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STATE OF THE ART (SOA15} 
Dynamic Soil Pressures on Vertical Walls 

Anestis S. Veletsos 
Rice University 
Houston, TX, USA 

AdeiH.Younan 
Rice University 
Houston, TX. USA 

SYNOPSIS: A summary is presented of recently contributed simple approximate solutions for the dynamic pressures and the 

associated forces induced by ground shaking on rigid vertical walls. The walls are presumed to be either straight or circular in 

plan and to retain a uniform viscoelastic soil stratum of constant thickness and infinite extent in the horizontal direction. Both the 

walls and the stratum are considered to be supported on a non-deformable base undergoing a space-invariant, uniform horizontal 

motion. The effects of both harmonic and earthquake-induced excitations are examined, and comprehensive numerical data ate 

presented which elucidate the underlying response mechanisms and the effects and relative importance of the various parameters 

involved. A brief review is then included of available simple, approximate schemes for modeling the systems examined. Finally, 

the sources and magnitudes of the errors that may result from the use of these models are identified, and modifications are 

proposed with which the responses of the systems may be defined correctly. In the proposed modifications, the soil stratum is 

modeled by a series of elastically supported semiinfinite layers with distributed mass. The concepts involved are introduced for 

the straight wall and are then applied to the embedded cylindrical system. 

INTRODUCTION 

This paper examines the dynamic soil pressures and associ
ated forces induced by ground shaking on straight and cylin
drical vertical walls. The evaluation of these effects is 
fundamental to the seismic analysis and design of earth retain
ing systems and of embedded and underground structures. 

The problem considered has been the subject of numerous 
studies over the years, and a number of methods and computer 
programs of varying degrees of accuracy, efficiency and 
sophistication have been developed for its solution. Valuable 
accounts of the previous contributions on straight walls have 
been provided in state-of-the-art reports by Nazarian and 
Hadjian (1979), Prakash (1981) and Whitman (1991), and a 
broad overview of the contributions on embedded cylindrical 
structures may be gained from the papers in the proceedings 
of the workshop on the analysis and interpretation of the seis
mic response data obtained from the nuclear power plant test 
model in Lotung, Taiwan (1989) and from a subsequent report 
on the same topic by Hadjian et al (1991). 

The methods of analysis used for retaining walls may con
veniently be classified into three groups: (1) those in which 
the relative motions of the wall and the backfill material are 
sufficiently large to induce a limit or failure state in the soil; 

(2) those in which the ground motion is of sufficiently low 
intensity so that the retained material may be considered to 
respond within the linearly elastic range of deformations; and 
(3) the intermediate case, in which the true non-linear, hyster
etic properties of the soil are accounted for explicitly. Repre
sentative of the first approach is the well-known Mononobe
Okabe method (1929, 1924) and its various variants (Seed and 
Whitman 1970, Sherif et al 1982, 1984 ), and representative of 
the third approach is a recent contribution by Siller et al 
( 1991) dealing with the responses of gravity and anchored 
walls. The following discussion is in the vein of the second 
approach in that the soil is modeled as an elastic or viscoelas
tic material. 

Despite the value of the information contributed so far, 
however, the dynamic response of these soil-wall systems is 
still not well understood. There is, in particular, a lack not 
only of adequate numerical data that elucidate the underlying 
response mechanisms, but also of methods of analysis that are 
both rational and simple and may, therefore, be used reliably 
and cost-effectively in design. 

The objective of the studies summarized here has been 
twofold: (1) to use existing or suitable improvements of exist
ing methods to study critically the responses of classes of sys
tems for which relatively simple analytical solutions are 
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possible; and (2) to assess the reliability of the simpler avail
able methods which are particularly useful for preliminary 
design pwposes and, where necessary, to propose appropriate 
improvements. Both straight and cylindrical walls are exam
ined, with the soil meclium presumed to respond within the 
linearly elastic range of deformations. Simple, approximate 
expressions for the critical responses of the systems are for
mulated, and comprehensive numerical data are presented 
which ·elucidate the underlying response mechanisms and the 
effects and relative importances of the numerous parameters 
involved. 

The studies summarized here were carried out at Rice Uni
versity (Veletsos and Younan 1994a, 1994b, 1994c, 1995) and 
were motivated by the need for improved understanding of the 
response to earthquakes of underground cylindrical tanks stor
ing nuclear wastes, and for rational but simple methods of 
analysis and design for such systems. The analysis of these 
systems is highly complex, requiring consideration of the 
interaction effects not only between the oscillating liquid and 
the tank, but also between the tank and the concrete vault 
within which the tank may be encased, and between the tank
vault system and surrounding soil. 

SYSTEM CONSIDERED 

The system examined is shown in Fig. 1. It consists of a rigid 
circular cylinder of radius R that is embedded in a soil layer 
of constant thickness H and infinite extent in the horizontal 
direction. Idealized as a homogeneous viscoelastic material 
with frequency-independent properties, the soil layer is free at 

R 

z 

Fig. 1 Cylindrical System Considered 

the upper swface and bonded along its lower boundary to a 
non-deformable, rigid base. The interface between the cylin
der and surrounding soil may be either rough or smooth, as 
explained in greater detail in later sections. Both the cylinder 
and the base of the layer are assumed to undergo a space
invariant, uniform horizontal motion, the acceleration of 
which at any time c is x

8
(r). Points in the medium are defined 

by the cylindrical coordinate system, r , e , z, the origin of 
which is taken at the center of the base of the cylinder, withe 
positive in the counter-clockwise direction and e = 0 coin
ciding with the positive direction of the ground motion. For 
the limiting case of R ~ oo or HI R ~ 0, the cylindrical sys
tem considered reduces to the one shown in Fig. 2, in which a 
straight wall retains a semiinfinite, uniform viscoelastic stra
tum. 

X 

Fig. 2 System with straight wall 

The properties of the stratum are defined by its mass den
sity p. shear modulus G , Poisson's ratio v, and the material 
damping factor o, which is considered to be frequency-inde
pendent and the same for both shearing and axial deforma
tions. The latter factor is the same as the tan o faclor used by 
the senior author and his associates in studies of foundation 
dynamics and soil-structure interaction (e.g., Yeletsos and 
Yerbic 1973, Veletsos and Dotson 1988), and twice as large as 
the fraction of critical damping, ~, used by other authors in 
related studies (e.g .. Tajimi 1969, Roesset et al 1973, Pais and 
Kausel 1988). 

METHOD OF ANALYSIS 

Fundamental to the analysis presented here is the assumption 
that, under the horizontal excitation considered, no vertical 
normal stresses develop anywhere in the medium, i.e. 
crz = 0. It is further assumed that the horizontal variations of 
the vertical displacements of the medium w are negligible, 
such that the horizontal components of the shearing stresses 
can be expressed as 
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and (1) 

where u and v are the radial and tangential displacement 
components of the medium relative to the moving base; 
G* = G( 1 + io) is the complex-valued shear modulus; and 
i = H. The latter assumption implies that the cylinder-soil 
interface is smooth in the vertical direction, i.e., 'trz = 0. In 
the horizontal direction, however, the interface condition is 
considered to be either rough or smooth, i.e., either v = 0 or 
'tre = 0. These assumptions are the same as those used by 
Arias et al ( 1981) in their study of straight walls. 

Hannonic Response 

For a harmonic input motion of acceleration 

.. ( ) x·· irot 
xg t = ge (2) 

in which X g is the acceleration amplitude and w the circular 
frequency of the motion, the steady-state radial and tangential 
displacements of the medium, u and v, may be expressed as 

u(~,e,'T\,t) = f Un(~)sin[(2n-1)~T\]coseeirot (3) 

n = 1 

v(~,e,'T\,t) = f Vn(~)sin[(2n-1)~T\]sineeirot (4) 

n=l 

where ~ = r I R and T\ = zl H are dimensionless position 
coordinates; the sine functions represent the natural modes of 
vibration of the soil stratum when it is considered to act as 
series of vertical cantilever shear-beams; and U n and V n are 
the amplitudes of the modal components of the radial and cir
cumferential displacements, defined by Eqs. (49) and (50) of 
Veletsos and Younan (1994b).* The method of analysis is sim
ilar to that employed by Tajimi (1969), except that Tajimi's 
solution is based on the assumption of vanishing vertical dis
placements rather than vanishing vertical normal stresses. 

With the solution for u and v established, the radial nor
mal pressures and circumferential shearing stresses at the cyl
inder-soil interface may be expressed in the form 

• For the assumption of vanishing vertical normal stresses considered 
here, the factors \jf e and \jf 

0 
should be replaced by the factor 

ljl
0 

=J21(1-v). 

where an and 'tn are complex-valued dimensionless factors 
that follow from Eqs. (59) and (60) of Veletsos and Younan 
(1994b).* These factors depend on the modal order n, Pois
son's ratio v, the material damping factor o, and the dimen
sionless frequency parameter wl w 1 . The quantity w 1 
represents the fundamental circular natural frequency of the 
soil layer when it is considered to act as a vertical cantilever 
shear-beam, and it is given by 

1t vs 
w1 = 2 H (7) 

where v s = JG I p is the shear wave velocity of the layer. 
The instantaneous values of the shear at the base of the cylin
der, Q b ( t) , and of the corresponding moment, M b ( t) , are 
finally found by integration to be 

1 21t 

Qb(t) = RHI I [arcose-'tr9sine]dedrl 

0 0 

·· 2[2 ~ 1 irot] = -1tpX gRH 1t £.. 2n- 1 [an+ 'tn] e 
n=l 

1 21t 

Mb(t) = RH
2I I [arcose-'tresine]'T\dedrl 

(8) 

0 0 

[ 
00 

n-
1 

] = _ x·· RH3 ..±_ ~ (-1) [ ] irot (9) 
1tp g 2 £.. 2 an + 'tn e 

1t n = 1 ( 2n - 1 ) 

where h, referred to as the effective height, represents the 
height at which the total wall force or base shear should be 
considered to be concentrated to yield the correct base 
moment. 

Transient Excitation 

With the harmonic response established, the response to an 
arbitrary transient excitation may be evaluated by Fourier 
transform techniques. 

STATIC RESPONSE OF SYSTEM 

It is desirable to begin by examining the responses obtained 
for harmonic excitations the frequencies of which are small 
compared to the fundamental natural frequency of the stratum 
(i.e., for values of wl w 1 ~ 0 ). Such excitations and the 
resulting effects will be referred to as static, a term that 
should not be confused with that normally used to represent 
the effects of gravity forces. 

Fig. 3 shows the heightwise variations of the amplitudes of 
the normal pressures and circumferential shearing stresses 
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induced on the cylinder for systems with a rough interface and 
values of HI R = 0 and 3. These plots are normalized to unit 
values at the top. The variations for the intermediate values of 
HI R fall between those displayed and are not presented. The 
stress amplitudes increase almost as a quarter-sine wave from 
zero at the base to a maximum at the top, and are thus domi
nated by the fundamental mode of vibration of the layer. The 
same is also approximately true of the variations of the nor
mal pressures for a smooth interface. The data displayed in 
the figure are for Poisson's ratio v = 0.3, a value, which 
except where otherwise indicated, is also used for the solu
tions presented in subsequent sections. 

1.0 

0.8 

0.6 

11 

0.4 

0.2 

0 

HIR = 3~ f 

,' , 
, , 

, , 

I , , , , 

I 
I 
I 

I 
I 

I 
I 

I 
I 

I 

1\..._o 
I 

I 
I , 

0.5 ( ) 1 
'tst 11 

'tst( 1) 

Fig. 3 Heightwise variations of static values of normal and 
circumferential wall stresses; rough interface, v = 0.3. 

The maximum values of the static wall pressure, cr st, and 
of the corresponding circumferential shearing stress, 't st, 
attained at the top are shown in Fig. 4. These values are nor
malized with respect to the common multipliers of Eqs. (5) 
and (6), pXgH, and are plotted as a function of the slender
ness ratio, HI R. The solid lines in the figure define the 
stresses for a rough interface, whereas the dashed line defines 
the normal pressure for a smooth interface. 

It is observed that: (1) both normalized stresses increase 
with increasing HI R; and (2) the normal pressure for the 
smooth interface is generally higher than for the- rough, the 
difference becoming larger with increasing HI R . The first 
trend reflects the decreasing capacity of the deeper layers to 
transmit the inertia forces acting on them by horizontal shear
ing action to the base. The second trend is a consequence of 

3 

Circumferential Shear 

Smooth Interface 
--- Rough Interface 

04---~-~--~--~--~-~ 
0 

HIR 2 3 

Fig. 4 Maximum values of normal and circumferential 
stresses; v = 0.3. 

the ability of the rough interface to resist by circumferential 
shearing action a part of the force that gets transmitted to it. 
For a straight wall (HI R ~ 0 ), the normal stress is naturally 
independent of the interface condition. 

Unlike the normal wall pressures which have been shown 
to be generally smaller for the rough interface than for the 
smooth, the total force per unit of cylinder height should be 
larger for the rough interface. Being the 'stiffer' of the two, 
the rough interface would be expected to attract a higher pro
portion of the forces acting on the medium. That this is indeed 
the case is demonstrated in Fig. 5, in which the static value of 
the base shear, (Qb)st' is plotted as a function of HI R. The 
results in this case are normalized with respect to 1tpX 

8
RH2, 

and are, as before, for a value of v = 0.3. Since the response 
of the system is governed by the fundamental mode of vibra
tion of the layer, the corresponding results for the static base 
moment, (M b\t, are given approximately by the product of 
(Qb) st and an effective height of h = (217t)H. The exact val
ues of the static base shear are listed in Table 1 for systems 
with different values· of HI R and different interface condi
tions. 

For the limiting case of a straight wall, HI R ~ 0 , the 
base shear per unit length, Qb(t), is given by Qb(t)l(1tR), 

and the base moment per unit of length, M,; ( t) , is given by 
M b(t)l(1tR). Considering that these forces are induced only 
by normal pressures in this case, the relevant values in Table 1 
are those corresponding to the smooth interface condition. For 
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3 

2 

(Qb)st 

pXg1CRH2 

Rough Interface \ 

04---~~--~----r----r----~---, 
0 

H/R 
2 

Fig. 5 Static values of total force or base shear for 
cylinder; v = 0.3. 

3 

the significance of the results for the rough interface as 
H / R ~ 0, reference may be made to Veletsos and Younan 
(1994b). 

Accuracy of Solution 

Reference has already been made to Tajimi's solution (1969) 
which is based on the assumption of vanishing vertical dis
placements rather than of vanishing vertical stresses. As an 

2 

/ 

I 

I 
I 
I 
I 
I 
I 

I 
I 

I 

/ --/ --_, --,. --
-----------

Assuming v = 0 

Table 1: Static values of base shear for systems 
with different HIR ratios; v = 0.3. 

(Qb)st (Qb)st 
- -

HIR 1CpXgRH2 HIR 1CPXgRH2 

Rough Smooth Rough Smooth 
0 1.459 0.918 1.25 1.973 1.382 

0.30 1.595 1.005 1.50 2.065 1.478 
0.40 1.638 1.042 1.75 2.156 1.571 
0.50 1.679 1.081 2.00 2.245 1.661 
0.60 1.720 1.122 2.50 2.418 1.835 
0.70 1.760 1.162 3.00 2.585 2.001 
0.80 1.800 1.203 5.00 3.214 2.612 
1.00 1.878 1.283 10.00 4.616 3.942 

indication of the interrelationship and relative accuracy of the 
solutions based on these two assumptions, the normalized 
static values of the base shear and base moment per unit of 
length for a straight wall computed by the two approaches are 
compared in Fig. 6 over a range of Poisson's ratios for the 
medium v with those obtained by Wood's more rigorous 
solution (1973). It is observed that, while the results based on 
the assumption of vanishing normal vertical stresses are in 
very good agreement with the 'exact' results over the full 
range of v values, the accuracy of the solution based on the 
assumption of vanishing vertical displacements deteriorates 
rapidly for values of v ~ 1/3 and ceases to be acceptable near 
the limiting value of v = 112. 

/ 
// 

/ 

/ 
/ 

i 
I 
I 

I 
I 

I 
I 

___ Wood's Rigorous Solution 

Present Solution 

04---~----~~~~~~~~ 

0 0.1 0.2 0.3 0.4 0.5 
v 

0+-,--r~~~~r-~,--r-, 
0 0.1 0.2 0.3 0.4 0.5 

v 

Fig. 6 Comparison of static values of base shear and base moment in straight wall obtained by different 
approaches; v = 0.3. 
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DYNAMIC RESPONSE OF SYSTEM 

Hannonic Response 

Figure 7 shows the variation with the frequency ratio ro/ ro 1 
of the components of the base shear, Q b, induced in a straight 
wall by a harmonic excitation. Normalized with respect to 
pX gH2, the results are for a medium with v = 0.3 and 
o = 0.1 . The solid line defines the real part of the force, 
whereas the dashed line defines the imaginary part. The real 
part is, of course, in phase with the exciting motion and repre
sents the restraining effect of a displacement-proportional, 
spring-like action of the medium, whereas the imaginary part 
is 90° out of phase and represents the effect of a damping 
mechanism analogous to that of a viscous damper. The fol
lowing trends are worth noting: 

1. For ro = 0, the imaginary part of the base shear vanishes, 
.. 2 

and the real part reduces, as it should, to 0.918pX gH , the 
value of the static shear for the smooth interface listed in 
Table 1. 

2. For values of ro/ro1 < 1, the force amplitude is dominated 
by the real part, whereas for ro/ ro 1 ~ 1 , it is dominated by 
the imaginary part. Note, in particular, the very rapid and 
large increase of the imaginary part in the neighborhood of 
ro = ro1 . The relative unimportance of the imaginary part 
for ro/ro1 < 1 is due to the fact that no energy gets 
dissipated by radiation of waves within this frequency 
range. 

2.4 

2.0 

Qb 1.6 

.. 2 
pXgH 

1.2 

0.8 

0.4 

I 
I 
I 

' I 
I 
I 
I 

\r-Im 
I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

1 

\ 
\ 

' ',,, 
,, ,, 

2 

,, 

-----------------

3 4 
ro/ro1 

Fig. 7 Frequency response curves for base shear in straight 
walls; v = 0.3 & o = 0.1. 

The real-valued amplitude of the base shear, jQbj, which 
is given by the square root of the sum of the squares of the 
real and imaginary parts displayed in Fig. 7, is plotted in Fig. 
8 as a function of the frequency ratio ro/ro1 . The results are 
again normalized with respect to pX gH2 and are given for a 
medium with v = 0.3 and o = 0.1. The dashed line defines 
the solution obtained by the present approach, whereas the 
solid line defines Wood's more rigorous solution (1973). It 
should be noted that Wood's solution is strictly applicable to a 
stratum that is retained by a pair of vertical walls located a 
distance L apart, rather than to the semi-infinite layer exam
ined here. Furthermore, his solution requires consideration of 
a large number of terms and must be evaluated with extreme 
care as it may lead to numerical instabilities. For the solutions 
presented here, the distance between walls was taken as 
L = SOH, and the relevant series expression was evaluated 
using 270 terms and following the computational guidelines 
specified by Wood. The agreement between the two solutions 
is quite satisfactory. Note that the maximum base shear is 
attained at ro = ro1 and that it is associated with an amplifi
cation factor of 3.05. The latter value is close to the value of 
3.16 defined by the expression 11 ~ and significantly differ
ent from the value of 10 obtained from the expression 1/o 
governing the resonant response of a viscously damped sim
ple oscillator with a fraction of critical damping ~ = o/2. 
This fact has been noted previously by Arias et al (1981). 

The effect of material damping on the frequency response 
curves for base shear in straight walls is displayed in Fig. 9. 

3 

2 ---Wood's Solution 
- - - - - • Present Solution 

ro/ro 1 
Fig. 8 Frequency response curves for base shear amplitude 

in straight walls; v = 0.3 & o = 0.1. 
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Fig. 9 Effect of material damping on frequency response 
curves for base shear in straight walls; v = 0.3. 

Poisson's ratio for the medium is again taken as v = 0.3. The 
amplification factors start at the left from unity, and the curve 
for the undamped system becomes infinite at exciting fre
quencies equal to the natural frequencies of the layer. Soil 
material damping reduces significantly the resonant peaks, 
particularly those corresponding to the higher modes of vibra
tion. The very significant effect of damping on the higher res
onant peaks along with the general trends of the displayed 
curves indicate that, except for the totally undamped systems 
which are of no practical interest, the fundamental mode of 
vibration of the stratum is the dominant contributor to the 
response of the system. 

The maximum amplification factors for base shear in sys
tems with different values of HI R and o are displayed in Fig. 
10. The results are for a medium with v = 0.3. The solid 
lines in this figure are for systems with a rough interface, 
whereas the broken lines are for systems with a smooth inter
face. It is observed that the amplification factors increase 
more rapidly with HI R for the smooth interface than for the 
rough. This is attributed to the fact that, whereas the smooth 
interface can radiate only compressional waves, the rough 
interface can radiate both compressional and horizontally 
polarized shear waves. Accordingly, systems with a rough 
interface have higher damping capacities and lower resonant 
peaks than those with a smooth interface. 

10 
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01-----~-~-----r----,-----~--~ 

HIR 
0 2 3 

Fig. 10 Effect of slenderness ratio & material damping on 
resonant amplification factor for base shear; v = 0.3. 

Solutions for Transient Response 

The response of the medium was also evaluated for the first 
6.3 sec of the N-S component of the ground motion recorded 
during the 1940 El Centro, California earthquake. The accel
eration, velocity and displacement traces of this record have 
been presented before (Veletsos and Tang 1990). The peak 
value of the ground acceleration is x

8 
= 0.312g, and the cor

responding values of the velocity and displacement are 
.i

8 
= 14.02 in/sec and x

8 
= 8.29 in. 

The solid lines in Fig. 11 define the amplification factors 
for the absolute maximum base shear induced by the El Cen
tro ground motion in a fully bonded cylinder with different 
values of HI R and medium properties defined by v = 0.3 
and o = 0.1. The static values of the base shear involved in 
the definition of this factor are listed in Table 1, in which X g 

must now be interpreted as the maximum ground acceleration 
of the transient ground motion. The results are plotted as a 
function of the fundamental period of the system, defined by 

4H 
Tl =

vs 
(10) 

As a measure of the values of T 1 that may be encountered in 
practice, it should be noted that for values of v s in the range 
between 400 and 1600 ft/sec and values of H in the range 
between 20 and 50 ft, the value of T 1 falls in the range 
between 0.05 to 0.5 sec. 
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Fig. 11 Amplification factors for base shear due to El Centro 
record; rough interface, v = 0.3 & 0 = 0.1. 

For very stiff strata with values of T 1 of the order of 0.05 
sec or less, the amplification factors in Fig. 11 are effectively 
unity, and the maximum base shears reduce to the values 
listed in Table 1. As the system period increases, the amplifi
cation factors generally increase, the increase being more or 
less proportional to the value of the slenderness ratio, H / R . 
For highly compliant systems with very high natural periods, 
the amplification factors are naturally less than unity. 

The dashed curve in Fig. 11 defines the amplification fac
tors computed for a system with H / R = 1 considering the 
contribution of only the fundamental mode of vibration of the 
medium. As anticipated from the responses of harmonically 
excited systems examined earlier, the agreement with the 
more nearly exact solution is indeed excellent. It follows that 
even for the fairly complex ground shaking considered, the 
maximum values of the wall forces may, for all practical pur
poses, be considered to increase as a quarter-sine wave from 
zero at the base to a maximum value at the top, and the maxi
mum base moment may be computed as the product of the 
maximum base shear and the height h = 0.637 H. 

As a measure of the relative contribution to the maximum 
base shear of the interfacial normal pressures, cr r, and of the 
corresponding circumferential shearing stresses, tre, the 
component induced by the normal pressures, (Qb)max' is 
plotted in Fig. 12 as a fraction of the corresponding total base 

shear, (Qb>max' for systems with different values of H/R 
and T 1 subjected to the El Centro record. It is observed that 

0.8 

0.6 

I(Q~)maxl 
I(Qb)maxl 

0.4 

0.2 

0 

0.02 0.1 2 

Fig. 12 Portion of maximum base shear contributed by 
pressures; rough interface, v = 0.3 & o = 0.1. 

this ratio is insensitive to variations in both H / R and T 1 . In 
other words, irrespective of the excitation and the characteris
tics of the system, approximately 60 percent of the base shear 
and base moment in cylinders with rough interface may be 
considered to be caused by the normal pressures, with the 
remaining 40 percent caused by the circumferential shearing 
stresses. 

MODELING OF SYSTEM 

Scott's Model 

Probably the simplest available approximate model for evalu
ating the dynamic soil pressures induced by ground shaking 
on straight walls retaining an elastic stratum is the one pro
posed by Scott (1973). Proposed originally for a stratum of 
finite width retained by a straight vertical wall at each end, the 
model is also applicable to the important limiting case of the 
semiinfinite stratum considered here. 

Scott's model for the semiinfinite stratum is shown in Fig. 
13. It consists of a vertical cantilever shear-beam that simu
lates the far-field action of the stratum, and a set of massless, 
linear horizontal springs connecting the shear-b~ to the 
wall. The height and material properties of the beam are taken 
equal to those of the stratum, and the stiffness of the springs 
per unit of length and height of the wall, K', is taken as 

K' = 0.8(1-v) G 
1-2v H 

(11) 
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Fig. 13 Scott's model 

Shear 
Beam 

H 

This stiffness is the same as the static extensional stiffness of 
a bar of unit cross-sectional area and length 2.5H that is con
strained along its sides against both lateral and vertical dis
placements. The bases of both the shear-beam and the wall in 
the model are presumed to be excited by the same ground 
motion. 

Let u f be the free-field displacement relative to the mov
ing base of a point in the medium located at a dimensionless 
distance 11 from the base. For the harmonic input motion 
defined by Eq. (2), this displacement is of the form 

(12) 

and the corresponding wall pressure at that level is given by 
the product of K' and the relative motions of the shear-beam 
and the wall at that level, i.e., 

cr(ll,t) = K'ut = K' f Ufnsin[(2n-1)~11]/rot (13) 
n = 1 

The corresponding base shear and base moment are then 
found by integration to be 

Q '(t) = ~K'H ~ - 1- U /rot (14) 
b 7t L.J 2n-1 fn 

n = 1 

oo n-1 
Mb(t) = 42K'H2 L (-1) 2 ~neirot 

1t n=1(2n-1) 
(15) 

Note that the spring stiffness is independent of the character
istics of the ground motion and that the only damping for the 
model is that involved in the shear-beam itself. Note further 
that as v -7 0.5, K' and hence the wall pressures and associ
ated forces become infinite, a result that is clearly unaccept

able. 

Scott's model has been used extensively (e.g., Karkanias 

1983, Dennehy 1984, Jain and Scott 1989, Alampalli and 

Elgamal 1991, Soydernir 1991 ), and variations of it, involving 

combinations of springs and dashpots with frequency-depen

dent parameters, have been used in analyses of embedded 

foundations (Beredugo and Novak 1972, Novak and Ber

edugo 1972), piles (Novak 1974, Flores-Berrones and Whit

man 1982) and underground cylindrical structures (Miller et 

al1991). 

As a measure of the accuracy of this model, a comparison 

is made in Fig. 14 of the amplitudes of the steady-state shear 

at the base of the wall, IQbl, computed for harmonically 

excited systems by this approach and by the nearly exact solu

tion presented herein. The latter solution is represented by the 

solid line curve, whereas Scott's solution is represented by the 

curve in short dashed lines. The significance of the remaining 

curve is discussed in later sections. Poisson's ratio and the 

material damping factor for the medium are taken again as 

v = 0.3 and o = 0.1 . The results are normalized with 

respect to pX 8H 2 and are plotted against the frequency ratio 

ro/ ro 1 . The agreement between the two sets of solutions is 

clearly not satisfactory. Note in particular that, whereas the 

present solution leads to significantly larger base shears than 

Scott's solution at the low and high values of the frequency 

ratio, the opposite is true for values of ro/ ro 1 close to unity. 
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in straight walls; v = 0.3 & o = 0.1. 



Modification of Scott's Model 

The discrepancies in Scott's solution are due, in part, to the 
failure of the model to provide for the radiational capacity of 
the medium. If instead of a series of massless, horizontal lin
ear springs of constant stiffness simulating the action of the 
massless bars of finite length shown in Fig. 15(a), the medium 
were approximated by a series of infinitely long bars of finite 
mass per unit of length, as shown in Fig. 14(b ), it is well 
known (Wolf 1988) that the action of the latter bars for a har
monic base motion would be identical to that of a series of 
dashpots. On the assumption that the bars are constrained lat
erally and that their horizontal faces are stress free, the equiv
alent damping coefficient of the dashpots, c, is given by 

c = J 2 
Gp (16) 1-v 

The curve in long dashed lines in Fig. 14 represents the 
frequency response curve for the base shear in the wall com
puted on the assumption that the medium can be modeled by a 
series of horizontal dashpots rather than by massless springs. 
It is observed that, while at high values of the frequency 
parameter, the latter modeling of the medium is definitely 
superior to that of Scott, it too leads to unacceptable results in 
the lower frequency range. 

L=2.5 H 

(a) Massless Bar-- Constrained Vertically & Laterally 

~------------------------------------~00 
(b) Semi-Infinite Bar with Distributed Mass-

Laterally Constrained 

Fig. 15 Representation of soil-stratum in Scott's model and 
its variant. 

Proposed Model for System with Straight Wall 

Both models referred to above are deficient in that they fail to 
provide for the capacity of the medium between the wall and 
the far field to transfer forces vertically by horizontal shearing 
action. In addition to the horizontal normal stresses and iner
tia forces, a horizontal element of the medium is acted upon 
along its upper and lower faces by horizontal shearing 
stresses, as shown in Fig. 16(a). It can be shown (Veletsos and 
Younan 1994c) that, when the stratum is vibrating in its nth 
natural mode, the effect of these shearing stresses may be rep
resented by a set of horizontal linear springs of stiffness k n , 

(a) State of Shearing Stresses 

(b) Elastically Constrained Bar (Laterally Constrained) 

Fig. 16 Exact modeling of soil-stratum 

defined by 

k = 2 = [(2n -1)1t]
2 

.Q. 
n peon 2 2 

H 
(17) 

in which ron is the nth natural frequency of the stratum given 
by 

1t vs 
co = (2n- 1 )- -

n 2H (18) 

It follows that, within the confines of the simplified method of 
analysis considered here, the medium can be modeled cor
rectly by a series of semiinfinitely long, elastically supported 
horizontal bars with distributed mass, as shown in Fig. 16(b). 
The lower ends of all these springs should be attached to the 
common moving base. 

Bar Stiffness. The evaluation of the dynamic response of a 
semiinfinitely long, elastically supported bar of uniform mass 
density is a fundamental problem in foundation dynamics that 
has already been addressed in the literature (Wolf 1988). 
Defined for a bar in harmonic motion, the dynamic stiffness or 
impedance of the bar, K;, represents the amplitude of the 
harmonic end force necessary to induce a steady-state end dis
placement of unit amplitude. This is a complex-valued quan
tity that depends on the characteristics of the bar and the 
frequency of excitation. For a viscoelastic bar with frequency
independent damping 

K , _ (2n- 1 )1t G [ , . co A '] - - a +z--1-' 
n ../2(1-v)H n ron n 

(19) 

where a; and ~; are dimensionless stiffness and damping 
coefficients that depend on the frequency ratio co /co and n 
the material damping factor o. 
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Figure 17 shows the variations of a.~ and 13~ as a function 
of the frequency ratio ro Iron for several values of the damp

ing factor o. Also shown for the special case of an undamped 

medium are the corresponding values obtained by Scott's 

model for values of n = 1 and v = 0.3. There is clearly lack 

of agreement between the results obtained by the latter model 

and by the proposed, practically exact model. 

Response of System. With the impedance of the bar estab
lished, the steady-state wall pressures and the associated 

forces may be computed in the spirit of Eqs. ( 13 )-( 15) as 

Cf(TJ, t) = f K~ ~n sin[(2n -1)~TJJ eirot (20) 
n = 1 

Q '( ) = ~H ~ _1_K , U eirot 
b t 1t £...J 2n - 1 n 'f n 

(21) 
n=1 

oo n-1 
= j_H2""' (-1) K, U irot 

2 £...J 2 n 'fne 
1t n = 1 (2n- 1) 

(22) 

Note that, unlike Eqs. (13) through (15), in which the imped

ance K' appears as a common multiplier, K ~ in Eqs. (20) 

through (22) appears under the summations and has values 

that are not only different from K' but are also different for 

different values of the modal order n. 

The response of the system computed by this model is 

identical to that obtained by the nearly exact solution summa

rized in the first part of this paper. 

1.2 

a.' n 

0.8 

0.4 

-0.4 

Proposed Model 
Scott's Model, 
(n = 1 & v = 0.3) 

Modeling of Cylindrical System 

The concepts underlying Scott's model have also been applied 
to the analysis of cylindrical systems making use of the Bara
nov-Novak (B-N) idealization for the medium (Baranov 1967, 
Beredugo and Novak 1972, Novak 1974, Miller et al1991). In 
this approach, the soil is modeled by a series of independent 
thin layers with a circular hole at the center, and their resis
tance to deformation is expressed by their impedance, defined 
as the complex-valued amplitude of a harmonic force which 
when applied along the inner circular boundary in the direc
tion of the desired response will induce a steady-state dis
placement of unit amplitude in that direction. 

The impedance of a horizontally excited B-N layer, K, 
may be conveniently be expressed in the form suggested by 
Veletsos and Dotson (1988) as 

K = 1.51tG[a.+'ia
0

13] (23) 

where a
0 

= roR/v s is a dimensionless frequency parameter; 
and a. and 13 are dimensionless factors that depend on a 

0
, 

Poisson's ratio for the medium v, and the associated material 
damping factor o. 

B-N Modeling. Under the influence of the ground motion, the 
thin cylindrical element of the medium at the far-field shown 
shaded in the upper part of Fig. 18 will respond as a uniform, 
cantilever shear-beam. The stratum may then be modeled by a 
shear-beam at the far-field and by a series of B-N layers 
between the shear-beam and the cylinder, as shown in the 
lower part of the figure. 

For the harmonic input motion defined by Eq. (2), the 
force per unit of cylinder height, F(TJ, t), and the correspond-

1.2 

13~ 

0.8 

0.4 

-0.4 

Fig. 17 Stiffness and damping factors for elastically constrained bar; straight wall. 
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Fig. 18 Model for system with embedded cylinder 

ing base shear and base moment, Qb(t) and M b(t), may be 
expressed in forms analogous to Eqs. (13)-(15) as 

F(fl,t) = Ku1 = K i Cfnsin[(2n-1)~fl]eirot (24) 
n=l 

Q ( ) = ~KH ~ _1_ U eirot 
b t 1t .£...J 2n- 1 fn 

(25) 

n = 1 

It should be clear that this model, like the corresponding 
model for the stratum retained by a straight wail, also suffers 
from its failure to account for the capacity of the medium 
between the cylinder and the far field to transfer forces verti
cally by horizontal shearing action. 

Proposed Modeling. Following the reasoning used in the 
analysis of the system with a straight wall, it can be shown 
(Veletsos and Younan 1995) that the cylindrical system can be 

modeled by a series of elastically supported thin layers as 
shown in Fig. 19. The individual layers in this case are elasti
cally constrained both radially and circumferentially by a 
series of massless linear springs, the stiffness of which in each 
direction and for each modal component of response is also 
defined by Eq. (17). 

The impedance of the elastically supported layer when 
vibrating in its nth natural mode, K n , may then be expressed 
(Veletsos and Younan 1995) in a form analogous to Eq. (23) 

as 

(27) 

in which the dimensionless factors an and ~n are now func
tions not only of a 

0
, v and o, but also of the dimensionless 

measure of the stiffness of the supporting springs 

(28) 

The variations of an and ~ n as a function of the frequency 
parameter a

0 
are shown in Fig. 20 for an undamped layer 

with v = 0.3 . Four values of s n in the range between zero 
and 1t are considered which, for n = 1 , correspond to the 
HI R values shown in parentheses. As would be expected, the 
results for s n = 0, shown in dashed lines, are identical to 
those for the B-N layer, but those for the finite values of sn 

are substantially different, particularly for the smaller values 
of a

0 
and H/R. 

Fig. 19 Elastically constrained thin layer 
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Fig. 20 Stiffness and damping factors for elastically constrained thin layer; v = 0.3, B = 0. 

For the values of a
0 

corresponding to the natural frequen
cies of the stratum defined by Eq. (18), the stiffness factors 
an = 0, and for the smaller values of a 

0
, the damping fac

tors ~n = 0. The latter result is consistent with the well 
established fact that the stratum possesses no radiational 
damping capacity within this frequency range. For values of 
a

0 
greater than those corresponding to the natural frequencies 

of the stratum, both the factors an and the factors ~n for the 
elastically constrained layer are in close agreement with those 
for the unconstrained layer. It follows that the conventional 
modeling of the stratum by unconstrained B-N layers would 
be sufficiently accurate for this range of a 

0 
values, but this 

clearly would not be true for the lower values of a
0

. 

With the modal impedances established, the dynamic force 
per unit of cylinder height and the associated base shear and 
base moment may be obtained from Eqs. (20)-(22) merely by 
replacing K ~ by K n . The results in this case will be identical 
to those obtained by the method of analysis summarized in the 
early part of this paper. 

Response of System. Figure 21 shows the real-valued ampli
tude of the base shear for the cylinder of harmonically excited 
systems with four different values of HI R in the range 
between 0.3 and 10. The solid lines represent the solutions 
obtained by the proposed approach using the elastically sup
ported layers, whereas the dashed lines represent those 
obtained using the unconstrained B-N layers. The results are 
expressed in the form of amplification factors (i.e., they are 
nonnalized with respect to the corresponding static shears 

listed in Table 1 ), and they are plotted as a function of the fre
quency ratio colco1 . Poisson's ratio for the medium v and the 
associated material damping factor B in these solutions are 
taken as 0.3 and 0.1, respectively. It can be seen that the 
results obtained with the unconstrained B-N layers may differ 
significantly from the practically exact results obtained with 
the constrained layers, the differences being particularly large 
for the smaller values of HI R. The smaller the HI R, the 
greater is the horizontal shearing stiffness of the medium rela
tive to its extensional stiffness, the greater is the proportion of 
the load transmitted by horizontal shearing action to the base, 
and, therefore, the less accurate is the modeling of the 
medium by the conventional, unconstrained B-N layers. For 
very slender cylinders such as piles, practically the entire load 
gets transmitted by extensional action, and the conventional 
B-N approach, as already demonstrated by Nogami and 
Novak (1977), does yield highly accurate results. This is 
clearly not the case, however, for the broader systems with 
relatively small HI R values. 

The interrelationship of the two sets of solutions also 
depends on the frequency ratio rol co 1 . At low values of 
colro1 , for which the impedance of the unconstrained B-N 
layers tends to zero, the conventional approach leads to unac
ceptably low base shears. By contrast, at high values of 
rolco1 , the two solutions are in a very good agreement; high 
frequency waves are clearly transmitted by extensional action, 
and it is immaterial in this case whether the soil layers are 
considered to be constrained or not. The differences between 
the two solution sets are most pronounced in the intermediate 
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Fig. 21 Frequency response curves for amplitude of base shear in harmonically 
excited systems; v = 0.3, o = 0.1 

range of frequencies, especially for exciting frequencies that 
are close to the fundamental natural frequency of the stratum. 

Precisely the same trends are also observed in Fig. 22, 
which defines the amplification factors for base shear in the 
cylinder induced by the first 6.3 sec of the N-S component of 
the 1940 El Centro, California earthquake ground motion. 

CONCLUSIONS 

With the expressions summarized in the first part of this 
paper, the dynamic pressures and associated forces induced 
by horizontal ground shaking on a rigid vertical cylinder 
embedded in a stratum, or on a straight wall retaining such a 
stratum, may be evaluated reliably and cost-effectively. The 
numerical data that have been presented provide not only 
valuable insights into the responses of these systems and into 
the effects and relative importance of the numerous parame
ters involved, but also a conceptual framework for the analy
sis and interpretation of the solutions for much more complex 
systems as well. 

The representation of the soil stratum by a series of inde
pendent massless springs as proposed by Scott for straight 
walls, and by a series of unconstrained Baranov-Novak layers 
for embedded cylinders may lead to major inaccuracies. 
These inaccuracies stem from the failure of these representa
tions to provide for the capacity of the medium between the 
structure and the far field to transfer forces vertically by hori
zontal shearing action. The greater the horizontal shearing 
stiffness of the medium relative to its horizontal extensional 
stiffness, the greater are generally the resulting discrepancies. 
This deficiency in modeling may be eliminated by consider
ing the individual soil layers to be elastically supported on the 
common oscillating base. 

The data presented herein are for straight or cylindrical 
walls that are rigid and for a non-deformable moving base. 
The presence of a flexible rather than a rigid wall will reduce 
the effective horizontal extensional stiffness of the medium 
relative to its shearing stiffness, and this reduction, in turn, 

will increase the forces that get transmitted to the base by hor-
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Fig. 22 Maximum amplification factor for amplitude of base shear induced by El Centro record; 
v = 0.3, 0 = 0.1 

izontal shearing action and reduce the resulting wall forces. 
Additionally, the wall flexibility will increase the differences 
betwee'n the solutions obtained with the conventional, uncon
strained layers and the proposed, constrained layers. By con
trast, the presence of a flexible rather than rigid supporting 
medium will have the opposite effects. These effects will be 
addressed in future publications. 
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