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ABSTRACT 

A one dimensional lattice fluid in which particles 

are allowed to assume only discrete positions is proposed. 

Particles are free to move from one lattice site to 

another interacting through a variety of potentials, 

including the Lennard-Janes type. The model allows the 

partition function to be evaluat~d as a discrete sum over 

the allowable configurations. Both the canonical ensemble 

and grand ensemble are treated by computer and a third, 

the pressure ensemble, is considered and shown to be 

useful in the theoretical treatment of lattice systems. 

ii 

The thermodynamic behavior of various systems is investiga

ted in both the canonical and grand ensembles. Both 

ensembles reveal that low temperature behavior of a system 

is distinctly different than that observed at high tempera

tures although there is not exact agreement between the 

two results. 
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CHAPTER I 

INTRODUCTION 

One of the most difficult and for the most part still 

unsolved problems of theoretical physics is the calculation 

of the thermodynamic properties of fluid systems. Only a 

small number of problems have been solved exactly. The 

one and two dimensional Ising model solutions stand out as 

one of the few exactly solved systems where transitional 

1 phenomena are observed . As is well known, the difficulty 

arises from the large numbers of particles involved and 

the lack of a real understanding of the interparticle 

interactions. For gaseous low-density systems, one can 

often obtain power series approximations such as the Mayer 

cluster expansions 2 . Such expansions in powers_of the 

density give reasonable answers for low density systems 

since one must keep only the first few terms which are 

relatively easy to calculate. For solid systems where the 

density is large, one can take advantage of periodicity 

and high symmetry to allow one to reduce the complexity 

to the point where one can make rational, semi-empirical 

approximations and obtain valuable results to explain many 

phenomena. The liquid system cannot be attacked by either 

technique. Its density is too large for cluster expansions 

to be of use and there is not sufficient symmetry to 

1 



utilize the approximations which work in the case of 

solids. 

While the two dimensional Ising model exhibits a 

phase transition, the one dimensional model does not. 

Nevertheless, the simplicity of the model and the avail-

ability of computer machinery make it, or rather gener-

alizations of it, attractive since one can set up programs 

to compute thermodynamic properties by machine. The ease 

of the computation together with the remarkably realistic 

nature of the results and the relatively simple interpre-

tation of the data which one obtains from the computer 

calculations make this an appealing investigation. 

In recent years the primary route of attack has been 

the attempt to calculate the pair distribution function and 

to compute thermodynamic properties from this. One elegant 

route is the use of the Kirkwood-superposition approxima-

. 3 tlon • This approach leads to an integral equation to be 

solved for the pair distribution function. Approximations 

in turn must be made to solve the integral equations. With 

this series of approximations and simplifications the 

physical system of interest is only remotely akin to the 

theoretical predictions. Nevertheless, such work has been 

useful in obtaining a qualitative idea of the nature of a 

liquid and what happens when a low density system undergoes 

a change in phase. 

In order to approximate physical systems, one must 

treat extremely large numbers of particles, and it has been 

• 

2 



shown that the discontinuous behavior of the thermodynamic 

quantities one observes experimentally can only be obtained 

in the limit of large systems, namely where the number of 

particles becomes infinite while the volume per particle or 

t . 1 d . . f' d 4 par 1c e ens1ty rema1ns 1xe Actually, the "sudden" 

changes characteristic of transitional phenomena are 

observed in finite real systems and can be explained by 

3 

noting that the number of particles involved is quite large, 

23 on the order of 10 , so that even though changes are not 

truly discontinuous the region over which the changes occur 

is so small no measuring apparatus is capable of measuring 

it. However, changes which do not qualify as true phase 

transitions can occur in finite and even small systems. 

Consider, for example, water in a glass. If one views it 

for a short time, it appears to be in a stable state and 

yet if left to stand the water will eventually evaporate 

and thus is not truly in a stable state. Fluids can present 

phases other than the gaseous state which will persist for 

long times compared to usual time standards, but not be a 

truly stable phase in the sense that this is the only 

state the system can be in. It thus appears as though it 

depends upon when one examines a system as to what phase 

he ascribes to it or, in other words, these cannot be true 

equilibrium states but are mere metastable states. Time 

dependent theory is not yet in a completely satisfactory 

state and so we shall be content to look at equilibrium 



statistics. We shall look at finite systems to see if any 

behavior can be observed which would suggest a phase 

transition or at least the existence of relatively 

ordered stable states which occur with large enough 

probabilities to affect the behavior of the thermodynamic 

functions to the point that a phase change may be 

anticipated • 

• One wishes to treat problems exactly and in complete 

generality with regard to potential interaction in order 

to concentrate on the physical problem instead of the 

mathematical one and the model we have chosen allows us 

to do just that. 

Some of the motivation for this work was provided by 

the success of the work of Ralph G. Tross 5 , who investigated 

this problem and who employed the University of Missouri 

Rolla computer to study finite systems of particles 

interacting through a modified Lennard-Janes potential5 • 

In this study, we go beyond this. We look at a variety of 

potentials and systems investigating the thermodynamics. 

Tross used a computation method which restricted his study 

to systems in which particle size is identical to lattice 

size and consequently his data is somewhat biased by this 

coincidence. His correlation function data show none of 

the local maxima and minima associated with this function 

in the continuum. Since particle size is identical to 

lattice size, only separations of an integral number of 

particle diameters can occur. This means that no effects 

4 



show up which correspond to the case where two particles 

are separated by 1~ diameters, for example. For this case, 

a total length of 2~ particle diameters is excluded from 

occupancy by other particles, whereas at a separation of 

2 particle diamters only 2 particle diameters is excluded. 

Thus correlation at a separation of 2 diameters should be 

larger than that at 1~ diameters or for 2~, etc. This 

shows that the local maxima ~ccur in the neighborhood of 

separations of integral numbers of particle diameters. We 

show herein that by considering systems where particle 

size and lattice size differ, we obtain data more closely 

in line with observed phenomena. We also expose some of 

the peculiarities of our model by considering the low 

temperature behavior of our system particularly with regard 

to pressure. 

5 
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CHAPTER II 

MATHEMATICAL FORMULATION 

A. Introduction to the Model 

We wish to consider a one dimensional system contain-

ing n particles and having a volume (length) L. In any 

finite system, the boundaries play an important role in 

the physical behavior (if this were not true, removal of 

the boundaries would produce little effect). The type of 

boundary condition we shall consider is the so-called 

periodic boundary condition. We choose the periodic 

boundary condition because certain aspects of such systems 

result in simplifications that mean reduced computer time. 

We assume that the system of interest is imbedded in an 

infinite number of identical systems which are exact copies 

of the system of interest. We assume that the real system 

is located from 0 to L along the line and that the copies 

lie alongside going to the left from 0 ~ -L, -L ~ -2L, 

-2L ~ -3L, etc., and to the right from L ~ 2L, 2L ~ 3L, 

etc., as shown in Figure 1. 

I o o · · · o 1 o o· .. o l 0 0 ... 0 I o o 0 
-2L -L 0 L 2L 

Figure 1. Periodic Boundary Conditions 



We assume that particles only interact with others that 

are closer than L units away. Note that as a particle 

leaves the system at L another identical to it enters 

at 0. 

Let us leave our consideration of the boundary 

conditions for a moment and consider the statistics. We 

choose to employ the formalism of the canonical ensemble 

turning later to a look at the grand ensemble. We compute 

the canonical ensemble partition function Q (V,8) of a 
n 

system of n particles volume V and temperature l/k8 as 

6 follows • We let p and q represent collectively the 

position and momentum coordinates of the particles. 

) d P eP H ( f,i) 

(
momentum) 

s p a.ce 

In most systems the interparticle interaction depends only 

on the positions of the pair of interacting particles and 

the total interaction is the sum of all pairwise inter-

actions. We can thus write the Hamiltonian H(p,q) as the 

sum of the kinetic energy term plus the total potential 

interaction energy 

p. is the momentum of the ith particle, m is the mass of a 
1. 

particle and V(q. ,q.) is the binary interaction potential. 
1. J 

7 

( 1) 

(2) 



In this form it is apparent that the momentum space 

integral in Equation (1) can be performed independently of 

the configuration integral. Thus we perform the momentum 

integral so that our problem becomes one of evaluating the 

configuration integral. We can rewrite (1) now as 

1 ( z 7T m} ~ J d !1. 
n~ f3 h~ 

_f3Ul'1) 
e 

8 

(
ton -f.i,9.} 
spaee. J 

v 
( 3) 

For convenience, let us collect the configuration integral 

into one unit and call it C (V,S). n 

) 
1 J _,f3U(!f) 

Cn(V,/3 :::: n! d~ e = ~! 
(

con.fiq} 
space' 

v 

I< U(9. ···9 ) -r ' .... 
e (4 > 

One has little or no hope of being able to evaluate 

the integral in Equation (4) in most instances and this is 

the crux of the problems in statistical mechanics. To get 

around this difficulty, we reshape the problem in order to 

cast the integral above into a form suitable for computer 

evaluation. We do this by making the linear system into 

a lattice of discrete points with lattice parameter ~ such 

that L = N~ with N an integer. We locate our lattice sites 

at ~/2, 3~/2, 5~/2, ••· I (2N-l)~/2. To agree with conven-

tion we call the segment of length ~ which has a lattice 



site at its center a cell. Thus cell 1 lies from 0 to ~' 

cell 2 from ~ to 2~, cell N from (N-1)~ toN~. We 

now make the further assumption that when a particle lies 

in a cell, the effects of that particle are as if it were 

located at the center of the cell on the site there. Thus, 

effectively, only discrete positions can be assumed by a 

particle. With this new picture we define an appropriate 

parameter cell occupancy. We label the cells 1, 2, 3, •••, 

N, N+l, N+2, •••, recalling the periodic copies of this 

system. Let aj be the occupancy of cell j. With this 

definition now we can picture the total interaction as a 

sum of interactions between cells. The interaction between 

cells i and j would be a.a. V((i- l/2)~,(j- 1/2)~). 
1. J 

The potentials we shall be using are of the hard 

core, spherically symmetric type. That is, we assume 

V(q. ,q.) = V(!q. - q.!) and further V(r) = oo if r < d where 
1. J 1. J 

d is the particle diameter. In our lattice system, no 

pair·of particles can be more than (N-1)~ units apart. 

Now there are only N possible values of the separation and 

" hence let us examine the possibility that it might be 

useful to represent the interaction potential as a sum 

over the various particle separations as follows: 

N-1 

9 

L. (5) 
j:o 



P. is just the number of pairs of particles separated by 
J 

the distance j~. Because we have assumed the hard core 

form of potential no cell can be occupied by more than one 

particle. Also, no two particles can be closer than d. 

If d > ~, this means that the "excluded" space around a 

particle is more than one cell. 

From the preceding discussion, we can write 

R J 

In Equation (6) we note that for some values of the 

summation index k, k + j exceeds N. From the periodic 

boundary conditions we can replace such a value by 

Q""k+ j-N 

With this, then, we have a complete description of the 

system. For convenience let V. = V{j~). 
J 

10 

{6) 

{7) 

Let us collect the results of the previous discussion 

N-1 

u L 
j=• 

(8) 



The set of quantities {P.} is a convenient artifice for 
J 

computing the energy U. Let us form a vector from this 

set and call it the profile or profile vector with jth 

component P .. Equation (8) can be rewritten in such a 
J 

way as to show that the profile is actually a sum of two 

parts. 

N-1 [N- j 

u = [_ Vj L ~CJki-j 
j:.l k: I 

N-1 N-j . N ltJ-H J:= -
(:. V· [ 2 fJ' o:. 
j::: I J j(;i k k+j + L a; a-k +N-i ] 

.k:: l 

N-1 

u = ~ Vjf_p. +p ·} j:::/ ) N-J i hu s P.· - D P. J l.:J,· + . 
IV-J 

N-J 

PJ· L. o-k crk+j 
k=-1 

Equation (9) can be cast· in a different form 

N-1 N-1 N-1 N-1 

u = t= Vj E + ~ V;· p . :: L V.· D. -1- ~ v. 
)=I J J=l N-J j~t J LJ /- N-j p). 

)=} 

11 

(9) 

(10) 

( 11) 



12 

We can now discuss the topology of the periodic 

system. This is established by first noting that as a 

particle leaves at one end, another enters at the other 

end so that there are always n particles in the system. 

Further suppose we move the origin a distance x lattice 

constants to the right. Under such a transformation, none 

of the relative separations is changed and since the 

energy of interaction depends only on relative separation, 

it remains fixed under this translation. This demonstrates 

that the periodic boundary conditions give the finite 

system the transational properties of the infinite lattice. 

This also implies that our system has the topological 

properties of the circle with cell N immediately adjacent 

cell 1 as shown in Figure 2. 

N-1 ~ 

4 

Figure 2. Topology of Periodic System 

Recall Equation (11). The quantity pj is the jth 

component of the profile for a system in which no particle 

lies beyond L, as in the periodic system. Hence, it looks 



as if the interaction between a pair of particles separated 

by j~ consists of an interaction around each limb of the 

circle as V(j~) + V(L-J.~) = v. + VN .• 
J -J 

Let us now return to the profile P = (P.) and examine 
J 

it more closely to see what symmetries it has. First, as 

we stated earlier, P is independent of where we place the 

origin or equivalently is invariant under lattice transla-

tions as shown by the following. We assume that the new 

configuration is given by 

I 

13 

OJ = Oj+r (12) 

I 

from which R J 

I N+r 

A J L Ok a-k+j 
k~l+r 

N 

L cr.~+ ... a: . 
k:l ~ , k+~+J 

N r 
L o: cr"'+"" + ~ a: ~ . 

" " ' L k+k'k+J +N k=l+r k:l 

The periodicity of the lattice implies that ak+N = ak 

P.· J 

This result confirms the assertion made earlier that the 

lattice has translational symmetry and that the energy 

U' = 
N 
2:: 

j=l 
p • I 

J 
v. = 

J 

N 
2:: 

j=l 
p. v. 

J J 
= u. It is clear also that 

(13) 



relative locations and interactions do not depend on the 

"handedness" of the coordinate system so that an exchange 

of left for right handed coordinates does not change the 

relative separation; thus, the transformation o.' - o 
J - N-j+l 

leaves the energy invariant. 

B. Theoretical Development 

(l) Canonical Ensemble 

The degeneracy of the potential energy u due to 

lattice symmetry and completely independent of any assumed 

potential has been observed. There is complete transla-

tion symmetry and symmetry in the exchange of left handed 

for right handed reference frames. These results were 

obtained independent of the potential to show their 

completely general nature. 

As stated previously, potentials of the hard core 

type are assumed with hard core diameter d. It is also 

assumed that d can be written as an integral number of 

lattice constants so that d = e~. If the particle 

diameter is just equal to the lattice constant ~ so that 

e = l, then the cell occupancy number o. satisfies an 
J 

exclusion principle, in that o. can only be 0 or l but 
J 

occupancy of cell j does not preclude occupancy of cell 

j + l. It is this nature of the special case d = ~ which 

was attractive in earlier formulations. It is but a 

special case of the more general problem we treat for if 

14 
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d = 2£ or 3£, etc., occupancy of j prohibits occupancy 

of j + 1. If d = et, then occupancy of j precludes 

occupancy of j+l, j+2, ••• , j+e-1. As a simple convention 

we assign a particle to the cell in which its left edge 

lies so that even though a particle actually fills e cells 

it is assigned to a single cell. 

The lattice concept introduces some quantum features 

into this classical problem as a result of the uncertainty 

of position of a particle t. In other words, if a particle 

lies in a cell its position is taken as the center of the 

cell and if it should lie on a cell boundary it is assigned 

to the cell to its left. Since we desire to treat systems 

where e > 1, we renew our search for a convenient 

representation. 

Cell occupancy is convenient only when e = 1 so 

that the quantities cr. are completely independent except 
J 

for the requirement that the system contains n particles. 

N 

~ 
J=l 
~ J 

n 

When e ~ 2, Equation (14) must still hold but now cr 1 = 

1 ~cr 2 , cr 3 , cre-l = 0 and hence the a's are no longer 

independent. We now set out to find an alternative 

representation in which the problem can be stated and 

formulated. 

(14) 



To determine the interaction energy, it is but 

necessary to determine the set of values (p
1

, p 2 , ••• , 

PN_ 1 ). For a finite number of particles we note that 

limP. = p .. For this reason we refer top. as the 
N-+co J J J 

infinite profile. 

When e = 1 it is possible to show a 1 - 1 corres-

pondence between configurations of n particles in N cells 

and N - n particles inN cells. One merely needs to make 

the transformation 

I 

Oj=f-Oj 

16 

( 15) 

to see this fact. The energy of the corresponding config-

uration is related to the original as follows 

u· I 

FJ VJ 
N-1 

L_~· • J 
):.I 

N-1 N 

E. \1;· L ( 1-.0k )( I - Ok+J) 
J=l 1<.:.1 

N-1 

u' = E.~· {N--2n + P;-) 
j :::r ( 16) 

N-1 

(N-2h)~ V.J ~ U 
J::::. I 



The cell occupancy number representation is an 

appealing one because of the pseudo-quantum nature of the 

problem but it ceases to be useful so we must forget it. 

Suppose we write the values of cell occupancy number down 

as a finite sequence of N elements all O's or l's. 

17 

[oo ... o 1 o 1 o ... o 1 o · · · o] 
(17) 

An arbitrary configuration would resemble Equation (17) 

appearance. This suggests another representation to us; 

namely, suppose we call a. the number of free cells 
J 

between the jth and j+lst particles. By free cell, we 

in 

mean a cell which is not occupied and is not covered by a 

particle in a nearby cell. For e = 1 we merely count the 

zeros between j and j+l to find a .. 
J 

If e ~ 1, we ignore 

those cells covered by a particle and count only those 

left. Before, we could represent every possible arrange-

ment of particles by merely specifying the values of the 

a's to correspond to the filled and empty cells. We shall 

show later that the partition function or at least the 

configuration integral is the result obtained by summing 

overall allowed configurations of particles in the cells. 

The representation in terms of the a's is not 1 - 1 to that 

in terms of a's as the following example shows. Consider 

the configuration [10110] of 3 particles in 5 cells. The 



corresponding a's are a 1 = 1, a 2 = 0. (e = 1) Also for 

[01011] a = 1 1, a 2 = 0 so that two configurations of the 

system correspond to the same "a" representation. Both 

configurations have the same profile since the second is 

a translation of the first so that the a's are a somewhat 

smaller set of coordinates, i.e., they represent fewer 

distinct cases than the a's (a desirable property). 

The quantity a. is 
J 

actually related to the separa-

tions of particles j and j+l as 

a.· ) 
~i+l- 'i.i _ e 

_,£ 

Thus the set of quantites a. must be viewed as having 
J 

arisen from the representation in which particle position 

is the fundamental variable. The possible positions a 

particle can occupy are £/2, 3£/2, 5£/2, I (2N-l)£/2. 

For convenience, we now define a new set of position 

coordinates in which the lattice spacing is unity and the 

coordinate takes on only integral values. 

X· '.) 
+ 'lz. 

Returning for a moment to the continuum, we recall the 

configuration integral from Equation (3). 

18 

(18) 

(19) 



If we make the transformation from the q's to the x's, we 

have 

rf y~ ... L L .!. :r'T"z 

J dx, ... 

l'z 

-{3 {)(X,··· X""') 
dxn e 

Jlz ~ 

We now wish to express this result in a form appropriate 

to our lattice 

In the x variables the cell size is unity so that ~x. = 1 
l 

and hence 21 becomes 

Cn (L, !3) 
~ ¥1 N 

- L_· 
n! x, -=t 

_ j1 U ( X, · • · X,., ) e 

19 

(3) 

(20) 

( 21') 
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We do not stop here, however, because we can reduce this 

form further to eliminate the repetitious terms in 

Equation (21'). It is true that in any system of identical 

particles we can interchange any pair without changing the 

total interaction energy at all. This means that we can 

separate the sums in Equation (21) into parts in each of 

which the particles are in a definite order. We can take 

any term in any one of the parts and make it a term in any 

other by interchanging particles judiciously. Thus each 

part will have the same value as the others, meaning that 

we need keep only one and multiply it by the number of 

different parts. There is a different part for each order 

in which the particles could be placed. Since there are 

n particles, there are n! permutations of n things n at a 

time, hence n! parts 

~ n!L_~···~ 
11 n [ N N N 

n f )(.~ I X2-: I Xn= I (21") 

x, < x2 <· · · < x~ 

Every order of the particles will produce the same result 

so we choose to keep the particles in numerical order. In 

addition to this, the hard-core diameter e (in units of ~) 

means, for example, x 1 + e < x 2 , x 2 + e ~ x 3 , ···, xn-l + e 

< x , x + e _< x 1 + N. 
- n n 

With these ideas in mind, we take 

another look at our task. 



21 

The sum in Equation (21") indicates that we must 

set up our summation apparatus so that order is preserved, 

particles never come closer thane cells to one another, 

and all possible configurations are reached. To accomplish 

this we consider the possibilities. First, if x 1 = 1, we 

note from the above that x < N + x1 - e = N + 1 - e. n -

This of course limits the other particles as well since 

they must lie between x 1 and X . We construct the follow-n 

ing table 

X,+e .t.. Xz 

Xz+e ~ X3 
x3 +e < x,. 

(22) 

Xn_,+ e < X'.., 
Xn +e < X,+N a/so X <. N 

Y\ 

We generate all configurations by allowing x 1 to take on 

all possible values x 1 = 1, 2, 3, , N - ne + e. With 

these considerations we write down the configuration 

integral. 

[
N+I~fn-lle N+l -(Yl-Z)e 

jn L: L. · · 
Xz.:: •+e X3 -=-X2 te 

(X,:: I) 
+ N+2-rn-,)e N+2- (n-z>e 

2:. L ... 
Xz:cl+-e )( -X e 

3- z+ 
('/.,:::2) 

(23) 

+ ... + Nl-€-ne N+-e-cn-t)e. 
L. L. . . 

X,=e x, ... x,+e 
(X,~ e) 

N+-e- e 
-~ 
X.,.-=~-te 
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Let us now turn to the evaluation of the interaction 

energy in terms of particle positions. 

U lXi) (24) 

The sum in Equation (24) runs over all distinct pairs of 

particles, summing the pairwise interactions under the 

assumption that the interaction between 2 particles 

consists of an interaction around each limb of the circle. 

For convenience, we define a pseudo-Kronecker delta 

function. 

0 

I 

. 
I 

I 

X:f-0 

X=O 

Using this definition, we can rewrite U(x1 ••• xn) as 

N-1 ,_, Y} 

L 
_t.= I 

( 'l_t + VN_J.) .L ?: 6 ( L- ( Xj-X;))-
t=l ):.(+/ 

To show that this is equivalent to our previous form, we 

note that the cell occupancy number can be expressed as a 

function of position coordinates. 

(25) 

(26) 



23 

Y1 
L. b ( m- X.t) 
.f.= I (27) 

We shall show with the aid of (27) that the double sum over 

i and j is equal to the infinite profile P~· 

N-.t 
L. a; Ok+t 
k=l 

N-.i. n n 
L '[_ I= t; ( k- X;) 6 ( k + l- Xj) 
k=l i=l J:=l 

By the nature of the problem x. < N so that if x. - x. = ~ 
1. J 1. 

then both a-functions cannot be simultaneously nonzero if 

k > N - ~- This means that we can extend the sum to N so 

that 

~~tl ) L L L tS ( k- Xi) J ( k 4-.i- Xj 
l :./ j-:J k=l 

h n 
Pl= L L b( Xi+)-Xj) 

j-::. I j =I 
( 2 8) 
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The only nonzero terms in Equation (28) are those terms for 

which x. - x. = £. In order for x. to exceed x., j must 
J l J l 

exceed i since we previously ordered the particles numer-

ically. Hence we can ignore those terms in (28) for which 

j ~ i. Then we have 

(29) 

With this result we can rewrite (26) 

( 2 6 I ) 

This result agrees with Equation (11) demonstrating that 

these two approaches lead to the same energy as they must. 

We must use this result to compute the energy for the 

position representation. 

Let us start with Equation (23) and make the substitu-

tion in favor of the a.'s defined previously 
J 

a· J Xj+1 - Xj - e (30) 

We can express the x's in terms of the a's and x 1 as follows: 
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J- I j-1 
X,+ L. ai + (j-l)e X, + L. (ai t-e) 

i= I i=• ( 31) 

+ ... 
~-2 

N-ne N-ne-a, N-ne-a,-a1 N- v-.e - I:. ij 
+ L [_ L . L. J2' 

a.::o d.Q_-=0 a.J -:0 a ... .-=o 
V\-1 

N-ne!~ N-"'e+e-x, N-vo. e +e- 'X,-a, N-~e+e-X,- .L aj J e ~ UIX,-··x.J' 32) + L.. L_ L_ . E. J~, 

x. :e. a_.-::o 
a.~,:o a.,._.::O 

Since we have expressed the x's in terms of the a's, we 

can now rewrite u(x1 ••• xn) as a function of the a's 

U(a, · · ·-a"'_,) -. 
n-• n j_, 

.L [. [ V(?; (ai+e)) 
1-::.f J~•+• k: 

J-1 ] 
+ V(N- · L. ca. +-e)) 

k;>.i 

In this last form we notice that the energy u no 

longer depends on the coordinate _x 1 indicating the fact that 

energy of interaction depends only on interparticle separa-

tions and not absolute locations. This means that we can 

rid ourselves of the sum over x 1 and reduce our work thereby. 

This requires that we interchange the order of summation 

until the sums over x1 are innermost. We do this pairwise, 

that is, we interchange summations in a pairwise manner 
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until the sum over x 1 is inside. Since the energy does not 

depend on x 1 , we can change this variable by reducing it so 

that the sum on x
1 

starts at zero. For convenience let 

'r\•2 

F ~-it F- £ a.j 
.. + L. L ... [J71 

a,-=o a1."o a..,_,= o 

F = N - ne. 

~ F- x.,:- x,-a., 
+ L [.£. . . 

Notice that the first e-1 terms are identical so that (33) 

a. .. _,:: 0 

After we complete the interchanges in order of summation, 

a. ..... 0 X, =0 

. . -
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Even this form is not the final form since we can 

make further simplification by taking advantage of the 

lattice symmetry. To do this we first define an additional 

variable 

n-' 
F-~ <l.j. 

j=l (34) 

We showed earlier that the interaction energy is not changed 

when we translate all of the particles by an integral number 

of lattice constants. The quantity a defined above is also n 

Yl-1 Y\-' 
Sl f\Ce X.., =- X,+?:.. (d.j+e) :::. X,+ 2: a 1 + ( Y\- 1)e 

J=l j-:::J 
Y\-l 

"[_ a.1 -(Yl-l)e-e 
J=• 

(35) 

aj -= 

then is a quantity alike in character to the other a.'s 
J 

in that it represents the number of free cells between two 

adjacent particles n and 1. 

Let us compare the energy of two configurations, one 

represented by the set (a1 , a 2 , . . . , a 1 ) , and a second n-

a ) . 
n The second configuration can be 

developed from the first by translating the system until 

particle 1 is in cell N and relabelling particles to return 

them to numerical order. This is tantamount to a cyclic 

permutation of the ordered collection (a1 , a 2 , , a ) and 
n 

since it arises from a system translation we have the result. 



u ( az. a3 • • • aY'I) 

We shall make use of this result in the discussion that 

follows. 

With a bit of examination we can see that the sum in 

Equation (33") is a sum which is carried over those 

configurations for which a 1 + a 2 + ••• +a = F and only n 

those. This means we can write Equation (33") in a more 

symmetric form by the use of a 6-function o(F-
n 
l: 

j=l 
a.) 

J 

which is zero except when the argument vanishes in which 

case it is one. 
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The order of summation as written now in Equation (36) does 

not matter since we have made the limits of each sum 

constant. Suppose that we now replace u(a 1 , a 2 , . . . ' a 1) n-
. . . a ) . 

n 
Since these two are equal, no 

change has occurred in (36). Now suppose we replace a 2 by 

, a by a 1 ', a 1 by a'. n n- n 
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P ~- 1 ~ u (a' a ' ... a · ) 
L_ S(J:""-~aj)(e-t-a~_,)e- • ~ n-• 
a. •-:: 0 J~ I 

"-1 

1l I=' 

1 L. · · 
a:=o 

I 

The a •s are only dummy variables so that we may now drop 

the primes noting that (37) looks just like (36) except 

that the factor e + a is replaced by e + a 1 . We can n n-

repeat this argument n times so that we have n different 

expressions all equal to C (LrS). We write them all down n 

and add 

• 
• • 

n 
The sum }:; 

j=l 

• 

a. = F = N - ne so that we have 
J 
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n N F 

C (L 12) = t - [ 
F'\ I,.., Y\ a_,-::0 

F-a, ( 3 8) 

I_ 
a,.-=o 

Now that we have an expression for the configuration 

integral we shall examine it to see how much our problem 

has been simplified. The terms of the original sum, 

Equation (23), were of the form e-Su while in (38) they 

have the form~ e-Su. Hence we have reduced the number of 

terms by N/n. There are ( F + n - 1) . ( 38 ) terms 1n n - 1 so that 

there are ~(F ~ ~ i 1
> terms in (23). If e = 1, F = N - n, 

then in this case there are N(N- 1 ) = (N) terms. This 
n n - 1 n 

means that if e = 1 the configuration integral for the case 

where the only interaction is the hard core repulsion is 

C (L,S) = tn(N) in agreement with the results obtained by n n 

5 Tross • 

With the computation of C (L,S), we now arrive at the n 

next difficulty in the treatment of the lattice gas. In 

the case of continuum systems we find the pressure of a 

system by employing a derivative. Letting P represent the 

thermodynamic pressure we would find P by the following 

P - .!.. 4_ l n Q '" ( L1 ~) - f3 dl •• 
(39) 



This, of course, cannot be applied in the case of the 

discrete lattice since L takes on only values which are 

integral multiples of the lattice constant ~. There are 

several alternative approaches to employ in computing P. 

1. We can evaluate the derivative d/dL by noting L = N~. 

If we assume that the number of lattice points stays 

fixed we vary the Volume by varying the lattice parameter. 

Hence d/dL = 1/N d/d~. When we write the potential inter-

action in its original form as Equation (5) we observe 

the dependence of u on ~. Let us look at the result for 

the system we just solved c (L,S) = ~n N(F + n- 1) 
n: n n-1 · 

solution is the configuration integral for the Tonks 

This 

7 gas 

system with particles of size e. The partition function 

n 

Q (L,S) = (2 Tim) 2 ~n Nn(F +n ~ -l 1 ) yields the following 
n . Sh2 

result for the pressure using our first method. 

- :!lkT 
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- N (40) 

Equation (40) is the equation of the pressure of an ideal 

gas but no account is taken of the volume occupied by 

particles and thus is not satisfactory. The other two 

methods work under the assumption that the lattice para-

meter is fixed and the number of lattice points varies. 

We make use of the calculus of finite differences and hence 

a short digression on this subject seems in order. 
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We first define the difference operator ~ on a 

function f(x) as 

6.f<X) f (X+ I)- f (X) 
( 41) 

~ is sometimes called the forward difference operator. It 

has many of the properties of the differential operator in 

that it is distributive ~(f + g) = ~f + ~g also ~af = a~f 

where a is constant. There is a slight difference in that 

~f{x)g(x) = f(x+l)~g(x) + g(x)~f(x). 

We can also define an integration operation anal-

ogous to Riemann integration in real variables. 

t' f (X) 
~=4.. 

( 4 2) 

With this definition we note 

b b-1 
L ~ 9(X) = L l:l jCx) 

~ 'X=cl. 
( 4 3) 

Equation (43) is strongly reminiscent of the fundamental 

8 theorem of calculus . We can set up difference formulas in 

a manner analogous to differential calculus. 

Aa = o 
~ax::. a_ 

(a. constan-t) 

(44) 



The combinatorial function (x) n = x! 
n! (x-n)! behaves in 

difference calculus like xn/n! in differential calculus 

in that 

With this bit of discussion of the difference 
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( 45) 

calculus, we proceed to the second method for computing P. 

2. We approximate the derivative d/dL by taking the 

difference of ln Q (L,8) as L changes by i or N changes n 

by 1. 

p = 
13

;_ ( I Y\ Q n l L + J, ~ ) 

~6./11 On ( N2, ~) 

n 

Q (Ni,8) = (2nm
2

) 2 inC (Ni,8). 
n 8h n 

The only part of Q (Ni,8) n 

that depends on Lis the configuration integral Cn(Ni,8). 

Thus 

(46) 

The third method is similar. We take as our expres-

sion for P 

I 
P=- 1!J 

6. Cn(NJ.,fi) 
c lA ( {'J }., (6) (48) 



Equation (48) is the approximation to P = 

1 d 
SC (L,S) dL Cn(L,S) which is the result of Equation (39). 

n 

We shall take the third form as being closest to the 

continuum form for the pressure in our system. The two 

forms Equations (47) and (48) merge together in the limit 

~-+- 0. 

We pick the third method because it seems closest 

to the form of cn(~,S) ~L Cn(L,S) while b ln Cn(N~,S) = 
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ln[l + 
bC (N,~,S) 

n 
C (N~,S) 

] which differs from Equation (48) except 
n 

in the limit ~ -+- 0. The first method is unsatisfactory 

because it does not take into account the additional 

configurations which arise from increased volume. If we 

use our method to compute the pressure for the Tonks 

gas we obtain (F+Yl-1) 
Cl ~ V'l-1 

p-• 
- f3J. .t:}_ ( F"+ n- I ) 

V1 V'\ - I 

I r (P+") + N (""~~z') J 
(5J- N (F+-Yl-1) Y\ Yl-1 n 

n Y\-' 

~] F+~ ] I [I F+ fl + 
_1 [ Y\- l + N 

~l N 
F+t F+ \ f3fi F+l 

When e = 1, 
n 

(49) becomes P = S~(F + l) 
n 

~ 

S~F· 
Now ~F is 

(49) 

just the free volume of the system, i.e., the empty volume. 
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p :::: 
S(L 

n 
n£) In this form we have the usual Tonks 

gas result.' This demonstrates the validity of the 

model; it can and does give reasonable and accurate 

results. As we shall see later when we examine the results 

of our numerical calculations, some of the pressure-

volume curves are rather strange but this strangeness is 

not the result of the method of computation but rather is 

the result of the boundary conditions. 

Let us now consider another problem, the one-

dimensional Ising lattice gas generalized so that particle 

size is not cell size. The potential of the Ising model 

is defined by 

oo i x<e 
V<X) -~ i e~x<e+l 

o , "X~e+- (50) 

The formulation we have gone through automatically 

builds in the hard core repulsion part of (50). Let us 

write down u(a
1 

•·· an-l) for the Ising lattice gas 

V\-1 Vl 

uta.·· .at\_,)= .L. Z.. 
·=· ;:f+l 

(51) 

The minimum value for j - i in (51) is 1 the first term 

vanishes when j - i > 1, a. > 0. 
l. 

The second term vanishes 

j-1 
except when N - L 

k=i 
a -k 

(j - i)e = e. This can happen 



only if j=n and 
n-1 

i=l for then N - E 
k=l 

a - (n-l)e k 
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= e 

n-1 
or N - ne - E 

k=l 
a = 

k 0 =;>a = 0. n Summarizing these results 

we see that the only contributions to u are from those 

terms containing a single a. and then only when that a. is 
J J 

zero. 

.., 
u<a, ... a,.,):::: - E L E) { ak) 

~=· 
(51 I) 

We represent a configuration by the n-tuple (a
1

, a
2

, 

, a ) and from (51') we obtain the energy by counting n 

the a.'s which vanish and multiplying the result by -£. 
1 

There are n different energy states in general if F > 0. 

These states are -{n- 1)£, -{n- 2)£, , 0. If F = 0 

there is but one state -n£ but this is a special case. The 

configuration integral then can be written as 

{52) 

We evaluate (52) by finding the multiplicity of each 

level. The level -(n- 1)£ can occur inn ways, namely 

all a. = 0 except one which is F. Since there are n 
J 

choices of the a. which can take on the value F, the 
J 

multiplicity of the level -(n- 1)£ is n. The next level 

is -(n - 2) £. In order to achieve this energy, two of the 

a.'s must be nonzero and the rest zero. We now have a 
J 
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counting problem to determine the multiplicity of this 

Since two coordinates a. must be nonzero, we assure 
J 

level. 

this by taking 2 away from F and assigning a 1 to each of 

the two. This leaves F-2 to distribute between the two 

nonzero values. This problem is analogous to the problem 

of counting the number of ways of putting F-2 balls into 

2 urns (F - 2 + 2 - 1) = (F - 1) 
F - 2 F - 2 . We can do this for each 

pair of coordinates a. and a. we choose from the collection 
1 J 

of n. We can select the pairs in (~) ways. The next 

level is -(n- 3)E. This energy level occurs when 3 of 

the a.'s are nonzero. To assure that the three are non-
1 

zero, we assign each the starting value 1. This leaves 

F-3 to be distributed among the three. This can be done in 

. (F - 3 + 3 - 1) (F - 1) Th (n) f 1n F _ 3 = F _ 3 ways. ere are 3 ways o 

selecting 3 objects from a collection of n. The level 

( k ) . ( n) ( F - 1) . · th - n - E can occur 1n k F _ k ways s1nce as 1n e 

above discussion the level is only achieved when k of the 

a.'s are nonzero. We assure they are nonzero by assigning 
1 

each the starting value 1 and distributing the remaining 

F-k among the k coordinates. There are (F - ~ ~ ~ -
1

) = 

F - 1 (F _ k) ways of doing this. · h (n) f S1nce t ere are k ways o 

selecting the k nonzero coordinates, there is a total 

n F - 1 
degeneracy of this level of (k) (F _ k) 

sum over all states to obtain C (L,S). n 

We 
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(53) 

Some of the terms in (53) may vanish because some levels 

may not be accessible to the system; e.g., ifF= 1, only 

the level -(n- l)s is available; all other terms vanish. 

We note that if F = 1 when k > 1 the lower member of 

F - 1 (k _ 1 > exceeds the upper member. This is equivalent to 

asking ourselves how many combinations of m things n at 

a time are there. If n exceeds m there are 0 such 

combinations. For the sake of consistency take (m) = 0 if -n 

n > m. With this definition, the sum (53) will fit all 

situations. The result (53) becomes identical to that 

found by Tross in his papers 5 with the aid of the computer. 

(2) Grand Ensemble 

Suppose we turn our attention now to the grand 

ensemble. We form the grand partition function as 

oo n L. z oV\ tv, 13>. 
n-:o (54) 

We can regard (54) as a transformation of variable from the 

discrete variable n to the continuous variable Z. We also 

regard this as a new ensemble and take as thermodynamic 

parameters the ensemble averages of the quantities from 
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canonical calculations. We take as the number of particles 

in our system the ensemble average of the number n 

i Yl ZYJ On (V,~) 
"'::0 

r_ zn QV\ l v,p) 
n-=O 

Also recall that for a continuum system SP 

ao 
n 

av(V,S) 

Qn(v,s)· Therefore 

This is not the usual form presented for pressure in the 

(55) 

(56) 

grand ensemble. We obtain the usual form by averaging the 

result (56) over all volumes from 0 to V. 

_I IYl :.l.,l"l,ft) v (57) 

The form (57) is the one usually given for P in the grand 

ensemble and as Yang9 has pointed out, the value P in (57) 

can truly be identified with pressure only in the thermo-

dynamic limit. Nevertheless, it is useful to observe the 

behavior of this function for finite systems in order to 

observe its characteristics for signs of its limiting 

behavior. 

For the lattice system things are not so simple. Here 

!:Y.Q (N,S) 
the P · t k 1 n pressure ls a en as BQ ~-n·(~N~,·s~)~ Hence the ensemble 



average of P is 

t ~\'\ f::::.. QY\ (N~~) 
V\:0 -- l 

(3 

We can approximate the results of (58) as 

We can now use (59) to evaluate the average of P over all 

values of N from 0 to N-1 so that 

40 

(58) 

(59) 

( 60) 

Since the result (60) depends on the approximation (59) 

the grand ensemble results for pressure are exposed as 

being rather far removed from the canonical ensemble results. 

Using the result (60) to define the pressure in the grand 

ensemble, we can show that (ap) > 0 where p = n/N. We ap 8 

f . d aP 
1n ap as 

(61) 
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If SPN = ln ~N(Z,S), then 

( 6 2) 

and 

( 6 3) 

The quantity in (62) is obviously positive. To show that 

the result in (63) is positive, we need only recall that 

n
2 

- n 2 
= (n - n) 2 which is of necessity positive. -=> aP > ap 

0. We cannot guarantee such results for the canonical 

ensemble. Also, since Q
0

= 1 we have ~N ;: 1 :::::> ln ~ ;:, 0, 

hence P is necessarily positive. Thus use of the grand 

ensemble formalism guarantees us that the pressure 

calculated will be positive and the P-p curve will be a 

monotonic curve with P increasing as p increases. 

It is interesting to note that for the lattice system 

the point of departure is the canonical ensemble developed 

previously. Suppose we start with (21 1
) as the equation 

for the configuration integral. We set 9- = 1 for conven-

ience. This is not the simplest form of the configuration 

integral but we employ it for comparison with previous 

formulations. If e = 1 no more than N particles can occupy 

the N cells so that (54) becomes 

(54 I ) 
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We note that there is a relationship between e (N,S) 
n 

and eN (N,S). We establish its character by noting that -n 
for every configuration of particles present in the 

evaluation of e (N,S) there is a corresponding one in the n 

evaluation of eN (N,S). We establish this by noting -n 

that if we start with a configuration containing n 

particles and make the transformation o.' = 1- a. we 
J J 

arrive at a configuration which contains N-n particles 

and vice versa. The energies of the two configurations 

are related as follows. 

u' N·l 

(N-2Yl)L_ ~· + u 
}-;I 

From which we obtain 

Using the result (65) together with Equation (3) in (54') 

yields 

If we let z' 

N-1 

( 6 4) 

( 6 5) 

,tJ-"" -f3(N-2n) Z Vj J 
l e J=' 

( 6 6 I ) 



We have used the notation [N/2] to 

that does not exceed N/2. Let s = 

With these substitutions we have 

mean the largest integer 
N-1 

E V. and Z" = Z'e-BS. 
j=l J 
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( 6 6") 

Now let Z" = e 2 V then we have 
["Y2.] 

1"1 (~ ~)- ~ c -"V15[ l,VIV 
a~.,_, z;.., ~"" - ::;o ..... (N,fJ) e 'J e + 

l"'tz] ~ns Nv [ -(f\1-ll'\)'V Ov-2n)v$ - L C..,. (N, f->) e e e + e 
n-::.o 

[ Nfz] ) N v + j3 Y1 S . 
L. Cn (N,~ e (1.- ~ (Y1-!::: J) cosh(N-Zn)V (67) 
l'\:0 ~ 

We insert the factor 2 to compensate for the 1/2 in the 

hyperbolic cosine. The a-function corrects for double 

counting when n = N/2 in the case of even N. We 

write Equation (21') 

-f3U(X,···X"') e 

and realize that because of the hard core potential 

u(x1 ••• xn) is infinite when a pair of particles occupy 

the same site making the exponential go to zero for that 

situation. Thus the exponential in Equation (21') 

contributes only if all the x. are distinct. 
l. 

( 21' ) 
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As it stands to here, the method is seen to corres-

pond to the result Tross obtains after some torturous 

t 
. 5 rna r1x arguments . This demonstrates the simplicity and 

versatility of the point of view adopted for this work. 

Tross makes the further simplification that is made in 

this work of restricting the sum (21') to a single ordering 

of particles but fails to take advantage of the further 

reductions as we have. The reductions made herein reduce 

the number of terms that must be evaluated by a factor 1/N 

which is a significant saving and allows us to treat 

larger systems. 

(3) The Pressure Ensemble 

We have discussed the canonical ensemble and the 

grand canonical ensemble and found t.he usual results. There 

is another ensemble one can consider and even though it 

is not convenient for making computer calculations, it is 

most convenient for treating lattice systems theoretically. 

We transform the discrete variable F the free volume to 

the continuous variable ~ as follows 

Let us first establish the circle of convergence of 

the series. To do this we must determine the value of 

C {ne + F + 1,13) 
lim ~n~----~~~.----
F-+-oo Cn(ne + F,l3) 

= 1 where R is the radius of conver
R 

gence 10 We can write 

( 6 8) 



and so 

C"'(V1e+F"+l,fJ) 

C~ (Y\e+ F, f3 ) 

~ C"' ( n e +- F, ft ) 

CV\ (ne+F1 /3) 

The second quantity in the right hand member of (70) is 

just the limiting value of the pressure as the volume 

becomes very large. We seek the value of ~C (ne + F,S). . n 

An elementary application of difference calculus 

yields 

/). C.,.. ( ne +F, ~} ::::. 

~ Cl1(ne+F;ft) + 

If we divide (71) by C (ne + F,S) and take the limit we 
n 

have 

I i rn 
F~t:P 

45 

( 6 9) 

(70) 

( 7 2) 
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The interaction potential V(x) which we assume is such that 

for a finite number of particles u is bounded both from 

above and below. Thus, we can state 
""-~ "'-l 

f+\ F+l~ ~. ~ .. 1-.E.a.l _ fo u c a, ... a .. -'1J F+l~ ~ad 
L. E ·L J• I J:.l 

N-t\ e 
a,~o -a,-: C) a. .... -'1.-::o - ~- tl.a... N F F-a., - (3 u ( ~ .... 4. ..... _,) L L. .. L J'': I l 

a..,:o a.,_so a..,_;o e. 

. ~ v. J ( i='"+n-'J 
~ N+\ ( e me.)(. h-'2. 

___:...-----: - ( !=' ~\'\- ') N ( e- ~ u 1 . ~ _, 
rt'ltYl. 

The exponential function is positive for any real 

argument thus the term in (73) is bounded from below by 

zero. Since u is bounded both ( -8u) and ( -Su) e max e min 

are finite and nonzero. 

(
(HI- 1) 

\'\-2. 

( Ftn-1) 
\o1 - I 

n-1 

P+ I 
= 0 

Now (73) and (74) together imply that 

lim 
6 Cv. f"ne+r:, ~) 

C,... ('ne~F, f3) 

( 73) 

( 7 4) 

N-tl 
N F F- •• 

2." '£ . e 

( 7 5) 

- f3 u ( a.,' .. an-') 
a,:o 'a,:o l...,_, -::.0 

The right member of (75) must vanish if the periodic 

boundary conditions are to give useful results. The 

periodic nature of the potential causes the total inter-

action to depend on the number of lattice points. Thus 
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we should assume that (75) vanishes and examine the results 

of this assumption. If P does not vanish with large 

volume, then it is this assumption which fails and in this 

event we should question the utility of the periodic 

boundary conditions. Thus we take 

C"'(YH'+F•I, ~) 

C"'(he+~,p> 

AC ... C"nt-+F.~) 

C"'('ne+v.~) 

The result (76) therefore implies that the series in (68) 

converges for lsi < 1. Suppose we now examine (68) more 

closely. We note that 

( 7 6) 

(77) 

Where the contour in (77) lies inside the unit circle 

and encloses the origin, now the function 

continuous and analytic for s ~ 0. There 

L(s,S) . 
F + 1 1S s 

is a pole of 

order F + 1 at the origin and since the radius of conver-

gence is 1 L(l,S) ~ oo. Therefore somewhere along the real 

axis L(s,S) 
sF+l 

has a minimum for 0 < s < 1. We can thus 

employ saddle-point integration to estimate Cn(ne + F,S). 

We first rewrite the integral (77). Let us assume the 

countour C is a circle centered on the origin and having a 

radius r < 1. 
i8 Let ' = re where i = /-1 the imaginary 

unit. 

dQ 
( 7 8) 
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ie Let f(r,e) = ln L(re ,8) and F(r,e) = f(r,e) - F ln r -

iF8. From what has been said previously, we know that the 

integrand function eF(r,e) has a minimum along the real 

axis at some point, say r = t. We have then 

~ e F{ r, e) \ ~-~ t 
dY" e~o 

) F~' ( r, B) l- -- 1 -O-F(r,9e . l; 

y 9: 0 ( 7 9) 

The exponential does not vanish so that the parenthesis must 

go to zero. Consider 

From the substitutions we 

a ar,: a ln and f ln 
ar,: L ar = ar,: e 

fe V' f~ 

0 

have 

F (r, 9) 
F, ( Y, a) e 

made, we note 

L ar,: 
a e ; thus we have 

that f = r 
fe f r = ---.-
ire 18 lE e 

Using (81) in (80) shows that if (79) vanishes, (80) must 
. 

also. To examine the nature of the point r = t, 8 = 0 we 

take the second derivatives. 

(80) 

or 

( 81) 

f:") F"(Y,9)\ 
( tyr ( v-. e) + ? e y:: t ) 0 

9=0 (82) 
F<r;G) I e r-=t 

s=O 
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The result in (82) must be positive if eF(r,e) has a 

minimum at r for e = 0. 

( 8 3) 

Now (81) tells us fe = irfr. From t'~is we can show fee = 

irfre' f =if-+ irf • er r rr 

-rf - r 2 f Hence r rr 
2. 

l... e~(v-.e)/ 
"JGP- r= t 

e: o 

From (79) we have F/r2 = 

fer = fre therefore 

f /r; hence 
r 

fr) e F="{r;eJ) f...-* 
( ~\"Y + Y e~O 

Comparing (82') with (84) we have then 

\ 
y::. t 
e-= o 

< 0 

(84) 

( 82 1
) 

{85) 

The results (82) and (85) imply that the point r = t, 6 = 0 

is a saddle point. Thus if we fix r at t, then the function 

eF(t,e) has a maximum at e = 0. Let us expand the function 

F(t,e) in a Taylor series around e = 0. 

(86) 



For large systems, the coefficient of e2 is quite 

large since it is the difference between the ensemble 

average of the free volume squared and the square of the 

average free volume over the pressure ensemble. This 

should not be confused with the value F in the left hand 

member of (77) . If we choose our circular contour to be 

of radius t we have 
'1r 2 [- -"-J 

C.~, ( ne-tF1 
(3) -:: -' 

) 1~ Ut,f!- n.t- f r:•- r: .... 
e d9 z-rr 

-rr 1- - _'2.) 
- ~ ( ~1.- ~ 
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2. ~ L ( i~ ft) +.- F= 
~ e- 1. d a 

(87) 
-00 

J._ L(t {3) -~:- F ~ zn- , r:- F__.,_ 

We can rewrite (87) as 

~ I ~ J::' Llt,,S) -t. C"'(V\e+FJ,6) z 1T t f'- ~'f) ( 87 I ) 

(87') shows that most of the properties of L(t,S) come 

from a single term in the sum and hence shows that the 

pressure ensemble can give good results; that the ensemble 

averages give results which agree with the canonical 

ensemble results. For the pressure ensemble we find the 

free volume as the ensemble average 

00 

~=" ~ ~="c~(~e+F, f3) L: 
r~ 

F"~ 0 

OD 

L. £; F Cy. (ne+F, (3) 
(88) 

F~O 
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{_ ~~~C.,_ (he+~ j3) 
f"= 0 

(89) 

We can rewrite (89) as 

(89') 

F+l F F 
Now~ ~C (ne + F,S) = ~~ C (ne + F,S) - C (ne + F,S)~ (~-1) n n n 
thus 

{3 p = + 
1- t 
~ (89") 

For large n the first term in the right member of (89") will 

be quite small so that 

l-~ --~ (90) 

Using (88) and (90) we can obtain the equation of state 

with F given as a function of P and S. 

Before we apply our results, let us look back at the 

definition of the pressure ensemble partition function 

D/0 

L t; r: C "' ( Y\ e + Fl ,8 ) 
F:o 

Let us substitute the form Equation (38} in (68) with N 

n 
replaced by ne + E 

j=l 
a .. 

J 

( 6 8} 



If we carry out the sum over F we obtain 

u becomes a function of the value a since u is dependent n 

on the number of lattice points N which now is determined 

as N = ne + 
n 
L 

j=l 
a .. 

J 

For convenience we define F(~,S) 

o() oCI ~ ~· f3U.(a,· .. a_) r:- (~, ~) = 2: . . ·L !T ~ J e- ... 
Cl.,-:: 0 't..,.=o ): I 

n 
We have employed the notation n f. which is defined by 

i=l l. 

With the definition (93) we note 

that 

J.. ( n e + ~ _4_ ) F ( ~. fi) 
V\ d~ 
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( 9 3) 

( 9 4) 

Let us now apply this ensemble to some examples. First the 

Tonks gas or the case u = 0. Here we obtain 



F(l;, fJ) 

Employing (94) we obtain 

Following the prescription outlined previously, we first 

find F. 

1- ne + 
l; + n~ ( 1-/;) 

When the number of particles n is large the second 
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( 9 5) 

( 9 7) 

term of (97) is insignificant compared to the first so that 

Y1 +I -(3 p 
see Ect. 90 ( 9 7 I) 

For large n the 1 is insignificant so that we have 

(97") 

This form agrees with that which we obtained earlier for 

the pressure from the canonical ensemble. 

The Ising model is also soluble in this ensemble. To 

obtain this solution we note that the interaction has been 

written 

(51 I) 



If we use (51') in (93) we obtain 

L ( l;, f3) 

( ;Bf: t; )Yl e +,_~ 

For large n the term inside the square brackets is small 
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( 9 8) 

( 9 9) 

compared to the other term and hence will contribute little 

to the resultant thermodynamic quantities. The quantity e' 

there is the particle diameter e. The prime is used to 

avoid confusion with the exponential e = 2.71828 

IV\ L(l;,f3) ~ (V\-1) \\'"\ (e ,s~ !i-) 
1-4 

From which 
I 

- (Y\-1) ., 
F: (I- ~r-

e fl6 -+ t; 
1-"1. 

Using (90) we have 

Y\- 1 

F= 

~ 
(Y'\-1) ( 1-r,BP) 

p P + (3z P2.ef3E. 

(100) 

( 10 1) 

Equation (101) expresses the equation of state of the Ising 

lattice gas in the nearest neighbor interaction. This 
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demonstrates the use of the pressure ensemble showing it to 

be of use in obtaining results where the other ensembles 

fail or are difficult to handle. The special form of the 

pressure ensemble makes it ideal to treat nearest neighbor 

interactions. Such works have been done for continuum 

systems and such results reveal that no transitional 

11 phenomena occur 

The pressure ensemble as considered here is well

suited to the theoretical investigations of lattice systems. 

Siegert and Lewis 12 discuss the pressure ensemble in the 

continuum and this discussion can be carried over to 

lattice systems with little difficulty. The pressure 

ensemble defined here is quite similar to the grand ensemble 

and thus the zeros of this function are of importance in 

the study of transitional phenomena. 



CHAPTER III 

DISCUSSION OF COMPUTER CALCULATIONS 

A. Canonical Ensemble 

We have previously discussed the derivation of the 

configuration integral C (L,S). We obtained the following n 

result 
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(38) 

We shall assume that the lattice constant ~ = 1 and that we 

measure energy in units such that k = 1 (Boltzmann's 

constant) • If ~ = 1, L = N and so C (L,S} = C (N,S}. The n n 

sum (38} does not really take full advantage of all possible 

symmetry. We do not eliminate the duplications of configura-

tions of the form (a1 , a 2 , ••• , a ) . 
n 

In fact, each cyclic 

permutation of this appears. We have a scheme then to 

reduce still further the sum (38}. Let A be the row vector 

. . . , a ) which represents the configuration. 
n 

We 

form all cyclic permutations of A and keep those in which 

the nth component is the largest component. There are n 

cyclic permutations of the row vector A; but, keeping only 

those in which the nth component is largest reduces this to k 

terms of this sort. k counts the number of components of 



A equal to the largest component. The sum in (38) runs 

over all configurations like A in which the sum of the 

components is F. We impose the additional restriction on 

the sum that we sum only those configurations in which an 

is the largest component and we weight these terms by n/k. 

The value k depends on the configuration A. As we stated, 

k is the number of components of A equal to a . n Thus k = 

n 
l: 6(a -a.). 

. 1 n J 
On the computer we evaluate k by taking 

J= 

advantage of the manner in which the machine does its 

arithmetic. By our construction an ::;: ak V k. The machine 

performs fixed point division by dropping all digits to 

the right of the decimal point so that if ak < an' ak/an = 

0 in fixed point arithmetic while if ak = an; ak/an = 1. 

. . k = 
n 
l: a./a evaluated in fixed point arithmetic 

j=l J n 

n-• 
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k /-t- L a.ya~ 
j=l ( 101) 

We can indicate the evaluation of the configuration integral 

now as 

The purpose of our calculation is to obtain values for 

the thermodynamic quantities pressure, internal energy, heat 



capacity and the statistical correlation function. The 

pressure has already been discussed We use 
l 6Cn(N,B) 

p = B c (N,B) 
n 

as our value for the pressure. The internal energy is 

found by applying the usual prescription which is just the 

average value of the Hamiltonian over the ensemble. 
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Yl 

28 
+(LA) ( 10 3) 

(104) 

The heat capacity is by definition (aE) so we evaluate this 
aT N 

derivative to evaluate CV the heat capacity. Using (103) 

and (104) we obtain 

c' = ~ + l [ ( v.•) - < \A )
1

] ( 10 5) 

The second term in ( 10 5) is 

internal energy multiplied 

the fluctuation of the average 

1 by ~- We can easily show that 
T 

2 2 2 <(u- <u>) > = <u >- <u> and since the first expression 

is positive definite CV ~ ~- As ·the temperature of a 

system increases, one expects the thermal vibration to 

increase and hence one expects the fluctuations to increase. 

In rough terminology, this means that as the temperature 

increases order decreases. 
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One aspect of the lattice system not emphasized 

previously is that the energy states available form a 

discrete set finite in size. Since the number of levels 

is finite the spacing between levels is also finite and 

hence there is a gap between the lowermost level and the 

next level. Normally we would expect a system to reside 

in its lowest energy state and we would find that here if 

thermal energy were not giving enough of a kick so that 

other levels can be populated. For convenience, we 

enumerate the energy levels as u 1 < u < ••• < u where 
2 m 

there are m distinct energy states. In the Tonks· gas 

case, there was but one level. In the Ising lattice gas 

there were n levels. The ratio of probabilities of the 

lowest state over the next is 

(106) 

result means that at low enough temperature (large S since 

S = 1/T) the entire partition function is essentially given 

by e-S~multiplied by the multiplicity of this level. It 

is as if there were but one level u 1 . The potential V(x) 

has a minimum value for some value for x. At this separa-

tion the interaction between a pair of particles is a 

minimum. Thus to minimize the energy we maximize the 

number of times this separation occurs. This will tend to 



make the lowest state an ordered one, i.e., one with high 

correlation, at least for certain separations. 

We can study the tendency toward ordering at low 

temperatures by studying the correlation function and its 
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behavior as a function of temperature as well as separation. 

The correlation function for this calculation is determined 

most easily by the following considerations. We return to 

our original representation in terms of cell occupancy. 

The pair correlation function as defined in Hilll3 is 

given by 
w ( i, j) 

\tJ(i) W(j) 

Where W(i,j) is the probability that cells i and j are 

(107) 

simultaneously occupied and W(i) is the probability cell i 

is occupied. We find the probability W(i) by summing over 

only those configurations in which cell i is occupied and 

divide this by the total configuration integral. We 

-Su accomplish this by summing crie over all configurations. 

Since cr. vanishes when cell i is empty, we effectively sum 
l 

only over those configurations in which cell i is occupied. 

Thus 

w ( i) ( Oi > ( 10 8) 

From the symmetry of the lattice, it is clear that each cell 

has the same environment as any other~ <a.>= <cr.>. We 
l J 

know that there are n particles in the system so that 
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N 

E 0 == n 
j=l (109) 

N 
==:? <4=-0T> n (110) 

J~l 

N 

=? ~ ( Oj) n ( 111) 

r=-' 

Since each of the expectation values in (111) is the same 

as any other 

N<Oi> n 

Putting this result ln 

Wlil=P 

(108) we have 

Yl 
N 

(113) 

The evaluation of W(i,j) proceeds along similar lines. 

W ( . . ) < cr,· a-~ > I, J =. ~ (114) 

As stated before, the environment of one cell is exactly like 

any other and nothing is changed if we relabel the cells 

calling cell i 1, cell i+l 2, etc. From this we can say 

(115) 

(115) tells us that the probability W(i,j) depends only on 

the difference of the values j and i. We could just as 

easily have relabelled cell i as 2 or 3 or 4 or ••• or N. 

Thus 
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If we add all of the terms in (116) we obtain 

"' < ~ Ok o-k+j-i > (117) 

From (117) we can solve for W(i,j). 
N 

I 1\ I ( i, j ) ::. N < "'" ~.... ,.....,...- . . ) VV L '-":.. '-'K+l-1 
k-=-1 ( 118) 

If we refer back to Equation (6), we note that the term in 

1 b k t b .. t th .. th f ang e rae e s a ove 1s JUS e J-1 component o the 

profile. 

I 
N 

( p . . ) 
J-l 

Let us look back at Equation (107) now to rewrite the 

correlation function 

( . . ) I cor \,J == -z 
Nf 

< Fj_j > 

(119) 

(120) 

Since the correlation function depends only on the differ-

ence j-i we write the correlation function as a function 

of the difference so that 

_ -'-.. 'd,, I vt C..,.. ( N, f5i V,; · ·, V..,_J 
(3Nf"" 'dv~ ' " (121) 

Summary 

We must compute several items by computer. We first 

compute the configuration integral 

(122) 
h-1 

I+ L' aJc; 
a~ 



Along with this we must compute <u>, 2 <u >, 

k = 1, 2, ••• , N-1. Actually, we know that Pk = PN-k 

so that we need only compute averages for half of these 

v a 1 ue s k = 1 , 2 , 3 , • • • , [ N I 2 ] • 

We compute the pressure by 

the internal energy by 

YlT + (u> 
2 

the heat capacity by 

V'\ + 
2.. 

I 
-~ -r 

and the correlation function by 

The actual computer program which evaluates these 

quantites is presented in the appendix. In the next 

section we discuss the calculation of thermodynamic 

properties in the grand ensemble. 
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B. Grand Canonical Ensemble 

The partition function for the grand canonical 

ensemble has been defined as follows 
a# 
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~N (l.,~)-= L ZY\ QYI(N}~) 
n-=0 ( 12 3) 

Where Z = e 8ll; 1-1 is the chemical potential. However, 

for our purposes Z is a just a parametric quantity. Any 

standard text in statistical mechanics will verify that 

the thermodynamic properties of a system are obtained from 

the grand ensemble as 

( 12 4) 

00 L VlLY\ QV\ ( N;B) 
Y\ -::0 

( 125) 

Here P is the pressure n the average of the number of 

particles over the ensemble. We shall use a bar over a 

symbol to denote its average over the grand ensemble to 

distinguish this average from the canonical ensemble 

average denoted by angle brackets <>. The upper limit in 

(124) and (125) is infinite; however, for our system where 

we are using hard core repulsive potentials with hard core 

diameter e the quantities Q vanish for n > N/e since these n 

conditions cannot exist • ·• we rewrite (123) as 

Nfe 
~ N ( "2., f> ) = L c"" Q ~ ( N, tS) ( 12 3 I ) 
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For those cases where N/e is not an integer, the 

sum runs to the largest value which does not exceed N/e. 

This value is commonly symbolized as [N/e]. Thus, if 

N = 13 and e = 2, N/e = 6.5 but [N/e] = 6. We cannot 

force more than 6 particles into this system since each 

one occupies two cells. For e = 1, there are some special 

results. Equation (16) expresses the connection between 

the energies of an n particle configuration u to that of 

the corresponding N-n particle configurations u' both in 

N cells. If we make the transformation as in (15) 

• 
Oj ::: l- OJ (15) 

We exchange occupied cells for unoccupied ones and 

unoccupied cells for occupied ones. Thus as we show in (16) 

N-\ 

(N - 2 n) Z. V· + U . 
. J 
)-:.I (16) 

The transformation (15) is a 1-1 and onto mapping thus it 

possesses an inverse which is obviously a.= 1- a.'. 
J J 

This shows that there is a 1-1 and onto connection between 

the configurations in Cn(N,S) and CN-n(N,S). Now we have 

( ( N, (3) 
N-n 

-.8 u.. z=_e 
[ c.o n fis uva f.io r~ s] 

( lN,f3) 
N-Y1 (127) 



For the case e = 1, we can write the sum (123') as 
N 

~N("l,fo)= L ~}1QY\(N,~) 
n::O 

We showed previously that Q (N,B) = (2nm)n/ 2c (N B) 
n ~ n ' 

If we replace Z j ~ by Z' we have 

~N ("l,f:>)=. ~ 71 V\ C (N tJ..) 
L- r:. n JJJ 
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(123') 

(123") 

(128) 

Using the result we have just obtained, we can rewrite (128) 
P11z.] Y\ N->'\ /3 N-1 ) L ( 1. I c\'1 (N. {!>) + z' CYl (IV,f3) e- (N-2n) f, Vj 

V\~0 

[N/z] 

L C~(NJI~} 

N-1 
Finally replacing Z'e-B E V. by Z" we have 

j=l J 

[ "'!: ] fl)-1 
.l f3 ~ V· ~ N-Yl) 

~"' ( l, f3) = L_ CV\ ( N, f3) e VI j~, J ( z" + z" 
Y\~0 

(128') 

(128") 

(129) 

It is important to note that Z" depends not only on Z 

but also on Band the components of the potential V .. So 
J 

long as we do not vary the temperature or potential, we can 



regard Z" just as we regard Z, namely as a convenient 

parameter to give us a set of parametric equations for p 

and n. For convenience, let P = n/N and call it the 

particle density or just the density by analogy with 

Equation (112). Thus we evaluate the partition function 

~(Z,S) as follows 
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(128") 

In addition to the pressure and density, we wish to 

evaluate the internal energy and heat capacity as well as 

the correlation function. The internal energy in the 

grand ensemble system is found in a manner like the 

internal energy in the canonical ensemble. 

-, 
~ + (u) (H) ( 131) 

As before, the bar above a quantity indicates average over 

the grand ensemble. The second term in the right member 

in (131) is a double average over both ensembles. We use 

the form Equation (131) to compute the internal energy. 

We also wish to find the heat capacity in the grand 

ensemble. This is not as simple as the corresponding 



evaluation of the canonical ensemble. The heat capacity 

is found as the temperature derivative of the internal 

energy E computed in (131). However, we cannot compare 

the canonical ensemble and grand ensemble heat capacities 

because n also depends on temperature. The quantity E 

depends on the parameter Z, the number of cells N, and 

the temperature T = l/k8. The difference in the two 

ensembles as far as heat capacity is concerned is that in 

the canonical ensemble the number of particles n is fixed 

and thus does not vary with temperature. To evaluate the 

heat ca~, we take the temperature derivative while holding 

n fixed. This will put it more in line with the canonical 

calculation. Fixing the value n imposes an implicit 

relationship between Z and 8. n depends on Z, 8, and N but 

N is fixed in both ensembles so that we regard it as a 

constant and suppress it although it is still implicitly 

present. Now E = E(Z,8) and n = n(Z,8). We must now 

make use of the chain rule for differentiation to find CV 

as the derivative of E with respect to temperature while 

the average number of particles n is held fixed. In 

symbols, this is 
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Cv =- (~~)n (132) 

As stated, E is explicitly a function of Z and 8 as is n. 

Holding n fixed forces a relationship between Z and 8· 

Thus E(Z,8) = E(8,n). 8 is defined as 1/kT so that 
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(we ~ss u.m e. k-=- 1) 
(133) 

(134) 

az 
We wish to evaluate <as>n· This we can do as follows 

(135) 

Thus we have 

(136) 

Now Equation (131) can be written out more fully as 

(137) 

It is shown in the standard works on statistical mechanics 

that 

<. 1-1) -



Thus we can evaluate (aE) quite easily obtaining as z 

We also need to evaluate By noting that 

we can evaluate 

( ~)~~ = 

Finally, we need 

and 

(aE) easily obtaining 
az a 

I -] l. L Y\(t-')- y) (rl) 

(an) and (~~) . For these we find 
az a z 

_ [ Vl(H)- Yi (K)] 

I 

1: [ 
-"i" -J.l 

Y1 -Y'\ ~ 
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(139) 

(140) 

(141) 

(142) 

( 143) 

Combining (136), (139), (141), (142), and (143), we obtain 

- -~ 
Cv = {3'2. [ <. ~1.) - ( r\) 

( Y) < \-\ > - 0 <"H>) 21 
nt- Y\

1 
(144) 

2 Thus we need to compute <H>, <H >, n, ll7, and n<H> to 

compute CV. 
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Finally, we wish to compute the correlation function 

cor(k). This is done in a manner entirely analogous to 

the canonical computation. 

COY( k) N 
7Z n 

This completes the computer set-up for the grand 

ensemble. 

Stunmary 

We use the same program we used in the canonical 

(145) 

calculations to compute C (N,S), <u>, n 
2 <u >. Then we employ 

these values in grand ensemble calculations. For e = 1 

we compute the grand ensemble partition function as 
J N•l 

~N (l, ~) -= rl c .. (N, ~) e"' f3 I-, V,; Cz. ""+ l.''N-rl) 
t'\:0 

and the density as 

...YL 
N 

(128") 

Fore> 1 we revert to the original form (123') for use in 

computing the partition function and all the averages. 



CHAPTER IV 

PRESENTATION OF COMPUTER RESULTS 

A. Canonical Ensemble 

Having completed the theoretical basis for these 

computations, let us now consider the results. The 

computer programs have been written to allow the maximum 

flexibility. We can independently and arbitrarily vary 

the number of particles, cells, and potential, and the 

temperature of the system. We can also vary the diameter 

of the particle to whatever value we choose. Variation 

of the particle diameter which we have called e has the 

effect of increasing the fineness of our grid and leads 

to more of the phenomena of the continuum. 

The calculations we have made were on systems of 

small size 7 particles or less. Larger systems require 

lengthy computer calculations and such long calculations 

were not deemed necessary to see the results. The 

potential we examine first is of the Lennard-Janes type 

2 12 6 
V(x) = 100[(-) - (-2 ) ]. V(l) +403 200 d h f = , an ence or 

X X 

all practical purposes as far the computer is concerned 

e-8V1 = 0 meaning that configurations in which particles 

occupy adjacent cells are not allowed. Thus we take e = 2. 

We first consider a system containing 5 particles and 
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examine its statistical behavior. We first check the 

correlation function. It has been computed for systems of 

from 13 to 24 cells and reveals much about the behavior 

of these systems. Figures 3, 4, and 5 contain the plots 

of correlation function versus separation of particles. 

We previously showed that cor(k) = N2 <Pn> where Pk is 
n 

the kth component of the profile vector P. We have added 

to the profile vector a component P which is found as 
0 

below 

The definition of P is consistent with the form 
0 

found previously for Pk for k ~ 0 in terms of particle 

occupancy. Since we have chosen hard core type potentials 

the occupancies are restricted to 

implies that o. 2 = 0 or 1 for all 

be either 0 or 1. This 

i < N. Since there are 
1 

n particles in the system, this means that P
0 

= n. We 

define therefore cor(O) = N 2 <P
0

> = 
n 

N and take cor(O) 
n 

as 

the correlation of a particle with itself. It is apparent 

that there can be no higher correlation than that of a 

particle with itself, hence cor(k) ~ cor(O). If the 

73 

equality holds, we have perfect correlation. This can also 

be seen by noting the form of Pk 
N 

Pk = L OJ OJ1-k 
j=.t 
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n of the cr.'s are nonzero and hence no more than n of the 
J 
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products crjcrj+k can be 

crj = 1, crj+k = 1 also. 

nonzero. If Pk = n, then whenever 

Thus Pk = n for perfect correlation 

at separation k. From Figure 3 we notice the progressive 

tendency to ordered structure of the correlation function 

as N varies from 13 to 15. Beyond 15 notice that the 

peaks at 3 and 6 remain present although of varying 

heights even through N = 24. This suggests to us a regular 

structure with particle separations of 3 or 6 occurring 

often. Mention should be made of the fact that cor(k) = 

cor(N - k) so that only values for k ~ N/2 need be plotted. 

This is shown by recalling Equation (9) where we found 

that P. = p. + pN .. 
J J -J 

If we replace j by N-j, we obtain 

PN-j = PN-j + PN-(N-j) = PN-j + pj = Pj =>cor(N-j) = cor(j). 

At N = 18 we note an additional peak at a separation of 9 

further confirming the regularity of the "average" 

structure. This follows along with the previous results 

for if separations of 3 and 6 occur often, separations of 9 

must also. The graphs of Figures 4 and 5 continue to 

show peaks at 3, 6, and 9 until at N = 24 a peak forms at 

12. We shall discuss this curious result later in our 

discussion of results. 

Next let us examine the behavior of particle 

correlation with increasing temperatures. Figure 6 shows 

these results plotted for N = 15, the value of N in which 

strongest correlation is observed. Note that as T grows 
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large all values of the correlation function approach the 

random correlation values approximately 1. In all cases 

the major decay of the correlation takes place in the 

interval from 2° to 10° approximately a fact we should 

bear in mind when we examine the other thermodynamic 

functions. 

Figure 7 shows the behavior of the internal energy 

as a function of temperature for the various situations 

from N = 12 through N = 16. The curves plotted in 

Figures 7, 8, and 9 are not truly the total internal 

energy E but only the configurational part. The kinetic 

energy of the particles contributes a known nkT/2 amount 

of energy to E so that all of the interesting information 

is in the average of the interaction energy u. Thus we 

show the results of <u> versus temperature. Notice that 

for N = 12 the curve is quite flat changing only slightly. 

As N increases the change in <u> increases until at N = 15 

it is considerable changing by roughly a factor of 2. A 

close examination of Figures 7, 8, and 9 will reveal that 

<u> goes the lowest for N = 15 in the neighborhood of -40 

for T ~ 0. Again note that most of the change takes place 

between 2° and 10°. The similarity of these curves with 

those in correlation function versus temperature suggest a 
~ 

connection. We shall show such a connection later and 

comment on its meaning. 

The heat capacity for a system is given by the 

temperature derivative of the internal energy. Thus 
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(54) 

The derivative in (54) is to be evaluated while N is 

fixed. Thus the curves for the heat capacity consist of 

a constant part nk/2 plus a part which is just the slope 

of a curve from Figures 7, 8, or 9. Figure 10 shows the 

results of computer calculations for the 5 particle system 

for the heat capacity starting at N = 12 through N = 15. 

For N = 12 we see the presence of two peaks. As N 

increases to 13 the second peak grows while the first 

changes little. By N=l4 only ~ne peak remains. F~~ all 

values of N larger than N = 14 there is the one maj~r peak 

in the neighborh6.od of 3 to 4 degrees. Again, we note 

that CV differs significantly from n/2 = 2.5 for T in 

the interval 2°~ T ~ lo•to N = 24. The behavior after 

N = 14 changes little except that the maximum of the peak 

seems to occur at lower temperatures as N increases. 

Figure 14 where we plot pressure versus number of 

cells we observe the first truly anomalous behavior in 

the system. Everything seems all right for N < 15; however, 

we find that at N = 15 the curve forT = 1° dips below 

the 0 axis yielding the unusual and highly suspect 

negative value. There is another anomaly perhaps for N < 

15 the pressure for T = 1° is greater than forT = 2° 

which in turn is larger than the T = 3° values. The 
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negative pressure values may not be so hard to accept if 

one realizes that in one dimension the pressure is just 

a force, really the average tension or compression force 

telling us how much force is required to hold the volume 

at a particular value. The fact that there are negative 

values simply means that the system would ."prefer" 

to occupy a smaller volume than the one it is currently 

in. From the nature of the curves this preferred volume 

seems to be N = 15. For N < 15 the pressure is positive 

while for N = 15 and a few larger volumes it is negative. 

For N in the neighborhood of 19 or 20 the pressure is 

again positive and decreasing. We shall see later that 

89 

these results are entirely reasonable. Figure 15 shows 

more pressure-volume ·curves for higher temperatures. The 

results are approaching the more customary pressure-volume 

curves one is familiar with. Figure 16 shows curves for 

still higher temperatur~~. which now look much more familiar 

to us. 

Figures 17 through 27 show the same sort of results 

computed for a 6 particle system for the same Lennard

Janes potential as used previously. Again note the 

anomalous pressure-volume curves and the excellent correla

tion at T = 1° for N > 18 = 1·6. Note that peaks again 

occur at separations of 3, 6, 9, and 12, etc. This 

behavior also shows up in results for a 7 particle system 

shown in Figure 28 which shows how order emerges out of 
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chaos as N varies from N = 16 to N = 7•3 = 21. Again, when 

N = 3•n we have nearly perfect correlation at separations 

of 3, 6, and 9 cells showing how well-ordered our system 

is. 

Let us look briefly at another Lennard-Jones 

potential V(x) = lOO[x-12 - x-6 ]. The heat capacity curves 

are plotted for various sized systems from N = 7 to N = 15 

in Figures 29 and 30. For N = 7 the curve peaks slightly 

and as N increases to 10 the height of the peak increases 

with N. It is at maximum height for N = 10. For larger 

N it is somewhat lower. The peak value occurs for 

temperatures less than 1° indicating that the interaction 

is not as strong. 

Figure 31 shows a set of graphs of correlation 

function versus separation for a system of 5 particles 

interacting through the potential 

vex> 

This potential is different from the straight Lennard-Jones 

in that it has no soft repulsive part. It is attractive 

all the way into the hard core which has a diameter of 

2 cells indicating e = 2. Thus the strongest attractive 

interaction occurs at the minimum possible separation 

2 cells. We would expect to find much correlation at a 

separation of 2 cells and perfect anticorrelation for a 

separation of 1. Figure 31 reveals that this is just the 
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way the system behaves. There are peaks at 2, 4, 6, etc. 

The ideal volume of this sytem is one in which every 

other cell is occupied. Since n = 5 this would be a 10 

celled system. Figures 32 and 33 reveal more plots. 

Notice that the plots for N = 17, 18, 19, 20, 21, and 22 

are all exactly alike differing only in height. This 

indicates that the controlling configuration is stable 

enough to be unaffected by increased volume. On the basis 

of our earlier results, we would expect the system to 

tend to its most preferred configuration, namely the close

packed N = 10 volume. Hence we should expect negative 

values of pressure in the neighborhood of N = 10. This 

is indeed the case as Figure 34 shows. 

Finally, one would like to know how the correlation 

function for a completely random system would appear. 

Figures 35, 36 and 37 show the correlating function for a 

non-interacting system of particles with a hard core 

diameter of 2 cells. Note that the curves are not 

completely flat but reveal the local fluctuations one 

expects to find in such plots. Since e = 2 cor(l) = 0. 

Then cor(2) will be max.' because there is more system 

available than in the other cases. However, cor(3) < 

cor(4) because having a pair of particles 3 cells apart 

blocks out 5 cells from occupancy because there is only 

1 empty cell between them. A pair of particles 4 cells 

apart only block out 4 cells since there are two free cells 

in between so that a third particle can just fit. There 



would be more configurations for a separation of 4 than 

for a separation of 3. In Tress' work no such local 

maxima were observed. This was because he assumed e = 1. 

Thus allowing only separations of an integral number of 

particle diameters, hence eliminating separations which 

are not the most favorable. 

From a study of Figures 35, 36, and 37 it is clear 

that the behavior we have seen previously is totally 

different, that the correlation is not that of a random 

system but of an order~d one. 

B. Grand Canonical Ensemble 

We now proceed to examine the computer results for 

the grand ensemble calculations. Again we allow for the 

most widely variant situations we can. We can vary the 

number of cells, the particle diameter, the potential, 

and the temperature arbitrarily. Only time limitations 

prevent us from examining systems of arbitrarily large 

size. We start these presentations with a set of curves 

for a 12 celled system with the interaction v(x) = -64/x
6 

with e = 1. These calculations were made by Tress and 
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. . 5 
presented in his papers in the Journal of Mathemat~cal Phys~c~ 

see Figures 15 and 18 of that work. These compare with 

Figures 38 and 39 respectively. It is heartening to note 

that they are identical except that he has plotted BPi 

instead of P against the density. We have set t = 1 and 

k = 1 in this study and hence B = 1/T.so that the values of 
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P in Figure 38 should be divided by the temperature to 

compare with Figure 18 of the paper. The agreement between 

these two calculations performed in somewhat different 

ways reinforces ones trust that both methods are valid. 

Of course, as we have shown, the two methods are closely 

related. Figure 38 contains a plot of the heat capacity 
•. 

per cell versus the temperature. We have divided the 

heat capacity by the number of cells for comparison 

purposes and we shall continue this in the grand ensemble 

calculations. The comparison of this curve with the curve 

in the above-mentioned paper for ~ = 64k reveals the 

identity of the results. Figure 38 also contains plots 

of the various components of the correlation against the 

temperature. Notice that the heat capacity per cell is 

largest when the various components are changing most 

rapidly. 

Next we look at results obtained using a potential 

interaction V{x) = -32o{x- 2) with a hard core diameter 

e = 1. Figure 40 shows a plot of heat capacity per cell 

versus temperature. Note the peak and that it occurs in 

the same interval where the correlation values also 

plotted in Figure 40 are changing most rapidly. Figure 41 

shows the pressure plotted as a function of density for the 

same system for several temperatures. No unusual behavior 

is observed here. 

Figure 42 shows a plot of the heat capacity per cell 

and plots of the correlation function for a system of 
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16 cells, the largest volume considered for e = 1. The 

interaction potential used for this calculation was 
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V(x) = lOO[x-
12 ~ x-

6
]. As was the case for the canonical 

system which employed this potential, the heat capacity 

curve peaks below 1° and reduces to its ideal gas limit 

rather quickly thereafter. Note the behavior of the 

correlation function both here and in the previous case. 

For even separations, it starts at the maximum value 2 and 

relaxes quickly to 1 while at odd values of the separation 

the correlation value starts and stays at 1. This 

similarity may suggest that other similarities exist 

between the two systems. Figure 43 reveals nothing in 

the way of unusual behavior of the pressure as the· density 

changes. 

We next examine the results of the grand canonical 

calculations for several systems for the potential V(x) = 
12 

100 [ (;) 
6 

(~) ] which produced such unusual results in 
X 

the canonical ensemble. To prevent problems on the 

computer we redefine V(l) so that V(l) = 10 a number which 

is more manageable on the machine. We first take e = 1. 

We recall the unusual behavior of the system around a 

density of 1/3. Figure 44 is a plot of correlation function 

versus separation for various densities in both ensembles. 

For p = 1/4 the canonical ensemble results differ from the 

grand ensemble in that the values from the former are 

less than the corresponding ones of the grand ensemble. 
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For p = 1/3 both ensembles yield the same results showing 

as before perfect correlation at separations of 3 cells, 

6 cells. At ~ = 1/2 the two ensembles again differ with 

the successive peaks of the canonical ensemble decreasing 

in height while the grand ensemble peaks are all of equal 

height. These results were obtained at a temperature of 
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1 degree. Figure 45 records the results of heat capacity 

per cell versus temperature for the grand ensemble and 

correlation function against temperature for both ensembles. 

The behavior of correlation functions in both ensembles 

is seen to be quite similar though not identical. 

Figure 46 shows the correlation function versus temperature 

for both ensembles again note the similar behavior. Now 

we come to the most startling curve of all. Figure 47 shows 

the pressure plotted against density for several values of 

the temperature. Note the unusual behavior of the T = 1° 

curve in the neighborhood of p = 1/3 and p = 2/3 the nearly 

vertical portions of the P-p curve followed by the nearly 

horizontal portions. This behavior pe~sists through higher 

temperatures but seems to disappear around T = 6°. After 

T = 6° the curves show no unusual behavior. We now look 

at a 15 cell system. We first see plots of the canonical 

correlation function versus separation in Figure 48 for 

the various numbers of particles from n = 2 to n = 7. For 

n = 2 we see only the peak at 3 cell separation. For 

n = 3 we note a new peak at 6 which is just 1/2 as high as 
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the one at 3 and 1/3 the height of the self-correlation 

peak. At n = 4 the peak at 6 has grown to the same 

height as the peak at 3 but not to the height of the self

correlation peak. At n = 5 the magical density p = 1/3 

all peaks are of equal height. Figure 49 has the plots 

for n = 6 and n = 7. Notice the growing background 

correlation since the system now has more particles than 

it can comfortably hold. 

Figure 50 shows plots of the various values of the 

grand canonical correlation function against temperature 

at the magical 1/3 density. Note that at low temperature 

peaks occur at 3 and 6 with zero or small values in 

between. As the temperature increases, note that all 

values of the correlation function approach 1. Figure 51 

plots the pressure against the density and as in the case 

N = 12 the T = 1° curve is most unusual. Again the 

anomalous behavior occurs in the neighborhood ·p = 1/3 and 

p = 2/3. Note that by the timeT = 6° this anomalous 

behavior disappears. The values of the pressure for a 

given density for both systems ·{consider N= .12 and N = 15) 

agree to within a few per cent SQOWing how slowly the 

pressure changes with volume as the density is held fixed. 

Figure 52 considers the same potential but for a system 

where e = 2 and N = 18 plotting the heat capacity per 

cell versus temperature for _Q = 1/3. Note that as before 

the major departure of the heat capacity per cell from 

the ideal gas value occurs around T = 2° and returns near 
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T = 10°. Since e = 2 the density cannot exceed l/2 so 

that the vertical portion formerly observed at p = 2/3 

in the other cases for the P-p curves at T = 1° cannot 
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occur here. Figure 53 shows the behavior of P with changing 

density forT= 1°, 2°, and 4°. We continue to observe 

the anomalous behavior about p = l/3 as in the cases where 

e = l. As expected, this behavior begins to disappear 

as the temperature increases. 

We have seen how the computer data turned out that 

many unexpected results turned up, let us now attempt to 

explain these results. 
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CHAPTER V 

ANALYSIS OF COMPUTER RESULTS 

The results obtained in the calculations are quite 

surprising at first meeting. The peculiar behavior of 

the pressure-volume curves in the canonical ensemble or 

pressure-density curves from the grand ensemble treat-

ment is one of the things for which an explanation is 

required. 

The number of configurations in the lattice partition 

functions is finite for any finite number of lattice points 

or cells. This means that there are a finite number of 

energy levels. Thus we can order these levels starting 

from the lowest state to the highest. Suppose there are 

m different energy levels for a particular system. We 

label these in increasing order so that 

( 146} 

Suppose that the multiplicity of the level u 1 is g 1 , that 

of u
2 

is g
2

, etc. Then we have 

( 14 7) 

The quantities gi depend only on the geometry and boundary 

conditions of the system and do not depend on the 
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temperature. This means that all the temperature variation 

of Cn(N,8) is in the exponential factor. If we multiply 

each term in (146) by -8 we obtain 

_ (3 u, '> - f> Uz > - (3 U3 > ... ) - (3 u...., (146') 

The exponential function is a monotonically increasing 

function of its argument. Thus 

( 148) 

Therefore the exponential factor e- 8ul dominates all others. 

As 8 grows large (T+O) the Equation (147) reduces essentially 

to 

(149) 

(149) shows that in the low temperature region the single 

level u 1 dictates the thermodynamic behavior. In this 

area the average energy <u> is 

(U) (150) 

From this together with Equation (105) we see that the heat 

capacity C is just the ideal gas value nk/2. As tempera
v 

ture increases the other levels begin to exert an influence 
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which means that the value <u> will begin to increase from 

u 1 . In the other extreme S+O (T+oo) we have 

9· . \ 
J 

The average energy <u> 1 
= c (N Is) n 

N 
~ 

j=l 
u. g. and is the 

J J 

limit to which the energy <u> approaches as temperature 

goes to infinity. The behavior described here matches 

( 151) 

the results observed in the various calculations presented 

in the data. We can thus characterize the thermodynamic 

behavior by breaking consideration into three regions. 

The region in which (149) holds we shall call the low 

temperature region. The region in which (151) holds we 

call the high temperature or ideal gas region. The region 

between these two extremes we shall call the intermediate 

region and as is true for most intermediate situations it 

is the most difficult to describe. The width of the 

intermediate region will depend on the number of levels 

and the spacings. Each region is characterized by different 

properties. In the low temperature region the ordering 

of the level u 1 is imposed on the system and it is this 

order one sees in the correlation function. In the inter-

mediate region the system is undergoing rapid change in 

the preferences for given levels. All levels now are active 

and contributing. In the high temperature region the system 

approaches asymptotically the 0 interaction gas of hard 
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spheres. We can thus predict the behavior in both the low 

temperature limit and the high temperature limit. 

2 6 
Let us first examine the potential V(x) = -64(-) 

X 

for particles of diameter 2 cells. This was examined in 

the treatment of the canonical ensemble. This potential 

has its minimum at the point oL-close~~ approach x= 2. 

Since V(2) is the minimum value of the potential we should 

expect the minimum level ul to be the level in which v (2) 

occurs most frequently. Since there are n particles the 

largest any value of the Profile P. can take on is n as 
J 

we have shown earlier. In order for p2 to be equal to 

n every other cell must be occupied a situation which can 

only happen if N = 2n. For all other value of N, P 2 

must be smaller or equal to n-1. There is but one array 

in which p2 = n-1. That is the array in which the 

particles are in contact. This corresponds to the 

configuration 

[10 I Ol OJO··· 1000···0] ( 152) 

and all translates of it. There are N translates of this 

configuration, hence the multiplicity of the level is g 1 -

N. The energy of this level is found from the infinite 

profile. The infinite profile of this configuration is 

given by 

• n-J J 0 
( 15 3) 



Thus the energy u
1 

= 
n-1 

E 
j=l 

(n - j) [V(2j) + V(N - 2j)] 

Let us compute the pressure from (154). 
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( 15 4) 

~-' 11 
- {3 L ('V\-j) [ V(Zi) +VfN-2. J)J 

6C}1 (net-~,6) 

C~ (V\e-tF; ~) 

I 
N 

_L + 11 e J=l 

N 

From the result (155) it is clear that for large N 

where ~V(N - 2j) is quite small SP = 1/N. When N is in 

(155) 

the neighborhood 2n ~V(N - 2j) becomes significant. From 

the nature of the potential the fact that it is always 

attractive for x > 2 indicates that ~V(N- 2j) > 0, hence 

for N near 2n (155) becomes 

(156) 

(156) would imply that in the low temperature region' 

in 
1 1 

the region in which N = 2n, P = NS - s· Refer to 

Figure 33. Note the behavior of P. It matches exactly 

the predictions of the preceeding arguments. The dotted 

line in that figure is a plot of 1/NS. Figure 33 again 
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shows that for N = 2n the pressure ~T = 1/S and as the 

volume (number of cells N) increases, the pressure approaches 

the asymptotic value 1/N. 

The correlation function for the above system will 

be given by the profile which follows from (153). For 

our case, where n = 5 and N = 13, for example, the profile 

is 

P=- (0403020ioooo) + (0 oooiOl03 

(157) 
( 0 4 0312 Z I 3 040) 

Examination of the correlation function Figure 30 

shows that it follows the form of (157) quite well. As the 

volume N changes, the profile P changes. The infinite 

profile does not change with N but merely adds zeros in 

the extra positions. The profile is the sum of the infinite 

profile p. plus its mirror image so to speak pN .. Let 
J -J 

p.* = pN .. Thus as N increases the affect of pN . on the 
J -J -J 

first few components of P ceases until at large N the two 

are entirely separated so that the profile P is just the 

infinite profile up to j = N/2 and then repeats since 

P. = PN .. This behavior can be noted in Figures 30, 31, 
J -J 

and 32. 

The plots of correlation function versus temperature 

suggested a relationship between the correlation function 

and the heat capacity. Such a relationship obviously 

exists since we have shown that cor(k) = N2 <Pk>. The 
n 

energy u of a configuration is 



N-1 
u-=- L. 

J=l 

( LA) 

f} V; so -tha.t 
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N-l N-1 

( V.) == < ~ Pj Yj) 
J:..l 

~ (Fj)'vj 
):.I 

( 15 8) 

n l Now there are always ( 2 ) = 2 n(n-1) distinct pairs taking 

part in the interactions to form an energy u. Thus we 

have 

N-1 
2::= p. 
. J 
J=l 

/Il-l 

==>L 
)=I 

p 
J 

..!..n(n-1) z 

VI(Vl-1) 

N-J 

[ cor-u') 
)::. I 

If the interparticle interaction V. is a constant, then 
J 

(159) 

(160) 

u = n(n - l) V and in fact <u> = n(n - l) v. The cases of 

interest, however, are not of the constant potential type. 

One can easily show that the statistics of a system are 

not affected by a shift in the position of the zero of the 

energy. Thus if we let V.' = V. + V we have 
J J 



The result in (161) shows that the change in c 
n 

brought on by a change in the zero level is simply to 

multiply the partition function by a constant. This is 

not the case in the grand ensemble. However, one should 

be careful what he reads out of grand ensemble results. 
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( 161) 

The energy V of course can be arbitrary. If we take V to 

b t . th -Sn(n-l)V 1 d 11.m -Sn(n-l)V e nega 1.ve, en e > an e = oo 

n+oo 

If we write the grand ensemble partition function ~N(Z,S) = 

N 
l: (N Is) • Suppose we now redefine the zero of the 

n=O 
N Yl I ) 

energy. Let V.' = V. + V where V < 0. ';;).~ (t.,fi) = Eo 'l. Q...., (N, f3 
N J )>~ J N - (3 N(N-I)Y P..) = L c. ~ e- 1'1 c"' _, v Q ..... < N, 1-3) ~ ~ e Q N r N, ~ • 

... -:o 

The thermodynamic limit of the grand ensemble partition 

function is taken as 

Jim ~ lvt 'JN 
N~OO 

p = cons-ta ni 

Jim J., ~:~ 
N~o0 

f= COI'\Sta~~~i 

(162) 
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The validity of the grand ensemble is doubtful if 

this thermodynamic limit does not exist. We show above 

that 
Jll~ I 

"1N' J\l ) -f3N(N-i)\l - ftN (: ~· e J:' 
o(, > -z_ Q N ( N I f3 e . "" h e r e 

J 

Let us take the thermodynamic limit of (163). 

Now if V is negative the limit above is infinite 

indicating that the whole process of redefining the zero 

( 16 3) 

( 164) 

is dangerous in the grand ensemble. It is clear that some 

condition must be imposed on the potential to prevent the 

situation shown above from occurring. It seems likely 

that one should require lim v. = 0. Tross takes the 
j-+oo J 

potential V(x) = -s, a constant, and shows behavior 

indicative of a phase transition is observed. Note, however, 

if we redefine the energy as V.' = V. + s = 0 we are back 
J J 

to the Tonks gas in which n~ transition occurs. The 

considerations above therefore cast doubts on the meaning 

of the calculations performed. None of the interparticle 

forces depends on the absolute value of the energy but only 

on the slope. Thus the statistics cannot depend on the 

location of the zero energy level. We should expect to see 

exactly the same behavior for V(x) = 0 and V(x) = -s· That 
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the grand ensemble does not bear this out is evidence of 

its failure in one or the other case. We have shown that 

the failure occurs for V(x) = -c because the thermodynamic 

limit does not exist. Let us return to our consideration 

of the correlation function. 

N-1 
(U) LV· . J 

J: \ 
( 15 8) 

From our discussion of changing the zero level of potential 

we see that if we change the energy V. by V we have 
J 

1 N-1 

(U)-::: ~ ?: ~'cor(j)- n(Y\-I)Y 
;:I 

( 16 5) 

Suppose we redefine the zero of potential so that all 

values V. are negative or zero. Suppose we define it in 
J 

such a way that the largest v. is 0. With this definition 
J 

we can write that 

Y\'2. N-1 

N L v.' cor-( i) -
. J 
J=l 

The last form shows that most of the internal energy is 

determined by the minimum of V' (x). This shows why the 

internal energy <u> and the correlation functions have 

similar appearance. Since Vj ~ 0 for the potentials we 

use we invert the shape of correlation curve for the 

(166) 

internal energy curve. Now the heat capacity is given by 



c..., - Y\ k + 
z d cor C j ) 

dT 

so that the heat capacity is largest when the correlation 
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is changing the fastest with temperature. This is verified 

by the computer results. 

The considerations above are quite general, applying 

to all types of potentials and all sized lattice systems. 

6 
We have considered the potential V(x) = 64(~) and have 

X 

seen that our qualitative considerations yield excellent 

values of the pressure and correlation functions, internal 

energy and heat capacity. Let us now examine the potential 

V(x) = 
12 

100 [ (~) 
X 

6 
( ~) ] e = 2. 

X ' 
The repeatedly occurring 

nature of the value 3 or l/3 in the results for this 

potential can be explained by noting that the minimum of 

6 
V(x) occurs at x = 212. As far as the lattice structure 

is concerned, the minimum of V(x) occurs at x = 3 since 

V(2) = 0. Since the strongest interaction occurs at a 

separation of 3 cells the lowest level u 1 will be the one 

in which the separation 3 occurs most often. As in the 

considerations for the other potentials, we note that the 

component P
3 

of the profile is bounded by n-1 if N > 3n. 

For N > 3n the analysis of the previous potential carries 

1 1 
over and we have that at N = 3n, P = + NB - s· This is 

observed in the pressure-volume curves for n = 5 at N = 15. 

In Figures 13 and 25 note that the minimum of the T = 1° 
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curve occurs at N = 15 and 18 respectively and is -1 

approximately in both cases. For n < 3N the correlation 

function data is irregular although peaks begin to form 

around k = 3, 6, etc. as n ~ 3N from below. When N = 3n 

the peaks at 3, 6, etc. are unmistakable and indicate that 

the strong preference for separations of 3 cells due to 

the potential is strongest at N = 3n as should be expected. 

Beyond N = 3n the correlation is that of the configuration 

[\OOlOOIOO···lOOoooo···OJ (167) 

or its translates. 

These considerations quite well explain the observed 

behavior and indicate the generality of the qualitative 

considerations. Let us now examine the results obtained 

from the grand ensemble. The unusual pressure-density 

curves can be explained simply by noting that the partition 

function C (N,8) is not an increasing function but possesses 
n 

a maximum at n = N/3. This is again due to the potential. 

For n < N/3 and in the low temperature region 

( 16 8) 

As n increases C (N,8) increases until n = N/3. At 
n 

this point the function Cn(N,8) achieves its maximum and 

begins to decrease. Since CN/ 3 (N,8) is greater than any 

other values around it, this one term of the grand partition 
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function 

dominates so that n = N/3 over a wide range of values of z 

and then rapid change until n = 2N/3 which is stable over 

wide range of variation of z. Thus we expect to see a 

nearly vertical portion at p = 1/3 followed by a flat 

portion, then another vertical part at p = 2/3. That this 

actually occurs is shown by the results. When e = 2, 

p ~ 1/2 so that we observe only one vertical portion of 

our P-p curve at p = 1/3. Thus our discussion shows that 

the results are quite valid and in keeping with one's 

intuitive reasoning. 



CHAPTER VI 

CONCLUSION 

From the theoretical work and the computer results 

we can conclude the following: 

The scarcity of results obtained for finite systems 

is somewhat surprising in view of the ease of the 

calculations and the remarkably realistic nature of the 

results obtained here. The lattice system has been shown 

to be a useful tool in the study of the behavior of finite 

systems. It seems likely that a thorough understanding 

of such systems will aid in the study of more complex 

systems. 

While it is true no phase transition can occur for 

finite systems, it is also true that the low temperature 

and high temperature behavior in the finite case are 
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quite different. The computer results confirm what our 

theoretical arguments suggest, namely, that low temperature 

behavior is characterized by ordered systems and the 

thermodynamic behavior is characteristic of such ordered 

systems while at high temperature the behavior is essen

tially that of the Tonks gas of hard spheres of the same 

diameter. Our theoretical arguments show that these 

characteristics will obtain for any finite system. Thus 

it would appear that the discontinuous changes which can 



occur in the thermodynamic limit occur continuously over 

a finite temperature range in finite systems so that what 

one regards as a phase transition in the thermodynamic 

limit is spread over a finite interval in finite systems. 

The treatment of small, one dimensional systems by 

computer gives a special insight into the behavior of 

such systems and suggests relationships such as the one 
, 
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which was found relating the energy <u> to the correlation 

function, i.e. , <u> = n 

N 

2 N-1 
L: 

j=l 
cor ( j) V .. 

J 
This result 

which we have proved for one-dimensional lattice systems 

is reminiscent of forms one uses to evaluate the internal 

energy in the continuum in three dimensional systems. 

The treatment of the interparticle interaction V(x) as a 

vector quantity with the components yk = V(k£) has proved 

to be a useful concept in suggesting relatiOfls such as 

above. It also suggests that analogous procedures could 

be of value in continuum systems adding new insights into 

the physics of such systems. 

We have indicated the dissimilarity between the 

results of the canonical and grand canonical ensembles, 

especially in the evaluation of the pressure. It is the 

nature of the grand ensemble that it predicts thermodynamics 

in agreement with the canonical ensemble results only in 

the thermodynamic limit. Since the grand ensemble is 

defined as a sum over canonical ensembles, it can have no 

greater validity than any of the component ensembles. Thus 
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the predictions of the grand ensemble should not be viewed 

as representing with any degree of accuracy the thermo

dynamics of finite systems but should only be used to 

study the approach to the thermodynamic limit. The 

canonical ensemble yields answers more in keeping with 

ones intuitive expectations and hence should be regarded 

as the more fundamental. Certainly, if the canonical 

ensemble predicts erroneous results, the grand ensemble 

cannot be expected to do better. 

.. 
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APPENDIX 

COMPUTER PROGRAMS FOR FINITE SYSTEMS 

The following two programs were used to make the computer 

calculations reported in this work. The important quantities 

were symbolized for the computer as follows: 

CANONICAL ENSEMBLE STATISTICS 

Variable 

potential 

temperature 

number of particles 

maximum number of cells 

minimum number of free cells 

particle diameter 

profile 

partition function 

pressure 

internal energy 

heat capacity 

correlation function 

Name of variable 1n 12rog;ram 

V(I) 

TEMP 

NPRT 

NCLS 

MIN 

LEX 

IRHO(I) 

CN 

PR 

EI 

cv 

COR( I) 

GRAND ENSEMBLE STATISTICS 

Variable 

potential 

temperature 

number of cells 

Name of variable in program 

V(I) 

TEMP 

NCLS 



Variable 

particle diameter 

profile 

pressure 

density 

internal energy 

heat capacity per cell 

correlation function 
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Name of variable ln program 

LEX 

IRHO(I) 

p 

DEN 

HN 

SPH 

COR(K) 



C STATISTICS UF MANY-PARTICLF SYSTF.MS-C!\NONIC!\L E!\JSfr-'rl.lf: 
f)IMENSJrlN V(501, IA(50), IRHOC":O), T5(501 
R[AC {1, 10C) NPPT, NCLS, LFX, MT 
REAC {1, 106) MJN, STEMP,FRCT 
WRITE (3, 107) NPRT 
00 10 1=1, NCLS 
0=2.0/1 
Vf I )=1CC .0*{0**12-0**6) 

10 CONTINUE 
NEXC=NPR T*L FX 
NFC=NCLS-NEXC 
Jf'IAX=NPRT-1 
00 RO LTEMP=1,MT 
TEMP=STEMP+(LTEMP-1)/FRCT 
SUM=O.O 
DIJ 9 1=1,JMAX 

9 SUM=SUM+VCI*LEXJ 
PCN=LEX*EXP(-SUM*NPRT/TEMP) 
M1=0 
DO RC M=MIN, NFC 
LVOL=M+NEXC 
W~ITE (3, 101) TEMP, LVOL, LEX 
T1=0.0 
T3=0.0 
T4=0.0 
MAX=(M+NEXC)/2 
DO 190 I=1,MAX 

190 T5(1)=0.0 
N=O 

11 N=N+1 
D'l 12 J=N, JMAX 

12 IA(Jl=O 
13 IS=G 

Oil 14 J=1, J,MAX 
14 IS=IS+IJ\(J) 

Ih(NPRT)=M-IS 
15 J=J~AX 
16 JF(l!\(J)-IA(NPRT)) 17, 17, 22 
17 J=J-1 

IF(J-1) 18, 1~, 16 
1A U=O.O 

DO 185 KY=1, LVOL 
185 IRHOfi<Yl=O 

DO 20 JX=1, JI'-'IAX 
JN=NPRT-JX 
00 20 KX=1,JN 
IS=O 
JK1=JX+KX-1 
DO 19 ND=JX, JK1 

19 IS=IS+IA(NP) 
IP=IS+KX*LEX 

1 A4 I RHO ( I P) =I R Hn ( I P ) + 1 
IRHO(LVOL-IPJ=IRHn(LVOL-IPJ+1 

20 U=U+V(IP)+VflVOL-IP) 
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0= 1. 0 
OIJ 21 IJ=1, JMAX 

21 Q=Q+IA(JJ)/IA(NPRT) 
W=EXP(-U/TfMP)/0 
T1=T1+W 
T3=T3+U*W 
T4=T4+U*U*W 
DO 1A7 KW=1, ~AX 

187 T5(KW)=T5(KW)+IRHO(KW)#W 
I~(JMAX)=IA(JMAXl+1 

I~(NPRT)=IA(NPRT)-1 

GO TO 15 
27 TS=O 

JK,.,AX=NPRT-3 
DO 23 JK=1,JKMAX 

23 IS=IS+IA(JK) 
N=NPRT-2 

24 IA(N)=IA(N)+l 
IF(2*1A(N)+IS-M) 11,11,25 

25 N=N-1 
IF(N-U 27, 26, 26 

26 IS=IS-IA(N) 
GO TO 24 

27 CN=(~+NEXCI*T1 
PR=TEMP*(CN-PCN)f(PCN*(M-M1)) 
PCN=CN 
Ml=M 
EI=T3/Tl+NPRT*TF.MP/2.0 
CV=NPRT/2.0+(T4-T3*T3/T1)f(Tl*TE~P*TE~P) 

WRITE (3, 104) CN, PR. EI, CV 
DO 189 LK=1, f-lAX 
CnR=T5{lK)*LVOL/{NPRT*NPRT*T1l 

189 WRITE (3, 1031 COR,LK 
80 CONTINUE 

STOP 
100 J=ORMsH (416) 
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101 FORMAT ( 1 THE TEMPERATURE IS', F6.2,' THF VOLU'-.1[ IS •, 14, 1 AND Tl-i 
1E EXCLllS IO"J LENGTH IS', 14) 

103 FORMAT (' CORRFLI\TION FUf\!CTI'lN = •, El6.6, 'SFPARATIC"l = 1 ,I4) 
104 F1P~AT ('PARTITION FUNCTION= •,E16.6t 1 PPESSURE = •,~16.6, 1 INT~ 

1RNAL ENFRGY = ',Elf->.6, 1 SPECIFIC HEI\T = •,El3.6) 
106 FORMAT(14, 2F6.2) 
107 FOPf-IAT ('STATISTICS OF', 14,' P~PTICLE SYSTE"~•'l 

END 
/DATA 

6 22 2 lC 
1 4.CO 0.25 

/END 



C STATISTICS OF MANY-PARTICLE SYSTF~S-G~AMD ENSEMRLF 
DIMENSION V('>C), lfl.(50), ((50), RH1(501, ~H2('jQ),JRHrJ(501t 

1POF(50,501, T3(50), COR(50) 
READ ( 1, 10C I NCLS, MX, LEX 
qfA(l (1, 101) MIN, SlEMP, FRCT 
DO 9 I=LEX, Nf.LS 
X=1.0/l 

9 V(J)=-64.0*X**6 
S!JM=O.O 
LDLTA=1/LEX 
NAX=NCLS/(LEX+LDLTA) 
N"'11=NCLS-LEX 
N'12=NCLS-2*LEX 
~aX=NCLS/2 

NLNS=MAX/4 
IRE~=MAX-4*NLNS 

IREM1=4*NLNS+1 
DO 10 I=LEX, NM1, LEX 

10 SUM=SUM+V(I) 
DO 90 LTE~P=MJN, ~X 
TEMP=STEMP+(LTEMP-1)/FRCT 
S'1T=SUM*LDLTA/TEMP 
C(1)=NCLS*EXP(SMT) 
RH1(1)=.5 
AH1(NCLSI=NCLS*(SMT+.5) 
RH1(NM11=.5*N~1+NM2*SMT 
B~2(1)-=.75 

RH2(NCLS)=.25*(NCLS**2+2*NCLSI+S~T*NCLS**2+(NCLS~S~TI**2 
RH2(NM1J=.25*(NM1**2+2*NM11+NM2*NM1*S~T+(N~Z*SMTI**2 
WQ.JTF (3,107) 
W~ITE(3, 102) TEMP, NCLS, LEX 
WRITE (3,107) 
DO 80 NPRT=2, NAX 
M = N C L S -N P R T * L E X 
IF(,_.) 19A, 198, 199 

198 T=EXP(-NPRT*SU~/TEMP) 
T1=NPRT*SUM*T 
T?=NPRT*SUM*Tl 
On 5 KW=l,MAX 

5 T1(KWJ=(KW/LEX-(KW-11/LEXI*NPPT*T 
Gn TO 81 

199 T=O.O 
T1=0.0 
T?=O.C 
Orl 160 KY=1, MAX 

160 T"3(KYJ=O.O 
NSP=NPRT+1 
IA(NSR)=M 
lfl.(lJ=M 
II.J= 1 

11 N=N+1 
on 12 J=N, NPRT 

12 IA(JJ=O 
13 J=NPRT 
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14 IF(lt\(J)-JA(NSR)) 17, 17, 22 
17 J=J-1 

IF(J-2) 18, 14, 14 
18 U=O.O 

0'1 lAS KY=l,NCLS 
185 IRHO(KY)=O 

no 20 JX=2t NPRT 
JN= NSR-JX 
DO 20 KX=l, JN 
IS=O 
JK1=JX+KX-1 
DO 19 NP=JX, JKl 

19 IS=IS+IA{NPl 
IP=IS+KX*LEX 

184 IRHO(JP)=JRHO(IP)+1 
IRHOtNCLS-IP)=IPHO(NCLS-IP)+1 

20 U=U+V{IP)+V(NCLS-IPl 
Q= 1.0 
DO 21 IJ=2, NPRT 

21 Q=Q+JA( IJ)/IA(NSR) 
W=EXP(-U/TE~P)/0 

T=T+W 
T1=Tl+U*W 
T2=T2+U*U*W 
On 187 KW=l, MAX 

187 T3(KWl=T3{KW)+IPHO(KW)*W 
IA{NPRT)=IA(NPRT)+1 
IA(NSR)=IA(NSPl-1 
GO TO 13 

22 11\(NSR)=JA(NSP)+IA{NPRT) 
N=NPRT-1 

23 IA(N)=IA(N)+l 
IA(NSR)=IA(NSR)-1 
IF( lh(N)-IA(NSR)) 11, 11, 24 

24 11\(NSR)=JA(NSP)+IA(N) 
N=N-1 
l~'=(N-2) 81, 23, 2~ 

81 CCNPRT)=NCLS*T 
RUK=T1/T 
NTl=NCLS-NPPT 
t\T2=NT1-NPRT 
BUNK=NT2*SUM+RUK 
RU2K=T2/T 
RU2NK=(NT2*SUM)**?+?*NT2*SU~*~LK+BU2K 
BHl (NPPT )=.5*NPRT+RIJK/TFMP 
BH1(NT1)=.5*NTl+f1>lJNK/TEMP 
HH2(NPRT)=.25*(NPRT**2+2*NPRT)+~PPT*RUK/TE~P+~U2K/TFMP**2 
A H 2 ( NT 1 ) = • 2 '5 * ( N T 1 * * ? + 2 * N T 1 ) + N T l * B UN K I T E :"" P + R U 2 1\J K I T F M P * * ? 
WRITE (3, lG~l NPRT, C(NPRT) 
FXBN=FXP(NPPT*SMT) 
no 1RR KM=l,MAX 
COP(KM)=T3(KMl*NCLS/(T*NPRT*NPRT) 

188 PDF(NPRT, K~)=T3(KMl*EXBN 
On 200 LINE=1,NLNS 
l4=4*LINE 

160 



L3=L4-l 
L2=L4-? 
Ll=L4-3 
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2 0 0 W R I T E { 3 , 1 C 5 l N P R T , l 1 , C 0 R ( L 1 l , L 2 , C () R ( L 2 ) , L 3 , C 0 R ( l 3 l , L It , C 0 R ( L 4 ) 
[F(IRF.~l 80, 80, ?01 

201 DO 202 I=IREMI, MAX 
2 0 2 WRITE I 3, 10 5 l N PP T, I , COP ( I l 

AO C!NPRTl=CI~PRTl*FXAN 
WR[TE (3,107) 
DO qo J=l, 30 
ZFO=J/5.0 
ZEON=ZF.D**NCLS*LOLTA 
7EON1=ZEC**NMl*LDLTA 
GPF=1.0+ZEON+CI1J*CZEO+ZEDN1l 
GPFN=NCLS*ZfON+C(l)*(NM1*ZEDNl+ZEOJ 
GPFN2=NCLS*NCLS*ZEON+C(1J*(NMl*N~1*ZEON1+ZEDl 
G P F 1 = Z E 0 N* A H 1 { N C L S l + C I 1 J * I R H 1( U * l E 0 + ~ H 1 ( I'JI-1 1 ) * l C 0 N 1 J 
GPF 2= ZED N* AH2 ( NC L S ) +C ( 1) * ( BH 2 ( l l *ZED+ ~H2 ( NM 1 ) * l E 0 N 1 l 
GPF3=ZEDN*NCLS*BHl(NCLSl+CI1l*(BH1(1l*ZED+RHl(~~ll*N~l*ZFONll 

DO 190 LK=1, MAX 
190 COR(LKl=ZEDN+C1.0-2.0/NCLSl*CC ll*ZEONl 

00 A9 K=2, NAX 
ZFOK=ZED**K 
TFlNCLS*LDLTA-2*Kl A2, 82, 83 

82 GPF=GPF+C{Kl*ZEOK 
GPFN=GPFN+K*C(Kl*lEOK 
GPFN2=GPFN2+K*K*C(Kl*ZEDK 
GPFl=GPFl+RH1(K)*C(Kl*ZEDK 
GPF2= GPF2+AH2(Kl*C(Kl*ZEDK 
GPF~=GPF3+RHl(Kl*K*C(Kl*ZEOK 

DO 191 LK=1, ,_,AX 
191 COR(LKl=COR(LKl+POFCK,LKl*ZEOK 

GO TO 89 
83 ZEDNK=ZED**(NCLS-K) 

GPF=GPF+C(K)*(lEOK+ZEONK) 
GPFN=GPFN+C(Kl*(K*ZfCK+(NCLS-Kl*7EONKl 
GPFN2=GPFN2+C(Kl*(K*K*ZFOK+(NCLS-Kl*(NCLS-Kl*ZEONK) 
GPF1=GPF1+C(Kl*(RH1(Kl*lEOK+BHl(~CLS-~l*7EONKl 

G P F 2= GP F 2 +f. ( K l * I l E 0 K * R H2 ( K l + l E iJ'~ '< * R H ~ ( '\JC L S- K) ) 
GPF3=GPF3+C(K}*{RH1(Kl*ZEDK*K+AHL(NCLS-Kl*(NCLS-Kl*ZEONK) 
DO 192 LK=l, MAX 

192 COR(LKl=COR(LK)+POF(K,LK)*(ZFOK+lEONK)+( l.C-2.0*K/NCLSl*C(K)*lEONK 
89 CONTINUE 

BARN= GPFN/ GP F 
VARN=GPFN2/GPF-RARN**2 
P=TEMP*~LOG(GPF)/NCLS 

DEN=BARN/NCLS 
HN=GPFl/GPF 
SPH=GPF?/GPF-HN**2 
SPH=SPH-(GPF3/GPF-RARN*HNl**2/~~RN 

S PH= SPH/NCL S 
HN=HN*TEMP 
Of1 193 LK=1, MAX 

193 C~R(LKl=CORILKl/IGPF*DEN*DEN) 



Q~ ?04 L I~E=l, NLNS 
L4=4*LINE 
L~=L4-1 

L2=L4-2 
Ll=L4-3 

204 wcUTf (3, 106) Ll,COR(ll),L2,CCR(L2),L3,COR(L3),L4,CCR(L4) 
IF(JREM) 90, SO, 205 

205 DO 2C6 I=IRE~1, MAX 
206 ~RITE (3, 106) J, COR(I) 

qc lo/Q.JTE (3, 104) P, flEN, HN, SPH 
1GO FORMAT ( 316) 
101 FORMAT ( 16, 2F6.?) 

162 

102 FORMAT(' THF TEMPFRATURE IS',Ft.2,' THI: VOLIJ"''E IS',J4,' fiNO THE EX 
lCLUSION LENGTH IS', 14) 

103 F~Rf.IAT (' C( •, 16, ' ) = •, El6.6) 
1C4 F~R~AT(~ DRESSURE = •, El6.6, 1 DENSITY= 1 ,El6.6, 1 INTERNAL E:NFRGY 

1 = •, El6.6, ' SPECIFIC HEAT= •, El6.6) 
1C5 FOR~AT ( 1 NPRT = 1 ,13, 4( 1 CORC 1 tl3, 1 ) = •, El6.6l) 
106 FCR~AT (4( 1 CORC',I3,• ) = •, El6.6)) 
107 FCPMAT(' ') 

STOP 
E"'D 

/DATA 
13 5 1 

1 6.CO 0.50 
/E'40 
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