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Photoreflectance spectroscopy of strained „In…GaAsN ÕGaAs multiple
quantum wells

J. B. Héroux, a) X. Yang, and W. I. Wang
Department of Electrical Engineering, Columbia University, New York, New York 10027

~Received 10 June 2002; accepted for publication 23 July 2002!

The effect of a variation of the indium and nitrogen concentrations in InxGa12xAs12yNy /GaAs
multiquantum wells grown by molecular beam epitaxy is studied systematically by room
temperature photoreflectance spectroscopy. The band gap redshift caused by a nitrogen fraction of
1.5% decreases by as much as 30% as the indium fraction increases from 0% to 20%. A moderate
increase of electron effective mass (Dme;0.03m0) is found in all samples containing nitrogen
(y*1%). In compressively strained quantum wells, the energy separation between the first
confined heavy and light hole energy levels decreases in a regular manner as the nitrogen fraction
increases from 0% to 1.7%, suggesting that the modification of the valence bands due to nitrogen
incorporation can be explained by the strain variation. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1507817#

INTRODUCTION

The compound InxGa12xAs12yNy ~Ref. 1! has attracted
much attention recently due to its potential for the fabrication
of GaAs-based optoelectronic devices operating in the near
infrared.2 When a small fraction of nitrogen atoms is incor-
porated into~In!GaAs, both the band gap and the free lattice
parameter are decreased. Therefore, for quantum wells
grown on a GaAs substrate, either the compressive strain is
lessened in high indium content layers or a tensile strain is
created in low indium content layers. For a certain ratiox
'3y, the new quaternary compound can be grown lattice
matched to the substrate.

The incorporation of nitrogen leads to the formation of
an impurity level located about 200 meV above the conduc-
tion band minimum in GaAs.3 The strong redshift of the
band gap observed experimentally has been explained by a
repulsion between this energetic level and theG conduction
band, while the valence band is assumed to be nearly
unperturbed.4–6 Band mixing with theL andX bands is also
believed to be important.7–10 A shift of the conduction band
minimum independent of any interaction with other elec-
tronic states may be another factor contributing to the band
gap decrease.8 Localized energy levels due to nitrogen pairs
or other atomic clusters are also formed around the conduc-
tion band either in the gap or the continuum11,12and some of
the unusual physical properties of the compound could be
due to a hybridization of the conduction band minimum with
these localized states.9,10

To date, much of the fundamental work done theoreti-
cally and experimentally on diluted nitrides has been focused
either on the GaAsN ternary compound~see, e.g., Refs.
5,7,9,10,13–19! or on InGaAsN layers lattice matched to
GaAs ~see, e.g., Refs. 4,6,8,20!, even though some of the
most promising results for laser diodes have been obtained

using highly strained, high indium content InGaAsN quan-
tum wells.21 Although the use of a ternary or lattice-matched
quaternary compound as a starting point for fundamental
studies of bulk layers may simplify result analysis, the
choice of the most simple structure may be different for the
optical characterization of heterostructures when the goal is
to determine how the band gap, effective masses, and the
band alignment are fundamentally modified by nitrogen in-
corporation. The valence band offset of GaAsN/GaAs het-
erostructures is small, and this has led to much uncertainty in
determining whether the fundamental band alignment of this
material system is type I13,14 or type II.15,16 It has caused
confusion in the assignment of the conduction band confined
energy levels in quantum wells, which has led in turn to very
large discrepancies in the reported values of the conduction
band effective mass. In a recent paper, Zhanget al.13 ob-
tainedme* values as high as 0.55m0 by assuming that optical
transitions involving the second confined conduction band
energy level could not be observed in GaAsN/GaAs struc-
tures since only one confined valence band energy level was
formed. Experimenting with similar structures, Wuet al.17

obtained, on the other hand, values around 0.1m0 , five times
lower, by assuming that transitions involving the second
electronic energy level could indeed be observed. Another
drawback of GaAsN/GaAs structures is that for a very small
nitrogen fraction~below, say, 1% for a well width around
100 Å or less! the conduction band offset becomes so small
that transitions involving excited electronic states, essential
for the accurate determination of many physical parameters,
are not observed.

Using instead the well understood, widely studied
InGaAs/GaAs material system as a starting point to study the
effect of nitrogen incorporation experimentally has several
advantages. For a relatively high indium fraction, say, around
15%, the valence and conduction band offsets are non-
negligible regardless of the nitrogen concentration so that a
number of optical transitions can be observed, tracked, and
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unambiguously identified. Moreover, if a small nitrogen frac-
tion is added, the wells are still compressively strained.
Therefore, the fundamental transition should necessarily in-
volve heavy holes and the energy separation between con-
fined levels involving the heavy and light hole bands should
be larger than in a lattice-matched or tensile strained struc-
ture, making it is easier experimentally to resolve the optical
transitions and quantify the effect of strain variation. Finally,
the quantum well width can be determineda priori using a
nitrogen-free structure as a reference, simplifying the analy-
sis. In this work, we chose the latter approach and studied
systematically and independently the effect of a variation of
both the indium and nitrogen concentrations in InGaAsN/
GaAs multiquantum wells~MQWs! in order to better under-
stand the physical properties of this material system.

EXPERIMENTAL RESULTS AND CALCULATIONS

Two series of InxGa12xAs12yNy /GaAs MQW samples
in which only the indium~first series! or nitrogen~second
series! fraction was varied were grown by molecular beam
epitaxy using a plasma rf nitrogen source~SVT Inc.!. All
samples were nonintentionally doped, and had ten periods
with 200 Å thick barriers and a 500 Å GaAs cap. Structural
characterization was done by x-ray diffraction~XRD! in the
400 and 511 orientations. Optical characterization was done
at room temperature by photoreflectance~PR! using a Spex
500 M spectrometer and a photodiode pulsed at 1 kHz emit-
ting at a wavelength of 670 nm with an output power of 1
mW. A third derivative functional form was used to simulate
the PR spectra and obtain the transition energies.

Figure 1 shows XRD spectra of the first series of
samples, in which the indium fraction was varied. The pa-
rameters of the second sample in the series~14.4% In! were
estimated by growing and characterizing by XRD and low
temperature transmittance a nominally identical, nitrogen-
free structure and assuming that the difference in average
strain between the two samples—found from the position of
the satellite peak maxima—was entirely due to nitrogen in-
corporation, i.e., that the well width and indium fraction

were unchanged. A well width of 82 Å was found with a
nitrogen fraction of 1.5%. Vegard’s law is expected to be
accurate in this nitrogen composition range22 so that system-
atic errors are avoided. The indium fraction of the remaining
samples in the series was then estimated by measuring their
average strain and assuming that the variation from one
sample to another was entirely due to the different indium
composition, i.e., that neither the well width nor the nitrogen
fraction varied. The average strain of the GaAsN/GaAs
sample was such that the same nitrogen composition, 1.5%,
was found by assuming a constant well width of 82 Å, as
expected. The arrows in Fig. 1 indicate the zero order satel-
lite peaks. The 19.7%, 14.4%, and 8.9% indium samples are
compressively strained, while the 5% and 0% indium
samples are nearly lattice matched and tensile strained, re-
spectively.

Figure 2 shows the photoreflectance spectra obtained for
this series of samples. The three distinct optical transitions
marked by arrows visible for the 19.7%, 14.4%, and 8.9% In
samples are associated with the first heavy hole to first elec-
tron ~hh1–e1!, first light hole to first electron~lh1–e1! and
second heavy hole to second electron~hh2–e2! transitions,
respectively, with increasing energy. Hetterichet al.23 per-
formed polarization-dependent photoluminescence excitation
measurements on highly strained InGaAsN single quantum
wells, confirming the nature of the optical transitions ob-
served. Other groups24,25 also observed these transitions for
this material system and assigned them in a similar manner.

As the indium composition decreases, the two lower en-
ergy transitions involving the h1 and l1 energy levels get
closer to each other and cannot be resolved for the 5% and
0% In samples. Because of the small difference in indium
concentration among the samples, the evolution of the higher
transition can, however, still be tracked and positively asso-
ciated with thee2 energy level for the 5% and 0% In
samples. The intensity ratio of the first~fundamental! to the
highest~e2 associated! transition decreases with the indium
fraction and becomes closer to unity for the GaAsN/GaAs
sample. Extra features located below the fundamental transi-
tion can be seen on the 14.4%, 8.9%, and 0% In samples and

FIG. 1. X-ray diffraction spectra of InxGa12xAs0.985N0.015/GaAs
(82 Å/200 Å) multiquantum well structures. Arrows indicate the zero order
satellite peaks. The 5% In sample is nearly lattice matched so that satellite
peaks are almost invisible.

FIG. 2. Room temperature photoreflectance spectra of the samples described
in Fig. 1. Arrows indicate the energy transitions obtained using third deriva-
tive functional form curve fits, shown by dashed lines. Dashed arrows indi-
cate defect-related transitions.
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are believed to be defect-related; Shanabrooket al.26 ob-
served similar features in GaAs/AlGaAs quantum wells. Os-
cillations above the GaAs-related transitions are also visible
and are due to the finite thickness of the cap layer and the
high potential barrier at the surface.27

The middle part of Fig. 3 shows how the observed opti-
cal transitions evolve and can be tracked as the indium frac-
tion decreases from 19.7% to 0%. Rather than use a pre-
defined model to perform a single fit of all observed
transitions, results were simulated independently for each
sample to avoid any bias in the interpretation; a single band
envelope function formalism was used to find the bulk un-
strained band gap and conduction band effective mass in the
well. These two parameters were adjusted until an agreement
better than 1 meV was reached for the fundamental~e1 as-
sociated! and the highest confined~e2 associated! optical
transitions. By assuming that the unstrained valence band
offset was unchanged by nitrogen incorporation and modify-
ing the splitting of the heavy and light hole valence bands to
take into account the strain variation in the wells due to
nitrogen, an agreement within 6 meV was obtained for the
observed lh1–e1 transitions. The unstrained valence band
offsetDEvu was calculated by assuming, based on the work
of Joyceet al.,28 a strained InGaAs/GaAs band offset ratio
Qc5DEc/DEvhh50.65 for x*8% and 0.57 forx'5%.
DEvu varied from 28 meV~19.7% In! to 0 meV ~0% In!.
The biaxial strain was calculated based on the usual Pikus–
Bir Hamiltonian,29 with the energy shifts due to hydrostatic
dEH and sheardES strain components expressed as

dEH52a~12C12/C11!«,
~1!

dES522b~112C12/C11!«,

were« is the strain tensor in the plane of the interfaces,C11

and C12 are elastic stiffness constants, anda and b are the
hydrostatic and shear deformation potentials, respectively.
The hydrostatic component was applied to the conduction
band, while the shear component corresponds to the splitting
between the heavy hole and light hole bands. Since the ni-
trogen fraction is small and is expected to affect mostly the
conduction band, the elastic constants, deformation poten-
tials, and hole effective masses were assumed not to be
modified by nitrogen incorporation and standard values30

were used for all these parameters.
The lower part of Fig. 3 shows the calculated energy

difference between the unstrained band gap in the well of the
samples of this series and the one that would be obtained
using a standard expression30 for a similar compound with-
out nitrogen. The band gap redshift due to the constant ni-
trogen fraction is lowered by as much as 30% as the indium
fraction increases. This can be explained using a two level
model, according to which the band gap of the quaternary
material is given by4

Eg~ InxGa12xAs12yNy!

5
EM~x!1EN2A@EM~x!2EN#214VNM

2 ~x,y!

2
, ~2!

where EN is the nitrogen impurity level located above the
conduction band minimum of a nitrogen-free alloyEM and
VNM5CNMAy ~Ref. 31! is the quantum interaction between
the two levels. It can be assumed that the position of the
impurity level EN relative to the vacuum level does not
change much as indium is incorporated10,32 but the extended
level EM moves downward. The energy difference between
theEM andEN levels increasing with the indium fraction, the
quantum coupling is reduced so that the band gap redshift
due to a constant nitrogen fraction is lowered for a higher
indium fraction. Assuming typical valuesEN51.65 eV, EM

5Eg (InGaAs), andCNM52.7 eV with y50.015, a reduc-
tion of the band gap redshift due to nitrogen of 31% is found
if x increases from 0 to 0.2, in good agreement with the
experimental data. The results recently published by Serries
et al.33 for samples with a higher indium composition grown
on an InP substrate also corroborate our own.

The upper part of Fig. 3 shows the electron effective
masses determined as described above. The values, although
slightly scattered due to the fact that individual fits were
performed for each sample, are consistently larger than the
ones that would be obtained for nitrogen-free samples. No
regular dependence of the effective mass with the indium
fraction can be observed within experimental precision. Us-
ing a two level model,6 we expect this dependence to be
small and values comparable to the ones shown here are
predicted. Kent and Zunger9,10 proposed that above a small
critical nitrogen concentrationyc , the interaction of the ex-
tended conduction band with localized nitrogen pairs and
other higher order cluster states in GaAsN could explain the
increased electronic effective mass. If so, the addition of in-
dium shifting down the conduction band does not seem to
significantly modify this interaction.

FIG. 3. Data points in the middle of the figure indicate the energy levels
found experimentally and associated with the 1hh-1e ~¿!, 1lh-1e ~Ã!, and
2hh22e ~.! energy levels, respectively. For the 5% and 0% In samples, the
exact nature of the valence energy levels involved is unclear. The dashed
lines are an aid to the eye. Triangles~m! in the lower part of the figure show
the redshift of the band gap due to nitrogen incorporation calculated from
the transitions observed experimentally. Diamonds~l! in the upper part
show the electron effective masses also calculated from the experimental
data. Exciton binding energies were neglected in the calculations for sim-
plicity but this does not affect the conclusions reached.
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Figure 4 shows photoreflectance spectra obtained for the
second series of multiquantum well samples in which the
nitrogen fraction was varied and the wells are compressively
strained. The well width and indium fraction of the nitrogen-
free sample were found to be 86 Å and 14.3%, respectively,
and were assumed to remain constant in all samples so that
the nitrogen concentration could be estimated from the aver-
age strain measured by XRD. The identification of the first
heavy hole to the first conduction band~1hh–1e!, first light
hole to first conduction band~1lh–1e! and second heavy hole
to second conduction band~2hh–2e! transitions is straight-
forward in all samples, and was also independently verified
by low temperature transmittance measurements presented
elsewhere.34

A plot of the energy difference between the lh1–e1 and
hh1–e1 transitions obtained experimentally, shown by the
data points in the lower part of Fig. 5, provides a simple way
to probe the valence band in these structures since the same
conduction band energy level is involved in both transitions.
The hh–lh splitting predominantly depends on two factors:
the shear deformation potentialb and the valence band off-
set. The solid lines in the figure show a calculation of the
hh–lh energy splitting for the quantum wells investigated
here assuming a shear deformation potential unchanged by
nitrogen incorporation~b521.97 eV! with constant un-
strained band offsets corresponding to strained
In0.14Ga0.86As/GaAs band offset ratiosQc50.7 ~Ref. 30;
DEvu

513 meV, lower solid curve! and Qc50.65 ~Ref. 28;
DEvu520 meV, upper solid curve!. In a recent article Zhang
et al.35 proposed that the shear deformation potential could
be increased in bulk GaAsN samples to an absolute value
higher than 3 eV. The dashed lines in the figure therefore
show the same calculation~i.e., sameDEvu values! per-
formed with b523 eV. Clearly, in our case a better agree-

ment is obtained assuming a constant~i.e., lower absolute
value! shear deformation potential. The upper part of Fig. 5
shows again that nitrogen incorporation results in a moderate
increase of the conduction band effective mass~see next sec-
tion!.

DISCUSSION

Figure 6 illustrates the postulated valence band structure
used for the calculations presented in the previous section,
based on the assumption of a constant unstrained valence

FIG. 4. Room temperature photoreflectance spectra of a series of
In0.14Ga0.86As12yNy /GaAs (86 Å/200 Å) multiquantum well samples. Ar-
rows indicate the energy transitions obtained using third derivative func-
tional form curve fits, shown by dashed lines.

FIG. 5. Circles~d! indicate the experimental values of the energy differ-
ence between the first two optical transitions shown in Fig. 4, associated
with the first heavy and light hole energy levels, respectively. Diamonds
~l! indicate the electron effective mass calculated from the transitions ob-
served experimentally. Solid and dashed lines show theoretical calculations
of the hh–lh splitting assuming shear deformation potentialsb521.97 eV
and b523 eV, respectively. An exciton binding energy of 8 meV was as-
sumed for the transitions involving the heavy hole band only~see Ref. 30!.

FIG. 6. ~a! Valence band configuration of a compressively strained
In0.15Ga0.85As/GaAs quantum well.~b! Effect of the incorporation of a ni-
trogen fraction around 2%. The unstrained band offsetDEvu remains con-
stant in both cases.~c! GaAsN/GaAs valence band configuration. The offset
is due to the tensile strain andDEvu'0.

4364 J. Appl. Phys., Vol. 92, No. 8, 15 October 2002 Héroux, Yang, and Wang



band offset. In high indium content quantum wells, nitrogen
incorporation reduces the compressive strain, and hence the
heavy hole–light hole band splitting, as shown in~a! and~b!.
The heavy hole band alignment is type I in lattice-matched
or compressively strained wells. For an indium fraction
around 15% and a nitrogen fraction lower than 2%, the de-
crease of the hh–lh band splitting is not large enough to
modify the type of the light hole band alignment and it is
expected to remain type II. In GaAsN/GaAs quantum wells,
the valence band offset is due to the tensile strain, with type
I and type II alignments for the light and heavy hole bands,
respectively.

While a small shift~upward or downward! of the un-
strained valence band alignment due to nitrogen incorpora-
tion cannot be ruled out, there are many reasons to believe
that such a shift, if it occurs, is not large. First and most
importantly, nearly all theoretical papers published to date
~see, e.g., Refs. 8–10 and 31! and predict the absence of any
significant intrinsic perturbation of the valence band due to
nitrogen. Second, the regular decrease of the hh–lh splitting
observed in Fig. 5 as the nitrogen fraction increases strongly
suggests that the modification of the valence band is due to
strain variation. While these experimental values of the
hh–lh splitting could also be reproduced with a calculation
assuming a decrease of the unstrained band offset in con-
junction with a relatively large increase of the absolute value
of the shear deformation potential~e.g.,DEvu→0 andb →
23 eV!, the hypothesis of a valence band modified entirely
by strain is a much more simple–hence more attractive–
explanation in better agreement with theoretical articles.
Third, in Fig. 2 the hh–lh splitting is clearly observed in
quantum wells with a high indium fraction but not in the 5%
and 0% In spectra, strongly suggesting that the valence band
offset becomes small as the indium fraction decreases.
Fourth, as noted in the Introduction, there are important dis-
crepancies in the literature concerning the type of band align-
ment found experimentally for the GaAsN/GaAs material
system, so that the valence band offset of this heterostructure
must be in reality very small.

The simple model schematically described in Fig. 6 can
also account for the observation of an optical transition in-
volving thee2 energy level even in the absence of a second
confined light hole state in GaAsN/GaAs quantum wells. The
light hole valence band well is very shallow and should have
a single confined energy level located only a few meV below
the GaAs barrier. Its parity may be not well defined due to
interface roughness so that a lh1–e2 transition could be ob-
served. Furthermore, there may be more than one heavy hole
state confined in the GaAs layers acting as wide wells, and
interwell coupling could occur due to the narrowness of the
GaAsN barriers so that a hh2–e2 transition may be observed.
Since the two types of transitions cannot be resolved experi-
mentally, the confined light hole and heavy hole levels might
be so close to each other to be considered for practical pur-
poses merged—as for tensile strained quantum wells with
other material systems36—and the valence band assumed to
be nearly flat. If one considers for simplicity a one-
dimensional structure with a completely flat valence band
and a conduction band well having two confined states with

wave functions of even and odd parities, clearly the usual
interband transition parity rule would not apply37 and transi-
tions involving both electronic states would be allowed, as
we observe experimentally.

Based on these considerations, we propose that Wu
et al.17 used the correct optical transition assignment for their
calculation of the electron effective mass in GaAsN/GaAs
structures but that the very high values exceeding the GaAs
heavy hole effective mass and the sharp decrease as the ni-
trogen fraction increases above 1% reported by Zhang
et al.13 are due to an incorrect assignment of the second ob-
served transition with the third conduction band confined
energy level. If we exclude these last results, there is an
overall agreement in the literature that the incorporation of a
nitrogen concentration around 1% in nonintentionally doped
structures leads to an increase of the electron effective mass
to a value in the range 0.0820.12m0 and that the depen-
dence on the indium concentration is relatively weak; the
values obtained in this work are in reasonably good agree-
ment with those reported by Wuet al.17 (me* '0.11m0 with
1.2%–2.8% N, 0% In!, Hai et al.18 (me* '0.1220.19m0

with 1.2%–2% N, 0% In!, Hetterich et al.23 (Dme*
'0.03m0 with 1.5% N, 38%In! and Pan et al.24 (me*
'0.07520.095m0 with 0.35%–1% N, 30% In!.

CONCLUSION

It should be stressed that the goal of this article is not to
present the most precise and definite values of the effective
mass or other parameters of this material system for device
design. Rather, we sought to: positively identify the optical
transitions observed experimentally for this material system;
observe specific trends in the properties of the material sys-
tem as the atomic fractions vary; and explain some of the
discrepancies found in the literature. An optical transition
associated with the second confined conduction band energy
level is observed in structures with and without indium so
that the increase of the conduction band effective mass due
to a 1% nitrogen fraction is aroundDme;0.03m0 . The band
gap redshift due to nitrogen is found to decrease as the in-
dium composition increases. In compressively strained quan-
tum wells the regular decrease of the energy difference be-
tween the heavy and light hole energy levels as the nitrogen
fraction increases can be explained by the strain variation.
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Morkoçc, J. Appl. Phys.62, 3366 ~1987!; G. Ji, U.K. Reddy, D. Huang,
T.S. Henderson, and H. Morkoc¸, Superlattices Microstruct.3, 539 ~1987!.

31A. Lindsay and E.P. O’Reilly, Solid State Commun.112, 443 ~1999!.
32J.M. Langer and H. Heinrich, Phys. Rev. B55, 1414~1983!.
33D. Serries, T. Geppert, P. Ganser, M. Maier, K. Kohler, N. Herres, and J.

Wagner, Appl. Phys. Lett.80, 2448~2002!.
34J.B. Héroux, X. Yang, and W.I. Wang, J. Vac. Sci. Technol. B20, 1154

~2002!.
35Y. Zhang, A. Mascarenhas, H.P. Xin, and C.W. Tu, Phys. Rev. B61, 4433

~2000!.
36A. Baliga, D. Trivedi, and N.G. Anderson, Phys. Rev. B49, 10402~1994!.
37G. Bastard,Wave Mechanics Applied to Semiconductors~Haslted, New

York, 1988!.

4366 J. Appl. Phys., Vol. 92, No. 8, 15 October 2002 Héroux, Yang, and Wang


	Photoreflectance Spectroscopy of Strained (In)GaAsN/GaAs Multiple Quantum Wells
	Recommended Citation

	Photoreflectance spectroscopy of strained (In)GaAsN/GaAs multiple quantum wells

