MISSOURI

S&l

Library and

Learning Resources Scholars' Mine
Doctoral Dissertations Student Theses and Dissertations
1969

The statistics of finite, one dimensional lattice fluids

John Roger Glaese

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

b Part of the Physics Commons
Department: Physics

Recommended Citation

Glaese, John Roger, "The statistics of finite, one dimensional lattice fluids" (1969). Doctoral Dissertations.
2305.

https://scholarsmine.mst.edu/doctoral_dissertations/2305

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2305?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

THE STATISTICS OF FINITE, ONE DIMENSIONAL LATTICE FLUIDS

by

JOHN ROGER GLAESE

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI - ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in
PHYSICS
1969
p !l 2,7
Advisor & v

e s




ii

ABSTRACT

A one dimensional lattice fluid in which particles
are allowed to assume only discrete positions is proposed. -
Particles are free to move from one lattice site to
another interacting through a variety of potentials,
including the Lennard-Jones type. The model allows the
partition function to be evaluated as a discrete sum over
the allowable configurations. Both the canonical ensemble
and grand ensemble are treated by computer and a third,
the pressure ensemble, is considered and shown to be
useful in the theoretical treatment of lattice systems.

The thermodynamic behavior of various systems is investiga-
ted in both the canonical and grand ensembles. Both
ensembles reveal that low temperature behavior of a system
is distinctly different than that observed at high tempera-
tures although there is not exact agreement between the

two results.
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CHAPTER I

INTRODUCTION

"One of the most difficult and for the most part still
unsolved problems of theoretical physics is the calculation
of the thermodynamic properties of fluid systems. Only a
small number of problems have been solved exactly. The
one and two dimensional Ising model solutions stand out as
one of the few exactly solved systems where transitional
phenomena are observedl. As is well known, the difficulty
arises from the large numbers of pérticles involved and
the lack of a real understanding of the interparticle
interactions. For gaseous low-density systems, one can
often obtain power series approximations such as the Mayer
cluster expansionsz. Such expansions in powers of the
density give reasonable answérs for low density systems
since one must keep only the first few terms which are
relatively easy to calculate. For solid systems where the
density is large, one can take advantage of periodicity
and high symmetry to allow one to reduce the complexity
to the point where one can make rational, semi-empirical
approximations and obtain valuable results to explain many
phenomena. The liquid system cannot be attacked by either
technique. Its density is too large for cluster expansions

to be of use and there is not sufficient symmetry to



utilize the approximations which work in the case of
solids.

While the two dimensional Ising model exhibits a
phase transition, the one dimensional model does not.
Nevertheless, the simplicity of the model and the avail-
ability of computer machinery make it, or rather gener-
alizations of it, attractive since one can set up programs
to compute thermodynamic properties by machine. The ease
of the computation together with the remarkably realistic
nature of the results and the relatively simple interpre-
tation of the data which one obtains from the computer
calculations make this an appealing investigation.

In recent years the primary route of attack has been
the attempt to calculate the pair distribution function and
to compute thermodynamic properties from this. One elegant
route is the use of the Kirkwood-superposition approxima-
tion3. This approach leads to an integral equation to be
solved for the pair distribution function. Approximations
in turn must be made to solve the integral equations. With
this series of approximations and simplifications the
physical system of interest is only remotely akin to the
theoretical predictions. Nevertheless, such work has been
useful in obtaining a qualitative idea of the nature of a
liguid and what happens when a low density system undergoes
a change in phase.

In order to approximate physical systems, one must

treat extremely large numbers of particles, and it has been



shown that the discontinuous behavior of the thermodynamic
quantities one observes experimentally can only be obtained
in the limit of large systems, namely where the number of
particles becomes infinite while the volume per particle or
particle density remains fixed4. Actually, the "sudden"
changes characteristic of transitional phenomena are
observed in finite real systems and can be explained by
noting that the number of particles involved is quite large,
on the order of 1023, so that even though changes are not
truly discontinuous the region over which the changes occur
is so small no measuring apparatus 1is capable of measuring
it. However, changes which do not qualify as true phase
transitions can occur in finite and even small systems.
Consider, for example, water in a glass. If one views it
for a short time, it appears to be in a stable state and
yet if left to stand the water will eventually evaporate
and thus is not truly in a stable state. Fluids can present
phases other than the gaseous state which will persist for
long times compared to usual time standards, but not be a
truly stable phase in the sense that this is the only

state the system can be in. It thus appears as though it
depends upon when one examines a system as to what phase

he ascribes to it or, in other words, these cannot be true
equilibrium states but are mere metastable states. Time
dependent theory is not yet in a completely satisfactory

state and so we shall be content to look at equilibrium



statistics. We shall look at finite systems to see if any
behavior can be observed which would suggest a phase
transition or at least the existence of relatively
ordered stable states which occur with large enough
probabilities éo affect the behavior of the thermodynamic
functions to the point that a phase change may be
anticipated.

One wishes to treat problems exactly and in complete
generality with regard to potential interaction in order
to concentrate on the physical problem instead of the
mathematical one and the model we have chosen allows us
to do just that.

Some of the motivation for this work was provided by

the success of the work of Ralph G. 'I‘ross5

, Wwho investigated
this problem and who employed the University of Missouri --
Rolla computer to study finite systems of particles
interacting through a modified Lennard-Jones potentials.

In this study, we go beyond this. We look at a variety of
potentials and systems investigating the thermodynamics.
Tross used a computation method which restricted his study
to systems in which particle sizg is identical to lattice
size and consequently his data is somewhat biased by this
coincidence. His correlation function data show none of
the local maxima and minima associated with this function
in the continuum. Since particle size is identical to

lattice size, only separations of an integral number of

particle diameters can occur. This means that no effects



show up which correspond to the case where two particles
are separated by 1% diameters, for example. For this case,
a total length of 2% particle diameters is excluded from
occupancy by other particles, whereas at a separation of

2 particle diamters only 2 particle diameters is excluded.
Thus correlation at a separation of 2 diameters should be
larger than that at 1% diameters or for 2%, etc. This
shows that the local maxima occur in the neighborhood of
separations of integral numbers of particle diameters. We
show herein that by considering systems where particle
size and lattice size differ, we obtain data more closely
in line with observed phenomena. We also expose some of
the peculiarities of our model by considering the low
temperature behavior of our system particularly with regard

to pressure.



CHAPTER II

MATHEMATICAL FORMULATION

A. Introduction to the Model

We wish to consider a one dimensional system contain-
ing n particles and having a volume (length) L. 1In any
finite system, the boundaries play an important role in
the physical behavior (if this were not true, removal of
the boundaries would produce little effect). The type of
boundary condition we shall consider is the so-called
periodic boundary condition. We choose the periodic
boundary condition because certain aspects of such systems
result in simplifications that mean reduced computer time.
We assume that the system of interest is imbedded in an
infinite number of identical systems which are exact copies
of the system of interest. We assume that the real system
is located from 0 to L along the line and that the copies
lie alongside going to the left from 0 - -L, -L -» -2L,

-2L » -3L, etc., and to the right from L -» 2L, 2L -» 3L,

etc., as shown in Figure 1.
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Figure 1. Periodic Boundary Conditions



We assume that particles only interact with others that
are closer than L units away. Note that as a particle
leaves the system at L another identical to it enters
at 0.

Let us leave our consideration of the boundary
conditions for a moment and consider the statistics. We
choose to employ the formalism of the canonical ensemble
turning later to a look at the grand ensemble. We compute
the canonical ensemble partition function Qn(V,B) of a
system of n particles volume V and temperature 1/kf as
followss. We let p and g represent collectively the

position and momentum coordinates of the particles.

_BHI(EY)
Qn = AT S dg X dp e’
" . configuration momentum (1)
( S}\D/B-CC ) ( sPa.ce )

In most systems the interparticle interaction depends only
on the positions of the pair of interacting particles and
the total interaction is the sum of all pairwise inter-
actions. We can thus write the Hamiltonian H(p,q) as the
sum of the kinetic energy term plus the total potential

interaction energy

H{p 1) =

n

P4 7 V(% 9) (2)

Zm 1sicien

™Ms

-

P; is the momentum of the ith particle, m is the mass of a

particle and V(qi,qj) is the binary interaction potential.



In this form it is apparent that the momentum space

integral in Equation (1) can be performed independently of
the configuration integral. Thus we perform the momentum
integral so that our problem becomes one of evaluating the

configuration integral. We can rewrite (1) now as

Qv 8)= & Z7Tm) fﬂ e-,suu)

(con4l) (3)
SPICC
v

For convenience, let us collect the configuration integral

into one unit and call it Cn(V,B).

| L L L

- U(g U(q-"g )

(V. jd P - 1 [ coide i de B »

CalV = n! ; g%, € (4)
o -}

con#
Spac

One has little or no hope of being able to evaluate
the integral in Egquation (4) in most instances and this is
the crux of the problems in statistical mechanics. To get
around this difficulty, we reshape the problem in order to
cast the integral above into a form suitable for computer
evaluation. We do this by making the linear system into
a lattice of discrete points with lattice parameter £ such
that L = N¢ with N an integer. We locate our lattice sites
at /2, 3/2, 5/2, ++- , (2N-1)2/2. To agree with conven-

tion we call the segment of length 2 which has a lattice



site at its center a cell. Thus cell 1 lies from 0 to &,
cell 2 from & to 2%, <*++ , cell N from (N-1)2 to N&. We
now make the further assumption that when a particle lies
in a cell, the effects of that particle are as if it were
located at the center of the cell on the site there. Thus,
effectively, only discrete positions can be assumed by a
particle. With this new picture we define an appropriate
parameter cell occupancy. We label the cells 1, 2, 3, *--,
N, N+1, N+2, +++, recalling the periodic copies of this
system. Let oj be the occupancy of cell j. With this
definition now we can picture the total interaction as a
sum of interactions between cells. The interaction between
cells i and j would be oioj V(i - 1/2)%,(3 - 1/2)1).

The potentials we shall be using are of the hard
core, spherically symmetric type. That is, we assume
V(qi'qj) = V(]qi -~ qj() and further V(r) = » if r < d where
d is the particle diameter. 1In our lattice system, no
pair - of particles can be more than (N-1)& units apart.

Now there are only N possible values of the separation and
hence let us examine the possibility that it mi@ht be
useful to represent the interaction potential as a sum

over the various particle separations as follows:

N=1
Ug:--a) = ,-.Zo Pv(iL) | (5)
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Pj is just the number of pairs of particles separated by
the distance j%. Because we have assumed the hard core
form of potential no cell can be occupied by more than one
particle. Also, no two particles can be closer than d.

If 4d > 2, this means that the "excluded" space around a
particle is more than one cell.

From the preceding discussion, we can write

N
P = Z G, O-k-o-‘
) k=1 - ’ (6)

In Equation (6) we note that for some values of the
summation index k, k + j exceeds N. From the periodic

boundary conditions we can replace such a value by

Oksj = Okej-n (7)

With this, then, we have a complete description of the
system. For convenience let Vj = V(3je).

Let us collect the results of the previous discussion

N-1 N
4 Z;‘Cn( 0k+j \G (8)

N-1
U= Zz BV, = .
j:l J=1
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The set of guantities {Pj} is a convenient artifice for
computing the energy U. Let us form a vector from this
set and call it the profile or profile vector with jth
component Pj’ Equation (8) can be rewritten in such a

way as to show that the profile is actually a sum of two

parts.
N-1 NZ-J i
= V [ S O, -+ C o
- 07 e T ksnejsl < KH
Z“' N-} j=N (N-3)
- J=1 \/J[‘gak O;H-J + qu—k+N—J]

(9)

N-J
Bi= & Ok Opj
(10)
Equation (9) can be cast in a different form
U = Vip + v, -
J=l JPJ J=i J P‘J J:,vJE +J=Z' VN—JPJ
-1 |
S (11)
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We can now discuss the topology of the periodic
system. This is established by first noting that as a
particle leaves at one end, another enters at the other
end so that there are always n particles in the system.
Further suppose we move the origin a distance x lattice
constants to the right. Under such a transformation, none
of the relative separations is changed and since the
energy of interaction depends only on relative separation,
it remains fixed under this translation. This demonstrates
that the periodic boundary conditions give the finite
system the transational properties of the infinite lattice.
This also implies that our system has the topological
properties of the circle with cell N immediately adjacent
cell 1 as shown in Figure 2.

N-) N t
N-2 2

N-3 3

Figure 2. Topology of Periodic System

Recall Equation (11). The gquantity pj is the jth
component of the profile for a system in which no particle

lies beyond L, as in the periodic system. Hence, it looks
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as if the interaction between a pair of particles separated

by j2% consists of an interaction around each limb of the

circle as V(j2) + V(L-jL) = Vj + VN—j'
Let us now return to the profile P = (Pj) and examine
it more closely to see what symmetries it has. First, as

we stated earlier, P is independent of where we place the
origin or equivalently is invariant under lattice transla-
tions as shown by the following. We assume that the new

configuration is given by

0 = Oj+r (12)

Mz

N
i '
from which 8 = o) o,‘(:J —

k=1 k=1 Oker kvt
,  N+r
. r
[3 —-:i <j;‘jkﬁj = zz. O; Ok -+ O. O .
k=1+r k=l+r v g K+N"k+J) +N

The periodicity of the lattice implies that Opan = %k

' N ¥
:=>R:ZGKG<+J+EGkO—k+J:B (13)

k=1+7r

This result confirms the assertion made earlier that the

lattice has translational symmetry and that the energy

N
' = § P.' V. = P. V. = U. It is clear also that
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relative locations and interactions do not depend on the
"handedness" of the coordinate system so that an exchange
of left for right handed coordinates does not change the
relative separation; thus, the transformation oj' = ON—j+l

leaves the energy invariant.

B. Theoretical Development

(1) Canconical Ensemble

The degeneracy of the potential energy U due to
lattice symmetry and completely independent of any assumed
potential has been observed. There is complete transla-
tion symmetry and symmetry in the exchange of left handed
for right handed reference frames. These results were
obtained independent of the potential to show their
completely general nature.

As stated previously, potentials of the hard core
type are assumed with hard core diameter é. It is also
assumed that d can be written as an integral number of
lattice constants so that d = ef. If the particle
diameter is just equal to the lattice constant 2 so that
e = 1, then the cell occupancy number Oj satisfies an
exclusion principle, in that Oj can only be 0 or 1 but
occupancy of cell j does not preclude occupancy of cell
3 + 1. It is this nature of the special case d = £ which
was attractive in earlier formulations. It is but a

special case of the more general problem we treat for if
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d = 2% or 3%, etc., occupancy of j prohibits occupancy

of j +1. If d = e, then occupancy of j precludes
occupancy of j+1, j+2, <++ , j+e-l. As a simple convention
we assign a particle to the cell in which its left edge
lies so that even though a particle actually fills e cells
it is assigned to a single cell.

The lattice concept introduces some quantum features
into this classical problem as a result of the uncertainty
of position of a particle 2. 1In other words, if a particle
lies in a cell its position is taken as the center of the
cell and if it should lie on a cell boundary it is assigned
to the cell to its left. Since we desire to treat systems
where e > 1, we renew our search for a convenient
representation.

Cell occupancy is convenient only when e = 1 so
that the guantities Oj are completely independent except

for the requirement that the system contains n particles.

N
ZE: Cj; = n

When e > 2, Equation (14) must still hold but now o, =
1 :702, Syr *°*y oe—l = 0 and hence the o¢'s are no longer

independent. We now set out to find an alternative
representation in which the problem can be stated and

formulated.
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To determine the interaction energy, it is but

necessary to determine the set of wvalues (pl, Pyr *°°

14

pN—l)° For a finite number of particles we note that
lim P, = p.. For this reason we refer to p. as the
Naoo ] 3

infinite profile.

When e = 1 it is possible to show a 1 - 1 corres-
pondence between configurations of n particles in N cells
and N - n particles in N cells. One merely needs to make

the transformation

(15)
to see this fact. The energy of the corresponding config-
uration is related to the original as follows

N-T N-1 N
v R ' 1
U= 2Ry =2 v(xa o)
J:‘ J=1 k=1
N-1 N
=2 V2 (1-00)(1- Okyj)
J=1 k=1
N~ 1|
t
Ud'= ZV (N~2n+ PR)
J:l (16)



17

The cell occupancy number representation is an
appealing one because of the pseudo-guantum nature of the
problem but it ceases to be useful so we must forget it.
Suppose we write the values of cell occupancy number down

as a finite sequence of N elements all 0's or 1l's.

[OO-~-O!010~~-010-~-0]
(17)

An arbitrary configuration would resemble Equation (17) in
appearance. This suggests another representation to us;
namely, suppose we call aj the number of free cells
between the jth and j+lst particles. By free cell, we
mean a cell which is not occupied and is not covered by a
particle in a nearby cell. For e = 1 we merely count the
zeros between j and j+1 to find aj. If e # 1, we ignore
those cells covered by a particle and count only those
left. Before, we could represent every possible arrange-
ment of particles by merely specifying the values of the
0's to correspond to the filled and empty cells. We shall
show later that the partition function or at least the
configuration integral is the result obtained by summing
overall allowed configurations of particles in the cells.
The representation in terms of the a's is not 1 - 1 to that
in terms of o's as the following example shows. Consider

the configuration [10110] of 3 particles in 5 cells. The
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corresponding a's are a; = 1, a, = 0. (e = 1) Also for
[01011] a, = 1, a, = 0 so that two configurations of the
system correspond to the same "a" representation. Both
configurations have the same profile since the second is
a translation of the first so that the a's are a somewhat
smaller set of coordinates, i.e., they represent fewer
distinct cases than the o's (a desirable property).

The quantity aj is actually related to the separa-

tions of particles j and j+1 as

. - 9h4"$'
) = )y - € (18)

Thus the set of quantites aj must be viewed as having
arisen from the representation in which particle position
is the fundamental variable. The possible positions a
particle can occupy are &/2, 3%/2, 5%/2, -++ , (2N-1)L/2.
For convenience, we now define a new set of position
coordinates in which the lattice spacing is unity and the

coordinate takes on only integral values.

: /
X; = % + Y2 1)

Returning for a moment to the continuum, we recall the

configuration integral from Equation (3).
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L

L L
~Aus--4,)
] / jJ e d A "
Coltig) =& | ot e
oo °©
(3)
If we make the transformation from the g's to the x's, we
have
Lol L Ly
£tz irz L% AU X,
/Zn J . . [dx'..: dxn e
CnlL,B) = nt ¥ 20
b % ? (20)

this result in a form appropriate

We now wish to express

to our lattice
n N N N _BULX,; Xn)
CLR)= 4T 2. 2 - 2L AXAX AK€ 1)
© X=d Xz=1 X,=1
-1
1

In the x variables the cell size is unity so that Ax,

and hence 21 becomes

-ﬂ(i(xw"xh)
(21)
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We do not stop here, however, because we can reduce this
form further to eliminate the repetitious terms in
Equation (21'). It is true that in any system of identical
particles we can interchange any pair without changing the
total interaction energy at all. This means that we can
separate the sums in Equation (21) into parts in each of
which the particles are in a definite order. We can take
any term in any one of the parts and make it a term in any
other by interchanging particles judiciously. Thus each
part will have the same value as the others, meaning that
we need keep only one and multiply it by the number of
different parts. There is a different part for each order
in which the particles could be placed. Since there are

n particles, there are n! permutations of n things n at a

time, hence n! parts

CalLp) =

2~

n N N N _AU(X X))
[n!ZZ_-~-§; 6’5

Xzl Xgz=1 =) (21")
X, < Xg <t & Xy

Every order of the particles will produce the same result
so we choose to keep the particles in numerical order. In
addition to this, the hard-core diameter e (in units of %)

means, for example, Xy + e < x2, x2 + e < x3, e, Xn-l + e

< X , X+ e < x; + N. With these ideas in mind, we take

- n n 1

another look at our task.
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The sum in Equation (21") indicates that we must
set up our summation apparatus so that order is preserved,
particles never come closer than e cells to one another,
and all possible configurations are reached. To accomplish
this we consider the possibilities. First, if x, = 1, we

1

note from the above that x < N + Xy -~ e =N+ l - e.

This of course limits the other particles as well since

they must lie between Xq and X - We construct the follow-

ing table
X,+€ £ Xz
Xz-l-e £ X3
Xz t+€ < Xe
. (22)
Xnt€ € %o
X +e ¢ X +N also X, <N

We generate all configurations by allowing Xq to take on

all possible values X, = 1, 2, 3, *»+- N - ne + e. With

14

these considerations we write down the configuration

integral.

Cy\(l—l ...Z

[NH -n-He N-H (n-2)e N+l -€

=€ X;-Xz XS Xyt €
(%, =1)
+ N¥2-(n-)e ni2-(n-2)e NH2-€
xSe 4 R
232+ )(3..X2+e Xn h'+e (23)
(Xl = 2)
R N'Z€°ne Z\_ie‘tnﬂ)e Nte- € AU (X xn)
Xai'e x1=X,+e K“Z:xn +e
-

(X.2e)
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Let us now turn to the evaluation of the interaction

energy in terms of particle positions.

n-t n
Uix) = 3 3 [V(Xj-xi) + VIN= (% -x))] (24)
=1 j=i+

The sum in Equation (24) runs over all distinct pairs of
particles, summing the pairwise interactions under the
assumption that the interaction between 2 particles
consists of an interaction around each limb of the circle.

For convenience, we define a pseudo-Kronecker delta

function.

§(x) =

|/ X=0 (23)

Using this definition, we can rewrite U(xl v xn) as

Lo

UCX-- - Xp) = NZ (\/1+V-z');‘f 2§ (£~ (Xj-x)).

A= =1 J=i+ (26)

To show that this is equivalent to our previous form, we
note that the cell occupancy number can be expressed as a

function of position coordinates.
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5§ (m-x,)
= m -
Fm 2= g (27)

We shall show with the aid of (27) that the double sum over

i and j is equal to the infinite profile p_ .

L
%fl gi%'ii N
= o = §(k-x;) §(k+1L-X;)
Pﬂ k=1 k O;+£ k=1 i=! JZ=; J
By the nature of the problem xi < N so that if x. - X, = L

then both &§-functions cannot be simultaneously nonzero if
k >N - 2. This means that we can extend the sum to N so

that

™Mz

£ i §(k=-Xi) §(k+2-X;)

=1 )=l

B,=

k

1]

-—

§(k-X;) §(k+2- X;)

™Ms

n
= L.
b=

=] )

1

x

N
B = Z Z S(X:+4-X;)

=1 3= (28)
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The only nonzero terms in Equation (28) are those terms for

which xj - X, = 2. In order for xj to exceed X, j must

exceed 1 since we previously ordered the particles numer-
ically. Hence we can ignore those terms in (28) for which

j £ i. Then we have

PL:%:_.ZH §(Xi-X;+4) = 5

<!
=t j=i+d i=

£ §(L-0-X;)) (29)

j:l‘l‘l

-—

With this result we can rewrite (26)

-1

UX,  Xa) = ; (V, +Va-t) B

Z

(26"')

1]
S

This result agrees with Equation (11) demonstrating that
these two approaches lead to the same energy as they must.
We must use this result to compute the energy for the
position representation.

Let us start with Equation (23) and make the substitu-

tion in favor of the aj's defined previously
G = X —X; - e (30)

We can express the x's in terms of the a's and x, as follows:
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)-1 j-1
X; = X+ ¥ (dire) = X, +5 a «+ (i-le
":] i:l (31)

n[NZ-ne %—;ne—a. N-ve-3, -3z N—ne—f;ai
B =L & &, g 4+

n-2
N-ne€ N-ne-2, N-ne-3,-3, N-wne-2 §;

+ Z . T J=
=0 g;o a'!Z.'o a%‘:o
n-2

N- -n - - =X = Bl ‘
NE+e noneveX, n-nese-X,-d,  N-meseX,- T 3 ]ép utx,--x X 32)

+ L > P

X=€ 3,=0 a,=0 a..,=o

Since we have expressed the x's in terms of the a's, we

can now rewrite u(xl o xn) as a function of the a's

U(X."'Xn) = WU(Q - 2a) |
n-t n J- ) ViN- Jz-l(a +e))]
- (ai*' ) + - ST
- =1 j;.iu [V(ké © k=

In this last form we notice that the energy u no
longer depends on the coordinate‘xl indicating the fact that
energy of interaction depends only on interparticle separa-
tions and not absolute locations. This means that we can
rid ourselves of the sum over Xy and reduce our work thereby.
This requires that we interchange the order of summation
until the sums over x. are innermost. We do this pairwise,

1

that is, we interchange summations in a pairwise manner
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until the sum over Xy is inside. Since the energy does not

depend on Xy, We can change this variable by reducing it so

that the sum on xl starts at zero. For convenience let

F = N - ne. = £
ya ["‘ F-, Ef?.‘i FoF-a, F- LR

C (L 6) - =0 aa.— a-...,-‘-o +' +azl-—°%° ag—\"o
F F-XF-X-a EQ )

ke K allo it - ¥ F-Xx,- i,
T _ U(l\'”a"“‘ (33)
123 R A P
X=03303,:0 dn;o

Notice that the first e-1 terms are identical so that (33)

can be rewritten £ Fa, P-g?@ ‘pu(&,“ahq)
ALpy = fie-n e i
F F-x, F-X~3 F-X.—gl a'J— u(an"'a
+gny FE 2 et G
X0 330 33° dn. =0

After we complete the interchanges in order of summation,

(33') becomes n-2

FoFa A Ea _gu(g, - an)
_ n B J=1
Cn(LHB)—/Z (e ')aéb azfo 2&..%:0 le
w- n-
F FrE Y-
YLD I A Zf?. i ale_/gu(a, 2n..)
4,20 3,20 dn.,*% x -0
o 5
F-q, F-2.3; n-1
. n I N U(d. anl
Cn (L,/@)—f a.Zmafo a (F+e_-Z ) - )
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Even this form is not the final form since we can
make further simplification by taking advantage of the
lattice symmetry. To do this we first define an additional
variable

n-1\
a,, = Fr—gz: q4;.
J=t

(34)

We showed earlier that the interaction energy is not changed
when we translate all of the particles by an integral number

of lattice constants. The quantity a, defined above is also

a, = X, +N-X,-e
) -} n-\
since X, = X;+3 (+e) = X, + 2 2, +(n-1e
J=i j

3=

n-1
=> X, +N-X,-€& = Xi+N-X, - 3 3; -(n-1€-€ (35)

n_' J=|

n-|
= N-né - 3 3; = F- ) 3
J=l J=1

a, then is a quantity alike in character to the other aj's
in that it represents the number of free cells between two
adjacent particles n and 1.

Let us compare the energy of two configurations, one
represented by the set (al, sy an-l)’ and a second
(a2, azs an). The second configuration can be
developed from the first by translating the system until
particle 1 is in cell N and relabelling particles to return
them to numerical order. This is tantamount to a cyclic

permutation of the ordered collection (al, ays oy an) and

since it arises from a system translation we have the result.
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We shall make use of this result in the discussion that

follows.

28

With a bit of examination we can see that the sum in

Equation (33") is a sum which is carried over those

configurations for which a; + a, + e + a, = F and only

those. This means we can write Equation (33") in a more
n

symmetric form by the use of a §-function §(F - I a.)
j=1

which is zero except when the argument vanishes in which

case it 1s one.

F n
Co (LB =L"L y o 2. Sl a)(ertl) €

F
31:0 alzo a“:O

..5(1(34"‘

.)

(36)

The order of summation as written now in Equation (36) does

not matter since we have made the limits of each sum

constant. Suppose that we now replace u(al, ay ’ an—l)
by u(a2, A3, @ys "t an). Since these two are equal, no
change has occurred in (36). Now suppose we replace a, by
al', aj by a2', Tec Ay by an—l" ay by an'.
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F w1 _Auaa - a, )

CaltB)= 4" 3 Z Z (F-3 4)) (eral,) e

0
a» | n'i'

£ _pu(y)ea),) (37)
:lnaz‘;(; Z_ 5(F-Za)(e+a,‘,_,)e/5

3"0

The a 's are only dummy variables so that we may now drop
the primes noting that (37) looks just like (36) except
that the factor e + a, is replaced by e + a _1- We can

repeat this argument n times so that we have n different

expressions all equal to Cn(L,B). We write them all down
and add e I3 " _ﬂu(an-an.)
n a.)e ' -
C(LB) = LN T Y s(F-E E) (erda
" t a.=0 a*to J=)

BuUR, - 2,.,)

]

n F £
L7533 S(F- za,)(e+a,-,)e
A

q,=° o J=t
n & F " CBULR, )
= AT g (F-F (e v e FUIET
a‘:o an:D FET!
_— n F J n u(a/' a
=275 sy (era) e’ o2
1z0 d.=0 3=
F F’ n n -ﬁ[,((ar a-h—l)
CoonGa (L) = ANy S(F-}:&j)’(ne*ff e
a,=0 w0 =t K=1
n
The sum £ a. = F =N - ne so that we have
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ﬂu(a.--»a“-.)

F'a-l F;_Jz’\aj ’511(2:'“3..-/) (38)

Now that we have an expression for the configuration

integral we shall examine it to see how much our problem

has been simplified. The terms of the original sum,
Equation (23), were of the form e P% while in (38) they
have the form % e_Bu. Hence we have reduced the number of
F+n-1 .

terms by N/n. There are ( n - 1 ) terms in (38) so that
there are g(F : E I l) terms in (23). If e =1, F =N - n,
then in this case there are g(i _ i) = (2) terms. This
means that if e = 1 the configuration integral for the case

where the only interaction is the hard core repulsion is

Cn(L,B) = zn(i) in agreement with the results obtained by

Trosss.

With the computation of Cn(L,B), we now arrive at the
next difficulty in the treatment of the lattice gas. 1In
the case of continuum systems we find the pressure of a
system by employing a derivative. Letting P represent the

thermodynamic pressure we would find P by the following

= 5 & mQa (L) (39)
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This, of course, cannot be applied in the case of the
discrete lattice since L takes on only values which are
integral multiples of the lattice constant &. There are
several alternative approaches to employ in computing P.
l. We can evaluate the derivative d/dL by noting L = NR.
If we assume that the number of lattice points stays

fixed we vary the volume by varying the lattice parameter.
Hence d/dL = 1/N 4/df. When we write the potential inter-
action in its original form as Equation (5) we observe

the dependence of u on 2. Let us look at the result for

n NJF + n -1

the system we just solved Cn(LﬁB) =4 20 2

}. This

solution is the configuration integral for the Tonks gas

system with particles of size e. The partition function
n
4,22 ,.n N F + n -1 . .
Qn(LﬁB) = (=" 2 n( n - 1 ) yields the following

gh
result for the pressure using our first method.

L4l

(40)
Equation (40) is the equation of the pressure of an ideal
gas but no account is taken of the volume occupied by
particles and thus is not satisfactory. The other two
methods work under the assumption that the lattice para-
meter is fixed and the number of lattice points varies.

We make use of the calculus of finite differences and hence

a short digression on this subject seems in order.
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We first define the difference operator A on a
function f(x) as

AFx) = FOx+D)-£00

(41)

A is sometimes called the forward difference operator. It
has many of the properties of the differential operator in
that it is distributive A(f + g) = Af + Ag also Aaf = aAf
where a is constant. There is a slight difference in that
Af(x)g(x) = £(x+1)Ag(x) + g(x)Af(x).

We can also define an integration operation anal-

ogous to Riemann integration in real variables.

b s
Z_a_ fx) = é f(x) (12)

With this definition we note

b o — b) - 9@
(xX) = A ) = 9
> . A9 XZ:; 3

(43)

Equation (43) is strongly reminiscent of the fundamental
theorem of calculus8. We can set up difference formulas in

a manner analogous to differential calculus.

Aa =0 (a constant)

A ax = a (44)
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. . , X, _ x! .
The combinatorial function (n) = AT(x=n)T behaves in

difference calculus like xn/n! in differential calculus

in that

X
A “u) = (n-\) (45)

With this bit of discussion of the difference
calculus, we proceed to the second method for computing P.
2. We approximate the derivative d/dL by taking the
difference of 1ln Qn(L,B) as L changes by % or N changes

by 1.

p = ,Bi_e (!ﬂ Qn(L+Z,ﬂ) - In Qn(L,B))

(46)

= ggpln G (NS B)

n
o, (NL,B) = (2702 gPc_(N%,8). The only part of Q_(NZ,B)

Bh

that depends on L is the configuration integral Cn(Nl,B).

Thus

P- L A InCa(NLB)
- ﬁﬂ’ (47)

The third method is similar. We take as our expres-

sion for P

_ ZS;Cn(Pdlﬂg)
P= el C.(NLP) (48)
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Equation (48) is the approximation to P =

1 d

Bd;TngT 3T C,(L,/B) which is the result of Equation (39).

We shall take the third form as being closest to the
continuum form for the pressure in our system. The two
forms Equations (47) and (48) merge together in the limit
2 > 0. |

We pick the third method because it seems closest

1 a . _
to the form of E—ITL'—B)— a-i‘— Cn(L,B) while A 1n Cn(NQ,,B) =

ac_(N,2,8)
+ . . .
infl (NQ z) ] which differs from Equation (48) except

in the limit 2 - 0. The first method is unsatisfactory
because it does not take into account the additional
configurations which arise from increased volume. If we

use our method to compute the pressure for the Tonks

gas we obtain (,;-4..4_1)

é& n-— |
S
ey

N
n
H(Frmit)

(49)

/]
s)-
33
-3
S’
+.
|
B
S +
| 3
N
.

H
‘_
|~
2|~
7
il
+
1‘]?
i
Je
NS
r**—w
-n]
‘:1
——J

_ n . n .
When e = 1, (49) becomes P = EL(F + 1) - BIF" Now LF 1is

just the free volume of the system, i.e., the empty volume.
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- n .
P = BT =gy ° In this form we have the usual Tonks

gas result. This demonstrates the validity of the
model; it can and does give reasonable and accurate
results. As we shall see later when we examine the results
of our numerical calculations, some of the pressure-
volume curves are rather strange but this strangeness is
not the result of the method of computation but rather is
the result of the boundary conditions.

Let us now consider another problem, the one-
dimensional Ising lattice gas generalized so that particle
size is not cell size. The potential of the Ising model

is defined by

ca ; X<e
VIX)=-€ ; egxce+
© / Xye+l (50)

The formulation we have gone through automatically
builds in the hard core repulsion part of (50). Let us

write down u(al cecoa l) for the Ising lattice gas

U(2---dna) = 2: 5— V(Z a, +U-ile)

1z = i ] (51)
+ VI(N- Zak-(Jl )
The minimum value for j - i in (51) is 1 the first term
vanishes when j - 1 > 1, a; > 0. The second term vanishes
j-1 .
except when N - X a, - (j - i)e = e. This can happen

k=i
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n-1
only if j=n and i=1 for then N - I a, - (n-1)e = e
k=1
n-1
or N - ne - L a, = 0:=;>an = 0. Summarizing these results
k=1

we see that the only contributions to u are from those
terms containing a single aj and then only when that aj is

Zero.

U, h)— -éz 8(3\() (51")

We represent a configuration by the n-tuple (al ay s
e, an) and from (51') we obtain the energy by counting
the ai's which vanish and multiplying the result by -e.
There are n different energy states in general if F > 0.
These states are -(n - 1l)e, -(n - 2)e, +-+ , 0. If F =0

there is but one state -ne but this is a special case. The

configuration integral then can be written as
F F /66 ZTS (&K)
(Lp)=L"F o Zw‘-fa)

a.-0 3,=0 (52)

We evaluate (52) by finding the multiplicity of each

level. The 1level -(n - 1l)e can occur in n ways, namely

i

all aj 0 except one which is F. Since there are n
choices of the aj which can take on the value F, the
multiplicity of the level -(n - l)e is n. The next level

is-(n - 2)e. In order to achieve this energy, two of the

aj's must be nonzero and the rest zero. We now have a

Id
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counting problem to determine the multiplicity of this
level. Since two coordinates aj must be nonzero, we assure
this by taking 2 away from F and assigning a 1 to each of
the two. This leaves F-2 to distribute between the two
nonzero values. This problem is analogous to the problem
of counting the number of ways of putting F-2 balls into

F-2+2-1

2 urns ( F - 2 ) = (g

). We can do this for each

N

pair of coordinates a; and aj we choose from the collection
of n. We can select the pairs in (g) ways. The next

level is =-(n - 3)e. This energy level occurs when 3 of

the ai's are nonzero. To assure that the three are non-
zero, we assign each the starting value 1. This leaves

F-3 to be distributed among the three. This can be done in

-1 F

+ _ - 1 n
- ) = (p _ 3) ways. There are (3) ways of

in ( g
selecting 3 objects from a collection of n. The level
-(n - k)e can occur in (2)(5 _ i) ways since as in the
above discussion the level is only achieved when k of the

ai's are nonzero. We assure they are nonzero by assigning

each the starting value 1 and distributing the remaining

F -k +k - l) _

F-k among the k coordinates. There are ( F - k

F

(g

: i) ways of doing this. Since there are (i) ways of

selecting the k nonzero coordinates, there is a total

1

. - F -1
degeneracy of this level of (;)(g - x) a

G) G - 1) We

sum over all states to obtain Cn(L,B).
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n ¢ (n-k)
CalLpr = A0S (n)(F=1)
n\& - N K k-1
k=1
(53)

Some of the terms in (53) may vanish because some levels
may not be accessible to the system; e.g., if F = 1, only
the level -(n - 1l)e is available; all other terms vanish.
We note that if F = 1 when k > 1 the lower member of
F -1 . . .
(k l) exceeds the upper member. This is equivalent to
asking ourselves how many combinations of m things n at
a time are there. If n exceeds m there are 0 such
combinations. For the sake of consistency take_(ﬁ) =0 if

n > m. With this definition, the sum (53) will fit all
situations. The result (53) becomes identical to that

found by Tross in his papers5 with the aid of the computer.

(2) Grand Ensemble

Suppose we turn our attention now to the grand

ensemble. We form the grand partition function as

pod n
2V(Zlﬁ) = nZ:.OZ QV\ (V’B)‘ (54)

We can regard (54) as a transformation of variable from the
discrete variable n to the continuous variable Z. We also
regard this as a new ensemble and take as thermodynamic

parameters the ensemble averages of the quantities from
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canonical calculations. We take as the number of particles

in our system the ensemble average of the number n

n'ZnC}n(\4ﬂ)
Z'—?O p— ZJJTi 'nzv(zlﬂ),

§"; Z" Q. (VA)

©0

n = (55)

Also recall that for a continuum system BP = gv In Q_(V,B) =
n
9Q
n
3V (v,B)

-GKTVTET. 'I‘hereforeoo

—

/3 P = AV(Z,B) n=o dV (56)

This is not the usual form presented for pressure in the
grand ensemble. We obtain the usual form by averaging the
result (56) over all volumes from 0 to V.

v
d R dy (2,
+ J‘NJV In2,Zp) = < In £)

Ol

=

= (57)
The form (57) is the one usually given for P in the grand
ensemble and as Yang9 has pointed out, the value P in (57)
can truly be identified with pressure only in the thermo-
dynamic limit. Nevertheless, it is useful to observe the
behavior of this function for finite systems in order to
observe its characteristics for signs of its limiting

behavior.

For the lattice system things are not so simple. Here

AQ_ (N, B)
the pressure P is taken as g o (N.B) " Hence the ensemble
n 7
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average of P is

Q —

P fi CQn(N'ﬁ>

n=o Nn=0

£ 2 e,

bR
" QO (N, B) (58)

Pz &+

We can approximate the results of (58) as

P= 44 In 2 (2,B8)

(59)

We can now use (59) to evaluate the average of P over all

values of N from 0 to N—l>so that

5 = ._'_NNZ In2w (2.8) = 73'—7\,2:& In 2y (2,8)
P N0
(60)
_ L In A (7A) |
= Zm In dn %

Since the result (60) depends on the approximation (59)
the grand ensemble results for pressure are exposed as
being rather far removed from the canonical ensemble results.
Using the result (60) to define the pressure in the grand

ensemble, we can show that (%go > 0 where p = n/N. We
- B
3P

find 5-5- as

(aP

_ &) /12 %
'a”?’)fs’ )/3

(61)
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If 8PN = 1n .QN(Z,B) , then

P | st - 2
BN (), = 3ag, Zn e e = T,

I2/g T A UZP) neo
d >
" - > nz Aa N B) — 2
(38),-a 2 - En
32 oo -—
n=0o

The quantity in (62) is obviously positive. To show that

the result in (63) is positive, we need only recall that

2P >
ap

2 = — . . :
n- - n2 = (n - n)2 which is of necessity positive. —>

0. We cannot guarantee such results for the canonical
ensemble. Also, since Q,= 1 we have QN > 1 =>1n QN > 0,
hence P is necessarily positive. Thus use of the grand
ensemble formalism guarantees us that the pressure
calculated will be positive and the P-p curve will be a
monotonic curve with P increasing as p increases.

It is interesting to note that for the lattice system
the point of departure is the canonical ensemble developed
previously. Suppose we start with (21') as the equation
for the configuration integral. We set & = 1 for conven-
ience. This is not the simplest form of the configuration
integral but we employ it for comparison with previous
formulations. If e = 1 no more than N particles can occupy

the N cells so that (54) becomes

N
2 (Z2,8) = % 2" Q.NA) (54")

n=0
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We note that there is a relationship between Cn(N,B)
and CN_n(N,B). We establish its character by noting that
for every configuration of particles present in the
evaluation of Cn(N,B) there is a corresponding one in the
evaluation of CN_n(N,B). We establish this by noting
that if we start with a configuration contaiﬂing n
particles and make the transformation Oj' =1 - Oj we
arrive at a configuration which contains N-n particles

and vice versa. The energies of the two configurations

are related as follows.
v N-1

U = (N-2n)3 vV, + U (64)
J=1

From which we obtain

N-1
_B(N-2n) TV
Crnng) = €25V )

(65)

Using the result (65) together with Equation (3) in (54')

yields ]
2 n
2T M
_ Z
QN(Z,/%)_“ZO Cn(N,ﬁ){( B’F) g (66
= BN Ty
If we let 2' = 2 ZE% we obtailn
Bh
Z3)

QN(ZIQ) — hz;} CV\(N, ﬁ) {Z,V\+ Z,N'V‘e‘/-;(hl—?.n)‘g VJ} (66")
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We have used the notation [N/2] to mean the largest integer
N-1

that does not exceed N/2. Let S = £ V. and z" = z'e BS:
j=1 )

With these substitutions we have

[8Q , M- "
(Z'Ig)— Z]C (N,ﬁ)i?. 6 3— r efg S]

[V ] (66")

Z C.(np) ef™ 2" Sy "

Now let z" = &2V then we have

(a1l ]
A (2, B)= :[;o Cn(ng) e z’el“" . eZ(N—‘n)vZ

(V2] —_(N-2n)V
:,,Zo C, (vpye e { +e (N'Q")vg

[Ma] Vi
) eV

=z Cn(NBJ € (2-8(n-3)) cosh(N- 2n (67)

We insert the factor 2 to compensate for the 1/2 in the
hyperbolic cosine. The §-function corrects for double
counting when n = N/2 in the case of even N. We
write Equation (21')
LS s L - Xn)
C(N/,'—;,—ZZ= PR (21")

X=1 Xz= i

and realize that because of the hard core potential
u(xl see xn) is infinite when a pair of particles occupy
the same site making the exponential go to zero for that

situation. Thus the exponential in Equation (21')

contributes only if all the x; are distinct.
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As it stands to here, the method is seen to corres-
pond to the result Tross obtains after some torturous
matrix argumentss. This demonstrates the simplicity and
versatility of the point of view adopted for this work.
Tross makes the further simplification that is made in
this work of restricting the sum (21') to a single ordering
of particles but fails to take advantage of the further
reductions as we have. The reductions made herein reduce
the number of terms that must be evaluated by a factor 1/N
which is a significant saving and allows us to treat

larger systems.

(3) The Pressure Ensemble

We have discussed the canonical ensemble and the
grand canonical ensemble and found the usual results. There
is another ensemble one can consider and even though it
is not convenient for making computer calculations, it is
most convenient for treating lattice systems theoretically;
We transform the discrete variable F the free volume to

the continuous variable g as follows

o0

F . _

L(C,B) = Z.& Cn(Yle-t—F', 5) ; where N= ne+F (68)
F=0

Let us first establish the circle of convergence of

the series. To do this we must determine the value of

C(ne+F+l,B) 1

. n . .
l1im = =— where R is the radius of conver-
Fao Cn(ne + F,B8) R

10

gence . We can write
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Colne+FH, B) = Citme+F, B8) + A C, (ve+F, B)

(69)

and so

. Calne+F+1,B) A C. (ne+F, B)
i i DCalnerf B -
Fa>0 (.(neth B) F-» 00 CV\ (Y\C+F) ﬁ)

The second quantity in the right hand member of (70) is
just the limiting value of the pressure as the volume
becomes very large. We seek the value of AC_(ne + F,B).

An elementary application of difference calculus

yields
ne+fF, B) = 3, =
A Cn ( ! ﬁ J F+l F#-3, F#+! —J:L—l 4 _ﬂb( (af"ah-z,r""/g;
L ¢, (ne+F B) + Nt JANEREDS e
Noazoago 3 50 (71)
F  F-3 F- ¥ 4 - B U@ any)

+5- L LT e

If we divide (71) by Cn(ne + F,B8) and take the limit we

have
. ACa(netF,B)
i
> a0 C.(ne+F, B) n-3 n-2
PR F-E, W AU, m-E,lk)
S .3 e
- him N oo aeo g0
F> 00 N ’:’N— Ch(ne+F, B) (72)
’ w-2
F F-d, F‘.JZ:':aJ _/3 u(a..'--&,,-,)
| > o 2 OAe_
. - =0 [
N (v N+ d,-0 N v

Fyoo N —"\‘j—cn(ne +F,B)
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The interaction potential V(x) which we assume is such that

for a finite number of particles u is bounded both from

above and below. Thus,

we can state

w-3
Fel o Fal-3, Fel- 23y /gu(a..--am, Fo- X a3)
T, X e "
N+! 3:0 a0 a..azo0
F F-a, £- §°*

2. L L

A AU )

=0 ;=0 a n3®° c
-/5\*) r+v\-\) (73)
< N+v (e max. n-2
e d "
N -pU Fan
(Q p ‘wﬁn. ““)

The exponential function is positive for any real
argument thus the term in (73) is bounded from below by
zero. Since u is bounded both (e_Bu)max and (e—Bu)min
are finite and nonzero.

(F+h )
[im = lim 22! =0 (74)
Fy00 (F-fh-' Fpoo F+ 1
n-i
Now (73) and (74) together imply that
. Acv\{ne"‘ﬂﬁ)
{Im — n-2
v0 Ca(ne+F, 3) i, e da,
> ( g FF-a, FZ'.J:I :e_/gu(a. )
-1
F_>’, N Z’:: F'al. Ef"lj e_ﬂ u(a."'l“-‘)
d,=0 0 (s

The right member of (75) must vanish if the periodic
boundary conditions are to give useful results. The
periodic nature of the potential causes the total inter-

action to depend on the number of lattice points. Thus
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we should assume that (75) vanishes and examine the results
of this assumption. 1If P does not vanish with large
volume, then it is this assumption which fails and in this
event we should question the utility of the periodic

boundary conditions. Thus we take

\-‘m CM(”€+F+,)5) _ \+ l;yy\ AC“ (ne+F, ﬁ) - l
F>00 Ca(next, B) " F>° (., (ne+F $)

(76)

The result (76) therefore implies that the series in (68)
converges for || < 1. Suppose we now examine (68) more

closely. We note that

Culne+F 8= L. & LEA) 1)

211 zr+l

Where the contour in (77) lies inside the unit circle

and encloses the origin, now the function EL%L%ll is
C
continuous and analytic for ¢ # 0. There is a pole of

order F + 1 at the origin and since the radius of conver-

gence is 1 L(1,8) » «». Therefore somewhere along the real
axis E%%igl has a minimum for 0 < 7 < 1. We can thus
g

employ saddle-point integration to estimate Cn(ne + F,B).
We first rewrite the integral (77). Let us assume the

countour C is a circle centered on the origin and having a

radius r < 1. Let g = rele where i = /-1 the imaginary
unit.
L(vc;eﬁ) (78)
Ci(ne+F, ﬂ\-— J_ '_ do
21x¢ eqFG

- Ir
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Let f(r,8) = 1ln L(rele,B) and F(r,8) = f(r,8) - F ln r -

iF8. From what has been said previously, we know that the

F(r,9)

integrand function e has a minimum along the real

axis at some point, say r= t. We have then

F(r8)
3 eF(ne) P‘t = O = Fv(r.e)e r(r \r:é
o7 6=0 6= 0

(79)
Fir, 6)
r= %t
8=0

= (flne) - E)e

The exponential does not vanish so that the parenthesis must

go to zero. Consider

E_ eF‘(Y}Q) yr=t =0 = F (v.8) eF(hB) ,r:_t
36 6=0 / e=0 (80)
From the substitutions we have made, we note that f? =
%E l1n L %%-and fe = %E ln L gg; thus we have ;E;IE = 2%5 or
fo=irk (81)

Using (81) in (80) shows that if (79) vanishes, (80) must
also. To examine the nature of the point r = t, 6 = 0 we

take the second derivatives.

Flv, )
_ (,Cyr(\r.e)+%)€ \v:‘t 50

F(r,6) .
s 6=0 (82)

2
o
ar#* c
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The result in (82) must be positive if eF(r’e) has a
minimum at r for 6 = 0.
a—ze ' r:t ot (X e V:t
26 o= 0 6z 0 (83)
Now (8l) tells us fe = irfr. From this we can show fee =
lrfre, fer = lff + lrfrr' fer = fr6 therefore fee =
-rf - r2f . Hence
r rr
2
> erw.e)l . C vt o e
192 r=t = _(rr, t+ Y rr) e :0
99 6= 0 ( v ( ) 6
Fv,e/
2 {r -t (84)
= - f,+ Z)e ret
From (79) we have F/r2 = fr/r; hence
r(r,o)‘ 0
3% F(vwe) ( (. + &-’) = k¢
e e ;55 = rr ¥ (82")
Comparing (82') with (84) we have then
(5
v, 8)
,3_16‘:.( \r: < O
26 e= o (85)

The results (82) and (85) imply that the point r = t, 6 = 0
is a saddle point. Thus if we fix r at t, then the function
eF(t’e) has a maximum at 6 = 0. Let us expand the function

F(t,0) in a Taylor series around 8 = 0.

275 =%
F(t,8)= In L(t,ﬁ)—-FIn'Ii‘% [FZ_F }+ (86)
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For large systems, the coefficient of 62 is quite
large since it is the difference between the ensemble
average of the free volume squared and the square of the
average free volume over the pressure ensemble. This
should not be confused with the value F in the left hand
member of (77). If we choose our circular contour to be

of radius t we have

—

2 > .
m In L(t,lg)-r;,,t_,z_q {rz-r },,,.

Ca(nesr, B) = 7% Se 4o
_-(iT _
i‘%l(vkﬁge
| -Fle
= — 1,
Zﬂ'L( ﬁ)t - 00 (87)

- -F f2r
t
- 21 L(t, A FE?

We can rewrite (87) as
F 1 )
+ C.(ne+FAa) = ‘/.__.__1- L (¢, B
’ ZT(F&~F] ' (87")

(87') shows that most of the properties of L(t,B) come
from a single term in the sum and hence shows that the
pressure ensemble can give good results; that the ensemble
averages give results which agree with the canonical

ensemble results. For the pressure ensemble we find the

free volume as the ensemble average

42- F 2 rCh(ht;+F, 3)
F=°

— 2
J c ‘é—élv\ L(C,ﬁ)

ﬁz-: 0o (88)
Y. zFCa(ne+F, B)
F=0
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% éFﬁPCM(Y\C—f‘F;‘B) Z_ x FAC, (nexF, g)

= F-0 — -0
pP= —3 F B 33
FZ-;Z Cn(Y\€+-F_,,8) Z_ 5 C (nefl-‘/g) (89)

We can rewrite (89) as

S R

(89")

F+1
Now T ACn(ne + F,R) = AQFCn(ne + F,B) - Cn(ne + F,B)EF(E-I)

thus

~ Ch(ne: IB) I“g
P= - - "
B Y + = (89"

For large n the first term in the right member of (89") will

be gquite small so that
= -5
pP= % (59)
Using (88) and (90) we can obtain the equation of state
with F given as a function of P and 8.
Before we apply our results, let us look back at the

definition of the pressure ensemble partition function

L (&, 8= 2 QFCn(nea-F,,B) (68)

=0

Let us substitute the form Equation (38) in (68) with N

n

replaced by ne + ¥ a,.
j=1 J
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If we carry out the sum over F we obtain

M™Ms

00 " .
LEA= FZ - (Vl€+f{f—1;) EE- a’c,‘ﬂu‘av“l') (92)

a,': ©

p

h:o

u becomes a function of the value a, since U is dependent

on the number of lattice points N which now is determined

as N = ne +
j

A
1 J

M

For convenience we define F(z,R)

m “ * 9 e
F(p)= -5 ﬁ—,;‘ie—ﬁ“(" i) (93)
d,=0 L.=0 J=!
n
We have employed the notation I fi which is defined by
i=1
i (93)
I £, = £, -f_+f_+++£f . With the definition (9 we note
j=1 1 1 72 73 n
that

L (5 B) = _'}\(hefl;d—%) F (5 8) (94)

Let us now apply this ensemble to some examples. First the

Tonks gas or the case u = 0. Here we obtain



53

12
F(z,68) = (2%)
(95)
Employing (94) we obtain
L _ 4 _ |
(58) = % (850 + 1) = e (e s a2) .

Following the prescription outlined previously, we first

find F.

F.: g‘é~ n - & I-ne
ig In LR = (oS o plne 7

When the number of particles n is large the second

term of (97) is insignificant compared to the first so that

See Eq. 90 (97")

For large n the 1 is insignificant so that we have
p= " (97")
;? F

This form agrees with that which we obtained earlier for
the pressure from the canonical ensemble.

The Ising model is also soluble in this ensemble. To
obtain this solution we note that the interaction has been
written
(51")

Ua2u) = — e L 5(8)

J=
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If we use (51') in (93) we obtain

F(48)= (goéa‘e’géﬂa'))n (98)
¢
— (€ﬂ+%)n
L(sB8)= L

gne (e + 2 )+(h 5 (e’gi:‘z)wz

E et g -

0-5)*

(99)

For large n the term inside the square brackets is small

compared to the other term and hence will contribute little

to the resultant thermodynamic guantities. The quantity e’
there is the particle diaﬁeter e. The prime is used to
avoid confusion with the exponential e = 2.71828 <--.
€ (100)
IV\ L(;,ﬂ) ~ (v\-l) Y (e/g_}-'%)
wn-1) ! 1
From which F = (n-1 U-;}L ,1:;——~———<f‘ﬁ
Be Z ;“’l)‘f’("l) ¢
e 4+ =
A
Using (90) we have 2
—_— e —— s e
- 2,2 A€
= TEE (g yelt  srrp (Lo1)
2
(1+B8P) I+ pP

Equation (101) expresses the equation of state of the Ising

lattice gas in the nearest neighbor interaction. This
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demonstrates the use of the pressure ensemble showing it to
be of use in obtaining results where the other ensembles
fail or are difficult to handle. The special form of the
pressure ensemble makes it ideal to treat nearest neighbor
interactions. Such works have been done for continuum
systems and such results reveal that no transitional
phenomena occurll.

The pressure ensemble as considered here is well-
suited to the theoretical investigations of lattice systems.
Siegert and Lewis12 discuss the pressure ensemble in the
continuum and this discussion can be carried over to
lattice systems with little difficulty. The pressure
ensemble defined here is quite similar to the grand ensemble

and thus the zeros of this function are of importance in

the study of transitional phenomena.
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CHAPTER IIIX

DISCUSSION OF COMPUTER CALCULATIONS

A. Canonical Ensemble

We have previously discussed the derivation of the
configuration integral Cn(L,B). We obtained the following

result

Fa, F-E™ _gulac- )

F
Call,B) = LR o

a,=0
(38)

We shall assume that the lattice constant £ = 1 and that we
measure energy in units such that k = 1 (Boltzmann's
constant). If 2 =1, L = N and so Cn(L,B) = Cn(N,B). The
sum (38) does not really take full advantage of all possible
symmetry. We do not éliminate the duplications of configura-
tions of the form (al, ayr *00 an). In fact, each cyclic
permutation of this appears. We have a scheme then to

reduce still further the sum (38). Let A be the row vector

(a ’ an) which represents the configuration. We

1’ 22
form all cyclic permutations of A and keep those in which
the nth component is the largest component. There are n

cyclic permutations of the row vector A; but, keeping only

those in which the nth component is largest reduces this to k

terms of this sort. k counts the number of components of
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A equal to the largest component. The sum in (38) runs
over all configurations like A in which the sum of the
components is F. We impose the additional restriction on
the sum that we sum only those configurations in which a
is the largest component and we weight these terms by n/k.
The value k depends on the configuration A. As we stated,

k is the number of components of A equal to a - Thus k =
n
L §(a, - aj). On the computer we evaluate k by taking

advantage of the manner in which the machine does its
arithmetic. By our construction a > a Yk. The machine
performs fixed point division by dropping all digits to
the right of the decimal point so that if a, < a.. ak/an =

0 in fixed point arithmetic while if a = a.; ak/an = 1.

n
«eoek = I aj/an evaluated in fixed point arithmetic
j=1

n-1
— aj
k= |+ JZ::I /3_,\ (101)

We can indicate the evaluation of the configuration integral

now as
Isb((a. a‘“")
~ N s L) e s
Cv\ ( N' ﬁ) a':—_o a‘:o 1':0 1“_"30 ‘ Jt—[ /a'V\ (10 2)

The purpose of our calculation is to obtain values for

the thermodynamic quantities pressure, internal energy, heat
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capacity and the statistical correlation function. The

AC_(N,8)
CnZN,Bi

pressure has already been discussed. We use P = %

as our value for the pressure. The internal energy 1is
found by applying the usual prescription which is just the

average value of the Hamiltonian over the ensemble.

— 2 N
= —- - = - — LA (103)
E = (H> o I Qn (N, A) 2B,-{—( >
AU
ue
(UWYy = z -
T e® (104)
The heat capacity is by definition (%%) so we evaluate this
N

derivative to evaluate CV the heat capacity. Using (103)

and (104) we obtain

2 2
_ " [(u‘) -(u)]
Cy= 7 + P (105)
The second term in (105) is the fluctuation of the average
internal energy multiplied by‘lin We can easily show that
T
2 2

2 . . .
<(u - <u>)“> = <u“> - <u>" and since the first expression

is positive definite C, > %. As the temperature of a

\Y,
system increases, one expects the thermal vibration to
increase and hence one expects the fluctuations to increase.

In rough terminology, this means that as the temperature

increases order decreases.
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One aspect of the lattice system not emphasized
previously is that the energy states available form a
discrete set finite in size. Since the number of levels
is finite the spacing between levels is also finite and
hence there is a gap between the lowermost level and the
next level., Normally we would expect a system to reside
in its lowest energy state and we would find that here if
thermal energy were not giving enough of a kick so that
other levels can be populated. For convenience, we
enumerate the energy levels as u, < u, < e < un where
there are m distinct energy states. 1In the Tonks gas
case, there was but one level. In the Ising lattice gas

there were n levels. The ratio of probabilities of the

lowest state over the next is

U
e-.ﬁ _ﬁ(u\—UQ)
—E;ﬁgﬂi = G (106)
-8 (ul—uz)
u, <u, >y - u, <0 > e + © as B > «. This

result means that at low enough temperature (large B since
B = 1/T) the entire partition function is essentially given
by e PY nultiplied by the multiplicity of this level. It
is as if there were but one level uj - The potential V(x)
has a minimum value for some value for x. At this separa-
tion the interaction between a pair of particles is a
minimum. Thus to minimize the energy we maximize the

number of times this separation occurs. This will tend to
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make the lowest state an ordered one, i.e., one with high
correlation, at least for certain separations.

We can study the tendency toward ordering at low
temperatures by studying the correlation function and its
behavior as a function of temperature as well as separation.
The correlation function for this calculation is determined
most easily by the following considerations. We return to
our original representation in terms of cell occupancy.

The pair correlation function as defined in Hil11l3 is

given by .
. W (i;))
cor(i, )} = W) Wi (107)

Where W(i,j) is the probability that cells i and j are
simultaneously occupied and W(i) is the probability cell i
is occupied. We find the probability W(i) by summing over
only those configurations in which cell i is occupied and
divide this by the total configuration integral. We

-Bu over all configurations.

accomplish this by summing o€
Since o vanishes when cell i is empty, we effectively sum
only over those configurations in which cell i is occupied.

Thus

_pU
Zwep

W)= (o3) =
y e

(108)
From the symmetry of the lattice, it is clear that each cell

has the same environment as any other = <Oi> = <oj>. We

know that there are n particles in the system so that
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H

N
59

I (109)
N
= <Z__ (110)
N
g Z =N (111)

Since each of the expectation values in (111l) is the same

as any other
Partldc JCMSI{y)

NGz n = (o = ﬁi/”( (112)

Putting this result in (108) we have

Wi(i)y= P (113)

The evaluation of W(i,j) proceeds along similar lines.

L (oo
Wi, )= (T;,0;? (114)

As stated before, the environment of one cell is exactly like

any other and nothing is changed if we relabel the cells

calling cell i 1, cell i+l 2, etc. From this we can say

Wi, 3) = (O, Oni-yy (115)

(115) tells us that the probability W(i,j) depends only on

the difference of the values j and i. We could just as

easily have relabelled cell i as 2 or 3 or 4 or <+ or N.

Thus

Wi, = (0 TLds (0, Gpyjid = =G, Gy > (116
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If we add all of the terms in (1l16) we obtain

N
NW (i, J) Z(O_KO'+J’) — <kZO_kO-k+j-i> (117)
=i
From (117) we can solve for W(i,j).

. 4 - ‘ N
W (i, i) = N} <;<Z T Ok +i-i 2
=i

(118)

If we refer back to Equation (6), we note that the term in
angle brackets above is just the j—ith component of the

profile.
) M — l
Wi )) = NI (P_» (119)

Let us look back at Equation (107) now to rewrite the

correlation function

. . _— l
Corli, i) = Np? (P2 (120)

Since the correlation function depends only on the differ-
ence j-i we write the correlation function as a function

of the difference so that

COY( k) = 2 < Pk) = — -'—‘L %/k [V\ CV\(/\// 18; \/IJ”'JVN_;)

(121)

Summary

We must compute several items by computer. We first

compute the configuration integral
_B W An)

Ch (L, ﬂ)'NZ Z Z s(r-zaﬂ "im (122)

a
3:02:0 4,30 .

k=1
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Along with this we must compute <u>, <u2>, and <Pk> for

k=1, 2, «++ , N-1. Actually, we know that Pk = PN_k
so that we need only compute averages for half of these
values k =1, 2, 3, .-+ , [N/2].

We compute the pressure by

ACh(NB) - Co( N+l B) = Ca (N, )
Cn(N»ﬁ) - Cn(Nl/s)

P::T

the internal energy by

E = @21—+<u>

the heat capacity by

Coz G L [<w- o

and the correlation function by

cor(k)= %( P Y

The actual computer program which evaluates these
quantites is presented in the appendix. In the next
section we discuss the calculation of thermodynamic

properties in the grand ensemble.
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B. Grand Canonical Ensemble

The partition function for the grand canonical

ensemble has been defined as follows

An (zlﬁ) = éoz &V\(N)B) (123)

Bu

Where Z2 = e""; U is the chemical potential. However,
for our purposes Z is a just a parametric quantity. Any
standard text in statistical mechanics will verify that
the thermodynamic properties of a system are obtained from

the grand ensemble as

ﬂPN:’: I)’l QN(Z/'B) (124)

o

— r S ZE T Qu(NA)
N = 2,28
N ' n=0
(125)
Here P is the pressure n the average of the number of

particles over the ensemble. We shall use a bar over a
symbol to denote its average over the grand ensemble to
distinguish this average from the canonical ensemble
average denoted by angle brackets <>, The upper limit in
(124) and (125) is infinite; however, for our system where
we are using hard core repulsive potentials with hard core
diameter e the quantities Qn vanish for n > N/e since these

conditions cannot exist .. we rewrite (123) as
N/e

2.(2,8) = L 2" QunA) (123")
nz=0
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For those cases where N/e is not an integer, the
sum runs to the largest value which does not exceed N/e.
This value is commonly symbolized as [N/e]. Thus, if
N = 13 and e = 2, N/e = 6.5 but [N/e] = 6. We cannot
force more than 6 particles into this system since each
one occupies two cells. For e = 1, there are some special
results. Equation (16) expresses the connection between
the energies of an n particle configuration u to that of
the corresponding N-n particle configurations u' both in

N cells. If we make the transformation as in (15)
]
gj = |~ o; (15)

We exchange occupied cells for unoccupied ones and

unoccupied cells for occupied ones. Thus as we show in (16)

N-|
(N-27)% V) + U
J=1 (16)

The transformation (15) is a 1-1 and onto mapping thus it

possesses an inverse which is obviously Oj =1 - oj'.

This shows that there is a 1-1 and onto connection between

the configurations in Cn(N,B) and CN—n(N B). Now we have

_pu’ p(N—Zﬁ)‘/_:V -pU
C(N,S)_Z_e =5 e + (126)
{conﬁguvabOhS} {conﬁiq}

- ﬁ(N 2”)}:-\/.1

p— CN-}«N'ﬁ) Cn (N, B) (127)
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For the case e = 1, we can write the sum (123') as

(Z,p) = i Z" Qu(N, B)

(123")
We showed previously that Q (N,B) = (21% n/2C (N,B)
(2,A) - "
—_— Z,H-m
N — 2y
4 go ( ﬁl’\z ) CV\(N’,S) (12311)
If we replace Z 22@_ by Z' we have
@Bz 5 2V, (N, B) (128)
w=0

Using the result

we have just obtained, we can rewrite (128)
[ 2]

2 (2.8)= L (7- "CaNB) + 2 Catng €502 E ;)
no
[Vz] ?: er v
= 2 C.nBle . ((z EN) ey
n=o N-
L (2 ,/SZ \/) )
N-1
Finally replacing Z'e-—B z Vj by Z" we have
j=1
[N/Z] %_'V " N-N
(Z,8) = Z Ca(N,B)E "PE (2 w2 ) (128")
MJV
" 2T /Sz
Z = Z jshyn é? (129)

It is important to note that Z" depends not only on Z

but also on B8 and the components of the potential V

So
long as we do not vary the temperature or potential, we can
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regard 2" just as we regard Z, namely as a convenient
parameter to give us a set of parametric equations for P
and n. For convenience, let P = n/N and call it the
particle density or just the density by analogy with
Equation (112). Thus we evaluate the partition function

%\] (z,B) as follows

P%] nggikb Z"“+.Z" ”1)
QN(Z,ﬂ): Z_;_ Ch(Nz/g)e 1= ( (128")

(%] 'V,
Pe iy = e & a1 I g g™
N 2.(z,B) n=0 (130)

In addition to the pressure and density, we wish to
evaluate the internal energy and heat capacity as well as
the correlation function. The internal energy in the
grand ensemble system is found in a manner like the

internal energy in the canonical ensemble.

— ST —_—
E= 5 + (W = (W) (131)

As before, the bar above a quantity indicates average over
the grand ensemble. The second term in the right member
in (131) is a double average over both ensembles. We use
the form Equation (131) to compute the internal energy.
We also wish to find the heat capacity in the grand

ensemble. This is not as simple as the corresponding



68

evaluation of the canonical ensemble. The heat capacity
is found as the temperature derivative of the internal
energy E computed in (131). However, we cannot compare
the canonical ensemble and grand ensemble heat capacities
because n also depends on temperature. The quantity E
depends on the parameter Z, the number of cells N, and

the temperature T = 1/kB8. The difference in the two
ensembles as far as heat capacity is concerned is that in
the canonical ensemble the number of particles n is fixed
and thus does not vary with temperature. To evaluate the
heat cap., we take the temperature derivative while holding
n fixed. This will put it more in line with the canonical
calculation. Fixing the value n imposes an implicit
relationship between Z and 8. n depends on Z, B, and N but
N is fixed in both ensembles so that we regard it as a
constant and suppress it although it is still implicitly
present. Now E = E(Z2,8) and n = n(Z,B8). We must now

make use of the chain rule for differentiation to find CV
as the derivative of E with respect to temperature while

the average number of particles n is held fixed. 1In

symbols, this is
aé')__ .
Cy=(%%)n (132)

As stated, E is explicitly a function of Z and B as is n.
Holding n fixed forces a relationship between Z and g.

Thus E(z,8) = E(B,n). B is defined as 1/kT so that
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E— - 22 (we assume k:l.)
2 —
Thus Cv: —_ (‘a' E),-
n

n (134)

5B
di = (3) dz+ (53),987°
—> (%_';)ﬁ -~ - (%f )2 /(3__11)/6' (135)

Thus we have

Coz-P { aﬂz g—;)/; 5)2/(g€\-)ﬂ? (136)

E = n=o N (137)

It is shown in the standard works on statistical mechanics

that

(HY = = ‘a’afg In Qu(N,B) = Q)uv.;s)’_@a (NB) 1 34
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Thus we can evaluate (%%) quite easily obtaining
Z v

(5, < - [ o]

(139)
We also need to evaluate (%g)s. By noting that
- d
n= & In 2 (2,8) (140)
we can evaluate (%%0 easily obtaining
B
BE) i —_— = '
33 = — | n¢H —ﬂ(H)]
(31 B Z { ? (141)
Finally, we need (g%) and (%%) . For these we find
B Z
av‘w) — —
—3 - _ - n
f /2 [” "7 <H>] (142)
and
(37) = L [w-i |
2 B T (143)

Combining (136), (139), (141), (142), and (143) , we obtain

2N _iay ATy A )
C. = lgz[(\f‘) vy - ]

Y ?-
v = ﬁt ﬁz

(144)

— 2 —
Thus we need to compute <H>, <H“>, n, nZ, and n<H> to

compute CV.
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Finally, we wish to compute the correlation function
cor(k). This is done in a manner entirely analogous to

the canonical computation.

N /o~ N 3 ,
Covr(k) = = (P =- — 2 [WAw@ZBVi Vu ) (145)
This completes the computer set-up for the grand

ensemble.

Summarx

We use the same program we used in the canonical

calculations to compute Cn(N,B), <u>, <u2>. Then we employ
these values in grand ensemble calculations. For e = 1

we compute the grand ensemble partition function as

LﬁQ] n EEVG " ”AFW
2@z > compefE (2" 2 )
n=-=0

(128")
and the density as Nt _
[N/z] ngEI V;, N “N-n)
/0—_ i_..—- | Z_ C“(N-ﬂ)e 21 ("\Z + (N0 T
- N T Afmp) n=o (130")

For e > 1 we revert to the original form (123') for use in

computing the partition function and all the averages.
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CHAPTER IV

PRESENTATION OF COMPUTER RESULTS

A. Canonical Ensemble

Having completed the theoretical basis for these
computations, let us now consider the results. The
computer programs have been written to allow the maximum
flexibility. We can independently and arbitrarily vary
the number of particles, cells, and potential, and the
temperature of the system. We can also vary the diameter
of the particle to whatever value we choose. Variation
of the particle diameter which we have called e has the
effect of increasing the fineness of our grid and leads
to more of the phenomena of the continuum.

The calculations we have made were on systems of
small size 7 particles or less. Larger systems require
lengthy computer calculations and such long calculations
were not deemed necessary to see the results. The
potential we examine first is of the Lennard-Jones type

5 12 5 6
V(x) = lOO[(;) - (;) l]. V(1) = +403,200 and hence for

all practical purposes as far the computer is concerned
e—Bvl = 0 meaning that configurations in which particles
occupy adjacent cells are not allowed. Thus we take e = 2,

We first consider a system containing 5 particles and
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examine its statistical behavior. We first check the
correlation function. It has been computed for systems of
from 13 to 24 cells and reveals much about the behavior

of these systems. Figures 3, 4, and 5 contain the plots
of correlation function versus separation of particles.

We previously showed that cor(k) = ET <p_> where Py is

n
the kth component of the profile vector P. We have added
to the profile vector a component Po which is found as

below

The definition of P, is consistent with the form
found previously for Pk for k # 0 in terms of particle
occupancy. Since we have chosen hard core type potentials
the occupancies are restricted to be either 0 or 1. This
implies that oiz = 0 or 1 for all i < N. Since there are

n particles in the system, this means that Po = n. We

<P > = % and take cor(0) as

define therefore cor(0) = o

S'Z
N

the correlation of a particle with itself. It is apparent
that there can be no higher correlation than that of a
particle with itself, hence cor(k) < cor(0). If the

equality holds, we have perfect correlation. This can also

be seen by noting the form of Py

N
R = Z 5 Tiek
J=1
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n of the oj's are nonzero and hence no more than n of the

products Oj0j+k can be nonzero. If Pk = n, then whenever
Oj = 1, Oj+k = 1 also. Thus Pk = n for perfect correlation
at separation k. From Figure 3 we notice the progressive

tendency to ordered structure of the correlation function
as N varies from 13 to 15. Beyond 15 notice that the

peaks at 3 and 6 remain present although of wvarying

heights even through N = 24. This suggests to us a regular
structure with particle separations of 3 or 6 occurring
often. Mention should be made of the fact that cor(k) =
cor(N - k) so that only values for k < N/2 need be plotted.
This is shown by recalling Equation (9) where we found

that Pj = pj + Py-* If we replace j by N-j, we obtain

PN_j = pN—j + PN~ (N-3) pN_j + pj = Pj:=>cor(N—j) = cor(j).

At N = 18 we note an additional peak at a separation of 9
further confirming the regularity of the "average"
structure. This follows along with the previous results
for if separations of 3 and 6 occur often, separations of 9
must also. The graphs of Figures 4 and 5 continue to
show peaks at 3, 6, and 9 until at N = 24 a peak forms at
12. We shall discuss this curious result later in our
discussion of results.

Next let us examine the behavior of particle
correlation with increasing temperatures. Figure 6 shows
these results plotted for N = 15, the value of N in which

strongest correlation is observed. Note that as T grows



78

CO/’?RELA T 1o/ Fuvc TIoON VS /EMPe/‘mTu.»?E

Veo = 100/ (2)- /5)7,: e=2

5 farTicie Svysrem , N=/5
; / Cor(7)
o L
3\
I
CoR(6)
O e -
¢ .
/ Cor (5
o . ~ _ o o
/ _

Coir(4)

Corez)

Cor )

5 10 15 0 28 20 35

TeEmMPERAT VRE F;G‘ 6



79

large all values of the corrélation function approach the
random correlation values approximately 1. 1In all cases
the major decay of the correlation takes place in the
interval from 2° to 10° approximately a fact we should
bear in mind when we examine the other thermodynamic
functions. .

Figure 7 shows the behavior of the internal energy
as a function of temperature for the various situations
from N = 12 through N = 1l6. The curves plotted in
Figures 7, 8, and 9 are not truly the total internal
energy E but only the configurational part. The kinetic
energy of the particles contributes a known nkT/2 amount
of energy to E so that all of the interesting information
is in the average of the interaction energy u. Thus we
show the results of <u> versus temperature. Notice that
for N = 12 the curve is quite flat changing only slightly.
As N increases the change in <u> increases until at N = 15
it is considerable chaﬁging by roughly a factor of 2. A
close examination of Figures 7, 8, and 9 will reveal that
<u> goes the lowest for N = 15 in the neighborhood of -40
for T - 0. Again note that most of the change takes place
between 2° and 10°. The similarity of these curves with
those in correlation function versus temperature suggest a
connection. We shall show such a connection later and
comment on its meaning.

The heat capacity for a system is given by the

temperature derivative of the internal energy. Thus
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3 (W

G = 9T /N

o

NS

(54)

The derivative in (54) is to be evaluated while N is
fixed. Thus the curves for the heat capacity consist of
a constant part nk/2 plus a part which is just the slope
of a curve from Figures 7, 8, or 9. Figure 10 shows the
results of computer calculations for the 5 particle system
for the heat capacity starting at N = 12 through N = 15,
For N = 12 we see the presence of two peaks. As N
increases to 13 the second peak grows while the first
changes little. By N=1y only one peak remains. Fer all
values of N larger than N = 14 there is the one major peak
in the neighborh@od of 3 to 4 degrees. Again, we note
that CV differs significantly from n/2 = 2.5 for T in
the interval 2°§ T g 10°to N = 24. The behavior after
N = 14 changes little except that the maximum of the peak
seems to occur at lower temperatures as N increases.
Figure 14 where we plot pressure versus number of
cells we observe the first truly anomalous behavior in
the system. Everything seems all right for N < 15; however,
we find that at N = 15 the curve for T = 1° dips below
the 0 axis yielding the unusual and highly suspect
negative value. There is another anomaly perhaps for N <

15 the pressure for T = 1° is greater than for T = 2°

3° values. The

which in turn is larger than the T
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negative pressure values may not be so hard to accept if
one realizes that in one dimension the pressure is just

a force, really the average tension or compression force

telling us how much force is required to hold the volume

- .

at a particular value. The fact that there are negative
! : .
values simply means that the system would "prefexr"

£o occupy a smaller volume than the onebit is currently
-in. From the nature of the curves this pfeferred volume -
seems to be N = 15, For N < 15 the pres;uré is posiﬁive
whiié for N = 15 and a few larger volumes it is negative.
Eqr N in the neighborhood of 19 or 20 the pressure is

again positive and decreasing. We shall see later that

~

these results are entirely reasonable. Figure 15 shows

more pressure-volume curves for higher temperatures. The

results are approaching the more customary pressure-volume

curves one is familiar with. Figure 16 shows curves for

P N

still highef temperatures'whiéh now 160k much more familiar
to us. |

Figures 17 through 27 show the same sort of results
computed for a 6 particle system for the same Lennard-
Jones potential as used previousiy. Again note the
anomalous pressure-volume curves and the excellent correla-

tion at T = 1° for N > 18 = 3:6. Note that peaks again
occur at separations of 3, 6, 9, and 12, etc. This

behavior also shows up in results for a 7 particle system

shown in Figure 28 which shows how order emerges out of
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chaos as N varies from N = 16 to N = 73 = 2l1. Again, when
N = 3-n we have nearly perfect correlation at separations
of 3, 6, and 9 cells showing how well-ordered our system
is.

Let us look briefly at another Lennard-Jones
potential V(x) = lOO[x_12 - x—6]. The heat capacity curves
are plotted for various sized systems from N = 7 to N = 15
in Figures 29 and 30. For N = 7 the curve peaks slightly
and as N increases to 10 the height of the peak increases
with N. It is at maximum height for N = 10. For larger
N it is somewhat lower. The peak value occurs for
temperatures less than 1° indicating that the interaction
is not as strong.

Figure 31 shows a set of graphs of correlation

function versus separation for a system of 5 particles

interacting through the potential

o ; X<2
V(X).——- 64(_2{)6

This potential is different from the straight Lennard-Jones
in that it has no soft repulsive part; It is attractive
all the way into the hard core wﬁichihas a diameter of

2 cells indicating e = 2. Thus the strongest attractive
interaction occurs at the minimum possible separation

2 cells. We would expect to find much correlation at a
separation of 2 cells and perfect anticorrelation for a

separation of 1. Figure 31 reveals that this is just the
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way the system behaves. There are peaks at 2, 4, 6, etc.
The ideal volume of this sytem is one in which every
other cell is occupied. Since n = 5 this would be a 10
celled system. Figures 32 and 33 reveal more plots.
Notice that the plots for N = 17, 18, 19, 20, 21, and 22
are all exactly alike differing only in height. This
indicates that the controlling configuration is.stable
enough to be unaffected by increased volume. On the basis
of our earlier results, we would expect the system to
tend to its most preferred configuration, namely the close-
packed N = 10 volume. Hence we should expect negétive
values of pressure in tﬁe neighborhood of N = 10. This
is indeed the case as Figure 34 shows. |

Finally, one would like to know how the correlation
function for a completely random system would appear.
Figures 35, 36 and 37 show the correlating function for a
non-interacting system of particles with a hard core
diameter of 2 cells. Note that the curves are not
completely flat but reveal the local fluctuations one
expects to f£ind in such plots. Since e =2 cor(l) = O.
Then cor(2) will be max. because there is more system
available than in therther cases. However, cor(3) <
cor(4) because having a pair of particles 3 cells apart
blocks out 5 cells from océupancy because there is only
1 empty cell between them. A pair of particles 4 cells
apart only block out 4 cells since there are two free cells

in between so that a third particle can just fit. There

-
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would be more configurations for a sepération of 4 than
for a separation of 3. 1In Tross' work no such local
maxima were observed. This was because he assumed e = 1.
Thus allowing only separations of an integral number of
particle diameters, hence eliminating separations which
are not the most favorable.

From a study of Figures 35, 36, and 37 it is clear
that the behavior we have seen previously is totally
different, that the correlation is not that of a random

system but of an ordered one.

B. Grand Canonical Ensemble

We now proceed to examine the computer results for
the grand ensemble calculations. Again we allow for the
most widely variant situations we can. We can vary the
number of cells,‘the particle diameter, the potential,
and the température arbitrarily. Oﬁly time limitations
prevent us from examining systems of arbitrarily large
size. We start these presentations with a set of curves
for a 12 celled system with the interaction vix) = —64/x6
with e = 1. These calculations were made by Tross and
presented in his papers in the Journal of Mathematical Physicsﬁ
See Figures 15 and 18 of that work. These compare with
AFigures 38 and 39 respectively. It is heartening to note
that they are identical except that he has plotted BP2
instead of P against the density. We have set £ = 1 and

k = 1 in this study and hence B = 1/T.so that the values of

.
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P in Figure 38 should be divided by the temperature to
compare with Figure 18 of the paper. The agreement between
these two calculations performed in somewhat different
ways reinforces ones trust that both methods are valid.
Of course, as we have shown, the two methods are closely
related. Figure 38 contains a plot of the heat capacity
per cell versus the temperature. We have divided tﬂé
heat capacity by the number of cells for comparison
purposes and we shall continue this in the grand ensemble
calculations. The comparison of this»curve with the curve
in the above-mentioned paper for g = é4k reveals the
identity of the results. Figure 38 also contaihs plots
of the various components of the correlation against the
temperature. Notice that the heat capacity per cell is
largest when the various components are changing most
rapidly.
Next we look at results obtained using a potential

interaction V(x) = =-328(x - 2) with a hard core diameter
e = 1. Figure 40 shows a plot of heat capacity per cell
versus temperature. Note tﬁe peak and that it occurs in
the same interval where the correlation values also
plotted in Figure 40 are changiné most rapidly. Figure 41
shows the pressure plotted as a function of density for the
same system for several temperatures. No unusual behavior
is observed here.

Figure 42 shows a plot of the heat capacity per cell

and plots of the correlation function for a system of

~
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16 cells, the largest volume considered for e = 1. The
interaction potential used for this calculation was

V(x) = 100[x-12 - x_6]. As was the case for the canonical
system which employed this potential, the heat capacity
curve peaks below 1° and reduces to its ideal gas limit
rather quickly thereafter. Note the behavior of the
correlation function both here and in the previous case.
For even separatiohs, it starts at the maximum value 2 and
relaxes quickly to 1 while at odd values of the separation
the correlation value starts and stays at 1. This
similarity may suggest that other similarities exist
between the two systems. Figure 43 reveals nothing in

the way of unusual behavior of the pressure as the density
changes.

We next examine the results of the grand canonical

calculations for several systems for the potential V(x)

12 6

100[(%) - (%) ] which produced such unusual results in

the canonical ensemble. To prevent problems on the
computer we redefine V(l) so that V(l) = 10 a number which
is more manageable on the machine. We first take e = 1.

We recall the unusual behavior of the system around a
density of 1/3. Figure 44 is a plot of correlation function
versus separation for various densities in both ensembles.
For p = 1/4 the canonical ensemble results differ from the
grand ensemble in that the values from the former are

less than the corresponding ones of the grand ensemble.
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For p = 1/3 both ensembles yield the same results showing
as before perfect correlatioﬁ at separations of 3 cells,

6 cells. At p = 1/2 the two ensembles again differ with
the successive peaks of the canonical ensemble decreasing
in height while the grand ensemble peaks are all of equal
height. These results were obtained at a temperature of

1l degree. Figure 45 records the results of heat capacity
per cell versus temperature for the grand ensemble and
correlation function against temperature for both ensembles.
The behavior of correlation functions in both ensembles

is seen to be quite similar though not identical.

Figure 46 shows the correlation function versus temperature
for both ensembles again note the similar behavior. Now

we come to the most startling curve of all. Figure 47 shows
the pressure plotted against density for several values of
the temperature. Note the unusual behavior of the T = 1°
curve in the neighborhood of p = 1/3 and p = 2/3 the nearly
vertical portions of the P-p curve followed by the nearly
horizontal portions. This behavior persists through higher
temperatures but seems to disappear around T = 6°. After

T = 6° the curves show no unusual behavior. We now look

at a 15 cell system. We first see plots of the canonical
correlation function versus separation in Figure 48 for

the various numberé of particles fromn = 2 ton = 7. For
n = 2 we see only the peak at 3 cell separation. For

n = 3 we note a new peak at 6 which is just 1/2 as high as
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the one at 3 and 1/3 the height of the self-correlation
peak. ‘At n =4 the peak at 6 has grown to the same
height as the peak at 3 but not to the height of the self-
correlation peak. At n = 5 the magical density p = 1/3
all peaks are of equal height. Figure 49 has the plots
for n = 6 and n = 7. Notice the growing background
correlation since the system now has more particles than
it can comfortably hold.

Figure 50 shows plots of the various values of the
grand canonical correlation function against temperature
at the magical 1/3 density. Note that at low temperature
peaks occur at 3 and 6 with zero or small values in
between. As the temperature increases, note that all
valﬁes of the correlation function approach 1. Figure 51
plots the pressure against the density and as in the case
N = 12 the T = 1° curve is most unusual. Again the
anomalous behavior occurs in the neighborhood @7= 1/3 and
p= 2/3. Note that by the time T = 6° this anomalous
behavior disappears. The values of the pressure for a
given density for both systems (consider N= 12 and N = 15)
agree to within a few per cent showing how slowly the
pressure changes with volume as the density is held fixed.
Figure 52 considers the same potential but for a system
where e = 2 and N = 18 plotting the heat capacity per
cell versus temperature for g = 1/3. Note that as before
the major departure of the heat capacity per cell from

the ideal gas value occurs around T = 2° and returns near
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T = 10°. Since e = 2 the density cannot exceed 1/2 so
that the vertical portion formerly observed at p = 2/3
in the other cases for the P-g curves at T = 1° cannot
occur here. Figure 53 shows the behavior of P with changing
density for T = 1°, 2?, and 4°. We continue to observe
the anomalous behavior about p = 1/3 as in the cases where
e = 1. As expected, this behavior begins to disappear
as the temperature increases.
We have seen how the computer data turned out that

many unexpected results turned up, let us now attempt to

explain these results.
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CHAPTER V

ANALYSIS OF COMPUTER RESULTS

The results obtained in the calculations are quite
surprising at first meeting. The peculiar behavior of
the pressure-volume curves in the canonical ensemble or
pressure-density curves from the grand ensemble treat-
ment is one of the things for which an explanation is
required.

The number of configurations in the lattice partition
functions is finite for any finite number of lattice points
or cells. This means that there are a finite number of
energy levels. Thus we can order these levels starting
from the lowest state to the highest. Suppose there are
m different energy levels for a particular system. We
label these in increasing order so that

U, €U S U3 LU (146)

Suppose that the multiplicity of the level uy is 9q- that

of u, is gy etc. Then we have

m .
-1
Ch(N,B)= 2_9 e (147)

The gquantities 9i depend only on the geometry and boundary

conditions of the system and do not depend on the
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temperature. This means that all the temperature variation
of Cn(N,B) is in the exponential factor. If we multiply

each term in (146) by -B we obtain
_ﬁu‘>-fgu2>—ﬁu3>"-7‘/5um (146')

The exponential function is a monotonically increasing
function of its argument. Thus

_BU AU _ B Unm
€ > € Zre 7€ (148)

Therefore the exponential factor e_Bul dominates all others.
As B grows large (T+0) the Equation (147) reduces essentially

to

Co(n,g) = 3.6

(149)

(149) shows that in the low temperature region the single

level u, dictates the thermodynamic behavior. 1In this

1

area the average energy <u> is
- 9 —
Wy = - 3p [“/3 W+ /ngl] = W (150)

From this together with Equation (105) we see that the heat
capacity Cv is just the ideal gas value nk/2. As tempera-

ture increases the other levels begin to exert an influence
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which means that the value <u> will begin to increase from

u, - In the other extreme B+0 (T+<) we have
N
Ca(NB) = jz::l 91 (151)

1

The a <cu> = . . '
e average energy <u Cn N, B) u gJ and is the

1 5

.
o~z

limit to which the energy <u> approaches as temperature
goes to infinity. The behavior described here matches

the results observed in the various calculations presented
in the data. We can thus characterize the thermodynamic
behavior by breaking consideration into three regions.

The region in which (149) holds we shall call the low
temperature region. The region in which (151) holds we
call the high temperature or ideal gas region. The region
between these two extremes we shall call the intermediate
region and as is true for most intermediate situations it
is the most difficult to describe. The width of the
intermediate region will depend on the number of levels
and the spacings. Each region is characterized by different
properties. In the low temperature region the ordering

of the level u, is imposed on the system and it is this

1
order one sees in the correlation function. 1In the inter-
mediate region the system is undergoing rapid change in

the preferences for given levels. All levels now are active

and contributing. In the high temperature region the system

approaches asymptotically the 0 interaction gas of hard
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spheres. We can thus predict the behavior in both the low

temperature limit and the high temperature limit.

6
Let us first examine the potential V(x) = —64(%)

for particles of diameter 2 cells. This was examined in
the treatment of the canonical ensemble. This potential
has its minimum at the point of closest approach x= 2.
Since V(2) is the minimum value of the potential we should
expect the minimum level Uy to be the level in which V(2)
occurs most frequently. Since there are n particles the
largest any value of the Profile Pj can take on is n as

we have shown earlier. 1In order for P2 to be equal to

n every other cell must be occupied a situation which can
only happen if N = 2n. For all other value of N, P,
must be smaller or equal to n-1l. There is but one array
in which P, = n—-1l. That is the array in which the
particles are in contact. This corresponds to the
configuration

[to101010---1000-...0] (152)

and all translates of it. There are N translates of this
configuration, hence the multiplicity of the level is g, =
N. The energy of this level is found from the infinite

profile. The infinite profile of this configuration is

given by

S (153)
b = =) Bix =0
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Thus the energy uy; = I (n - §)[v(2j) + v(N - 29)]

-}

= Conp= Ne P Ve vivz )]

)F (154)

Let us compute the pressure from (154).

n-1
2 (n-] D AVIv-2 §)
IBP: ACn(ner,/g) ) N A c,ﬁj:’V\J)[V(ZJ + NZJ}

—

Cn(ne+r 8) N

- J=1

n-1 .
N + | € — |

From the result (155) it is clear that for large N
where AV(N - 23j) is quite small 8P = 1/N. When N is in
the neighborhood 7n AV(N - 2j) becomes significant. From
the nature of the potential the fact that it is always
attractive for x > 2 indicates that AV(N - 23) > 0, hence

for N near 2n (155) becomes

Y (156)
/SP..N /

(156) would imply that in the low temperature region »

in the region in which N = 2n, P = %5 -1 Refer to

5
Figure 33. Note the behavior of P. It matches exactly
the predictions of the preceeding arguments. The dotted

line in that figure is a plot of 1/NB. Figure 33 again
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shows that for N = 2n the pressure =T = 1/B8 and as the
volume (number of cells N) increases, the pressure approaches
the asymptotic value 1/N.

The correlation function for the above system will

be given by the profile which follows from (153). For
our case, where n = 5 and N = 13, for example, the profile
is

(o4o3ozomooo) + (000010203

v,
1

(157)

H

(04 0312213 040)

Examination of the correlation function Figure 30
shows that it follows the form of (157) quite well. As the
volume N changes, the profile P changes. The infinite
profile does not change with N but merely adds zeros in
the extra positions. The profile is the sum of the infinite
profile pj plus its mirror image so to speak pN—j' Let
pj* = pN-j' Thus as N increases the affect of pN—j on the
first few components of P ceases until at large N the two
are entirely separated so that the profile P is just the
infinite profile up to j = N/2 and then repeats since
Py = Py_y
and 32.

. This behavior can be noted in Figures 30, 31,

The plots of correlation function versus temperature

suggested a relationship between the correlation function

and the heat capacity. Such a relationship obviously
exists since we have shown that cor(k) = §7 <Pk>‘ The
n

energy u of a configuration is
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N-1| N-1 nN-d
U= 2 PV, so that (=¥ BV = Z (POV
J=1 J=1 J':)
nt &
(W) = N Z cor(l)\/j
J=i (158)
Now there are always (2) = % n(n-1) distinct pairs taking
part in the interactions to form an energy u. Thus we
have
N-1
—_ !
£ = zn(n-1) (159)
J=1
N-1 2 N-I
:>Z 'JD - nin-) = 1 Cord) 1
j::[ N Iz (160)
If the interparticle interaction Vj is a constant, then
u =n(n - 1) V and in fact <u> = n(n - 1) V. The cases of

interest, however, are not of the constant potential type.
One can easily show that the statistics of a system are
not affected by a shift in the position of the zero of the

energy. Thus if we let Vj' = Vj + V we have
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[l m .
Ch (N, )3) = Z 9J' e“B Ui _ £ g. e_/S(UJ'+ w(n-))\/}
J=1 ey J

i

i

The result in (161) shows that the

brought on by a change in the zero level

e—ﬁn(n-l)v m -BY;

2.9 ¢ (161)

J=i

e AV (N, 8)

change in C
n

is simply to

multiply the partition function by a constant. This is

not the case in the grand ensemble. However, one should

be careful what he reads out of grand ensemble results.

The energy V of course can be arbitrary.

e—Bn(n—l)V > 1 and lim

nro

be negative, then

If we write the grand ensemble partition

If we take V to
e—Bn(n—l)V

= oo

function QN(Z,B) =

N

z ZnQn (N,B). Suppose we now redefine the zero of the
n=0 N “
energy. Let V.' = Vj + V where V < 0. aN(zlﬁ ~ m:zo0

N - BN(N-DV

N n_~nn-i)Vv
= e e 2 2 e

Q, (N B).

The thermodynamic limit of the grand ensemble partition

function is taken as

. . y
lim 7‘\“ Indn = lim |n A"
N->0° N~>oo .
p:cothant p= constan

(162)
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The validity of the grand ensemble is doubtful if
this thermodynamic limit does not exist. We show above

that
)

_BN(N-NV CANE Y
P where @, (MAY= € =
(163)

2 > 2V NBe

Let us take the thermodynamic limit of (163).

A L AN
lim X > lim Z2RE = o (164)
N>oe T N>®

Now if V is negative the limit above is infinite
indicating that the whole process of redefining the zero
is dangerous in the grand ensemble. It is clear that some
condition must be imposed on the potential to prevent the
situation shown above from occurring. It seems likely

that one should require 1lim Vj = 0. Tross takes the
jree

potential V(x) = -z, a constant, and shows behavior
indicative of a phase transition is observed. Note, however,
if we redefine the energy as Vj' = Vj + £ = 0 we are back

to the Tonks gas in which no transition occurs. The
considerations above therefore cast doubts on the meaning

of the calculations performed. None of the interparticle
forces depends on the absolute value of the energy but only
on the slope. Thus the statistics cannot depend on the

location of the zero energy level. We should expect to see

exactly the same behavior for V(x) = 0 and V(x) = -z. That
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the grand ensemble does not bear this out is evidence of

its failure in one or the other case. We have shown that
the failure occurs for V(x) = -¢ because the thermodynamic
limit does not exist. Let us return to our consideration

of the correlation function.

2 N-l

- N .
Uy = N ; \/J cor(Jd) (158)

From our discussion of changing the zero level of potential

we see that if we change the energy Vj by V we have

(W= %z E

\.G'COr(j) - Nnin-1Yy (165)
J=

-

Suppose we redefine the zero of potential so that all
values V. are negative or zero. Suppose we define it in
such a way that the largest Vj is 0. With this definition
we can write that

Z N-I .

uhH =3 J;\/J.'coru') ~ ./':’J—Z(V,-')M;“COHJM;“) (166)
The last form shows that most of the internal energy is
determined by the minimum of V'(x). This shows why the
internal energy <u> and the correlation functions have
similar appearance. Since Vj < 0 for the potentials we

use we invert the shape of correlation curve for the

internal energy curve. Now the heat capacity is given by
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Cy = nk -+

aka - n ;
2 Wy = —=—/— + ~ V; 2 corli)

2T

so that the heat capacity is largest when the correlation
is changing the fastest with temperature. This is verified
by the computer results.

The considerations above are quite general, applying
to all types of potentials and all sized lattice systems.

6
We have considered the potential V(x) = 64(%) and have

seen that our gqualitative considerations yield excellent

values of the pressure and correlation functions, internal

energy and heat capacity. Let us now examine the potential
2 12 2 6
Vix) = lOO[(;) - (;) ], e = 2. The repeatedly occurring

nature of the value 3 or 1/3 in the results for this

potential can be explained by noting that the minimum of

6
V(x) occurs at x = 2/2. As far as the lattice structure
is concerned, the minimum of V(x) occurs at X = 3 since
V(2) = 0. Since the strongest interaction occurs at a

separation of 3 cells the lowest level Uy will be the one
in which the separation 3 occurs most often. As in the
considerations for the other potentials, we note that the
component P, of the profile is bounded by n-1 if N > 3n.
For N > 3n the analysis of the previous potential carries
over and we have that at N = 3n, P = + %E -5 This 1is

observed in the pressure-volume curves for n = 5 at N = 15.

In Figures 13 and 25 note that the minimum of the T = 1°
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curve occurs at N = 15 and 18 respectively and is -1
approximately in both cases. For n < 3N the correlation
function data is irregular although peaks begin to form
around k = 3, 6, etc. as n » 3N from below. When N = 3n
the peaks at 3, 6, etc. are unmistakable and indicate that

the strong preference for separations of 3 cells due to

the potential is strongest at N = 3n as should be expected.
Beyond N = 3n the correlation is that of the configuration
[100100100+++ 1000000 -+ 0] (167)

or its translates.

These considerations quite well explain the observed
behavior and indicate the generality of the gualitative
considerations. Let us now examine the results obtained
from the grand ensemble. The unusual pressure-density
curves can be explained simply by noting that the partition
function Cn(N,B) is not an increasing function but possesses
a maximum at n = N/3. This is again due to the potential.

For n < N/3 and in the low temperature region

n-1{ .
_BS (n-»[VI3)) +VIN-3))
CH(N,B>: Ne ﬁj:,(v‘J[ I

(168)

As n increases Cn(N,B) increases until n = N/3. At
this point the function Cn(N,B) achieves its maximum and
begins to decrease. Since CN/3(N,B) is greater than any

other values around it, this one term of the grand partition
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N N-lv N . eV
5”2‘% "3y 3
function CN/3 e’ 375 z £
dominates so that n = N/3 over a wide range of values of 2
and then rapid change until n = 2N/3 which is stable over

wide range of variation of Z. Thus we expect to see a
nearly vertical portion at p = 1/3 followed by a flat
portion, then another vertical part at 5 = 2/3. That this
actually occurs is shown by the results. When e = 2,

p < 1/2 so that we observe only one vertical portion of
our P-p curve at p = 1/3. Thus our discussion shows that
the results are gquite valid and in keeping with one's

intuitive reasoning.
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CHAPTER VI

CONCLUSION

From the theoretical work and the computer results
we can conclude the following:

The scarcity of results obtained for finite systems
is somewhat surprising in view of the ease of the
calculations and the remarkably realistic nature of the
results obtained here. The lattice system has been shown
to be a useful tool in the study of the behavior of finite
systems. It seems likely that a thorough understanding
of such systems will aid in the study of more complex
systems.

While it is true no phase transition can occur for
finite systems, it is also true that the low temperature
and high temperature behavior in the finite case are
quite different. The computer results confirm what our
theoretical arguments suggest, namely, that low temperature
behavior is characterized by ordered systems and the
thermodynamic behavior is characteristic of such ordered
systems while at high temperature the behavior is essen-
tially that of the Tonks gas of hard spheres of the same
diameter. Our theoretical arguments show that these
characteristics will obtain for any finite system. Thus

it would appear that the discontinuous changes which can
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occur in the thermodynamic limit occur continuously over
a finite temperature range in finite systems so that what
one regards as a phase transition in the thermodynamic
limit is spread over a finite interval in finite systems.

The treatment of small, one dimensional systems by
computer gives a special insight into the behavior of
such systems and suggests relationships such as the one
which was found relating the?mmerg§'<u> to the correlation

2 N-1- | ‘

function, i.e., <u> = 1 I cor(j) V.. This result

N =t
which we have proved for one-dimensional lattice systems
is reminiscent of forms one uses to evaluate the internal
energy in the continuum in three dimensional systems.
The treatment of the interparticle interaction V(x) as a
vector quantity with the components Vk = V(k2) has proved
to be a useful concept in suggesting relations such as
above. It also suggests that analogous procedures could
be of value in continuum systems adding new insights into
the physics of such systems.

We have indicated the dissimilarity between the
results of the canonical and grand canonical ensembles,
especially in the evaluation of the pressure. It is the
nature of the grand ensemble that it predicts thermodynamics
in agreement with the canonical ensemble results only in
the thermodynamic limit. Since the grand ensemble is

defined as a sum over canonical ensembles, it can have no

greater validity than any of the component ensembles. Thus



152

the predictions of the grand ensemble should not be viewed
as representing with any degree of accuracy the thermo-
dynamics of finite systems but should only be used to
study the approach to the thermodynamic limit. The
canonical ensemble yields answers more in keeping with
ones intuitive expectations and hence should be regarded
as the more fundamental. Certainly, if the canonical
ensemble predicts erroneous results, the grand ensemble

cannot be expected to do better.
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APPENDIX

COMPUTER PROGRAMS FOR FINITE SYSTEMS

The following two programs were used to make the computer
calculations reported in this work. The important quantities
were symbolized for the computer as follows:

CANONICAL ENSEMBLE STATISTICS

Variable Name of variéble in program
potential V(I)
temperature TEMP
number of particles NPRT
maximum number of cells NCLS
minimum number of free cells MIN
particle diameter LEX
profile ’ IRHO(ID
partition function CN
pressure PR
internal energy EI
heat capacity CvV
correlation function COR(I)

GRAND ENSEMBLE STATISTICS

Variable Name of variable in program
potential V(I)
temperature TEMP

number of cells NCLS
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Variable Name of variable in program
particle diameter LEX

profile IRHO(I)

pressure P

density DEN

internal energy HN

heat capacity per cell SPH

correlation function COR(K)



10

190

11

12
13

14
15
16
17
18

185

19

184

20

STATISTICS OF MANY-PARTICLE SYSTEMS—-CANONICAL ENSEMARLE

NIMENSION V(5C), TA(S50), IRHO{S0D), T5(5G)
REAC (1, 10C) NPRT, NCLS, LFX, MT
REAC (1, 1C6) MIN, STEMP.FRCT
WRITE (3, 107) NPRT

DO 10 I=1y NCLS

N=2.0/1
VII)I=1CC 0¥ (Q*%k12-Q%*6)
CONTINUE

NEXC=NPRT%L FX

NFC=NCLS-NEXC

JMAX=NPRT-1

DO 80 LTEMP=1,MT
TEMP=STEMP+(LTEMP—~1)/FRCT
Sum=0,0

DO 9 I=1,JMAX
SUM=SUM+V ([T %LEX)
PCN=LEX*EXP(-SUMXNPRT/TEMP)
M1=0

DO 80 M=MIN, NFC

LVOL=M+NEXC

WRITE (3, 101) TEMP, LVOLs LEX
T1=0.0

T3=000

T4=0.0

MAX=(M+NEXC)/2

DO 19C I=1,MAX

T5{({1})=0.0

N=0

N=N+1

DN 12 J=N, JMAX

1A(J)=0

IS=C

DY 14 J=1, JMAX

IS=1S+1A(J)

TAINPRT)=M-1S

J=JMAX :
IFLTIA{JY-TA(NPRT))Y 174 17, 22
J=J-1

IF(J-1) 18, 1&y 16

U=0.0

DN 185 KyY=1, LVOL

IRHO(KY)=0

DO 20 JX=1, JMAX

JN=NPRT—-JX

DO 20 KX=1,JN

I1S=C

JK1=JX+KX-1

DO 19 NP=JX, JKI1

[S=IS+1A(NP)

[P=IS+KX*LEX

[IRHO{ IP)=IRHO(IPI+1
IRHO(LYVOL=-IP)I=IRHD(LVOL-IP)+]
U=U+VIP)+V(LVOL-IP)

157
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0=1.0
DD 21 1Jd=1, JMAX
21 Q=Q+IA(1J)/TA(NPRT)
W=EXP({-U/TEMP)/Q
T1=T1+W
T3=T3+Ux%xW
T4=T4+UxU%W
DO 187 KW=1, MAX
187 TSHSIKW)I=TS{KW)+IRHO(KW) %W
TALJMAX)=TA(JIMAX )+
TAINPRTI=TA(NPRT)-1
GO TO 15
22 1s=0
JKMAX=NPRT-3
DO 23 JK=1,JKMAX
23 IS=1S+TA(JK)
N=NPRT=-2
24 TAIN)=TA(N)+1
IF(2%¥TA(N)+IS-M) 11,11,25
25 N=N-1
IFIN-1) 27, 26,4 26
26 I1S=IS-TA(N)
GO 10O 24
27 CN=(M+NEXC)%T1
PR=TEMP*x (CN-PCN) /(PCN%(M=-M1))
PCN=CN
Ml=M
EI=T3/T14NPRTARTEMP /2,0
CV=NPRT/2.C+#(T4=-T3%T3/T1)/(T1*TEMPXTEMP)
WRITE (3, 1C4) CN, PRy EI, CV
DQ 189 tK=1, MAX
COR=TS(LK)*XLVOL/{NPRTEXNPRT*T1)
189 WRITE (3, 1C3) COR,LK
80 CONTINUE
STOP
100 FORMAT (416)
101 FORMAT (' THE TEMPERATURE IS', F6.2,' THE VOLUME 1S 'y T14,% AND TH
1E EXCLUSION LENGTH [S',14)
103 FORMAT (' CORRELATION FUNCTION = 'y Elb6.69 'SEPARATICN = 'v,14)
104 FORMAT (' PARTITION FUNCTION = ',El6.69" PRESSURE = ',E16.6,' INTE
1RNAL ENFRGY = ',FE16.64' SPECIFIC HEAT = ',E13,6)
106 FORMAT{I4, 2F6,2) :
107 FORMAT (' STATISTICS OF*', T4,' PARPTICLE SYSTEM,.')
END .
/DATA :
6 22 2 1C

/END



198

199

160

11

12
13

STATISTICS OF MANY-PARTICLE SYSTEMS-GRAMD ENSEMRBLF

DIMENSINON V(5C), 1A(50), C(50), RH1(50}),

1PDF(50,50), T3(50)y COR(50)
READ (1, 1CC) NCLS, MX, LEX
READ (1y 101) MIN, STEMP, FRCT
DO 9 I=LEX, NCLS

X=1,0/1

VII)=—64 .0 X%x%6

SyM=0,0

LOLTA=1/LEX
NAX=NCLS/(LEX+LDLTA)
NM1=NCLS-LEX

NM2=NCLS-2%LEX

MAX=NCLS/2

NLNS=MAX/4

IREM=MAX—4%NLNS
[REM1=4%NLNS+1

DO 10 I=LEX, NM1l, LEX
SUM=SUM+VI(I)

DO 9C LTEMP=MIN, MX
TEMP=STEMP+(LTEMP~-1)/FRCT
SMT=SUMXLDLTA/TEMP
C(1)=NCLS*EXP{SMT)
RH1({1)=.5
RHL{NCLS)=NCLS*{SMT+.5)

BH1 (NML1) = ,SXNM1+NM2%SMT
BH2(1)=.75

BH2(50), IRHO(5C ),

BH2 (NCLS )= 25% (NCLS*%¥242%NCL S) +SMTENCLS*%24 (NCLSRSMT)x%x2
BH2(NM1)=o25% (NML1%x%242%NML ) 4 NM2ZENM]L ESMT+ (NM2ASMT) %*2

WRITE (3,107)
WRITE(3, 102) TEMP, NCLS, LEX
WRITE (3,107)

DO 8C NPRT=2, NAX
M=NCLS-NPRT*xLEX

IF(M) 198, 198, 199
T=EXP(-NPRT*SUM/TEMP)
T1=NPRT*SUM*T
T2=NPRT®SUM*T ]

DO 5 KW=1,MAX
T3(KWI=(KW/LEX—(KW—1)/LEX)*NPRT*T
GO 70 81

T=0.0

T1=O-0

T2=0.C

DN 160 KY=1, MAX
T3(KY)1=0.0

NSR=NPRT+1

TA(NSR)=M

IA(l)=M

N=1

N=N+1

DO 12 J=Ny NPRT
IA{J)=0

J=NPRT
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~

185

19
184

20

21

187

22
23

24

81

188

IFCIACII-TAINSRY) 17, 17, 22
J=J-1

[F(J-2) 18, 14, 14
U'=0.0

D 185 KY=1,NCLS
IRHO(KY)=0

NO 20 JX=2y NPRT
JN= NSR-JX

DO 20 KX=1, JN

1s=0

JK1=JX+KX-1

PO 19 NP=JX, JK1
1S=IS+I1A(NP)
IP=1S+KX*LEX
IRHO(IP)=IRHO(IP)+1

IRHO(NCLS-IP)=IRHO(NCLS~-IP)+1

U=sU+VIIP)I+VINCLS-IP)
N=1.0

DO 21 IJ=2, NPRT
Q=Q+TA(1J)/TA(NSR)
W=EXP(-U/TEMP)/Q

T=T+W

Tl=T1+U%W

T2=T2+U*U%xW

DN 187 KW=1, MAX
T3(KWI=T3(KW)+IRHO(KW) %W
TA(NPRT)=TA(NPRT)+1
TA(NSR)=TA(NSR)-1

GO TO 13
IA(NSRI=TA(NSR)+TA(NPRT)
N=NPRT-1

TA(NI=TA(N)+1
TA(NSR)=TA(NSR)-1
IF(TIA(N)-TA{NSR))Y 11, 11, 24
TAINSR)=TAINSR)+TA(N)
N=N—-1

I=(N-2) 81, 23, 23
CINPRT)I=NCLS*T

BUK=T1/T

NT1=NCLS-NPRT
NT2=NT1-NPRT
BUUNK=NT2*SUM+RUK
RY2K=T2/7

RU2NK= (NT25SUM) %2+ 2(NT 2% SUMXRLK+BU2K

AH1 (NPRT )=,.5%NPRT+RUYK/TEMP
BHI(NT1)=.S*¥NT1+RUNK/TEMP

BH2 (NPRT )=, 25%(NPRT**242%NPRT) +NPRT*AUK/TEMP+BUY2K/ TEMP %2
BH2INT1) =28 (NT1¥%242%xNT1)+NT I*BUNK/TEMP+BU2NK/TFEMPx*2
WRITE (3, 1G3) NPRT, C(NPRT)

EXBN=EXP (NPRT=%=S5MT)
NO 188 KM=1,MAX

COR(KM)=T3(KM)IENCLS/ (TANPRT*NPRT)

PDF (NPRT, KM)=T3(KM)=*EXBN
DN 200 LINE=1,NLNS
L4=4%*L INE

160



200

201
2G2
20

190

82

191

83

192
89

193

161

L3=L4-1

L2=L4-2

Ll=L4-3

WRITE (3, 105) NPRT,L1,COR(L1),L2,COR(L2),L3,COR(L2),LA+CORILSG)
[F(IREM) 80, 80, 201

DO 262 I=IREM1, MAX

WRITE (3, 105) NPRT, I, COR(I)

CINPRT)=C(NPRT)*FXBN

WRITE (3,107)

PO 90 J=1, 30

ZED=J4/5.0

ZEDN=ZED*%NCLS*LOLTA

JEDN1=ZEC*%*NM1%LDLTA

GPF=1.0+ZEDN+C{1)%(ZED+7ZEDN1)
GPFN=NCLS*ZENN+C(1 )% (NML*ZEDN1+ZED)
GPFN2=NCLS*NCLS*ZEDN+C (1 )% (NML*NM1*ZENNL+ZED)
GPF1=ZEDN®BHL (NCLS)+C{1)%(RH1( 1)*ZED+BHL(NML)*ZCDNL)
GPF2=2EDN%BH2 (NCLS)+C(1)*(BH2( 1)*ZED+RH2(NM1)*7EDNL)
GPF3=ZEDN*NCLS%BHL (NCLS)+C(1)%(BHL{1)*ZED+RHI(NM1)=NM1%7FDNL)
DO 190 LK=1, MAX
COR{LK)=ZEDN+(1.0-2.0/NCLSI*C( 1) *ZEDN1

DO 89 K=2, NAX

ZEDK=7ED**K

IFINCLS*LDLTA-2%K) 82, 82, 83

GPF=GPF+CI(K)*ZEDK

GPFN=GPFN+K*C (K)*7 EDK

GPFN2=GPFN24K*K*C(K)*ZEDK

GPF1=GPF 1+8H1{K)*C (K)*ZEDK

GPF2= GPF24RH2(K)%®C(K)*ZEDK
GPF2=GPF34RH1 (K)&K*C (K )*ZEDK

DO 191 LK=1, MAX

COR(LK)=COR(LK)+PDF(K,LK)*ZEDK

GO TQ 89

ZEDNK=ZED%% {NCLS—K )

GPF=GPF+C (K )* (7ENK +ZEDNK )
GPEN=GPFN4C (K)* (K7 ECK+(NCLS—K )%7ENNK)
GPFN2=GPFN24C (K)* (K#*K*ZEDK+(NCLS—K)* (NCLS—K)*7ZEDNK)
GPF1=GPF1+C(K)*(BHL(K)*ZEDK+BH1(NCLS-X} *7ENNK)
GPFE2=GPF24C (K )& (ZENK*BH2 (K ) +ZEDNK®RBH2 (NCI.S=K) )
GPF3=GPF34C(K)I*{BHLIK)*ZEDK=K+AHL(NCLS-K)*(NCLS—K) *ZENNK)
DO 192 LK=1, MAX
COR(LK)=COR(LK)+PDF(K,LK)*(ZFDK+7ZEDNK)I +(1.C=2.C*K/NCLS) %C (K) %7 EDNK
CONTINUE

BARN=GPFN/GPF

VARN=GPFN2/GPF-BARN% %2

P=TEMPXALOG(GPF)/NCLS

DEN=BARN/NCLS

HN=GPF 1/ GPF

SPH=GPF 2/ CPF—HN##*?
SPH=SPH-(GPF3/GPF-RARNKHN ) %% 2/ VARN

S PH=SPH/NCLS

HN=HN*TEMP

NN 193 LK=1, MAX

COR(LK)=COR(LK)/(GPF*DEN%DEN)
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D3 204 LINE=1, NLNS
La=4%L INE
L3=L4~1
L2=L4-2
L1=14-3

204 WRITE (2, 106) L1,COR(L1),1L2,CCR{L2),L3,COR(L3),L4,CCR{L4)
IF(IREM) 9G, SO, 205

205 DO 2C6 I=IREM1, MAX

206 WRITE (3, 106) I, COR(I)

9C WRITE (3, 1C4) P, DEN, HN, SPH

1G0 FORMAT (316)

101 FORMAT ( [6, 2F6.2)

102 FORMAT(* THE TEMPERATURE [IS%,Fé.2,' THE VOLUME IS*,14,' AND THE EX
1CLUSTON LENGTH IS',14)

103 FORMAT (* C( 'y, 16, * ) = ', E16.6)

104 FORMAT(' ORESSURE = ', El6.6,' DENSITY = *,E16.6,' INTERNAL ENFRGY
1 = v, E16.6, ' SPECIFIC HEAT = %, E16.6)

1C5 FORMAT (' NPRT = *,13, 4(* COR("*yI3,"! ) = 'y El64.6))
106 FCRMAT (4(' CORI(*,13," ) = 'y E1l6.6))
107 FCRMAT("® ')
STOP
END
/DATA
13 5 1

1 6.CC C.50C
/END
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