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Abstract 
Bioactive glasses have been developed for medical applications in the body for bone 
and tissue repair and regeneration. We have developed a borate-containing bioactive 
glass (13-93B3, referred to as B3), which is undergoing clinical trials to assess its 
wound-healing properties. To complement the healing properties of B3, metal ion 
dopants have been added to enhance its antimicrobial properties. Bioactive glasses 
doped with silver, gallium or iodine ions were found to have broad spectrum antimi-
crobial effects on clinically relevant bacteria including MRSA. While the B3 glass 
alone was sufficient to produce antibacterial effects on select bacteria, adding do-
pants enhanced the broad-spectrum antibacterial properties: Live-Dead staining flu-
orescence microscopy suggests cell membrane integrity is disrupted in gram positive 
bacteria exposed to the glass compounds, but not gram negative bacteria, indicating 
multiple mechanisms of action for each glass formulation. 
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1. Introduction 

Hospital-acquired infection, also known as nosocomial infection, is a major health care 
problem that results in longer hospital stays, an increase in the cost of healthcare, and 
health risks in patients. Common sites for nosocomial infections include medical im-
plants [1] [2] wounds, the urinary tract and the respiratory tract [2]. 

The presence of infection is not only a problem at the site of the medical implant, but 
in the surrounding structures and tissues. Chronic bone infections like osteomyelitis 
can result from infection in surrounding soft tissue [3], adding more complications to 
infections acquired after surgery or the implantation of a medical device. Because of 
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their biocompatibility, bioactive glasses show promise as materials that can be used for 
medical implants and may reduce the risk of infection.  

Bioactive glass can be defined as a glass-ceramic material that is both biocompatible 
and surface reactive. This class of biomaterials was originally developed to address the 
problem of rejection associated with metal or plastic surgical implants [4]. In addition, 
bioactive glasses have been developed for bone and tissue repair, dental and maxillofa-
cial repair [5], and soft tissue repair [1] and have also been used as drug delivery ve-
hicles for bone disease and infection [3] [6] [7].  

Recently, bioactive glass research has undergone rapid growth, with the number of 
papers published in the field doubling between the years 2000 and 2011 [8]. The use of 
borate-based bioactive glasses as an alternative to silicate-based bioactive glasses has 
also been an emerging trend in the field of biomaterials. Since borate bioactive glasses 
do not yet have the well-established history of silicate bioactive glasses, there is still lit-
tle known about their benefits and mechanisms in biological applications [7].  

One benefit of borate bioactive glasses is that their reaction rate can easily be altered 
by the boron content of the glass [3]. Easily changing the reaction rate of the glass is 
beneficial, as this allows for the surface-reactivity of the glass to be tailored to its specif-
ic use on a case-by-case basis. In addition, borate glasses have been shown to have 
added biological effects. For instance, borate-based bioactive glasses have been shown 
to promote cell proliferation, cell differentiation [8], and promote wound healing [9]. 
Borate alone has also been shown to have antimicrobial properties, and has actually 
been used as an ancient remedy to soothe skin infections and wounds [10]. While the 
antimicrobial capabilities of borate-based biomaterials are not well documented, borate 
chemistry in solution has been studied, and potential mechanisms include energy dep-
letion by binding NAD and NADH [11] [12], and initiating DNA damage by binding to 
ribose groups [11]-[13]. 

Glass 13-93B3 (B3), a novel bioactive borate glass, is currently undergoing clinical 
trials for its wound healing abilities [9]. While little is known about the exact mechan-
ism by which the glass stimulates wound healing, this property of B3 makes it a prom-
ising borate-based bioactive glass to be used in clinical applications. The addition of 
metal ions to B3 enhances wound healing, angiogenesis and nerve cell growth. 

In addition to modifying their reactive properties, modifying bioactive glasses with 
metal ions can also make the glasses antimicrobial. Silver has long been known to have 
antimicrobial properties, and has been incorporated into various materials to inhibit 
bacterial growth. Silver ions are typically incorporated into the bioactive glass as silver 
oxide (Ag2O) which leaches out of the glass to inhibit microbial growth. Because bioac-
tive glass is porous [13] and can have its reaction rate adjusted by changes to its com-
position [4], incorporation of silver ions into a bioactive glass allows for a slow, con-
trolled delivery of the ions over an extended period of time..  

Bellantone and colleagues showed that a silver oxide-doped silicate glass showed 
bactericidal activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas 
aeruginosa over a 20 hour incubation period. Their study also showed that levels of free 
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silver in solution decreased over time, meaning that the bacteria were taking up the sil-
ver ions before dying [14]. These findings suggest that the silver ions have bactericidal 
effects by interacting with intracellular components of the bacteria, rather than interac-
tion with the cell wall or outer membranes of the cells. In addition, it was noted that 
reactivity of bioactive glasses in water results in a slight increase in pH yet the increase 
in pH alone is not sufficient to kill the bacteria in solution [14]. 

Other studies have also shown antimicrobial activity of silver-doped bioactive glasses 
against various bacteria. Overall, the presence of silver ions in bioactive glass has bacte-
ricidal properties against E. coli [14]-[17], Bacillus anthracis [15], Pseudomonas pyo-
cyanea [15], P. aeruginosa [13] [16], Candida albicans [16], Salmonella sp. [15], Strep-
tococcus sp. [15], and S. aureus [13] [16] [18]. Silver ions in solution have also shown 
antimicrobial efficacy against P. aeruginosa, S. aureus, and C. albicans when in combi-
nation with natural products [19]. Additionally, silver nanoparticles have been incor-
porated into polymers and have also shown antimicrobial effects [17] [20] [21]. These 
previous studies show that silver is a reliable antimicrobial component of silicate based 
bioactive glasses, and is likely to have bactericidal capabilities if integrated into a novel 
bioactive glass such as B3. 

Since silver-doped silicate bioactive glasses are well-studied, there are various pro-
posed mechanisms for how silver inhibits bacterial growth and gives bioactive glass 
bactericidal capabilities. Such proposed mechanisms include complexing with thiol [1], 
sulfydryl, amino, or hydroxyl functional groups [13], competing with copper ions as a 
cofactor in transport or enzymatic reactions [13], general toxicity [13] [22], disruption 
of aliphatic carbon-hydrogen bonds by insertion of carbenes [23], DNA damage by 
arene-purine hydrophobic interactions [23], direct binding to DNA [1], increased per-
meability and disruption of cell membranes [1], and inhibition of respiratory [1] or 
signaling [21] enzymes. 

While the addition of silver is a historically reliable means of introducing bactericidal 
capabilities to silicate based bioactive glass, the use of other ions is gaining popularity 
[24]. Valappil and colleagues showed a decrease in P. aeruginosa viability after expo-
sure to a gallium-doped bioactive glass, as well as a reduction of biofilm growth [25] 
[26]. Doping bioactive glass with other ions, such as yttrium, selenium, and iodine also 
show potential for antimicrobial activity [21] [24]. Gallium doped sol-gel phosphate- 
based glasses have also shown promising antimicrobial activity against S. aureus and 
Streptococcus mutans [27] and phosphate based glasses doped with both silver and gal-
lium have been shown to be effective against P. aeruginosa biofilm formation [25]. 
Further studies have revealed that antimicrobial effects of gallium are likely intracellu-
lar and involve disruption of bacterial iron uptake [27] [28]. 

From these findings, it is clear that the presence of borate as well as various ions, in-
cluding gallium and iodine, may enhance the bactericidal activity of borate bioactive 
glasses. The broad-spectrum antimicrobial activity of the borate bioactive glass, B3, 
doped with silver, gallium, and iodine as well as B3 alone was tested against a variety of 
clinically relevant pathogens. In addition, the mechanism of action by which the bioac-
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tive glasses worked against both gram-negative and gram-positive bacteria was further 
studied by Live-Dead fluorescence microscopy. 

2. Methods 

Bacterial Strains 
All bacterial strains used in the following experiments are described in Table 1. 
Glass Composition 
Bioactive glasses were prepared in the Missouri S & T Department of Materials 

Science and ground to a particle size of less than 45 micrometers. The composition of 
each glass used is given in Table 2. 

Well Diffusion Assay 
100 ul of overnight broth culture grown in Trypticase Soy Broth (TSB) (Difco Labs, 

Detroit, MI) was plated in triplicate on Trypicase Soy Agar (TSA) (Difco Labs, Detroit,  
 
Table 1. Bacterial isolates used in experiments. 

Organism Clinical Relevance Source* 

Gram-negative  
organisms   

Enterobacter cloacae Abdominal infections, abscesses, urinary tract infections Difco (23355) 

Escherichia coli Enteric disease, urinary tract infections ATCC (25922) 

Klebsiella  
pneumoniae 

Urinary tract infections, pneumonia Difco (13883) 

Moraxella catarrhalis Respiratory tract infections, meningitis Carolina (154928) 

Proteus mirabilis Urinary tract infections Carolina (155239) 

Proteus vulgaris Wound infections, urinary tract infections Carolina (155240) 

Pseudomonas  
aeruginosa 

Wound infections, burn infections,  
pneumonia, urinary tract infections 

Difco (27853) 

Serratia marcescens 
Respiratory tract infections,  

urinary tract infections, conjunctivitis 
Difco (8100) 

Shigella flexneri Enteric disease, abdominal infections ATCC (12022) 

Shigella sonnei Enteric disease, abdominal infections ATCC (25931) 

Vibrio natriegens Vibrio species, simulant for Vibrio cholera ATCC 14048 

Gram-positive  
organisms   

Enterococcus faecalis Urinary tract infections, subacute endocarditis Carolina (155600) 

Staphyloccus aureus 
(MRSA) 

Skin infections, wound infections, abscesses,  
surgical infections, osteomyelitis, enteric disease 

ATCC (BAA-44) 

Staphylococcus  
epidermidis 

Chronic skin infections, bacterial endocarditis  
from ventriculo-atrio shunts/implants 

Difco (12228) 

Staphylococcus  
epidermidis 

Biofilm forming clinical isolate from medical implant ATCC (35984) 

*ATCC (American Type Culture Collection) (ATCC number); Carolina (Carolina Biological Supply) (Carolina Bio-
logical Supply item number); Difco (Difco Bactrol Disks, Difco Laboratories) (ATCC number). 
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Table 2. Compositions of bioactive glasses used. 

 
Percent Weight 

Component B3 B3-Ag B3-Ga B3-I 

B2O3 53% 52% 52% 53% 

CaO 20% 20% 20% 20% 

K2O 12% 12% 12% 10% 

Na2O 6% 6% 6% 6% 

MgO 5% 5% 5% 5% 

P2O5 4% 4% 4% 4% 

Ag2O - 1% - - 

Ga2O3 - - 1% - 

I - - - 2% 

Compositions of bioactive glasses used. 

 
MI) plates to make wells in each plate, a sterile, plastic tube was dipped into 70% etha-
nol for 10 seconds, allowed to air dry, and then plunged into the TSA plate and re-
moved. The plug of TSA was then discarded. To the well, 20 µl of molten agar was 
added and allowed to cool to seal the bottom of each well.  

Glass suspensions were prepared by suspending 100 mg of glass powder in 500 mL 
sterile saline solution. 50 µl of glass solution (10 mg glass) was added to each well. The 
plates were incubated at 37˚C for 24 hours. After incubation, the distance between the 
edge of the well to the beginning of bacterial growth on the plate was measured to de-
termine the zone of inhibition. 

A 2-way ANOVA of the sensitivity data comparing the size of the zone of inhibition 
of each glass formula to control for each bacterial species was performed to determine 
differences in sensitivity of different bacteria to the four glass formulas. 

Live-Dead Staining Assay 
Samples were prepared in accordance with the Bio-Rad Live-Dead staining kit. 50ul 

of glass solution (prepared as described above) was added to 1 ml of overnight broth 
culture, and the mixture was centrifuged at 1100 rpm for 10 minutes. After removal of 
the supernatant, the pellet was re-suspended in 500 ul of staining buffer (including 
PropodiumIodided and Live-DyeTM) and incubated at 37˚C for 15 minutes. After incu-
bation, a slide was prepared by spotting 5ul of the solution on a glass microscope slide 
and covered with a glass coverslip. The slide was then viewed using the Olympus IX51 
inverted microscope at 4000× using Fluorescein Isothiocyanate (FITC), Texas Red 
(TxRed), and Differential Interference Contrast (DIC) filters. Channel images were 
captured with a Hamamatsu digital camera, and the number of live cells was deter-
mined by counting the number of green cells, which were viewed through the FITC 
channel. The number of dead cells was determined as the number of red cells, which 
were viewed in the TxRed channel. The total number of cells was the sum of live and 
dead cells for the given field, and percent viability was determined as the percentage of 
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live cells over the total number of cells. Changes in viability compared to controls were 
analyzed using a one-way ANOVA with α = 0.05. 

3. Results 

Based on the well diffusion assay, gram positive and gram negative bacteria showed 
sensitivity to each glass, however, the glasses appeared to have a greater antimicrobial 
effect on gram positive species. The borate in the B3 glass alone was sufficient to inhibit 
growth for E. coli, Shigella sonnei, Vibrio natriegens, Staphylococcus epidermidis 
12,228, Serratia marscesens, and methicillin resistant S. aureus (MRSA), as the zone of 
inhibition was significantly greater than the B3 glass control composition (Figure 1). 
Addition of ions to the B3 glass had varied effects on antimicrobial activity. Growth of 
Moraxella catarrhalis was inhibited significantly only with the Iodine-containing glass 
formulation (Figure 1). The addition of iodine to the B3 glass formulation improved or 
maintained the antimicrobial properties of B3 against MRSA, S. marscesens, S. epider-
midis, and E. coli (Figure 1). However, Iodine addition decreased the antimicrobial 
properties of B3 against V. natriegens and S. sonnei (Figure 1). The addition of silver to 
B3 drastically improved antimicrobial activity against S. epidermidis 12,228 but was 
actually the least effective glass formulation against MRSA. 

Live-Dead staining fluorescence cicroscopy was used to further evaluate the potential 
mechanism of action of each glass formulation against gram negative and gram positive 
bacteria.  This method uses differential dyes in order to differentiate cells with intact 
cell membranes (live) from cells with disrupted cell membranes (dead). LiveDye selec-
tively binds intact membranes and fluoresces green under a FITC filter while PI inter-
calates intracellular DNA and is viewed as red through a TxRed filter. PI does not pass 
through intact cell membranes to bind DNA, so it will only be visible if the cell mem-
brane has been disrupted. 
 

 
Figure 1. Sensitivity of bacteria to borate glasses. *= p ≤ 0.05; **= p ≤ 0.01; ***= p ≤ 0.001; ****= p ≤ 
0.0001. 
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The viability of bacterial cells determined by Live-Dead staining appeared to decrease 
markedly for MRSA and S. epidermidis 12,228, but did not decrease significantly for E. 
coli with exposure to glass compositions. MRSA and S. epidermidis 12,228 treated with 
B3-Ga and B3-I had significant decreases in viability compared to controls after 
15-minute incubation (Figure 2 and Figure 3). After 24-hour incubation, MRSA viability 
significantly decreased with contact with the B3, B3-Ag, and B3-I glasses, but interesting-
ly, did not have a significant decrease in contact with the B3-Ga glass (Figure 2).  

Likewise, the percent viability of S. epidermidis also decreased after 24 hour incuba-
tion with each glass, most significantly with B3-Ga and B3-I. However only contact 
with B3, B3-Ag, and B3-Ga resulted in significant decreases in viability after a 15 
minute incubation period (Figure 3). 

Given that E. coli was most sensitive to B3 and B3-Ag in well-diffusion assays, only 
these two glasses were used in Live-Dead staining microscopy assays. The viability of E. 
coli based on the Live-Dead staining did not decrease significantly with any of these 
glass formulations after either a 15 minute or 24 hour incubation period (Figure 4).  
 

 
Figure 2. Live-dead staining of MRSA. *= p ≤ 0.05; **= p ≤ 0.01; ***= p ≤ 0.001; ****= p ≤ 0.0001. 
 

 
Figure 3. Live-dead staining of S. epidermidis 12,228. *= p ≤ 0.05; **= p ≤ 0.01; ***= p ≤ 0.001; ****= 
p ≤ 0.0001. 
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Figure 4. Live-dead staining of E. coli. *= p ≤ 0.05; **= p ≤ 0.01; ***= p ≤ 0.001; ****= p ≤ 0.0001. 

4. Discussions 

One of the most serious nosocomial pathogens plaguing hospitals today is Methicil-
lin-resistant Staphylococcus aureus (MRSA). MRSA infection has many risk factors, in-
cluding recent surgery or hospital stay, the presence of a medical implant, such as a ca-
theter and undergoing dialysis [2]. Recent surgery or the presence of a medical implant 
can be said to be the most significant risk factors, as the presence of a surgical implant 
decreases the minimum infectious dose of MRSA by 100,000 fold [3]. While there are 
numerous risk factors for MRSA infection, otherwise healthy individuals with no risk 
factors can also acquire MRSA infections, making MRSA not only a nosocomial patho-
gen, but also a community-associated pathogen [2].  

Other nosocomial pathogens besides MRSA are also relevant when considering re-
cent surgery or the presence of a medical implant as a risk factor. For instance, E. coli 
and P. aeruginosa have been found at surgical implant sites and have been implicated in 
infections after surgical procedures and urinary catheters [4]. The presence of biofilm- 
forming bacteria poses an increased risk of infection at implant sites, as these bacteria 
are usually more resistant to antibiotic treatment as well as host defenses [29] and gain 
protection from surrounding bacteria within the biofilm at the infection site [1]. Other 
risk factors that can predispose a patient to an implant-associated infection include old 
age and pre-existing health conditions, such as diabetes mellitus, rheumatoid arthritis, 
or HIV infection [30]. In addition to complications such as osteomyelitis, other factors 
contribute significantly to the seriousness of nosocomial infections. For instance, one 
study reported that MRSA infections were responsible for more deaths in the United 
States than AIDS [31] making prevention of nosocomial infections, especially MRSA, a 
critically important field of research. 

Overall, the glass formulations tested in the present work appeared to have a broad 
spectrum of antimicrobial activity, inhibiting growth of both gram negative and gram 
positive organisms. Borate (B2O3) alone in the B3 formulation was sufficient to inhibit 
growth of E. coli, S. sonnei, V. natriegens, S. epidermidis 12,228, S. marcescens, and 
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MRSA, while the addition of other ions to the B3 glass had varied effects on antimi-
crobial activity and specific sensitivities of bacteria (Figure 1). This suggests borate 
based bioactive glasses may have inherent antimicrobial activity, which could be consi-
dered an advantage to their use as an alternative to silicate based bioactive glasses. 
However, the addition of ions to the B3 glass resulted in lack of significant difference in 
growth inhibition compared to controls for S. sonnei, suggesting addition of these ions 
provided a protective factor for reducing the effect of B3 glass against this species. 
Conversely, the addition of ions showed increased antimicrobial activity of the B3 glass 
for most of the other susceptible species (Figure 1). Addition of silver ions was espe-
cially effective in increasing antimicrobial activity of B3 against E. coli and S. epidermi-
dis 12,228, while the addition of gallium ions reduced the antimicrobial activity against 
E. coli (Figure 1). M. catarrhalis, however, was sensitive only to the B3 glass that con-
tained iodine ions (Figure 1). This suggests that gallium and iodine are potential can-
didates for use in bioactive borate glasses in order to provide antimicrobial coverage to 
pathogens that are not sensitive to silver. 

MRSA was sensitive to all four glass formulations, but least sensitive to B3-Ag. Since 
silver has long been used as an antimicrobial agent, the resistance mechanisms em-
ployed by MRSA to resist multiple antibiotic drugs may also allow the bacteria to par-
tially resist the antimicrobial effects of B3-Ag glass (Figure 1). 

Differences in sensitivity based on glass formulation suggest varied mechanisms of 
action of each formulation and against different types of bacteria. To further evaluate 
cell membrane disruption as a potential mechanism of action, Live-Dead Staining Flu-
orescence microscopy was used to determine changes in viability after 15 minute and 
24 hour incubations with the different glass compositions. The Live-Dead staining al-
lowed for discrimination between cells with intact cell membranes and cells with cell 
membrane disruption that would lead to cell death. Viability determined by Live-Dead 
staining was decreased for the gram positive bacteria, including MRSA (Figure 2) and 
S. epidermidis 12,228 (Figure 3), after exposure to the glass formulations, but not for 
the gram-negative bacteria, E. coli (Figure 4). This data suggests that while E. coli is 
sensitive to most of the glass formulations as seen in the well-diffusion assay (Figure 1), 
its growth is not inhibited by the glass disrupting the cell membrane. Further, 
Live-Dead staining analysis of viability supported that the glass formulations exert an-
timicrobial activity on gram positive bacteria by a mechanism that disrupts cell mem-
brane integrity. Differences in the effect of each glass formulation on viability depend-
ing on incubation time also reveals subtle differences in glass kinetics and duration of 
action, allowing for a better understanding of how each glass formulation may behave 
in vivo.  

While each of the glass formulations were not effective against all of the bacteria 
tested, the group of the bacteria found to be sensitive to the glass represent a sizeable 
portion of clinically relevant pathogens capable of causing nosocomial infections. The 
primary clinical application of these materials is as glass fibers for wound repair. The 
use of glass ground to less than 45 micrometers was chosen to simulate the approximate 
diameter of these fibers and mimic the behavior of the class when it contacts bodily 
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fluids. Other potential uses of these borate-based glass formulations may be as coatings 
for medical devices commonly associated with nosocomial infections in order to pre-
vent infection by inhibition of bacterial growth. This can be accomplished by incorpo-
rating the 45 micrometer size particles into polymers and coatings to be applied to sur-
faces. The bioactive nature of these glass formulations also allows for their use as bone 
grafts and tissue repair, allowing for a dual-purpose of the glass to both bind to and 
react with bone while preventing or treating bone infections. The advantage of using 
these antibacterial materials will be to minimize the occurrence of infections associated 
with standard clinical procedures and reduce the need for antibiotics following proce-
dures. 

Further work to improve the efficacy of the glass formulations against clinically rele-
vant bacteria, as well as fungi, and to more clearly elucidate the mechanism of action 
for each formulation, is vital in guiding treatment decisions with clinical use of these 
materials. Additionally, a B3 formulation including silver, gallium, and iodine in one 
glass composition could be useful in making the materials have a wider spectrum of an-
timicrobial activity as well as potentially preventing future resistance to the glass for-
mulations. 
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