe system, security systems use
sensors to monitor perimeters and secure areasjtgdorces use sensors to track troops
and targets. It is well known that wireless semsgiwvorks possess significant limitations

in processing, storage, bandwidth, and energy.€fber a need exists for efficient in-
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network data compression algorithms that do natireglelays in processing or
communication while still reducing memory and ernyergquirements.

The idea of data compression has existed sincedig days of computers [1][2][3],
many new data compression schemes [5][6][7][8]f@]Vireless sensor networks have
been proposed recently to address various contstramal limitations in wireless sensor
networks. These schemes address specific challamglespportunities presented by
sensor data and provide significant reductiongquired storage, bandwidth, and power.
However, most of these methods require a fair amofudata to be collected before
compressing, which is not suitable for many realetisensing applications such as those
mentioned above.

We propose TinyPack, a suite of data compressiotogols for real-time sensor
network applications. TinyPack reduces the amotidata flowing through the wireless
network, optimizes bandwidth usage, and decreasestlout introducing delays. First
the data is transformed by expressing the sendadsvas the change in value from the
previous sensed data. This is referred to as deitgpression. We demonstrate its
effectiveness for any generic real-time sampledsidt Second, the individual delta
values are then further compressed using a deréevafiHuffman coding [1]. Huffman
codes express more frequent data values with shotteequences and less frequent
values with longer ones. The codes are generatkéd@tated dynamically so no delay
occurs. TinyPack is a lossless compression algonitinere the data can be
decompressed at the sink or base station withgukoss of granularity or accuracy.

Standard Huffman [1] and Adaptive Huffman [2] caglimve a high RAM overhead

and require transmitting either the entire tresemeral copies of a ‘new symbol’ code,
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thus making them ineffective in a WSN environmé&ide begin with a static initial code
set similar to the one used in the LEC algorithin {8e then examine two different
methods of adapting the codes. For datasets whemange of possible values is
relatively low compared to the storage capabilityhe sensors, the actual frequencies
can be counted and used to regularly update thesc&ar data with a high (or unknown)
variance or low RAM environments the frequencias loa approximated using running
statistics on the data stream. This method easdles to be effective on any size data set
with any range of possible values. We also usatiien of an all-is-well bit and
perform some analysis of error detection constructs

We compare the results to the performance of tHaf@ealgorithm (used in gzip and
most operating systems) and S-LZW [7] to measusaditywof the compression. S-LZW
is an adaptation of standard LZW compression sigatlif designed for sensor networks.
S-LZW is a string based compression scheme whitthedenew characters for common
sequences of characters. It is designed to funetehfor any generic sensor dataset and
is very effective at compression and energy redactseveral variations of S-LZW are
developed in [7]. In an effort to be fair we havmsen the variation that performs best
for each dataset studied. We also compare with B algorithm [8] which supports
real-time data. Experiment and simulation resuitsasa significant reduction in
bandwidth, latency, and energy consumption comp@réige other methods. One of the
proposed algorithms also reduces RAM and processage while the others show a
further reduction in bandwidth, energy, and lateatthe cost of increasing the memory
and processing requirements.

In summary, this paper makes the following contiims:
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An improved set of static codes optimized for semlsta and computational
efficiency in processing.

Algorithms for hybrid adaptations of delta and Ho#in compression which
significantly reduce latency and RAM requirementsraraditional Huffman codes while
achieving comparable and improved compressiongatmal energy efficiency compared
to other existing methods.

An additional use of an all-is-well bit that furthacreases compression performance
and efficiency.

A novel and effective error detection and recovaesthod to handle missing and
corrupted packets.

Extensive experiments comparing several performareteics considering various
approaches using many different real sensor dé&gauseng simulation as well as a

hardware platform.

2. BACKGROUND

2.1. HUFFMAN TREES

Huffman-style coding [1] converts each possiblaugahto a variable length string
(sequences of bits) based on the frequency ofdte Higher frequency values are
assigned shorter strings. The more concentratedatzeis over a small set of values, the
more the data can be compressed. Huffman coddsecgenerated by building a binary
tree where the nodes at each level are ideallyasalfequent as the nodes at the next
level up. For example, the values and frequenci@sable 12 generate the codes using
the Huffman tree in Figure 19. Huffman codes wéi@s to be optimal for symbol by

symbol compression in [1].
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Table 12 Huffman codes
Value | Frequency | Code
-7 14653 111111
-6 16661 111101
-5 19983 111011
-4 23760 111001
-3 31124 11011
-2 35636 11001
-1 88845 101

+0 350429 0

+1 87956 100

+2 38942 11000
+3 31809 11010
+4 20563 111000
+5 17241 111010
+6 14171 111100
+7 12716 111110

Figure 19 Huffman tree

2.2. TEMPORAL LOCALITY AND DELTA VALUES

Real-time wireless sensor networks generally exb#onporal locality (data from
readings taken in a small time window are correlatany type of data which changes in
a continuous fashion will be temporally locatedrsas temperature, location, voltage,
velocity, timestamps, etc. In fact, it can be dest@ated that any sensor sensing at non-
random intervals will either generate temporallgated data or random noise.

Consider an arbitrary sensor sensing a streamloésdvy, vo, ..., Von} sSensed at

times {ty, to, ..., ton} whereN is an integer. Assume that the values are noelated.
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Then sampling att{, ts, ..., ton1} and {to, t4, ..., ton} would yield completely different
values. Thus, offsetting the sample period wouldegate entirely different data.
Therefore, excluding applications which generatee mwise, we can assume that
successive readings at each sensor will be cogtkl&telta compression (storing the data
as the change in value from the previous readiragldvthen increase the frequency of
certain values thus increasing the compressilolitye data.

Note that this does not apply to event driven samggwhere time between samples
is random) such as a sensor that measures the speedor each passing automobile.
These applications do not necessarily exhibit teradgdocality and were not included in

this study.

2.3. FRAMES

In delta compression (as with most compressionmsebg a dropped packet can
render following packets useless or at least caraf@d to decompress. Thus in systems
where data loss is probable, data should be cosgutesnd sent in chunks (usually called
frames). Additionally, in sensor networks, datarelteristics can change drastically as
time progresses. Therefore, sending independeanithpressed frames of data also allows
additional flexibility for the compression to be mapecific to the current state of the

system.

3. RELATED WORK

31.SLZW

In [7] an adaptation of standard LZW compressiomsisd to address the specific

characteristics of a sensor network. S-LZW comm®$se data by finding common
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substrings and using fewer bits to represent ti&irZW maintains two sets of up to 256
eight-bit symbols: The original ASCII charactersldhe set of common strings. A bit is
appended to the beginning of each encoded symhodiicate which set it is from. A
dictionary is maintained that tracks which stringepresented by which eight-bit
sequence.

They also propose Sensor-LZW with the notion ofiaiHtache to capitalize on the
frequent recurrences of similar values in a shore in sensor data. Recent strings are
stored withN bits in the mini-cache dictionary whee< 8 (for a maximum size of 2
entries in the mini-cache). An additional bit igpapded to the beginning of each symbol
to note whether the symbol is from the main diciignor the mini-cache. Different data
sets had different optimal values fér The cache is implemented as a hash table for
efficient lookup times.

Table 13 S-LZW with mini-cache

Encoded New New Dict. Mini-Cache | Total | Total
String Output Entry Changes Bits: Bits:
LZW | Mini-
Cache
A 0,65 256-AA 0-256, 1-65 9 10
AA 1,0 257-AAA 1-257 18 15
A 0,65 258-AB 1-65,2-258 27 25
B 0,66 259-BA 2-66,3-259 36 35
AAA 0,257 260-AAAB | 1-257,4-260 45 45
B 1,2 261-BC 5-261 54 50
C 0,67 262-CC 3-67,6-262 63 60
C 1,3 72 65

Table 13 shows S-LZW and LZW compressing the sStAAGABAAABCC using
the mini-cache. Since every single character idgaded into the dictionary, the
algorithm begins by looking at the first stringtafo characters in the stream. If the string

is in the dictionary, the next character is appénai#il the string no longer has a
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dictionary entry. Then that new string is addeth®dictionary and the known string (the
new string minus the last character) is encodexithe output. The new output column
shows a 1 and the mini-cache location if that symas in the cache or a 0 and the
dictionary location otherwise. The other columnsvgithe new entries in the dictionary
and mini-cache and the total number of bits reguioe compression without or with the
cache. Note that without the cache every symbekatly nine bits.

For example, for the first line of Table 13 the @yassor begins by looking at the
first character of the string "A." Since "A" is engle character it is already in the
dictionary and the compressor looks at the strig.” That string is not in the
dictionary so it is added to the end (location 2&7) the single character "A" is encoded
(as the integer 65) and the algorithm continueh tié second "A" as the next character
in the stream. Since "A" was not in the mini-cathe output comes from the dictionary

and both "A" and "AA" are added to the cache.

3.2.LEC

A lightweight sensor network compression technidu€C, is presented in [8]. LEC
compresses a stream of integers by encoding the vidles with a static, predetermined
set of Huffman codes. For the values in a strebmirtitial value is encoded as its
difference from 0 and each successive value isdattas its difference from the
previous value. The codes are constructed by cenatihg prefix and a suffix bits to
represent the change value. Fewer bits are usedd@amaller changes under the
assumption that values typically change relatiwbbyvly over time. The static codes are

shown in Table 14 with anything past level 7 foliog/the pattern of the last three levels.
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Table 14 LEC codes

Level | Bits | prefix suffix range values

0 2 00 0

1 4 010 0...1 -1.1

2 5 011 00...11 -3,-2,2,3

3 6 100 000...111 -1,..,-4,4,..7

4 7 101 0000...1111 -15,...,-8,8,...,15

5 8 110 00000...11111 -31,...,-16,16,...,31
6 10 1110 | 000000...111111 -62,...,-32,32,...,63
7 12 11110 0000000...1111111 -127,...,-64,64,7.,12

For example, a 0 value would be encoded as "0®@" Edefix and no suffix) and -3
would be encoded as "01100" ("011 prefix and "Qdfis).

If it is known that the change values will not falltside of a certain range, then the
‘0" bit in the prefix for the last level can be @rad. For example in Table 14 the prefix
for level 7 could be "1111"if -127 and 127 were thinimum and maximum possible

change values.

3.3. GAMPS

Many lossy compression schemes have also beengeopoich as [9]. GAMPS
compresses the data from multiple sensors by gnguggnsors with correlated values.
The signals are approximated keeping within a patanzed maximum error. The
Facility Location problem is then used to groupes $bnsors with the highest correlations
and select baseline sensors which best represegtdp. The values from the
remaining sensors in each group are expressedadie af the value of the baseline.

An example is shown in Figure 20. Graph (a) shalative humidity signals from
different sensors. In graph (b) the signals hawenlapproximated. Graph (c) shows the
fourth signal from graph (b) selected as the basdbr the group. The final graph (d)

shows each of the other five signals as a rattb@baseline signal. The data in graphs
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(c) and (d) is then identical to the data in (ahvm some error threshold but can be

compressed much more than the original data.
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Figure 20  Gamps example

GAMPS achieves excellent compression ratios witheaximum error but requires
that all the data be collected before compressmhsa is not suited for applications

which require no loss or for the compression tpé&dormed in real time.

3.4. PIPELINED IN-NETWORK PROCESSING

Other schemes have been introduced which depetftearetwork topology and
routing. In [5] compression is achieved using pipab. Data is gathered at each
aggregation node in a buffer for some amount oétiBuring that time, several data
packets with a matching prefix are combined inte.d¥ollowing the prefix in the packet
is a suffix list which gives the unique suffix teetcommon prefix from each of the
original packets. This scheme is illustrated inuF&g21. Three packets each containing
three items of data are compressed on the first vtgh a prefix of length three, the other
two items remain uncompressed. This reduces tleesiet from 33 bits to 27 bits.

The size of the prefix is determined by the uséhefapplication and remains static.
The shared prefix system can also be used for tarmgss and sensor IDs to maximize the

reductions in size.
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=100101, 01, 001> | |'-'-l[][]] 11,10, 101= | |*-'-1[][][][]1. 11, 111= |

|'-'-I[][],[l[]l,11 LOOT) 01, 10,11 ,(001, 101,111 )= |

Figure 21 Pipelined compression

This scheme can be very effective if there is madundancy inherent in the value
prefixes; however, the compression is only doreggregating nodes and depends on

sample rates to be very effective.

3.5. CODING BY ORDERING

Another routing method is proposed in [6] wheredhder of packets collected at an
aggregation node can indicate the value senseditieeent node. A packet containing
the data tuples from n sensors can be arrangetbialaof n! unique permutations. If the
number of possible sensed values is relatively Isthaise permutations can be used to
recreate dropped values from one or more sensegsl@ble 15).

Table 15 Value indicated by order

Packet Integer
per mutation Value
N1,N2,N3 0
N1,N3,N2 1
N2,N1,N3 2
N2,N3,N1 3
N3,N1,N2 4
N3,N2,N1 5

If there are n sensor nodes in a network and agpatkan aggregation is sent values
from m different nodes, assume that out of thosedes a total of | nodes' values are
dropped and encoded. Given only thel) values, there are{m+l choosd) possible

combinations of IDs the dropped nodes can hawbele are k possible data values, there
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arek' possible combinations of values and IDs. Sinceethee (n+1)! possible
permutations within the packet, | can be chosdarge as is possible without violating
the following inequality
(m-1)=(n-m+1 choose | )k'

For example, when n = 256, k = 16, and m = 100uld be set as high as 44, so only
56% of the data would need to be sent. This schbavegver, performs well only when
n is relatively large compared to k. If there mide range of possible data values, then
some form of tolerated error would need to be ohieed to accomplish any amount of

reduction.

3.6. SUMMARY

We compare all the previously listed algorithms #relalgorithm presented in this
paper (TinyPack) across a number of compressiaridign characteristics in Table 16.

Table 16 Characteristics of sensor compression techniques

. S LE | GAM | Pipdi | Codingb ,

Characteristic LZW | C PS n%d Ordergi]ng TinyPack
Runs on a single sensor Yes Yes No No No Yes
Relies on temporal Someti| Yes| Yes No No Yes
locality mes
Relies on spatial locality No No Yes Yes No No
Collect data prior to Some | Non All Some None None
compressing e
Algorithm adapts as data Yes No| Yes No No Yes
changes
Requires time No No | Yes No Yes No
synchronization
Requires related None | Non| None | Simila Identical None
sampling intervals e r
Achieves lossless Yes | Yes| No Yes Yes Yes
compression
Loss due to droppedFrame| Fra| Packe Packet Packet Frame
packets or errors me t
Incorporates error No No No No No Yes
detection
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The algorithms presented in this paper and useddimparison concern lossless

compression which can be achieved in real timbesénsing node.

4. EXPERIMENTAL DATA SETSUSED

The data sets used for simulation were pulled faomde variety of domains which
utilize wireless sensor networks including envir@mnmonitoring, tracking, structural
health monitoring, and signal triangulation. Allcept the environment monitoring data
are from applications where low latency is criticall are from real deployments of
wireless sensors for academic, military, and consrakpurposes. In every experiment,
the entire datasets were used.

Environment monitoring data was drawn from the GBazck Island [10] and Intel
Research Laboratory [12] experiments. On the isBhdensors monitored the conditions
inside and outside the burrows of storm petrelssmeag temperature, humidity,
barometric pressure, and mid-range infrared ligihe Intel group deployed 54 sensors to
monitor humidity, temperature, and light in the.lApproximately 9 million sensed
values were generated on the island and over 1®mitom the lab.

For tracking, data was taken from two differentgts. Princeton researchers in the
ZebraNet project [11] tracked Kenyan zebras gemgratver 62,000 sensor readings.
The U.S. Air Force’s N-CET [13] project tracked hams and vehicles moving through
an area.

The structural health data is comprised of neaaly d million packets send by a
network of 8 sensors fused to an airplane winglmaversity of Colorado study [14].

Half the data was generated by a healthy wing hedther half by a wing with

simulated cracking and corrosion.
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Signal triangulation data came from another porabthe N-CET project, in which a
network of sensors mounted on unmanned aerial eshilatercepted and collaboratively

located the sources of RF signals.

5. OUR PROPOSED APPROACHES

We propose multiple versions of our TinyPack corapi@n algorithm. First we
introduce a static set of initial codes which asedias a starting point for the other
compression methods. These codes by themselveslprgaod compression with
excellent efficiency. Next we achieve greater cagspion at the cost of some RAM and
processing by maintaining dynamic frequencies efdineamed values. The third
approach approximates the frequencies with runsiatistics on the data, significantly
decreasing the RAM requirements while only sliglmigreasing the size and processor
utilization. We modify each of the above approadineadding an all-is-well bit that
gives a small boost to the compression ratio. Weelcale by discussing error detection,

how to adjust for real numbers instead of integemsl, experimental results.

5.1. TINYPACK INITIAL FRAME STATIC CODES (TP-INIT)

We begin with a set of initial codes similar to$kaised in LEC; however, the static
codes used in LEC were optimized for JPEG compryasshereas the TinyPack initial
codes are designed to perform well on time-samgdedor data with absolute minimum
processing time required.

Since we are using delta compression, the datgpieesed as the change in value
from the previous sample. The reported values egpositive or negative. In many
applications such as temperature sensing the vaheesyclic so the frequency of

positive changes is similar to the frequency ofatieg changes. In general, highest
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frequencies appear in the smaller values (e.g.eeatyre usually changes fairly slowly
causing most changes reported to be small). Alsa¢h needs to scale to any number of

values. Based on these characteristics, we consinuaitial set of codes as follows:

Table 17 Initial default codes
\e/a'“ 0 -1 41 2 | +2 | 3 | +3
Cod 1 01 01 0010 | 001 0011 0011
e 1 0O |1 00 |1 0

With all other values continuing the pattern: Defihas the base of the delta vallie

where

. { floor (log, ((d[) |d| >0
-1 d=0

The code C is constructed as a string®##23 bits. The firsB+1 bits are Os followed
by the binary representation df {(which will beB+1 bits), and a sign bit. For example, if
dis 57 therBis 5. ThenC is constructed as six 0 bits, followed by the bna
representation of |57| (i.e. 111001), followedsagh bit since 57 is positive. The entire
codeC is then 0000001110010.

If the minimum and maximum allowed for the value &nown, then the 1 bit in the
center can be removed for the longest set of cdamsexample, in the codes for -3 to +3
above, if the 1 bit in the center of the codes®r+2, -3, and +3 was removed, the
leading 00 would be enough for the decoder to ately decode those symbols. The
initial static codes for values ranging from -1B7127 are shown in Table 18. The

leading 1 bit in the number is considered to bé¢ giathe prefix since it is static for the

entire level of the tree.



Table 18 Default codes
Level | Bits prefix suffix range values
0 1 1 0
1 3 01 0..1 -1.1
2 5 001 00...11 -3,-2,2,3
3 7 0001 000...111 -1,...,-4,4,..,7
4 9 00001 0000...1111 -15,...,-8,8,...,15
5 11 000001 00000...11111 -31,...,-16,16,...,31
6 13 0000001 | 000000...111111 -62,...,-32,32,...,68
7 14 0000000 | 0000000...1111111 -127,...,-64,647.,
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Using bitwise operators the floor (round down)a base 2 can be calculated in

logarithmic time with respect to the maximum vati@l using Algorithm 1. The

example shows getting the base for a one byte vahe notation bxxxx is used to

indicate a binary number, for example b10000 = 16.

Algorithm 1 FloorLog2Byte(l)

Objective: Calculate the base of a value

Input: Delta valual
Output: The basB of valued
B=0
fd=0
B=-1
Else
d:=[d|
If d >= b10000
rightBitShift(d, 4)
B := B bitwiseOr b100
End If
If d >=b100
rightBitShift(d, 2)
B :=B bitwiseOr b10
End If
If d>=bl10
B := B bitwiseOr 1
End If
End If

The value is then bit shifted to fill in the2+ 1 prefix bits and appended to the output

stream.
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In order to test the validity of this initial defaset, we compressed each of the
datasets using only these codes. Figure 22 shav®shlts of the TinyPack initial codes

(TP-Init) compared to the standard Deflate algonitls-LZW, and the LEC codes.
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Figure 22 Initial codes compared to deflate, S-LZW, and LEC

For all the datasets our initial codes actually poessed slightly better than any of
the other methods except for the N-CET Track datakere S-LZW, LEC, and our
initial codes had nearly identical performance slikidue to the high degree of variance
in that dataset. As expected, the Deflate algoritivhich does not specifically target
sensor network data, performed significantly wdosanost of the datasets. The
ZebraNet and aircraft health datasets both cosigmficant runs of unchanging data
which the Deflate algorithm takes advantage ot geiformed relatively well on those

datasets compared to the sensor network speaifocitims.

5.2. TINYPACK WITH DYNAMIC FREQUENCIES (TP-DF)

In order to use Huffman-style compression, thedegggies of the different data
values must be known. However, in real-time systtmaee is often no time to collect all
the data and count the total frequencies of allvdiaes before sending the currently
collected data. To avoid the need to transmit themfrequencies from the last frame of

data can be used. The frequencies are calculatbdabthe source and the destination to
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avoid the need to transmit the frequency tables.tlfdées and codes are updated at the
beginning of each frame. Naturally, values thatiarthe possible range but do not
appear in a frame are assigned a frequency of zero.

Since the values are typically densely clusteredraat O and sparsely scattered far
from O, the frequencies are stored in a hash tdlble.hash for the value is the last eight
bits using 2’s compliment for negative numberstsoualues from -128 to 127 fit neatly
into the table. The hash table is chained anddindivalues are stored in a list in the
hash table bucket. This keeps the RAM requiremeatsonably low while still allowing
for fast lookups.

In order to capitalize on the dynamic charactersstif sensor data we add weight to
the most recent values in order that recent ocoae®have a higher impact than past
occurrences but the history is not entirely forgottWe replace the frequency table with
a weighted frequency table and define a weightagoirM such the occurrence of a new
value is given twice the weight of the value obseM samples ago. The weighted
frequencyF[d] for a valued appearing in the™ sample is updated by the following

equation:

Fld] = F[d]+ 2"

In our experiments we sbt equal to the one quarter of the frame size. Aetie of a
frame when the tree is updated, the weighted frecjas are normalized to reseto 0
and prevent overflow. Also any values with a noimed frequency less than .001 are
assigned a frequency of 0 and removed from thefisbunted values. Algorithm 2 runs

for each delta value in a sensed vector.
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Algorithm 2 CountAndEncodef, n, M, S F)

Objective: Maintain count of frequencies and encdaa
Input: Delta valuel, countn, weighting factoM, frame sizeS frequency tabl&
Output: Frequency table updated and code appdanddteam
If Hash@) in F
F[d] := F[d] + 2*n/M)
Else
F[d] := 2Nn/M)
End If
C := LookupCod&q)
AppendToStreandf)
n:=n+1
If n=S//New frame
n=0
For everyF[x] in F
F[X] := F[X/(2NSM))
If F[x] <.001
F[x]:=0
End If
End For
UpdateCode$)
End If
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Figure 23 Frame size analysis for tinypack with dynamic frengies

We ran TP-DF on all the datasets with a varyinghgaize. Results are shown in
Figure 23. When the frame size was small, the @aattor creating a new frame had a
significant impact on the compressed size. Wherirdree size was very large, the codes
were not updated frequently enough to keep up thighdynamic characteristics of the

data, thus again negatively impacting the compoessize.
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Frame sizes between 500 and 1500 samples per setsooughly the same impact.

Thus, for our experiments, we set the frame siz#t612 samples.

5.3. TINYPACK WITH RUNNING STATISTICS (TP-RYS)

In cases where the number of possible values ishigh or memory is very limited,
storing the frequency table can be too costly sanstandard Huffman tree on that much
data would require more RAM than many sensors hsaéable. For example, storing
the frequency table for a single 4-byte integénd values covered the entire possible
range would require over 8MB of RAM while Crossbdechnology’s [15] popular
Mica2 and MicaZ motes have less than 1MB of totahmary. In these cases the
frequencies can be approximated by maintainingingnstatistics such as the mean and
standard deviation. Because we use delta valussndt necessary to know the
distribution of the data; only the distributionladw the data changes. This remains much
more consistent in all of our datasets.

Beginning with the average and standard deviatiahthe default codes would
produce the running average and standard deviediorbe calculated over a window of
sizeW. The running averadge(d) updates when thath valued is sampled by the simple
equation:

1 W -1
n =_dn +
W W

E(d) E(d), .

In the same way, the average of the squares ofaloes can be maintained. We can

compute the standard deviatiemsing the well known formula:

o =E(d*)- (E(d))
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The frequency of a value occurring in a streamddigiby the total number of values
in the stream is referred to as the probabilityhat value. In a Huffman tree the
probability of each leaf node is the probabilitytleét value occurring in the stream and
the probability of a non-leaf node is the sum @f pnobabilities of each child node. The
probability of the root is 1. The probability ofaanode was shown by Shannon [4] to be
ideally half the probability of its parent, so tlegel of a node in the tree should be —
logx(P) whereP is the probability of the node. Using the statsttalculated the
probabilities of each value can be approximate@nTthe tree can simply be expressed
as a table containing the number of leaf nodessthatild be at each level. Therefore, the
Huffman tree in Figure 19 can be compressed intderd9 where the table is stored on
the sensor as an array 1l-indexed on the tree level.

Table 19 Compressed tree
Level | Count

OO WN -
OONOIR

The code strings for the values can then be gestenatiogarithmic time.

These codes are generated by creating a baseioutie £ a prefix for each level in
the tree and using the position of each node &vel. The binary base for all nodes at a
level in the tree is generated by adding the badecaunt of the previous level and
multiplying by 2 (appending a 0) with the basetfo root initialized to 0. For example,

suppose the statistics approximated a tree withhode at level 1 and 1, 3, 4, and 4
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nodes at levels 3, 4, 5, and 6 respectively foneslof O to 12. The base generation for

these values is shown in Table 20.

Table 20 Base generation

Level | Count | Binary Generation Base

1 1 1 0 0

2 0 0 (0+1)*10 10

3 1 1 (10+0)*10 100
4 3 11 (100+1)*10 1010
5 4 100 (1010+11)*10 11010
6 4 100 (11010+100)*10| 111100

The code for a value is generated by adding thesposition in the level to the
group’s base. Again, all the arithmetic is donéimary. Continuing the above example,

the generation for the codes of these values wsho Table 21.

Table 21 Code generation

Value | Level | Position Base | Generati Code
on

0 1 0 0 0+0 0
1 3 0 100 100+0 100
2 4 0 1010 1010+0 1010
3 4 1 1010 1010+1 1011
4 4 2 1010 1010+10; 1100
5 5 0 11010 11010+0/ 11010
6 5 1 11010 11010+1] 11011
7 5 2 11010 11010+1011100
8 5 3 11010 11010+1111101
9 6 0 111100 111100+0111100

The probability of a level is computed as the sdrthe probabilities of the nodes at

that level. Since the probability of a node at ldvés ideally 2, the probability of a

level is defined by:

The probability of the tablB(T) is defined as the sum of the probabilities otlad

P(L) = (Count(L))(2)

levels. For the table to generate accurate cd{@¥ must be less than one; however, the
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higher it is, the more compact the code are. Ttinesfollowing relationship should hold

(whereH is the height of the tree):

P(T) = i (Count(L))2)=1

L=1

Events such as changes in values are often asgon@tbw exponential
distributions. Experiments confirmed this in outadts allowing confidence intervals to
be used to approximate the ideal number of nodeadit depth of the tree. The values
are assigned to their ideal levels rounding dowthatP(T) remains less than 1. Then
the table is adjusted from the top down using Athon 3 so that nodes are pushed

upward in the tree unt®(T) = 1.

Algorithm 3 FilterUp(T, H)

Objective: Produce optimal codes by getti(d@) = 1
Input: TableT whereT is simply the array of the counts, Height of tkée

Output:T adjusted so th&(T) =1

P(M:=0

ForL From 1 toH
P(T) := P(T) + T[L]*2"(-L)

End For

ForL From 1 toH-1
//Get the highest number that can possibly move
move_count := Floor( (IRP(T))/(2"(-L-1)))
//Don’t move more than are there
move_count := Max(move_couffL])
//If move_count is 0 the next two lines do nothin
T[L] := T[L] + move_count
T[L+1] :=T[L+1] — move_count

End For

The window size analysis for the running statisties almost identical to the frame

size results using dynamic frequencies (shownguiré 23). Again the experiments were

run with a window size of 512.
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Figure 24 shows the results of running both theadyio frequencies (TP-DF) and
running statistics (TP-RS) over the datasets coetptr the other methods. The running
statistics generally performed slightly poorer tlgnamic frequencies except on the
Intel Labs dataset. The data in this set is moeeipe and follows a cleaner statistical

pattern than the others.
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Figure 24  Tinypack with dynamic frequencies and running stes

54. ALL-ISWELL BIT

Most sensor applications send a vector of valugs, @@mestamp, temperature,
humidity) at each sampling interval. Often in tlaalsets studied all the values in a
sample were exactly equal to the previous corredipgrvalue. A bit can be appended to
the beginning of the packet indicating whether airthis has occurred (obviously if it
has, no more data needs to be sent for that patkgtotocols with variable sized
packets or packets that are small compared tazbkeoa vector of readings, this could
introduce additional savings. This idea has beed ssveral times previously in sensor
networks [19][20][21].

The datasets were affected differently by adding) figure 25 shows the effects of
the all-is-well bit (AIW). TP-DF and TP-RS were yesimilar, so TP-RS was removed to

avoid cluttering the graph. In each of the TinyPalgjorithms the all-is-well bit
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improved performance for all the datasets excepttitraft health and N-CET tracking
sets. This is due to the higher level of precisiothose datasets. The datasets had a very
small number of packets where all the values wegatical to the previous packet. In
general, if the application is designed such teased values will rarely be exactly equal
to the previous value (as in high precision date,all-is-well bit should not be used.
Additionally, if the sensors send on a predeterchisehedule or if the packet headers
contain consecutive sequence numbers, simply ngfigafrom sending data could be
used to indicate the same thing as the all-is-hiellThis would remove the overhead so
no decision would need to be made whether or nos¢oit. These intentionally unsent
packets would be easily differentiated from actiraps based on the sequence numbers

or the error detection discussed in the next sectio
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Figure 25 Effects of all-is-well bit
5.5. BASELINE FREQUENCY

In some applications, packets that are unintergstam be dropped and drops can also
occur accidentally. Since the compression of threk@is depends on the previous packet,
any loss of a packet causes errors that propagatéthe following packets. Instead of

reporting the value at each packet as the changaue from the previous packet, we
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examined the cost of only occasionally changingodieeline of which the change is
reported. So instead of every packet being a besdiiaseline packets can be sent at
different intervals and all subsequent packeteapeessed as the change in value from
the last baseline. These baseline packets carbthflagged as high priority so that the
application will not drop them. Also in lossy eramiments, these baseline packets can
require acknowledgement to ensure delivery. We mxgated with static baseline
intervals and using statistics of the data to deitez when to send the new baseline.
Figure 27 and Figure 27 show the effects on consprf changing the baseline
frequency using static intervals and sending a lo@seline when the packet size
increased above a threshold compared to the avarastandard deviation of the

previous packet sizes.
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Figure 26 Baseline frequency (static)
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The results for the statistical approach were sicaeng the total number of baseline
packets sent to calculate the frequency and cordparthe results for static frequencies
for each of the datasets. The average results abm@st identical making the static
methods preferable since they require less praugsaie more intuitive to implement
and parameterize, and were more consistent in ¢fffeicts.

As with most compression algorithms, the dataghlyi susceptible to dropped or
corrupted packets. If one of the baseline paclsatisapped or corrupted, then the data
following that point would be unable to be deconggesl. We experimented on and
analyzed the cost of retransmitting baseline pacdkescenarios with varying degrees of
error. Error detection and correction are discussedore detail section 7.

Figure 28 shows the cost of retransmission of theupkd baseline packets. As
expected, the cost of retransmission drops quiaklthe number of packets between
baselines increases. The probability of a drop@etgt being a baseline and thus
requiring retransmission is inversely proportiottathe number of packets between

baselines resulting in the hyperbolic shape otthst curve.
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Figure 28 Retransmission

As expected, the cost of retransmission drops uakthe number of packets
between baselines increases. The probability obppd packet being a baseline and
thus requiring retransmission is inversely promoral to the number of packets between

baselines resulting in the hyperbolic shape otcthst curve.
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Compression with retransmission
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Cost of retransmission was directly proportionattmr percentage. The graphs for
the other error amounts were omitted since theesb&fhe curves is identical. Figure 29
shows the total size of the transmitted compredséal including retransmissions of
dropped baseline packets. This includes droppedn&hissions. For example, with 10%
error, each baseline packet would be sent an avefay 111 times and with 50% error,
each baseline would be sent an average of twic¢hé\srror rate increases, the cost of
retransmission increases. As in Figure 28 the asmé cost is greatest when the number
of packets between baselines is low. As the nurnbpackets between baselines

increases, the added cost becomes negligible agr#phs become identical.

5.6. WORKING WITH REAL VALUES

TinyPack works most effectively with integers. Guoproach could fairly intuitively
be extended into the real numbers; however, fopkaity in our experiments, we
expressed reals as integers. In the case wheredhealues were rounded in the dataset
to some low number of decimal places, we simplftathithe decimal point. In the case
of higher precision reals, we split the values i exponent and mantissa and

compressed them separately.

6. PHYSICAL IMPLEMENTATION USING SENSOR NETWORK TEST-BED

We implemented the algorithms on a network of seMe&a2 sensors running the
TinyOS operating system. One sensor served asagediation for the network and the
other sensors were loaded with data from the dataBlee sensors then compressed and
sent that data to the base station using eacledfitferent algorithms. All the sensors

were time synchronized and sent data using timisidivmultiplexing. For datasets with
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more than six sensing nodes, experiments were olotige data from six at a time until
the data from all sensing nodes had been passmagtinthe network.

Each experiment was run separately in order tleatrtbasurement of one metric
would not affect the others. For example, if thessgs tracked RAM usage while

processor utilization was being measured, the tesduld be slightly inflated.

6.1. COMPRESSION

The results from all the previous compression drpants are combined in Figure 30
which shows the compressed size of each datasewrSére the standard Deflate
algorithm used in most operating systems, S-LZWC|.&nd our approaches: The static
initial codes (TP-Init), dynamic frequencies (TPJ)DRinning statistics (TP-RS), and
each of the TinyPack methods with the all-is-wdlldaded (-AIW). As expected TP-DF
performed the best in terms of compression comparéte other algorithms. The all-is-

well bit increased the performance over some ofititasets.
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To summarize, we calculate the entire compresdiatl the data across every dataset
and normalized the results to give equal weiglgach dataset in Figure 31. The all-is-
well bit added a slight benefit in the average a#deugh its usefulness depends heavily
on the characteristics of the data sensed. Asiibeaobserved, the TinyPack algorithms
provide compressed sizes of 11% to 27% outperfagriia other methods which range

from 19% to 50%.
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Figure 31 Compression summary

6.2. ACCURACY

Since the TinyPack algorithms produce approximatiminthe frequencies of the
values, a measure of accuracy can be calculatedroparing the lengths of the
generated codes for each frame to the optimal lsdghs determined by generating
standard Huffman codes. Figure 32 shows the pedonca of the TinyPack and LEC
algorithms compared to the performance of a thealedptimal algorithm. Deflate and
S-LZW both resulted in greater compressed sizesaeadot shown here to allow for
greater precision in the figure. It should be ndteat while standard Huffman coding

would produce optimal codes, the overhead for senttie new tree at every frame
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would cause the algorithm to perform much worse #ay of the others. No algorithm

currently exists which produces optimal codes wihoverhead.
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Figure 32  Accuracy

The data in both Intel Labs and aircraft healtha®® fairly consistent throughout

the entire dataset so the approximated codes aheasted the optimal level.

6.3. LATENCY

Sending the uncompressed data takes less timedessing but more time in
transmission so the latency depends on the moesk Ursgeneral, however, processor
speed is much faster than radio data rate for @ssesensors (for example, the Mica2
mote [15] has a 16 MHz processor and a 38.4 khyis dta rate radio). For the Mica2
motes, latency is decreased proportionally to tmapressed size of the data. Thus,
TinyPack has a decrease in latency of 80-85% cosdtaruncompressed data. Latency
was measured at the base station by querying #termsyclock at the beginning and end
of each transmission and at the beginning of eadestime window to determine the
processing time. For S-LZW the nodes logged andaapesl their own wait times and

sent that data at the end of the experiment.
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Latency
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Figure 33 Latency

For comparison, the S-LZW algorithm was modifiedémd data as soon as possible
and it was assumed packets were sent in a corssteam. Figure 33 shows the relative
latencies scaled to the uncompressed data. Invegiston of TinyPack adding the all- is-
well bit decreased the latency by less than hpHraent so data for the all-is-well bit is
not shown separately. Deflate is not shown sinoceqitiires collecting all of the data prior
to compressing. Send time is directly proportidnatompression (shown in subsection
6.1) and processing time is directly proportiomeaiite processor utilization (shown in

subsection 6.5).

6.4. RAM

The maximum amount of RAM utilized by each algantfor each dataset is shown
in Figure 34. S-LZW is designed to work on any gengataset and uses the same
compressor for every value in a sensed vector rgakie RAM usage constant for S-
LZW. As expected, TP-DF had the highest RAM usagmahbse it stores the frequency
tables; however, the RAM was still well within thenits of the Mica2, MicaZ, and most
other sensors. LEC and TP-Init both use very IRV since the codes are static and

generated at runtime for each value.
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Figure 34 Ram usage

6.5. PROCESSOR UTILIZATION

In order to measure processor utilization, the @gcounters on each sensor were
accessed at the start and end of each simulatiwrthEse simulations, the data was
compressed and not transmitted to prevent the gsocaitilization from being affected
by the compression ratio. Figure 35 shows theutitbtn count for each algorithm scaled
to show the average instruction count per bytenabmpressed data. As with RAM, the
static codes used in LEC and TP-Init cause thegssmr utilization to be very low. TP-
DF and TP-RS required significantly higher processoe than the other algorithms;
however, due to the nature of the sensor hardwlaeesavings in energy and latency from
the reduced data size far outweigh the costs dfenigrocessor utilization. The energy

usage from processing is included in the resulth®®energy simulation in Figure 36.
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Figure 35 Processor utilization

7. EXPERIMENTAL RESULTSUSING A SENSOR NETWORK SIMULATOR

Experiments were performed using TOSSIM [17], whsghulates the open source
TinyOS operating system that runs on many sen$@SSIM simulated Crossbow
Technology’s MicaZ motes [15] and was used to ydhe experimental results as well
as measure energy consumption and to test thathlgsrunder larger networks and
different architectures. In addition to TOSSIM #PewerTOSSIM [18] simulator was
used. PowerTOSSIM is built on top of TOSSIM andvited the capabilities of

measuring simulated energy consumption and latency.

7.1. ENERGY USAGE

Energy consumed for compressing, writing to memang transmitting was
measured using PowerTOSSIM. Results shown in Figérare again scaled to a
percentage of the cost to send the data uncomplrasskeaveraged over all the datasets.
As with latency, the all-is-well bit in each cascbased the energy usage by less than
half a percent. Energy usage data was not colldotatie Deflate algorithm since it was

included only as a compression benchmark and wiasnptemented in PowerTOSSIM.
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As can be seen by comparing Figure 31 and Figurerg&gy results closely matched the

compression results since most energy is consurhéd tkansmitting the data.
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Figure 36 Energy usage

7.2. LATENCY IN A MULTIHOP ENVIRONMENT

Experiments were performed to show the effecthefaigorithms in a multi-hop
environment. Sensing nodes sent data to the baisensthrough a varying length series
of forwarding nodes. For sensors with a slower gssor or faster radio, the processor
utilization becomes a greater factor, but in a rhdp environment, the algorithms with
the best compression ratio still outperform theecghModifying the simulation to use a
data rate of 2.5 Mbps radio like the Manchesteredogkensors in [16] generated the
latency results shown in Figure 37. The left grapbws the latency on a single sensor
and the right graph shows how latency changestiwémumber of hops. As the average
number of hops increases, latency approaches ggetigia since there is no additional
processing needed when forwarding the compressaaetiza After two or three hops the
algorithms with the best compression ratio havddtest end-to-end latency even for

sensors with high speed radios.
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8. ERROR DETECTION AND RECOVERY

The first packet in a new frame is sent with uncoesped values. Each additional
packet is sent using the delta (change) valudkelfast value is repeated in the first
packet of the next frame, the values can be comdgareheck for the presence of errors
due to dropped packets or corrupted values in dlokqds.

For example, suppose a temperature sensor sernseg aa23, 25, 28, and 29 with a
frame size of 4. The first frame contains [23, +2, and +1]. Assuming packet
corruption changed the +3 to -3, the receiver woeltl the values as 23, 25, 22, and 23.

When the second frame was sent with 29 as the/fitae the receiver could see that an
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error had occurred since the last value (23) doegqual the first value of the next
frame (29).

This successfully detects all single bit errors simgjle dropped packets; however, it
is possible that multiple errors could cause tHaesof the compared packets to actually
be equal although the errors existed. For examp2 and a -2 could both be dropped. In
this case the drops would be undetected.

Since the codes are dynamic, the chances of urtddteaor constantly changes but
the codes in all cases were consistently distribabtmilarly to the static default codes so
those were used for error analysis.

Experiments were conducted with errors generatsahaisig Poisson inter-arrival

times and results were consistent with the follgramalysis.

8.1. DROP DETECTION

For dropped packets, the probability of a subseerar "correcting” the value and
causing the errors to be undetected can be compsieg a state diagram and transition
matrix. The state number is defined as the diffeedretween the value calculated at the
receiver and the value transmitted by the senderekample, state 3 represents that the
receiver believes the value to be 3 greater thesalty was and state O represents either
no error or undetectable error. Since transiti@asgo from any state to any other state
and the number of states is equal to twice the murabpossible values, the diagram is
far too complex to include. The probability of amnoe causing a transition from a state X

to a state Y is

P(X ,Y) — 2—2]]092(\ X=Y|+1) -1
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ClearlyP(X,Y) = P(Y,X) so the probability of transitioning from X to Y@ then from
Y back to X is jusP(X,Y)?. The probability of a second error correcting thkie and
causing both errors to go undetected is represdmytédnsitioning from the initial state 0

to any state X and back and is

S P(0,X)? = 3274kl < 0357

X=—00 X=—00

Therefore the probability of two drops going undege in a frame is roughly 3.57%.
Since most sensors send a vector of values atsaamcple the probability of detecting
multiple errors from dropped packets is (.03%#here V| is the vector size of the
sample.

For example, the Intel Labs dataset contains 2llBomsamples with six values in
each sample s¥| = 6. In the worst case there will be exactly tivops per frame.
Assuming 10% packet loss, there would be approxiyndtl5,000 frames each

containing two dropped packets. The chance of tatgevery drop would be

(- (0357° )" ~ 99976%
The worst case probabilities are shown for eadhetatasets in Table 22.

Table 22 Probability of drop detection

Dataset [V| | frames | probability
ZebraNet 6 284 99.9999%
Great Duck Island 8 38226 >99.9999%
Intel Labs 6 115123, 99.9762%
N-CET Track 4 23143 96.3106%
N-CET Triangulate| 6 11123 99.9977%
Aircraft Health 2 22937 <0.00001%

The aircraft health data has only two values petareand so in the worst case, at

10% drop rate, errors would undoubtedly go undetedtor such datasets, it would be
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effective to define a smaller frame size to redineeprobability of multiple errors
occurring in the same frame or to send error deteg@ackets in the middle of the frame

instead of always sending them at the end.

8.2. SINGLE BIT ERROR DETECTION

Assuming the values occur with the probability eotpd by the default codes, the
probability of a bit error occurring in the based(jx) of a code can be determined by
calculating the expected number of prefix and guifts in a code.

From Table 18 it can be seen that a code at letek a prefix length+1 and suffix
lengthL. The count of nodes at that level ssd the probability of a random sampled
value being on that level is'2"). Therefore the expected number of prefix Eitg) for

an arbitrarily large set of possible values is:

E(P):i("ﬂj_l $24304

= 2L+l
2E(P)-E(P) =2

Similarly, the expected number of suffix bEES) is:

e()=3 o J= 3 55k

L=0 L=0

=E(P)- Z(ij

As the height of the tree approaches infini{P) approaches 2 arte(S) approaches
1. The probability of a bit error occurring in tpeefix for large trees approaches 66.67%.
Calculating for the case where the values can rémoge-127 to 127 gives 66.98%. Such
errors would change the expected length of the endevould either be detected at the

end of the packet transmission or would cause #ite th vary so greatly that the
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probability of a future error correcting the valaeexponentially less than if the error was
in the suffix.

Suffix bit errors cause the error in value to chaingthe same way as dropped
packets. Thus, the probabilities of errors goindatacted are one third those of the

dropped packets.

8.3. CORRECTION

If the data is sent based on a sampling intervdltbe packet headers contain
sequence numbers, then the above error detectiohamisms can easily be used to
reconstruct dropped or corrupted packets. In tBe oda single dropped packet, the
values dropped are equal to the difference betweepalculated value at the receiver
and the value of the error detection packet. Fangte, assume again that a temperature
sensor sensed values at 23, 25, 28, and 29. Thesvahcoded and transmitted would
then be 23, +2, +3, and +1. Assume that the paxketining the +3 value was dropped
and the calculated value at the receiver is 23+261At the end of the frame, the sender
transmits the non-encoded real value of 29 asrtioe @etection packet. Since 29-26=3,
the receiver can instantly calculate the missirlgevas +3. In the case of multiple
dropped packets, the difference represents theaiwta over all drops. For consecutive
drops, we simply divide the total error by the nembf drops and assign that value to
each missing packet. For non-consecutive dropsyahes are scaled based on the ratio
of the previous and next packet surrounding eadsing packet.

We experimented using the same frame size of 5d2ad® Poisson distributed drop
rate. Table 23 shows the average error comparactt@l value of the dropped packet as

well and the percentage of errors greater than 1%



Table 23 Error correction

Dataset errors | average >1%
ZebraNet 57 0.18% 2.5%
Great Duck Island 7642 0.34% 4.2%
Intel Labs 23035 | 0.07% 1.3%
N-CET Track 4607 0.26% 3.4%
N-CET Triangulate, 2231 0.19% 2.9%
Aircraft Health 4586 0.12% 1.7%
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9. CONCLUSIONSAND FUTURE WORK

The TinyPack suite of protocols effectively compesdata while not introducing
delays and even reduces latency compared to seadoggnpressed data. TinyPack is
effective on all sensor networks which use timeedasampling and is especially
effective on systems with high granularity or laye#l variance.

TP-Init required the least RAM and by far the lgasicessing time of all the
TinyPack algorithms but resulted in the poorest jpaassion. TP-DF achieved the
greatest compression ratios, but required more RiAd the other methods. TP-RS
compressed almost as well and required much le$d.R¥hile TP-DF compressed most
effectively, systems with low RAM would benefit frousing TP-RS and systems with
very low RAM or high cost for processor utilizatioauld use TP-Init for best results.

While the focus of this paper has been losslesgpoession, TinyPack could be
modified to continue sending change values of petd the change exceeded some
threshold. Additionally, packets could be droppedhtdicate no change had occurred. In
systems which could tolerate some rounding errdossiness, this could dramatically

increase the compression with a small degree of.err
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In many applications sensors are not only tempplatlated but also spatially located
(sensors sense data similar to that of a nearlspsenit could prove effective to express
the delta values as the change from the valuenebaby sensor instead of the change

from previous value or some hybrid of the two.
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IV.ENERGY EFFICIENT DISTRIBUTED GROUPING AND SCALING FOR
REAL-TIME DATA COMPRESSION IN SENSOR NETWORKS

Wireless sensor networks possess significant ltraita in storage, bandwidth, and
power. This has led to the development of sevenalpression algorithms designed for
sensor networks. Many of these methods exploittineslation often present between the
data on different sensors in the network. Mosheke algorithms require collecting a
great deal of data before compressing which inttedwan increase in latency that cannot
be tolerated in real-time systems. We proposetaliised method for collaborative
compression of correlated sensor data. The compresan be lossless or lossy with a
parameter for maximum tolerable error. Error rate be adjusted dynamically to
increase compression under heavy load. Performaradaations show comparable
compression ratios to centralized methods and gedse in latency and network

bandwidth compared to some recent approaches.

1. INTRODUCTION

Many real-time systems incorporate wireless senstwgheir infrastructure. For
example, some airplanes and automobiles use selsm@nitor the health of different
physical components in the system, security systesasensors to monitor boundaries
and secure areas, and armies use sensors tormapk tind targets. It is well known that
wireless sensor networks possess significant ltiaita in processing, storage,
bandwidth, and power. In addition, with the emergeaf collaborative on-demand
sensor applications [50], a need exists for effic@llaborative data algorithms which
do not require delays in processing or communioatibile still reducing memory and

energy requirements.
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Data compression has existed since the early day@aputers [1][2][3]. Many new
compression schemes for wireless sensor networkslieen proposed. Many emphasize
low energy profile [42][43] to function in the cdrained wireless environment. Others
exploit the physical layout of the sensors [5][&]the spatio-temporal correlation often
present in the data to achieve better compres&AMPS [9] effectively uses spatio-
temporal correlation by grouping correlated sensosusing amplitude scaling to relate
the streams of values from the correlated senbatss centralized and requires
collecting all of the data before compression. @istributed ASTC approach [41]
performs the compression in-network by building ametging clusters and cliques of
related sensors. It gives good compression rdiitsgenerates additional peer-to-peer
communication and heavier energy usage from theeased processing.

We propose a distributed collaborative method deigor real-time sensor
networks such as those used in the sensor clojddbs@related sensors form groups and
use amplitude scaling on their signals to expriess sensed values in terms of other
sensors in the group. The grouping and scalingmedn a distributed fashion in real
time. This is similar to the method used in GAMPg[®&hich employs a centralized
algorithm on the data after it has all been coldchowever, GAMPS provides no
reduction in bandwidth or energy use on the sersmwigs not designed for real-time
systems.

If some loss in the accuracy of the data is tolerahen the potential for compression
increases greatly even for small loss. In our weete, we include a parameter for the
maximum tolerable error for a single sensed vdfoe .sensors with multiple inputs, the

parameter can be set globally for all signals diviidually for different error tolerance
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for each type of sensed value. Setting any max &ro% naturally achieves lossless
compression. We provide in-depth analysis and dsou of different methods for
measuring error and compare the compressibilityaataal error for variations methods
of utilizing the error tolerance.

We then compare the results of our approach texisting spatio-temporal existing
methods such as GAMPS [38] and ASTC [41]. We atsapare our method to the single
sensor TinyPack [28] and LEC [43] methods and campar prediction methodology
with PREMON [40] and a sensor network adaptatiodaman Filters [39]. Experiment
and simulation results show significant reductietandwidth, latency, and energy
consumption compared to the other methods.

In summary, this paper makes the following contidms:

Novel algorithms for lossy collaborative compressio sensor networks with tunable
maximum loss

Discussion and analysis of how to select and haiotheable loss in the data

An ultra low-weight prediction mechanism

An analysis of several methods of grouping andtehusy

Novel and effective error recovery techniques

2. RELATED WORK

2.1. GAMPS

A lossy multi-stream compressor is proposed in.[B#MPS compresses the data
from multiple sensors which sense correlated dsitagumathematical techniques to
groups the sensors which have highest correlati@ath other. One sensor in each

group is selected as the baseline and the reBedfensors in the group report the
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difference in their sensed values from the baselihe values are rounded based on a
threshold parameter to achieve compressed sizes 0f6 of the original size.

For a single sensor, the series of values is scammid the difference between the
maximum and minimum exceeds twice the error thrglsAthe entire sequence
(excluding the last one which caused the excesrdifce) is approximated as the
average of the maximum and minimum. In this wayapproximation never differs from
the original by more than the error threshold. ddeo to keep the time windows
consistent across all sensors in a group, theglioes are all reset when any sensor
requires it.

A baseline sensor exists in each group. Lineaessgon models are used to find the
closest linear function which maps each sensdredaseline. Again, if the error exceeds
the threshold a new function is found.

The actual grouping is dependent on the above psese An initial time window is
set and the groups are set for each time windomgusiheuristic solution to the Facility
Location problem. Initially all the sensors areome group. Then a base sensor is chosen
at random and sensors are added to its group gsbthe cost of adding them is less
than the cost of starting a new group. After theugs are set for each time window, the
time windows are tested to see if halving or doublvill increase the compressibility of
the data.

This method is very effective but requires full tahized knowledge of all the data

before compression is possible at all.
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2.2.ASTC

In [41], a distributed, lossy, spatio-temporal aggmoh is introduced. One-hop clusters
comprised of correlated sensors are formed bas@desious sensed values. A select
number of the sensors in a cluster are choserrito damaster cluster on which temporal
correlation is used to form a model. This modelast to neighboring clusters, which can
merge with the original cluster forming larger c¢ars.

Individual nodes which do not remain correlatethiir respective clusters are
evicted. These evicted nodes then listen to treghboring clusters and can either join
an existing cluster or form a new cluster dependimgvhether or not any of the

neighboring clusters accept them.

2.3. PREMON

PREMON [40] uses an algorithm similar to that of BAR and JPEG compression.
Sensor correlation is computed as vectors to maloaks which are used to build a
model for the data. The sensors then only repatiitiens from the model. All the
computation of the models is done in a centraliastiion at the sink and the models are
transmitted back to the sensors. The model is gieadly reconstructed and retransmitted

to the sensor nodes.

24. LEC AND TINYPACK

A number of very lightweight compression codesiat®duced in [43] and [28].
LEC consists of a set of delta compression codsshan JPEG compression and
applied to sensor nodes. A similar set of codelers/ed in TinyPack which is more

highly tuned to the temporal correlation observechany real life datasets. These codes
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are used as the basis for the delta compressi@himiseporting the deltas from the

baseline values in this work.

3. BACKGROUND

3.1. COLLABORATIVE COMPRESSION

Compression on a single sensor can often be achlgwvexploiting temporal
correlation in the data. In the single sensor TagkPalgorithms [28], each sensed value
is compressed using the most recent previouslyesevalue as a baseline and expressing
the value as a function of that baseline. In magtisor environments, neighboring
sensors can be used as the baseline allowingdategrcompression under the

assumption that the values from the two sensorsarelated.

3.2. SPATIAL LOCALITY

Wireless sensor networks where multiple sensordep®yed over an area generally
exhibit spatial locality (data from readings takgnsensors geographically near each
other are correlated). Any type of data which clesrg a continuous fashion across
space will be temporally located such as tempegaturmidity, location of tracked
objects, light intensity, distance to a sensed g\o. In fact, it can be demonstrated that
any network deployed over a certain area will eithenerate spatially located data or
random noise.

Consider an arbitrary sensor network sensing afsatlues {1, v, ..., van} Sensed at
locations {1, Xz, ..., Xon} WhereN is an integer. Assume that the values are not
correlated. Then placing sensors at locatioqs)g, ..., Xon-1} @and {Xz, Xa, ..., Xon} Would

yield completely different values. Thus, offsettithg sensor locations would generate
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entirely different data. Therefore, excluding apalions which generate pure noise, we
can assume that readings at nearby sensors wathipelated.

Note that this does not apply to situations whieeesensors are deployed individually
on specific locations such as those placed on dsifoalocation tracking. These
applications do not necessarily exhibit spatiaalig (although they may) and were not

included in this study.

4. TOLERABLE ERROR AND PREDICTION

We consider a parameterized maximum tolerable eorentag& .. Instead of
reporting every value exactly as sensed, if a vdlgates from some baseline less than
Enax, the baseline value can be used instead. Thiwslflor much greater compression
while keeping the error bound by the tunable maximiihis parameter can be adjusted
based on the application need, i.e., in real-tim can tolerate some error (lossy), or

non-lossy, but can tolerate some latency.

4.1. MEASURING ERROR

A common method of measuring errir,between a reported valiés, and the

actual valueVvy, is the following formula.

Unfortunately, that measure is dependent on this used. For example, if
temperature is measured in Kelvins, degrees Celsiwdegrees Fahrenheit, the
calculated error can vary greatly for the exactesaiata.

Consider a sensor which reported a temperaturé®irhen the actual temperature

was 1°C. Table 24 shows the calculated error ferettact same data expressed using the
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three most common temperature scales. The caldutater ranges from 0.365% to

100% for the exact same data.

Table 24 Inconsistent error measure
Celsius | Fahrenheit | Kelvin
Actual 1 33.8 274.15
Reported 2 35.6 275.15
Calculated Error | 100% 5.32% 0.365%

Even just within one scale the error can be mistegadf a sensor is measuring

temperature and reporting the value in degreesuSelshen the temperature is very

close to 0 a small change in the value could caud@stic increase in the error

percentage. Also, when the actual value is O, tige percentage is undefined.

In practice, the best way to set an upper bouneériar would be to explicitly set the

bounds in terms of the scale. For example, whehys#te end user, the tolerable error

for a temperature reading could be +/- 1°C. Fotyamg however, it is useful to have a

method of normalizing the error to a percentagee @ethod to do this would be to

divide the difference by the maximum range of tbes®r; however, since this range can

be very large compared to the actual sensed rédmgesror percentages would be

artificially low. For our analysis we use the maxim range of actual sensed values as

the denominator for the error normalization

Table 25 Consistent error measure
Cesius | Fahrenheit Kelvin

Actual 1 33.8 274.15
Reported 2 35.6 275.15
Observed minimum 0 32 273.15
Observed maximum | 40 104 313.15

Range 40 72 40

Calculated Error 2.5% 2.5% 2.5%




102

. Table 25 shows the calculated error for the sdate assuming the temperatures
measured range from O to 40 degrees Celsius andrigrates that it is consistent across

scales.

4.2. BASELINE SELECTION

Let D be the maximum value by which a particular sensdde can differ from the
baseline in order to maintain an error percentaigf@mthe upper bounlx. Any time a
value differs from the baseline by more tiara new baseline must be selected. The
easiest approach would be to simply use the cusearged value as the new baseline;
however, different characteristics of the varioigmals could afford better results for
other methods.

We consider six different methods for selectingga thaseline and analyze the
compression and actual error that result for vayyimaximum error. The first method
simply selects the current valug,as the new baseline. Next, if the data is assumed
increase or decrease steadily over time, thendhelraseline could be setsD (where
D is negative when the values are decreasing). Hervéhthe data has a general trend of
increase or decrease but has small local fluctnstithe new baseline could YeD/2.
We also considev-D/2 which penalizes rapid increase and decreaspenfiokrms better
when the data trends back to the average. ThéNasnethods utilize gumping
baselineg, i.e. the current baseline is increased or deetkhased on the previous
baselineB, not the current value. The reported value is gdnevenly divisible by the
baseline jump width which is determined by the nwe&rable error. They are denoted

B+D andB+D/2 and are similar to the second and third metthadsre more
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compressible since the number of possible basekresver (all will all be in the form of
initial_baseline + kD/2 wherek is an integer based on the max error).

The analysis was performed using a publicly avéelalataset from a study at an Intel
Berkley laboratory [12]. The data contains ovemniiBion readings for temperature,
relative humidity, light intensity, and voltage mndb4 sensors deployed in the lab. Figure
38 shows the results comparing the baseline updassages needed as a percentage of

the messages needed to send the data uncompressed.
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Figure 38 Messages sent on varying max error

Voltage generally exhibited minor fluctuations dagsoth of the B methods to
perform poorly. Both of th&+ methods performed well compared to the otheresi
they have additional compressibility, they are gigantly more effective for
compression.

We also computed the actual error generated by mathod over the same datasets
by comparing the compressed values with the origialaes. Results are shown in

Figure 39.
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Light intensity had the lowest actual error for thenethod since in the dataset it

regularly experienced large changes and then redaiery consistent for long periods.

The jumping baselines were at or near the minimamall the experiments.

Additionally, the jumping baseline methods provatklitional compressibility due to the

increased frequency of the baseline values.
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Figure 39 Actual error on varying max error

4.3. BASELINE COMPRESSION

We extend the benefit of jumping baselines for cagapion by implementing a

simple prediction mechanism. A data stream camlomé of three states: trending up,

trending down, or staying somewhat constant. ladatrending either up or down, then

the next baseline should be selected as far iditketion the data is trending as it can be

within the error bounds. If the data is remainiatatively constant, then the next baseline

should be selected as close to the current valpessble. We determine the state by

tracking whether the new baseline is above or bél@aprevious baseline for two jumps.

If both jJumps were in the same direction, the dataending either up or down

depending on the direction of the jumps. The ptezhoonly requires caching the
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previous value and the previous jump direction. &tiditional computation is also

trivial.

Table 26 Prediction example

Seqno  Sensed  Last | Last This | Basdine
value | value | jump | jump

1 242 237 -- -- 240

2 253 242 -- up 250

3 261 253 up up 270

4 276 261 up -- 270

5 284 261 up up 290

For example, Table 26 shows an example of a lighsar with a maximum error set

at +/- 10 lux.

Algorithm 1 CheckReading( p, S, d)

Objective: Check the current reading and selesva
baseline if needed
Input: Sensed value v, previous vapjenax variance,
previous jump directiod
Output: Reported value
If |p—v| >S
r .= NearestBaselineTay(
If v>pAndd==UP
r:=r+952
Else ifv <p Andd == DOWN
r:=r—-92
End If
Ifv>p
d:=UP
Else
d := DOWN
End If
p:=r
Else
r:=p
End If

Initially, the baseline is selected as close asip@sto the actual sensed value. When
the upward trend is established at sequence nuBnltiee baseline is selected as high as

possible while remaining within the error toleramée-/- 10. Then as the data continues
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to trend upward, the baseline does not requireas/nfumps while never exceeding the

maximum tolerable error. This process is shownetaitlin Algorithm 1.

4.4, ENTROPY RESULTS

The total amount of bytes needed to transmit astref data can be measured by the
entropy of the dataset. Assuming no additional ijotesh methods are used for a data
stream, the entropy of the data (as defined ingAjyides a measure of the minimum
number of bits that would be required to transhnit data if some theoretical optimal
compression was used. Thus, entropy is an effeoie@ns of calculating the total
“compressibility” of a stream of data. Assumingpredictions or other transformations
are used, the theoretical minimum number of bigsiired to transmit a value can
calculated with the following formula, whekReis the probability of that value appearing

in the data stream (count of that value divideddigl messages in the stream):

: 1
bits= Iogz(Ej

We used entropy to measure the effectiveness glithping baseline compression
and prediction and compared the results to othedtiption methods. PREMON [40] is an
MPEG based prediction algorithm designed specifidal sensor networks. Kalman
Filters are also commonly used to predict dataaste We compared against a Kalman
filtering scheme which has been adapted for semswvorks [39]. PREMON and
Kalman filters perform sophisticated predictiordueing the number of messages that
need to be sent while the jumping baseline metlamdaéford higher compressibility. We
also included the simplistic approach of merelynding the data to the nearest baseline

since that gives a similar reduction in entropy.
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PREMON and rounding were configured to use the sasamum tolerable error
and the Kalman Filters (which are not bounded oorgwere configured to have the
same total calculated error as the jumping basetiegnod.

Total number of messages sent as a percentage tftdh number of messages in the
original data for the Intel Labs dataset is showfigure 40. The entropy of the
transformed data as a percentage of the originedbgnfor the same data is shown in
Figure 41.

As expected, Kalman filters and PREMON requireddemessages to be sent due to
more accurate prediction, but since the size ofitbesages would need to be higher, the
jumping baselines performed best in terms of oVerdlopy. Thus compression will be

more effective using the jumping baselines overather methods.
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Figure 40 Messages sent on varying max error for differeatifmtion algorithms



108

5% max error 2% max error
4.0% 4.0%
3.5% 3.5%
> 3.0% > 3.0%
Q Q
o 2.5% o 2.5%
S 2.0% < 2.0%
) ) “|
1.5% 1.5%
1.0% 1.0%
0.5% 1 0.5% 1
0.0% T 0.0% + =
Q & & 3 Q& » @
& N ) > L S & &
¢S S &S ®
1% max error 0.5% max error
7.0% 10.0%
9.0%
6.0% 5.0% |
2 50% 2 7.0% 1
S a0 S 6.0% n
% o . % 5.0%
3.0% 2.0%
2.0% 3.0%
2.0%
1.0% A
? 1.0%
0.0% - - 0.0%
Q D & @ Q x @
& S S > L & &
¢ v &S E @
AN A\
\ ORound @ Kalman HPREMON W Baseline(Single) |

Figure 41 Entropy on varying max error for different predistialgorithms

5. COLLABORATION

5.1. CORRELATION

Collaboration between the sensors can then betadadher enhance the
compression of the entire dataset. Correlated sewesm transmit the count of jumps in
which their baselines differ. The sensor choseth@adase sensor serves as a parent node
in the correlation tree. Then the child node caoreits values using its offset from the
parent sensor's baseline as its baseline. Theithligoused is identical to Algorithm 1
except the total count of baseline jumps is regbaean offset of the other sensor instead
of an absolute.

For example, consider two light sensors where Segss reporting its values based
on sensor § Assume again the maximum error is +/- 10 lux.l@&y shows a sample
data stream for the two sensors including the dskresed values, the message sent, and

the final reported value as interpreted at the.sink
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Table 27 Collaboration example

Seq | S S S| S S S

no | sensed | sensed | sent | sent | final final

1 237 259 +24| +2 240, 260
2 242 266 240 | 260
3 253 271 +1 250 | 270
4 261 278 +2 | -1 270, 280
5 275 282 270 | 280

At the first sensed values, the sensors have raibes, so Suses 0 as its baseline
and S uses $s initial value as its baseline. In the messageqtience number 3; S
would have needed to transmit a jump messagevilie reporting its own values, but
since S reported a jump, 53 interpreted value automatically jumped. Two naehy
things happened at sequence number 4. The predazi@cted the upward trend ifsS
data and selected the highest baseline withindlleeatble error, and,Sorrected its offset

from S's baseline.

5.2. CODES

The codes used for transmitting the compressedibagemps for individual or
correlated sensors are drawn from those used jnA28example set of codes for the

delta values of -127 to +127 is shown in Table 28.

Table 28 Delta codes

prefix suffix range values
1 0...1 -1.1
01 00...11 -3,-2,2,3
001 000...111 -1,..,-4,4,..,7
0001 0000...1111 -15,...,-8,8,...,15
00001 00000...11111 -31,...,-16,16,...,31
000001 | 000000...111111 -62,...,-32,32,...,63
0000001 | 0000000...1111111 -127,...,-64,64,...,127
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For example, a change value of +3 would be trartechés 00101 and -3 would be
transmitted as 00111. The pattern can continuedles as high as are needed. If the
maximum value is known, the last level need noeha\l at the end of the prefix.

These codes can be used to both encode and desgdefficiently with minimal
processor utilization. The value expressed by & @ath be computed by the following
equation wher® is the number of O bits before aSlis the first bit of the suffix (sign
bit) andk is the number represented by the remaining sbffsxinterpreted as an integer:

(-2°(e° +K)

For example, the value -14 would be represente@by 1 110 where prefix=0001

(thusB = 3 and 2= 8),S=0, anck= 110 = 6. So (-1)(8+6) = -14.

5.3. MESSAGES

There are only two message types sent by the serimmeline jumps, and parent
sensor changes (rebellions). Since these rebelagesare expected to be infrequent
compared to the baseline jumps, it would be ingffitto assign an entire bit to
distinguish between the message types. Insteatlia iaselected from the table to use as
the indicator and all the other values are shiftedn one. For our experiments, we used
-15. So if a value started with 00011111, it i®rpteted as a rebel message and the rest
of the bits contain the new parent node ID. Thea@nal -15 message would be encoded
like -16 and so on. Node IDs are compressed bygublg minimum number of bits
needed for the total number of nodes. For exanifiieere were 33 to 64 nodes
deployed, the IDs would use 6 bits.

Another small gain can be obtained by shifting pastwn invalid values. For

example, if a data stream is trending up (usingotieeliction method), +1 is an invalid
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jump since it would jJump by at least +2. So anyifpges change automatically has
another +1 added to it. This often had only a slggnefit but for data streams that
steadily increase or decrease over a long peramdasaadditional 20-30% drop in the

compressed size.

5.4. GROUPING

Not all sensors in a network are necessarily caiedland the values from sensors
that are correlated may not be equal. Distinct gsoaf sensors which exhibit higher
correlation tend to emerge and the values at omgos&an often be more efficiently
transmitted as a difference from another sensafiges.

We compare using two very simple and lightweiglaiugring mechanisms: sink side
and node side.

The sink side approach assumes that the sink ianaiher sensor node and does not
have the same energy and processing constraiaisolassumes that the sink can
communicate back to the sensors. The node sideothethkes no assumptions.

In the sink side algorithm, the sink performs theility location computations as
done in [38] over a window of the recent data aqmbrts back to the nodes the ideal
parent node for that window.

In the node side algorithm, the nodes maintainreayandexed by other node IDs
with two entries. The first entry contains the emtrbaseline jump distance from that
node and the second entry contains the numbemesktthe first entry has changed. Every
time a node would need to send a jump messageifsarurrent parent, it finds the

minimum jumps in the array and selects that nodesasew parent. If two nodes select
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each other as the parent, the tie is broken by Hod@ad the node with the lower ID is
selected as the parent.

If a node's parent node selects a parent, the sele not need to select a new parent.
It merely calculates the value of its parent basethe reported value from the
grandparent node. If the grandparent node is n@dio range however, the node will

need to select a new parent.

6. RESULTS

6.1. BANDWIDTH

Results for total bandwidth requirements are shimwFigure 42. We compared
results between our baseline compression on ssagisor, the GAMPS algorithm,
ASTC, and our collaborative compression approable. dink side algorithm performed
almost identically to the node side algorithm Higtgly worse due to the increased
amount of messages sent and is not included igreqghs.

Bandwidth is shown as a percentage of the bandwedjhired to send the data
uncompressed. We assumed uncompressed data womthbenitted with the minimum
number of bytes required to cover the observedeafgossible values. Voltage only
required one byte to send uncompressed while teatyrer humidity, and light intensity
required two bytes for each sensed value.

Collaborative baseline compression performed letrims of required bandwidth
compared to the other approaches for all data tyfueked except for voltage. The single
sensor baseline compression performed best forati@ge because voltage is included in
the dataset as a data integrity check and is na®d to be correlated between

neighboring nodes.
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Voltage also had higher variance in a short tinberual but did not change
drastically over time which accounts for the greatgiance in results for voltage across

the different tolerable error rates.
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Figure 42 Bandwidth utilization on varying max error for agifent compression
algorithms

6.2. LATENCY

Latency was measured in a network of TelosB motes@ed with the data from the
Intel Labs experiment and configured to send dathé sink based on the timestamps in
the dataset.

Figure 43 shows the latency results for the collatiee baseline compression and
comparative methods. Results show time requirgutdoess the data, transmit the data,
and any time required to wait to send the data.

For comparison, GAMPS was modified to send datsoas as enough had been
collected to perform the compression. ASTC incuseche wait time as the nodes
communicated to build the prediction model. Theegsdere not synchronized for the

dataset, so for the jumping baseline, a correls¢edor reporting its value from a base
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sensor would occasionally need to delay sendingffi$et until the base sensor had sent
its value.
Again the results shown are totals over the edataset for temperature, humidity,

light, and voltage values.

Latency

10% A
||
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(Collaborative)

percent of time to send uncompressed
B
<
X

| DOProcessing Time BTransmitTime ®WaitTime

Figure 43  Total latency for single hop network for differearetmpression algorithms

Tolerable error only affected the transmit times&ts are shown for 5% max error
for better clarity since at lower errors, the latgifor processing would be difficult to see.
The transmit time is a simple function of the coegsed size of the data. At 5% max
error, our collaborative baseline approach perfarthe best in terms of latency. As the
tolerable error decreased, our single sensor In@selethod had the least latency.

Latency results shown are for a single hop netwaAskthe number of hops increases,
the total latency at each hop approaches the hatbe transmit time since no
additional processing or wait time would be requir®ince the collaborative baseline
algorithm provided the best compression ratioeifgrms better compared to the other

algorithms as the number of hops between the sgnside and the final sink increases.
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6.3. ENERGY USAGE

A network of MicaZ motes [15] running TinyOS wassilated in TOSSIM [17].
Energy consumption was modeled using PowerTOSS8YIhich provides a layer of
energy usage tools on top of the sensor simuléabiols provided in TOSSIM. Figure 44
shows the average energy per sensor required tpressithe data for each of the
algorithms. The energy required to transmit the dat directly proportional to the
compressed size of the data. Energy usage resulishsmitting the data are not shown

since they would be proportionally identical to tiendwidth results.
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Figure 44 Energy usage due to processing for different cosgioe algorithms

The MicaZ mote has three different radio powernsgs$tthat require 11, 14, and 17.4
mA respectively while transmitting. The MicaZ preser uses 8 mA in active mode [15].
The total energy required is dependent on the naoleer setting. Since total energy
consumption is based on current and time, the éotatgy results are proportional to the
latency results for processing and transmissidfignre 44 except the transmission
energy scales to 11/8, 14/8, or 17/8 of the trassion time based on the radio power

used.
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There was no appreciable difference for procedsatgeen the different types of
data in dataset thus energy results are showrtas twver the entire dataset. Maximum
error also did not have a significant impact oncessing requirements. Results shown
are the average of the four simulations.

The simplicity of the jumping baseline approachegivt a much lower processing
profile than the other methods. GAMPS was not desigo be energy efficient and as a
result did not perform well. Baseline compressiarassingle sensor naturally performed
better than the collaborative approach since tHlatmaration uses the single sensor

method as its initial baseline.

7. ERROR RECOVERY

7.1. OUTLIERS

If a signal contains outliers, the compressionsaifer since the baseline will change
to report the outlier and change back on the falhgwpacket. If some latency is tolerable
in the system, the sensor can wait to report tl@gh in the baseline until it has sampled
a few more values to confirm if the change in thedhine is due to an outlier in the data.

We defined an outlier detection window of si%e The readings in a window are
considered outliers if they satisfy the followivgat conditions:

The readings immediately preceding and followingwindow are the same value

The readings in the window differ from those imnagdiy preceding and following
the window by more than one baseline jump

It other words, if a sensed stream briefly repartkastic change in value and then
returns to the previous value, that change isyikelbe an error and those readings are

considered outliers. We performed simulations fordew sizes of 1, 2, and 3. For
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window sizes greater than 1, any value that woelddnsidered an outlier using a
smaller window size is still considered an outlResults are shown in Figure 45.

Manual inspection of the data revealed some cletiecs where a temperature
reading or other value type would drop to O forrgke sensed value and otherwise
remain fairly constant.

Naturally, false positives could occur if a sensgdam rose above or fell below the
current baseline beyond the error threshold fatief moment and then returned,;
however, the reported value would still be veryselto within the tolerable error band

and the total error of the compressed stream wootdbe significantly impacted.

5% max error 2% max error
0.25% 0.9%
0.8%
2 0:20% 2 0.7%
] 5 0.6%
$015% S 05%
° °
£0.10% c 0.4%
2 303%
0.05% 0.2%
0.00% 0.0% +
Q Sl N J Q Sl N ¢
& ‘\o& & 6@9 & V\\o& & 0\@9
B) A
1% max error 0.5% max error
1.8% 3.0% —
1.6%
M 2.5%
< 14% -
3 12% 5 2.0%
2 1.0% EPS
B o8% S 15%
So06% S 10%
0.4% 22—
% -
0.0% 0.0% -+ L
L i & ¢ N & s g
\Q}(‘ ‘\06\ RS o\@@ \Q}(‘ v\\\»& © o\@Q
B B
| O Baseline (Single) B Outliers(W=1) B Outliers(W=2) | Outliers(W=3) |

Figure 45 Bandwith savings with outlier detection

There were not many outliers detected in the dgtheevever, on average, for a
window size of 1, outliers comprised 0.11% of tlagadstream but required 7.4% of the
bandwidth. Thus, detecting outliers in this way sgmnificantly reduce the bandwidth
required to send the data especially if the nunobeutliers is high.

Most of the outliers in the dataset were singlei@also increasing the window size

above 1 did not cause more outliers to be fourallicases except for light intensity. The
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lights used in the experiment were fluorescenttfighbhich produce a flickering affect.
This flickering caused brief significant changesha datastream that were calculated to
be outliers. The question of whether or not suickéring should really be treated as
outliers should be determined based on the godlseahdividual experiment. The
datasets studied contained few outliers but thikepsitonsumed a significant amount of

bandwidth compared to their frequency.

7.2. SSGNAL RECONSTRUCTION

The actual error present in the compressed streanbe reduced by using the
compressed data to approximate the original datautfin curve smoothing techniques.
Since the actual error is bounded by a maximunrable errorE, the range of possible
true values that produces the compressed strelanoven. This can be used to aid the
curve smoothing process and generate a more aecernstruction of the original data
stream.

If the real data changes slowly and smoothly, ¢ais provide a dramatic decrease in
the actual error of the reported stream; howe¥éhgei data is highly varied within the
bands, then attempts to reconstruct the origimeast can actually add more error. The
maximum added error is known, however, since itlmano more than twice the
configured maximum tolerable error (assuming tlo@mstruction is designed to remain

within E of the reported value from the compressed stream).
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Figure 46 Reported vs. Actual temperature for 2% max error

Figure 46 shows 2000 readings from a temperatnsos compressed using jumping
baseline algorithm. The compressed and actual sateshown.

Due to the unique nature of the jumping baseligerghm, when the baseline
changes the true value at that point can be aatyn&constructed. When data is
trending up or down and the baseline jumps, the ¥alue at the point of the jump will
be nearly equal to the average of the two basel(ifehe sample interval was infinitely
small, it would be exactly equal). When the dataash is peaking or oscillating (neither
trending up nor down) the true value at a basgling can be accurately approximated
by the value of the new baseline. Since the datadtis known, this can be used to design
a very simple signal reconstruction algorithm ttet greatly reduce the total error in the
stream.

The reconstructed stream is build by first apprating the values at the points
where the baseline jumped. Then any curve fittiggrethm can be used to fit a curve to
those points to create the fully reconstructecastre=or our testing, we simply
approximate the curve by assuming the data betiteepoints is linear. Figure 47 shows

the same data as Figure 46 but with the reconstiigtteam added.
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We computed the actual error both with and witreagihal reconstruction for

different configured max tolerable errors over ¢éinéire dataset. Temperature, humidity,

and light intensity all were very similar. Signakonstruction reduced the measured

average error to approximately 1/6 of the max &dleg error. Aggregated results are

shown in Table 29. Voltage streams were not asrmaonis as the other three and signal

reconstruction was not as effective. The actualresf the voltage streams after

reconstruction was approximately 1/3 of the magrtble error for each configured

maximum used in the experiments. Voltage resuéshown in Table 30.

Table 29 Error (temperature, humidity, light)

M ax Baseline | Reconstr
tolerable error ucted
error error
5% 2.47% 0.832%
2% 0.964% | 0.323%
1% 0.483% | 0.167%
0.5% 0.239% | 0.0815%
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Table 30 Error (voltage)

M ax Baseline | Reconstructed
tolerable error error
error
5% 2.56% 1.38%
2% 1.06% 0.692%
1% 0.519% | 0.387%
0.5% 0.252% | 0.193%

8. CONCLUSIONSAND FUTURE WORK

The jumping baseline method provides a very ligaigit collaborative compression
scheme for wireless sensor networks. Energy anckpsing usage were well below
those of existing algorithms while maintaining lovietency and requiring less
bandwidth.

Compression could be improved even further in titeré by taking advantage of
correlations, not only between neighboring sendmrsalso between different streams on
the same sensor. For example, temperature andiigiet somewhat proportional in the
dataset and were inversely proportional to humidity

Since signal reconstruction could be done on thie side, much more sophisticated

algorithms could be used to fit a curve to the galapproximated at the jump points.
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V. TOWARD ENERGY EFFICIENT MULTISTREAM COLLABORATIVE
COMPRESSION IN WIRELESS SENSOR NETWORKS

Wireless sensor networks possess significant ltraita in storage, bandwidth, and
power. This has led to the development of sevenalpression algorithms designed for
sensor networks. Many of these methods exploittineelation often present between the
data on different sensor nodes in the network; wveweorrelation can also exist
between different sensing modules on the same sande. Exploiting this correlation
can improve compression ratios and reduce enenggucoption without the cost of
increased traffic in the network. We investigatd analyze approaches for compression
utilizing collaboration between separate sensingutes on the same sensor node. The
compression can be lossless or lossy with a pagarfetmaximum tolerable error.
Performance evaluations over real world sensor stata increased energy efficiency
and bandwidth utilization with a decrease in lajec@mpared to some recent approaches

for both lossless and loss tolerant compression.

1. INTRODUCTION

Wireless sensors are used to collect and transatatid a wide variety of
applications. Many such applications utilize senmsmtes that collect several different
streams of data on different sensing modules osadhee sensor node. For example,
sensor nodes in the Great Duck Island project §t] an Intel Berkley Labs experiment
[52] were used to collect temperature, humidightiintensity, and more. Even
applications that primary just sense one thingrofiend multiple streams of data from

the same sensor. For example, ZebraNet [53] traldoadions of zebras sending two
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streams of data for the GPS readings (easting ariding) and some metadata such as
voltage and count of satellites in range of the G@&%or.

It is well known that wireless sensor networks pssssignificant limitations in
processing, storage, bandwidth, and power. Thisrearally, led to the development of
many compression algorithms specific to sensor oktsv Many of these algorithms rely
on the data readings from a single sensor beingleded to previous readings on that
same sensor (temporal locality) [42][43][28]. Othezly on correlations between similar
data streams on other sensor nodes (spatial ci@&][58][59][41]. Little work has yet
been done, however, which directly exploits theaation that is often present between

different streams of data collected on the same®@amde.
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To illustrate this correlation, Figure 48 showsued from 12,000 readings of
temperature, humidity, and light intensity sensorsa single sensing node taken from the
Intel Lab dataset. Figure 49 shows those same yalceded with the simple linear
transformations shown in equation 1 whigés the nth humidity reading aig'is the
scaled value. Similarlyt, andl, are for the temperature and light intensity, respely
along with their scaled notation. Clearly some lfigheould be gained by leveraging the

correlation between the different data streams.

h,'= 4000~ 05h,
t,'=t, 1)
|,'=1800+ 15,

In this paper, we present TinyPack-CollaborativieyPack-C), a lightweight
compression algorithm leveraging the temporal datign within each stream and the
correlation between multiple streams of data omdividual sensing node. TinyPack-C
is based on the initial code set presented in $28] extended to include collaboration
between the multiple streams from the various ssnmo the same sensing node.
Collaboration is computed based on a rolling limegression scheme requiring constant
time memory use and processing for each correlzdedf sensed values.

If some loss is tolerable in the data, compress@nhanced by first performing a
modified version of the jumping baseline transfatioraintroduced in [61] which
converts the stream into a step function. Thengllinear regression is then applied to
the flattened streams. The maximum tolerable eaarbe configured low for simply
removing noise from the data or high if the apglarais not concerned with low

variation in the data.
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We present and analyze compression schemes fotdsslless compression and loss
tolerant compression with a configurable maximunoreiWe compare both varieties
against state of the art compression methods.Hedossless case, we compare against
the original TinyPack algorithm, LEC [43] and S-LIB2]. We compare our lossy
compressor with LTC [63] and the single sensor jingbaseline approach [61].
Simulations using TOSSIM [17] were done over sevea life datasets covering a wide
variety of sensor applications.

In summary, this paper makes the following contidms:

Novel algorithms for lossless compression leverggillaboration across multiple
streams on a single sensor node

Additional algorithms for lossy compression witkanfigurable upper bound for
error

Lightweight mechanisms for computing correlation

Detailed analysis over several real world datasets

Methods for performing mathematical operations aggregation on the compressed

data without first decompressing the data

2. RELATED WORK

21. SLEC

S-LEC, a lossless data compression scheme, is gedpo [62]. S-LEC begins with
the static set of codes used in LEC [43] to repredelta values in a data stream. In LEC,
each reading, the previous value is subtracted thenturrent value and the resulting
delta value is coded based on a static table cdscddrived from those used in JPEG

compression. Smaller delta values have shorterscéate S-LEC, codes that are the
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same length are said to be in the same group amite/are prepended to each value
noting whether the current delta value is in theesaone higher, one lower, or any other
group as the previous delta value. This enablascied the size of the prefix come and

improves the compression ratio when data is changima consistent fashion.
2.2. TINYPACK

Another lossless method is presented in [28], TatkRnitially uses a similar set of
static codes for its compression, but the codeg wptimized for wireless sensor data
instead of JPEGs. Those codes are then dynamioallijfied either by counting the
frequency of each value or by approximating thesguencies using a rolling average
and standard deviation. The initial set of code=ius TinyPack-Init is shown in Table
31 and forms the basis on which the compressidnisnwork is built.

Table 31 Static codes

prefix suffix range values
1 n/a 0
01 0..1 -1.1
001 00...11 -3,-2,2,3
0001 000...111 -7,.,-44,...,7
00001 0000...1111 -15,...,-8,8,...,15
000001 00000...11111 -31,...,-16,16,...,31
0000001 | 000000...111111 -62,...,-32,32,...,63
00000001/ 0000000...1111111 -127,...,-64,64,...,127

Except in the case of 0, the last bit of the suBithe sign bit. For example, if the
current reading was 3 higher than the previousingad delta value of +3 would be

transmitted as 00110. A delta value of -4 woulctbeoded as 0001001.
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23.LTC

In [63] a lossy compression scheme is introducatldpproximates the data stream
by a sequence of linear segments. As the datdlectaxl by the sensor, the algorithm fits
a line to the data as long as the line can be e@fsuch that no point in the transformed
data exceeds a maximum error bound. When a datdip@ensed that cannot be fit to
the line without exceeding the allowed error, fiveg is transmitted and a new line starts.
The algorithm is effective but does introduce adddl latency since the data is not

transmitted until the sensed reading that necéssitanew line.

2.4. JUMPING BASELINES

The jumping baseline approach in [61] approxim#tesdata stream as a discrete step
function which can be reconstructed to a lineacfiom similar to the one generated by
LTC at the sink. Any time a sensed value is outii@emaximum tolerable error away
from the current baseline, a new baseline is sadedthe possible candidate baselines are
selected from multiples of the maximum error suedt the new value can be expressed
as the number of baseline jumps above or belowraous baseline. The new baseline
is also selected as far in the direction the dataldeen trending as possible without
violating the maximum tolerable error. This processdescribed in more detail in section

0 and forms the basis on which our lossy comprassibuilt.

3. BACKGROUND

3.1. TEMPORAL LOCALITY

Data from wireless sensor networks generally exhileimporal locality (data values

from the same stream are correlated to valuesatleatlose together in time). Any type of
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data stream which changes in a continuous fashilbbbevtemporally located such as
humidity, position, light intensity, water levelceln fact, it can be demonstrated that any
sensor stream sampled at non-random intervaleuhiér generate temporally located
data or random noise.

Consider an arbitrary sensor sensing a streamlo¢sdvy, vo, ..., Von} Sensed at
times {ty, to, ..., ton} whereN is an integer. Assume that the values are noelated.

Then sampling att{, ts, ..., ton1} and {to, t4, ..., ton} would yield completely different
values. Thus, offsetting the sample period wouldegate entirely different data.
Therefore, application with time-based samplingalibdid not exhibit temporal locality
must be sampling random noise. Excluding such egipdins we can assume that
successive readings at each sensor will be cogtkl&telta compression (storing the data
as the change in value from the previous readiragldvthen increase the frequency of
certain values thus increasing the compressilolitye data.

Naturally this does not apply to event driven sangp(where time between samples
is random) such as a sensor that measures the speedor each passing automobile.
These applications do not necessarily exhibit teraddocality and were not included in
this study.

The previously sensed value in each sensed straaitihen be used as a baseline for
compressing the value of the next sample in tleastr For lossless compression, the
value can be transmitted as the difference betweeourrent sensed value and the
previous value (thbaseline value). For lossy compression, the data can be appragiona
using the baseline value until the current valdfed from the baseline value by more

than the upper limit for tolerated error.



129

3.2. COLLABORATIVE COMPRESSION

In the case of collaborative compression, one sesiseam serves as the baseline for
one or more of the other sensed streams on the samser. The data from thiaseline
stream is compressed leveraging temporal locality asudised in the previous section
and the data from the correlated streams are eddmaed on the difference from some
linear function of the baseline stream referredgdhebasealine function. As with the
single stream compression of the baseline strez@ripssless case would require that a
delta value be sent every time the sensor samptesahile the lossy case can use the
baseline function as the approximated values #®icttmpressed stream until the value is
above or below the baseline function by more ti@naximum tolerable error. The

algorithm is shown in more detail section O.

3.3. MEASURING ERROR

For the lossy compression, we consider a parametemaximum tolerable error
percentag& .« Instead of reporting every value exactly as senéa value deviates
from its baseline less thd.x, the baseline value can be used instead. Thiwslor
much greater compression while keeping the erranidoy the tunable maximum. This
parameter can be adjusted based on the applicatigh i.e., in real-time, but can
tolerate some error (lossy), or non-lossy, buttoéerate some latency.

A common method of measuring erriy,between a reported vallg;, and the

actual value/a, is shown in Equation 2.

g =V Vel %)

A
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Unfortunately, that measure is dependent on this used. For example, if
temperature is measured in Kelvins, degrees Celsiudegrees Fahrenheit, the
calculated error can vary greatly for the exactesaiata.

Consider a sensor which reported a temperaturé®irhen the actual temperature
was 1°C. Table 32 shows the calculated error ferettact same data expressed using the
three most common temperature scales. The caldutater ranges from 0.365% to

100% for the exact same data.

Table 32 Inconsistent error measure
Celsius | Fahrenheit | Kelvin
Actual 1 33.8 274.15
Reported 2 35.6 275.15
Calculated Error | 100% 5.32% 0.365%

Even just within one scale the error can be misteadf a sensor is measuring
temperature and reporting the value in degreesuSelshen the temperature is very
close to 0 a small change in the value could cawdrastic increase in the error
percentage. Also, when the actual value is O, tige percentage is undefined.

In practice, the best way to set an upper bounériar would be to explicitly set the
bounds in terms of the scale. For example, whehys#te end user, the tolerable error
for a temperature reading could be +/- 1°C. Fotyamg however, it is useful to have a
method of normalizing the error to a percentagee @ethod to do this would be to
divide the difference by the maximum range of tbes®r; however, since this range can
be very large compared to the actual sensed rédmgesror percentages would be
artificially low. For our analysis we use the maxim range of actual sensed values as

the denominator for the error normalization (seadtign 3).
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Table 33 shows the calculated error for the saat@ @ssuming the temperatures
measured range from 0O to 40 degrees Celsius andragrates that it is consistent across

scales.

Table 33 Consistent error measure

Cesius | Fahrenheit | Keévin
Actual 1 33.8 274.15
Reported 2 35.6 275.15
Observed minimum | O 32 273.15
Observed maximum | 40 104 313.15
Range 40 72 40
Calculated Error 2.5% 2.5% 2.5%

3.4. JUMPING BASELINE COMPRESSION

For our lossy compression algorithm, we begin whhjumping baseline
compression introduced in [61]. The values in tineasn are compressed to a step
function by choosing a baseline value for a sensditk and only changing the baseline
when the current sensed value differs from thellmeesby more than the maximum
tolerable error. The values selected as baselirgeis dhe formkE wherek is any integer
andE is the maximum integer error that can be tolerateastream while remaining
within the maximum error percentaBgax.

The initial baseline is selected by choosing thedadate baseline closest to the first
value sensed in a stream. So for a sensed vahebaselin® would be selected as
shown in equation 3. Adding 0.5 and truncating it floor function is done as an

efficient method of rounding.
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v
k—[E+ O.SJ 3)
b =kE

When a sensed value differs from the current besély more thaik, a new
baseline must be selected. Note that there witieecandidate baselines that would be
within E of the new value. The algorithm chooses the basdlased on which direction
the data is trending. A data stream can be in éti@ee states: trending up, trending
down, or staying somewhat constant. If data isdiremeither up or down, then the next
baseline should be selected as far in the direthierata is trending as it can be within
the error bounds. If the data is remaining reldyieenstant, then the next baseline
should be selected as close to the current valpessble. The state is determined by
tracking whether the new baseline is above or bél@previous baseline for two jumps.
If both jJumps were in the same direction, the dataending either up or down
depending on the direction of the jumps. All thaéds to be cached is the previous value
and the previous jump direction. The additional patation is also trivial. For example,
Table 34 shows an example of a light sensor wittagaimum error set at +/- 10 lux.

Table 34 Baseline compression example

Seq | Sensed Last Last This | Basdine
no value value jump | jump

1 242 -- - -- 240

2 253 242 -- up 250

3 261 253 up up 270

4 276 261 up -- 270

5 284 261 up up 290

Initially, the baseline is selected as close asip@sto the actual sensed value. When
the upward trend is established at sequence nuBjltiee baseline is selected as high as

possible while remaining within the error toleramée-/- 10. Then as the data continues



133

to trend upward, the baseline does not requireasyqumps while remaining within the

maximum tolerable error. This process is shownetaitlin Algorithm 1.

Algorithm 2 CheckReading( p, S, d)

Objective: Check current reading, select next lbase
Input: Sensed value previous baselinB, max difference,
previous jump directiod
Output: New baseline (reported valuge)
If |p-v| >E
B :=floor(v/E + 0.5)
If v>B Andd==UP

B.=B+E
Else ifv<r Andd == DOWN
B:=B-E
End If
Ifv>p
d:=UP
Else
d ;= DOWN
End If
p:=B
Else
B:=p
End If

4. OUR MULTISTREAM COMPRESSION APPROACH

4.1. ROLLING CORRELATION

A common simple method of approximating one datash with another is to use a
linear least squares approximation. The first stresatranslated using a linear function in
the formY =aX + b into an approximation of the second stream in sualay as to
minimize the amount of error between the approx@uatream and the actual stream.
Computing full least squares regression is farcdmmputationally complex to run on a
sensor every time a new value is sensed; howenedrrelation can be computed
incrementally such that only a few calculationscheebe made after each sample while

still maintaining accurate correlation values.
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Also, the correlation is not necessarily the saondtfe entire run of the sensor
network so some decay should be introduced indhelation equation such that the
most recent data contributes a higher weight tactmeelation and older data contributes
less. Such decaying rolling statistics have beed nsany times for other applications
[28][64][65]. Here we refine the rolling least sges to optimize for simplicity of
calculation for the sensor networks.

A common method for calculating the slope and oept of the regression line
(correlation function) = aX+b is shown in equation 4 whesg is the standard
deviation ofX, E(X) is the expected value (mean)>gfandr is the Pearson Correlation of

Xandy.

Oy (4)
a=E(Y)-bE(X)

The standard deviation of a variable can be exptessterms of the expected values
of the variable and the square of the variablénhasva in equation 5.
a, =\EX*)-[E(X})®)

The Pearson Correlation coefficient is also commenbpressed in those terms as

shown in equation 6.

E(XY)-E(X)E(Y)

r=

(6)

Combining, equations 4, 5, and 6 we can derive teua.
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E(xY)- E(X)E(Y) o,
_ E(XY)(— EX)(3<Y)E(Y) X (7)
_E(xY)- XE(X)E(Y)

e(x?)-(E(x))

SinceE(X) is simply the sum oX divided by the count of samples, if a running total

b=

is kept forX, Y, XY, andX?, then the correlation function can be updatedeimentally at
each sensed value with a computational complexi®(d).

To allow more recent samples to have a greaterahygrathe correlation function we
introduce a window sizé/ over which to compute the statistics. We use titationXy
to indicate the average ®fover the window/V. At each sensed value Xf Xy is
recomputed using equation 8 so that the effectdd@reamples on the value Xy, slowly
decays toward zero. We ug€Y]w and[ X% w for the averages ofY andX? respectively.

X =WW_1XW” +% X, ®)
In practice, if the current number of samplewas less thalV, thenN was
substituted fokVin the equations. In that caXg is the actual mean of the current
samples o¥; throughXy.

This leads us to the final equations for rollingdesquares calculations for the

correlation function used in this work shown in ajon 9.

_[XY ] =~ XY
Xl - ) @
a=Y, —bX,

b

The mean square errdvi§E), a measure of the average deviation from the

correlation function, can also be computed on ihefa similar fashion. The general



136

equation for calculating mean square error oveiabésX andY given the correlation

function defined by soma andb is shown in equation 10.

N

3 (% - (ax, +b)y)

MSE = - N (10)

This can be expanded and shown in the same fotheasther equations used here as

shown in equation 11.

> (% ~ax, +b)F)

MSE =-
N

%i((v aX, b)) (11)

-—Z( -ayY, X, —bY, -a’X,* +abX, +b2)

[Y ]W a[XY],, -bY,, -a?[x?2], +abx,, +b?
The coefficient of determination, usually writtesiR and used to measure the
strength of the correlation, can also be computertimentallyR? is simply the square of

ther value from equation 6 and is shown in equation 12.

e = (XY = X% )’

el vl %)

4.2. COLLABORATIVE CORRELATION

(12)

The above formulas can be used to dynamically ttaelcorrelation function
between two streams as well as to periodicallyakmte which streams are correlated
with which other streams.

Since the correlation function is computed in teak as the data stream is sensed,
the correlation is built on the previous values ot affected by the current sensed

value until that value has been transmitted. Thabées the calculations to be done on
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the sink side as well the data is being decodetiaahe correlation function is known
without the need to transmit the correlation fumetacross the sensor nodes wireless
channel. This helps to reduce the total amountafividth required by the application.

For the lossy case, the correlations must be cozdpaiter the values have been
truncated to the baselines otherwise the sinkwmdd not have the same data on which
the correlations were built and would thus be uaabldecode the stream unless the
correlation functions were transmitted periodicalgng with the data.

A correlated stream can then encode its value$fset®from its correlation function
of its baseline stream. A highBf value indicates a higher correlation and therefore

serves as a good metric for which stream to chassebase for which other streams.
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Figure 50 Compressed size for correlated pairs byalue

The computational complexity for computing the etation for every pair of streams
is on the order oD(S) whereSis the number of streams. The number of streanas on
single sensor node tends to be relatively low @Gheat Duck Island weather dataset [51]
had 12 which is the highest count of any of thasktis studied here). Even though the
number of streams is low, the computation is &idl heavy to be ideal. However, while

the correlation function can be very dynamic, tbes ®f correlated streams tend to be
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rather static, i.e., if some set of streams is binbe correlated, they are typically
correlated for the entire run of the dataset. Rhealues then need not be recomputed
every time but only on occasion. Also in many aggiions, the computations can be
done on the sink (which typically has much morecpssing power) and the correlated
sets communicated back through the network. Ire@periments, we recomputed the
correlation sets every Y9samples (wher@/is the window size of the correlation
functions).

To determine when to apply a correlation functie,analyzed each pair of streams
on the sensor nodes from the Great Duck Islandheealataset. Figure 50 shows Efe
value of each pair along with the compressed ssaggithe correlation function divided
by the compressed size using just the TinyPackebues. If two streams were not
correlated, then adding the correlation functiothasbaseline for a stream naturally
required more bits to transmit the data. Most effthirs of streams with &f value
greater than 0.25 had compression gains when tisengorrelation function. In our
algorithm, any pair of streams with a measuRédalue greater than 0.25 is defined as a
correlated set.

If two streams are correlated to only each other,ane with the lower index is
chosen as the baseline stream. If three or moreoarelated to each other, then fife
values are summed for each pair a stream is iritenstream with the highe®f sum is
selected as the baseline stream. For example dsresisensor node sensing temperature
(T), humidity H), and light intensityl() with theR? values for the stream pairs measured
as shown in equation 13. The humidity stream weldelected as the base stream since

it has the highest sum Bf values as shown in equation 14.
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R?rn =0.68 R%iL =0.62 R?*.L=0.53 (13)

sum, = R%n +R?%.L=1.21
sum, = R%*rn + R%L =1.32 (14)
sum = R% . +R% =1.15

5. EXPERIMENTAL SET UP

5.1. DATASETS

The datasets used for simulation were pulled fromd variety of domains, which
utilize wireless sensor networks including envir@mihmonitoring, animal tracking,
vehicle-to-vehicle communication, and smart phareekerometers. All are from
publicly available real deployments of wirelessssametworks.

The Great Duck Island (GDI) [51] experiment depkbgensor nodes in and around
the burrows of Leach's Storm Petrels. 32 sensors deployed monitoring sensor
voltage and various types of temperature, humiti@yometric pressure, and solar
radiation. Data was analyzed to provide knowledgmuiathe nesting conditions and
behaviors of the birds. Strong correlations wergeobed between temperature, humidity,
and solar radiation. Barometric pressure was aswesvhat correlated.

For the Intel Berkley Labs (Lab) [52] deployment, gensor nodes were configured
inside a laboratory and used to transmit readifigsmoperature, humidity, light intensity,
and voltage. Temperature, humidity, and light wadleorrelated, but voltage was not
correlated to any other stream.

The ZebraNet project (ZNet) [53] tracked Kenyanraslgenerating sensor readings
of GPS position and some contextual data aboweghsor nodes themselves such as the

voltage, count of connected satellites, and hotedatelusion of precision. The sensors
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were attached to the Zebras and data was usedlyrarthe social patterns of the
animals.

The GATech Vehicular dataset (GATech) [66] was wmigtd testing a vehicle-to-
vehicle network while the vehicles were in moti®ata streams included location,
altitude, and speed of the vehicles along with ©gent and received, signal strength, and
noise.

The CenceMe project [67] examined the performafi@system combining off-the-
shelf sensor-enabled mobile phones and the autostaring and aggregation of the data
using social networking applications. Data was gagtl by 22 different users and
contained readings from the various sensors omthtele phones including the

Bluetooth, GPS, and accelerometer sensors.
52. IMPLEMENTATION

The algorithms were implemented in TOSSIM [17] onwdated MicaZ [15] motes.
Experiments were done to show the impact of coliatbee compression between the
streams on bandwidth usage, energy consumptionatemty. PowerTOSSIM [70] was

used to simulate the energy usage for each ofigjoeithms.
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Figure 51 Bandwidth for lossless algorithms
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Latency was measured by implementing the algorittm$elosB motes [71] sending
to a base station connected to a notebook compithierdata was stored on the sensor
nodes before the experiments and was compressddaasditted as if the sensors had
sensed it. Thus, the time required for actuallyssenthe data was not included in the
experiments; however, since those times are nater@to the compression method used,
the data would be uninteresting and would approtetgdoe constant for each dataset.

Lossy compression was done four times for eaclrighgo and dataset. Maximum
error was set to 5%, 2%, 1%, and 0.5% respectieelthe four runs. Results are shown

in the following sections.

6. RESULTS

6.1. BANDWIDTH-LOSSLESS

Bandwidth results are shown in Figure 51. Bandwislitthown as a percentage of the
bandwidth required to send the data uncompressdaquivalent to the compressed
size of the data as a percentage of the uncompresse Collaboration between the
streams made significant improvements in bandwidémge for most of the algorithms.
The CenceMe data was not highly correlated caukimgPack-Collaborative to only
improve upon the TinyPack-Init codes by a smaltticm. In contrast, compression of the
GATech Vehicular dataset benefited greatly fromTimg/Pack-C algorithm since the
data contained a high degree of correlation betwleestreams at a single sensor.

If no correlation is detected at all in the dakeent TinyPack-Collaborative and
TinyPack-Init should function identically in terro§ bandwidth although TinyPack-

Collaborative would consume more energy.
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6.2. BANDWIDTH-LOSSY

Figure 52 shows the results of the error toleransion of our algorithm. As with the
lossless case, the introduction of correlation lbetwthe sensed streams on the individual
sensor node significantly reduced the amount ofllaéaith usage needed to transmit the
data. As expected, all the algorithms performetebets more error was allowed in the
system. The effect of leveraging correlation betwiée streams was roughly equivalent
to the lossless case. The datasets that had hggheteof correlation saw the most

benefit.
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Figure 53 Bandwidth for lossy algorithms, selected datasets

The results vary greatly from one dataset to the.éis is due to the individual
characteristics of the dataset. ZebraNet and Ceacgvised data at a lower frequency
than the others which decreases the benefits émabe gained by relying on temporal
locality. The Lab, GDI, and GATech results are alkown in Figure 52 along with ZNet
and CenceMe for comparison and are also showrgur&i53 for greater clarity and
readability.

As with the lossless case, the low degree of caticel in the CenceMe and ZNet
dataset caused TinyPack-Collaborative to only parfslightly better than the other
algorithms, while the GDI and GATech datasets vadile to be consistently compressed
to near or below half the size achieved by the JughBaseline algorithm.

While more tolerated error allowed for better coegsion in all cases, the relative
compressed sizes for the different algorithms weaghly similar for all configured

levels of tolerable error.
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6.3. ENERGY

The MicaZ motes simulated in PowerTOSSIM for me@guenergy consumption
have three different radio power settings thatlmamised requiring 11, 14, and 17.4 mA
respectively. We selected the 11 mA radio for oyregiments. Choosing a higher
powered radio would make the results for energyomption look almost identical to
bandwidth since all the energy would be spent trattisig the data.

The results for the lossless case are shown inré&gdi. Since the bandwidth savings
on CenceMe were not much greater for the TinyPadk«€extra processor utilization

was enough to cause it to require more energytti@jumping baseline method. The
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high number of streams in the GDI dataset causedter increase in the energy

requirements for TinyPack-C relative to the othaadets. Even using the low powered

radios, the bandwidth savings are still enoughaigse a lower energy profile for sensors

running TinyPack-C over the other algorithms forstndatasets.

The results for the lossy case are shown in FigGreased on the 1% maximum error

configuration. The lower bandwidth requirementshef error tolerant algorithms cause

the increased processor utilization to have a migr@ficant impact on overall energy

consumption; however, energy consumption for Tirt=@ was still close to or better

than the other algorithms for all the datasetsistud

45%
40%

0%

percent of time to send uncompressed

35% -
30% -
25% -
20% -
15% +
10% -

5% -

LEC SLEC TPInit TP-C

‘ O Processing Time @ Transmit Time @ Wait Time ‘

Figure 56 Latency for lossless algorithms

40%

0%

percent of time to send uncompressed

35% -
30% -
25% -
20% -
15% +
10% +

5% -

LTC Baselines TP-C

‘ O Processing Time @ Transmit Time @ Wait Time ‘

Figure 57 Latency for lossy algorithms



146

6.4. LATENCY

Latency results are shown for the lossless methoBgure 56 and for lossy in
Figure 57. Latency is shown as a percentage dirtieethat would be required to
transmit the data uncompressed. Results are shewreaverage across all the datasets
including the processing, transmission, and waietused by the algorithms.

As with energy, the higher processor utilization TonyPack-Collaborative caused an
increase in latency compared to the lighter weighyPack-Init and jumping baseline
methods; however, in a multi-hop environment, therage latency per hop decreases
with each hop and approaches the sum of the tratisme and the wait time as shown in

Figure 58.
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7. ERROR ANALYSIS

The step function used to approximate the streatimeihossy case can be
reconstructed into a series of line segments as ftwrthe jumping baselines in [61].
This can reduce the total measured error in the. ddte points at which new baselines
were selected are used as the endpoints of thedgrments.

Since the algorithm tracks whether the data wamsling up, trending down, or
peaking, this information can be used to better@pmate the end points. If the data
was trending up or down, then the line segment eintips selected as the average of the
previous and current baselines. If the data isipgalkast jump was up, current jump was
down or vice versa), then the previous baselineevakrves as the endpoint.

Figure 59 shows the total error for both the raseliae step function and for the
reconstructed streams for each of the four condidunaximum error percentages. Total
error for the step functions is shown as dotteediThe total error after reconstructing

the streams as sequences of line segments are sisosatid lines. Data points for both
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raw and reconstructed for the same maximum ermslaown with the same shape in the
figure.

Raw baseline step function total error was typjcatbund one half of the maximum
tolerable error. This is expected since the carndidaselines are integer multiples of the
maximum tolerated error. The total error for theorgstructed streams ranged from
around one quarter to one sixth of the maximunrable error. The more the data in a
stream approximates a straight line over a sheetval, the more accurate the
reconstruction.

Experiments were also conducted using b-splingpotation as a curve fitting
technique, but the results were almost identicéthédinear approximation and were

much more computationally intense.

8. AGGREGATION OF COMPRESSED VALUES

As detailed previously, TinyPack-Collaborative, bmth lossless and lossy
compression, transmits values as the delta ovee swwavious value or baseline function
encoded using the TinyPack-Init codes. Some matheshaperations and aggregation
can be performed on these encoded deltas witheutdld to first decode the data.

For instance, in an ad-hoc network, if an interragglnode between the sensor
publishing the data and the base station begingafoling data without seeing the initial
baseline value, it can still perform aggregationghe data which the base station can

apply to the baseline.

8.1. ADDING ENCODED VALUES

Adding two encoded deltas can be done without caimgethe value to a standard

encoded integer. The codes contain a prefix, axsaifid a sign bit. In the case of two
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positive or two negative numbers, the two suffinath their prefix bits prepended can be
added in simple binary, if the high prefix bit oftews (is set to 0), then the prefix length
is incremented by one and the sign bit remains amgéd. In the case of a positive and

negative number, the negative number is express2d complement. The two numbers
are added as before and the prefix length is retlbgehe number of leading zeros in the

sum.

8.2. DROPPING PACKETS

If a sensor network is being overloaded such tissrsor needs to conserve
additional bandwidth, one common method for quiakdwidth savings is to drop a
packet. In a compressed stream, simply droppiraciegi causes the decoding process to
produce incorrect results; however, delta comprsssach as TinyPack-Collaborative
can drop packets without invalidating the dateoag) las the delta values of all the
dropped packets are summed into the next transhptieket. For example, if a sensor
received the values 5, 7, 12 9 10 and transmitteahtas +5, +2, +5, -3, +1 and needed to
drop every other packet, it could send +5, +7,n@ the sink would decode them as 5,

12, 10. Any intermediate nodes need not know tiselb@e on which the first packet is

based.

8.3. MINIMUM AND MAXIMUM

Maintaining the maximum of a portion of a stream ba done without knowing the
baseline by maintaining the current max delta gfgbbfrom the max delta by summing
the delta values. For example, consider a sensar ad hoc network that samples the
following values: 15, 13, 10, 12, 17, 13. The 1&ansmitted to the base station through

one intermediate node and the remaining valuesitfiranother node. The new



intermediate node first sees the -2 and mainthi@sritax as shown in Table 35.

Minimum can be maintained equivalently.

Table 35 Max delta example
sensed | sent current | offset actual
value | dedta max from max

delta max | (delta+15)
15 -- -- -- 15
13 -2 0 2 15
10 -3 0 5 15
12 +2 0 3 15
17 +5 +2 0 17
13 -4 +2 4 15

8.4. AVERAGE
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Maintaining an average of a portion of a streamlzadone without knowing the

baseline as long as the count of samples includétkei average is transmitted. The

intermediate sensor maintains the current offsétd®ping a running sum of the delta

values. The sensor then maintains a sum of thdsetsf Dividing that sum of offsets by

the count gives the average delta value which eaadded by the base station to the

known baseline value to obtain the overall aver&ge example, consider a sensor that

samples the following values: 10, 13, 17, 14, 857,Again, the intermediate node starts

receiving and forwarding the data in the middlehaf stream starting with the 13. This

process is shown in Table 36.

Table 36 Average delta example
sensed | sent | sum | sum | count | avg | actual avg
value | deta of of delta | (delta+10)
deltas | sums
10 -- -- -- 0 --
13 +3 +3 +3 1 3 13
17 +4 +7 +10 2 5 15
14 -3 +4 +14 3 4.67 14.67
8 -6 -2 +12 4 3 13
7 -1 -3 +9 5 1.8 11.8
13 +6 +3 +12 6 2 12
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9. CONCLUSIONSAND FUTURE WORK

TinyPack-Collaborative compression performed wethpared to related methods in
terms of bandwidth usage, energy requirementseadeto-end latency. Collaboration
between the data streams improved the compressibormance in all experiments
compared to compression without inter-stream coliation. While collaboration
between the same streams on different sensor magdseen shown to be effective in
increasing compression gains in other publisheksyaollaboration between streams on
the same sensor node can also be used to acheatergtompression leading to longer
deployments, more data collection, fewer collisjarsl faster response times for a wide
variety of wireless sensor applications.

While the rolling least squares regression used tvas shown to be effective, other
more sophisticated methods such as Kalman Fil8&jsdr Principal Component
Analysis [73] could be potentially improve the a@my of the baseline correlation

functions.



152

SECTION

2. CONCLUSIONS

The compression algorithms presented in this doatitm&ve been demonstrated to
be effective at reducing bandwidth requirementsygyconsumption, and latency for
many different types of wireless sensor networksnt these algorithms in a wireless
sensor network thus allows for cost savings, lomg@oyments, more data collection,

fewer collisions during transmission, and redu@dricy in data delivery.
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