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ABSTRACT 

Wireless sensor networks are composed of a few to several thousand sensors 

deployed over an area or on specific objects to sense data and report that data back to a 

sink either directly or through a series of hops across other sensor nodes. There are many 

applications for wireless sensor networks including environment monitoring, wildlife 

tracking, security, structural heath monitoring, troop tracking, and many others. The 

sensors communicate wirelessly and are typically very small in size and powered by 

batteries. Wireless sensor networks are thus often constrained in bandwidth, processor 

speed, and power. Also, many wireless sensor network applications have a very low 

tolerance for latency and need to transmit the data in real time. Data compression is a 

useful tool for minimizing the bandwidth and power required to transmit data from the 

sensor nodes to the sink; however, compression algorithms often add a significant 

amount of latency or require a great deal of additional processing. The following papers 

define and analyze multiple approaches for achieving effective compression while 

reducing latency and power consumption far below what would be required to process 

and transmit the data uncompressed. The algorithms target many different types of sensor 

applications from lossless compression on a single sensor to error tolerant, collaborative 

compression across an entire network of sensors to compression of XML data on sensors. 

Extensive analysis over many different real-life data sets and comparison of several 

existing compression methods show significant contribution to efficient wireless sensor 

communication. 
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SECTION 

1. INTRODUCTION 

Wireless sensors are used for a great host of different applications such as 

environment monitoring, health care, security, military, structural health, social behavior 

analysis, and vehicular networks. Wireless sensor networks are well known to be much 

more constrained than traditional computers. There can be thousands of wireless sensors 

in the same network all communicating with relatively low speed radios making 

bandwidth very limited. Most wireless sensors are powered by batteries. Changing the 

batteries in a sensor can be difficult, expensive, or even dangerous (especially in military 

uses) so the power consumption is a critical aspect of many wireless sensor deployments. 

Many wireless sensor networks also have a need for real time delivery of data; thus, 

minimizing latency is important. 

Effective data compression is therefore imperative to an efficient deployment of a 

wireless sensor network. This document presents several compression algorithms 

targeting a wide variety of use cases for sensor networks. The algorithms are designed to 

be effective and simple to implement. Extensive analysis and experimentation show 

excellent results when compared to the state of the art research in the field. 
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PAPER 

I. ENERGY-EFFICIENT REAL-TIME DATA COMPRESSION IN WIRELESS 
SENSOR NETWORKS 

Wireless sensor networks possess significant limitations in storage, bandwidth, and 

power. Additionally, real-time sensor networks cannot tolerate high latency. While some 

good compression algorithms exist specific to sensor networks, in this paper we present 

an energy-efficient method with high-compression ratio that reduces latency, storage and 

bandwidth usage further in comparison with some other recently proposed algorithms. 

Our Huffman style compression scheme exploits temporal locality and delta compression 

to provide better bandwidth utilization in the network, thus reducing latency for real time 

applications. Our performance evaluations show comparable compression ratios and 

energy savings with a significant decrease in latency compared to some other existing 

approaches. 

1. INTRODUCTION 

Many real-time systems incorporate wireless sensors into their infrastructure. For 

example, some airplanes and automobiles use sensors to monitor the health of different 

physical components in the system, security systems use sensors to monitor boundaries 

and secure areas, armies use sensors to track troops and targets. It is well known that 

wireless sensor networks possess significant limitations in processing, storage, 

bandwidth, and power. Therefore a need exists for efficient data compression algorithms 

which do not require delays in processing or communication while still reducing memory 

and energy requirements. 

This research is supported by DOE grant number P200A070359. 
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Data compression has existed since the early days of computers [1][2][3]. Many new 

compression schemes [5][6][7][8][9] for wireless sensor networks have been proposed. 

These schemes address specific challenges and opportunities presented by sensor data 

and provide significant reductions in required storage, bandwidth, and power. However, 

most of these methods require a fair amount of data to be collected before compressing. 

We propose TinyPack, a compression scheme for real-time sensor networks. 

TinyPack reduces the amount of data flowing through the network without introducing 

delays. First the data is transformed by expressing the sensed values as the change in 

value from the previous sensed reading. This is referred to as delta compression. We 

demonstrate its effectiveness for any generic real-time sampled dataset. Second, the 

individual delta values are then compressed using a derivative of Huffman coding [1]. 

Huffman codes express more frequent data values with shorter bit sequences and less 

frequent values with longer ones. The codes are generated and updated dynamically so no 

delay is needed. TinyPack is a lossless compression algorithm and the data can be 

decompressed at the sink or base station without any loss of granularity or accuracy. 

Standard Huffman and Adaptive Huffman [2] coding have a high RAM overhead and 

require transmitting either the entire tree or several copies of a ‘new symbol’ code. We 

begin with a static initial code set similar to the one used in the LEC algorithm [8]. We 

then examine two different methods of adapting the codes. For datasets where the range 

of possible values is relatively low compared to the storage capability of the sensors, the 

actual frequencies can be counted and used to regularly update the codes. For data with a 

high (or unknown) variance or low RAM environments the frequencies can be 

approximated using running statistics on the data stream. This method easily scales to be 
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effective on any size data set with any range of possible values. We introduce the notion 

of an all-is-well bit and perform initial analysis of error detection constructs. 

We compare the results to the performance of the Deflate algorithm (used in gzip and 

most operating systems) and S-LZW [7] to measure quality of the compression. S-LZW 

is an adaptation of standard LZW compression specifically designed for sensor networks. 

S-LZW is a string based compression scheme which defines new characters for common 

sequences of characters. It is designed to function well for any generic sensor dataset and 

is very effective at compression and energy reduction. Several variations of S-LZW are 

developed in [7]. In an effort to be fair we have chosen the variation that performs best 

for each dataset studied. We also compare with the LEC algorithm [8] which supports 

real-time data. 

In summary, this paper makes the following contributions: 

An improved set of static codes optimized for sensor data and efficiency in 

processing 

Hybrid adaptations of delta and Huffman compression which significantly reduce 

latency and RAM requirements over traditional Huffman codes while achieving 

comparable and improved compression ratios and energy efficiency compared to other 

existing methods 

An additional all-is-well bit construct that further increases compression performance 

and efficiency 

A novel and effective error detection method 
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2. BACKGROUND 

2.1. HUFFMAN TREES 

Huffman-style coding [1] converts each possible value into a variable length string 

(sequences of bits) based on the frequency of the data. Higher frequency values are 

assigned shorter strings. So the more concentrated the data is over a small set of values, 

the more the data can be compressed. Huffman codes can be generated by building a 

binary tree where the nodes at each level are ideally half as frequent as the nodes at the 

next level up. For example, the values and frequencies in Table 12 generate the codes 

using the Huffman tree in Figure 19. Huffman codes were shown to be optimal for 

symbol by symbol compression in [1]. 

Table 1 Huffman codes 

Val
ue 

Frequency Code 

-7 14653 111111 
-6 16661 111101 
-5 19983 111011 
-4 23760 111001 
-3 31124 11011 
-2 35636 11001 
-1 88845 101 
+0 350429 0 
+1 87956 100 
+2 38942 11000 
+3 31809 11010 
+4 20563 111000 
+5 17241 111010 
+6 14171 111100 
+7 12716 111110 
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Figure 1 Huffman tree 

2.2. TEMPORAL LOCALITY AND DELTA VALUES 

Real-time wireless sensor networks generally exhibit temporal locality (data from 

readings taken in a small time window are correlated). Any type of data which changes in 

a continuous fashion will be temporally located such as temperature, location, voltage, 

velocity, timestamps, etc. In fact, it can be demonstrated that any sensor sensing at non-

random intervals will either generate temporally located data or random noise.  

Consider an arbitrary sensor sensing a stream of values { }Nvvv 221 ,,, K  sensed at 

times { }Nttt 221 ,,, K  where N is an integer. Assume the values are not correlated. Then 

sampling at { }1231 ,,, −Nttt K  and { }Nttt 242 ,,, K  would yield completely different values. 

So offsetting the sample period would generate entirely different data.  

Therefore, excluding applications which generate pure noise, we can assume that 

successive readings at each sensor will be correlated. Delta compression (storing the data 

as the change in value from the previous reading) would then increase the frequency of 

certain values thus increasing the compressibility of the data. 

Note that this does not apply to event driven sampling (where time between samples 

is random) such as a sensor that measures the speed once for each passing automobile. 
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These applications do not necessarily exhibit temporal locality and were not included in 

this study. 

2.3. FRAMES 

In delta compression (as with most compression schemes), a dropped packet can 

render following packets useless or at least complicated to decompress. So in systems 

where data loss is probable, data should be compressed and sent in chunks (usually called 

frames). Additionally, in sensor networks, data characteristics can change drastically as 

time progresses. So sending independently compressed frames of data also allows 

additional flexibility for the compression to be more specific to the current state of the 

system. 

3. RELATED WORK 

3.1. S-LZW 

In [7] an adaptation of standard LZW compression is used to address the specific 

characteristics of a sensor network. S-LZW compresses the data by finding common 

substrings and using fewer bits to represent them. S-LZW maintains two sets of up to 256 

eight-bit symbols: The original ASCII characters and the set of common strings. A bit is 

appended to the beginning of each encoded symbol to indicate which set it is from. A 

dictionary is maintained that tracks which string is represented by which eight-bit 

sequence. 

They also propose Sensor-LZW with the notion of a mini-cache to capitalize on the 

frequent recurrences of similar values in a short time in sensor data. Recent strings are 

stored with N bits in the mini-cache dictionary where N < 8 (for a maximum size of 2N 
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entries in the mini-cache). An additional bit is appended to the beginning of each symbol 

to note whether the symbol is from the main dictionary or the mini-cache. Different data 

sets had different optimal values for N. The cache is implemented as a hash table for 

efficient lookup times. 

Table 2 S-LZW with mini-cache 

Encoded 
String 

New 
Output 

New Dict. 
Entry 

Mini-Cache 
Changes 

Total 
Bits: 
LZW 

Total 
Bits: 
Mini-
Cache 

A 65,0 256-AA 0-256, 1-65 9 10 
AA 0,1 257-AAA 1-257 18 15 
A 65,0 258-AB 1-65,2-258 27 25 
B 66,0 259-BA 2-66,3-259 36 35 
AAA 257,0 260-AAAB 1-257,4-260 45 45 
B 2,1 261-BC 5-261 54 50 
C 67,0 262-CC 3-67,6-262 63 60 
C 3,1   72 65 

 

Table 13 shows S-LZW and LZW compressing the string AAAABAAABCC. Every 

known symbol encountered is encoded into the output stream (choosing the longest string 

possible from the dictionary). Then a new dictionary entry is added by concatenating the 

next character in the input stream to the previously encoded symbol. 

3.2. LEC 

A lightweight sensor network compression technique, LEC, is presented in [8]. LEC 

compresses a stream of integers by encoding the delta values with a static, predetermined 

set of Huffman codes shown in Table 14 with anything past level 7 following the pattern 

of the last three levels. 
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Table 3 LEC codes 

Level Bits prefix suffix range values 
0 2 00  0 
1 4 010 0...1 -1.1 
2 5 011 00...11 -3,-2,2,3 
3 6 100 000...111 -7,...,-4,4,...,7 
4 7 101 0000...1111 -15,...,-8,8,...,15 
5 8 110 00000...11111 -31,...,-16,16,...,31 
6 10 1110 000000...111111 -62,...,-32,32,...,63 
7 12 11110 0000000...1111111 -127,...,-64,64,...,127 

 

3.3. GAMPS 

Many lossy compression schemes have also been proposed such as [9]. GAMPS 

compresses the data from multiple sensors which sense correlated data using 

mathematical techniques to group the sensors which have highest correlation to each 

other. One sensor in each group is selected as the baseline and the rest of the sensors in 

the group report the difference in their sensed values from the baseline. The values are 

rounded based on an error threshold parameter to achieve compressed sizes under 1% of 

the original size. 

3.4. ROUTING METHODS 

Other schemes have been introduced which depend on the network topology and 

routing [5][6]. In this paper, we focus on methods to perform lossless compression at a 

single sensor. 

4. EXPERIMENTAL DATA SETS USED 

The data sets used for simulation were pulled from a wide variety of domains which 

utilize wireless sensor networks including environment monitoring, tracking, structural 

health monitoring, and signal triangulation. All except the environment monitoring data 
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are from applications where low latency is critical. All are from real deployments of 

wireless sensors for academic, military, and commercial purposes. In every experiment, 

the entire datasets were used. 

Environment monitoring data was drawn from the Great Duck Island [10] and Intel 

Research Laboratory [12] experiments. On the island 32 sensors monitored the conditions 

inside and outside the burrows of storm petrels measuring temperature, humidity, 

barometric pressure, and mid-range infrared light. The Intel group deployed 54 sensors to 

monitor humidity, temperature, and light in the lab. Approximately 9 million sensed 

values were generated on the island and over 13 million from the lab. 

For tracking, data was taken from two different studies. Princeton researchers in the 

ZebraNet project [11] tracked Kenyan zebras generating over 62,000 sensor readings. 

The U.S. Air Force’s N-CET [13] project tracked humans and vehicles moving through 

an area. 

The structural health data is comprised of nearly half a million packets send by a 

network of 8 sensors fused to an airplane wing in a University of Colorado study [14]. 

Half the data was generated by a healthy wing and the other half by a wing with 

simulated cracking and corrosion. 

Signal triangulation data came from another portion of the N-CET project, in which a 

network of sensors mounted on unmanned aerial vehicles intercepted and collaboratively 

located the sources of RF signals. 

5. OUR PROPOSED APPROACH 

We propose multiple versions of our TinyPack compression algorithm. First we 

introduce a static set of initial codes which are used as a starting point for the other 
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methods. These codes by themselves provide good compression with excellent efficiency. 

Next we achieve greater compression at the cost of some RAM and processing by 

maintaining dynamic frequencies of the streamed values. The third approach 

approximates the frequencies with running statistics on the data, significantly decreasing 

the RAM requirements while only slightly increasing the size and processor utilization. 

We modify each of the above approaches by adding an all-is-well bit that gives a small 

boost to the compression ratio. We conclude by discussing error detection, how to adjust 

for real numbers instead of integers, and experimental results. 

5.1. TINYPACK INITIAL FRAME STATIC CODES (TP-INIT) 

We begin with a set of initial codes similar to those used in LEC; however, the static 

codes used in LEC were optimized for jpeg compression whereas the TinyPack initial 

codes are designed to perform well on time-sampled sensor data with absolute minimum 

processing time required. 

Since we are using delta compression, the data is expressed as the change in value 

from the previous sample. The reported values can be positive or negative. In many 

applications such as temperature sensing the values are cyclic so the frequency of 

positive changes is similar to the frequency of negative changes. In general highest 

frequencies appear in the smaller values (e.g. temperature usually changes fairly slowly 

so most changes reported are small). Also the set needs to scale to any number of values. 

Based on these characteristics, we construct an initial set of codes as follows:  

Table 4 Initial default codes 

Value +0 -1 +1 -2 +2 -3 +3 
Code 1 011 010 00101 00100 00111 00110 
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With all other values continuing the pattern: Define B as the base of the delta value d 

where  

( )




=−
>

=
01

0(log2

d

ddfloor
B  

The code C is constructed as a string of 2B + 3 bits. The first B+1 bits are 0s followed 

by the binary representation of |d| (which will be B+1 bits), and a sign bit. For example, if 

d is 57 then B is 5. So C is constructed as 6 0 bits, followed by the binary representation 

of |57| (111001), followed a 0 sign bit since 57 is positive. So C is 0000001110010. 

If the minimum and maximum allowed for the value are known, then the 1 bit in the 

center can be removed for the longest set of codes. For example, in the codes for -3 to +3 

above, if the 1 bit in the center of the codes for -2,+2,-3, and +3 was removed, the leading 

00 would be enough for the decoder to accurately decode those symbols. The initial static 

codes for values ranging from -127 to 127 are shown in Table 5. The leading 1 bit in the 

number is considered to be part of the prefix since it is static for the entire level of the 

tree. 

Table 5 Default codes 

Level Bits prefix suffix range Values 
0 1 1  0 
1 3 01 0...1 -1.1 
2 5 001 00...11 -3,-2,2,3 
3 7 0001 000...111 -7,...,-4,4,...,7 
4 9 00001 0000...1111 -15,...,-8,8,...,15 
5 11 000001 00000...11111 -31,...,-16,16,...,31 
6 13 0000001 000000...111111 -62,...,-32,32,...,63 
7 14 0000000 0000000...1111111 -127,...,-64,64,...,127 

 

Using bitwise operators the floor (round down) of log base 2 can be calculated in 

logarithmic time with respect to the maximum value of d using Algorithm 1. The 
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example shows getting the base for a one byte value. The notation bxxxx is used to 

indicate a binary number so b10000 = 16. 

Algorithm 1 FloorLog2Byte(d) 
Objective: Calculate the base of a value 
Input: Delta value d 
Output: The base B of value d 
 B = 0 
 If d = 0 
  B = -1 
 Else 
  d := |d| 
  If d >= b10000 
   rightBitShift(d, 4) 
   B := B bitwiseOr b100 
  End If 
  If d >= b100 
   rightBitShift(d, 2) 
   B := B bitwiseOr b10 
  End If 
  If d >= b10 
   B := B bitwiseOr 1 
  End If 
 End If 

The value is then bit shifted to fill in the B + 1 prefix bits and appended to the output 

stream.  

In order to test the validity of this initial default set, we compressed each of the 

datasets using only these codes. Figure 2 shows the results of the TinyPack initial codes 

(TP-Init) compared to the standard Deflate algorithm, S-LZW, and the LEC codes. For all 

the datasets our initial codes actually compressed slightly better than any of the other 

methods except for the N-CET Track dataset where S-LZW, LEC, and our initial codes 

had nearly identical performance. As expected, the Deflate algorithm, which does not 

specifically target sensor network data, performed significantly worse for most of the 

datasets. The ZebraNet and aircraft health datasets both contain significant runs of 
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unchanging data which the Deflate algorithm takes advantage of so it performed 

relatively well on those datasets compared to the sensor network specific algorithms. 
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Figure 2 Initial codes compared to deflate, S-LZW, and LEC 

5.2. TINYPACK WITH DYNAMIC FREQUENCIES (TP-DF) 

In order to use Huffman-style compression, the frequencies of the different data 

values must be known. However, in real-time systems there is often no time collect all 

the data to count the total frequencies of all the values before sending the currently 

collected data. So the frequencies from the last frame of data can be used. The 

frequencies are calculated both at the source and the destination to avoid the need to 

transmit the frequency tables. The trees and codes are updated at the beginning of each 

frame. Naturally, values that are in the possible range but do not appear in a frame are 

assigned a frequency of zero. 

Since the values are typically densely clustered around 0 and sparsely scattered far 

from 0, the frequencies are stored in a hash table. The hash for the value is the last eight 

bits using 2’s compliment for negative numbers so the values from -128 to 127 fit neatly 

into the table. The hash table is chained so that colliding values are stored in a list in the 
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hash table bucket. This keeps the RAM requirements reasonably low while still allowing 

for fast lookups. 

In order to capitalize on the dynamic characteristics of sensor data we add weight to 

the most recent values so recent occurrences have a higher impact than past occurrences 

but the history is not entirely forgotten. We replace the frequency table with a weighted 

frequency table and define a weighting factor M such the occurrence of a new value is 

given twice the weight of the value observed M samples ago. So the weighted frequency 

F[d] for a value d appearing in the nth sample is updated by the following equation: 

[ ] [ ] M

n

dFdF 2+=  

Algorithm 2 CountAndEncode(d,  n, M, S, F) 
Objective: Maintain count of frequencies and encode data 
Input: Delta value d, count n, weighting factor M 
 frame size S, frequency table F 
Output: Frequency table updated and code appended to stream 
 If Hash(d) in F 
  F[d] := F[d] + 2^(n/M) 
 Else 
  F[d] := 2^(n/M) 
 End If 
 C := LookupCode(d) 
 AppendToStream(C) 
 n := n + 1 
 If n = S //New frame 
  n = 0 
  For every F[x] in F 
   F[x] := F[x]/(2^(S/M)) 
   If F[x] < .001 
    F[x] := 0 
   End If 
  End For 
  UpdateCodes(F) 
 End If 

In our experiments we set M equal to the one quarter of the frame size. At the end of a 

frame when the tree is updated, the weighted frequencies are normalized to reset n to 0 
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and prevent overflow. Also any values with a normalized frequency less than .001 are 

assigned a frequency of 0 and removed from the list of counted values. 

So Algorithm 2 runs for each delta value in a sensed vector. 
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Figure 3 Frame size analysis for tinypack with dynamic frequencies 

We ran TP-DF on all the datasets with a varying frame size. Results are shown in 

Figure 3. When the frame size was small, the overhead for creating a new frame had a 

significant impact on the compressed size. When the frame size was very large, the codes 

were not updated frequently enough to keep up with the dynamic characteristics of the 

data. 

Frame sizes between 500 and 1500 samples per sensor had roughly the same impact. 

For our experiments, we set the frame size to 512 samples. 

5.3. TINYPACK WITH RUNNING STATISTICS (TP-RS) 

In cases where the number of possible values is very high or memory is very limited, 

storing the frequency table can be too costly since a standard Huffman tree on that much 

data would require more RAM than many sensors have available. For example, storing 

the frequency table for a single 4-byte integer if the values covered the entire possible 

range would require over 8MB of RAM while Crossbow Technology’s [15] popular 
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Mica2 and MicaZ motes have less than 1MB of total memory. In these cases the 

frequencies can be approximated by maintaining running statistics such as the mean and 

standard deviation. Because we use delta values, it is not necessary to know the 

distribution of the data. Only the distribution of how the data changes is important. This 

remains much more consistent in all of our datasets. 

Beginning with the average and standard deviation that the default codes would 

produce the running average and standard deviation can be calculated over a window of 

size W. The running average E(d) updates when the nth value d is sampled by the simple 

equation: 

( ) ( ) 1

11
−

−+= nnn dE
W

W
d

W
dE  

In the same way, the average of the squares of the values can be maintained. So we 

can compute the standard deviation σ using the well known formula: 

( ) ( )( )22 dEdE −=σ  

The frequency of a value occurring in a stream divided by the total number of values 

in the stream is referred to as the probability of that value. In a Huffman tree the 

probability of each leaf node is the probability of that value occurring in the stream and 

the probability of a non-leaf node is the sum of the probabilities of each child node. So 

the probability of the root is 1. The probability of each node was shown by Shannon [4] 

to be ideally half the probability of its parent so the level of a node in the tree should be –

log2(P) where P is the probability of the node. Using the statistics calculated the 

probabilities of each value can be approximated. Then the tree can simply be expressed 

as a table containing the number of leaf nodes that should be at each level. So the 



 

 

18 

Huffman tree in Figure 19 can be compressed into Table 6 where the table is stored on 

the sensor as an array 1-indexed on the tree level. 

 The code strings for the values can then be generated in logarithmic time. 

Table 6 Compressed tree 

Level Count 
1 1 
2 0 
3 2 
4 0 
5 4 
6 8 

 

These codes are generated by creating a base code similar to a prefix for each level in 

the tree and using the position of each node at its level. The binary base for all nodes at a 

level in the tree is generated by adding the base and count of the previous level and 

multiplying by 2 (appending a 0) with the base for the root initialized to 0. For example, 

suppose the statistics approximated a tree with one node at level 1 and 1, 3, 4, and 4 

nodes at levels 3, 4, 5, and 6 respectively for values of 0 to 12. The base generation for 

these values is shown in Table 7.  

Table 7 Base generation 

Level Count Binary Generation Base 
1 1 1 0 0 
2 0 0 (0+1)*10 10 
3 1 1 (10+0)*10 100 
4 3 11 (100+1)*10 1010 
5 4 100 (1010+11)*10 11010 
6 4 100 (11010+100)*10 111100 

 

The code for a value is generated by adding the value’s position in the level to the 

group’s base. Again, all the arithmetic is done in binary. Continuing the above example, 

the generation for the codes of these values is shown in Table 8. 
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Table 8 Code generation 

Value Level Position Base Generation Code 
0 1 0 0 0+0 0 
1 3 0 100 100+0 100 
2 4 0 1010 1010+0 1010 
3 4 1 1010 1010+1 1011 
4 4 2 1010 1010+10 1100 
5 5 0 11010 11010+0 11010 
6 5 1 11010 11010+1 11011 
7 5 2 11010 11010+10 11100 
8 5 3 11010 11010+11 11101 
9 6 0 111100 111100+0 111100 
10 6 1 111100 111100+1 111101 
11 6 2 111100 111100+10 111110 
12 6 3 111100 111100+11 111111 

 

The probability of a level is computed as the sum of the probabilities of the nodes in 

the level. Since the probability of a node at level L is ideally 2-L, the probability of a level 

is defined by: 

( ) ( )( )( )LLCountLP −= 2  

The probability of the table P(T) is defined as the sum of the probabilities of all the 

levels. So for the table to generate accurate codes, P(T) must be less than one; however, 

the higher it is, the more compact the code are. So the following relationship should hold 

(where H is the height of the tree): 

( ) ( )( )( ) 12
1

==∑
=

−
H

L

LLCountTP  

Events such as changes in values are often assumed to follow exponential 

distributions. Experiments confirmed this in our datasets. So confidence intervals can 

then be used to approximate the ideal number of nodes at each depth of the tree. The 

values are assigned to their ideal levels rounding down so that P(T) remains less than 1. 
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Then the table is adjusted from the top down using Algorithm 3 so that nodes are pushed 

upward in the tree until P(T) = 1. 

Algorithm 3 FilterUp(T, H) 
Objective: Produce optimal codes by getting P(T) = 1 
Input: Table T where T is simply the array of the counts 
 Height of tree H 
Output: T adjusted so that P(T) = 1 
 P(T) := 0 
 For L From 1 to H 
  P(T) := P(T) + T[L]*2^(-L) 
 End For 
 For L From 1 to H-1 
  //Get the highest number that can possibly move 
  move_count := Floor( (1- P(T))/(2^(-L-1))) 
  //Don’t move more than are there 
  move_count := Max(move_count, T[L]) 
  //If move_count is 0 the next two lines do nothing 
  T[L] := T[L] + move_count 
  T[L+1] := T[L+1] – move_count 
 End For 

The window size analysis for the running statistics was almost identical to the frame 

size results using dynamic frequencies (shown in Figure 3). So again the experiments 

were run with a window size of 512.  

Figure 4 shows the results of running both the dynamic frequencies (TP-DF) and 

running statistics (TP-RS) over the datasets compared to the other methods.  
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Figure 4 Tinypack with dynamic frequencies and running statistics 
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The running statistics generally performed slightly poorer than dynamic frequencies 

except on the Intel Labs dataset. The data in this set is more precise and follows a cleaner 

statistical pattern than the others. 

5.4. ALL-IS-WELL BIT 

Most sensor applications send a vector of values (e.g., timestamp, temperature, 

humidity) at each sampling interval. Often in the data sets studied all the values in a 

sample were exactly equal to the previous corresponding value. Similar to the methods in 

[19], a bit can be appended to the beginning of the packet indicating whether or not this 

has occurred (obviously if it has, no more data needs to be sent for that packet). In 

protocols with variable sized packets or packets that are small compared to the size of a 

vector of readings, this could introduce additional savings. 

The datasets were affected differently by adding this. Figure 5 shows the effects of 

the all-is-well bit (AIW). TP-DF and TP-RS were very similar, so TP-RS was removed to 

avoid cluttering the graph. In each of the TinyPack algorithms the all-is-well bit 

improved performance for all the datasets except the aircraft health and N-CET tracking 

sets. This is due to the higher level of precision in those datasets. The datasets had a very 

small number of packets where all the values were identical to the previous packet. In 

general, if the application is designed such that sensed values will rarely be exactly equal 

to the previous value (as in high precision data), the all-is-well bit should not be used. 
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Figure 5 Effects of all-is-well bit 

Additionally, if the sensors send on a predetermined schedule or if the packet headers 

contain consecutive sequence numbers, simply refraining from sending data could be 

used to indicate the same thing as the all-is-well bit. This would remove the overhead so 

no decision would need to be made whether or not to use it. These intentionally unsent 

packets would be easily differentiated from actual drops based on the sequence numbers 

or the error detection discussed in the next section. 

5.5. ERROR DETECTION 

The first packet in a new frame is sent with uncompressed values. Each additional 

packet is sent using the delta (change) values. If the last value is repeated in the first 

packet of the next frame, the values can be compared to check for the presence of errors 

due to dropped packets or corrupted values in the packets. 

For example, suppose a temperature sensor sensed values at 23, 25, 28, and 29 with a 

frame size of 4. The first frame contains [23, +2, +3, and +1]. Assuming packet 

corruption changed the +3 to -3, the receiver would read the values as 23, 25, 22, and 23. 

When the second frame was sent with 29 as the first value the receiver could see that an 
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error had occurred since the last value (23) does not equal the first value of the next 

frame (29). 

This successfully detects all single bit errors and single dropped packets; however, it 

is possible that multiple errors could cause the values of the compared packets to actually 

be equal although the errors existed. For example a +2 and a -2 could both be dropped. In 

this case the drops would be undetected. 

Since the codes are dynamic, the chances of undetected error constantly changes but 

the codes in all cases were consistently distributed similarly to the static default codes so 

those were used for error analysis. 

Assuming the values occur with the probability expected by the default codes, the 

probability of a bit error occurring in the base (prefix) of a code can be determined by 

calculating the expected number of prefix and suffix bits in a code.  

From Table 18 it can be seen that a code at level L has a prefix length L+1 and suffix 

length L. The count of nodes at that level is 2L so the probability of a random sampled 

value being on that level is 2-(L+1). Therefore the expected number of prefix bits E(P) for 

an arbitrarily large set of possible values is:  
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( ) ∑∑
∞

=
++

∞

=
+ 







 −+=






=
0

11
0

1 2

1

2

1

2 L
LL

L
L

LL
SE  

1
2

1
)(

0
1

=






−= ∑
∞

=
+

L
L

PE  



 

 

24 

So as the height of the tree approaches infinity, E(P) approaches 2 and E(S) 

approaches 1. So the probability of a bit errors occurring in the prefix for large trees 

approaches 66.67%. Calculating for the case where the values can range from -127 to 127 

gives 66.98%. Such errors would change the expected length of the code and would be 

detected at the end of the packet transmission.  

For bit errors in the suffix of a code and for drops the probability of a subsequent 

error “correcting” the value and causing the errors to be undetected is roughly 3.57%. 

This was calculated by an extensive state transition diagram and a transition matrix which 

were excluded due to space constraints. Since most sensors send a vector of values at 

each sample the probability of detecting multiple errors from dropped packets is (.0357)|V| 

where |V| is the vector size of the sample. 

For example, the Intel Labs dataset contains 2.3 million samples with six values in 

each sample so |V| = 6. In the worst case there will be exactly two drops per frame. So 

assuming 10% packet loss, there would be approximately 115,000 frames each 

containing two dropped packets. The chance of detecting every drop would be  

( )( ) %976.990357.1
1150006 ≈−   

The worst case probabilities are shown for each of the datasets in Table 9. 

Table 9 Probability of drop detection 

Dataset |V| frames probability 
ZebraNet 6 284 99.9999% 
Great Duck Island 8 38226 >99.9999% 
Intel Labs 6 115123 99.9762% 
N-CET Track 4 23143 96.3106% 
N-CET Triangulate 6 11123 99.9977% 
Aircraft Health 2 22937 <0.00001% 
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Experiments were conducted with errors generated assuming Poisson inter-arrival 

times and results were consistent with the above analysis.  

The aircraft health data has only two values per vector and so in the worst case, at 

10% drop rate, errors would undoubtedly go undetected. For such datasets, it would be 

effective to define a smaller frame size to reduce the probability of multiple errors 

occurring in the same frame or to send error detection packets in the middle of the frame 

instead of always sending them at the end. 

5.6. WORKING WITH REAL VALUES 

TinyPack works most effectively with integers. Our approach could fairly intuitively 

be extended into the real numbers; however, for simplicity in our experiments, we 

expressed reals as integers. In the case where the real values were rounded in the dataset 

to some low number of decimal places, we simply shifted the decimal point. In the case 

of higher precision reals, we split the values into the exponent and mantissa and 

compressed them separately. 

6. EXPERIMENTAL RESULTS 

Experiments were performed using TOSSIM [17], which simulates the open source 

TinyOS operating system that runs on many sensors. TOSSIM simulated Crossbow 

Technology’s MicaZ motes [15] and was used to test performance of compression as well 

as accuracy, RAM usage, and processor utilization. In addition to TOSSIM the 

PowerTOSSIM [18] simulator was used. PowerTOSSIM is built on top of TOSSIM and 

is capable of also measuring simulated energy consumption and latency. 
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6.1. COMPRESSION 

To summarize, we calculate the entire compression of all the data across every 

dataset. Figure 6 shows the compressed size of all the data using the standard Deflate 

algorithm used in most operating systems, S-LZW, LEC, and our approaches: The static 

initial codes (TP-Init), dynamic frequencies (TP-DF), running statistics (TP-RS), and 

each of the TinyPack methods with the all-is-well bit added (-AIW). 
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Figure 6 Compression summary 

6.2. ACCURACY 

Since the TinyPack algorithms produce approximations of the frequencies of the 

values, a measure of accuracy can be calculated by comparing the lengths of the 

generated codes for each frame to the optimal code lengths determined by generating 

standard Huffman codes. Figure 7 shows the performance of the TinyPack algorithms 

compared to the performance of a theoretical optimal algorithm. It should be noted that 

while standard Huffman coding would produce optimal codes, the overhead for sending 

the new tree at every frame would cause the algorithm to perform much worse than any 

of the others. No algorithm currently exists which produces optimal codes with no 

overhead. 
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The data in both Intel Labs and aircraft health remains fairly consistent throughout 

the entire dataset so the approximated codes almost reached the optimal level. 
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Figure 7 Accuracy 

6.3. LATENCY 

Sending the uncompressed data takes less time in processing but more time in 

transmission so the latency depends on the motes used. In general, however, processor 

speed is exponentially faster than radio data rate for wireless sensors (for example, the 

MicaZ mote [15] has a 7 MHz processor and a 250 kbps high data rate radio). So for the 

MicaZ motes latency is decreased proportionally to the compressed size of the data. So 

TinyPack has a decrease in latency of 80-85% compared to uncompressed data. 
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Figure 8 Latency 
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For comparison, the S-LZW algorithm was modified to send data as soon as possible 

and it was assumed packets were sent in a constant stream. Figure 8 shows the relative 

latencies scaled to the uncompressed data. In each version of TinyPack adding the all is 

well bit decreased the latency by less than half a percent and so data for the all-is-well bit 

is not shown separately. Deflate is not shown since it requires collecting all of the data 

prior to compressing. 

6.4. ENERGY 

Energy consumed for compressing, writing to memory, and transmitting was 

measured using PowerTOSSIM. Results are shown in Figure 9. Results are again scaled 

to uncompressed and averaged over the datasets. As with latency, the all-is-well bit in 

each case decreased the energy usage by less than half a percent. Deflate was used only 

as a compression benchmark and was not implemented in PowerTOSSIM so energy 

usage data was not collected for the Deflate algorithm. 
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Figure 9 Energy usage 

6.5. RAM 

The maximum amount of RAM utilized by each algorithm for each dataset is shown 

in Figure 10. S-LZW is designed to work on any generic dataset and uses the same 
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compressor for every value in a sensed vector so the RAM usage was constant for S-

LZW. As expected, TP-DF had the highest RAM usage because it stores the frequency 

tables; however, the RAM was still well within the limits of the Mica2, MicaZ, and most 

other sensors. LEC and TP-Init both use very little RAM since the codes are static and 

generated at runtime for each value.  
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Figure 10 Ram usage 

6.6. PROCESSOR UTILIZATION 

In order to measure processor utilization, the program counters on each sensor were 

accessed at the start and end of each simulation. For these simulations, the data was 

compressed and not transmitted so that the processor utilization would not be affected by 

the compression ratio. Figure 35 shows the instruction count for each algorithm scaled to 

show the average instruction count per byte of uncompressed data. As with RAM, the 

static codes used in LEC and TP-Init cause the processor utilization to be very low. TP-

DF and TP-RS required significantly higher processor time than the other algorithms; 

however, due to the nature of the sensor hardware, the savings in energy and latency from 

the reduced data size far outweigh the costs of higher processor utilization. The energy 

usage in Figure 11 includes energy spent processing. 
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Processor Utilization
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Figure 11 Processor utilization 

7. CONCLUSIONS AND FUTURE WORK 

TinyPack effectively compresses data while not introducing delays and even reduces 

latency compared to sending uncompressed data. TinyPack is effective on all sensor 

networks which use time-based sampling and is especially effective on systems with high 

granularity or low local variance. 

TP-Init required the least RAM and by far the least processing time of all the 

TinyPack algorithms but resulted in the poorest compression. TP-DF achieved the 

greatest compression ratios, but required more RAM than the other methods. TP-RS 

compressed almost as well and required much less RAM. So while TP-DF compressed 

most effectively, systems with low RAM would benefit from using TP-RS and systems 

with very low RAM or high cost for processor utilization could use TP-Init for best 

results. 

While the focus of this paper has been lossless compression, TinyPack could be 

modified to continue sending change values of zero until the change exceeded some 

threshold. Additionally, packets could be dropped to indicate no change had occurred. In 
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systems which could tolerate some rounding error or lossiness, this could dramatically 

increase the compression with a small degree of error. 

In many applications sensors are not only temporally located but also spatially located 

(sensors sense data similar to that of a nearby sensor). It could prove effective to express 

the delta values as the change from the value of a nearby sensor instead of the change 

from previous value or some hybrid of the two. 
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II. TINYPACK XML: REAL TIME XML COMPRESSION FOR WIRELESS 
SENSOR NETWORKS 

Wireless networks possess significant limitations in bandwidth. Additionally, real-

time networks cannot tolerate high latency. While some good XML compression 

algorithms exist, there remains a need for methods that reduce latency and bandwidth 

usage further in real time wireless applications. This paper presents a new compression 

scheme which reduces bandwidth while minimizing latency of XML data while in transit. 

XML structural data is reduced to format strings and arguments are sent as they are 

generated using modifications of real-time compression techniques specific to each data 

type. Methods are introduced to gracefully handle lost data in environments where 

delivery of all packets is not guaranteed. Performance evaluations show increased 

compression ratios and a decrease in latency and energy for our method compared to 

existing XML data compression approaches. 

1. INTRODUCTION 

XML is designed to be a universal format for storing and transmitting data. XML it is 

inherently redundant and requires an inflated amount of memory to store and bandwidth 

to transmit. Also, many of these applications are used in wireless environments which 

generally have relatively low bandwidth capabilities. Although other more compact 

formats have been proposed, XML remains heavily used in both old and new 

applications. Efficient data compression should clearly be considered for these 

applications. Many compression algorithms have been designed which are specific to 

XML data [23][24]. Unfortunately, most only work well if all of the XML data is 

collected prior to compression which is not possible in many data streaming applications. 
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The U.S. Air Force uses XML for many real-time applications. These are 

characterized by an extremely low tolerance for latency. For example: if a collection of 

unmanned aerial vehicles (UAVs) are being used to track a ground object, each UAV 

must communicate the current location and movement vector of the object as soon as 

possible or it may be too far away before another UAV knows to look for it. So there 

exists a need for a fast, efficient, XML compression scheme which relies only on current 

and previous data. The N-CET project [22] incorporates several of these real-time, 

wireless, XML applications and was the primary motivation and source of data for this 

work. This project is explained further in Section 8 where the datasets are discussed. 

We propose TinyPack XML, a novel compression method which capitalizes on the 

redundancy in XML structure and the similarity between XML packets sent by wireless 

devices. TinyPack XML compresses each packet as it is created without any need for 

delay. TinyPack XML compresses using format strings. The portions of the XML 

structure which are common to many packets are generated on the fly or a priori and the 

values which vary from packet to packet are compressed using techniques specific to the 

type of data being sent. Some pre-existing methods are used and others are modified to 

better fit the specific characteristics of the wireless networks. We consider correlated and 

uncorrelated numeric data and short and long text strings. In every experiment, the 

compressed data actually arrived faster than uncompressed since data transmission was 

more expensive than processing. We compare TinyPack XML to several existing XML 

compressors using metrics such as latency, RAM, and compression ratio. Experiments 

show that it achieves compression ratios comparable to and better than that of related 

methods which require all the data to compress. 
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2. EXISTING COMPRESSORS FOR XML DATA 

2.1. DEFLATION 

The deflation algorithm is a used in many common compression programs (including 

gzip and WinZip) and is often used as a comparison for compression algorithms since it 

performs fairly well on most types of data and is widely used. 

2.2. XMILL 

XMill [23] compresses XML data by separating it into three components: The 

element and attribute names, the text values, and the tree structure of the XML document. 

The text values are grouped by parent element name and the three components are then 

compressed using standard text compression techniques. 

2.3. XMLPPM 

XMLPPM [24] uses a similar restructuring as XMill but uses predictive arithmetic 

coding to compress the transformed data. Each symbol (character or string of characters) 

has a certain probability of appearing after every other symbol. These probabilities are 

calculated and arithmetic encoding is used to store each symbol. 

2.4. WBXML 

WBXML [25] is a binary XML format maintained by the Open Mobile Alliance used 

on many mobile phones. It converts all the pieces of XML into binary tokens and 

preserves the structure of the XML document. 
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2.5. XAUST 

XAUST [26] generates a model for the compression and decompression of XML 

documents based on the schema. It then uses the automatically generated model along 

with arithmetic compression techniques to compress the document. 

2.6. PAQ 

PAQ [27] is a constantly evolving compression suite which generally produces the 

best compression ratios for most types of data. It achieves this by using enormous 

amounts of RAM and requiring much more time than other methods. PAQ can be 

configured to consume between 233 and 1712 MB of RAM. It is entirely impractical for 

real-time wireless systems and is included as an ideal lower bound for compressed size. 

3. OUR APPROACH 

While XML is defined as being only semi-structured, the data from most wireless 

applications including N-CET tend to be highly structured. Subsequent packets often had 

identical or nearly identical XML tree structures. We also examined several common 

benchmark XML datasets (which could be intuitively broken into packets) and found that 

most also exhibited this structural similarity between packets. 

We generate format strings (similar to the well known printf function in the C 

programming language) for each type of packet. The format string expresses the structure 

of the XML data in the packet and the portions which differ from packet to packet 

(arguments) become all that must be transmitted for subsequent packets. For example, 

assume a target tracking application generated the following two data packets for a 

target’s location at separate times: 
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<target><lat>45</lat><lon>50</lon></target> 

<target><lat>43</lat><lon>55</lon></target> 

The format string could be expressed as 

<target><lat>[arg1]</lat><lon>[arg2]</lon></target> and the wireless device could just 

send the arguments [45, 50] and [43, 55] after the format string was established. 

We use standard text compression to compress the format strings and various 

compression schemes for the arguments specific to the type of data they contain. These 

are detailed in the following section. 

4. ARGUMENT COMPRESSION 

4.1. CORRELATED NUMERIC DATA 

For arguments containing numeric data where the numbers tended to be correlated 

between successive packets (such as location information, timestamp, size of tracked 

object in window, etc) the values were expressed as the change from the previous value 

and encoded using TinyPack compression with Running Statistics [28]. Smaller change 

values are assigned shorter bit strings based on the current mean and variance of the data. 

Change values are initially encoded based on Table 10 and then modified as the running 

average and standard deviation change. 

Table 10 Default codes 

Level Bits prefix suffix range values 
0 1 1  0 
1 3 01 0...1 -1.1 
2 5 001 00...11 -3,-2,2,3 
3 7 0001 000...111 -7,...,-4,4,...,7 
4 9 00001 0000...1111 -15,...,-8,8,...,15 
5 11 000001 00000...11111 -31,...,-16,16,...,31 
6 13 0000001 000000...111111 -62,...,-32,32,...,63 
7 14 0000000 0000000...1111111 -127,...,-64,64,...,127 
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4.2. UNCORRELATED NUMERIC DATA 

Uncorrelated numeric arguments (such as target ID) were converted to appropriately 

sized integer types and sent using the number of bits required to send the maximum 

possible value for that argument. So, for example, if a value could range from 0 to 1000, 

it would be sent with 10 bits per packet.  

4.3. LONG TEXT STRINGS 

Arguments which contained long or unstructured text strings (such as comments) 

were compressed using regular SLZW compression [29]. The dictionary begins with the 

common alphanumeric characters and punctuation. Then common subsequences of 

characters or uncommon characters are added to the dictionary as they are encountered. 

The system was designed to support pre-loading the dictionary with application specific 

symbols or by building the initial dictionary based on sample data. 

4.4. SHORT AND SINGLE-WORD TEXT STRINGS 

For arguments where the strings were comprised of a small subset of words (such as 

status and target name) each possible value was indexed. The dictionary could be 

preloaded or built on the fly using the last index position to indicate a new entry. New 

entries were compressed in the same manner as long strings and the index positions were 

sent with the minimum number of bits required. This is shown in Algorithm 21. So if the 

dictionary had seven entries, only three bits would be required. Note that if the dictionary 

had eight entries, four bits would be needed to allow for the new entry symbol to be 

encoded.  
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Algorithm 1 CompressShort(str, dict) 
Objective: Compress short strings 
Input: String str, current dictionary dict 
Output: Encoded index value and updated dictionary 
 //The +1 is for the new entry symbol 
 bits = floor(log2(count of items in dict + 1)) 
 If str is in dict 
  code = index of dict padded with 0s to length bits 
  Add code to output stream 
 Else 
  code = index count of items in dict padded with 0s 
  Update dict by adding str to the end 
  Add code to output stream 
 End If 

5. FORMAT STRINGS 

5.1. STRUCTURE 

Format strings are simply the element structure of the XML packet with the escape 

characters shown in Table 11. 

In practice, the escape characters are actually single characters and are themselves 

compressed during the compression of the format strings discussed previously. The 

length and index parameters are expressed by a single character with the integer encoded 

as the dictionary index position of the character. For example, an integer with a fixed 

length of 4 would be encoded as the fixed length integer escape character followed by the 

fourth character in the dictionary. 

Recall the sample XML packets from the previous example: 

<target><lat>45</lat><lon>50</lon></target> 

<target><lat>43</lat><lon>55</lon></target> 

So the actual format string generated would be: <target><lat>\I\E<lon>\I\E\E. 
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Table 11 Escape characters 

Character Description 
\I Integer argument 
\F[x] Fixed length integer argument. Padded with 0s. x is the length. 
\D Decimal (floating point) argument. 
\T Text (long string) argument 
\L List (short and single-word string) argument 
\? Optional. Following portion may or may not appear (encode 0 

or 1 in compressed stream). 
\* Multi. Following portion can be repeated (encode number of 

repetitions). 
\{ and \} Open and close bracket. Enclose portions of string for optional 

and multi. 
\P[x] Previous. Argument is equal to previous argument at index x 

(need not encode). 
\E End tag. Serves to help compress format string. 

 

5.2. GENERATION 

We developed four different ways for the format strings to be generated. Each has its 

positive and negative sides and the decision for which to use is left up to the user. 

First, the format string can be generated on the fly. The parser assumes that all non-

structural data is arguments in the initial packet and adds optional and multi characters as 

the need arises. Also, arguments which never change (after a threshold) are moved from 

the argument list into the format string. This method requires no additional input from the 

user but has additional overhead since the format string must be transmitted and will 

often need to be modified. 

The tags in the first packet are initially assumed to be part of the static structure of the 

format string and all the attributes and element values are assumed variable and are set up 

as arguments. The type of each attribute and element is inferred by the characters and 

length. As additional packets are sent, portions of the structure can be flagged as optional 

and other optional pieces can be added. If any attribute or element remains unchanged, it 
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is added to the structure of the format string and any changes in type are made as needed. 

The format string update messages are described in the next subsection. 

Next, sample data could be used instead. This works similarly to the first method but 

removes the overhead for transmitting format strings during runtime and still doesn’t 

require much of the user. Of course this is only useful if good representative sample data 

is available. 

Third, the format strings can be automatically generated by the XML schema. This 

ensures that the string should never need to be updated and also requires little from the 

user. This works well if the XML schema is carefully defined; however, in the datasets 

we studied this frequently created unused arguments and unnecessarily long format 

strings since the schemas often allowed for much more than was actually used. 

Finally, the user can simply write the format strings manually for each type of packet. 

If written well, this will be optimal and allow for the highest compressibility; however 

this would require more training than many users may want to do. We created a parser to 

check the validity of user-written format strings and to test them against sample data. 

5.3. UPDATES 

If the format string is built on the fly or if it is built a priori and the data changes in 

some significant way or if it was built incorrectly, then it needs to be able to be modified 

in real time. 

Special format string modification packets can be sent through the network to alert 

the receiver of the necessary changes. These packets are marked as high priority and 

should never be dropped. 
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The modification could consist of any number of delete, insert, and replace messages. 

The replace messages contain an index and length for which portion of the format string 

is being replaced. These two numbers are followed by a format string fragment that is 

added into the format string. In our implementation, insert messages are simply replace 

messages with a zero length and delete messages are replace messages with an empty 

fragment. 

6. LOSS AND ERROR 

In the N-CET application, packets that are uninteresting can be dropped and errors 

can occur. Since the compression of the packets depends on the previous packet, any loss 

of a packet causes all the following packets to be meaningless. Instead of reporting the 

value at each packet as the change in value from the previous packet, we occasionally 

send baseline packets and all subsequent packets are expressed as the change in value 

from the last baseline. These baseline packets can then be flagged as high priority so that 

the application will not drop them. Also in lossy environments, these baseline packets can 

require acknowledgement to ensure delivery.  

Figure 12 shows results of experiments comparing cost of acknowledging and 

resending lost packets with loss of compression due to packets being further from the 

baseline. If every packet is a baseline, then every packet must be sent and acknowledged, 

but if a packet uses a baseline from many packets ago, then correlation diminishes and 

compression is reduced. As the number of packets sent between baselines increases, the 

compression increases until it reaches a point where the benefit of correlation is lost. For 

our datasets (discussed in section 8) this point was reached between 90 and 120 packets. 
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The optimal number of packets between each baseline was found to be somewhere 

between 15 and 30. In our experiments, 20 packets were sent between each baseline. 

0%

5%

10%

15%

20%

25%

30%

0 5

1
0

1
5

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

Packets between baselines

P
e

rc
e

n
t 

o
f 

o
ri

g
in

a
l 

si
ze

Target Intercept SpeakerID SNAResult Tracks

 

Figure 12 Baseline period 

7. PACKET HEADER 

In order to encode the extra information required to make the algorithm work, we 

append one byte of header information to each XML data packet sent over the network. 

The first two bits indicate whether the packet is a new baseline, a format string 

update, a standard packet, or the beginning of a new transmission. 

The next two bits represent the format string version so that if a format string update 

gets lost, the receiver will be able to detect that it is using an outdated version of the 

format string. It can then request a retransmission of the update from the sender or any 

neighboring nodes that may have heard the broadcast. If the number of versions exceeds 

eight then the version number simply wraps back to zero. In the case where four or more 

format string update packets are lost in a row, the receiver will use the wrong format 

string to attempt to decompress the data. All the packets will seem corrupted or will be 

erroneously decompressed. In a highly lossy environment, the number of bits can be 

increased to eliminate the errors. 
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The last four bits of the header byte are used for the baseline index and are handled 

similarly to the format string version bits. More bits are used for the baseline index since 

it is expected to change much more frequently. The main difference is that missing a set 

of baseline updates will not make the data appear corrupt but will only cause the data to 

be decompressed incorrectly. In high loss environments, the baseline packets can be sent 

both as baselines and as regular packets so that the regular packet can be decompressed 

and compared against the baseline packet to detect error in much the same way as the 

errors are detected in [28] 

8. DATASETS 

The N-CET project produced four different XML datasets with various types of data. 

We also used one dataset from a joint project between the U.S. Navy and Air Force 

which tracked aircraft and ships. 

8.1. RFINTERCEPT 

The UAVs were equipped with Electronic Intelligence sensors capable of intercepting 

RF signals (radio communications). These rfIntercept packets were sent at the beginning 

and end of each intercepted transmission and (depending on the duration) at several 

points in the middle of the transmission. The packets contain several pieces of 

information including ID, position, and heading of the UAV; radio frequency and 

transmission duration; and a line of bearing from the speaker to the UAV.  

8.2. RFTARGET 

If multiple UAVs intercepted the same transmission, the lines of bearing were used to 

triangulate the source of the communication and rfTarget packets were generated 
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containing data such as the estimated position of the speaker and the IDs of the 

rfIntercepts used in the triangulation. 

8.3. SPEAKERID 

The audio from the intercepted communications was compared to a database of 

previously captured voice samples to identify the speaker. The speakerID packets 

contained identifying data on the transmission and the ID and name (if known) of the 

speaker as well as the output of the voice matching algorithm such as the confidence. 

8.4. SNARESULT 

The N-CET project also utilized social network analysis techniques to identify the 

importance of the various speakers. The snaResult packets generated for each contain the 

list of related speakers who communicated on the same frequency during the same time 

period and the output of the Key Player Algorithm which assigns a rank to each speaker. 

8.5. TRACKS 

The joint tracking project produced XML data packets of a significantly higher 

complexity than the N-CET data. The packets contained unique IDs of the tracked vessel, 

the tracking entity, and the last entity that tracked the vessel; timestamps; position, 

direction, and speed of the tracked vessel; the type of sensor and platform used; and many 

identifying features of the vessels. The dataset only had a limited number of packets of 

real data so we generated 10,000 synthetic packets based on the real data to make the 

track dataset closer to the size of the others. 
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9. RESULTS 

We compared the compression of TinyPack XML against Deflation, XMill, 

XMLPPM, and PAQ over the four datasets in both delay tolerant and real time 

experiments measuring compression, latency, processor usage, RAM requirements, and 

energy consumption.  

The first result set in Figure 13 shows the results from the delay tolerant study. All 

the data was collected prior to compression and compression was done on the entire 

dataset at once. (XMill and XMLPPM require a single root tag so an arbitrary <r> </r> 

tag pair was added around the rest of the data for these algorithms). Results show 

Deflation and WBXML performing somewhat worse that the others with TinyPack XML 

slightly outperforming XMill and XMLPPM and slightly underperforming the expensive 

“ideal” PAQ algorithm. WBXML and TinyPack are designed for smaller XML 

documents and were not expected to perform ideally in a delay tolerant environment. The 

dataset schemas were very complex which negatively affected XAUST. To be fair, DTDs 

were rewritten in order to more closely match the actual data.  

9.1. COMPRESSION RATIO 
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Figure 13 Delay tolerant compression results 
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The next experiments considered real-time environments where each data sample was 

compressed and transmitted as it was collected. Data was collected by compressing each 

sample individually. PAQ also has an incremental infrastructure for using data from 

previously compressed samples to assist in the compression of future samples. Results 

are shown in Figure 14 for real-time compression using all the algorithms and the PAQ 

incremental version. 
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Figure 14 Real-time compression results 

As expected, the incremental nature of TinyPack XML caused it to significantly 

outperform the other algorithms run on the individual samples; however, TinyPack XML 

also surpassed the incremental PAQ algorithm. The delay tolerant PAQ algorithm makes 

multiple passes through the data so restricting it from looking at past samples reduces its 

performance. TinyPack XML was designed specifically for real-time systems so it 

performs identically in both environments. 

9.2. LATENCY AND PROCESSING TIME 

The results for latency did not differ greatly between the datasets. In order to reduce 

clutter on the graph, the results are shown as the average across all four datasets. 
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In the delay tolerant experiments, all the data was collected before sending so latency 

was not considered.  

Real time experiments for latency were performed using TOSSIM [31], which 

simulates the open source TinyOS operating system that runs on many sensors. TOSSIM 

simulated Crossbow Technology’s MicaZ motes [30]. These motes are an example of a 

resource constrained system where bandwidth and energy are limited. PAQ required 

more RAM than the motes have available and in tests on a standard desktop computer 

took over twice as long to send due to the greatly increased processing time and is not 

included in the results. Latency results are shown in Figure 15 in terms of both processing 

and sending time. Since TinyPack requires more complex parsing of the XML data, the 

processing time is significantly higher, but the total time is lower since less time is 

needed to send. 
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Figure 16 Processing time 

Processing time is shown separately in Figure 16. On most systems (especially 

wireless networks), processing speed is exponentially higher than transfer speed so it is 

almost always beneficial to sacrifice some processor use to reduce the amount of data that 

would need to be sent. 

9.3. ENERGY CONSUMPTION 

The energy required to compress the data is basically a function of the processing and 

sending time. Energy is primarily important in wireless networks in which the nodes run 

on batteries. Results are similar to that of latency and are shown in Figure 17. 
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9.4. RAM USAGE 
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Figure 18 Ram usage 

For all the methods except for PAQ, RAM required to compress each individual 

packet naturally was highly dependent on the original size of the packet. RAM 

requirements for the largest packet in each dataset are shown in Figure 18. With the 

exception of PAQ which requires at least 233 MB of RAM, TinyPack XML uses a little 

more RAM than the other methods for most of the datasets since it maintains lightweight 

compressors for each argument in the format string. The SNAResult and track data 

contained more static structure than the other datasets and required less RAM for 

TinyPack since the static portions of the structure are only stored in one place and are 

only compressed once. 

10. CONCLUSIONS AND FUTURE WORK 

TinyPack XML quickly and effectively compresses semi-structured, XML data. It is 

very useful for the N-CET project and other applications in reducing required bandwidth 

and storage in the network without introducing delay. It would be interesting to see how 

TinyPack XML performs on poorly structured data. 
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The other existing compression methods could be modified to only use current and 

previous data to compress. This would make the comparisons more accurate and would 

better show the benefits of TinyPack XML. 

TinyPack XML successfully exploited the correlation of consecutive samples taken 

from a single sensor and the redundancy in single XML documents; however, samples 

taken from nearby sensors at the same time (or within some time range) also can be 

heavily correlated. Similarly, the XML data from the various types of data also contained 

some correlations. Cross referencing other packets from other sensors or other types of 

data could further increase the compression. 
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III. ON COMPRESSING DATA IN WIRELESS SENSOR NETWORKS FOR 
ENERGY EFFICIENCY AND REAL TIME DELIVERY 

 Wireless sensor networks possess significant limitations in storage, bandwidth, 

processing, and energy. Additionally, real-time sensor network applications such as 

monitoring poisonous gas leaks cannot tolerate high latency. While some good data 

compression algorithms exist specific to sensor networks, in this paper we present 

TinyPack, a suite of energy-efficient methods with high-compression ratios that reduce 

latency, storage, and bandwidth usage further in comparison with some other recently 

proposed algorithms. Our Huffman style compression schemes exploit temporal locality 

and delta compression to provide better bandwidth utilization important in the wireless 

sensor network, thus reducing latency for real time sensor-based monitoring applications. 

Our performance evaluations over many different real data sets using a simulation 

platform as well as a hardware implementation show comparable compression ratios and 

energy savings with a significant decrease in latency compared to some other existing 

approaches. We have also discussed robust error correction and recovery methods to 

address packet loss and corruption common in sensor network environments.  

1. INTRODUCTION 

Many real-time systems incorporate wireless sensor networks (WSNs) into their 

infrastructure. For example, some airplanes and automobiles use wireless sensors to 

monitor the health of different physical components in the system, security systems use 

sensors to monitor perimeters and secure areas, security forces use sensors to track troops 

and targets. It is well known that wireless sensor networks possess significant limitations 

in processing, storage, bandwidth, and energy. Therefore a need exists for efficient in-
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network data compression algorithms that do not require delays in processing or 

communication while still reducing memory and energy requirements. 

The idea of data compression has existed since the early days of computers [1][2][3], 

many new data compression schemes [5][6][7][8][9] for wireless sensor networks have 

been proposed recently to address various constraints and limitations in wireless sensor 

networks. These schemes address specific challenges and opportunities presented by 

sensor data and provide significant reductions in required storage, bandwidth, and power. 

However, most of these methods require a fair amount of data to be collected before 

compressing, which is not suitable for many real-time sensing applications such as those 

mentioned above.  

We propose TinyPack, a suite of data compression protocols for real-time sensor 

network applications. TinyPack reduces the amount of data flowing through the wireless 

network, optimizes bandwidth usage, and decreases en without introducing delays. First 

the data is transformed by expressing the sensed values as the change in value from the 

previous sensed data. This is referred to as delta compression. We demonstrate its 

effectiveness for any generic real-time sampled dataset. Second, the individual delta 

values are then further compressed using a derivative of Huffman coding [1]. Huffman 

codes express more frequent data values with shorter bit sequences and less frequent 

values with longer ones. The codes are generated and updated dynamically so no delay 

occurs. TinyPack is a lossless compression algorithm where the data can be 

decompressed at the sink or base station without any loss of granularity or accuracy. 

Standard Huffman [1] and Adaptive Huffman [2] coding have a high RAM overhead 

and require transmitting either the entire tree or several copies of a ‘new symbol’ code, 
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thus making them ineffective in a WSN environment. We begin with a static initial code 

set similar to the one used in the LEC algorithm [8]. We then examine two different 

methods of adapting the codes. For datasets where the range of possible values is 

relatively low compared to the storage capability of the sensors, the actual frequencies 

can be counted and used to regularly update the codes. For data with a high (or unknown) 

variance or low RAM environments the frequencies can be approximated using running 

statistics on the data stream. This method easily scales to be effective on any size data set 

with any range of possible values. We also use the notion of an all-is-well bit and 

perform some analysis of error detection constructs. 

We compare the results to the performance of the Deflate algorithm (used in gzip and 

most operating systems) and S-LZW [7] to measure quality of the compression. S-LZW 

is an adaptation of standard LZW compression specifically designed for sensor networks. 

S-LZW is a string based compression scheme which defines new characters for common 

sequences of characters. It is designed to function well for any generic sensor dataset and 

is very effective at compression and energy reduction. Several variations of S-LZW are 

developed in [7]. In an effort to be fair we have chosen the variation that performs best 

for each dataset studied. We also compare with the LEC algorithm [8] which supports 

real-time data. Experiment and simulation results show a significant reduction in 

bandwidth, latency, and energy consumption compared to the other methods. One of the 

proposed algorithms also reduces RAM and processor usage while the others show a 

further reduction in bandwidth, energy, and latency at the cost of increasing the memory 

and processing requirements. 

In summary, this paper makes the following contributions: 
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An improved set of static codes optimized for sensor data and computational 

efficiency in processing. 

Algorithms for hybrid adaptations of delta and Huffman compression which 

significantly reduce latency and RAM requirements over traditional Huffman codes while 

achieving comparable and improved compression ratios and energy efficiency compared 

to other existing methods. 

An additional use of an all-is-well bit that further increases compression performance 

and efficiency. 

A novel and effective error detection and recovery method to handle missing and 

corrupted packets.  

Extensive experiments comparing several performance metrics considering various 

approaches using many different real sensor data sets using simulation as well as a 

hardware platform. 

2. BACKGROUND 

2.1. HUFFMAN TREES 

Huffman-style coding [1] converts each possible value into a variable length string 

(sequences of bits) based on the frequency of the data. Higher frequency values are 

assigned shorter strings. The more concentrated the data is over a small set of values, the 

more the data can be compressed. Huffman codes can be generated by building a binary 

tree where the nodes at each level are ideally half as frequent as the nodes at the next 

level up. For example, the values and frequencies in Table 12 generate the codes using 

the Huffman tree in Figure 19. Huffman codes were shown to be optimal for symbol by 

symbol compression in [1]. 
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Table 12 Huffman codes 

Value Frequency Code 
-7 14653 111111 
-6 16661 111101 
-5 19983 111011 
-4 23760 111001 
-3 31124 11011 
-2 35636 11001 
-1 88845 101 
+0 350429 0 
+1 87956 100 
+2 38942 11000 
+3 31809 11010 
+4 20563 111000 
+5 17241 111010 
+6 14171 111100 
+7 12716 111110 

 

 

Figure 19 Huffman tree 

2.2. TEMPORAL LOCALITY AND DELTA VALUES 

Real-time wireless sensor networks generally exhibit temporal locality (data from 

readings taken in a small time window are correlated). Any type of data which changes in 

a continuous fashion will be temporally located such as temperature, location, voltage, 

velocity, timestamps, etc. In fact, it can be demonstrated that any sensor sensing at non-

random intervals will either generate temporally located data or random noise.  

Consider an arbitrary sensor sensing a stream of values {v1, v2, …, v2N} sensed at 

times {t1, t2, …, t2N} where N is an integer. Assume that the values are not correlated. 
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Then sampling at {t1, t3, …, t2N-1} and {t2, t4, …, t2N} would yield completely different 

values. Thus, offsetting the sample period would generate entirely different data. 

Therefore, excluding applications which generate pure noise, we can assume that 

successive readings at each sensor will be correlated. Delta compression (storing the data 

as the change in value from the previous reading) would then increase the frequency of 

certain values thus increasing the compressibility of the data. 

Note that this does not apply to event driven sampling (where time between samples 

is random) such as a sensor that measures the speed once for each passing automobile. 

These applications do not necessarily exhibit temporal locality and were not included in 

this study. 

2.3. FRAMES 

In delta compression (as with most compression schemes), a dropped packet can 

render following packets useless or at least complicated to decompress. Thus in systems 

where data loss is probable, data should be compressed and sent in chunks (usually called 

frames). Additionally, in sensor networks, data characteristics can change drastically as 

time progresses. Therefore, sending independently compressed frames of data also allows 

additional flexibility for the compression to be more specific to the current state of the 

system. 

3. RELATED WORK 

3.1. S-LZW 

In [7] an adaptation of standard LZW compression is used to address the specific 

characteristics of a sensor network. S-LZW compresses the data by finding common 
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substrings and using fewer bits to represent them. S-LZW maintains two sets of up to 256 

eight-bit symbols: The original ASCII characters and the set of common strings. A bit is 

appended to the beginning of each encoded symbol to indicate which set it is from. A 

dictionary is maintained that tracks which string is represented by which eight-bit 

sequence. 

They also propose Sensor-LZW with the notion of a mini-cache to capitalize on the 

frequent recurrences of similar values in a short time in sensor data. Recent strings are 

stored with N bits in the mini-cache dictionary where N < 8 (for a maximum size of 2N 

entries in the mini-cache). An additional bit is appended to the beginning of each symbol 

to note whether the symbol is from the main dictionary or the mini-cache. Different data 

sets had different optimal values for N. The cache is implemented as a hash table for 

efficient lookup times. 

Table 13 S-LZW with mini-cache 

Encoded 
String 

New 
Output 

New Dict. 
Entry 

Mini-Cache 
Changes 

Total 
Bits: 
LZW 

Total 
Bits: 
Mini-
Cache 

A 0,65 256-AA 0-256, 1-65 9 10 
AA 1,0 257-AAA 1-257 18 15 
A 0,65 258-AB 1-65,2-258 27 25 
B 0,66 259-BA 2-66,3-259 36 35 
AAA 0,257 260-AAAB 1-257,4-260 45 45 
B 1,2 261-BC 5-261 54 50 
C 0,67 262-CC 3-67,6-262 63 60 
C 1,3   72 65 

 

Table 13 shows S-LZW and LZW compressing the string AAAABAAABCC using 

the mini-cache. Since every single character is pre-loaded into the dictionary, the 

algorithm begins by looking at the first string of two characters in the stream. If the string 

is in the dictionary, the next character is appended until the string no longer has a 
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dictionary entry. Then that new string is added to the dictionary and the known string (the 

new string minus the last character) is encoded into the output. The new output column 

shows a 1 and the mini-cache location if that symbol was in the cache or a 0 and the 

dictionary location otherwise. The other columns show the new entries in the dictionary 

and mini-cache and the total number of bits required for compression without or with the 

cache. Note that without the cache every symbol is exactly nine bits. 

For example, for the first line of Table 13 the compressor begins by looking at the 

first character of the string "A." Since "A" is a single character it is already in the 

dictionary and the compressor looks at the string "AA." That string is not in the 

dictionary so it is added to the end (location 257) and the single character "A" is encoded 

(as the integer 65) and the algorithm continues with the second "A" as the next character 

in the stream. Since "A" was not in the mini-cache the output comes from the dictionary 

and both "A" and "AA" are added to the cache. 

3.2. LEC 

A lightweight sensor network compression technique, LEC, is presented in [8]. LEC 

compresses a stream of integers by encoding the delta values with a static, predetermined 

set of Huffman codes. For the values in a stream, the initial value is encoded as its 

difference from 0 and each successive value is encoded as its difference from the 

previous value. The codes are constructed by concatenating prefix and a suffix bits to 

represent the change value. Fewer bits are used for the smaller changes under the 

assumption that values typically change relatively slowly over time. The static codes are 

shown in Table 14 with anything past level 7 following the pattern of the last three levels.  
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Table 14 LEC codes 

Level Bits prefix suffix range values 
0 2 00  0 
1 4 010 0...1 -1.1 
2 5 011 00...11 -3,-2,2,3 
3 6 100 000...111 -7,...,-4,4,...,7 
4 7 101 0000...1111 -15,...,-8,8,...,15 
5 8 110 00000...11111 -31,...,-16,16,...,31 
6 10 1110 000000...111111 -62,...,-32,32,...,63 
7 12 11110 0000000...1111111 -127,...,-64,64,...,127 

 

For example, a 0 value would be encoded as "00" ("00" prefix and no suffix) and -3 

would be encoded as "01100" ("011 prefix and "00" suffix). 

If it is known that the change values will not fall outside of a certain range, then the 

'0' bit in the prefix for the last level can be removed. For example in Table 14 the prefix 

for level 7 could be "1111" if -127 and 127 were the minimum and maximum possible 

change values. 

3.3. GAMPS 

Many lossy compression schemes have also been proposed such as [9]. GAMPS 

compresses the data from multiple sensors by grouping sensors with correlated values. 

The signals are approximated keeping within a parameterized maximum error. The 

Facility Location problem is then used to groups the sensors with the highest correlations 

and select baseline sensors which best represent the group. The values from the 

remaining sensors in each group are expressed as a ratio of the value of the baseline. 

An example is shown in Figure 20. Graph (a) shows relative humidity signals from 

different sensors. In graph (b) the signals have been approximated. Graph (c) shows the 

fourth signal from graph (b) selected as the baseline for the group. The final graph (d) 

shows each of the other five signals as a ratio of the baseline signal. The data in graphs 
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(c) and (d) is then identical to the data in (a) within some error threshold but can be 

compressed much more than the original data. 

 

Figure 20 Gamps example 

GAMPS achieves excellent compression ratios with low maximum error but requires 

that all the data be collected before compression and so is not suited for applications 

which require no loss or for the compression to be performed in real time. 

3.4. PIPELINED IN-NETWORK PROCESSING 

Other schemes have been introduced which depend on the network topology and 

routing. In [5] compression is achieved using pipelining. Data is gathered at each 

aggregation node in a buffer for some amount of time. During that time, several data 

packets with a matching prefix are combined into one. Following the prefix in the packet 

is a suffix list which gives the unique suffix to the common prefix from each of the 

original packets. This scheme is illustrated in Figure 21. Three packets each containing 

three items of data are compressed on the first item with a prefix of length three, the other 

two items remain uncompressed. This reduces the data size from 33 bits to 27 bits. 

The size of the prefix is determined by the user of the application and remains static. 

The shared prefix system can also be used for timestamps and sensor IDs to maximize the 

reductions in size. 
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Figure 21 Pipelined compression 

This scheme can be very effective if there is much redundancy inherent in the value 

prefixes; however, the compression is only done at aggregating nodes and depends on 

sample rates to be very effective. 

3.5. CODING BY ORDERING 

Another routing method is proposed in [6] where the order of packets collected at an 

aggregation node can indicate the value sensed at a different node. A packet containing 

the data tuples from n sensors can be arranged in a total of n! unique permutations. If the 

number of possible sensed values is relatively small, these permutations can be used to 

recreate dropped values from one or more sensors (see Table 15). 

Table 15 Value indicated by order 

Packet 
permutation 

Integer 
Value 

N1,N2,N3 0 
N1,N3,N2 1 
N2,N1,N3 2 
N2,N3,N1 3 
N3,N1,N2 4 
N3,N2,N1 5 

 

If there are n sensor nodes in a network and a packet at an aggregation is sent values 

from m different nodes, assume that out of those m nodes a total of l nodes' values are 

dropped and encoded. Given only the (m-l) values, there are (n-m+l choose l) possible 

combinations of IDs the dropped nodes can have. If there are k possible data values, there 
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are kl possible combinations of values and IDs. Since there are (m-l)! possible 

permutations within the packet, l can be chosen as large as is possible without violating 

the following inequality 

 ( ) ( ) lklchooselmnlm     ! +−≥−   

For example, when n = 256, k = 16, and m = 100; l could be set as high as 44, so only 

56% of the data would need to be sent. This scheme, however, performs well only when 

n is relatively large compared to k. If there is a wide range of possible data values, then 

some form of tolerated error would need to be introduced to accomplish any amount of 

reduction. 

3.6. SUMMARY 

We compare all the previously listed algorithms and the algorithm presented in this 

paper (TinyPack) across a number of compression algorithm characteristics in Table 16. 

Table 16 Characteristics of sensor compression techniques 

Characteristic S-
LZW 

LE
C 

GAM
PS 

Pipeli
ned 

Coding by 
Ordering 

TinyPack 

Runs on a single sensor Yes Yes No No No Yes 
Relies on temporal 
locality 

Someti
mes 

Yes Yes No No Yes 

Relies on spatial locality No No Yes Yes No No 
Collect data prior to 
compressing 

Some Non
e 

All Some None None 

Algorithm adapts as data 
changes 

Yes No Yes No No Yes 

Requires time 
synchronization 

No No Yes No Yes No 

Requires related 
sampling intervals 

None Non
e 

None Simila
r 

Identical None 

Achieves lossless 
compression 

Yes Yes No Yes Yes Yes 

Loss due to dropped 
packets or errors 

Frame Fra
me 

Packe
t 

Packet Packet Frame 

Incorporates error 
detection 

No No No No No Yes 
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The algorithms presented in this paper and used for comparison concern lossless 

compression which can be achieved in real time at the sensing node. 

4. EXPERIMENTAL DATA SETS USED 

The data sets used for simulation were pulled from a wide variety of domains which 

utilize wireless sensor networks including environment monitoring, tracking, structural 

health monitoring, and signal triangulation. All except the environment monitoring data 

are from applications where low latency is critical. All are from real deployments of 

wireless sensors for academic, military, and commercial purposes. In every experiment, 

the entire datasets were used. 

Environment monitoring data was drawn from the Great Duck Island [10] and Intel 

Research Laboratory [12] experiments. On the island 32 sensors monitored the conditions 

inside and outside the burrows of storm petrels measuring temperature, humidity, 

barometric pressure, and mid-range infrared light. The Intel group deployed 54 sensors to 

monitor humidity, temperature, and light in the lab. Approximately 9 million sensed 

values were generated on the island and over 13 million from the lab. 

For tracking, data was taken from two different studies. Princeton researchers in the 

ZebraNet project [11] tracked Kenyan zebras generating over 62,000 sensor readings. 

The U.S. Air Force’s N-CET [13] project tracked humans and vehicles moving through 

an area. 

The structural health data is comprised of nearly half a million packets send by a 

network of 8 sensors fused to an airplane wing in a University of Colorado study [14]. 

Half the data was generated by a healthy wing and the other half by a wing with 

simulated cracking and corrosion. 
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Signal triangulation data came from another portion of the N-CET project, in which a 

network of sensors mounted on unmanned aerial vehicles intercepted and collaboratively 

located the sources of RF signals. 

5. OUR PROPOSED APPROACHES 

We propose multiple versions of our TinyPack compression algorithm. First we 

introduce a static set of initial codes which are used as a starting point for the other 

compression methods. These codes by themselves provide good compression with 

excellent efficiency. Next we achieve greater compression at the cost of some RAM and 

processing by maintaining dynamic frequencies of the streamed values. The third 

approach approximates the frequencies with running statistics on the data, significantly 

decreasing the RAM requirements while only slightly increasing the size and processor 

utilization. We modify each of the above approaches by adding an all-is-well bit that 

gives a small boost to the compression ratio. We conclude by discussing error detection, 

how to adjust for real numbers instead of integers, and experimental results. 

5.1. TINYPACK INITIAL FRAME STATIC CODES (TP-INIT) 

We begin with a set of initial codes similar to those used in LEC; however, the static 

codes used in LEC were optimized for JPEG compression whereas the TinyPack initial 

codes are designed to perform well on time-sampled sensor data with absolute minimum 

processing time required. 

Since we are using delta compression, the data is expressed as the change in value 

from the previous sample. The reported values can be positive or negative. In many 

applications such as temperature sensing the values are cyclic so the frequency of 

positive changes is similar to the frequency of negative changes. In general, highest 
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frequencies appear in the smaller values (e.g. temperature usually changes fairly slowly 

causing most changes reported to be small). Also the set needs to scale to any number of 

values. Based on these characteristics, we construct an initial set of codes as follows:  

Table 17 Initial default codes 

Valu
e 

+0 -1 +1 -2 +2 -3 +3 

Cod
e 

1 
01
1 

01
0 

0010
1 

001
00 

0011
1 

0011
0 

 

With all other values continuing the pattern: Define B as the base of the delta value d 

where  

( )




=−
>

=
01

0(log2

d

ddfloor
B  

The code C is constructed as a string of 2B + 3 bits. The first B+1 bits are 0s followed 

by the binary representation of |d| (which will be B+1 bits), and a sign bit. For example, if 

d is 57 then B is 5. Then C is constructed as six 0 bits, followed by the binary 

representation of |57| (i.e. 111001), followed a 0 sign bit since 57 is positive. The entire 

code C is then 0000001110010. 

If the minimum and maximum allowed for the value are known, then the 1 bit in the 

center can be removed for the longest set of codes. For example, in the codes for -3 to +3 

above, if the 1 bit in the center of the codes for -2, +2, -3, and +3 was removed, the 

leading 00 would be enough for the decoder to accurately decode those symbols. The 

initial static codes for values ranging from -127 to 127 are shown in Table 18. The 

leading 1 bit in the number is considered to be part of the prefix since it is static for the 

entire level of the tree. 
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Table 18 Default codes 

Level Bits prefix suffix range values 
0 1 1  0 
1 3 01 0...1 -1.1 
2 5 001 00...11 -3,-2,2,3 
3 7 0001 000...111 -7,...,-4,4,...,7 
4 9 00001 0000...1111 -15,...,-8,8,...,15 
5 11 000001 00000...11111 -31,...,-16,16,...,31 
6 13 0000001 000000...111111 -62,...,-32,32,...,63 
7 14 0000000 0000000...1111111 -127,...,-64,64,...,127 

 

Using bitwise operators the floor (round down) of log base 2 can be calculated in 

logarithmic time with respect to the maximum value of d using Algorithm 1. The 

example shows getting the base for a one byte value. The notation bxxxx is used to 

indicate a binary number, for example  b10000 = 16. 

Algorithm 1 FloorLog2Byte(d) 
Objective: Calculate the base of a value 
Input: Delta value d 
Output: The base B of value d 
 B = 0 
 If d = 0 
  B = -1 
 Else 
  d := |d| 
  If d >= b10000 
   rightBitShift(d, 4) 
   B := B bitwiseOr b100 
  End If 
  If d >= b100 
   rightBitShift(d, 2) 
   B := B bitwiseOr b10 
  End If 
  If d >= b10 
   B := B bitwiseOr 1 
  End If 
 End If 

The value is then bit shifted to fill in the B + 1 prefix bits and appended to the output 

stream.  
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In order to test the validity of this initial default set, we compressed each of the 

datasets using only these codes. Figure 22 shows the results of the TinyPack initial codes 

(TP-Init) compared to the standard Deflate algorithm, S-LZW, and the LEC codes. 
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Figure 22 Initial codes compared to deflate, S-LZW, and LEC 

For all the datasets our initial codes actually compressed slightly better than any of 

the other methods except for the N-CET Track dataset where S-LZW, LEC, and our 

initial codes had nearly identical performance. This is due to the high degree of variance 

in that dataset. As expected, the Deflate algorithm, which does not specifically target 

sensor network data, performed significantly worse for most of the datasets. The 

ZebraNet and aircraft health datasets both contain significant runs of unchanging data 

which the Deflate algorithm takes advantage of so it performed relatively well on those 

datasets compared to the sensor network specific algorithms. 

5.2. TINYPACK WITH DYNAMIC FREQUENCIES (TP-DF) 

In order to use Huffman-style compression, the frequencies of the different data 

values must be known. However, in real-time systems there is often no time to collect all 

the data and count the total frequencies of all the values before sending the currently 

collected data. To avoid the need to transmit them, the frequencies from the last frame of 

data can be used. The frequencies are calculated both at the source and the destination to 
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avoid the need to transmit the frequency tables. The trees and codes are updated at the 

beginning of each frame. Naturally, values that are in the possible range but do not 

appear in a frame are assigned a frequency of zero. 

Since the values are typically densely clustered around 0 and sparsely scattered far 

from 0, the frequencies are stored in a hash table. The hash for the value is the last eight 

bits using 2’s compliment for negative numbers so the values from -128 to 127 fit neatly 

into the table. The hash table is chained and colliding values are stored in a list in the 

hash table bucket. This keeps the RAM requirements reasonably low while still allowing 

for fast lookups. 

In order to capitalize on the dynamic characteristics of sensor data we add weight to 

the most recent values in order that recent occurrences have a higher impact than past 

occurrences but the history is not entirely forgotten. We replace the frequency table with 

a weighted frequency table and define a weighting factor M such the occurrence of a new 

value is given twice the weight of the value observed M samples ago. The weighted 

frequency F[d] for a value d appearing in the nth sample is updated by the following 

equation: 

[ ] [ ] M

n

dFdF 2+=  

In our experiments we set M equal to the one quarter of the frame size. At the end of a 

frame when the tree is updated, the weighted frequencies are normalized to reset n to 0 

and prevent overflow. Also any values with a normalized frequency less than .001 are 

assigned a frequency of 0 and removed from the list of counted values. Algorithm 2 runs 

for each delta value in a sensed vector. 
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Algorithm 2 CountAndEncode(d,  n, M, S, F) 
Objective: Maintain count of frequencies and encode data 
Input: Delta value d, count n, weighting factor M, frame size S, frequency table F 
 Output: Frequency table updated and code appended to stream 
 If Hash(d) in F 
  F[d] := F[d] + 2^(n/M) 
 Else 
  F[d] := 2^(n/M) 
 End If 
 C := LookupCode(d) 
 AppendToStream(C) 
 n := n + 1 
 If n = S //New frame 
  n = 0 
  For every F[x] in F 
   F[x] := F[x]/(2^(S/M)) 
   If F[x] < .001 
    F[x] := 0 
   End If 
  End For 
  UpdateCodes(F) 
 End If 
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Figure 23 Frame size analysis for tinypack with dynamic frequencies 

We ran TP-DF on all the datasets with a varying frame size. Results are shown in 

Figure 23. When the frame size was small, the overhead for creating a new frame had a 

significant impact on the compressed size. When the frame size was very large, the codes 

were not updated frequently enough to keep up with the dynamic characteristics of the 

data, thus again negatively impacting the compression size. 
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Frame sizes between 500 and 1500 samples per sensor had roughly the same impact. 

Thus, for our experiments, we set the frame size to be 512 samples. 

5.3. TINYPACK WITH RUNNING STATISTICS (TP-RS) 

In cases where the number of possible values is very high or memory is very limited, 

storing the frequency table can be too costly since a standard Huffman tree on that much 

data would require more RAM than many sensors have available. For example, storing 

the frequency table for a single 4-byte integer if the values covered the entire possible 

range would require over 8MB of RAM while Crossbow Technology’s [15] popular 

Mica2 and MicaZ motes have less than 1MB of total memory. In these cases the 

frequencies can be approximated by maintaining running statistics such as the mean and 

standard deviation. Because we use delta values, it is not necessary to know the 

distribution of the data; only the distribution of how the data changes. This remains much 

more consistent in all of our datasets. 

Beginning with the average and standard deviation that the default codes would 

produce the running average and standard deviation can be calculated over a window of 

size W. The running average E(d) updates when the nth value d is sampled by the simple 

equation: 

( ) ( ) 1

11
−

−+= nnn dE
W

W
d

W
dE  

In the same way, the average of the squares of the values can be maintained. We can 

compute the standard deviation σ using the well known formula: 

( ) ( )( )22 dEdE −=σ  
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The frequency of a value occurring in a stream divided by the total number of values 

in the stream is referred to as the probability of that value. In a Huffman tree the 

probability of each leaf node is the probability of that value occurring in the stream and 

the probability of a non-leaf node is the sum of the probabilities of each child node. The 

probability of the root is 1. The probability of each node was shown by Shannon [4] to be 

ideally half the probability of its parent, so the level of a node in the tree should be –

log2(P) where P is the probability of the node. Using the statistics calculated the 

probabilities of each value can be approximated. Then the tree can simply be expressed 

as a table containing the number of leaf nodes that should be at each level. Therefore, the 

Huffman tree in Figure 19 can be compressed into Table 19 where the table is stored on 

the sensor as an array 1-indexed on the tree level. 

Table 19 Compressed tree 

Level Count 
1 1 
2 0 
3 2 
4 0 
5 4 
6 8 

 

The code strings for the values can then be generated in logarithmic time. 

These codes are generated by creating a base code similar to a prefix for each level in 

the tree and using the position of each node at its level. The binary base for all nodes at a 

level in the tree is generated by adding the base and count of the previous level and 

multiplying by 2 (appending a 0) with the base for the root initialized to 0. For example, 

suppose the statistics approximated a tree with one node at level 1 and 1, 3, 4, and 4 



 

 

72 

nodes at levels 3, 4, 5, and 6 respectively for values of 0 to 12. The base generation for 

these values is shown in Table 20.  

Table 20 Base generation 

Level Count Binary Generation Base 
1 1 1 0 0 
2 0 0 (0+1)*10 10 
3 1 1 (10+0)*10 100 
4 3 11 (100+1)*10 1010 
5 4 100 (1010+11)*10 11010 
6 4 100 (11010+100)*10 111100 

 

The code for a value is generated by adding the value’s position in the level to the 

group’s base. Again, all the arithmetic is done in binary. Continuing the above example, 

the generation for the codes of these values is shown in Table 21. 

Table 21 Code generation 

Value Level Position Base Generati
on 

Code 

0 1 0 0 0+0 0 
1 3 0 100 100+0 100 
2 4 0 1010 1010+0 1010 
3 4 1 1010 1010+1 1011 
4 4 2 1010 1010+10 1100 
5 5 0 11010 11010+0 11010 
6 5 1 11010 11010+1 11011 
7 5 2 11010 11010+10 11100 
8 5 3 11010 11010+11 11101 
9 6 0 111100 111100+0 111100 

The probability of a level is computed as the sum of the probabilities of the nodes at 

that level. Since the probability of a node at level L is ideally 2-L, the probability of a 

level is defined by: 

( ) ( )( )( )LLCountLP −= 2  

The probability of the table P(T) is defined as the sum of the probabilities of all the 

levels. For the table to generate accurate codes, P(T) must be less than one; however, the 
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higher it is, the more compact the code are. Thus, the following relationship should hold 

(where H is the height of the tree): 

( ) ( )( )( ) 12
1

==∑
=

−
H

L

LLCountTP  

Events such as changes in values are often assumed to follow exponential 

distributions. Experiments confirmed this in our datasets allowing confidence intervals to 

be used to approximate the ideal number of nodes at each depth of the tree. The values 

are assigned to their ideal levels rounding down so that P(T) remains less than 1. Then 

the table is adjusted from the top down using Algorithm 3 so that nodes are pushed 

upward in the tree until P(T) = 1. 

Algorithm 3 FilterUp(T, H) 
Objective: Produce optimal codes by getting P(T) = 1 
Input: Table T where T is simply the array of the counts, Height of tree H 
  
Output: T adjusted so that P(T) = 1 
 P(T) := 0 
 For L From 1 to H 
  P(T) := P(T) + T[L]*2^(-L) 
 End For 
 For L From 1 to H-1 
  //Get the highest number that can possibly move 
  move_count := Floor( (1- P(T))/(2^(-L-1))) 
  //Don’t move more than are there 
  move_count := Max(move_count, T[L]) 
  //If move_count is 0 the next two lines do nothing 
  T[L] := T[L] + move_count 
  T[L+1] := T[L+1] – move_count 
 End For 

The window size analysis for the running statistics was almost identical to the frame 

size results using dynamic frequencies (shown in Figure 23). Again the experiments were 

run with a window size of 512.  
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Figure 24 shows the results of running both the dynamic frequencies (TP-DF) and 

running statistics (TP-RS) over the datasets compared to the other methods. The running 

statistics generally performed slightly poorer than dynamic frequencies except on the 

Intel Labs dataset. The data in this set is more precise and follows a cleaner statistical 

pattern than the others. 
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Figure 24 Tinypack with dynamic frequencies and running statistics 

5.4. ALL-IS-WELL BIT 

Most sensor applications send a vector of values (e.g., timestamp, temperature, 

humidity) at each sampling interval. Often in the data sets studied all the values in a 

sample were exactly equal to the previous corresponding value. A bit can be appended to 

the beginning of the packet indicating whether or not this has occurred (obviously if it 

has, no more data needs to be sent for that packet). In protocols with variable sized 

packets or packets that are small compared to the size of a vector of readings, this could 

introduce additional savings. This idea has been used several times previously in sensor 

networks [19][20][21]. 

The datasets were affected differently by adding this. Figure 25 shows the effects of 

the all-is-well bit (AIW). TP-DF and TP-RS were very similar, so TP-RS was removed to 

avoid cluttering the graph. In each of the TinyPack algorithms the all-is-well bit 
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improved performance for all the datasets except the aircraft health and N-CET tracking 

sets. This is due to the higher level of precision in those datasets. The datasets had a very 

small number of packets where all the values were identical to the previous packet. In 

general, if the application is designed such that sensed values will rarely be exactly equal 

to the previous value (as in high precision data), the all-is-well bit should not be used. 

Additionally, if the sensors send on a predetermined schedule or if the packet headers 

contain consecutive sequence numbers, simply refraining from sending data could be 

used to indicate the same thing as the all-is-well bit. This would remove the overhead so 

no decision would need to be made whether or not to use it. These intentionally unsent 

packets would be easily differentiated from actual drops based on the sequence numbers 

or the error detection discussed in the next section. 

0%

5%

10%

15%

20%

25%

30%

Z
eb

ra
N

et

G
re

at
 D

uc
k

Is
la

nd

In
te

l L
ab

s

N
-C

E
T

T
ra

ck

N
-C

E
T

T
ria

ng
ul

at
e

A
irc

ra
ft

H
ea

lth

co
m

pr
es

se
d 

si
ze

TP-Init

TP-Init-AIW

TP-DF

TP-DF-AIW
 

Figure 25 Effects of all-is-well bit 

5.5. BASELINE FREQUENCY 

In some applications, packets that are uninteresting can be dropped and drops can also 

occur accidentally. Since the compression of the packets depends on the previous packet, 

any loss of a packet causes errors that propagate to all the following packets. Instead of 

reporting the value at each packet as the change in value from the previous packet, we 
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examined the cost of only occasionally changing the baseline of which the change is 

reported. So instead of every packet being a baseline, baseline packets can be sent at 

different intervals and all subsequent packets are expressed as the change in value from 

the last baseline. These baseline packets can then be flagged as high priority so that the 

application will not drop them. Also in lossy environments, these baseline packets can 

require acknowledgement to ensure delivery. We experimented with static baseline 

intervals and using statistics of the data to determine when to send the new baseline. 

Figure 27 and Figure 27 show the effects on compression of changing the baseline 

frequency using static intervals and sending a new baseline when the packet size 

increased above a threshold compared to the average and standard deviation of the 

previous packet sizes. 
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Figure 26 Baseline frequency (static) 
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Figure 27 Baseline frequency (dynamic) 

The results for the statistical approach were scaled using the total number of baseline 

packets sent to calculate the frequency and compared to the results for static frequencies 

for each of the datasets. The average results were almost identical making the static 

methods preferable since they require less processing, are more intuitive to implement 

and parameterize, and were more consistent in their effects. 

As with most compression algorithms, the data is highly susceptible to dropped or 

corrupted packets. If one of the baseline packets is dropped or corrupted, then the data 

following that point would be unable to be decompressed. We experimented on and 

analyzed the cost of retransmitting baseline packets in scenarios with varying degrees of 

error. Error detection and correction are discussed in more detail section 7.  

Figure 28 shows the cost of retransmission of the dropped baseline packets. As 

expected, the cost of retransmission drops quickly as the number of packets between 

baselines increases. The probability of a dropped packet being a baseline and thus 

requiring retransmission is inversely proportional to the number of packets between 

baselines resulting in the hyperbolic shape of the cost curve. 
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Cost of Retransmission (10% Error)
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Figure 28 Retransmission 

As expected, the cost of retransmission drops quickly as the number of packets 

between baselines increases. The probability of a dropped packet being a baseline and 

thus requiring retransmission is inversely proportional to the number of packets between 

baselines resulting in the hyperbolic shape of the cost curve.  
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Figure 29 Compression with retransmission 
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Cost of retransmission was directly proportional to error percentage. The graphs for 

the other error amounts were omitted since the shape of the curves is identical. Figure 29 

shows the total size of the transmitted compressed data including retransmissions of 

dropped baseline packets. This includes dropped retransmissions. For example, with 10% 

error, each baseline packet would be sent an average of 1.111 times and with 50% error, 

each baseline would be sent an average of twice. As the error rate increases, the cost of 

retransmission increases. As in Figure 28 the increased cost is greatest when the number 

of packets between baselines is low. As the number of packets between baselines 

increases, the added cost becomes negligible and the graphs become identical. 

5.6. WORKING WITH REAL VALUES 

TinyPack works most effectively with integers. Our approach could fairly intuitively 

be extended into the real numbers; however, for simplicity in our experiments, we 

expressed reals as integers. In the case where the real values were rounded in the dataset 

to some low number of decimal places, we simply shifted the decimal point. In the case 

of higher precision reals, we split the values into the exponent and mantissa and 

compressed them separately. 

6. PHYSICAL IMPLEMENTATION USING SENSOR NETWORK TEST-BED 

We implemented the algorithms on a network of seven Mica2 sensors running the 

TinyOS operating system. One sensor served as the base station for the network and the 

other sensors were loaded with data from the datasets. The sensors then compressed and 

sent that data to the base station using each of the different algorithms. All the sensors 

were time synchronized and sent data using time division multiplexing. For datasets with 
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more than six sensing nodes, experiments were done on the data from six at a time until 

the data from all sensing nodes had been passed through the network. 

Each experiment was run separately in order that the measurement of one metric 

would not affect the others. For example, if the sensors tracked RAM usage while 

processor utilization was being measured, the results would be slightly inflated. 

6.1. COMPRESSION 

The results from all the previous compression experiments are combined in Figure 30 

which shows the compressed size of each dataset. Shown are the standard Deflate 

algorithm used in most operating systems, S-LZW, LEC, and our approaches: The static 

initial codes (TP-Init), dynamic frequencies (TP-DF), running statistics (TP-RS), and 

each of the TinyPack methods with the all-is-well bit added (-AIW). As expected TP-DF 

performed the best in terms of compression compared to the other algorithms. The all-is-

well bit increased the performance over some of the datasets. 
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Figure 30 Full compression results 
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To summarize, we calculate the entire compression of all the data across every dataset 

and normalized the results to give equal weight to each dataset in Figure 31. The all-is-

well bit added a slight benefit in the average case although its usefulness depends heavily 

on the characteristics of the data sensed. As it can be observed, the TinyPack algorithms 

provide compressed sizes of 11% to 27% outperforming the other methods which range 

from 19% to 50%. 
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Figure 31 Compression summary 

6.2. ACCURACY 

Since the TinyPack algorithms produce approximations of the frequencies of the 

values, a measure of accuracy can be calculated by comparing the lengths of the 

generated codes for each frame to the optimal code lengths determined by generating 

standard Huffman codes. Figure 32 shows the performance of the TinyPack and LEC 

algorithms compared to the performance of a theoretical optimal algorithm. Deflate and 

S-LZW both resulted in greater compressed sizes and are not shown here to allow for 

greater precision in the figure. It should be noted that while standard Huffman coding 

would produce optimal codes, the overhead for sending the new tree at every frame 
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would cause the algorithm to perform much worse than any of the others. No algorithm 

currently exists which produces optimal codes with no overhead. 
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Figure 32 Accuracy 

The data in both Intel Labs and aircraft health remains fairly consistent throughout 

the entire dataset so the approximated codes almost reached the optimal level. 

6.3. LATENCY 

Sending the uncompressed data takes less time in processing but more time in 

transmission so the latency depends on the motes used. In general, however, processor 

speed is much faster than radio data rate for wireless sensors (for example, the Mica2 

mote [15] has a 16 MHz processor and a 38.4 kbps high data rate radio). For the Mica2 

motes, latency is decreased proportionally to the compressed size of the data. Thus, 

TinyPack has a decrease in latency of 80-85% compared to uncompressed data. Latency 

was measured at the base station by querying the system clock at the beginning and end 

of each transmission and at the beginning of each nodes time window to determine the 

processing time. For S-LZW the nodes logged and averaged their own wait times and 

sent that data at the end of the experiment. 
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Latency
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Figure 33 Latency 

For comparison, the S-LZW algorithm was modified to send data as soon as possible 

and it was assumed packets were sent in a constant stream. Figure 33 shows the relative 

latencies scaled to the uncompressed data. In each version of TinyPack adding the all- is-

well bit decreased the latency by less than half a percent so data for the all-is-well bit is 

not shown separately. Deflate is not shown since it requires collecting all of the data prior 

to compressing. Send time is directly proportional to compression (shown in subsection 

6.1) and processing time is directly proportional to the processor utilization (shown in 

subsection 6.5). 

6.4. RAM 

The maximum amount of RAM utilized by each algorithm for each dataset is shown 

in Figure 34. S-LZW is designed to work on any generic dataset and uses the same 

compressor for every value in a sensed vector making the RAM usage constant for S-

LZW. As expected, TP-DF had the highest RAM usage because it stores the frequency 

tables; however, the RAM was still well within the limits of the Mica2, MicaZ, and most 

other sensors. LEC and TP-Init both use very little RAM since the codes are static and 

generated at runtime for each value.  
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RAM Usage
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Figure 34 Ram usage 

6.5. PROCESSOR UTILIZATION 

In order to measure processor utilization, the program counters on each sensor were 

accessed at the start and end of each simulation. For these simulations, the data was 

compressed and not transmitted to prevent the processor utilization from being affected 

by the compression ratio. Figure 35 shows the instruction count for each algorithm scaled 

to show the average instruction count per byte of uncompressed data. As with RAM, the 

static codes used in LEC and TP-Init cause the processor utilization to be very low. TP-

DF and TP-RS required significantly higher processor time than the other algorithms; 

however, due to the nature of the sensor hardware, the savings in energy and latency from 

the reduced data size far outweigh the costs of higher processor utilization. The energy 

usage from processing is included in the results of the energy simulation in Figure 36. 
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Processor Utilization
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Figure 35 Processor utilization 

7. EXPERIMENTAL RESULTS USING A SENSOR NETWORK SIMULATOR 

Experiments were performed using TOSSIM [17], which simulates the open source 

TinyOS operating system that runs on many sensors. TOSSIM simulated Crossbow 

Technology’s MicaZ motes [15] and was used to verify the experimental results as well 

as measure energy consumption and to test the algorithms under larger networks and 

different architectures. In addition to TOSSIM the PowerTOSSIM [18] simulator was 

used. PowerTOSSIM is built on top of TOSSIM and provided the capabilities of 

measuring simulated energy consumption and latency. 

7.1. ENERGY USAGE 

Energy consumed for compressing, writing to memory, and transmitting was 

measured using PowerTOSSIM. Results shown in Figure 36 are again scaled to a 

percentage of the cost to send the data uncompressed and averaged over all the datasets. 

As with latency, the all-is-well bit in each case decreased the energy usage by less than 

half a percent. Energy usage data was not collected for the Deflate algorithm since it was 

included only as a compression benchmark and was not implemented in PowerTOSSIM. 
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As can be seen by comparing Figure 31 and Figure 36, energy results closely matched the 

compression results since most energy is consumed while transmitting the data. 

Energy Usage
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Figure 36 Energy usage  

7.2. LATENCY IN A MULTIHOP ENVIRONMENT 

Experiments were performed to show the effects of the algorithms in a multi-hop 

environment. Sensing nodes sent data to the base station through a varying length series 

of forwarding nodes. For sensors with a slower processor or faster radio, the processor 

utilization becomes a greater factor, but in a multi-hop environment, the algorithms with 

the best compression ratio still outperform the others. Modifying the simulation to use a 

data rate of 2.5 Mbps radio like the Manchester-coded sensors in [16] generated the 

latency results shown in Figure 37. The left graph shows the latency on a single sensor 

and the right graph shows how latency changes with the number of hops. As the average 

number of hops increases, latency approaches sending time since there is no additional 

processing needed when forwarding the compressed packets. After two or three hops the 

algorithms with the best compression ratio have the lowest end-to-end latency even for 

sensors with high speed radios. 
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Figure 37 Latency for high speed radio single and multi-hop 

8. ERROR DETECTION AND RECOVERY 

The first packet in a new frame is sent with uncompressed values. Each additional 

packet is sent using the delta (change) values. If the last value is repeated in the first 

packet of the next frame, the values can be compared to check for the presence of errors 

due to dropped packets or corrupted values in the packets. 

For example, suppose a temperature sensor sensed values at 23, 25, 28, and 29 with a 

frame size of 4. The first frame contains [23, +2, +3, and +1]. Assuming packet 

corruption changed the +3 to -3, the receiver would read the values as 23, 25, 22, and 23. 

When the second frame was sent with 29 as the first value the receiver could see that an 
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error had occurred since the last value (23) does not equal the first value of the next 

frame (29). 

This successfully detects all single bit errors and single dropped packets; however, it 

is possible that multiple errors could cause the values of the compared packets to actually 

be equal although the errors existed. For example a +2 and a -2 could both be dropped. In 

this case the drops would be undetected. 

Since the codes are dynamic, the chances of undetected error constantly changes but 

the codes in all cases were consistently distributed similarly to the static default codes so 

those were used for error analysis. 

Experiments were conducted with errors generated assuming Poisson inter-arrival 

times and results were consistent with the following analysis.  

8.1. DROP DETECTION 

For dropped packets, the probability of a subsequent error "correcting" the value and 

causing the errors to be undetected can be computed using a state diagram and transition 

matrix. The state number is defined as the difference between the value calculated at the 

receiver and the value transmitted by the sender. For example, state 3 represents that the 

receiver believes the value to be 3 greater than it really was and state 0 represents either 

no error or undetectable error. Since transitions can go from any state to any other state 

and the number of states is equal to twice the number of possible values, the diagram is 

far too complex to include. The probability of an error causing a transition from a state X 

to a state Y is 

( ) ( )  11log2 22, −+−−= YXYXP  
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Clearly P(X,Y) = P(Y,X) so the probability of transitioning from X to Y and then from 

Y back to X is just P(X,Y)2. The probability of a second error correcting the value and 

causing both errors to go undetected is represented by transitioning from the initial state 0 

to any state X and back and is 

( ) ( )  0357.2,0 21log42 2 ≈= ∑∑
∞

−∞=

−+−
∞

−∞= x

X

x

XP  

Therefore the probability of two drops going undetected in a frame is roughly 3.57%. 

Since most sensors send a vector of values at each sample the probability of detecting 

multiple errors from dropped packets is (.0357)|V| where |V| is the vector size of the 

sample. 

For example, the Intel Labs dataset contains 2.3 million samples with six values in 

each sample so |V| = 6. In the worst case there will be exactly two drops per frame. 

Assuming 10% packet loss, there would be approximately 115,000 frames each 

containing two dropped packets. The chance of detecting every drop would be  

( )( ) %976.990357.1
1150006 ≈−   

The worst case probabilities are shown for each of the datasets in Table 22. 

Table 22 Probability of drop detection 

Dataset |V| frames probability 
ZebraNet 6 284 99.9999% 
Great Duck Island 8 38226 >99.9999% 
Intel Labs 6 115123 99.9762% 
N-CET Track 4 23143 96.3106% 
N-CET Triangulate 6 11123 99.9977% 
Aircraft Health 2 22937 <0.00001% 

 

The aircraft health data has only two values per vector and so in the worst case, at 

10% drop rate, errors would undoubtedly go undetected. For such datasets, it would be 
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effective to define a smaller frame size to reduce the probability of multiple errors 

occurring in the same frame or to send error detection packets in the middle of the frame 

instead of always sending them at the end. 

8.2. SINGLE BIT ERROR DETECTION 

Assuming the values occur with the probability expected by the default codes, the 

probability of a bit error occurring in the base (prefix) of a code can be determined by 

calculating the expected number of prefix and suffix bits in a code.  

From Table 18 it can be seen that a code at level L has a prefix length L+1 and suffix 

length L. The count of nodes at that level is 2L so the probability of a random sampled 

value being on that level is 2-(L+1). Therefore the expected number of prefix bits E(P) for 

an arbitrarily large set of possible values is:  
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Similarly, the expected number of suffix bits E(S) is: 
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As the height of the tree approaches infinity, E(P) approaches 2 and E(S) approaches 

1. The probability of a bit error occurring in the prefix for large trees approaches 66.67%. 

Calculating for the case where the values can range from -127 to 127 gives 66.98%. Such 

errors would change the expected length of the code and would either be detected at the 

end of the packet transmission or would cause the data to vary so greatly that the 
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probability of a future error correcting the value is exponentially less than if the error was 

in the suffix. 

Suffix bit errors cause the error in value to change in the same way as dropped 

packets. Thus, the probabilities of errors going undetected are one third those of the 

dropped packets. 

8.3. CORRECTION 

If the data is sent based on a sampling interval or if the packet headers contain 

sequence numbers, then the above error detection mechanisms can easily be used to 

reconstruct dropped or corrupted packets. In the case of a single dropped packet, the 

values dropped are equal to the difference between the calculated value at the receiver 

and the value of the error detection packet. For example, assume again that a temperature 

sensor sensed values at 23, 25, 28, and 29. The values encoded and transmitted would 

then be 23, +2, +3, and +1. Assume that the packet containing the +3 value was dropped 

and the calculated value at the receiver is 23+2+1=26. At the end of the frame, the sender 

transmits the non-encoded real value of 29 as the error detection packet. Since 29-26=3, 

the receiver can instantly calculate the missing value as +3. In the case of multiple 

dropped packets, the difference represents the total error over all drops. For consecutive 

drops, we simply divide the total error by the number of drops and assign that value to 

each missing packet. For non-consecutive drops, the values are scaled based on the ratio 

of the previous and next packet surrounding each missing packet.  

We experimented using the same frame size of 512 and a 1% Poisson distributed drop 

rate. Table 23 shows the average error compared to actual value of the dropped packet as 

well and the percentage of errors greater than 1% 
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Table 23 Error correction 

Dataset errors average >1% 
ZebraNet 57 0.18% 2.5% 
Great Duck Island 7642 0.34% 4.2% 
Intel Labs 23035 0.07% 1.3% 
N-CET Track 4607 0.26% 3.4% 
N-CET Triangulate 2231 0.19% 2.9% 
Aircraft Health 4586 0.12% 1.7% 

 

9. CONCLUSIONS AND FUTURE WORK 

The TinyPack suite of protocols effectively compresses data while not introducing 

delays and even reduces latency compared to sending uncompressed data. TinyPack is 

effective on all sensor networks which use time-based sampling and is especially 

effective on systems with high granularity or low local variance. 

TP-Init required the least RAM and by far the least processing time of all the 

TinyPack algorithms but resulted in the poorest compression. TP-DF achieved the 

greatest compression ratios, but required more RAM than the other methods. TP-RS 

compressed almost as well and required much less RAM. While TP-DF compressed most 

effectively, systems with low RAM would benefit from using TP-RS and systems with 

very low RAM or high cost for processor utilization could use TP-Init for best results. 

While the focus of this paper has been lossless compression, TinyPack could be 

modified to continue sending change values of zero until the change exceeded some 

threshold. Additionally, packets could be dropped to indicate no change had occurred. In 

systems which could tolerate some rounding error or lossiness, this could dramatically 

increase the compression with a small degree of error. 
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In many applications sensors are not only temporally located but also spatially located 

(sensors sense data similar to that of a nearby sensor). It could prove effective to express 

the delta values as the change from the value of a nearby sensor instead of the change 

from previous value or some hybrid of the two. 
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IV. ENERGY EFFICIENT DISTRIBUTED GROUPING AND SCALING FOR 
REAL-TIME DATA COMPRESSION IN SENSOR NETWORKS 

Wireless sensor networks possess significant limitations in storage, bandwidth, and 

power. This has led to the development of several compression algorithms designed for 

sensor networks. Many of these methods exploit the correlation often present between the 

data on different sensors in the network. Most of these algorithms require collecting a 

great deal of data before compressing which introduces an increase in latency that cannot 

be tolerated in real-time systems. We propose a distributed method for collaborative 

compression of correlated sensor data. The compression can be lossless or lossy with a 

parameter for maximum tolerable error. Error rate can be adjusted dynamically to 

increase compression under heavy load. Performance evaluations show comparable 

compression ratios to centralized methods and a decrease in latency and network 

bandwidth compared to some recent approaches. 

1. INTRODUCTION 

Many real-time systems incorporate wireless sensors into their infrastructure. For 

example, some airplanes and automobiles use sensors to monitor the health of different 

physical components in the system, security systems use sensors to monitor boundaries 

and secure areas, and armies use sensors to track troops and targets. It is well known that 

wireless sensor networks possess significant limitations in processing, storage, 

bandwidth, and power. In addition, with the emergence of collaborative on-demand 

sensor applications [50], a need exists for efficient collaborative data algorithms which 

do not require delays in processing or communication while still reducing memory and 

energy requirements. 
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Data compression has existed since the early days of computers [1][2][3]. Many new 

compression schemes for wireless sensor networks have been proposed. Many emphasize 

low energy profile [42][43] to function in the constrained wireless environment. Others 

exploit the physical layout of the sensors [5][6], or the spatio-temporal correlation often 

present in the data to achieve better compression. GAMPS [9] effectively uses spatio-

temporal correlation by grouping correlated sensors and using amplitude scaling to relate 

the streams of values from the correlated sensors, but is centralized and requires 

collecting all of the data before compression. The distributed ASTC approach [41] 

performs the compression in-network by building and merging clusters and cliques of 

related sensors. It gives good compression ratios, but generates additional peer-to-peer 

communication and heavier energy usage from the increased processing. 

We propose a distributed collaborative method designed for real-time sensor 

networks such as those used in the sensor cloud [50]. Correlated sensors form groups and 

use amplitude scaling on their signals to express their sensed values in terms of other 

sensors in the group. The grouping and scaling is done in a distributed fashion in real 

time. This is similar to the method used in GAMPS[38] which employs a centralized 

algorithm on the data after it has all been collected; however, GAMPS provides no 

reduction in bandwidth or energy use on the sensors and is not designed for real-time 

systems. 

If some loss in the accuracy of the data is tolerable, then the potential for compression 

increases greatly even for small loss. In our work here, we include a parameter for the 

maximum tolerable error for a single sensed value. For sensors with multiple inputs, the 

parameter can be set globally for all signals or individually for different error tolerance 
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for each type of sensed value. Setting any max error to 0% naturally achieves lossless 

compression. We provide in-depth analysis and discussion of different methods for 

measuring error and compare the compressibility and actual error for variations methods 

of utilizing the error tolerance. 

We then compare the results of our approach to the existing spatio-temporal existing 

methods such as GAMPS [38] and ASTC [41]. We also compare our method to the single 

sensor TinyPack [28] and LEC [43] methods and compare our prediction methodology 

with PREMON [40] and a sensor network adaptation of Kalman Filters [39]. Experiment 

and simulation results show significant reduction in bandwidth, latency, and energy 

consumption compared to the other methods. 

In summary, this paper makes the following contributions: 

Novel algorithms for lossy collaborative compression in sensor networks with tunable 

maximum loss 

Discussion and analysis of how to select and handle tolerable loss in the data 

An ultra low-weight prediction mechanism 

An analysis of several methods of grouping and clustering 

Novel and effective error recovery techniques 

2. RELATED WORK 

2.1. GAMPS 

A lossy multi-stream compressor is proposed in [38]. GAMPS compresses the data 

from multiple sensors which sense correlated data using mathematical techniques to 

groups the sensors which have highest correlation to each other. One sensor in each 

group is selected as the baseline and the rest of the sensors in the group report the 
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difference in their sensed values from the baseline. The values are rounded based on a 

threshold parameter to achieve compressed sizes under 1% of the original size.  

For a single sensor, the series of values is scanned until the difference between the 

maximum and minimum exceeds twice the error threshold. The entire sequence 

(excluding the last one which caused the excess difference) is approximated as the 

average of the maximum and minimum. In this way the approximation never differs from 

the original by more than the error threshold. In order to keep the time windows 

consistent across all sensors in a group, the time slices are all reset when any sensor 

requires it. 

A baseline sensor exists in each group. Linear regression models are used to find the 

closest linear function which maps each sensor to the baseline. Again, if the error exceeds 

the threshold a new function is found. 

The actual grouping is dependent on the above processes. An initial time window is 

set and the groups are set for each time window using a heuristic solution to the Facility 

Location problem. Initially all the sensors are in one group. Then a base sensor is chosen 

at random and sensors are added to its group as long as the cost of adding them is less 

than the cost of starting a new group. After the groups are set for each time window, the 

time windows are tested to see if halving or doubling will increase the compressibility of 

the data. 

This method is very effective but requires full centralized knowledge of all the data 

before compression is possible at all. 
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2.2. ASTC 

In [41], a distributed, lossy, spatio-temporal approach is introduced. One-hop clusters 

comprised of correlated sensors are formed based on previous sensed values. A select 

number of the sensors in a cluster are chosen to form a master cluster on which temporal 

correlation is used to form a model. This model is sent to neighboring clusters, which can 

merge with the original cluster forming larger clusters. 

Individual nodes which do not remain correlated to their respective clusters are 

evicted. These evicted nodes then listen to their neighboring clusters and can either join 

an existing cluster or form a new cluster depending on whether or not any of the 

neighboring clusters accept them. 

2.3. PREMON 

PREMON [40] uses an algorithm similar to that of MPEG and JPEG compression. 

Sensor correlation is computed as vectors to macro blocks which are used to build a 

model for the data. The sensors then only report deviations from the model. All the 

computation of the models is done in a centralized fashion at the sink and the models are 

transmitted back to the sensors. The model is periodically reconstructed and retransmitted 

to the sensor nodes. 

2.4. LEC AND TINYPACK 

A number of very lightweight compression codes are introduced in [43] and [28]. 

LEC consists of a set of delta compression codes based on JPEG compression and 

applied to sensor nodes. A similar set of codes is derived in TinyPack which is more 

highly tuned to the temporal correlation observed in many real life datasets. These codes 
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are used as the basis for the delta compression used in reporting the deltas from the 

baseline values in this work. 

3. BACKGROUND 

3.1. COLLABORATIVE COMPRESSION 

Compression on a single sensor can often be achieved by exploiting temporal 

correlation in the data. In the single sensor TinyPack algorithms [28], each sensed value 

is compressed using the most recent previously sensed value as a baseline and expressing 

the value as a function of that baseline. In multi-sensor environments, neighboring 

sensors can be used as the baseline allowing for greater compression under the 

assumption that the values from the two sensors are correlated. 

3.2. SPATIAL LOCALITY 

Wireless sensor networks where multiple sensors are deployed over an area generally 

exhibit spatial locality (data from readings taken by sensors geographically near each 

other are correlated). Any type of data which changes in a continuous fashion across 

space will be temporally located such as temperature, humidity, location of tracked 

objects, light intensity, distance to a sensed event, etc. In fact, it can be demonstrated that 

any network deployed over a certain area will either generate spatially located data or 

random noise.  

Consider an arbitrary sensor network sensing a set of values {v1, v2, …, v2N} sensed at 

locations {x1, x2, …, x2N} where N is an integer. Assume that the values are not 

correlated. Then placing sensors at locations {x1, x3, …, x2N-1} and {x2, x4, …, x2N} would 

yield completely different values. Thus, offsetting the sensor locations would generate 
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entirely different data. Therefore, excluding applications which generate pure noise, we 

can assume that readings at nearby sensors will be correlated. 

Note that this does not apply to situations where the sensors are deployed individually 

on specific locations such as those placed on animals for location tracking. These 

applications do not necessarily exhibit spatial locality (although they may) and were not 

included in this study. 

4. TOLERABLE ERROR AND PREDICTION 

We consider a parameterized maximum tolerable error percentage Emax. Instead of 

reporting every value exactly as sensed, if a value deviates from some baseline less than 

Emax, the baseline value can be used instead. This allows for much greater compression 

while keeping the error bound by the tunable maximum. This parameter can be adjusted 

based on the application need, i.e., in real-time, but can tolerate some error (lossy), or 

non-lossy, but can tolerate some latency. 

4.1. MEASURING ERROR 

A common method of measuring error, E, between a reported value, VR, and the 

actual value VA, is the following formula. 

 
A

RA

V

VV
E

−
=  

Unfortunately, that measure is dependent on the units used. For example, if 

temperature is measured in Kelvins, degrees Celsius, or degrees Fahrenheit, the 

calculated error can vary greatly for the exact same data. 

Consider a sensor which reported a temperature of 2°C when the actual temperature 

was 1°C. Table 24 shows the calculated error for the exact same data expressed using the 
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three most common temperature scales. The calculated error ranges from 0.365% to 

100% for the exact same data. 

Table 24 Inconsistent error measure 

 Celsius Fahrenheit Kelvin 
Actual 1 33.8 274.15 

Reported 2 35.6 275.15 
Calculated Error 100% 5.32% 0.365% 

 

Even just within one scale the error can be misleading. If a sensor is measuring 

temperature and reporting the value in degrees Celsius, when the temperature is very 

close to 0 a small change in the value could cause a drastic increase in the error 

percentage. Also, when the actual value is 0, the error percentage is undefined. 

In practice, the best way to set an upper bound for error would be to explicitly set the 

bounds in terms of the scale. For example, when set by the end user, the tolerable error 

for a temperature reading could be +/- 1°C. For analysis, however, it is useful to have a 

method of normalizing the error to a percentage. One method to do this would be to 

divide the difference by the maximum range of the sensor; however, since this range can 

be very large compared to the actual sensed range, the error percentages would be 

artificially low. For our analysis we use the maximum range of actual sensed values as 

the denominator for the error normalization  

Table 25 Consistent error measure 

 Celsius Fahrenheit Kelvin 
Actual 1 33.8 274.15 

Reported 2 35.6 275.15 
Observed minimum 0 32 273.15 
Observed maximum 40 104 313.15 

Range 40 72 40 
Calculated Error 2.5% 2.5% 2.5% 
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. Table 25 shows the calculated error for the same data assuming the temperatures 

measured range from 0 to 40 degrees Celsius and demonstrates that it is consistent across 

scales. 

4.2. BASELINE SELECTION 

Let D be the maximum value by which a particular sensed value can differ from the 

baseline in order to maintain an error percentage within the upper bound Emax. Any time a 

value differs from the baseline by more than D, a new baseline must be selected. The 

easiest approach would be to simply use the current sensed value as the new baseline; 

however, different characteristics of the various signals could afford better results for 

other methods. 

We consider six different methods for selecting a new baseline and analyze the 

compression and actual error that result for varying maximum error. The first method 

simply selects the current value, V, as the new baseline. Next, if the data is assumed to 

increase or decrease steadily over time, then the new baseline could be set as V+D (where 

D is negative when the values are decreasing). However, if the data has a general trend of 

increase or decrease but has small local fluctuations, the new baseline could be V+D/2. 

We also consider V-D/2 which penalizes rapid increase and decrease and performs better 

when the data trends back to the average. The last two methods utilize a jumping 

baseline, i.e. the current baseline is increased or decreased based on the previous 

baseline, B, not the current value. The reported value is always evenly divisible by the 

baseline jump width which is determined by the max tolerable error. They are denoted 

B+D and B+D/2 and are similar to the second and third methods but are more 
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compressible since the number of possible baselines is lower (all will all be in the form of 

initial_baseline + kD/2 where k is an integer based on the max error). 

The analysis was performed using a publicly available dataset from a study at an Intel 

Berkley laboratory [12]. The data contains over 13 million readings for temperature, 

relative humidity, light intensity, and voltage from 54 sensors deployed in the lab. Figure 

38 shows the results comparing the baseline update messages needed as a percentage of 

the messages needed to send the data uncompressed. 
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Figure 38 Messages sent on varying max error 

Voltage generally exhibited minor fluctuations causing both of the +D methods to 

perform poorly. Both of the B+ methods performed well compared to the others. Since 

they have additional compressibility, they are significantly more effective for 

compression. 

We also computed the actual error generated by each method over the same datasets 

by comparing the compressed values with the original values. Results are shown in 

Figure 39.  
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Light intensity had the lowest actual error for the V method since in the dataset it 

regularly experienced large changes and then remained very consistent for long periods. 

The jumping baselines were at or near the minimum for all the experiments. 

Additionally, the jumping baseline methods provide additional compressibility due to the 

increased frequency of the baseline values. 
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Figure 39 Actual error on varying max error 

4.3. BASELINE COMPRESSION 

We extend the benefit of jumping baselines for compression by implementing a 

simple prediction mechanism. A data stream can be in one of three states: trending up, 

trending down, or staying somewhat constant. If data is trending either up or down, then 

the next baseline should be selected as far in the direction the data is trending as it can be 

within the error bounds. If the data is remaining relatively constant, then the next baseline 

should be selected as close to the current value as possible. We determine the state by 

tracking whether the new baseline is above or below the previous baseline for two jumps. 

If both jumps were in the same direction, the data is trending either up or down 

depending on the direction of the jumps. The prediction only requires caching the 
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previous value and the previous jump direction. The additional computation is also 

trivial. 

Table 26 Prediction example 

Seq no Sensed 
value 

Last 
value 

Last 
jump 

This 
jump 

Baseline 

1 242 237 -- -- 240 
2 253 242 -- up 250 
3 261 253 up up 270 
4 276 261 up -- 270 
5 284 261 up up 290 

 

For example, Table 26 shows an example of a light sensor with a maximum error set 

at +/- 10 lux. 

Algorithm 1 CheckReading(v, p, S, d) 
Objective:  Check the current reading and select a new 
   baseline if needed 
Input:  Sensed value v, previous value p, max variance S,       
  previous jump direction d 
Output: Reported value r 
 If |p – v| > S 
  r := NearestBaselineTo(v) 
  If v > p And d == UP 
   r := r + S/2 
  Else if v < p And d == DOWN 
   r := r – S/2 
  End If 
  If v > p 
   d := UP 
  Else 
   d := DOWN 
  End If 
  p := r 
 Else 
  r := p 
 End If 

Initially, the baseline is selected as close as possible to the actual sensed value. When 

the upward trend is established at sequence number 3, the baseline is selected as high as 

possible while remaining within the error tolerance of +/- 10. Then as the data continues 
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to trend upward, the baseline does not require as many jumps while never exceeding the 

maximum tolerable error. This process is shown in detail in Algorithm 1. 

 

4.4. ENTROPY RESULTS 

The total amount of bytes needed to transmit a stream of data can be measured by the 

entropy of the dataset. Assuming no additional prediction methods are used for a data 

stream, the entropy of the data (as defined in [4]) provides a measure of the minimum 

number of bits that would be required to transmit the data if some theoretical optimal 

compression was used. Thus, entropy is an effective means of calculating the total 

“compressibility” of a stream of data. Assuming no predictions or other transformations 

are used, the theoretical minimum number of bits required to transmit a value can 

calculated with the following formula, where P is the probability of that value appearing 

in the data stream (count of that value divided by total messages in the stream): 








=
P

bits
1

log2  

We used entropy to measure the effectiveness of the jumping baseline compression 

and prediction and compared the results to other prediction methods. PREMON [40] is an 

MPEG based prediction algorithm designed specifically for sensor networks. Kalman 

Filters are also commonly used to predict data streams. We compared against a Kalman 

filtering scheme which has been adapted for sensor networks [39]. PREMON and 

Kalman filters perform sophisticated prediction, reducing the number of messages that 

need to be sent while the jumping baseline method can afford higher compressibility. We 

also included the simplistic approach of merely rounding the data to the nearest baseline 

since that gives a similar reduction in entropy. 
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PREMON and rounding were configured to use the same maximum tolerable error 

and the Kalman Filters (which are not bounded on error) were configured to have the 

same total calculated error as the jumping baseline method. 

Total number of messages sent as a percentage of the total number of messages in the 

original data for the Intel Labs dataset is shown in Figure 40. The entropy of the 

transformed data as a percentage of the original entropy for the same data is shown in 

Figure 41.  

As expected, Kalman filters and PREMON required fewer messages to be sent due to 

more accurate prediction, but since the size of the messages would need to be higher, the 

jumping baselines performed best in terms of overall entropy. Thus compression will be 

more effective using the jumping baselines over the other methods. 
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Figure 40 Messages sent on varying max error for different prediction algorithms 



 

 

108 

Round Kalman PREMON Baseline(Single)
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Figure 41 Entropy on varying max error for different prediction algorithms 

5. COLLABORATION 

5.1. CORRELATION 

Collaboration between the sensors can then be used to further enhance the 

compression of the entire dataset. Correlated sensors can transmit the count of jumps in 

which their baselines differ. The sensor chosen as the base sensor serves as a parent node 

in the correlation tree. Then the child node can report its values using its offset from the 

parent sensor's baseline as its baseline. The algorithm used is identical to Algorithm 1 

except the total count of baseline jumps is reported as an offset of the other sensor instead 

of an absolute. 

For example, consider two light sensors where sensor S2 is reporting its values based 

on sensor S1. Assume again the maximum error is +/- 10 lux. Table 27 shows a sample 

data stream for the two sensors including the actual sensed values, the message sent, and 

the final reported value as interpreted at the sink. 
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Table 27 Collaboration example 

Seq 
no 

S1 
sensed 

S2 
sensed 

S1 
sent 

S2 
sent 

S1 
final  

S2 
final 

1 237 259 +24 +2 240 260 
2 242 266   240 260 
3 253 271 +1  250 270 
4 261 278 +2 -1 270 280 
5 275 282   270 280 

 

At the first sensed values, the sensors have no baselines, so S1 uses 0 as its baseline 

and S2 uses S1's initial value as its baseline. In the message at sequence number 3, S2 

would have needed to transmit a jump message if it were reporting its own values, but 

since S1 reported a jump, S2's interpreted value automatically jumped. Two noteworthy 

things happened at sequence number 4. The prediction detected the upward trend in S1's 

data and selected the highest baseline within the tolerable error, and S2 corrected its offset 

from S1's baseline. 

5.2. CODES 

The codes used for transmitting the compressed baseline jumps for individual or 

correlated sensors are drawn from those used in [28]. An example set of codes for the 

delta values of -127 to +127 is shown in Table 28.  

Table 28 Delta codes 

prefix suffix range values 
1 0...1 -1.1 
01 00...11 -3,-2,2,3 
001 000...111 -7,...,-4,4,...,7 
0001 0000...1111 -15,...,-8,8,...,15 
00001 00000...11111 -31,...,-16,16,...,31 
000001 000000...111111 -62,...,-32,32,...,63 
0000001 0000000...1111111 -127,...,-64,64,...,127 
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For example, a change value of +3 would be transmitted as 00101 and -3 would be 

transmitted as 00111. The pattern can continue for values as high as are needed. If the 

maximum value is known, the last level need not have a 1 at the end of the prefix. 

These codes can be used to both encode and decode very efficiently with minimal 

processor utilization. The value expressed by a code can be computed by the following 

equation where B is the number of 0 bits before a 1, S is the first bit of the suffix (sign 

bit) and k is the number represented by the remaining suffix bits interpreted as an integer: 

( ) ( )kBS +− 21  

For example, the value -14 would be represented by 0001  1  110 where prefix=0001 

(thus B = 3 and 2B = 8), S = 0, and k = 110 = 6. So (-1)(8+6) = -14. 

5.3. MESSAGES 

There are only two message types sent by the sensors: baseline jumps, and parent 

sensor changes (rebellions). Since these rebel messages are expected to be infrequent 

compared to the baseline jumps, it would be inefficient to assign an entire bit to 

distinguish between the message types. Instead a value is selected from the table to use as 

the indicator and all the other values are shifted down one. For our experiments, we used 

-15. So if a value started with 00011111, it is interpreted as a rebel message and the rest 

of the bits contain the new parent node ID. Then an actual -15 message would be encoded 

like -16 and so on. Node IDs are compressed by using the minimum number of bits 

needed for the total number of nodes. For example, if there were 33 to 64 nodes 

deployed, the IDs would use 6 bits. 

Another small gain can be obtained by shifting past known invalid values. For 

example, if a data stream is trending up (using the prediction method), +1 is an invalid 
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jump since it would jump by at least +2. So any positive change automatically has 

another +1 added to it. This often had only a slight benefit but for data streams that 

steadily increase or decrease over a long period saw an additional 20-30% drop in the 

compressed size. 

5.4. GROUPING 

Not all sensors in a network are necessarily correlated and the values from sensors 

that are correlated may not be equal. Distinct groups of sensors which exhibit higher 

correlation tend to emerge and the values at one sensor can often be more efficiently 

transmitted as a difference from another sensor's values. 

We compare using two very simple and lightweight grouping mechanisms: sink side 

and node side. 

The sink side approach assumes that the sink is not another sensor node and does not 

have the same energy and processing constraints. It also assumes that the sink can 

communicate back to the sensors. The node side method makes no assumptions. 

In the sink side algorithm, the sink performs the facility location computations as 

done in [38] over a window of the recent data and reports back to the nodes the ideal 

parent node for that window. 

In the node side algorithm, the nodes maintain an array indexed by other node IDs 

with two entries. The first entry contains the current baseline jump distance from that 

node and the second entry contains the number of times the first entry has changed. Every 

time a node would need to send a jump message from its current parent, it finds the 

minimum jumps in the array and selects that node as its new parent. If two nodes select 
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each other as the parent, the tie is broken by node ID and the node with the lower ID is 

selected as the parent. 

If a node's parent node selects a parent, the node does not need to select a new parent. 

It merely calculates the value of its parent based on the reported value from the 

grandparent node. If the grandparent node is not in radio range however, the node will 

need to select a new parent. 

6. RESULTS 

6.1. BANDWIDTH 

Results for total bandwidth requirements are shown in Figure 42. We compared 

results between our baseline compression on single sensor, the GAMPS algorithm, 

ASTC, and our collaborative compression approach. The sink side algorithm performed 

almost identically to the node side algorithm but slightly worse due to the increased 

amount of messages sent and is not included in the graphs. 

Bandwidth is shown as a percentage of the bandwidth required to send the data 

uncompressed. We assumed uncompressed data would be transmitted with the minimum 

number of bytes required to cover the observed range of possible values. Voltage only 

required one byte to send uncompressed while temperature, humidity, and light intensity 

required two bytes for each sensed value. 

Collaborative baseline compression performed best in terms of required bandwidth 

compared to the other approaches for all data types studied except for voltage. The single 

sensor baseline compression performed best for the voltage because voltage is included in 

the dataset as a data integrity check and is not expected to be correlated between 

neighboring nodes. 
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Voltage also had higher variance in a short time interval but did not change 

drastically over time which accounts for the greater variance in results for voltage across 

the different tolerable error rates. 
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Figure 42 Bandwidth utilization on varying max error for different compression 
algorithms 

6.2. LATENCY 

Latency was measured in a network of TelosB motes 0 loaded with the data from the 

Intel Labs experiment and configured to send data to the sink based on the timestamps in 

the dataset. 

Figure 43 shows the latency results for the collaborative baseline compression and 

comparative methods. Results show time required to process the data, transmit the data, 

and any time required to wait to send the data. 

For comparison, GAMPS was modified to send data as soon as enough had been 

collected to perform the compression. ASTC incurred some wait time as the nodes 

communicated to build the prediction model. The nodes were not synchronized for the 

dataset, so for the jumping baseline, a correlated sensor reporting its value from a base 
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sensor would occasionally need to delay sending its offset until the base sensor had sent 

its value. 

Again the results shown are totals over the entire dataset for temperature, humidity, 

light, and voltage values. 
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Figure 43 Total latency for single hop network for different compression algorithms 

Tolerable error only affected the transmit time. Results are shown for 5% max error 

for better clarity since at lower errors, the latency for processing would be difficult to see. 

The transmit time is a simple function of the compressed size of the data. At 5% max 

error, our collaborative baseline approach performed the best in terms of latency. As the 

tolerable error decreased, our single sensor baseline method had the least latency. 

Latency results shown are for a single hop network. As the number of hops increases, 

the total latency at each hop approaches the latency of the transmit time since no 

additional processing or wait time would be required. Since the collaborative baseline 

algorithm provided the best compression ratio, it performs better compared to the other 

algorithms as the number of hops between the sensing node and the final sink increases. 
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6.3. ENERGY USAGE 

A network of MicaZ motes [15] running TinyOS was simulated in TOSSIM [17]. 

Energy consumption was modeled using PowerTOSSIM [18] which provides a layer of 

energy usage tools on top of the sensor simulation tools provided in TOSSIM. Figure 44 

shows the average energy per sensor required to compress the data for each of the 

algorithms. The energy required to transmit the data is a directly proportional to the 

compressed size of the data. Energy usage results for transmitting the data are not shown 

since they would be proportionally identical to the bandwidth results. 

0

10

20

30

40

50

60

70

80

90

Baseline(Single) GAMPS ASTC Baseline
(Collaborative)

m
il

lj
o

u
le

s

Energy Usage

 

Figure 44 Energy usage due to processing for different compression algorithms 

The MicaZ mote has three different radio power settings that require 11, 14, and 17.4 

mA respectively while transmitting. The MicaZ processor uses 8 mA in active mode [15]. 

The total energy required is dependent on the radio power setting. Since total energy 

consumption is based on current and time, the total energy results are proportional to the 

latency results for processing and transmission in Figure 44 except the transmission 

energy scales to 11/8, 14/8, or 17/8 of the transmission time based on the radio power 

used. 
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There was no appreciable difference for processing between the different types of 

data in dataset thus energy results are shown as totals over the entire dataset. Maximum 

error also did not have a significant impact on processing requirements. Results shown 

are the average of the four simulations. 

The simplicity of the jumping baseline approach gives it a much lower processing 

profile than the other methods. GAMPS was not designed to be energy efficient and as a 

result did not perform well. Baseline compression on a single sensor naturally performed 

better than the collaborative approach since the collaboration uses the single sensor 

method as its initial baseline. 

7. ERROR RECOVERY 

7.1. OUTLIERS 

If a signal contains outliers, the compression can suffer since the baseline will change 

to report the outlier and change back on the following packet. If some latency is tolerable 

in the system, the sensor can wait to report the change in the baseline until it has sampled 

a few more values to confirm if the change in the baseline is due to an outlier in the data. 

We defined an outlier detection window of size W. The readings in a window are 

considered outliers if they satisfy the following two conditions: 

The readings immediately preceding and following the window are the same value 

The readings in the window differ from those immediately preceding and following 

the window by more than one baseline jump 

It other words, if a sensed stream briefly reports a drastic change in value and then 

returns to the previous value, that change is likely to be an error and those readings are 

considered outliers. We performed simulations for window sizes of 1, 2, and 3. For 
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window sizes greater than 1, any value that would be considered an outlier using a 

smaller window size is still considered an outlier. Results are shown in Figure 45. 

Manual inspection of the data revealed some clear outliers where a temperature 

reading or other value type would drop to 0 for a single sensed value and otherwise 

remain fairly constant. 

Naturally, false positives could occur if a sensed stream rose above or fell below the 

current baseline beyond the error threshold for a brief moment and then returned; 

however, the reported value would still be very close to within the tolerable error band 

and the total error of the compressed stream would not be significantly impacted. 
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Figure 45 Bandwith savings with outlier detection 

There were not many outliers detected in the dataset; however, on average, for a 

window size of 1, outliers comprised 0.11% of the data stream but required 7.4% of the 

bandwidth. Thus, detecting outliers in this way can significantly reduce the bandwidth 

required to send the data especially if the number of outliers is high. 

Most of the outliers in the dataset were single values so increasing the window size 

above 1 did not cause more outliers to be found in all cases except for light intensity. The 
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lights used in the experiment were fluorescent lights which produce a flickering affect. 

This flickering caused brief significant changes in the datastream that were calculated to 

be outliers. The question of whether or not such flickering should really be treated as 

outliers should be determined based on the goals of the individual experiment. The 

datasets studied contained few outliers but the outliers consumed a significant amount of 

bandwidth compared to their frequency. 

7.2. SIGNAL RECONSTRUCTION 

The actual error present in the compressed stream can be reduced by using the 

compressed data to approximate the original data through curve smoothing techniques. 

Since the actual error is bounded by a maximum tolerable error E, the range of possible 

true values that produces the compressed stream is known. This can be used to aid the 

curve smoothing process and generate a more accurate reconstruction of the original data 

stream. 

If the real data changes slowly and smoothly, this can provide a dramatic decrease in 

the actual error of the reported stream; however, if the data is highly varied within the 

bands, then attempts to reconstruct the original stream can actually add more error. The 

maximum added error is known, however, since it can be no more than twice the 

configured maximum tolerable error (assuming the reconstruction is designed to remain 

within E of the reported value from the compressed stream). 
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Figure 46 Reported vs. Actual temperature for 2% max error 

 Figure 46 shows 2000 readings from a temperature sensor compressed using jumping 

baseline algorithm. The compressed and actual values are shown. 

Due to the unique nature of the jumping baseline algorithm, when the baseline 

changes the true value at that point can be accurately reconstructed. When data is 

trending up or down and the baseline jumps, the true value at the point of the jump will 

be nearly equal to the average of the two baselines. (If the sample interval was infinitely 

small, it would be exactly equal). When the data stream is peaking or oscillating (neither 

trending up nor down) the true value at a baseline jump can be accurately approximated 

by the value of the new baseline. Since the data trend is known, this can be used to design 

a very simple signal reconstruction algorithm that can greatly reduce the total error in the 

stream. 

The reconstructed stream is build by first approximating the values at the points 

where the baseline jumped. Then any curve fitting algorithm can be used to fit a curve to 

those points to create the fully reconstructed stream. For our testing, we simply 

approximate the curve by assuming the data between the points is linear. Figure 47 shows 

the same data as Figure 46 but with the reconstructed stream added. 
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Figure 47 Reconstructed stream 

We computed the actual error both with and without signal reconstruction for 

different configured max tolerable errors over the entire dataset. Temperature, humidity, 

and light intensity all were very similar. Signal reconstruction reduced the measured 

average error to approximately 1/6 of the max tolerable error. Aggregated results are 

shown in Table 29. Voltage streams were not as continuous as the other three and signal 

reconstruction was not as effective. The actual error of the voltage streams after 

reconstruction was approximately 1/3 of the max tolerable error for each configured 

maximum used in the experiments. Voltage results are shown in Table 30. 

Table 29 Error (temperature, humidity, light) 

Max 
tolerable 

error 

Baseline 
error 

Reconstr
ucted 
error 

5% 2.47% 0.832% 
2% 0.964% 0.323% 
1% 0.483% 0.167% 
0.5% 0.239% 0.0815% 
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Table 30 Error (voltage) 

Max 
tolerable 

error 

Baseline 
error 

Reconstructed 
error 

5% 2.56% 1.38% 
2% 1.06% 0.692% 
1% 0.519% 0.387% 
0.5% 0.252% 0.193% 

 

8. CONCLUSIONS AND FUTURE WORK 

The jumping baseline method provides a very light weight collaborative compression 

scheme for wireless sensor networks. Energy and processing usage were well below 

those of existing algorithms while maintaining lower latency and requiring less 

bandwidth. 

Compression could be improved even further in the future by taking advantage of 

correlations, not only between neighboring sensors, but also between different streams on 

the same sensor. For example, temperature and light were somewhat proportional in the 

dataset and were inversely proportional to humidity. 

Since signal reconstruction could be done on the sink side, much more sophisticated 

algorithms could be used to fit a curve to the values approximated at the jump points.  
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V. TOWARD ENERGY EFFICIENT MULTISTREAM COLLABORATIVE 
COMPRESSION IN WIRELESS SENSOR NETWORKS 

Wireless sensor networks possess significant limitations in storage, bandwidth, and 

power. This has led to the development of several compression algorithms designed for 

sensor networks. Many of these methods exploit the correlation often present between the 

data on different sensor nodes in the network; however, correlation can also exist 

between different sensing modules on the same sensor node. Exploiting this correlation 

can improve compression ratios and reduce energy consumption without the cost of 

increased traffic in the network. We investigate and analyze approaches for compression 

utilizing collaboration between separate sensing modules on the same sensor node. The 

compression can be lossless or lossy with a parameter for maximum tolerable error. 

Performance evaluations over real world sensor data show increased energy efficiency 

and bandwidth utilization with a decrease in latency compared to some recent approaches 

for both lossless and loss tolerant compression. 

1. INTRODUCTION 

Wireless sensors are used to collect and transmit data in a wide variety of 

applications. Many such applications utilize sensor nodes that collect several different 

streams of data on different sensing modules on the same sensor node. For example, 

sensor nodes in the Great Duck Island project [51] and an Intel Berkley Labs experiment 

[52] were used to collect temperature, humidity, light intensity, and more. Even 

applications that primary just sense one thing often send multiple streams of data from 

the same sensor. For example, ZebraNet [53] tracked locations of zebras sending two 
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streams of data for the GPS readings (easting and northing) and some metadata such as 

voltage and count of satellites in range of the GPS sensor. 

It is well known that wireless sensor networks possess significant limitations in 

processing, storage, bandwidth, and power. This has, naturally, led to the development of 

many compression algorithms specific to sensor networks. Many of these algorithms rely 

on the data readings from a single sensor being correlated to previous readings on that 

same sensor (temporal locality) [42][43][28]. Others rely on correlations between similar 

data streams on other sensor nodes (spatial locality) [38][58][59][41]. Little work has yet 

been done, however, which directly exploits the correlation that is often present between 

different streams of data collected on the same sensor node. 
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Figure 48 Multistream sensor readings 
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Figure 49 Scaled multistream sensor readings 
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To illustrate this correlation, Figure 48 shows values from 12,000 readings of 

temperature, humidity, and light intensity sensors on a single sensing node taken from the 

Intel Lab dataset. Figure 49 shows those same values scaled with the simple linear 

transformations shown in equation 1 where hn is the nth humidity reading and hn' is the 

scaled value. Similarly, tn and ln are for the temperature and light intensity, respectively 

along with their scaled notation. Clearly some benefits could be gained by leveraging the 

correlation between the different data streams. 
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In this paper, we present TinyPack-Collaborative (TinyPack-C), a lightweight 

compression algorithm leveraging the temporal correlation within each stream and the 

correlation between multiple streams of data on an individual sensing node. TinyPack-C 

is based on the initial code set presented in [28] and extended to include collaboration 

between the multiple streams from the various sensors on the same sensing node. 

Collaboration is computed based on a rolling linear regression scheme requiring constant 

time memory use and processing for each correlated pair of sensed values. 

If some loss is tolerable in the data, compression is enhanced by first performing a 

modified version of the jumping baseline transformation introduced in [61] which 

converts the stream into a step function. The rolling linear regression is then applied to 

the flattened streams. The maximum tolerable error can be configured low for simply 

removing noise from the data or high if the application is not concerned with low 

variation in the data. 



 

 

125 

We present and analyze compression schemes for both lossless compression and loss 

tolerant compression with a configurable maximum error. We compare both varieties 

against state of the art compression methods. For the lossless case, we compare against 

the original TinyPack algorithm, LEC [43] and S-LEC[62]. We compare our lossy 

compressor with LTC [63] and the single sensor jumping baseline approach [61]. 

Simulations using TOSSIM [17] were done over several real life datasets covering a wide 

variety of sensor applications. 

In summary, this paper makes the following contributions: 

Novel algorithms for lossless compression leveraging collaboration across multiple 

streams on a single sensor node 

Additional algorithms for lossy compression with a configurable upper bound for 

error 

Lightweight mechanisms  for computing correlation 

Detailed analysis over several real world datasets 

Methods for performing mathematical operations and aggregation on the compressed 

data without first decompressing the data 

2. RELATED WORK 

2.1. S-LEC 

S-LEC, a lossless data compression scheme, is proposed in [62]. S-LEC begins with 

the static set of codes used in LEC [43] to represent delta values in a data stream. In LEC, 

each reading, the previous value is subtracted from the current value and the resulting 

delta value is coded based on a static table of codes derived from those used in JPEG 

compression. Smaller delta values have shorter codes. For S-LEC, codes that are the 
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same length are said to be in the same group and two bits are prepended to each value 

noting whether the current delta value is in the same, one higher, one lower, or any other 

group as the previous delta value. This enables reducing the size of the prefix come and 

improves the compression ratio when data is changing in a consistent fashion. 

2.2. TINYPACK 

Another lossless method is presented in [28], TinyPack initially uses a similar set of 

static codes for its compression, but the codes were optimized for wireless sensor data 

instead of JPEGs. Those codes are then dynamically modified either by counting the 

frequency of each value or by approximating those frequencies using a rolling average 

and standard deviation. The initial set of codes used in TinyPack-Init is shown in Table 

31 and forms the basis on which the compression in this work is built. 

Table 31 Static codes 

prefix suffix range values 
1 n/a 0 
01 0...1 -1.1 
001 00...11 -3,-2,2,3 
0001 000...111 -7,...,-4,4,...,7 
00001 0000...1111 -15,...,-8,8,...,15 
000001 00000...11111 -31,...,-16,16,...,31 
0000001 000000...111111 -62,...,-32,32,...,63 
00000001 0000000...1111111 -127,...,-64,64,...,127 

 

Except in the case of 0, the last bit of the suffix is the sign bit. For example, if the 

current reading was 3 higher than the previous reading, a delta value of +3 would be 

transmitted as 00110. A delta value of -4 would be encoded as 0001001. 
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2.3. LTC 

In [63] a lossy compression scheme is introduced that approximates the data stream 

by a sequence of linear segments. As the data is collected by the sensor, the algorithm fits 

a line to the data as long as the line can be defined such that no point in the transformed 

data exceeds a maximum error bound. When a data point is sensed that cannot be fit to 

the line without exceeding the allowed error, that line is transmitted and a new line starts. 

The algorithm is effective but does introduce additional latency since the data is not 

transmitted until the sensed reading that necessitates a new line. 

2.4. JUMPING BASELINES 

The jumping baseline approach in [61] approximates the data stream as a discrete step 

function which can be reconstructed to a linear function similar to the one generated by 

LTC at the sink. Any time a sensed value is outside the maximum tolerable error away 

from the current baseline, a new baseline is selected. The possible candidate baselines are 

selected from multiples of the maximum error such that the new value can be expressed 

as the number of baseline jumps above or below the previous baseline. The new baseline 

is also selected as far in the direction the data has been trending as possible without 

violating the maximum tolerable error. This process is described in more detail in section 

0 and forms the basis on which our lossy compression is built. 

3. BACKGROUND 

3.1. TEMPORAL LOCALITY 

Data from wireless sensor networks generally exhibits temporal locality (data values 

from the same stream are correlated to values that are close together in time). Any type of 
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data stream which changes in a continuous fashion will be temporally located such as 

humidity, position, light intensity, water level, etc. In fact, it can be demonstrated that any 

sensor stream sampled at non-random intervals will either generate temporally located 

data or random noise.  

Consider an arbitrary sensor sensing a stream of values {v1, v2, …, v2N} sensed at 

times {t1, t2, …, t2N} where N is an integer. Assume that the values are not correlated. 

Then sampling at {t1, t3, …, t2N-1} and {t2, t4, …, t2N} would yield completely different 

values. Thus, offsetting the sample period would generate entirely different data. 

Therefore, application with time-based sampling which did not exhibit temporal locality 

must be sampling random noise. Excluding such applications we can assume that 

successive readings at each sensor will be correlated. Delta compression (storing the data 

as the change in value from the previous reading) would then increase the frequency of 

certain values thus increasing the compressibility of the data. 

Naturally this does not apply to event driven sampling (where time between samples 

is random) such as a sensor that measures the speed once for each passing automobile. 

These applications do not necessarily exhibit temporal locality and were not included in 

this study. 

The previously sensed value in each sensed stream can then be used as a baseline for 

compressing the value of the next sample in the stream. For lossless compression, the 

value can be transmitted as the difference between the current sensed value and the 

previous value (the baseline value). For lossy compression, the data can be approximated 

using the baseline value until the current value differs from the baseline value by more 

than the upper limit for tolerated error. 
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3.2. COLLABORATIVE COMPRESSION 

In the case of collaborative compression, one sensed stream serves as the baseline for 

one or more of the other sensed streams on the same sensor. The data from this baseline 

stream is compressed leveraging temporal locality as discussed in the previous section 

and the data from the correlated streams are encoded based on the difference from some 

linear function of the baseline stream referred to as the baseline function. As with the 

single stream compression of the baseline stream, the lossless case would require that a 

delta value be sent every time the sensor samples data while the lossy case can use the 

baseline function as the approximated values for the compressed stream until the value is 

above or below the baseline function by more than the maximum tolerable error. The 

algorithm is shown in more detail section 0. 

3.3. MEASURING ERROR 

For the lossy compression, we consider a parameterized maximum tolerable error 

percentage Emax. Instead of reporting every value exactly as sensed, if a value deviates 

from its baseline less than Emax, the baseline value can be used instead. This allows for 

much greater compression while keeping the error bound by the tunable maximum. This 

parameter can be adjusted based on the application need, i.e., in real-time, but can 

tolerate some error (lossy), or non-lossy, but can tolerate some latency. 

A common method of measuring error, E, between a reported value, VR, and the 

actual value VA, is shown in Equation 2. 

A

RA

V

VV
E

−
=  (2) 
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Unfortunately, that measure is dependent on the units used. For example, if 

temperature is measured in Kelvins, degrees Celsius, or degrees Fahrenheit, the 

calculated error can vary greatly for the exact same data. 

Consider a sensor which reported a temperature of 2°C when the actual temperature 

was 1°C. Table 32 shows the calculated error for the exact same data expressed using the 

three most common temperature scales. The calculated error ranges from 0.365% to 

100% for the exact same data. 

Table 32 Inconsistent error measure 

 Celsius Fahrenheit Kelvin 
Actual 1 33.8 274.15 

Reported 2 35.6 275.15 
Calculated Error 100% 5.32% 0.365% 

 

Even just within one scale the error can be misleading. If a sensor is measuring 

temperature and reporting the value in degrees Celsius, when the temperature is very 

close to 0 a small change in the value could cause a drastic increase in the error 

percentage. Also, when the actual value is 0, the error percentage is undefined. 

In practice, the best way to set an upper bound for error would be to explicitly set the 

bounds in terms of the scale. For example, when set by the end user, the tolerable error 

for a temperature reading could be +/- 1°C. For analysis, however, it is useful to have a 

method of normalizing the error to a percentage. One method to do this would be to 

divide the difference by the maximum range of the sensor; however, since this range can 

be very large compared to the actual sensed range, the error percentages would be 

artificially low. For our analysis we use the maximum range of actual sensed values as 

the denominator for the error normalization (see Equation 3). 
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 Table 33 shows the calculated error for the same data assuming the temperatures 

measured range from 0 to 40 degrees Celsius and demonstrates that it is consistent across 

scales.  

 
Table 33 Consistent error measure 

 Celsius Fahrenheit Kelvin 
Actual 1 33.8 274.15 

Reported 2 35.6 275.15 
Observed minimum 0 32 273.15 
Observed maximum 40 104 313.15 

Range 40 72 40 
Calculated Error 2.5% 2.5% 2.5% 

 

3.4. JUMPING BASELINE COMPRESSION 

For our lossy compression algorithm, we begin with the jumping baseline 

compression introduced in [61]. The values in the stream are compressed to a step 

function by choosing a baseline value for a sensed value and only changing the baseline 

when the current sensed value differs from the baseline by more than the maximum 

tolerable error. The values selected as baselines are in the form kE where k is any integer 

and E is the maximum integer error that can be tolerated in a stream while remaining 

within the maximum error percentage Emax.  

The initial baseline is selected by choosing the candidate baseline closest to the first 

value sensed in a stream. So for a sensed value v the baseline B would be selected as 

shown in equation 3. Adding 0.5 and truncating with the floor function is done as an 

efficient method of rounding. 
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 When a sensed value differs from the current baseline by more than E, a new 

baseline must be selected. Note that there will be two candidate baselines that would be 

within E of the new value. The algorithm chooses the baseline based on which direction 

the data is trending. A data stream can be in one of three states: trending up, trending 

down, or staying somewhat constant. If data is trending either up or down, then the next 

baseline should be selected as far in the direction the data is trending as it can be within 

the error bounds. If the data is remaining relatively constant, then the next baseline 

should be selected as close to the current value as possible. The state is determined by 

tracking whether the new baseline is above or below the previous baseline for two jumps. 

If both jumps were in the same direction, the data is trending either up or down 

depending on the direction of the jumps. All that needs to be cached is the previous value 

and the previous jump direction. The additional computation is also trivial. For example, 

Table 34 shows an example of a light sensor with a maximum error set at +/- 10 lux. 

Table 34 Baseline compression example 

Seq 
no 

Sensed 
value 

Last 
value 

Last 
jump 

This 
jump 

Baseline 

1 242 -- -- -- 240 
2 253 242 -- up 250 
3 261 253 up up 270 
4 276 261 up -- 270 
5 284 261 up up 290 

 

Initially, the baseline is selected as close as possible to the actual sensed value. When 

the upward trend is established at sequence number 3, the baseline is selected as high as 

possible while remaining within the error tolerance of +/- 10. Then as the data continues 
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to trend upward, the baseline does not require as many jumps while remaining within the 

maximum tolerable error. This process is shown in detail in Algorithm 1. 

Algorithm 2 CheckReading(v, p, S, d) 
Objective:  Check current reading, select next baseline 
Input:  Sensed value v, previous baseline B, max difference E,       
  previous jump direction d 
Output: New baseline (reported value) B 
 If |p – v| > E 
  B := floor(v/E + 0.5) 
  If v > B And d == UP 
   B := B + E 
  Else if v < r And d == DOWN 
   B := B – E 
  End If 
  If v > p 
   d := UP 
  Else 
   d := DOWN 
  End If 
  p := B 
 Else 
  B := p 
 End If 

4. OUR MULTISTREAM COMPRESSION APPROACH 

4.1. ROLLING CORRELATION 

A common simple method of approximating one data stream with another is to use a 

linear least squares approximation. The first stream is translated using a linear function in 

the form Y =aX + b into an approximation of the second stream in such a way as to 

minimize the amount of error between the approximated stream and the actual stream. 

Computing full least squares regression is far too computationally complex to run on a 

sensor every time a new value is sensed; however, the correlation can be computed 

incrementally such that only a few calculations need to be made after each sample while 

still maintaining accurate correlation values. 
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Also, the correlation is not necessarily the same for the entire run of the sensor 

network so some decay should be introduced in the correlation equation such that the 

most recent data contributes a higher weight to the correlation and older data contributes 

less. Such decaying rolling statistics have been used many times for other applications 

[28][64][65]. Here we refine the rolling least squares to optimize for simplicity of 

calculation for the sensor networks. 

A common method for calculating the slope and intercept of the regression line 

(correlation function) Y = aX+b is shown in equation 4 where σX is the standard 

deviation of X, E(X) is the expected value (mean) of X, and r is the Pearson Correlation of 

X and Y. 

 
( ) ( )XbEYEa

rb
X

Y

−=

=
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 (4) 

The standard deviation of a variable can be expressed in terms of the expected values 

of the variable and the square of the variable as shown in equation 5. 

 ( ) ( )( )22 XEXEX −=σ (5) 

The Pearson Correlation coefficient is also commonly expressed in those terms as 

shown in equation 6. 

 ( ) ( ) ( )
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YEXEXYE
r
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Combining, equations 4, 5, and 6 we can derive equation 7. 
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Since E(X) is simply the sum of X divided by the count of samples, if a running total 

is kept for X, Y, XY, and X2 , then the correlation function can be updated incrementally at 

each sensed value with a computational complexity of O(1). 

To allow more recent samples to have a greater impact on the correlation function we 

introduce a window size W over which to compute the statistics. We use the notation XW 

to indicate the average of X over the window W. At each sensed value of Xi, XWi is 

recomputed using equation 8 so that the effect of older samples on the value of XW slowly 

decays toward zero. We use [XY]W and [X2]W for the averages of XY and X2 respectively. 

 iWW X
W

X
W

W
X

ii
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In practice, if the current number of samples N was less than W, then N was 

substituted for W in the equations. In that case XW is the actual mean of the current 

samples of X1 through XN. 

This leads us to the final equations for rolling least squares calculations for the 

correlation function used in this work shown in equation 9. 
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The mean square error (MSE), a measure of the average deviation from the 

correlation function, can also be computed on the fly in a similar fashion. The general 
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equation for calculating mean square error over variables X and Y given the correlation 

function defined by some a and b is shown in equation 10. 
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This can be expanded and shown in the same form as the other equations used here as 

shown in equation 11. 
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The coefficient of determination, usually written as R2 and used to measure the 

strength of the correlation, can also be computed incrementally. R2 is simply the square of 

the r value from equation 6 and is shown in equation 12. 
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4.2. COLLABORATIVE CORRELATION 

The above formulas can be used to dynamically track the correlation function 

between two streams as well as to periodically reevaluate which streams are correlated 

with which other streams. 

Since the correlation function is computed in real time as the data stream is sensed, 

the correlation is built on the previous values and is not affected by the current sensed 

value until that value has been transmitted. This enables the calculations to be done on 
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the sink side as well the data is being decoded so that the correlation function is known 

without the need to transmit the correlation function across the sensor nodes wireless 

channel. This helps to reduce the total amount of bandwidth required by the application. 

For the lossy case, the correlations must be computed after the values have been 

truncated to the baselines otherwise the sink side would not have the same data on which 

the correlations were built and would thus be unable to decode the stream unless the 

correlation functions were transmitted periodically along with the data. 

A correlated stream can then encode its values as offsets from its correlation function 

of its baseline stream. A higher R2 value indicates a higher correlation and therefore 

serves as a good metric for which stream to choose as a base for which other streams. 
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Figure 50 Compressed size for correlated pairs by r2 value 

The computational complexity for computing the correlation for every pair of streams 

is on the order of O(S) where S is the number of streams. The number of streams on a 

single sensor node tends to be relatively low (the Great Duck Island weather dataset [51] 

had 12 which is the highest count of any of the datasets studied here). Even though the 

number of streams is low, the computation is still too heavy to be ideal. However, while 

the correlation function can be very dynamic, the sets of correlated streams tend to be 
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rather static, i.e., if some set of streams is found to be correlated, they are typically 

correlated for the entire run of the dataset. The R2 values then need not be recomputed 

every time but only on occasion. Also in many applications, the computations can be 

done on the sink (which typically has much more processing power) and the correlated 

sets communicated back through the network. In our experiments, we recomputed the 

correlation sets every 10W samples (where W is the window size of the correlation 

functions). 

To determine when to apply a correlation function, we analyzed each pair of streams 

on the sensor nodes from the Great Duck Island weather dataset. Figure 50 shows the R2 

value of each pair along with the compressed size using the correlation function divided 

by the compressed size using just the TinyPack-Init codes. If two streams were not 

correlated, then adding the correlation function as the baseline for a stream naturally 

required more bits to transmit the data. Most of the pairs of streams with an R2 value 

greater than 0.25 had compression gains when using the correlation function. In our 

algorithm, any pair of streams with a measured R2 value greater than 0.25 is defined as a 

correlated set. 

If two streams are correlated to only each other, the one with the lower index is 

chosen as the baseline stream. If three or more are correlated to each other, then the R2 

values are summed for each pair a stream is in and the stream with the highest R2 sum is 

selected as the baseline stream. For example, consider a sensor node sensing temperature 

(T), humidity (H), and light intensity (L) with the R2 values for the stream pairs measured 

as shown in equation 13. The humidity stream would be selected as the base stream since 

it has the highest sum of R2 values as shown in equation 14. 
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5. EXPERIMENTAL SET UP 

5.1. DATASETS 

The datasets used for simulation were pulled from a wide variety of domains, which 

utilize wireless sensor networks including environment monitoring, animal tracking, 

vehicle-to-vehicle communication, and smart phone accelerometers. All are from 

publicly available real deployments of wireless sensor networks. 

The Great Duck Island (GDI) [51] experiment deployed sensor nodes in and around 

the burrows of Leach's Storm Petrels. 32 sensors were deployed monitoring sensor 

voltage and various types of temperature, humidity, barometric pressure, and solar 

radiation. Data was analyzed to provide knowledge about the nesting conditions and 

behaviors of the birds. Strong correlations were observed between temperature, humidity, 

and solar radiation. Barometric pressure was also somewhat correlated. 

For the Intel Berkley Labs (Lab) [52] deployment, 54 sensor nodes were configured 

inside a laboratory and used to transmit readings of temperature, humidity, light intensity, 

and voltage. Temperature, humidity, and light were all correlated, but voltage was not 

correlated to any other stream. 

The ZebraNet project (ZNet) [53] tracked Kenyan zebras generating sensor readings 

of GPS position and some contextual data about the sensor nodes themselves such as the 

voltage, count of connected satellites, and horizontal delusion of precision. The sensors 
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were attached to the Zebras and data was used to analyze the social patterns of the 

animals. 

The GATech Vehicular dataset (GATech) [66] was obtained testing a vehicle-to-

vehicle network while the vehicles were in motion. Data streams included location, 

altitude, and speed of the vehicles along with bytes sent and received, signal strength, and 

noise. 

The CenceMe project [67] examined the performance of a system combining off-the-

shelf sensor-enabled mobile phones and the automatic sharing and aggregation of the data 

using social networking applications. Data was gathered by 22 different users and 

contained readings from the various sensors on the mobile phones including the 

Bluetooth, GPS, and accelerometer sensors. 

5.2. IMPLEMENTATION 

The algorithms were implemented in TOSSIM [17] on simulated MicaZ [15] motes. 

Experiments were done to show the impact of collaborative compression between the 

streams on bandwidth usage, energy consumption, and latency. PowerTOSSIM [70] was 

used to simulate the energy usage for each of the algorithms. 
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Figure 51 Bandwidth for lossless algorithms 
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Latency was measured by implementing the algorithms on TelosB motes [71] sending 

to a base station connected to a notebook computer. The data was stored on the sensor 

nodes before the experiments and was compressed and transmitted as if the sensors had 

sensed it. Thus, the time required for actually sensing the data was not included in the 

experiments; however, since those times are not related to the compression method used, 

the data would be uninteresting and would approximately be constant for each dataset. 

Lossy compression was done four times for each algorithm and dataset. Maximum 

error was set to 5%, 2%, 1%, and 0.5% respectively for the four runs. Results are shown 

in the following sections. 

6. RESULTS 

6.1. BANDWIDTH-LOSSLESS 

Bandwidth results are shown in Figure 51. Bandwidth is shown as a percentage of the 

bandwidth required to send the data uncompressed and is equivalent to the compressed 

size of the data as a percentage of the uncompressed size. Collaboration between the 

streams made significant improvements in bandwidth usage for most of the algorithms. 

The CenceMe data was not highly correlated causing TinyPack-Collaborative to only 

improve upon the TinyPack-Init codes by a small fraction. In contrast, compression of the 

GATech Vehicular dataset benefited greatly from the TinyPack-C algorithm since the 

data contained a high degree of correlation between the streams at a single sensor.  

If no correlation is detected at all in the data, then TinyPack-Collaborative and 

TinyPack-Init should function identically in terms of bandwidth although TinyPack-

Collaborative would consume more energy. 
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6.2. BANDWIDTH-LOSSY 

Figure 52 shows the results of the error tolerant version of our algorithm. As with the 

lossless case, the introduction of correlation between the sensed streams on the individual 

sensor node significantly reduced the amount of bandwidth usage needed to transmit the 

data. As expected, all the algorithms performed better as more error was allowed in the 

system. The effect of leveraging correlation between the streams was roughly equivalent 

to the lossless case. The datasets that had high degrees of correlation saw the most 

benefit. 
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Figure 52 Bandwidth for lossy algorithms, all datasets 
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Figure 53 Bandwidth for lossy algorithms, selected datasets 

The results vary greatly from one dataset to the next. This is due to the individual 

characteristics of the dataset. ZebraNet and CenceMe sensed data at a lower frequency 

than the others which decreases the benefits that can be gained by relying on temporal 

locality. The Lab, GDI, and GATech results are also shown in Figure 52 along with ZNet 

and CenceMe for comparison and are also shown in Figure 53 for greater clarity and 

readability. 

As with the lossless case, the low degree of correlation in the CenceMe and ZNet 

dataset caused TinyPack-Collaborative to only perform slightly better than the other 

algorithms, while the GDI and GATech datasets were able to be consistently compressed 

to near or below half the size achieved by the Jumping Baseline algorithm. 

While more tolerated error allowed for better compression in all cases, the relative 

compressed sizes for the different algorithms was roughly similar for all configured 

levels of tolerable error. 
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Figure 54 Energy consumption for lossless algorithms 
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Figure 55 Energy consumption for lossy algorithms 

6.3. ENERGY 

The MicaZ motes simulated in PowerTOSSIM for measuring energy consumption 

have three different radio power settings that can be used requiring 11, 14, and 17.4 mA 

respectively. We selected the 11 mA radio for our experiments. Choosing a higher 

powered radio would make the results for energy consumption look almost identical to 

bandwidth since all the energy would be spent transmitting the data. 

The results for the lossless case are shown in Figure 54. Since the bandwidth savings 

on CenceMe were not much greater for the TinyPack-C, the extra processor utilization 

was enough to cause it to require more energy than the jumping baseline method. The 
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high number of streams in the GDI dataset caused a higher increase in the energy 

requirements for TinyPack-C relative to the other datasets. Even using the low powered 

radios, the bandwidth savings are still enough to cause a lower energy profile for sensors 

running TinyPack-C over the other algorithms for most datasets. 

The results for the lossy case are shown in Figure 55 based on the 1% maximum error 

configuration. The lower bandwidth requirements of the error tolerant algorithms cause 

the increased processor utilization to have a more significant impact on overall energy 

consumption; however, energy consumption for TinyPack-C was still close to or better 

than the other algorithms for all the datasets studied. 
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Figure 56 Latency for lossless algorithms 
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Figure 57 Latency for lossy algorithms 
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6.4. LATENCY 

Latency results are shown for the lossless methods in Figure 56 and for lossy in 

Figure 57. Latency is shown as a percentage of the time that would be required to 

transmit the data uncompressed. Results are shown as the average across all the datasets 

including the processing, transmission, and wait time used by the algorithms. 

As with energy, the higher processor utilization for TinyPack-Collaborative caused an 

increase in latency compared to the lighter weight TinyPack-Init and jumping baseline 

methods; however, in a multi-hop environment, the average latency per hop decreases 

with each hop and approaches the sum of the transmit time and the wait time as shown in 

Figure 58. 
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Figure 58 Latency for multi-hop environment 
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Figure 59 Average total error for raw baseline and reconstructed 

7. ERROR ANALYSIS 

The step function used to approximate the stream in the lossy case can be 

reconstructed into a series of line segments as done for the jumping baselines in [61]. 

This can reduce the total measured error in the data. The points at which new baselines 

were selected are used as the endpoints of the line segments. 

Since the algorithm tracks whether the data was trending up, trending down, or 

peaking, this information can be used to better approximate the end points. If the data 

was trending up or down, then the line segment endpoint is selected as the average of the 

previous and current baselines. If the data is peaking (last jump was up, current jump was 

down or vice versa), then the previous baseline value serves as the endpoint. 

Figure 59 shows the total error for both the raw baseline step function and for the 

reconstructed streams for each of the four configured maximum error percentages. Total 

error for the step functions is shown as dotted lines. The total error after reconstructing 

the streams as sequences of line segments are shown as solid lines. Data points for both 
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raw and reconstructed for the same maximum error are shown with the same shape in the 

figure. 

Raw baseline step function total error was typically around one half of the maximum 

tolerable error. This is expected since the candidate baselines are integer multiples of the 

maximum tolerated error. The total error for the reconstructed streams ranged from 

around one quarter to one sixth of the maximum tolerable error. The more the data in a 

stream approximates a straight line over a short interval, the more accurate the 

reconstruction. 

Experiments were also conducted using b-spline interpolation as a curve fitting 

technique, but the results were almost identical to the linear approximation and were 

much more computationally intense. 

8. AGGREGATION OF COMPRESSED VALUES 

As detailed previously, TinyPack-Collaborative, for both lossless and lossy 

compression, transmits values as the delta over some previous value or baseline function 

encoded using the TinyPack-Init codes. Some mathematical operations and aggregation 

can be performed on these encoded deltas without the need to first decode the data. 

For instance, in an ad-hoc network, if an intermediate node between the sensor 

publishing the data and the base station begins forwarding data without seeing the initial 

baseline value, it can still perform aggregations on the data which the base station can 

apply to the baseline. 

8.1. ADDING ENCODED VALUES 

Adding two encoded deltas can be done without converting the value to a standard 

encoded integer. The codes contain a prefix, a suffix and a sign bit. In the case of two 
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positive or two negative numbers, the two suffixes with their prefix bits prepended can be 

added in simple binary, if the high prefix bit overflows (is set to 0), then the prefix length 

is incremented by one and the sign bit remains unchanged. In the case of a positive and 

negative number, the negative number is expressed in 2's complement. The two numbers 

are added as before and the prefix length is reduced by the number of leading zeros in the 

sum. 

8.2. DROPPING PACKETS 

If a sensor network is being overloaded such that a sensor needs to conserve 

additional bandwidth, one common method for quick bandwidth savings is to drop a 

packet. In a compressed stream, simply dropping a packet causes the decoding process to 

produce incorrect results; however, delta compressors such as TinyPack-Collaborative 

can drop packets without invalidating the data as long as the delta values of all the 

dropped packets are summed into the next transmitted packet. For example, if a sensor 

received the values 5, 7, 12 9 10 and transmitted them as +5, +2, +5, -3, +1 and needed to 

drop every other packet, it could send +5, +7, -2 and the sink would decode them as 5, 

12, 10. Any intermediate nodes need not know the baseline on which the first packet is 

based. 

8.3. MINIMUM AND MAXIMUM 

Maintaining the maximum of a portion of a stream can be done without knowing the 

baseline by maintaining the current max delta and offset from the max delta by summing 

the delta values. For example, consider a sensor in an ad hoc network that samples the 

following values: 15, 13, 10, 12, 17, 13. The 15 is transmitted to the base station through 

one intermediate node and the remaining values through another node. The new 
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intermediate node first sees the -2 and maintains the max as shown in Table 35. 

Minimum can be maintained equivalently.  

Table 35 Max delta example 

sensed 
value 

sent 
delta 

current 
max 
delta 

offset 
from 
max 

actual 
max 

(delta+15) 
15 -- -- -- 15 
13 -2 0 2 15 
10 -3 0 5 15 
12 +2 0 3 15 
17 +5 +2 0 17 
13 -4 +2 4 15 

8.4. AVERAGE 

Maintaining an average of a portion of a stream can be done without knowing the 

baseline as long as the count of samples included in the average is transmitted. The 

intermediate sensor maintains the current offset by keeping a running sum of the delta 

values. The sensor then maintains a sum of those offsets. Dividing that sum of offsets by 

the count gives the average delta value which can be added by the base station to the 

known baseline value to obtain the overall average. For example, consider a sensor that 

samples the following values: 10, 13, 17, 14, 8, 7, 15. Again, the intermediate node starts 

receiving and forwarding the data in the middle of the stream starting with the 13. This 

process is shown in Table 36. 

Table 36 Average delta example 

sensed 
value 

sent 
delta 

sum 
of 

deltas 

sum 
of 

sums 

count avg 
delta 

actual avg 
(delta+10) 

10 -- -- -- 0  -- 
13 +3 +3 +3 1 3 13 
17 +4 +7 +10 2 5 15 
14 -3 +4 +14 3 4.67 14.67 
8 -6 -2 +12 4 3 13 
7 -1 -3 +9 5 1.8 11.8 
13 +6 +3 +12 6 2 12 
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9. CONCLUSIONS AND FUTURE WORK 

TinyPack-Collaborative compression performed well compared to related methods in 

terms of bandwidth usage, energy requirements, and end-to-end latency. Collaboration 

between the data streams improved the compression performance in all experiments 

compared to compression without inter-stream collaboration. While collaboration 

between the same streams on different sensor nodes has been shown to be effective in 

increasing compression gains in other published works, collaboration between streams on 

the same sensor node can also be used to achieve greater compression leading to longer 

deployments, more data collection, fewer collisions, and faster response times for a wide 

variety of wireless sensor applications. 

While the rolling least squares regression used here was shown to be effective, other 

more sophisticated methods such as Kalman Filters [39] or Principal Component 

Analysis [73] could be potentially improve the accuracy of the baseline correlation 

functions. 
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SECTION 

2. CONCLUSIONS 

The compression algorithms presented in this document have been demonstrated to 

be effective at reducing bandwidth requirements, energy consumption, and latency for 

many different types of wireless sensor networks. Using these algorithms in a wireless 

sensor network thus allows for cost savings, longer deployments, more data collection, 

fewer collisions during transmission, and reduced latency in data delivery.
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