
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Summer 2012 

Stochastic optimal adaptive controller and communication Stochastic optimal adaptive controller and communication 

protocol design for networked control systems protocol design for networked control systems 

Hao Xu 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Electrical and Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Xu, Hao, "Stochastic optimal adaptive controller and communication protocol design for networked 
control systems" (2012). Doctoral Dissertations. 2277. 
https://scholarsmine.mst.edu/doctoral_dissertations/2277 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2277?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

 

STOCHASTIC OPTIMAL ADAPTIVE CONTROLLER AND COMMUNICATION 

PROTOCOL DESIGN FOR NETWORKED CONTROL SYSTEMS 

 

by 

 

HAO XU 

 

A DISSERTATION 

Presented to the Faculty of the Graduate School of the  

MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY 

In Partial Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

in 

ELECTRICAL ENGINEERING 

 

2012 

Approved 

Jagannathan Sarangapani, Advisor 

S.N. Balakrishnan 

Sanjay Madria 

Maciej Zawodniok 

Yahong Rosa Zheng 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 

PUBLICATION DISSERTATION OPTION 

This dissertation contains the following four articles: 

Paper 1, H. Xu, S. Jagannathan, and F. L. Lewis, “Stochastic Optimal Control of 

Unknown Linear Networked Control System in the Presence of Random Delays and 

Packet Losses,” In Press, Automatica. 

Paper 2, H. Xu and S. Jagannathan, “Stochastic Optimal Design for Unknown 

Linear Discrete-time System Zero-sum Games under Communication Constraints,” has 

been submitted to Automatica. 

Paper 3, H. Xu, and S. Jagannathan, “Stochastic Optimal Controller Design for 

Uncertain Nonlinear Networked Control System via Neuro Dynamic Programming,” 

conditional accepted in the IEEE Transaction on Neural Networks.  

Paper 4, H. Xu and S. Jagannathan, “Stochastic Optimal Design for Unknown 

Networked Control System using Communication Network Protocols,” to be submitted to 

Automatica. 

            Paper 5, Hao Xu, and S. Jagannathan, “A Cross Layer Approach to the Novel 

Distributed Scheduling Protocol and Event-triggered Controller Design for Cyber 

Physical Systems”, to be submitted to IEEE Transactions on Communication. 

 

 

Research in part by NSF grant ECCS#1128281 and Intelligent Systems Center 



 

 

iv 

ABSTRACT 

Networked Control System (NCS) is a recent topic of research wherein the 

feedback control loops are closed through a real-time communication network.  Many 

design challenges surface in such systems due to network imperfections such as random 

delays, packet losses, quantization effects and so on.  Since existing control techniques 

are unsuitable for such systems, in this dissertation, a suite of novel stochastic optimal 

adaptive design methodologies is undertaken for both linear and nonlinear NCS in 

presence of uncertain system dynamics and unknown network imperfections such as 

network-induced delays and packet losses. The design is introduced in five papers. 

In Paper 1, a stochastic optimal adaptive control design is developed for unknown 

linear NCS with uncertain system dynamics and unknown network imperfections. A 

value function is adjusted forward-in-time and online, and a novel update law is proposed 

for tuning value function estimator parameters. Additionally, by using estimated value 

function, optimal adaptive control law is derived based on adaptive dynamic 

programming technique. Subsequently, this design methodology is extended to solve 

stochastic optimal strategies of linear NCS zero-sum games in Paper 2. 

Since most systems are inherently nonlinear, a novel stochastic optimal adaptive 

control scheme is then developed in Paper 3 for nonlinear NCS with unknown network 

imperfections.  On the other hand, in Paper 4, the network protocol behavior (e.g. TCP 

and UDP) are considered and optimal adaptive control design is revisited using output 

feedback for linear NCS.  Finally, Paper 5 explores a co-design framework where both 

the controller and network scheduling protocol designs are addressed jointly so that 

proposed scheme can be implemented into next generation Cyber Physical Systems. 
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1.  INTRODUCTION 

In the past decade, significant advances in theoretical and applied research have 

occurred in computation, communication, and control areas. Control system has made 

great strides from analog control (first generation) to digital (second generation) [1] with 

the appearance of digital computer in 1940s.  Similarly, wireless communication is being 

preferred over wired communication as it allows mobility.  In the recent control 

applications, reinforcement learning which is used for computational intelligence has 

been introduced in complex control system design.  Most recently, a communication 

network is combined with modern control system to form a networked feedback control 

system due to the presence of a real-time communication network. This novel networked 

control system [2-5] (NCS) concept is considered as a third generation control system [1]. 

In NCS, a communication packet carries the reference input, plant output, and control 

input which are exchanged by using a communication network among control system 

components such as sensor, controller and actuators as shown in Fig 1.1. 

Compared with traditional control systems, a NCS can not only reduce system 

wiring with ease of system diagnosis and maintenance, but also increases the system 

agility which is one of most critical factor in developing practical modern system. 

Because of these advantages, a NCS, as shown in Fig 1.2., has been implemented in the 

manufacturing industry.  Multiple devices sense data from controlled plants by using 

embedded sensors then packetize the data and transmit the sensed data to remote 

controllers through the wireless network. When the respective controllers receive 

information from the controlled plant, suitable control inputs can be designed based on 

that information and transmitted back to the respective devices through the network.  



 

 

2 

PlantActuator Sensor

Delay

And

Packet losses

Controller

Delay

And

Packet losses

Wireless Communication 

Network

intervalSampling:
s

T

)(tca

)(t

)(tsc

)(t

State Quantizer

Controller Quantizer

 

 

Fig 1.1. Networked control systems. 

 

 

Fig 1.2. Networked control system in manufacturing [19]. 

 

Similarly, in Fig 1.3, a NCS is implemented on the smart grid which is considered 

as the next generation power system.  The sensors can report the consumer demand to the 

smart grid processor, which can decide how to deal with these demands whether to 

request more power generation or utilize the stored energy. Compared with traditional 
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power system, network control based smart grid can manage the power resource more 

efficiently. 

However, due to the unreliable communication network, a NCS has many 

challenging issues to be solved before reaping their benefits. The first issue is the 

network-induced delay that occurs while exchanging data among devices connected to 

the shared communication media. This delay, either constant or random, can degrade the 

performance of control system and even destabilize the system when the delay is not 

explicitly considered in the design process [8]. The second issue is packet losses due to 

unreliable network transmission which can cause a loss in control input resulting in 

instability [15]. Because of limited network capacity, sensed plant data and designed 

control inputs need to be quantized prior to transmission which may lead to quantization 

errors for both measured states and control inputs [5,7]. Since these quantization errors 

can cause instability of a NCS [7], it is considered as the third issue. 

 

 

Fig 1.3. NCS in Smart Grid
1 

 

1
Photo courtesy of: http: http://www.consumerenergyreport.com/wp-content/ uploads/ 

2010/04/smartgrid.jpg 
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Next, an overview of current methodologies for the NCS design is presented, and 

their shortcomings are discussed. Subsequently, the organization and the contributions of 

this dissertation are introduced. 

 

1.1.  OVERVIEW OF NETWORKED CONTROL METHODOLGIES 

As introduced in the above section, although the NCS can offer several 

advantages, it also brings many challenging issues (e.g. network-induced delays and 

packet losses) due to the presence of a communication network and its associated 

network protocol utilized for packet transmission. For the NCS shown in Fig. 1.1, 

researchers [2-16] analyzed the stability of such NCS starting 1990s. In [4,5,8,9], authors 

evaluated stability and performance of a NCS with constant network-induced delay and 

derived a stability region of linear NCS. Selecting a conventional stable controller with 

constant gains, related maximum allowable transfer interval (MATI) and maximum 

allowable delay can be calculated based on the stability region of NCS [8-9].  In addition, 

the effect of packet losses on the NCS has been analyzed in [14].  

Similar to network-induced delay, authors derived a stability region for packet 

losses based on stochastic control [18]. Zhang et. al [8] conducted the stability analysis of 

the NCS in the presence of packet losses and delays and proposed the region of stability. 

Experimental studies in [8-9] have illustrated that conventional controller can still 

maintain a NCS stable in the mean when network-induced delays and packet losses fall 

within the region of stability. 

On the other hand, optimal control design is also pursued in the NCS research. 

Nilsson [6] introduced the optimal design problem and derived optimal controller for the 
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NCS with a short network-induced delay (i.e. delay less than one sampling interval). In 

[6], Nilsson represented the NCS dynamics with augment states. Then, optimal controller 

has been derived using standard Riccati Equation-based optimal control theory [18].  

Recently, Hu and Zhu extended linear NCS optimal controller design with 

network-induced delays of over several sampling intervals (i.e. delay is more than one 

sampling interval) [13]. Compared with previous NCS schemes, the work in [14] 

considered specific network protocol such as a transmission control protocol (TCP) and 

user datagram protocol (UDP), and derived optimal control design for NCS under TCP 

and UDP. However, all these methodologies [2-16] required full knowledge of system 

dynamics and network imperfections (i.e. network-induced delay and packet losses) 

which are not known beforehand in practical NCS. Therefore, methods developed in [2-

16] may not be suitable to yield best performance during implementation. Also, literature 

on NCS focuses only on linear dynamic systems. However, practical systems are 

inherently nonlinear. Therefore, the control design for such nonlinear NCS is important 

and necessary. 

In addition, network protocol design is critical for NCS design [5][9]. At present, 

limited effort [9][14] has been in place to understand the effect of protocols and most of 

them merely evaluate the behaviors of existing network protocols by separating the 

controller and network protocol design.  However, since controller and network protocol 

design are related to each other closely, they cannot be separated in a truly NCS design. 

Thus, in this dissertation, a novel controller and network protocol designs are introduced 

jointly to address the drawbacks described above. Additionally, stability guarantees are 

provided by comparing the proposed schemes with that of the existing NCS.  
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1.2.  ORGANIZATION OF THE DISSERTATION 

In this dissertation, novel stochastic optimal adaptive control and network 

protocol designs for linear/nonlinear NCS are undertaken while relaxing the knowledge 

of the system dynamics and network imperfections. This dissertation is presented in five 

papers, and their relationship to one another is illustrated in Fig. 1.2. The common theme 

in the five papers is the optimal adaptive control of linear/nonlinear NCS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Dissertation Outline 

 

In the first paper, a novel stochastic optimal adaptive control of linear NCS with 

uncertain system dynamics in the presence of network imperfections such as random 

delays and packet losses is derived. The value function approximation and Q-learning 

Networked 
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Paper 1: Hao Xu, S. Jagannathan, and F.L. Lewis, “Stochastic Optimal 

Control of Unknown Linear Networked Control System in the Presence 

of Random Delays and Packet losses”, accepted in Automatica. 

Paper 2: Hao Xu, and S. Jagannathan, “Stochastic Optimal Design for 

Unknown Linear Discrete-time Zero-sum Games under Communication 

Constraints”, submitted to Automatica. 

Paper 3: Hao Xu, and S. Jagannathan, “Stochastic Optimal Controller 

Design for Uncertain Nonlinear Networked Control System via Neuro 

Dynamic Programming”, Accepted Conditionally in the IEEE 

Transaction on Neural Networks. 

Paper 4: Hao Xu, and S. Jagannathan, “Stochastic Optimal Design for 

Unknown Networked Control System using Communication Network 

Protocols”, to be submitted to Automatica. 

Paper 5: Hao Xu, and S. Jagannathan, “A Cross Layer Approach to the 

Novel Distributed Scheduling Protocol and Event-triggered Controller 

Design for Cyber Physical Systems”, to be submitted to IEEE 

Transactions on Communications. 
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ideas are used to solve the infinite horizon optimal regulation of unknown linear NCS. 

Then, using certainty equivalence property, a stochastic suboptimal adaptive control 

scheme is proposed. Lyapunov theory is applied to guarantee that all signals are 

asymptotically stable in the mean and estimated control signals converge to optimal or 

suboptimal control inputs respectively.  In comparison with other works [2-16], the 

proposed method relaxes the requirement of system dynamics and network imperfections.  

Subsequently, the control design in the first paper is extended to generate optimal 

strategies for linear NCS zero-sum games in the second paper. System dynamics and 

network imperfections are not needed for the proposed optimal strategy. 

In the third paper, a novel nonlinear NCS representation incorporating the system 

uncertainties and network imperfections is introduced first by using input and output 

measurements for facilitating output feedback. Further, an online neural network (NN) 

identifier is introduced to estimate the control coefficient matrix. Subsequently, the critic 

and action NNs are employed along with NN identifier to determine the forward-in-time, 

time-based stochastic nonlinear optimal adaptive control of NCS without using value and 

policy iterations. Lyapunov techniques are used to show that that all the closed-loop 

signals and NN weights are uniformly ultimately bounded (UUB) in the mean while the 

approximated control input convergences close to its target value over time in the mean. 

By contract, in the fourth paper, TCP and UDP are considered with NCS for 

evaluating the impact of network protocol reliability on controller performance. Here, a 

novel observer is derived to estimate the system states in the presence of unknown system 

dynamics and network imperfections first. Next, stochastic optimal adaptive output-

feedback controller by using ADP is utilized to solve the infinite horizon optimal 
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regulation of linear NCS under TCP and UDP respectively.  Finally, Lyapunov stability 

analysis indicate that all signals are asymptotically stable in the mean for linear NCS 

under TCP, and uniformly ultimately bounded in the mean for linear NCS under UDP. 

Finally, the last chapter proposed a cross layer co-design for the Cyber Physical 

System (CPS), which is considered as a new breed of promising emerging dynamic 

systems. First, by maximizing the utility function which is generated based on the 

information from both application and network layer, a novel distributed scheduling 

protocol is derived via cross layer approach. Subsequently, a novel adaptive model based 

optimal event-triggered control scheme is developed for real-time CPS with unknown 

system dynamics in the application layer. Compared with traditional scheduling 

algorithms, the proposed distributed scheduling scheme via cross layer approach can not 

only allocate the network resource efficiently but also improves the performance of the 

overall real-time CPS. Finally, simulation results are included to illustrate the 

effectiveness of proposed cross-layer co-design. 

 

1.3.  CONTRIBUTIONS OF THE DISSERTATION 

This dissertation provides contributions to the field of linear and nonlinear NCS in 

the design of an optimal and suboptimal adaptive controller and network protocol. As a 

consequence, proposed designs can not only render a desired performance in terms of 

attaining optimality but also maintain the NCS stable in the mean in the presence of 

unknown system dynamics and network imperfections. Traditionally, the optimal control 

design for NCS [2-16] work backward-in-time and require full knowledge of system 

dynamics and network imperfections.  The ADP-based available optimal techniques, on 
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the other hand, relax the need for system dynamics and use value and/or policy iterations 

which may be difficult to be implemented on hardware since the number of iterations 

needed is not known.  The proposed effort overcomes these deficiencies. 

The contributions of Paper 1 include the stochastic optimal and suboptimal 

adaptive control design of linear NCS in forward-in-time in the presence of unknown 

system dynamics and network imperfections by using a value function estimator. A 

suitable representation of the linear NCS is derived first by using augmented stated and 

then optimal and suboptimal adaptive controller is designed by using Q-function 

approach.  Next, these results are extended to linear NCS zero-sum games, and stochastic 

optimal adaptive control and disturbance inputs are now derived in Paper 2. 

On the other hand, the contributions of Paper 3 include the development of 

nonlinear optimal adaptive controller for nonlinear NCS in presence of system 

uncertainties and network imperfections by using input-output measured data. Here as a 

first step, a suitable nonlinear NCS representation is obtained for the controller design in 

the input-output form.  The need for control coefficient matrix is relaxed when compared 

to [18] by using a nonlinear neural network identifier.  

In addition, a novel optimal adaptive controller incorporating the network 

protocol behavior such as the TCP or UDP is introduced. In all the above papers, closed-

loop stability is demonstrated by using Lyapunov analysis. For the case of linear NCS, 

asymptotic stability is demonstrated and for the case of nonlinear NCS, uniform ultimate 

boundedness of the closed-loop is shown. 

Finally, Paper 5 will consider a promising new class of emerging dynamic system 

referred to as CPS by using a co-design framework where the optimal adaptive model-
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based event-triggered controller and network distributed scheduling protocol designs are 

performed in a joint manner through the selection of suitable utility function. It is 

important to note that available current CPS literature [20-22] usually separates the 

control and network protocol designs as two separate problems. Instead, in the proposed 

co-design framework, the utility function is developed based on information from both 

network layer and application layer which in turn optimizes the performance of control 

system and the network efficiency. 
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PAPER I 

STOCHASTIC OPTIMAL CONTROL OF UNKNOWN LINEAR NETWORKED 

CONTROL SYSTEM IN THE PRESENCE OF RANDOM DELAYS AND 

PACKET LOSSES 

H. Xu, S. Jagannathan, and F. L. Lewis 

Abstract - In this paper, the stochastic optimal control of linear networked control system 

(NCS) with uncertain system dynamics and in the presence of network imperfections such 

as random delays and packet losses is derived.  The proposed stochastic optimal control 

method uses an adaptive estimator (AE) and ideas from Q-learning to solve the infinite 

horizon optimal regulation of unknown NCS with time-varying system matrices.  Next, a 

stochastic suboptimal control scheme which uses AE and Q-learning is introduced for the 

regulation of unknown linear time-invariant NCS that is derived using certainty 

equivalence property. Update laws for online tuning the unknown parameters of the AE 

to obtain the Q-function are derived.  Lyapunov theory is used to show that all signals 

are asymptotically stable (AS) in the mean and that the estimated control signals 

converge to optimal or suboptimal control inputs in the mean. Simulation results are 

included to show the effectiveness of the proposed schemes.  The result is an optimal 

control scheme that operates forward-in-time manner for unknown linear systems in 

contrast with standard Riccati equation-based schemes which function backward-in-time. 

 

Key words— Networked Control System (NCS), Q-function, Adaptive Estimator, Optimal 

Control.  
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1.  Introduction 

Feedback control systems with control loops closed through a real-time network 

are called Networked Control Systems (NCS) (Halevi and Ray, 1988; Branicky et al., 

2000; Wu and Chen, 2007; Cloosterman et al., 2009). In NCS, a communication packet 

carries the reference input, plant output, and control input which are exchanged using a 

network among control system components such as sensors, controller, and actuators.  

The primary advantages of NCS are reduced system wiring, ease of system diagnosis and 

maintenance, and increased system agility. However, insertion of the communication 

network in the feedback loop brings many challenging issues.  

The first issue is the network-induced delay that occurs while exchanging data 

among devices connected to the shared medium. This delay, either constant or random, 

can degrade the performance of control system and even destabilize the system when the 

delay is not explicitly considered in the design process. The second issue is packet losses 

due to unreliable network transmission which can cause a loss in control input resulting 

in instability. These issues have been identified in the literature and are being studied. 

For instance, Cloosterman et al. (2009) analyzed the stability of NCS with 

network-induced delays. Walsh et al. (1999) and Lian et al. (2001) considered stability 

performance of NCS with constant delays. Azimi-Sadjadi (2003), Wu and Chen (2007), 

Schenato et al. (2007) analyzed the stability performance of NCS with packet losses. 

Eventually Zhang et al. (2001) conducted the stability analysis of NCS with delays and 

packet losses and proposed a stability region. 

While stable controllers are encouraging, optimality is generally preferred for 

NCS which is very difficult to attain. Lian et al. (2002) proposed the optimal controller 
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design by using classical optimal control theory (Lewis and Syrmos, 1995) for NCS with 

multiple constant delays embedded into the NCS representation. Using the stochastic 

optimal control theory (Stengel, 1986; Bertsekas and Shreve, 1978; Åstrom, 1970), 

Nilsson et al. (1998) proposed the optimal and suboptimal controller designs for linear 

NCS with random delays. Although these optimal and suboptimal controller designs have 

resulted in satisfactory performance, they all require information about the system NCS 

dynamics and information on delays and packet losses which are not known beforehand. 

On the other hand, adaptive dynamic programming (ADP) schemes proposed by 

Werbos (1991), Watkins (1989), intend to solve optimal control problems forward-in-

time by using value and policy iterations. There are four techniques in ADP (i.e. heuristic 

dynamic programming (HDP), action dependent HDP (ADHDP), dual heuristic 

programming (DHP) and action dependent DHP (ADDHP)), but they all require policy 

and value iterations.  

Al-Tamimi, Lewis and Abu-Khalaf (2007) used the Q-learning policy iteration 

method to solve the optimal strategies for linear discrete-time system quadratic zero-sum 

games in forward-in-time without requiring the system dynamics wherein the system 

dynamics are defined as constant matrices. It is important to note that policy and value 

iteration-based schemes are difficult to implement on hardware (Dierks et al., 2009) since 

it is not clear how to select the number of iterations required for convergence and 

stability while keeping the hardware constraints. Inadequate number of policy and value 

iterations can result in instability (Dierks et al., 2009). Therefore, Dierks and Jagannathan 

(2009) used two time-based neural networks (NN) to solve the Hamilton-Jacobi-Bellman 

(HJB) equation forward-in-time for the optimal control of a class of general nonlinear 
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affine discrete-time systems without using policy or value iterations. However, these 

papers did not consider the effects of delays and packet losses which are normally found 

in a NCS.  The delays and packet losses cause instability (Zhang et al., 2001) if they are 

not considered carefully which in turn make the optimal controller design more involved 

and different than (Al-Tamimi et al., 2007; Zhang et al., 2009).    

Thus, this paper introduces ADHDP technique for the optimal and suboptimal 

control of linear NCS with uncertain system dynamics and in the presence of unknown 

random network-induced delays and packet losses.  In other words, first a linear NCS 

with random delays and packet losses will be represented by a time-varying linear system 

with unknown system matrices. The suboptimal approach in (Al-Tamimi et al., 2007; 

Zhang et al., 2009) is not directly applicable to the NCS due to the inclusion of network 

imperfections such as these delays and packet losses. 

A novel approach is undertaken to the optimal regulation of linear NCS with 

random delays and packet losses to solve the Bellman equation (Wonham, 1968) online 

and forward-in-time without using policy and value iterations. Using an initial stabilizing 

control, an adaptive estimator (AE) (Franklin et al., 1994) is tuned online to learn the 

stochastic cost function without needing to solve the stochastic Riccati equation (SRE). 

Then, using the idea of Q-learning, the optimal controller which minimizes the stochastic 

cost function can be calculated based on the information provided by the AE. Thus the 

proposed AE-based scheme relaxes the requirements for system dynamics and 

information on random delay and packet losses. Next, the suboptimal controller design is 

derived based on NCS representation that is obtained by using certainty equivalence 
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property. For the suboptimal control, linear NCS is modeled as a time-invariant system 

with unknown matrices. The suboptimal controller reduces computational complexity. 

This paper is organized as follows. First, NCS background representation is given 

in Section 2. In Section 3, the stochastic optimal and suboptimal regulation controls of 

NCS are introduced. Section 4 illustrates the effectiveness of proposed schemes via 

numerical simulations, and Section 5 provides concluding remarks. 

2. Background 

The basic structure of NCS considered in this paper is shown as Figure 1 where 

the feedback control loop is closed over a wireless network. Since wireless network 

bandwidth is limited, two types of network-induced delays and one type of packet losses 

are included in this structure: (1)  tsc : sensor-to-controller delay, (2)  tca : controller-

to-actuator delay, and (3)  t : indicator of packet received. 

The following assumption is needed similar to other works (Liou and Ray, 1991; 

Hu and Zhu, 2003): 

PlantActuator Sensor

Delay

And

Packet losses

Controller

Delay

And

Packet losses

Wireless Network

intervalSampling:
s

T

)(tca

)(t

)(tsc

)(t

 

Fig 1. Networked Control System (NCS) 
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Assumption 1: 

a). Sensor is time-driven while the controller and actuator are event-driven (Hu 

and Zhu, 2003). 

b). The communication network considered is a wide area wireless network so 

that the two types of network-induced delays are independent, ergodic and unknown 

whereas their probability distribution functions are considered known (Liou and Ray, 

1991; Hu and Zhu, 2003; Goldsmith, 2003). 

c). The sum of the two delay types is bounded (Liou and Ray, 1991) while the 

initial state of linear system is deterministic (Hu and Zhu, 2003). 

A linear time-invariant system )()()( tButAxtx  is considered. However, 

considering the effects of network-induced delays and packet losses, the original 

controlled plant can be expressed as 

                                ))(()()()( ttButtAxtx                                                  (1) 

where









    at timelost  isinput  control  theif        

 at time received isinput  control  theif   
)(

t

t
t

nn

nn

0

Ι
 ,              

  and              representing system matrices.  From Assumption 1, we can 

assume that the sum of network-induced delays is bounded above i.e. 

scasc Tdttt  )()()(  where d represents the delay bound while sT is the sampling 

interval.  

During a sampling interval kTkkT ss     ))1(,[ , the controller input )(tu to the plant 

is a piecewise constant. According to Assumption 1, there are at most d current and 

previous control input values that can be received at the actuator. If several control inputs 

are received at the same time, only the newest control input is allowed to act on the 
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controlled plant during any sampling interval kTkkT ss     ))1(,[ , and other previous 

control inputs are deduced. Since controller is event driven, the plant will implement 

control input at these time instant ditkT k

is ,...,1,0,  and
k

i

k

i
tt

1
 where iTt k

i

k

i  as 

illustrated in Figure 2 (Liou and Ray, 1991). 

sTdk )3(  sTdk )2(  sTdk )1( 
sTdk )(  sTk )1(  skT sTk )1( 

kkk

d

k

d
tttt 011

,,..,,


Time axis notation:

1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted

3. Bottom line: Actuator received control action




 

Fig 2. Timing diagram of signals in NCS. 

 

     For the event driven controller, the control input becomes ku in response to the 

sensor signal kx .  Integration of (1) over a sampling interval kTkkT ss     ))1(,[ yields 
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Using (2), a new augment state variable vector consisting of current state and past 

inputs,   TT

dk

T

k

T

kk
uuxz


 

1
       , is defined such that (2) can be expressed as  

                                  kzkkzkk uBzAz 1                                                              (3) 

where the time-varying system matrices are given by 
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In this paper, we derive the optimal controller to minimize the stochastic cost 

function 

                     ,...2,1,0         
,
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where S and R are symmetric positive semi-definite and symmetric positive 

definite constant matrices respectively and  
 ,

E is the expected operator (in this case the 

mean value) of   


km
m

T

mm

T

m RuuSxx based on the random network-induced delays and 

packet losses. After redefining the augment state vector kz , original stochastic cost 

function, (4) can be expressed as 
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where
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, and R
d
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1
 . 

Note the matrices
zS and

zR are still symmetric positive semi-definite and 

symmetric positive definite respectively. 

Remark 1: if 1d , then the overall network-induced delay (sum of the two 

delays) is less than a sampling interval. Then stochastic optimal and suboptimal designs 

for known NCS system dynamics can be found in (Nilsson et al., 1998). 

3.  Optimal and Suboptimal Regulator Design 

In this section, the idea of Q-learning (Watkins, 1989) and concept of AE are 

utilized to develop the stochastic optimal and suboptimal control designs for NCS with 

unknown linear time-varying dynamics in the presence of unknown random delays and 

packet losses. In Section 3.1, a novel stochastic optimal control will be formulated for the 

NCS. First, Q-function is set up for NCS with random delays and packet losses. Second, 

model-free online tuning of the parameters based on AE and Q-learning algorithm will be 

proposed. Eventually the convergence proof is given. Subsequently, stochastic 

suboptimal control is proposed in Section 3.2. 

3.1.  Optimal Control 

In this section, stochastic optimal control of NCS is obtained without knowledge 

of system dynamics and wireless network imperfections. First, NCS dynamics (3) with 

random delays and packet losses is used. It is important to note when time-varying NCS 

dynamics zkzk BA , are known, the stochastic optimal control can be obtained by solving 
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Stochastic Ricatti Equation (SRE) in backward-in-time manner. However, in practice 

random delays and packet losses will affect the dynamics zkzk BA , which makes the 

dynamics uncertain. Therefore, a novel Q-function approach is introduced to overcome 

this drawback but this cost function is not known before hand. Consequently, a novel AE 

is proposed to learn this  Q  function online. Eventually, even when NCS dynamics

zkzk BA , , random delays and packet losses are unknown, stochastic optimal control still 

can be obtained in terms of estimated Q-function in a forward-in-time manner without 

using value and policy iterations in contrast with existing Q-function based ADP schemes 

where value and policy iterations are needed. Next the Q-function setup is described. 

3.1.1. Q-function Setup 

      Consider the NCS in the presence of practical random delays and packet losses 

described by (3) as kzkkzkk uBzAz 1 where 
MFzk BB   (Note

F
 denotes the Frobenius 

norm and
MB is the Frobenius norm bound of zkB ). Given the unique equilibrium point at 

0z  for the NCS system on a set , assume that the states are considered measurable. 

According to these conditions, the stochastic optimal control input which minimizes the 

cost function kJ  (5) for NCS system (3) can be derived as kkk zKu * with kK being the 

optimal gain and
*

ku being the control input. According to the optimal control theory 

(Lewis and Syrmos, 1995), the stochastic cost function can be represented as 

                                      kk

T

kk zPzEJ
 ,

                                                                (6) 

where 0kP is the solution to the SRE (Wonham, 1968). The optimal action dependent 

value function or simply Q-function denoted as  Q of NCS is defined in terms of 

expected value as 
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where kz

T

kkz

T

kkk uRuzSzuzr ),( . It is important to note that the matrix kH is time-

varying as opposed to the one defined for stochastic suboptimal control in the next 

section. Since the stochastic optimal control,
 

*

ku , is dependent on state kz which is known 

at time k , Q-function can be expressed as       TT

k

T

kk

T

k

T

kkk zuzHEzuzuzQ ])[(][,
,

 . Then 

using Bellman equation (Lewis and Syrmos, 1995) and stochastic cost function 

definition, the following equation can be formulated by applying Q-function (7) as 
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Therefore  kHE
 ,

can be written in terms of the system matrices and solution to the 

SRE as 
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                                  (9) 

The optimal action dependent value function  kk uzQ , is equal to stochastic cost 

function kJ . Therefore, we have 

                                              kkk uzQJ ,                                                        (10) 
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Then using (9) and stochastic control theory (Stengel, 1986), the optimal time-

varying gain can be expressed in terms of kH as 

                uz

k

uu

kzkk

T

zkzkk

T

zkzk HHAPBEBPBERK
1

1
,

1

1
,

)()]([






 


                      (11) 

Remark 2: According to (11), if the solution to the SRE,
 1kP is known, then the 

time-varying system matrices zkzk BA , are still required to compute the controller gains in a 

backward-in-time manner. On the other hand, if time varying matrix kH can be learned 

online at time k without the knowledge of linear time-varying system dynamics, optimal 

controller gain can be solved not only without NCS system matrices, but also forward-in-

time. 

3.1.2. Model-free Online Tuning based on Adaptive Estimator and Q-Learning 

The proposed online tuning approach entails one AE which is used to learn Q-

function. Since Q-function include kH matrix, this matrix can be solved online and the 

control signal can be obtained using (11). We make the following assumption (Middleton 

and Goodwin, 1988) since the NCS is linear, the delays of NCS are bounded above, 

packet losses satisfy the Bernoulli distribution and the delays and packet losses change 

slowly (Goldsmith, 2003). 

Assumption 2: The Q-function,
 
 kk uzQ , , can be expressed as the linear in the 

unknown parameters (LIP).  

By using the stochastic adaptive control theory (Jagannathan, 2006) and the 

definition of Q-function (7),  kk uzQ , can be represented in vector form similar to the AE 

representation as 
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                                             k

T

kkk

T

kkk whwHwuzQ ,                                     (12) 

where    k

T

k

TT

kkkk wzuzwHvech ,)]([,             , and ,...,( 2

1kk ww 

),,...,, 2

1

2

21 klklklkklk wwwwww  is the Kronecker product quadratic polynomial stochastic 

independent basis vector and  kk Hvech  with the vector function acting on ll  matrices 

thus yielding a   121 ll column vector (Note: the  vec function is constructed by 

stacking the columns of the matrix into one column vector with the off-diagonal elements 

which can be combined as nmmn HH  ). 

The time-varying matrix kH can be considered as slowly varying (Middleton and 

Goodwin, 1988). Then Q-function can be expressed as unknown time-varying target 

parameter vector and the regression function kw . Next, the Q-function ,( kzQ )ku

estimation will be considered. 

3.1.3. Q-function Estimation for Optimal Regulator Design  

The Q-learning was originally proposed in (Watkins, 1989; Werbos, 1992) to 

solve the optimal control problems for time-invariant systems by using policy or value 

iterations. Here, the Q-function scheme is extended to time-varying linear systems 

without using iterative approach. According to the definition of Q-function and 

relationship between Q-function and stochastic cost function (10), the relationship 

between kH  matrix in (9) and the stochastic cost function is given as 

                                        k

T

kkk

T

kk whwHwJ                                                   (13) 

Then Q-function  kk uzQ , can be approximated by an AE as 

                                              k

T

kkk whuzQ
ˆ

,ˆ                                                       (14) 
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where T

kh
ˆ

is the estimate value of  the target parameter vector T

kh with regressor satisfying

0kw for 0kz . 

It is observed that Bellman Equation can be rewritten as   0,1  kkkk uzrJJ . 

This relationship, however, is not guaranteed to hold when the estimated matrix
kĤ is 

applied. Hence, using delayed values for convenience, the residual error, hke , associated 

with (14) can be expressed as   hkkkkk euzrJJ   111 ,ˆˆ , i.e. 
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                                      (15) 

where 11   kkk wwW
. 

The residual dynamics in (15) are then rewritten as 

                                         k

T

kkkhk Whuzre   11

ˆ
,                                            (16) 

Next, we define an auxiliary residual error vector as 

                                       11

ˆ
k

T

kkhk h                                               (17) 

where ]),(),(),([ 1122111 jkikkkkkk uzruzruzr    and

jkkkk WWW   1211 [  10,]  kj   with   being the set of positive 

natural numbers. It is important to note that (17) indicates a time history of the previous

1j residual errors (15) recalculated by using the most recent kh
ˆ

. 

The dynamics of the auxiliary vector (17) are generated similar to (16) and 

revealed to be 
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                                          k

T

kkhk h   11

ˆ
                                                   (18) 

Now define the update law of the time-varying matrix kH as 

                                        T

k

T

hkhk

T

kkkh 


 
1

1

ˆ
                                    (19) 

where 10  h . Substituting (19) into (18) results 

                                                 hkhhk   1                                                     (20) 

It is observed that the stochastic cost function kJ and AE (14) will become zero 

only when 0kz . Hence, when the system states have converged to zero, the Q-function 

approximation is no longer updated. It can be seen as a persistency of excitation (PE) 

requirement for the inputs to the Q-function estimator wherein the system states must be 

persistently exiting long enough for the AE to learn the stochastic cost function. In this 

paper, exploration noises are added to satisfy the PE condition. 

Definition 1: (Persistence of Excitation) A stochastic vector k   is said to be 

persistency exciting if there exist positive constants  , and 10 k , such that 

                                              
I
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kk
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kkE
 

where I is identity matrix,  E is the mean value of  . 

Lemma 1: The vector kW  in (15) and k satisfy the persistently exciting 

condition with exploration noise. 

Proof: Refer to the Appendix. 



 

 

26 

 Now define the parameter estimation error to be kkk hhh
ˆ~

  . Rewrite Bellman 

Equation using the target AE representation (13) revealing   111 ,   k

T

kkkk

T

k whuzrwh

which can be expressed as 

                                  k

T

kk

T

kk

T

kkk Whwhwhuzr   1111,                                (21) 

Substituting  kk uzr , into (16) and utilizing (15) with hkhhk ee 1 from (20) yields 

                                   1111

ˆ
,

~
  k

T

khkkhk

T

k WhuzrWh                                (22) 

Similar to  kk uzr , , we define ,( 1kzr
11)   k

T

kk Whu , and substitute this 

expression into (22), to get 

                                               11

~~
  k

T

khk

T

k WhWh                                             (23) 

Next, the convergence of the stochastic cost function estimation error with 

adaptive estimation error dynamics kh
~

given by (23) is demonstrated for an initial 

admissible control policy. The linear NCS time varying system dynamics are shown to be 

asymptotically stable in the mean if an initial admissible control policy can be applied 

provided the system matrices are known. However, introducing the estimated Q-function 

results in estimation errors for the stochastic cost function kJ , and stability of the 

estimated stochastic cost function needs to be studied.  Subsequently, the results of 

Theorem 1 will be used for proving the overall closed-loop system stability in Theorem 2 

by using an initial admission control policy. In order to proceed, the following definition 

is needed before presenting the theorem. 
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Definition 2: (Asymptotic stability) An equilibrium point ex is said to be 

asymptotically stable (AS) if there exists a set S   such that, for every initial condition

S0x , one has 0 ek xx as k . In other words, the state kx converges to ex . 

Theorem 1: (Asymptotic Stability of the Cost AE Errors). Given the initial 

conditions for the AE parameter vectors 0

ˆ
h be bounded in the set S , let  kzu0 be an initial 

admissible control policy for the linear NCS (3). Let the AE parameter update law be 

given by (19). Then, there exists a positive constant h satisfying 10  h such that the 

adaptive parameter estimator errors converge to zero asymptotically. 

Proof: Consider the positive definite Lyapunov candidate 

                                            
2
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(  k
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kkJ WhhV                                               (24) 

The first difference is given by
2

1

2

1 )
~
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(   kkkkkJ WhWhhV , and using (23) 

yields 
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(   kkhkkkkhkJ WhWhWhhV             (25) 

Since )
~

( kJ hV is positive definite and )
~

( kJ hV is negative definite (due to PE 

condition; Lemma 1) provided h is selected as above. Therefore, the parameter errors 

converge to zero asymptotically. This implies that
kk JJ ˆ and 0

~
kh when k .  

 Next, we show that the estimated control input based on this estimated matrix 

will indeed converge to the optimal control input. 

3.1.4. Estimation of the Optimal Feedback Control Signal 

There are two ways to estimate the optimal control signal for regulating the NCS. 

One is based on time-varying matrix kH , and the other one is based on standard optimal 
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control theory by minimizing the stochastic cost function. The difference being that the 

latter method requires the system dynamics and it solves the optimal controller backward. 

However, it is shown here that ultimately both are equivalent and therefore are used in 

the proofs. 

Method I: As mentioned before, the time-varying matrix kH can be estimated by 

using an AE. According to Q-learning and equation (11), the estimated optimal control 

input for NCS can be expressed by using the adaptive estimation of kH as 

                                   k

uz

k

uu

kkkk zHHzKu ˆ)ˆ(ˆˆ 1

1

                                           (26) 

Method II: Alternatively, the estimated optimal control signal which minimizes 

the estimated stochastic cost function (13) with the adaptive estimator (AE) kĤ  as 
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where 

                                    111
,

111
,

1
ˆˆˆ

  kk

T

kkk

T

kk zPzEwHwEJ


                             (28) 

Next, it will be shown that the optimal control input obtained by method I and II 

are equivalent. 

Lemma 2: The optimal control obtained using the estimated value of  kk uzQ , is 

same as the optimal control calculated by minimizing the stochastic cost function kJ , i.e. 

kk uu 21
ˆˆ  . 

Proof: Refer to the Appendix. 

Since the equality proven in this lemma is in both ways and noting the drawback 

of second method, we use the first method to solve the optimal controller design for NCS. 
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However, we will use the Lemma 1 to complete the convergence proof since they are 

equivalent. Next, the stability of the cost estimation, control estimation, and adaptive 

estimation error dynamics are considered. 

3.1.5. Closed-loop System Stability 

In this section, it will be shown that time-varying kH matrix and related stochastic 

cost function estimation errors dynamics are asymptotically stable in the mean. Further, 

the estimated control input for NCS (26) will approach the optimal control signal 

asymptotically. Before introducing the theorem on system stability, we present the block 

diagram in Figure 3 for the proposed stochastic optimal regulator of linear NCS with 

unknown system dynamics. 
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Fig 3. Stochastic optimal regulator block diagram 

 

Next, the initial system states are considered to reside in the same set as that of 

the initial stabilizing control input ku0 . Further sufficient condition for the AE tuning gain
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h is derived to ensure the all future states will converge to zero. Then it can be shown 

that the actual control input approaches the optimal control asymptotically. 

Before the convergence proof, the following result is needed to establish bounds 

on the optimal closed loop dynamics when the optimal control is applied to the NCS (3) 

with random delays and packet losses. 

Lemma 3: There exists an admissible control policy be applied to the NCS (3) 

such that the system dynamics kzkkzk uBzA  are bounded above with the bounds satisfying  

                                        
2*2

kkzkkzk zkuBzA 
                                           

 (29) 

where 210 *  k is a constant.  

Proof:  Consider the Lyapunov function candidate 

                                                   k

T

kkD zzzV                                                      (30) 

whose first difference of  kD zV is given by   k

T

kk

T

kkD zzzzzV   11 . Note that 

since ku is an admissible control policy, it follows from the definition of admissible 

control that the NCS dynamics (3) with optimal control applied are asymptotically stable 

in the mean, and the sequence  ,...,2,1   , kzk monotonically decreases until it reaches 

zero. This result directly implies that 011  k

T

kk

T

k zzzz or   0 kD zV . Using the fact

  0 kD zV , it is clear that k

T

kk

T

k zzzz  11 . Substituting the system dynamics

kzkkzkk uBzAz 1 yields 

                      
0

0)()()(
22
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kkzkkzk
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kzkkzkkD
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zzuBzAuBzAzV
                 (31) 
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Next, we must identify a bound on
kzkkzk uBzA  which guarantees the sufficient 

condition   0 kD zV  for stability is still met. Selecting the bound shown in optimal 

control policy, (38) reveals    *1 kzV kD  0k

T

k zz as required. 

Theorem 2 (Convergence of the Optimal Control Signal): Given the initial 

conditions for the system state 0z , cost function and AE parameter vectors 0

ˆ
h be bounded 

in the set S , let ku0 be any initial admissible control policy for the NCS (3) with random 

delays and packet losses satisfying the bounds given by (29) for 2/10  k . Let the AE 

parameter be tuned and estimation control policy be provided by (12) and (26) 

respectively. Then, there exist positive constants h  given by Theorem 1 such that the 

system states kz and stochastic cost function parameter estimator errors kh
~

are all 

asymptotically stable in the mean. In other words, as 0,  kzk , kkk JJh  ˆ,0
~

 and

*

1

*

2
ˆ,ˆ

kkkk uuuu  .  

Proof: Refer to the Appendix. 

Remark 3: It is important to note that when the delay bound is increased in NCS, 

the dimension of augmented state kz increases and computational complexity also goes 

up due to the presence of the communication network within the control loop.  While the 

recent embedded processors can handle the computational complexity to some extent, the 

delay bound due to the network phenomenon can be reduced by a suitable design of 

networking protocols, which is relegated as part of future effort. In the next subsection, 

suboptimal control scheme is presented in order to reduce the computational complexity 

of the controller. 
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3.2.  Suboptimal Control 

In the previous section, a new stochastic optimal control policy for NCS is 

introduced. It is important to note that if the linear system is time-varying, no steady-state 

solution to the Riccati equation (Lewis and Syrmos, 1996) can be found in general.  

Therefore, in this section the stochastic suboptimal control is introduced based on 

certainty equivalence property (Maybeck 1982; Hespanha et. al. 2007). Although, the 

performance of stochastic suboptimal control is not same as that of stochastic optimal 

control, computational complexity is reduced significantly due to constant feedback 

control gains without too much loss in performance from the optimality.     

 By using certainty equivalence property and random process (Papoulis, 1991), 

the NCS dynamics (3) can be approximated as a deterministic system as 

                                               kzkzk uBzAz 1                                           
      (32) 
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It is important to note that the system matrices zA and zB in (32) are deterministic. 

Suboptimal control can be obtained by solving algebraic Riccati Equation (ARE) for the 

known certainty equivalence deterministic NCS representation. However, due to 
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unknown network imperfections, the system matrices are still unknown. In this section, 

suboptimal controller is obtained based on AE proposed in Section 3.1 and Q-learning 

without requiring
zA and

zB . 

3.2.1. Q-function Setup for Suboptimal Control of NCS 

Based on linear optimal control theory (Lewis and Syrmos, 1995), stochastic cost 

function of (32) can be expressed as k

T

kk PzzJ  where 0P  satisfies the ARE. Then, 

applying the Q-learning method (Watkins, 1989; Al-Tamimi, Lewis et al., 2007), 

stochastic suboptimal control can be formulated without knowing NCS system dynamics 

(32) but with policy iteration. In this part, we extend the Q-learning to certainty 

equivalence deterministic NCS representation given by (32) without using the iterative 

approach. 

The optimal action dependent value function  Q of certainty equivalence 

deterministic NCS during sampling interval ))1(,[ ss TkkT  can be defined as 
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where H is the constant matrix associated with P which is a solution of the ARE. 

The relationship between P and the H can be written as 
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Therefore, based on optimal control theory (Lewis and Syrmos, 1995), optimal 

controller gain can be expressed in terms of H as 

                                    uzuuz

T

zz

T

zz HHPABPBBRK
11 

                               (34) 

Thus, if the matrix H is known, the NCS system dynamics (32) are not needed to 

calculate the suboptimal controller gain. According to ADP-based value iteration 

approach (Al-Tamimi et al., 2007), the )(Q function and H matrix can be learned at every 

sampling interval iteratively provided the number of iterations are large. In addition, in 

many cases a simulator or a model is needed to obtain the states in order to perform 

iterations which are not impossible in the case of NCS. Therefore, in this paper, the AE is 

tuned to learn )(Q and H matrix online and subsequently utilized to calculate the 

suboptimal gain (34).  This control input is then applied to the certainty equivalence NCS 

(32). Next, the suboptimal controller design is introduced. 

3.2.2. Adaptive Estimation of Q-function  

First, based on adaptive estimation used in stochastic optimal control (Section 

3.1), we define the Q-function for the NCS (32) as 

                                            k

T

k

T

kkk whHwwuzQ ,
                  

                      (35) 

while the adaptive estimation of Q-function (35) can be expressed as 

                                           k

T

kkk

T

kkk whwHwuzQ ˆˆ,ˆ                                         (36) 
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where the augment state    k

TT

k

T

kk wuzw ,           , ,,,...,( 2

21

2

1 kklkkk wwwww 

),..., 2

1 klklkl www  which is nothing but the Kronecker product quadratic polynomial 

stochastic indepent basis vector, and  Hvech  . 

Using the adaptive estimation algorithm that is proposed as part of stochastic 

optimal control in Section 3.1, the update law of estimated H matrix can be written as 

                                            T

k

T

khk

T

kkkh 


 
1

1
ˆ                                   (37) 

where 10  h , kk  andW are defined in equation (19), k is an auxiliary 

residual error vector with residual error ke is defined as 

                                              k

T

kkkk Whuzre   11
ˆ,                                          (38) 

Based on Theorem 1, the parameter errors kk hhh ˆ~
 converge to zero 

asymptotically. This implies that    kkkkkk uzQuzQJJ ,,ˆ,ˆ  and 0
~
kh when k . 

Next, with the estimated H matrix and equation (34), stochastic suboptimal control 

can be obtained as 

                                             k

uz

k

uu

kk zHHu ˆ)ˆ(ˆ 1                                               (39) 

3.2.3. Closed-loop System Stability for Suboptimal Control 

In this section, it will be shown that matrix H and related stochastic suboptimal 

cost function estimation errors dynamics are asymptotically stable in the mean. Further, 

the estimated control input for NCS (32) will approach the suboptimal control signal 

asymptotically in the mean. 

Theorem 3 (Convergence of the Suboptimal Control Signal): Given the initial 

system conditions for the system state 0z , cost function and AE parameter vectors 0ĥ  be 
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bounded in the set S , let
ku0
be any initial admissible control policy for the NCS (32) with 

bounds given by
2*2

kkzkz zkuBzA  and *0 k 21 . Let the AE parameter be tuned 

and estimation control policy be provided by (37) and (39) respectively. Then, there exist 

positive constants s such that the system states kz and stochastic suboptimal cost function 

parameter estimator errors kh
~

are all asymptotically stable in the mean. In other words, as

0,  kzk ,
kkk JJh  ˆ,0

~
 and *ˆ

kk uu  .  

Proof: Refer to the Appendix. 

 The performance of this suboptimal control design (37) and (39) with adaptive 

estimation algorithm will be shown to be close in comparison (Nilsson et al., 1998) to a 

tradition suboptimal control with known NCS system dynamics even though no 

knowledge of NCS system dynamics are required here. Although controller derived based 

on certainty equivalence deterministic NCS representation (32) is suboptimal, it is still of 

a great practical interest (Hespanha, et. al. 2007).  

4.   Simulation Results 

In this section, stochastic suboptimal and optimal control of NCS is evaluated. At 

the same time, the standard suboptimal and optimal control of NCS with known 

dynamics and network imperfections is also simulated for comparison. 

Example: The continuous-time version of a batch reactor system dynamics are 

given by (Carnevale et al. 2007) 
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where x     and u     . It is important to note that this example has 

developed over the years as a benchmark example for NCS, see e.g., (Carnevale et al. 

2007; Walsh et al. 1999). 

The parameters of this NCS are selected as 

1. The sampling time: msTs 100 ; 

2. The bound of delays is two, i.e. 2d ; 

3. The mean random delay values are   ,80msE sc     msE 150 ; 

4. Packet losses follow Bernoulli distribution with 3.0p . 

The distribution of random delays between the sensor and actuator are shown in 

Figure 4 and the packet losses are shown in Figure 5. In order to incorporate the random 

delays  t and packet losses  t  to the batch reactor (40), the original time-invariant 

system (40) was discretized and represented as a time-varying linear NCS given by (3) in 

Section 2. For instance, when 20k , sec2t , msms 168,170 1920   , 18 ms121 , 

1,1 1920   , 1and 18  , the NCS dynamics can be calculated based on (3) as 
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when sec5,50  tk , ,15050 ms  
 

,15249 ms  48 ms145 , 1,1 4950  
 

0and 48  , the NCS dynamics become 
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Fig 4. The distribution of random delays in NCS: (a) delay between sensor and controller

sc ; (b) delay in total NCS . 

 

Fig 5. The distribution of packet losses (“1” means packet received, “0” means packet 

lost). 
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On the other hand, certainty equivalence deterministic NCS representation (32) 

can be calculated based on information of Batch reactor dynamics (61) and network 

imperfections (i.e. networked-induce delay and packet losses) as 
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Fig 6. Performance of conventional stochastic optimal controller. 
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Fig7. State regulation errors of ADP value iteration (VI) controller when random delays 

and packet losses are present. 

 

First, Figure 6 indicates that the stochastic optimal control of NCS with known 

dynamics and information of network imperfections (e.g. random delays and packet 

losses) obtained by solving the SRE backward-in-time. The controllers can make the state 

regulation errors converge to zero while ensuring the NCS stable in the mean when the 

delays and packet losses are accurately known. 
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Fig 8. Performance of suboptimal and optimal controller for NCS with unknown 

dynamics: (a) State regulation errors with AE-based optimal control; (b) Comparison of 

system costs with AE-based optimal and suboptimal controllers. 
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 is designed by using policy iteration scheme. 

This ADP VI controller though does not require system dynamics cannot maintain batch 

reactor system stable in the mean in the presence of random delays and packet losses as 

shown in Figure 7.  

0 4 8 12 16 20
-20

-10

0

10

20

30

Time (Sec) (a)

R
e

g
u

la
ti

o
n

 E
rr

o
r 

V
a

lu
e

s

 

 

e1

e2

e3

e4

0 5 10 15 20
0

2000

4000

6000

8000

10000

12000

14000

Time (Sec) (b)

S
y

s
te

m
 T

o
ta

l 
C

o
s

ts
 J

(k
)

 

 

AE-based Optimal Control

AE-based Suboptimal Control



 

 

42 

Finally, the proposed adaptive stochastic optimal and stochastic suboptimal 

controller designs are implemented for the NCS with unknown system dynamics in 

presence of random delays and packet losses. The augment state kz is generated as

 

T

kkkk uuxz ][ 21     or  ][ uzw      . The initial stabilizing policy for the 

algorithm was selected as kk zzu 













51.003.068.002.061.293.208.065.1

02.014.001.025.007.111.077.088.0
)(0

while the regression function for Q-function was generated as 

 2

10

2

9

2

23121

2

1 ,...,,...,,...,,, wwwwwwww  as per (24). 

The design parameter for Q-function ),( kk uzQ was selected as 610h  while 

initial parameters for the AE were set to zero at the beginning of the simulation. The 

initial parameters of the action control network were chosen to reflect the initial 

stabilizing control. The simulation was run for 200 times steps, and for the first 50 times 

steps, exploration noise with mean zero and variance 0.006 was added to the system at 

odd time steps and exploration noise with mean zero and variance 0.003 was added to the 

system at even time steps in order to ensure the persistency of excitation (PE) condition 

holds (Lemma 1). 

In Figure 8 and 9, the performance of proposed AE-based optimal controller is 

evaluated. As shown in Figure 8(a), the proposed AE-based optimal controller can also 

make the NCS state regulation errors converge to zero even when the NCS dynamics are 

unknown which implies that the proposed controller can make the NCS closed-loop 

system stable in the mean. The cost-to-go function of proposed optimal and suboptimal 

controllers is compared in Figure 8(b) where the proposed AE-based optimal controller 



 

 

43 

can minimize the cost-to-go ( ])([
,
 


km
mz

T

mmz

T

mk uRuzQzEJ


) function more than proposed 

suboptimal controller based on certainty equivalence deterministic NCS model.  

 

 

 Fig 9. Comparison of control inputs with stochastic optimal and suboptimal controllers
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This clearly shows that the proposed AE-based optimal controller is more 

effective than suboptimal control based on certainty equivalence deterministic NCS 

representation. Now in Figure 9(a) (b), the control inputs of proposed AE-based optimal 

and suboptimal controllers are compared. The proposed AE-based optimal controller can 

force the NCS states converge to zero quicker than suboptimal control based on certainty 

equivalence deterministic NCS model. The proposed suboptimal controller has a smaller 

overshoot initially when compared to stochastic optimal controller. 

According to the above results (Figures 6 through 9), the performance of 

proposed AE-based stochastic optimal and suboptimal controllers nearly has the same 

performance of stochastic optimal/suboptimal control with known system dynamics and 

wireless imperfections. The slightly higher overshoot observed at the beginning for the 

proposed optimal/suboptimal controller is due to an initial online learning phase needed 

to tune the optimal/suboptimal controller. After a short time, proposed AE-based 

stochastic optimal and suboptimal controllers will have similar performance even when 

NCS system dynamics and wireless imperfections are unknown. 

5.   Conclusions 

In this work, we proposed an online adaptive dynamic programming technique 

based on AE to solve the stochastic optimal and suboptimal regulation control of NCS 

with uncertain dynamics in presence of unknown random delays and packet losses.  

The availability of past state values ensure that NCS system dynamics were not 

needed when an AE generates an estimated Q-function and a novel stochastic optimal 

control law based on the estimation of  kk uzQ , . An initial admissible control policy 

ensures that the system is stable in the mean while the AE learns Q-function  kk uzQ , and 
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the matrix kH , stochastic cost function and optimal control signal. All AE parameters 

were tuned online using proposed update law and Lyapunov theory demonstrated the 

asymptotic stability of overall closed-loop system. 
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Appendix 

Proof for Lemma 1. The exploration noise vector which obeys normal 

distribution with variances changing over time is added (i.e. ~pe
n       

   ). 

For given positive constant and 10 k , exploration noise vectors can be added to 

system, in turn vector kw is as 

                           ,...,...,  )()]([ 00  kkkzuzw Tpe
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where  )](...)2()1([ lnnn pe
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kn             is a row vector and )(in pe

k

represent ith scalar element in the row vector.Without loss of generality, the Kronecker 

product quadratic polynomial stochastic independent basis vector
kw can be expressed

T

kkkkkkk lwlwlwwwww )](),()1(),...,2()1(),1([ 22  . Since the exploration noise obeys 

the normal distribution with zero mean and is independent over time, and also 

independent with vector kwk  . We have  
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According to the definition of k
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where pe

kn are the Kronecker product quadratic polynomial stochastic indepdent 

basis vector based on exploration noise vector pe

kn , and lI is ll  identity matrix. 
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In the other words, 
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where 0
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k . Therefore, when exploration noise is added to the 

polynomial stochastic independent basis vector kW , the PE condition is satisfied. 

On the other hand, based on the definition of k , we have 
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jkkkk   ,...,,min 1 and 
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k
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k . Therefore, the PE condition of

k is also satisfied. 

Proof for Lemma 2. Using the Bellman equation and Q-learning with estimated 

stochastic cost function and matrix kH , we have 
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Now consider (A.6) and  

1) The left part of (A.6) can be expressed as 
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2) The right side of (A.6) can be shown as 
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According to the estimation optimal control law (11), we have
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At the same time, according to the optimal control theory (Lewis and Syrmos, 

1995) and (22) we know
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11  kk zP . Therefore, we can minimize of the 

stochastic cost function to get the optimal control as 
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The term ku2
ˆ can be solved by (15) as 
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According to (A.11) and (A.13), we have 
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Therefore, 0ˆˆ~
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uuu since

kk
uu
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ˆˆ  . 

Proof for Theorem 2. Consider the following positive definite Lyapunov 

function candidate 
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The first difference of (A.15) can be expressed as   )
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Next, considering the first part   k

T

kk

T

kkD zzzzzV   11 and applying the NCS and 

Cauchy-Schwartz inequality reveals 
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Applying the Lemma 3 (bounds on the optimal closed loop system in (29)) and 

recalling kk uu 21
ˆˆ  from Lemma 1 and (A.14), we know 
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Therefore,  kD zV is expressed in terms as the adaptive estimator (AE) error 

dynamics of the matrix kH and the relationship between   kkk huzQ
~

,, and kJ
~

, (A.18) 

revealing 
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At final step, combining the equation (A.18) and (A.20), we have 
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Since 2/10  k and 10  h , V is negative definite (See Lemma 1 on PE 

condition) and V is positive definite. Note that  
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Proof for Theorem 3. Consider the Lyapunov function candidate as  
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Now considering   k
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D zzzzzV   11 and deploying the NCS (32) and 

applying Cauchy-Schwartz inequality reveals 
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By using Q-learning, we know 
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Therefore, the first difference of (A.22), SV , can be given as 
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Since 2/10  k and 10  s , V is negative definite and V is positive definite. 
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PAPER II 

STOCHASTIC OPTIMAL DESIGN FOR UNKNOWN LINEAR DISCRETE-

TIME SYSTEM ZERO-SUM GAMES UNDER COMMUNICATION 

CONSTRAINTS  

H. Xu and S. Jagannathan 

 

Abstract - In this paper, stochastic optimal control strategy for unknown linear discrete-

time system quadratic zero-sum games with communication imperfections (e.g. network-

induced delays and packet losses), or referred to as networked control system (NCS) 

zero-sum games, related to H optimal control problem is solved in forward-in-time 

manner. The proposed stochastic optimal approach, referred to as adaptive dynamic 

programming (ADP), estimates the cost or value function to solve the infinite horizon 

optimal regulation of unknown linear discrete-time system quadratic zero-sum games in 

the presence of network imperfections and subsequently optimal control and worst case 

disturbance inputs are derived based on the estimated value function.  Update law for 

tuning the unknown parameters of the value function estimator is derived and Lyapunov 

theory is used to show that all signals are asymptotic stable (AS) in the mean and that the 

estimated control and disturbance signals converge to optimal control and disturbance 

inputs in the mean respectively. Simulation results are included to verify the theoretical 

claims.  

 

Key words— Linear discrete-time system, Networked control system, Adaptive 

estimation, Optimal control, Zero-sum games.  
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1.  Introduction 

Feedback control systems with control loops closed through a real-time network 

are called networked control system (NCS) (Halevi and Ray, 1988). In NCS, a 

communication packet carries the reference and control inputs, and plant outputs within a 

network among control system components such as sensors, controllers, and actuators. 

Though advantages of NCS are reduced system wiring, ease of system diagnosis and 

maintenance, and increased system agility, however, insertion of the communication 

network in the feedback loop brings many issues which have to be addressed before these 

benefits can be harvested. 

First issue being the network-induced delay that occurs while exchanging data 

among devices connected to the shared wireless communication network. This delay, 

either constant or random, can degrade the performance of control system and even 

destabilize the linear system when the delay is not explicitly considered in design 

process. Second issue is the packet losses due to unreliable wireless communication 

network transmission which can cause a loss in control input resulting in instability.  

Therefore, recently Walsh et al. (1999) and Lian et al. (2001) consider stability and 

performance of NCS with constant delays. Krtolica et al. (1994) analyzes the stability of 

NCS with random delays while Wu and Chen (2007) study the stability of NCS with 

packet losses. Eventually, Zhang et al. (2001) conducts the stability analysis of NCS with 

communication imperfections (e.g. network delays and packet losses) and proposed a 

stability region. 

On the other hand, Lian et al. (2003) introduces the optimal controller design 

(Lewis and Syrmos, 1995) for NCS without taking into account the disturbance input. By 
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contrast, using the stochastic optimal control theory (Åstrom, 1970), Nilsson et al. (1998) 

introduces the optimal and suboptimal control design for linear NCS with random delays. 

Although these optimal and suboptimal controller designs have resulted in satisfactory 

performance, the NCS system dynamics and information on communication 

imperfections (e.g. network-induced delays and packet losses), which are difficult to 

know beforehand, need to be known accurately for the controller design while the 

optimality is achieved backward-in-time. However, these designs did not consider the 

optimality of the unknown NCS quadratic zero-sum games (Basar and Olsder, 1995; 

Littman 1994). 

In contrast, adaptive/approximate dynamic programming (ADP) schemes 

proposed by Werbos (1990) and Watkins (1989), intend to solve optimal control design 

in forward-in-time manner for unknown nonlinear systems in contrast with traditional 

optimal control techniques (Lewis and Syroms, 1995) which work backward-in-time for 

known system dynamics. In ADP, one combines adaptive critics, a reinforcement 

learning technique, with dynamic programming where the optimal control is obtained 

through value and policy iterations. Recently, Tamimi et al. (2007) employs the Q-

learning method to solve the optimal strategy for discrete-time linear time-invariant 

system quadratic zero-sum games without using the system matrices.  Though the value 

and policy iteration-based approach works forward-in-time for optimal control (Tamimi 

et al. 2007) but it requires a large number of iterations within a sampling interval for 

convergence which can be a bottleneck for real-time control.  Moreover, convergence of 

the algorithm is only shown while the stability of the overall system is not given. 



 

 

59 

By contrast, Dierks and Jagannathan (2009) uses two neural networks (NN) to 

solve the Hamilton-Jacobi-Bellman (HJB) equation forward-in-time for the optimal 

control of a class of general unknown nonlinear affine discrete-time systems. In this 

approach, value and policy iterations are not utilized; instead the value function and 

control policies are updated once per sampling interval by using past history of residual 

errors thus making the technique suitable for real-time control. However, these ADP-

techniques are not suitable for NCS since they ignore the effects of communication 

imperfections (e.g. network-induced delays and packet losses). These communication 

imperfections can make the optimal design more involved (Tamimi et al., 2007) and 

cause instability (Zhang et al. 2001) if they are not properly accounted for. 

Therefore, in this paper a time-based adaptive dynamic programming approach is 

undertaken to the stochastic optimal regulation of linear NCS quadratic zero-sum games 

with unknown system dynamics and communication imperfections (i.e. network-induced 

delays and packet losses) in order to solve the Bellman equation (Wonham, 1968) online 

and in forward-in-time manner. Using an initial stabilizing control, the value function is 

estimated online adaptively (Jagannathan, 2006) while its unknown parameters are tuned 

by using a novel update law since solving the Game Theoretic Riccati Equation (GRE) 

requires the system matrices. Then, using the idea of dynamic programming, the optimal 

control and worst case disturbance inputs which optimize the cost function can be 

calculated based on the information provided by the estimated value function. Thus the 

proposed time-based ADP scheme relaxes the need for system dynamics and information 

on communication imperfections (i.e. delay and packet losses) and it renders optimal 
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solution without using value and policy iterations. Finally, the overall stability of the 

closed-loop system is demonstrated by using Lyapunov theory. 

The importance of the paper stems from the fact that a game-theoretic adaptive 

system is proposed to create controllers for NCS quadratic zero-sum games that learn to 

co-exist with a 2L -gain disturbance signal (Basar and Bernhard, 1995; Dragan and 

Morozan, 1997). In the control system design, this problem is defined as a two-player 

game that corresponds to the well-known H control.  Next some background information 

is introduced. 

2.  Background 

2.1.  Linear NCS Quadratic Zero-sum Games 

PlantActuator Sensor

Delay

And

Packet losses

Controller

Delay

And

Packet losses

Wireless Communication 

Network

intervalSampling:
s

T

)(tca

)(t

)(tsc

)(t

 
 

Fig 1. Networked Control System (NCS). 

 

The basic structure of NCS considered in this paper is shown as Figure 1 where 

the feedback control loop is closed over a communication network and in particular a 
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wireless communication network.  Since wireless communication network is bandwidth 

limited, two types of network-induced delays and one type of packet losses are included 

in this model: (1) )(tsc : sensor-to-controller delay, (2) )(tca : controller-to-actuator delay 

and (3) )(t : indicator of packet received at actuator. The following assumption is needed 

similar to other works (Liou and Ray, 1991; Hu and Zhu, 2003): 

Assumption 1: 

a). Sensor is time-driven while the controller and actuator are event-driven 

(Goldsmith, 2005). 

b). Communication network is a wide area wireless communication network so 

that two types of network-induced delays are independent, ergodic and unknown while 

their probability distribution functions are assumed known (Liou and Ray, 1991; Hu and 

Zhu, 2003). 

c). The sum of sensor-to-controller delay and controller-to-actuator delay is 

bounded (Liou and Ray, 1991) while the initial state of linear system is deterministic (Hu 

and Zhu, 2003). 

Remark 1: The definition of “event-driven” implies that an action is taken in 

response to an event which may not be generated uniformly in time. In linear NCS 

quadratic zero-sum games, control and disturbance signals can be considered as the 

signals generated in response to the feedback sensor inputs; similarly, the actuator applies 

the control and disturbance inputs to the plant in response to the controller output. Since 

both a controller and an actuator respond upon receiving an event, they are referred to as 

“event-driven” controller and actuator in the NCS quadratic zero-sum game. 
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Consider the following linear time-invariant system with communication 

imperfections (i.e. network-induced delays and packet losses) which is given by 

                                 ttDdtttButtAxtx                                   (1) 

where  









t

t
t

nn

nn

timeatlostinputcontroltheif

timeatreceivedisinputcontroltheif

0

I
 ,with  tx   ,  tu

  ,  td    represent the system state, control input and disturbance vectors 

respectively, A      B      D      denote the system matrices. From 

Assumption 1, it can be deduced that the sum of networked-induced delays is bounded 

above such that       scasc bTttt   where b represents the delay bound while
s

T being 

the sampling interval. 

During a sampling interval    kTkkT ss 1, , the controller input )(tu and 

disturbance input )(td to the plant are piecewise constants. According to Assumption 1, 

there are at most b number of current and previous control and disturbance inputs that can 

be received at the actuator. If many control and disturbance inputs are received at the 

same time, only the newest control and disturbance inputs are allowed to act on the 

controlled plant during any sampling interval    kTkkT ss 1, , and other previous 

control and disturbance inputs are deduced. Since control and disturbance inputs are 

based on event driven, the plant will implement control and disturbance inputs at these 

time instants bitkT k

is ,...,1,0,  and
k

i

k

i tt 1 where s

k

i

k

i iTt  as illustrated in Figure 2 

(Liou and Ray, 1991; Hu and Zhu, 2003).  
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For the event-driven controller and disturbance, the control and disturbance inputs 

become kk du , in response to sensed signal kx . Integration of (1) over a sampling interval

   kTkkT ss 1, yields 
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By using a new augment state variable TT

bk

T

k

T

bk

T

k

T

kk dduuxz ][ 11   , equation 

(2) can be expressed as a linear time-varying discrete-time system described by 

                                   kzkkzkkzkk dDuBzAz 1                                               (3) 

where the system matrices are a function of the unknown random delays, and 

packet losses which are given by 
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where lm II , are mm and ll  identity matrices. 

Remark 2: It is assumed that wireless communication network changes more 

slowly (Goldsmith, 2005) when compared to the sampling rate.  Therefore, the NCS 

system description (3) can be considered as a linear but slowly time-varying system with 

uncertain dynamics.  The communication imperfections (i.e. network-induced delays and 

packet losses) are not accurately known except their upper bounds thus making the NCS 

dynamics uncertain. In this paper, the optimal strategy is proposed based on the slowly 

varying unknown linear NCS. 

sTbk )3(  sTbk )2(  sTbk )1(  sTbk )( 
sTk )1(  skT sTk )1( 

kkk
b

k
b tttt 011 ,,..,, 

Time axis notation:

1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted

3. Bottom line: Actuator received control action




 
 

Fig 2. Timing diagram of signals transmitting in NCS. 
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Thus in this paper, based on optimal control theory (Lewis and Syrmos, 1995; 

Åstrom, 1970), stochastic cost function can be defined as 

                       ,...2,1,0
,








 




kSddRuuGxxEJ
ki

i

T

ii

T

ii

T

ik


                        (4)  

where ii du , are control and disturbance inputs respectively, G is a symmetric 

positive semi-definite matrix, R is a symmetric positive definite matrix, and S is a 

symmetric positive definite matrix defined equal to the square of upper bound  on the 

desired 2L gain disturbance attenuation (i.e. IS 2 , I is identity matrix) (Basar and 

Bernhard, 1995), and  
 ,

E is the expectation operator (in this case the mean value) of 

  


ki
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T

i SddRuuQxx
 
based on the communication imperfections (i.e. network-

induced delays and packet losses) at various time interval.  After redefining the augment 

state variable kz , original stochastic cost function, equation (4) can be expressed as 
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Note that zG is still symmetric positive semi-definite matrix while zz SR , are 

symmetric positive definite matrices respectively.  Next traditional optimal control of 

discrete-time linear zero-sum games (Lewis and Syrmos, 1995; Basar and Bernhard, 

1995) is introduced before presenting the proposed scheme. 
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2.2.  Traditional Optimal Control Of Descrete-Time Systems 

Consider the discrete-time linear time-varying zero-sum game dynamics 

described by 

                                       kkkkkkk dDuBxAx 1                                               (6) 

where
kx

  is the system states, 
ku

  is the control input, 
kd

  is the 

disturbance input and
kA

    , 
kB

    , 
kD
     are system dynamics matrix. 

Based on optimal control theory (Lewis and Syrmos, 1995; Basar and Bernhard, 1995), 

the infinite-horizon value function can be defined as 
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with k

T

kk

T

kk

T

kkk SddRuuQxxuxr ),( , Q is symmetric positive semi-definite 

matrix, R and S are symmetric positive definite matrix. 

Using dynamic programming, the optimization problem for discrete-time linear 

zero-sum game (6) and (7) can be derived as 

                             ))(),,((maxmin)( 1

**

 kkkk
du

k xVduxrxV
kk

                           (8) 

Then Bellman equation can be represented as 

                         ))()(),,((maxmin0 *

1

*

kkkkk
du

xVxVduxr
kk

 
                          (9) 

Assuming that minimum on the right side of (9) exists and is unique then optimal 

strategy for linear zero-sum game can be expressed as (Lewis and Syrmos, 1995; Basar 

and Bernhard, 1995) 
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Substituting optimal control policy (10) into Bellman equation, then Bellman 

equation with optimal strategy *

ku and *

kd can be derived as 
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  (11) 

For linear system, assuming that zero-sum game has a value and is solvable, then 

value function (7) is known as a quadratic form of state and is represented as (Lewis and 

Syrmos, 1995, Basar and Olsder, 1995) 
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where kP is positive semi-definite matrix. Substituting (12) into (11), Bellman 

equation becomes Game-Theoretic Riccati equation (GRE) as 
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It is obvious that kP is the solution of Riccati Equation. Meanwhile, optimal 

strategy can be expressed in terms of kP and system matrix as 
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Remark 3: Traditional Game-Theoretic Riccati equation (13) is solved backward-

in-time and optimal strategy (14) is obtained by using kP , kA , kB and kD . For linear zero-

sum game with uncertain system dynamics, solving (13) and (14) is a challenge. Instead, 

policy and/or value iteration algorithm (Tamimi et al., 2007) have been implemented to 

approximate the value function in ADP and subsequently the control and disturbance 

inputs based on estimated value function using (10) are obtained so that the system 

dynamics are not needed. However, with the policy and value iteration-based schemes, it 

is not clear how to select number of iterations required for convergence and stability 

while keeping the hardware constraints. Inadequate number of policy and value iteration 

can lead to instability (Travis and Jagannathan, 2011). 

Hence, in this paper, a time-based ADP method with adaptive estimation will be 

proposed to solve stochastic optimal strategy of NCS quadratic zero-sum games in 

forward-in-time manner and without using iteration methodology and known system 

dynamics as will be discussed in the next sections. 

3.  Stochastic Optimal Strategy for NCS Quadratic Zero-Sum Games 

In this section, we use the idea of ADP (Watkins, 1989; Tamimi et al., 2007) and 

the concept of adaptive estimation of value function to develop stochastic optimal 

strategy for NCS quadratic zero-sum games with uncertain linear time-varying system 

dynamics that change slowly in comparison with the sampling interval due to 

communication imperfections (i.e. network-induced delays and packet losses). Thus, in 

this section, first, we introduce an adaptive estimation scheme to obtain the unknown 

value function for NCS quadratic zero-sum games with network imperfection. Second, a 
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model-free online tuning of the parameters based on adaptive estimation and ADP 

algorithm will be proposed. Eventually the convergence proof is given. 

3.1. Value Function Definition for NCS Quadratic Zero-Sum Games 

In this section, we formulate Bellman’s optimality principle for the NCS quadratic 

zero-sum games by using the concept of ADP under communication imperfections (i.e. 

network-induced delays and packet losses) described by (3).  It is easy to verify that NCS 

quadratic zero-sum games has a unique equilibrium point, 0z , on a set  while the 

states are still measurable. According to these conditions, the stochastic optimal strategy 

which optimize the stochastic cost function kJ for NCS system (3) can be derived as 

(Tamimi et al., 2007; Basar and Olsder, 1995), ,*

kkk zKu   kkk zLd * with kk LK ,

being the optimal Kalman gains for the control and disturbance inputs respectively.  

If we assume that there exists a solution to the GRE, that is strictly feedback 

stabilizing, and then it can be shown (Basar and Olsder, 1995) that the policies attain a 

saddle-point equilibrium (Basar and Bernhard, 1995), which implies that minimax is 

equal to maximin, in the restricted class of feedback stabilizing policies. Assuming that 

the game has a value and is solvable, and then it is known that the value function is 

quadratic in the state and is given by (Lewis and Syrmos, 1995) 
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kk zPzEJ
 ,

                                                    (15) 

where matrix 0kP is a solution to the GRE (Dragan and Morozan, 1997). The 

optimal action dependent value function of NCS quadratic zero-sum games is now 

defined to be 
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Since stochastic optimal control and disturbance inputs,
** , kk du , are dependent on 

state kz which is known at time k , value function can be expressed as 
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Then using (9), for the zero-sum game (Basar and Bernhard, 1995), the gain 

matrix associated with the optimal control and disturbance inputs can be expressed in 

terms of kH as 
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Equations (19) and (20) represent time varying gains based on the solution of the 

GRE and hence some interesting observations can be stated using (19) and (20). If the 

matrix kP is known in (11) and (12), then one still need the slowly time-varying system 

matrices to compute the controller gains. On the other hand, if the slowly time-varying 

matrix kH can be learned online without the knowledge of NCS dynamics (3), the NCS 

system matrices are not required to compute the optimal strategy gains. This observation 

is consistent with the work of (Tamimi et al., 2007) where time invariant gains are 

derived for suboptimal control of time invariant linear discrete-time zero-sum games.  

While an adaptive estimator will be utilized to learn the time-varying matrix, kH , which 

in turn will be used to obtain the optimal gains.   

Remark 4: It is important to note there are several differences between optimal 

design in this paper and Tamimi et al. (2007). First, Tamimi et al. (2007) method cannot 
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even maintain the stability of NCS. By contrast, the proposed approach can be utilized for 

either NCS and uncertain linear time-varying or time-invariant discrete-time zero sum 

game without the communication imperfections.  Second, equations (19) and (20) are 

based on slowly time varying system (3) and equations in (Tamimi et al., 2007) are only 

for time-invariant system. Third, Tamimi et al. (2007) uses value iteration within each 

sampling interval which in turn requires a significant number of iterations for 

convergence of the algorithm while the proposed scheme updates the value function and 

control policy once every sampling interval. Therefore, the proposed optimal strategy 

based on adaptive estimation of cost or value function is an online and forward-in-time 

approach and does not require policy and value iterations. Eventually, this paper derived 

closed-loop system stability which is not addressed in (Tamimi et al., 2007). 

3.2.  Model-Free Online Tuning Based on Adaptive Estimator 

The proposed online tuning approach estimates the value-function (17) online. 

Since value-function includes the kH matrix (18) which can be solved, the control signal 

and disturbance input can be obtain using (19) and (20).  Next we make the following 

assumption since the NCS is a slowly linear time-varying unknown system (see Remark 

3) and the delays are bounded above while the packet losses satisfy the Bernoulli 

distribution, and both of them change slowly (Goldsmith, 2005). 

Assumption 2: The value-function, ),,( kkk duzV , can be expressed as linear in the 

unknown parameters (LIP)—a standard assumption in adaptive control (Jagannathan, 

2006; Ioannou and Sun, 1996). 

By using the stochastic adaptive control literature (Chen and Guo, 1991) and (16), 

the value-function can be represented in vector form as 
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kqw is the Kronecker product quadratic 

polynomial stochastic indepdent basis vector.  kk Hvech  with the vector function 

acting on qq matrices thus yielding a   121 qq column vector. 

Note: The )(vec function is constructed by stacking the columns of matrix into 

one column vector with off-diagonal elements which can be combined as nmmn HH  .  

Therefore, the value-function can be expressed as target unknown parameter vector 

multiplied by the regression function kw . 

The time-varying matrix kH can be considered as slowly varying (Goldsmith, 

2005). Then it can be expressed as a time-varying target parameter vector and a known 

regression function kw . Now, the value-function  kkk duzV ,, estimation will be considered. 

According to the definition of value-function (16) and relationship between value-

function and stochastic cost function (Tamimi et al., 2007), we can use matrix kH in (17) 

to express the stochastic cost function as 
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Then the value-function,  kkk duzV ,, , can be estimated by an adaptive estimator in 

terms of estimated parameter vector
kh

ˆ as 
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where T

k

T

k

TT

kk zdzuzw )]()([ and kw is Kronecker product quadratic polynomial 

stochastic indepdent basis vector of kw .  

It is observed that Bellman Equation can be rewritten as   0,,1  kkkkk duzrJJ . 

This relationship, however, is not guaranteed to hold when we apply the estimated matrix

kĤ . Hence, using delayed values for convenience; the residual error associated with (15) 

can be expressed as   hkkkkkk eduzrJJ  ,,ˆˆ
1 , i.e. 

                                

 

   

  1111

1111

1111

ˆ
,,

ˆ
,,

ˆˆ
,,













k

T

kkkk

kk

T

kkkk

k

T

kk

T

kkkkhk

Whduzr

wwhduzr

whwhduzre

                               (24) 

where
11 
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wwW . 

The dynamics of (24) are then rewritten as 
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T

kkkkhk Whduzre   11

ˆ
,,                                       (25) 

Next, we define an auxiliary residual error vector as 

                                        11

ˆ
k

T

kkhk h                                               (26) 

where       ikikikkkkkkkk duzrduzrduzr   1112221111 ,,,,,,  , and

 ikkkk WWW   1211  ,  10 ki   with   being the set of natural real numbers. It 

is important to note that (18) indicates a time history of the previous 1i residual errors 

(16) recalculated by using the most recent
kh

ˆ .  The time history of previous residual errors 

allows one to overcome the need for any iterative-based value and policy update schemes 

while still rendering optimal control solution. Therefore, the proposed approach can be 

referred to as time-based ADP.   
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Next the dynamics of the auxiliary vector (26) are generated similar to (25) and 

revealed to be 

                                              
k

T

kkhk h   11

ˆ                                                 (27) 

Now define the update law of the slowly time-varying matrix kH as 

                                           T

k

T

hkhk

T

kkkh 


 
1

1

ˆ                                     (28) 

where 10  h . Substituting (28) into (27) results in 

                                                 hkhhk   1                                                       (29) 

Remark 5: It is observed that the cost function kJ and adaptive estimation (23) 

will become zero only when 0kz .  Hence, when the system states have converged to 

zeros, the value-function
 

approximation is no longer updated. It can be seen as a 

persistency of excitation (PE) requirement for the inputs to the value function estimator 

wherein the system states must be persistently existing long enough for the adaptive 

estimator to learn the optimal stochastic cost function.  Therefore exploration noise is 

added to the control and disturbance inputs in order to satisfy the PE condition (Tamimi 

et al., 2007) which is given next. 

Definition 1: (Persistence of excitation) A stochastic vector k   is said to be 

PE if there exists positive constants  , and 10 k , such that 

                                               I







0

0

)][
k

kk

T

kkE  

where I is identity matrix,  E is the mean value of  . 

Lemma 1: Persistence of excitations of vector kW  (24) and k can be satisfied 

by adding exploration noise. 



 

 

76 

Proof: Refer to Xu, Jagannathan and Lewis (2011). 

Now define the parameter estimation error as
kkk hhh

ˆ~
 . Rewrite Bellman 

equation using an adaptive estimation with target parameters (21) revealing

  11,,  k

T

kkkk whduzr k

T

k wh 1 , which can be expressed as 

                                  k

T

kk

T

kk

T

kkkk Whwhwhduzr   1111,,                               (30) 

Substituting  kkk duzr ,, into (25) and utilizing (24) with hkhhk ee 1 from (29) 

yields 

                              11111

ˆ
,,

~
  k

T

khkkkhk

T

k WhduzrWh                             (31) 

Using the similar method as  kkk duzr ,, , we can form  111 ,,  kkk duzr , and 

substituting this expression into (31), we have 

                                            
11

~~
  k

T

khk

T

k WhWh                                               (32) 

Next, the convergence of the cost function errors with adaptive estimation error 

dynamics
kh

~
given by (32) is demonstrated for an initial admissible control (Jagannathan, 

2006) policy. The NCS slowly time-varying system dynamics are known to be 

asymptotically stable in the mean if an initial admissible control policy can be applied 

provided the system matrices are known. However, introducing the estimated value-

function results in estimation errors for the stochastic cost function kJ , and therefore 

stability of estimated stochastic cost function needs to be studied. Similarly as (Xu, 

Jagannathan and Lewis, 2011), cost adaptive estimator errors can be proven to be 

asymptotic stable in the mean, i.e.
 

*ˆ
kk JJ  and 0

~
kh when k . Subsequently, 
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asymptotic stability of cost adaptive estimation errors will be used for proving the overall 

closed-loop system stability in Theorem 1 by using an initial admission control policy.  

Next, we show that the estimated control and disturbance input based on this 

estimated matrix will indeed converge to the optimal control input and disturbance input. 

3.3.  Estimation of the Optimal Feedback Control and Disturbance Signal 

There are two ways to estimate the optimal control and disturbance signal inputs 

for regulating the NCS quadratic zero-sum games. One is based on time-varying matrix

kH  while the other is based on standard optimal theory by minimizing the cost function. 

The difference being that the latter method requires the system dynamics and it solves the 

optimal controller backward. However, it is shown next that ultimately both are 

equivalent and can be used in the proofs. 

   Method I: As mentioned before, slowly time varying matrix kH can be 

estimated by using an adaptive estimator. According to ADP scheme and equation 

(19)(20), the estimated optimal NCS control and disturbance inputs can be expressed by 

the adaptive estimation kH as 
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               (33) 

   Method II: Alternatively, the estimated optimal control and disturbance signal 

which optimize the estimated cost function (22) with adaptive estimation
kĤ as 
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where    111
,

111
,

1
ˆˆ

  kk

T

kkk

T

kk zPzEwHwEJ


. Next, it will be shown that the optimal 

control and disturbance input obtained by method I and II are equivalent. 

Lemma 2: The optimal control and disturbance estimations calculated with the 

adaptive estimation of  kkk duzV ,,
 
are equal to the optimal control and disturbance inputs 

obtained by optimizing the cost function kJ , i.e. kkkk dduu 2121
ˆˆ,ˆˆ  . 

Proof: Use the Bellman equation and ADP algorithm with estimated stochastic 

cost function and matrix kH , we have 

                                          1
ˆ,,ˆ

 kkkkhkk JzdzuzreJ                                  (35) 

1) Left side of (35) can be expressed as 
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2) Right side of (35) can be shown as 
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According to the (36) and (37), equation (35) can be derived as
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Hence, we have 
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 On the other hand, the optimal control and disturbance signals kk du 22
ˆ,ˆ generated by 

method II can be expressed as: 
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Since kzkkzkkzkk dDuBzAz   11 , (41) can be derived as 
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It is obvious that equation (42) is an equation with kk du 22
ˆ,ˆ which can be simplified 
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This equation (43) can be solved to obtain 
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Since the equality proven in this lemma is in both ways and noting the drawback 

of second method, we use the first method to solve the optimal strategy design for the 

NCS.  However, we will use the Lemma 2 to complete the convergence proof since they 

are equivalent. Next, the stability of the cost function, control estimation, and adaptive 

estimation error dynamics are considered. 

3.4.  Closed-Loop System Stability  

In this section, it will be shown that slowly time-varying matrix kH and related 

value function estimation errors dynamics are asymptotically stable in the mean. Further, 

the estimated control and disturbance input for NCS (33) will approach their optimal 

control signal asymptotically. The block diagram representation of stochastic optimal 

regulator of NCS quadratic zero-sum games with unknown system dynamics is shown in 

Figures 3 and 4 presents the flowchart of proposed stochastic optimal strategy for NCS 

quadratic zero-sum games wherein the optimal strategy are obtained without using value 

and policy iterations. 

Adaptive Estimator of Function

Linear Network Control System 

                   with Unknown  

   kzkkzkkzkk zdDzuBzAz 1

zkzkzk DandBA ,

 kkk duzV ,,

Cost Function 
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Game Strategies:

kz

 
  kkk

kkk

zLzd

zKzu





kk
T
kk wHwJ
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Fig 3. Stochastic optimal regulator block diagram. 
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Fig 4. The flowchart of proposed stochastic optimal scheme. 

 

Next, the initial system states are considered to reside in a set when the initial 

stabilizing control and disturbance inputs kk du 00 , are being utilized. Further sufficient 

condition for the adaptive estimator tuning gain h is derived to ensure the all future states 

will converge to zero. Then it can be shown that the actual control and disturbance input 

approach the optimal strategy asymptotically. 

Before convergence proof, the following result is needed to establish bounds on 

the closed loop dynamics when the optimal control and disturbance inputs are applied to 

the NCS system (3) with communication imperfections (i.e. network-induced delays and 

packet losses). 

Lemma 3:  There exists admissible control and disturbance policies be applied to 

the unknown NCS such that the system dynamics are satisfying  



 

 

84 
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kkzkkzkkzk zkdDuBzA                                         (46) 

where
3

1
0 *  k is a constant.  

Proof:  Consider the Lyapunov function candidate 
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whose first difference of  kD zV is given by   k
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. Note that 

since ** , kk du are admissible control and disturbance policy, it follows from the definition of 

admissible control and disturbance that the NCS dynamics (3) with optimal control and 

disturbance applied are asymptotically stable in the mean, and the sequence

 ,...,2,1   , kzk
monotonically decreases until it reaches zero. This result directly 

implies that 011  k

T
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k zzzz or   0 kD zV . Using the fact   0 kD zV , it is clear that
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. Substituting system dynamics **

1 kzkkzkkzkk dDuBzAz 
yields 
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Eventually, we must identify a bound on
**

kzkkzkkzk dDuBzA  which guarantees 

the sufficient condition for stability   0 kD zV is still met. Selecting the bound shown in 

optimal control policy, (46) reveals     01 *  k

T

kkD zzkzV as required. 

Theorem 1(Convergence of the Optimal Control and Disturbance Signals): 

Given the initial conditions for the system state
0z , cost function and adaptive estimator 

parameter vectors 0

ˆ
h be bounded in the setΩ , let kk du 00 , be any initial admissible control 

and disturbance policies for the NCS with communication imperfections (i.e. network-
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induced delays and packet losses), which can maintain initial system condition to be 

bounded in the setΩwhile satisfying the bounds given by (46) for 310 *  k . Let the 

adaptive estimation parameter vector be tuned and estimation control and disturbance 

policy be provided by (28) and (33) respectively. Then, there exist positive constants h

given by Theorem 1 such that the system states kz and stochastic cost function parameter 

estimator errors kh
~

are all asymptotic stable (AS) in the mean. In other words, as

0,  kzk , kkk JJh  ˆ,0
~

 and ,ˆ,ˆ *

1

*

2 kkkk uuuu 
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1
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2
ˆ,ˆ

kkkk dddd  . 

Proof: Consider the following positive definite Lyapunov function candidate 
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Next, considering the first part   k
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kkD zzzzzV   11 and applying the NCS 

quadratic zero-sum games and Cauchy-Schwartz inequality reveals 
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         Applying the Lemma 3 (bounds on the optimal closed loop system in (46)) 

and recalling
kkkk dduu 2121

ˆˆ,ˆˆ  from Lemma 2 and (45), we know
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Therefore,  kD zV is expressed in terms as the adaptive estimator error dynamics 

of the matrix kH and the relationship between   kkkk hduzQ
~

,,, and
kJ

~
, (52) revealing 
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At final step, combining the equation (51) and (52), we have 
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Since 3/10  k and 10  h , V is negative definite with V being positive 

definite. Also, observe that  




0

0

VVV
kk

k since 0V as long as (55) holds. 

Now, taking the limit as k  , the system states kz and kh
~

 converges to zero 

asymptotically. In other words, as 0,  kzk , 0
~
kh , then *ˆ

kk JJ  . Since optimal 
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kkkk dddd  when kk JJ ˆ . 

Remark 6: In traditional ADP (Tamimi et al., 2007), policy and value iteration 

methods are employed during a fixed sampling interval, and system states and inputs are 

recalculated and stored for learning optimal strategy. For example, during time

])1(,[ ss TkkT   the system states i

kJ 1
and i

ku will be recalculated and stored for learning 

optimal strategy *

kJ and *

ku when iteration index changes from 1 to , i.e.  ,...,2,1i . 

Consequently, traditional ADP value and policy iterations can consume significant 

amount of time which may not be practically viable in real-time environment. However, 

the proposed novel stochastic optimal design does not require value and policy iterations 

while the cost function and control input are updated once every sampling interval and 

therefore will be referred to as time-based ADP. Only the measured real-time data is used 
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to tune the cost function, optimal control inputs and optimal disturbance inputs, i.e. when

k , ,ˆ *

kk JJ  *ˆ
kk uu  ,

*ˆand kk dd  . 

4.  Simulation Results 

In this section, stochastic optimal control of NCS quadratic zero-sum games is 

evaluated. At the same time, the standard optimal strategy of NCS quadratic zero-sum 

games with known dynamics is also simulated for comparisons. 

Example: The continuous-time version of a batch reactor system dynamics is 

given as (Dacic et al., 2007) 

uxx
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where x     , u     and d     . It is important to note that this example 

has developed over the years as a benchmark example for NCS, see e.g. (Dacic et al., 

2007; Dacic and Nesic, 2007; Walsh et al., 1999). 

The parameters of this NCS quadratic zero-sum games are selected as (Hu and 

Zhu, 2003) 

1. The sampling time: sec8.0sT ; 

2. The bound of delay is two, i.e. 2b ;  

3. The mean value of random delays:   sec,5.0scE    sec1.1E ;  
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4. Packet losses follow Bernoulli distribution with 3.0p .  These values can be 

changed. 

 

Fig 5. The distribution of random delays in NCS  

 

 

Fig 6. The distribution of packet losses 

 

The distribution of random delays, includes sensor-to-controller delay sc with a 

total delay of , are shown in Figure 5 and the packet losses are shown in Figure 6. 
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the original time-invariant system (53) was represented as a slowly time-varying linear 

NCS given by (3). For instance, when sec16,20  skTtk , networked-induced delay

sec85.0sec,45.0sec,41.0 21   kkk  , packet losses ,1,1 1  kk  02 k , the 

NCS dynamics can be calculated based on (3) as 
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where
 

T

kkkkkk dduuxz ][ 2121      . When 
sec2.43,54  skTtk

, 

networked-induced delay
sec87.0sec,91.0sec,39.0 21   kkk 

, packet losses

1,1,1 21   kkk 
, the NCS dynamics become 
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First, Figure 7 depicts the performance of the conventional stochastic optimal 

strategy for NCS quadratic zero-sum games with known dynamics and information of 

communication imperfections (i.e. network-induced delays and packet losses) obtained 

by solving the Game-theoretic Riccati Equation (GRE) in backward-in-time manner. The 
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control and disturbance inputs can force the state regulation errors converge to zeros 

while ensuring the NCS stable in the mean when communication imperfections (i.e. 

network-induced delays and packet losses) are accurately known. 

 

Fig 7. Performance of the conventional stochastic optimal control scheme with known 

system dynamics and communication imperfections. 

 

Fig 8. Performance of the ADP value iteration-based scheme [14] in the presence of 

communication imperfections. 
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Next, by using the ADP value iteration (VI) method and modifying the strategy 

(Tamimi et al., 2007), the control and disturbance inputs, 

kk xu 
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kk xd 
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 , 

are designed. The ADP VI scheme normally does not require any system dynamics and 

information of communication imperfections. However, the ADP VI based control cannot 

maintain the batch reactor system stable in the mean in the presence of communication 

imperfections (i.e. network-induced delays and packet losses) as shown in Figure 8. 

 

Fig 9. Performance of the stochastic optimal controller for NCS with uncertain system 

dynamics and with communication imperfections. 
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algorithm were selected as  
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while the regression 

function for value-function was generated as },...,,...,,...,,,{ 2

16
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23121
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1 wwwwwwww as (21). 

 

 

Fig 10. Performance of the proposed optimal controller: (a) Control inputs  Tuuu )( 21

    ; (b) Disturbance input  Tddd )( 21
    . 
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The design parameter for the value-function  kkk duzV ,, was selected as
610h  

while initial parameters for the adaptive estimator were set to zeros at the beginning of 

the simulation. The simulation was run for 40 seconds, and for the first 22 seconds, 

exploration noise with mean zero and variance 0.08 was added to the system in order to 

ensure the persistency of excitation (PE) condition holds (Lemma 1). 

In Figures 9 through 11, the performance of proposed adaptive estimation based 

optimal strategy is evaluated. As shown in Figure 8, the proposed adaptive estimation 

based optimal strategy can also force the NCS quadratic zero-sum games state regulation 

errors converges to zero even when the NCS dynamics are unknown which implies that 

the proposed strategy can make the NCS closed-loop system stable in the mean.  Due to 

an initial online tuning phase needed to learn optimal control and disturbance inputs, 

there is a slight overshoot at the beginning. In Figure 10 (a), (b), the control and 

disturbance inputs of proposed adaptive estimation based optimal strategy are shown. 

Proposed adaptive estimation based optimal control and disturbance inputs can make the 

NCS states converge to zero quickly.  

Estimated value-function for NCS quadratic zero-sum games are shown in Figure 

11. Estimated value-function is defined in (23) as

  ][ˆ][,,ˆ T

k

T

k

T

kk

TT

k

T

k

T

kkkk duzHduzduzV  . If all the states are equal to zeros except 21, zz , 

the estimated value-function is shown as Figure 11 (a), while Figure 11 (b) illustrates the 

estimated value-function when all the states are equal to zeros except 43, zz . It is 

important to note two key points. First, based on definition of estimated value-function, if 

all the states are equal to zero, the estimated value-function can be zero. Otherwise, 

estimated value-function should be a quadratic positive value. This is why a valley is 
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observed in Figure 11 (a)(b). Second, the proposed stochastic optimal strategy is designed 

to minimize the estimated value-function. 

 

 

Fig 11. Estimated value-function: (a) in the 21 , zz direction (b) in the 43 , zz direction  
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communication imperfections will have nearly the same performance as that of the 

conventional optimal strategy for NCS quadratic zero-sum games when system dynamics 

and communication imperfection are known. 

5.  Conclusions 

In this work, a direct adaptive dynamics programming scheme is proposed which 

combines the adaptive estimation and the concept of ADP to solve the Bellman equation 

in real time for the stochastic optimal regulation of NCS quadratic zero-sum games with 

communication imperfections (i.e. network-induced delays and packet losses). The 

availability of past state values ensured that NCS quadratic zero-sum games dynamics 

were not needed when an adaptive estimator generates an estimated value-function and 

the novel stochastic optimal control and disturbance laws based on the estimation of

 kkk duzV ,, . An initial admissible control and disturbance policies ensured that the 

adaptive estimator learns the value-function  kkk duzV ,, and the matrix  kHE
 ,

, cost 

function and optimal control and disturbance signal online. Initial overshoots are 

observed due to the online learning phase while they quickly die with time. All adaptive 

estimation parameters were tuned online using proposed update laws and Lyapunov 

theory demonstrated the asymptotic stability (AS) of the closed-loop system. 
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PAPER III 

STOCHASTIC OPTIMAL CONTROLLER DESIGN FOR UNCERTAIN 

NONLINEAR NETWORKED CONTROL SYSTEM VIA NEURO DYNAMIC 

PROGRAMMING  

H. Xu and S. Jagannathan 

Abstract - The stochastic optimal control design for the nonlinear networked 

control system (NNCS) with uncertain system dynamics is a challenging problem due to 

the presence of both system nonlinearities and communication network imperfections 

such as random delays and packet losses, which are considered unknown.  In the recent 

literature, neuro dynamic programming (NDP) techniques, based on value and policy 

iterations, have been widely used to solve the optimal control of general affine nonlinear 

systems with known partial knowledge of system dynamics. However, for real-time 

control, value and policy iterations-based methodology is not suitable and time-based 

NDP techniques are preferred. In addition, output feedback based controller designs are 

preferred for implementation. Therefore, in this paper, a novel NNCS representation 

incorporating the system uncertainties and network imperfections is introduced first by 

using input and output measurements for facilitating output feedback. Then, an online 

neural network (NN) identifier is introduced to estimate the control coefficient matrix. 

Subsequently, the critic and action NNs are employed along with the NN identifier to 

determine the forward-in-time, time-based stochastic optimal control of NNCS without 

using value and policy iterations. Here, the value function and control inputs are updated 

once every sampling instant.  By using novel NN weight update laws, Lyapunov theory is 

used to show that all the closed-loop signals and NN weights are uniformly ultimately 

bounded (UUB) in the mean while the approximated control input converges close to its 
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target value with time in the mean.  Simulation results are included to show the 

effectiveness of the proposed scheme. 

 

I.  INTRODUCTION 

Feedback control systems with control loops closed through a real-time 

communication network are called networked control systems (NCS) [1]. In NCS, a 

communication packet carries the reference input, plant output, and control input which 

are exchanged by using a communication network among control system components 

such as sensor, controller and actuators.  A NCS results in reduced system wiring with 

ease of system diagnosis and maintenance, and has increased system agility. Adding a 

communication network in the feedback control loop, however, brings challenging issues. 

First main issue is the network-induced delay in the control loop that occurs when 

exchanging data among devices connected to the shared medium. The delay, either 

constant or random, can degrade the performance of the control system and even 

destabilize the system when the delay is not explicitly considered in the design process. 

Second main issue is the packet losses in the communication network due to unreliable 

path transmission which can cause a loss in control input resulting in instability.  

Recently, Walsh [2] proposed a scheduling protocol and analyzed the asymptotic 

behavior of nonlinear NCS (or NNCS). Polushin [3] proposed a model-based stabilizing 

control for NNCS. Using model predictive control theory [4], Liu [5] proposed a 

predictive stable control for NNCS. However, the only objective of these controller 

designs [2-5] is to make the NNCS stable when the dynamics are considered known. In 

general, optimality is generally preferable for NCS and especially for NNCS, which is 
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very difficult to attain. The unknown dynamics and network imperfections in the case of 

NNCS further complicates the optimal controller design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. List of abbreviations for NNCS 

 

On the other hand, Neuro dynamics programming (NDP) and 

adaptive/approximate dynamics programming (ADP) techniques proposed by Bertsekas 

and Tsitsiklis [8] and Werbos [6] respectively, intend to solve optimal control problem 

List of Abbreviations 

Symbol          Quantity 

sc  Sensor-to-controller delay 

ca  Controller-to-actuator delay 

  Indicator of packet losses 

sT  Sampling time 

sTd  Upper bound on delay 

kz  Augmented states of NCS at time k  

o
ky  Modified state vector with current output and pervious 

inputs 

kV  Stochastic value function at time k  

CW  Target weights of NN-identifier 

CkŴ  Estimated weights of NN-identifier at time k  

yke  Identification errors at time k  

VW  Target weights of Critic NN 

VŴ  Estimated weights of Critic NN at time k  

Vke  Residual error 

uW  Target weights of Action NN 

ukŴ  Estimated weights of Action NN at time k  

Vke  Action NN estimation error 

uVC  ,,  Tuning parameters for NN-identifier, Critic NN and Action 

NN respectively 

ukVkCk  ,,  Reconstruction errors for NN-identifier, Critic NN and 

Action NN respectively 
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forward-in-time similar to a standard Riccati equation-based backward-in-time solution 

for linear systems. In NDP and ADP, one combines adaptive critics, a reinforcement 

learning technique, with dynamic programming [22-24].  Zhang et al. [25] introduced 

near-optimal control of affine nonlinear discrete-time systems with control constraints by 

using iterative ADP algorithm. Greedy ADP iteration algorithm is derived to obtain 

optimal tracking control for discrete-time nonlinear system in [26]. Recently Lewis and 

Vrabie [9] introduced the methods of reinforcement learning and NDP for feedback 

control to obtain the optimal controller for both linear time-invariant and nonlinear 

system with partially unknown dynamics by using value and policy iterations.  

In contrast, in [10], neural networks (NNs) are utilized to solve the optimal 

regulation of a discrete-time nonlinear system in an offline manner by assuming that 

there are no reconstruction errors. Besides ignoring the online approximator (OLA) 

reconstruction errors, complete dynamics are needed to implement offline NN training. 

To overcome the iterative offline training methodology, authors in [11] used two NNs to 

solve the Hamilton Jacobi Bellman (HJB) equation in forward-in-time for time-based 

optimal control of a class of general nonlinear affine discrete-time systems. However, 

these papers [9-11, 25-26] are not applicable for NNCS since the effects of delays and 

packet losses are not considered while state measurement is assumed.   Moreover, value 

and policy based schemes are not suitable for hardware implementation. 

   The network imperfections such as delays and packet losses can cause 

instability [1] if they are not considered carefully which in turn make the optimal 

controller design for NNCS more involved and different than [9-11]. Although NDP is an 

effective technique to solve the optimal control of NNCS, traditional NDP techniques 
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[9,16] require partial knowledge of the system dynamics which becomes a problem for 

NNCS due to the presence of unknown random delays and packet losses.  In addition, an 

NDP technique using value and policy iterations [9,16] is not suitable for real-time 

control since the number of iterations needed for convergence within a sampling interval 

is unknown.   Also, in some cases [9,17], a model may be needed to iterate the value and 

policies. Therefore, the standard HDP value and policy iteration methods [9,17] cannot 

be utilized for NNCS and a novel scheme is necessary.  

Besides the need to relax value and policy iterations, it would be desirable to be 

able to convert the system dynamics in state space form to the dynamics in terms of 

input/output since the system states are normally not measurable.  Such techniques 

belong to the field of data-based control techniques [12], where the control input depends 

on output/input data measured directly from the plant. To the best knowledge of the 

authors, there are no known NDP methods developed in the literature for the control of 

unknown nonlinear NCS in the input-output form. 

Thus, in this paper, a novel time-based NDP algorithm is derived for NNCS with 

uncertain dynamics and in the presence of network imperfections such as random delays 

and packet losses which are normally unknown.  To learn the partial dynamics of NNCS, 

an online neural network (NN) identifier is introduced first. Then by using an initial 

stabilizing control, a critic NN is tuned online to learn the value function of NNCS since 

solving the discrete-time Hamilton-Jacobi-Bellman (HJB) equation requires system 

dynamics. Subsequently, an action NN is utilized to minimize the value function based 

on the information provided by the critic NN and NN identifier. Therefore, the proposed 

novel input-output feedback-based NDP algorithm relaxes the need for system dynamics 
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and information on random delays and packet losses.  Value and policy iterations are not 

used and the value function and control input are updated once a sampling instant making 

the proposed NDP scheme a time-based model-free optimal controller for NNCS. 

The main contribution of this work includes a time-based NDP optimal control 

scheme using output feedback without utilizing value and policy iterations for uncertain 

NNCS. Closed-loop stability is demonstrated by selecting novel NN update laws. This 

paper is organized as follows. First, Section II presents the NNCS background and 

output/input system representation for NNCS. A novel online optimal control scheme 

with online identifier is proposed in Section III for unknown NNCS with network 

imperfections while the stability of this optimal control scheme is verified by using 

Lyapunov theory. Section IV illustrates the effectiveness of proposed schemes via 

numerical simulations and Section V provides concluding remarks.  

II. NONLINEAR NETWORKED CONTROL SYSTEM BACKGROUND 

A.  NNCS Structure 

Nonlinear

Plant
Actuator Sensor

Delay

And

Packet losses

Controller

Delay

And

Packet losses

Communication Network

s
T

)(tca )(tsc

)(t )(t

 
Fig 1. Nonlinear Networked Control System (NNCS) 

 



 

 

106 

The NNCS structure considered in this paper is shown in Figure 1 where the 

feedback control loop is closed over the communication network.  Due to unreliable 

communication network, networked-induced delays and packet losses are included in this 

structure such as: (1)  tsc : sensor-to-controller delay, (2)  tca : controller-to-actuator 

delay, and (3)  t : indicator of packet losses at the actuator. 

sTdk )3(  sTdk )2(  sTdk )1( 
sTdk )(  sTk )1(  skT sTk )1( 

kkk

d

k

d
tttt 011

,,..,,


Time axis notation:

1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted

3. Bottom line: Actuator received control action




 

Fig 2. Timing diagram of signals transmitting in NCS. 
 

 

Next the following assumption is needed that is consistent with the literature in 

NCS [13,19]: 

Assumption 1:  

a). Sensor is time-driven while the controller and actuator are event-driven [14].  

b). Communication network is a wide area network so that the two network-

induced delays are considered independent, ergodic and unknown whereas their 

probability distribution functions are considered known [13,19].  

c). The total delay (sum of both types) is bounded [13] while the initial state of 

the nonlinear system is deterministic [19]. 
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B.  NNCS System Dynamics Representation 

In this paper, a continuous-time affine nonlinear system of the form

uxgxfx )()(  and Cxy   is considered, where yx, and u denotes system state, output 

and input vector while  f and  g are smooth nonlinear functions of the state and C is 

the output matrix. When the random delays and packet losses of the communication 

network are considered, the control input  tu is delayed and can be lost at times due to 

packet losses. Therefore the nonlinear system after the incorporation of delay and packet 

loss effects can be expressed as 

                                 
            

   tCxty

ttutxgttxftx



 
                                    (1) 

where  









                          t        at timelost  isinput  control if  

 tat timeactuator  by the received isinput  control if  
nn

nn

t
0

I
 with nn

I is 

identity matrix,   ttu  is the delayed control inputs       ,,, nmn tytutx   

    mnn xgxf  , and nnC  being invertible. From Assumption 1, sum of 

network-induced delays is considered bounded above, i.e. scasc Tdttt  )()()( 

where d represents the delay bound with sT being the sampling interval. 

For wireless network-based NNCS, the controller has to convert the control inputs 

into packets [21] and transmit them to the actuator through the communication network. 

Then actuator applies the control inputs in response to a received packet from the 

controller. Consequently, the controller for NNCS is normally referred to as event-driven 

and the control input  tu to the plant is considered as a piecewise constant [1,7] during a 

sampling interval. This actual control input during the sampling interval ))1(,[ ss TkkT 
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without delays can be obtained as )])1(()([)( ssk TktkTtutu   where










0      ,1

0      ,0
)(

t

t
t . This means that a piecewise constant control input ku is applied to the 

continuous-time plant during the time interval ))1(,[ ss TkkT   (i.e. 

    ssk TkkTtutu 1,,  , k ). 

For general representation of NCS, Consider the communication imperfections 

and according to Assumption 1, there are at most d  number of current and previous 

control input values to arrive at the actuator in the form of packets. If several control 

inputs arrive at the same time, only the latest control input will be selected during any 

sampling interval    kTkkT ss 1,  while the others are ignored. It is possible that some 

packets carrying the control inputs arrive without any delay. System states change at time 

instants ,k

is tkT   1,...,1,0  di and
k

i

k

i tt 1 where 
k

i

k

it  siT as illustrated in Figure 2 

[13,19]. 

Since the controller is event-driven [14], (the controller updates the control input 

upon the receipt of the sensor measurement), the term ku can be used to express the 

controller when the sensor signal kx is transmitted to the controller.  Thus, integration (1) 

over a sampling interval   ss TkkT 1,  yields 
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It is important to note that control signal )(tu can be taken outside the integral since

)(tu is a piecewise constant during ))1(,[ ss TkkT  which appears to be the integration 

interval.  

In other words, by incorporating the two random variables (i.e. random delays and 

packet losses), the above becomes a stochastic nonlinear discrete-time system given by 

                       
kk

kdkkkdkkkk

Cxy

uuuxPuuxZx




 ),,(),,( 1,1,1  

                
          (2)

 

where        and,, iksksks TikykTyxkTx     sTiku  iku  di ,...,2,1,0

are pervious control inputs, and    
dk

Tk

kTkdkkk
s

s
dttxfxuuxZ





  

1

1, ),( 

    




1dk
udttxgsd

s

Td

kT
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1

2




  k

T

Tk udttxgs

s




 , and ),,(

1, dkkk
uuxP




    
 sTk

k dttxg
1

0
 .  

Using (2), define a new augment state variable   mdnTT

dk

T

k

T

kk uuxz 

  1 and a 

modified state vector as   mdnTT

dk

T

k

T

k

o

k uuyy 

  1 , where diu ik ,...,1,  are previous 

control inputs.  Now equation (2) can be represented as 
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The above stochastic equation can be written as 
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                                        ko

o

kkkkk zCyuzLzHz  ,1
                                      (3) 

where
mm

mI  is the identity matrix, 
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00

00

00

.  

It is important to note that   mdn

kzH  and     mmdn

kzL  are nonlinear 

matrix functions in terms of newly defined augmented state vector kz . Since effects of 

random variables (i.e. random delays and packet losses) are included in (3), the NNCS 

dynamics (3) still remains as a stochastic affine nonlinear discrete-time system in terms 

of the augmented state vector.  Representing the NNCS in terms of augmented state 

vector does not change the stochastic properties of the NNCS due to random delays and 

packet losses. The output matrix oC will be invertible since C is considered as invertible.  

Next, the NNCS can be expressed in the input-output form as 

                  
        k

o

k

o

kk

o

koo

o

koo

o

k uyGyFuyCLCyCHCy  



11

1                        (4) 

where        ,, 11 o

koo

o

k

o

koo

o

k yCLCyGyCHCyF     
F

o

kyG
MG , with

F
 denoting 

the Frobenius norm [15].  Here due to the effects of random variables (i.e. random delays 

and packet losses),    o

k

o

k yGyF and are stochastic real-valued functions and    o

k

o

k yGyF ,

can be calculated based on equation (2) and (3) provided information on random delays 

and packet losses are available.  In other words, the network imperfections can make the 

nonlinear dynamics uncertain and stochastic requiring adaptive techniques. 
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C.  Stochastic Value Function for NNCS 

Since NNCS dynamics (4) is stochastic, the stochastic optimal adaptive controller 

is derived to minimize the stochastic value function [20][7] as 

                                ...2,1,0
,








 




kRuuQxxEV
ki

i

T

ii

T

ik


                                 (5) 

where Q and R are symmetric positive semi-definite and symmetric positive 

definite constant matrices respectively and  
 ,

E is the expectation operator (in this case 

the mean value) of   


ki
i

T

ii

T

i RuuQxx based on the random networked-induced delays and 

packet losses at different time intervals.  

The stochastic value function (5) can be expressed in terms of the augmented state 

variable kz as  

                                 ,...2,1,0         
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Using the input-output form of NNCS (4), the stochastic value function (6) can be 

represented as 
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where   zyoz

T

oy RRCQCQ   ,11 . Note the matrices yQ and yR are still symmetric 

positive semi-definite and symmetric positive definite respectively.  Equation (7) can be 

also expressed as 

                 
   

  1
,

1,,















 

kky
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iy
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ki
iy

T

i

o

iy
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ky

oT

kk

VuRuyQyE

uRuyQyEuRuyQyEV




                   (8) 

Based on the observability condition [20], when 0,0  Vyo , the stochastic 

value function kV serves as a Lyapunov function [16]. According to Bellman principle of 

optimality [11], the optimal stochastic value function
*

kV satisfies the discrete-time 

Hamilton-Jacob-Bellman (HJB) equation in the infinite horizon optimization case as 

                                  




  

*

1
,

* min kky

T

k

o
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oT

k
u

k VuRuyQyEV
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                              (9)  

Differentiating (9), the optimal control
*

ku  is given by  
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                            (10) 

Namely, 
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                                       (11) 

Substituting (11) into (8), the discrete-time HJB [17] can be represented by using 

the system inputs and outputs as 

                        *

1
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where
*

kV is the stochastic value function corresponding to the optimal control 

input )(* o

kyu . Note that when     GF ,  are linear matrices, discrete-time HJB equation 

becomes Riccati equation. 

III. OPTIMAL REGULATION OF NNCS 

In this section, to overcome the drawbacks of HDP-based value iteration 

algorithm, first a novel online identifier is introduced to relax the partial knowledge of 

NNCS dynamics. Subsequently, the critic NN is used to estimate stochastic value 

function. Eventually, novel optimal regulation control of NNCS is proposed by using 

action NN, identified partial NNCS dynamics and estimated stochastic value function. It 

is important to note that this work by using online identifier and online critic and action 

NNs, the optimal control with guaranteed convergence in the mean is obtained without 

using value and policy iterations in contrast to [17] which offered an offline solution with 

no proof of convergence. 

A.  Online NN-Based Indentification of )( o

kyG . 

In this part, a novel online NN-based identifier is proposed to generate  o

kyG . 

According to [23], NNCS (4) can be expressed by using following approximation 

representation on a compact set as 
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where          IUyyyWWW
k

To

k

T

G

o

k

T

F

o

kC

TT

G

T

FC
[,,

1111



 ,]

1

T

k
u




1Ck


 
11  GkFk

 , and
111 


kCkCk

U , with   M

o

kC y  1 and   Mk

o

kC Uy  11 are the 

bounds while the estimation error satisfies kCMCk    ,1  . Since the NN activation 

functions      
CGF

 and,, are known, NNCS dynamics  o

k
yG can be identified (i.e. 

   
Gk

o

kG

T

G

o

k
yWyG   ) when NN-based identifier weights CW are updated. Hence, in this 

section, a suitable update law will be proposed to tune the NN weights. Here, in Theorem 

1, the inputs are assumed to the bounded for purpose of the identifier stability whereas it 

is relaxed during controller design and in the proof of Theorem 3. 

The output o

ky can be estimated at time k  by using a NN-based identifier as 

                                         
 

11
ˆˆ




k

o

kC

T

Ck

o

k
UyWy                                                  (14)  

Using (13) and (14), the identification error is defined as 

                                  
11

ˆˆ



k

o

kC

T

Ck

o

k

o

k

o

kyk
UyWyyye                                   (15) 

The identification error dynamics (15) are expressed as 

                                
k

o

kC

T

Ck

o

k

o

k

o

kyk
UyWyyye 

11111
ˆˆ




                             

(16) 

Based on [16], an auxiliary identification error vector can be written as 

                                       
11

ˆ



kCk

T

Ck

o

kyk
UWY                                              (17) 

where      ][],[ 12111

o

lkC

o

kC

o

kCCk

o

lk

o

k

o

k

o

k yyyyyyY     and [1 kU

]121 lkkk UUU   , 10  kl .Obviously equation (17) represents l previous 

identification errors which are recalculated by using most recent NN-based weights CkŴ . 

Similar to (17), the auxiliary identification error dynamics are revealed to be 
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                                         kCk

T

Ck

o

kyk UWY   111
ˆ                                        (18) 

It is desired to tune the NN identifier weights CkŴ such that the identification error

yke converges to zero asymptotically, i.e. 0,  ykek . Hence, the update law for NN 

weights can be defined as 

                     
   TykC

o

kCkk

T

k

T

CkCkkCk YUUUW  



  1

1

1
ˆ

                   (19) 

where C is the tuning parameter of the NN-based identifier satisfying 10  C . 

Substituting (19) into (18) 

                                                 
ykCyk   1                                                    (20) 

Remark 1: We can define   kkCk Uy0 , and k has to be persistently exiting 

[15] long enough for the online NN-based identifier to learn the NNCS dynamics  o

kyG .     

Next, NN-based identifier weight estimation error is defined as CkCCk WWW ˆ~
 , 

and recalling (13), the identification error dynamics can be rewritten as 

                   
   

  Ckk

o

kC

T
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k
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kC
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CkCkk

o

kC

T

C

o

k

o

kyk

UyW

UyWUyWyye













1

1111

~

ˆˆ
              (21) 

Using ykCyk ee 1 from (20), we have 

                     
     CkCkCk

o

kC

T

CkCk

o

kC

T

Ck UyWUyW    1111

~~
                (22) 

Eventually, the boundedness of the identification error dynamics yke given by (15) 

and NN weights estimation error dynamics CkW
~

given by (22) will be demonstrated. In 

order to proceed, the following definition is needed. 
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Definition 1 [15]:  An equilibrium point ex is said to be uniformly ultimately 

bounded (UUB) in the mean if there exists a compact set nS  so that for all Sx 0

there exists a bound  and a number ),( 0xN   such that  ek xx for all Nkk  0 .  

Theorem 1 (Boundedness of the identifier). Let the proposed NN-based identifier 

be defined as (14) and NN weights update law be given by (19). Under the assumption 

that k defined in Remark 1 satisfies PE condition, there exists a positive constant C

satisfying }2,1min{0 min MC  and computable positive constants eyWC BB , , such 

that the identification error (15) and NN weights estimation errors CkW
~

(21) are all 

uniformly ultimately bounded (UUB) in the mean with ultimate bounds given by

eyyk Be  and
WCCk BW 

~
 

Proof: Refer to the Appendix. 

Next the optimal regulation control of NNCS is introduced. 

B.  Approximation of the Optimal Stochastic Value Function and Control Policy 

Using NN 

In [15], by using universal approximation property of NN, the stochastic value 

function (7) and control policy (11) can be represented with critic and action NN as 

                                          
    Vk

o

k

T

V

o

k yWyV  
                                             (23) 

and 

                                               uk

o

k

T

u

o

k yWyu  *
                                            (24) 

where VW and uW represent the constant target NN weights, ukVk  , are the 

reconstruction errors for critic and action NN respectively, and   and   are the vector 
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activation functions for two NNs, respectively. The upper bounds for the two target NN 

weights are defined as VMV WW  and uMu WW  where uMVM WW , are positive constants 

[15], and the approximation errors are also considered bounded as VMVk   and

uMuk   where uMVM  , are also positive constants [15] respectively.  Additionally, the 

gradient of approximation error is assumed to be bounded as
'

1 VM

o

kVk y    with
'

VM

being a positive constant [11,15]. 

The critic and action NN approximation of (23) and (24) can be expressed as 

[11,15] 

                                               
   o

k

T

Vk

o

k yWyV ˆˆ 
                                                 (25) 

and 

                                                  o

k

T

uk

o

k yWyu ˆˆ                                                    (26) 

where VkŴ and ukŴ represent the estimated values of the target weights VW and uW , 

respectively. In this work, the activation functions      , are selected to be a basis 

function set and linearly independent [15]. Since it is required that   00 o

kyV and

  00 o

kyu , the basis functions      , are chosen such that     00,00  o

k

o

k yy  , 

respectively. 

Substituting (26) into equation (8), it can be rewritten as 
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V uRuyQyEyyW 


 

In other words, 
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where )(),(
,

ky

T

k

o

ky

oT

kk

o

k uRuyQyEuyr 


,   )()( 1

o

k

o

k yy  )( o

ky and

1 vkvkvk  . However, when implementing the estimated value function (25), 

equation (27) does not hold. Therefore, using delayed values for convenience, the 

residual error or cost-to-go error with (27) can be expressed as 

                                 o

k

o

kky

T
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o

ky

oT

kVk yVyVuRuyQyEe ˆˆ
1
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                        (28) 
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Based on gradient descent algorithm, the update law of critic NN weights is given 

by 
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Remark 2: It is important to note that the stochastic value function (8) and critic 

NN approximation (25) all become zero only when 0o

ky . Therefore, once the system 

outputs have converged to zero, the value function approximation is no longer updated. 

This can be also viewed as a PE requirement for the inputs to the critic NN where the 

system outputs must be persistently exiting long enough for the approximation so that 

critic NN learns the optimal stochastic value function. In this paper, the PE condition is 

met by introducing noise. 

As a final step in the critic NN design, define the weight estimation error as

VkVVk WWW ˆ~
 . Since  k

o

k

T uyr ,   T

VkV

o

k

T Wy   1
in equation (27), the dynamics 

of the critic NN weights estimation error can be rewritten as 
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Next, the boundedness of the critic NN estimation error dynamics VkW
~

 given by 

(30) is demonstrated in the following theorem. 

Theorem 2: (Boundness of the Critic NN estimation errors). Let  o

kyu0 be any 

admissible control policy for nonlinear NCS (4), and let the critic NN weights update law 

be given by (29). Then there exists positive constant V satisfying 210  V and 

computable positive constant WvB , such that the critic NN weights estimation error (30) is 

UUB in the mean with ultimate bounds given by WvVk BW 
~

. 

Proof: Refer to the Appendix. 

Now we need to find the control policy via action NN (26) which minimizes the 

approximated value function (25). First, the action NN estimation errors are defined to be 

the difference between the actual optimal control input (26) that is being applied to 

NNCS (4) and the control input that minimizes the estimated value function (25) with 

identified NNCS dynamics  o

kyĜ . This error can be expressed as 
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The update law for action NN weights is defined as 
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                                     (32) 

where 10  u is a positive constant. By selecting the control policy ku to 

minimize the desired value function (23), it follows that 
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Substituting (33) into (31), the action NN estimation error dynamics can be 

rewritten as 
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where      o

k

o

k

o

k yGyGyG ˆ~
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with eM being a positive constant, and
'

1

VMo

k

T

Vk

y











. 

The action NN weight estimation error dynamics can be represented as 
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Remark 3: In this work, the proposed NN-based identifier relaxes the need for 

partial NNCS dynamics  o

kyG . Compared to [11], the knowledge of the input 

transformation matrix )( o

kyG and internal dynamics )( o

kyF are considered unknown here. 
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Next, the stability of NN-based identification error dynamics, NN identifier 

weight estimation errors, critic NN estimation and action NN estimation error dynamics 

are considered. 

C.  Closed-Loop Stability  

Start Proposed 

Algorithm

Initialization 

0,0 uuV kk 
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Fig 3. Flowchart of the proposed optimal controller for NNCS 

 

In this section, it will be shown that the closed-loop system is bounded. On the 

other hand, when the NN approximation errors for the identifier, action and value 

functions are considered negligible [21], as in the case of standard adaptive control [21], 

or when the number of hidden-layer neurons is increased significantly, the estimated 

control policy approaches the optimal control input asymptotically. Before introducing 
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the theorem on system stability, we present the flowchart in Figure 3 of the proposed 

time-based NDP for NNCS with uncertain system dynamics and unknown network 

imperfections.   

For the closed-loop stability in the mean and convergence proof, the initial system 

outputs are considered to reside in a compact set
n because of the initial admissible 

control input  o

kyu0 . In addition, the critic NN basis function and its gradient as well as 

the activation function of the action NN are considered bounded with

    ', M

o

k

o

kM

o

k yyy   , and   M

o

ky   , respectively in  . Further, sufficient 

conditions for the three NN tuning parameters, VC  , and u , are derived to guarantee 

that all future outputs never leave the compact set. In order to proceed, the following 

lemma is needed. 

Lemma 1: There exists admissible control policy be applied to the controllable 

NNCS (4) such that system dynamics satisfy 

                                       
2

*
2

)( o

k

o

k

o

k

o

k
ykyuyGyF                      (36) 

where 2/10  k is a constant.  

Theorem 3: (Convergence of the Optimal Control Signal). Let  o

kyu0 be any 

initial stabilizing control policy for the NNCS in (4) which satisfy the bounds in (A.5) 

and 2/10  k . Let the NN weight tuning for the identifier, critic and the action NN be 

provided by (19), (29) and (32), respectively. Then, there exists positive constant

VuC  ,, satisfying }
22

,1min{0 min

M

C



 ,

12

33

4

1 
 V and

3

1

6

1
 u respectively, 

and positive constants ,, Vy bb eyWC bb , and ub such that the system output vector
o

ky , NN 
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identification error yke , weight estimation errors CkW
~

, critic and action NN weight 

estimation errors
VkW

~
and

ukW
~

, respectively, are all UUB in the mean for all Tkk  0 with 

ultimate bounds given by ,
~

,, WCCkeyyky

o

k bWbeby 
VVk bW 

~
and uuk bW 

~
. 

Further,  o

kyû   u

o

kyu *
 for a small positive constant u . 

Proof: Refer to the Appendix. 

Remark 4: It is important to note that Theorems 1 and 2 demonstrated UUB in 

the mean of NN identifier and Critic NN estimation errors respectively. In Theorem 3, 

boundness of NN identifier, Critic NN and estimated stochastic optimal control from 

action NN are all considered simultaneously. 

IV. SIMULATION RESULTS 

In this section, stochastic optimal control of NNCS with uncertain dynamics in 

the presence of unknown random delays and packet losses is evaluated. The continuous-

time version of original nonlinear affine system is given by 

                                       Cxyuxgxfx  ,)()(                                             (37) 

where   













))2)2(cos(1(5.05.0 2

121

21

xxx

xx
xf

 ,

 
 1

0 0 1
and 

2 2 2 0
g x , C

cos x

   
       

 

The network parameters of the NNCS are selected as [13,19]:  

1. The sampling time: msTs 100 ;  

2. The bound of delay is set as two, i.e. 2d ;  

3.The mean random delay values are given by   msE sc 80   msE 150 ; 

4. Packet losses follow Bernoulli distribution with 3.0p . 
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The distribution of random delays, includes sensor-to-control delay sc with a total 

delay of  , is shown in Figure 4 while the packet losses are shown in Figure 5. 

Incorporating the random delays  t and packet losses  t  into the original nonlinear 

affine system (51), yields the unknown NNCS given by (4). 

 

Fig 4. The distribution of random delays in NCS 

 

 

Fig 5. The distribution of packet losses. 

 

First, the effect of random delays and packet losses for NNCS is studied. The 

initial state is taken as  Tx 350  . The initial static control   kk xu 52  , which 

maintains the original nonlinear affine system (51) stable, is shown in Figure 6 (a). By 
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contrast, this controller cannot maintain system stable in the mean for NNCS in presence 

of random delays and packet losses as Figure 6 (b).  

 

 

Fig 6. Performance of a static feedback controller: (a) random delays and packet losses 

are not present; (b) with random delays and packet losses.   

 

Next, the proposed stochastic optimal control is implemented for the NNCS with 

unknown system dynamics in presence of random delays and packet losses. The augment 

state o

ky is generated as   kuuyy
T

kkk
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for proposed algorithm was selected as     o

k

o

ko yyu 1152  generated by using 

standard pole placement method, while the activation functions for NN-based identifier 

were generated as     ,,...,,tanh{
2

421

2

1

oooo yyyy       },...,,
6

42

3

1

4

1

oooo yyyy , critic NN activation 

function were selected as sigmoid of sixth order polynomial 

          },...,,,,...,,{
6

42

3

1

4

1

2

421

2

1

oooooooo yyyyyyyy and action NN activation function were 

generated from the gradient of critic NN activation function.  

The design parameters for NN-based identifier, critic NN and action NN were 

selected as 410,002.0  VC  and 005.0u while the NN-based identifier and critic 

NN weights are set to zero at the beginning of the simulation. The initial weights of the 

action NN are chosen to reflect the initial stabilizing control. The simulation was run for 

20 seconds (200 time steps), for the first 10 seconds (100 time steps), exploration noise 

with mean zero and variance 0.06 was added to the system in order to ensure the 

persistency of excitation (PE) condition (See Remarks 1 and 2). 
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Fig 7. Performance of stochastic optimal controller for NNCS: (a) State regulation errors; 

(b) Critic NN and Action NN parameters. (c) Control input. 
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The performance of proposed stochastic optimal controller is evaluated from 

several aspects: 1) as shown in Figure 7(a), the proposed stochastic optimal controller can 

make the NNCS state regulation errors converge to zero even when the NNCS dynamics 

are uncertain which implies that the proposed controller can make the NNCS system 

stable in the mean; 2) the proposed critic NN and action NN parameters converge to 

constant values and remain bounded consistent with Theorem 3 as shown in Figure 7(b); 

3) The optimal control input for NNCS with uncertain dynamics is shown in Figure 7 (c) 

which is bounded. 

 

 

 

Fig 8. Performance of HDP value iteration for NNCS: (a) Iterations=100 times/sample; 

(b) Iterations=10 times/ sample. 
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For comparison, HDP value iteration (VI) [9,17] is also implemented for NNCS 

with known dynamics  G  by incorporating the  g (37) and information of delays and 

packet losses which are normally not known before hand. The initial admissible control, 

critic NN and action NN activation function are same as proposed time-based stochastic 

optimal control.  

As shown in Figure 8 (a), the HDP VI method can make the NNCS state 

regulation errors converge to zero when the number of iterations is 100 times/sample. By 

contrast, HDP VI cannot maintain NNCS stable in the mean when iterations become 10 

times/sample as shown in Figure 8 (b). It implies that HDP VI scheme not only needs 

partial knowledge of original nonlinear affine system dynamics,  g , but also 

information on delays and packet losses. The number of iterations required for a given 

nonlinear system is unknown. Due to these drawbacks, the HDP VI is not preferred for 

NNCS implementation in real-time. 

Based on the results presented in Figures 4 through 8, the proposed stochastic 

optimal control scheme with uncertain NNCS dynamics and unknown network 

imperfections can overcome the drawbacks of HDP-based value iteration method and 

will render nearly the same performance as that of an optimal controller for NNCS when 

the system dynamics, random delays and packet losses are known. 

V. CONCLUSIONS 

In this work, an online approximate dynamic programming technique for NNCS 

is proposed by using identifier NN, critic NN and action NN to solve the stochastic 

optimal regulation of NNCS with uncertain dynamics in presence of random delays and 

packet losses. Compared with other recent NNCS and NDP research works, this paper 
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has developed a NNCS representation with augment states. The NN identifier relaxed the 

requirement of input gain matrix for NNCS while the information on random delays and 

packet losses are not needed. Consequently, proposed time-based, forward-in-time 

scheme can be implemented in practical NNCS.  Therefore no value and policy iterations 

are required since a history of cost to go errors are utilized. 

The initial admissible control policy ensured that NNCS is stable in the mean 

while NN identifier learns the input gain matrix, the critic NN approximates the 

stochastic value function  o

kyV , and the action NN generates the approximate stochastic 

optimal control. All NN weights were tuned online using proposed update laws and 

Lyapunov theory demonstrates the asymptotic convergence of the approximated control 

input to its optimal value over time in the mean. 
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APPENDIX 

Proof of Theorem 1: Consider Lyapunov function candidate 
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Using the standard Lyapunov extension [23], the identification errors and NN 

weights estimation errors are UUB in the mean. 

Proof of Theorem 2: Consider the Lyapunov function candidate 
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where  o

ky  min0 is ensured by the PE condition described in Remark 2 

and
VMVk   for a constant VM is ensured by the boundness of Vk . Therefore,
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Using standard Lyapunov theory [15], it can be concluded that  VkV WL
~

 is less 

than zero outside of a compact set rendering the critic NN weights estimation errors to be 

UUB in the mean. 

Proof of Theorem 3: Consider the Lyapunov function candidate 
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R is the maximum singular value of R . The first difference 

of (A.7) is given by  ANCNVNuNDN LLLLLL BNL . 
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Substituting (34) into (A.10) we get 

          

   
     

Vko

k

o

k

T
o

k

T

y

o

k

T

uko

k

o

k

T

u
u W

y

y
yGRyWtr

yy
L

~

2

1~
{(

1

2

1

11




















 

                      }
~

)
~

2

1~~

2

1

1

1

1

11

uk

o

k

T

eko

k

Vko

k

T

yVko

k

o

k

T
o

k

T

y Wy
y

yGRW
y

y
yGR 




















            

              

   
    

     
Vko

k

o

k

T
o

k

T

y

o

k

T

uk
o

k

o

k

T

o

k

o

k

T

u W
y

y
yGRyWtr

yy

yy ~

2

1~
({

1 1

11

2

2




















 

              

      T

eko

k

Vko

k

T

yVko

k

o

k

T
o

k

T

y
y

yGRW
y

y
yGR )

~

2

1~~

2

1

1

1

1

11 





















 

            

     
Vko

k

o

k

T
o

k

T

y

o

k

T

uk W
y

y
yGRyW

~

2

1~
(

1

11













 

           

      )}
~

2

1~~

2

1

1

1

1

11

eko

k

Vko

k

T

yVko

k

o

k

T
o

k

T

y
y

yGRW
y

y
yGR 






















 

        

 
   

 
 
   

  Vk

o

k

T

uko

k

o

k

T

uuo

k

T

uko

k

o

k

T

uu
WyW

yy

a
yW

yy

~~

1

2~

1

43 2
2

2





















 

        

        
 

2
2

2
22

~

112

~
3

uk

o

k

T

o

k

o

k

T

u

eMo

k

o

k

T

Vku
Wy

yyyy

W




















 

        

   
     

2

1

1

1

11 ~

2

1~~

2

1

1 o

k

T

Vko

k

T

yVko

k

o

k

T
o

k

T

yo

k

o

k

T

u

y
yGRW

y

y
yGR

yy 



























 

         

   
     

2

1

1

1

11

2
~

2

1~~

2

1

1

2
o

k

T

Vko

k

T

yVko

k

o

k

T
o

k

T

yo

k

o

k

T

u

y
yGRW

y

y
yGR

yy 



























 



 

 

138 

        

   
2

2
22

2

2

2

min

2
~

)1(2

)(~

1

)63(
eMVko

k

o

k

T

uu

uk

M

uu
W

yy
W 




















 

   

  

 
  

 
2

22

2'2
22

22

22
~

12

2~~

12

2
Ck

MM

MVMuu

VkCk

MM

Muu
W

G
WW

G 

















 

       

   
    

2
22

2

2

2

min

2
~

12

~

1

63
Vko

k

o

k

T

uu

uk

M

uu
W

yy
W



















 

    

  

 
  

 
4

22

22
4

22

22
~

14

2~

14

2
Vk

MM

Muu

Ck

MM

Muu
W

G
W

G 

















        

      

  
 

2
2

22

2'2

~

12

2
eMCk

MM

MVMuu
W

G










                                          (A.11) 

where  o

ky  min0 is ensured by the PE condition described in Remarks 1&2, 
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Next, the first difference of BNL can be expressed as 

         
     22

11

~~~~
Ck

T

CkCk

T

CkBN WWtrWWtrL    

                  

42

2

2
2

2

min

2
22 ~

2
~

2 CkCMCk
M

C WW 














 

                      (A.13) 

                 

4

4

min

2

2
2

2

min

222
4

4

min

4

42 4~8~
41 CMCMCk

MC

Ck

M

C WW 
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provided the tuning gains are selected according to (19) (29) and (32) for the 

NNCS (4). Using the standard Lyapunov extension [15], the system outputs, NN 

identifier and weight estimation errors, critic and action NN estimation errors are UUB in 

the mean while the system outputs never leave the compact set.  

Next using (24) and (26), we have
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Now, if the NN identifier, critic and action NN approximation errors Vue  and,

are neglected as in [24,29] and when k , TM in (A.15) and bu in (A.16) will 

become zero. In this case, it can be shown that the NN-based identification, action NN 

and critic NN estimation errors converge to zero asymptotically, i.e.    o

k

o

k yuyu *ˆ  . 
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PAPER IV 

STOCHASTIC OPTIMAL DESIGN FOR UNKNOWN NETWORKED 

CONTROL SYSTEM WITH COMMUNICATION NETWORK PROTOCOLS 

H. Xu and S. Jagannathan 

Abstract—In this paper, stochastic optimal control and estimation problems have been 

considered for linear discrete-time systems with wireless imperfections referred to as 

linear networked control system (NCS). The network imperfections include packet losses 

and random delays.  For evaluating the impact of network reliability on controller 

performance, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 

are considered with NCS. First a novel observer is introduced to estimate the state vector 

in the presence of unknown system dynamics due to network imperfections and the 

communication protocols. Next, a novel stochastic optimal adaptive output-feedback 

controller by using adaptive dynamics programming (ADP) is utilized to solve the infinite 

horizon optimal regulation of NCS under the TCP and UDP protocol respectively by 

estimating the value function. Update laws for tuning the unknown parameters of 

proposed novel observer and value function estimator are derived. Stable regions of 

proposed observer for linear NCS under TCP and UDP with and without known system 

dynamics are given respectively.  Lyapunov stability analysis indicate that for NCS under 

TCP, all signals are asymptotically stable (AS) in the mean and the estimated control and 

observed state signals converge to optimal control inputs and actual states of NCS in the 

mean respectively, and for NCS under UDP all signals are uniformly ultimately bounded 

(UUB) in the mean while the approximated control input converges close to its optimal 
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value with time in the mean. Simulation results are included to show the effectiveness of 

the proposed scheme. 

 

I. INTRODUCTION 

Networked Control Systems (NCS) [1] are feedback control systems wherein the 

control loop is closed through a real-time communication network. Although NCS brings 

many advantages (e.g. saves installation cost, etc.), insertion of a communication network 

into the feedback loop causes many challenging issues due to network imperfections such 

as network-induced delays and packet losses that occur while exchanging data among 

devices. In fact, the performance of the control system degrades significantly due to these 

network imperfections.  

Therefore, recently, the authors in [1] analyzed the stability of NCS with network-

induced delays, whereas the work in [2] proposed a stability region for NCS with 

network-induced delays and packet losses.  The optimal controller design is derived for 

NCS with random delays in [3]. On the other hand, the authors in [4] introduced 

stochastic optimal control of NCS with network imperfections [5]. These optimal control 

designs [3-4] are obtained backward-in-time by assuming that the NCS system dynamics 

and information of network imperfection such as network-induced delays and packet 

losses, which cannot be obtained beforehand, are assumed to be known accurately. In 

addition, current NCS designs [1-4] did not include the impact of network protocols (e.g. 

TCP, UDP etc.) that cause these network imperfections until recently in [12]. 

On the contrary, adaptive dynamic programming (ADP) techniques, proposed by 

Werbos [6], intend to solve optimal control design for unknown nonlinear system in a 

forward-in-time manner instead of traditional optimal control scheme [8] where 
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backward-in-time approach is utilized with known system dynamics. In ADP, the 

dynamic programming is utilized via value and/or policy iterations [6][8][27] to generate 

optimal control input. However, the value and policy iteration-based optimal control 

design [6][8][27] needs a significant number of iterations within a sample interval for 

convergence which can be an issue for closed-loop stability and hardware 

implementation. Less iteration within the sampling interval can lead to instability. 

Therefore, Dierk and Jagannathan [9] utilized the Hamilton-Jacob-Bellman (HJB) 

equation in forward-in-time manner for the optimal control of a class of general unknown 

nonlinear affine discrete-time systems by using state feedback. Here, value and policy 

iterations are not utilized; instead the dynamic programming based optimal control over 

time utilizes past history of system states and cost errors thus making the technique 

suitable for real-time control. However, the ADP-approaches from [6-9][27] are not 

suitable for NCS since effects of network imperfections caused by practical network 

protocol is not considered. Addition of network protocol will require output feedback 

which is more involved than state feedback. 

In our previous paper [18], stochastic optimal design of state-feedback NCS is 

undertaken in the presence of uncertain dynamics due to unknown network imperfections 

by assuming the states are measurable.  However, the impact of network protocol such as 

the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are not 

studied.  For TCP or UDP protocols, an observer is required [12] in the controller design 

which can complicate the optimal controller design [18] and stability analysis.  

Therefore, optimal adaptive output feedback control technique is undertaken in 

this paper to obtain stochastic optimal regulation of linear NCS in discrete-time under 
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TCP or UDP protocol with uncertain system dynamics and unknown network 

imperfections. The network imperfections considered in this paper include network-

induced delays and packet losses. First, for implementing the output feedback under 

standard TCP or UDP protocol, a novel observer is introduced to estimate the system 

states when the dynamics are unknown.  

Next, by using the observed system states and an initial stabilizing control, the 

value function is estimated [9] and its parameter vector is tuned online and forward-in-

time by using Bellman Equation [7]. Eventually, stochastic control inputs which optimize 

the value function can be calculated based on parameters provided by the value function 

estimator. Compared with traditional optimal control theory which requires the 

knowledge of system dynamics to solve the Stochastic Riccati Equation (SRE), the 

proposed novel observer and value function estimator relax the need for system states and 

dynamics, and information on network-induced delays and packet losses respectively for 

NCS under TCP or UDP, and yields optimal control without using value or policy 

iterations.  

This paper is organized as follows. In Section II, the background of NCS under 

TCP or UDP and traditional optimal control for linear discrete-time system is given first. 

Next, the stochastic optimal control of NCS under TCP without known system dynamics 

is derived and stability of proposed stochastic optimal scheme is verified by using 

Lyapunov theory in Section III.  Section IV proposes stochastic optimal control of NCS 

under UDP with unknown system dynamics and analyzed stability of the proposed 

scheme based on Lyapunov theory. Then the effectiveness of proposed schemes is 
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illustrated via numerical simulations in Section V, and Section VI provides concluding 

remarks.  

II.  BACKGROUND 

A.  NCS Under TCP or UDP 

In Figure 1, the basic structure of NCS is shown where the feedback loop is 

closed over a communication network by using either TCP or UDP network protocol. 

Due to the presence of a communication network, two types of network-induced delays 

and two types of packet losses are observed: (1) )(tsc : sensor-to-controller delay, (2)

)(tca : controller-to-actuator delay, (3) )(t : indicator of packet lost at controller and (4)

)(t : indicator of packet lost at actuator. 

PlantActuator Sensor

Delay

And

Packet losses

Controller

Delay

And

Packet losses

Communication Network 

with TCP or UDP Protocol

intervalSampling:
s

T

)(tca

)(t

)(tsc

)(t

Adaptive 

observer

ẑ

 
 

Fig 1. Networked Control System under TCP or UDP. 
 

Based on standard TCP and UDP protocols [12] and other recent NCS results, the 

following assumption is needed for NCS under TCP or UDP [13-14]:  

Assumption 1: 

a) Sensor is time-driven; controller and actuator are event-driven [13].  
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b) Communication network is wide area network such that two types of 

networked-induced delays are independent, ergodic and unknown whereas their 

probability distribution functions are considered known. The sensor-to-controller delay is 

kept less than one sampling interval [14]. 

c) The sum of the two delays is bounded while initial state of the system is 

deterministic [14]. 

After incorporating the network-induced delays and packet losses, the original 

time-invariant plant )()()( tButAxtx  , )()( tCxty  can be expressed as 
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 with )(tx     ,

)(),( tutu ac     and )(ty      represent the system state, control inputs computed 

at the controller and control inputs received at the actuator, and output of NCS plant 

respectively and A     and B     denote the system matrices. According to 

Assumption 1, sum of network-induced delays is considered to be bounded. (i.e.

scasc bTtt  )()(  whereb denotes the delay bound while sT being the sampling interval.) 

Since actuator is event-driven, control input received by actuator )(tua
to the plant 

is a piecewise constant. According to NCS under TCP or UDP protocols, at most b

number of current and previous control inputs can be received at the actuator at the same 
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time, and only the latest control input is allowed to be applied on the plant during any 

sampling interval (i.e. kTkkT ss  ),)1(,[ ), and other previous control inputs are ignored. 

It is important to note that since controller and actuator are event-driven, the plant can 

implement control inputs at the time instant ditkT k

is ,...,2,1,0,  and k

i

k

i tt 1 where

s

k

i

k

i iTt  as shown in Figure 2 [13-14]. 
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Time axis notation:

1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted

3. Bottom line: Actuator received control action




 
 

Fig 2. Timing diagram of signal transmission under TCP and UDP 
 

Since controller is event-driven, the integration of (1) over a sampling interval

))1(,[ ss TkkT  yields 
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ku is the control input received at the actuator and at time skT  while c

ku is 

the control input computed at the controller and at time skT , and kk  , are the packet loss 
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indicators at the controller and actuator respectively, which are also independent and 

identically distributed Bernoulli random variables with   )1( kP and   )1( kP . 
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Fig 3. Block diagram of NCS under TCP 

 

For simplifying the NCS representation (2), a new augment state variable 

consisting of current state and previous control inputs (i.e. 
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rewritten as 

                         ,...2,1,0      ,1  kzyuBzAz kkk

c

kzkkzkk                              (3) 

where time-varying system matrices are given by 
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Here the system matrices are uncertain due to the presence of network imperfections 
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caused by the communication protocol TCP or UDP with output vector alone is 

measurable. The block diagrams of NCS under TCP or UDP are shown in Figure 3 and 4. 

Compared with UDP, the TCP [23][25] uses acknowledgments to indicate the 

reception of a packet (i.e. 1kυ ). Therefore, similar to [12], the following network 

information set kk  ,  can be defined for NCS under TCP or UDP respectively as 
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where },...,,{},,...,,{ 1111    kkkkkk yyy γy , kk {τ },...,, 11  k
and

},...,,{ 11   kkkυ represent current and previous outputs, packet loss indicators at the 

controller and the actuator, and network-induced delays respectively. 
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Fig 4. Block diagram of NCS under UDP  

 

In this paper, based on the representation of NCS under unreliable communication 

network (TCP or UDP) (3), the stochastic optimal control of NCS under TCP or UDP are 

derived respectively by minimizing the related value function  
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where the value or cost function, )(*

kzV , is defined in next section, O and R are 

symmetric positive semi-definite and symmetric positive definite constant matrices 

respectively and ])[(],)[( kk EE   are the expected operators (i.e. mean value) of
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m RuuOzz )( based on the TCP information set k or UDP information set k

defined in (4). Next a brief introduction of the optimal control of linear discrete-time 

system by using dynamic programming is given. 

 

B. Trational Optimal Control of Discrete-Time Systems 

Consider a linear discrete-time system given by 

                                             kkkkk uBxAx 1                                                      (6) 

where kx   is the system state vector,
 

ku   is the control input vector and

kA     ,
 

kB      are system matrices. According to [7], the infinite-horizon 

optimal value function can be defined as 
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with k

T
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T

kkk RuuQxxuxr ),( , and RQ, are symmetric positive semi-definite and 

definite matrices respectively. 

Using dynamic programming, the optimization problem for linear discrete-time 

system (6) and (7) can be derived as 
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where )(*

kxV is the infinite-horizon optimal value function. Then Bellman 

equation in discrete-time can be represented as 
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Assuming that minimum on the right hand side of (3) exists and is unique, and 

then optimal control policy can be derived as [7] 
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Substituting optimal control policy (10) into Bellman equation (9), discrete-time 

(DT) HJB equation with optimal control *

ku can be expressed as 
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For linear systems, value function (7) is taken as a quadratic function of state 

vector [7] given by 
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where kP is a positive-definite kernel matrix. Substituting (12) into (11), DT HJB 

equation becomes Riccati Equation (RE) given by 
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with kP becoming the solution of the Riccati Equation. Meanwhile, optimal control 

input can be expressed in terms of kP and system matrices as 
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Traditionally RE (13) is solved backward-in-time and optimal control input (14) 

is obtained by using kP  and system dynamics kA , kB [7].  For linear systems with 

uncertain system dynamics, solving (13) and (14) is a challenge.  Instead, in ADP, policy 

and/or value iteration algorithms [6-7] have been implemented to approximate the value 

function (12) and subsequently to obtain the control inputs based on estimated value 

function using (10) so that system matrices are not needed. However, with policy and 

value iteration-based schemes, it is not clear how to select the number of iterations 

required within a sampling interval for convergence and stability while meeting the 

hardware constraints. Inadequate number of policy and value iteration can lead to 

instability [15]. 

Therefore, to mitigate this drawback with policy and value iteration-based ADP, a 

time based value and policy update scheme will be proposed to solve stochastic optimal 

control of NCS under TCP or UDP. This proposed scheme works in forward-in-time 

manner and does not use an iterative methodology and known system dynamics as will be 

discussed in the next section. 

 

C. Representing System States in Terms of Measured Output and Input Sequence Data 

Similar to [26], NCS states can be expressed by using available measured data i.e. 

current and historical input and output sequences. Consider the NCS dynamics (3) as

 kzkk zAz 1 kkk

c

kzk zyuB , where ),( zkzk BA is controllable and ),( kzkA  is observable. 

According to observability property of ),( kzkA  , the full system states kz can be 
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reconstructed by using observations of NCS output ky over a long-time horizon. For 

current time k , NCS dynamics on the time horizon ],[ kNk  can be written as  
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Defining controllability and observability matrices of NCS as 
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Meanwhile, Toeplitz matrix of Markov parameter and the available measured data 

(i.e. input and output sequences) over time horizon  Nkk  ,1 can be defined as 
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Using (16) and (17), (15) can be represented as 
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Since ),( kzkA  is observable, there exists an observability index l such that o

NkH is 

full rank when lN  . Therefore, let lN  , then left inverse of o

NkH is given as 
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On the other hand, it is important to note that
M

o

y DD  and MD is known since
o

yD

is composed by NCS dynamics kzkzk BA ,, which are bounded as MzkMzk BBAA  , ,

Mk  and MMM BA ,, are assumed known. 

III. OPTIMAL CONTROL DESIGN FOR NCS UNDER TCP 

In this section, observers [12] and ADP [17] are used to derive stochastic optimal 

control of NCS under network protocol such as TCP with uncertain system dynamics due 

to unknown network imperfections. First, a novel observer is designed online to estimate 

the augment system state vector at the controller. Second, we estimate the unknown value 

function for NCS with network imperfections under TCP. Third, a model-free online 

tuning of the parameters of observer and value function estimator by using ADP  method 

incorporating the observed augment system states is proposed.  Eventually, the 

convergence proof is given. 

A.  Novel Observer Design for NCS Under TCP 

An observer or estimator is normally utilized when certain states are unavailable 

for measurement. However, the observer design for NCS requires the knowledge of 

system dynamics [12], which is unknown due to the presence of unknown network 

imperfections such as packet losses and random delays. Therefore, in this section, a novel 

observer is proposed to estimate the system states online for NCS under TCP by relaxing 

the need for system dynamics and network imperfections. 

The observer design, similar to a [12][24], can be separated into two steps: 1) 

Innovation step where the system states are predicted based on current and previous 
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system information (e.g. system outputs and control inputs); 2) Correction step where the 

estimated system states obtained from the innovation step in the previous time interval 

are adjusted based on current measured system output.  Next, the details of novel 

observer design are given. 

In the presence of TCP, the system states kz can be estimated at the correction step 

of time instant, skT , as 
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white Gaussian noise (i.e. ),0(~ 2

0Nnk where 0 is the variance of white Gaussian noise 

with 00  ), and. The observer design is detailed using the two mentioned steps. 

a) Innovation step at time skT :  

In this step of the observer design, future system states 
kk

z
1

ˆ


can be predicted as  

                             o

kokkk

T

kkkkk
nsMEzEz

111

~]ˆˆ[][ˆ


 y                            (23) 



 

 

160 

According to (20),
kk

z~ can be express as  
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where  },,{ mmzz IIAdiagU                          ,
k

~
 is the observer 

parameter estimation error kk  ˆ~
 . Since zU is composed by zA and identity matrix, 

and Mz AA  ( MA is known), Mz UU  and MU is also known. Therefore, 
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b) Correction step at time sTk )1(  : 

Now define the update law for the parameter vector k̂ of the observer as 
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Substitute (3) in (25), 1
ˆ
k can be expressed as  
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where o is the tuning parameter satisfying 10  o . Meanwhile, observer 

parameter estimation error dynamics k
~

can be represented as 
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Eventually, at time sTk )1(  in the correction step, the observed state
11

ˆ
 kk

z and the 

estimation error dynamics
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~
 kk

z in this step can be expressed as 
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Next the convergence of observer parameter estimation error vector
k

~
and 

observation errors
kk

z~ is demonstrated. Before convergence proof, the following 

assumption is needed. 

Assumption 2 [12]: (Observability) In order to meet the observability criterion, 

critical arrival probability of packets between the sensor and the controller need to be in 

the region [12] defined by
0

1
)1(

N
P k   where )1( kP  is the arrival probability at the 

controller and 0N is a finite positive constant. 

Remark 2: This assumption implies that a broken communication link is not 

present between the controller and the system which in turn ensures that there exists at 

least one packet that traverses through the network so as to observe the system states.   

Theorem 1: (Convergence of observer parameter estimation and errors 

dynamics): Let the proposed novel observer, estimation errors and parameter vector 

update be defined by (22), (24) and (25) respectively. Under Assumption 2 and TCP, 
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there exists positive constant o and  satisfying
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 Next, according to parameters estimation error dynamics (27), the term L can be 

derived as
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Substituting (24) into (30), L can be expressed as
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Finally consider the overall first difference and using (29) and (31), oL can be 

expressed as 
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Since packet loss indicator 1k can be equal to 0 or 1, oL (32) needs to be 

separated into two different cases for further consideration as given below. 

Case 1: 11 k  (No packet losses). 

Substituting 1k value into (32), oL can be derived as 
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Case 2: 01 k . (with packet losses)
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Based on Assumption 2, packets lost probability between the sensor and 

controller has to satisfy the observer stability region (i.e. 
0

1
)1(

N
P k  ). Therefore, if

01 k , then there exists ],[ 0 kNkj  such that 11   jkkk   0 and 1 jk . 

Therefore, using update law for observer estimated parameters (25), observer parameters 

estimation errors 1

~
k can be expressed as jkk  

~~
1 . Then, substituting jkk  

~~
1 into 

(32), oL can be derived as 
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 , then according to (33) and (34), oL is negative 

definite and oL is positive definite. Therefore, observer error dynamics
kk

z~ and its 

parameter estimation errors
k

~
for NCS under TCP are asymptotically stable in the mean 

for both cases. In other words, as k , 0~ 
kk

z and 0
~
k .

 Next, stochastic optimal control for NCS under TCP with estimated system states

kk
ẑ is proposed by using the value function estimator. 

B.  Value Function Definition for NCS Under TCP 

Consider NCS under TCP with network imperfections represented by equation (3) 

where 
FzkMFzk BAA , MB and

F
 denote the Frobenius norm. Given NCS under 

TCP with a unique equilibrium point, 0z , on a setΩ , minimizing the stochastic value 

function )(zVk (5) renders the stochastic optimal control input as kk

c

k zKu * where kK

being the optimal gain. According to [7], the stochastic value function can be rewritten as 
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with 0kP is the solution of the SRE [5]. Then we can define the optimal action 

dependent value function in terms of expected value as 
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with cost to go defined as k
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kkk RuuOzzuzr ),( . Then, similar to [18], using 

Bellman equation and stochastic value function, substituting value function into the 

Bellman equation results in 
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Therefore, )( kkE  can be expressed as 
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Then, according to [5] and (38), the optimal control gain for NCS under TCP can 

be represented in terms of value function parameters, k , as 
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According to optimality [7], since kK is the optimal control gain, kK is bounded 

for all k (i.e. Mk KK  ). 

It is important to note that even if the kernel matrix kP is known; solving time-

varying optimal control gain still requires slowly time-varying system matrices. 
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However, if the parameter vector k which is slowly-varying can be estimated online, 

then system dynamics are not needed to calculate the optimal control gain.  

C.  Model-Free Online Tuning Value Function Estimator 

In this section, when the value function (35) is estimated online, matrix k is 

obtained which in turn is used to derive stochastic optimal control inputs via (39) without 

the system matrices. By assuming the value function, )(*

kzV , can be  represented as the 

linear in the unknown parameters (LIP) and according to [5] and (35), the value function 

is given as  
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1 klklklkklkk   is Kronecker product quadratic  polynomial stochastic 

independent basis vector [17] consisting of current state and past control inputs, )(vec

function is constructed by stacking the columns of matrix into one column vector with 

off-diagonal elements [17]. Since matrix k can be considered as slowly time varying, 

value function can be represented as a function of target unknown parameter vector and 

regression function k . 

Meanwhile, value function can also be represented in terms of k as 
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Since the observed system states
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ẑ are only available at the controller, the value 

function with observed system states can be expressed as 
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where
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k uz ]ˆ[ and e

k is Kronecker product quadratic polynomial stochastic 

independent basis vector of e

k . 

Next, we will derive the residual errors by using the Bellman equation. Normally, 

the Bellman equation can be rewritten as 0),()()( **

1  kkkk uzrzVzV . However, this 

relationship does not hold when we apply the observed states
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Since kP is the solution to the SRE, Mk
PP  and

2

MM APQO  which will be 

used in the proof of Theorem 2. 
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Next, the value function estimation with observed system states will be 

considered. First, value function with observed system states )ˆ(* zVk can be expressed in 

terms of estimated parameters k̂ as 
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where k̂ is the estimated value of the target parameter vector
k defined before. 

Substituting (45) and estimated system states into Bellman equation, the equation 

is not guaranteed to hold. By using delayed values for convenience, the residual error 

associated with (45) can be expressed as 
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where e
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e
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k 1  is the first difference of regression function and a

ke represent 

estimation errors. 

The dynamics of (46) can be expressed as
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define the update law for the parameter vector k̂  as 
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where 10  h is the tuning parameter for value function estimation. 

Remark 3: It is observed that the value function )(*

kzV and its estimation )ˆ(ˆ
kk

zV  

(45) will become zero only when 0kz and 0ˆ 
kk

z . Hence when system states have 

converged to zero, the estimated system states
kk

ẑ will also converge to zero according to 

Theorem 2 and the value function estimation is no longer updated. It can be seen as a 
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persistency of excitation (PE) requirement for the inputs to value function estimator 

wherein the system states must be persistently existing long enough for the estimator to 

learn the optimal value function. Therefore, exploration noise is added to NCS in order to 

satisfy the PE condition [18]. 

Next dynamics of parameter estimation errors of the value function can be 

expressed as 
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Then, the convergence of the value function estimation errors with parameter 

error dynamics k
~

given by (48) is demonstrated for an initial admissible control [10] 

policy. It is important to note that slowly time-varying [21] linear NCS is asymptotically 

stable in the mean if an initial admissible control can be implemented provided system 

matrices are known. However, proposed estimated value function with observed system 

states results in estimation errors for the value function kV , whose stability needs to be 

studied. Therefore, Theorem 2 will prove the value function estimation errors converge 

while the overall closed-loop system stability is shown in Theorem 3 with an initial 

admissible control policy. 

Theorem 2: (Asymptotic stability of the value function estimation errors). Given 

the initial parameter vector 0̂ for the value function estimator to be bounded in the setΩ , 

let ku0 be an initial admissible control policy for the linear NCS under TCP (3). Let the 

observer parameter update law be given by (47). Then there exists positive constants
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value function estimation errors for NCS under TCP converge to zero asymptotically, 
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Proof: Consider the positive definite Lyapunov candidate  
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and are positive definite matrices, I is identity matrix and

,...2,1k . The first difference of (49) is given by aoJ LLL   . Since Lyapunov 

candidate function (49) includes observer parameters, we have to separate the proof into 

two cases similar to Theorem 1. 

Case 1: 11 k . (No packet losses) 

Using (27), (28) and (48), JL can be derived as 
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Substituting (51) into (50), JL can be rewritten as 
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Case 2: 01 k . (With packet lost) 
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Based on Assumption 2, packets lost probability between sensor and controller 

has to satisfy the observer stability region (i.e. 
0

1
)1(

N
P k  ). Therefore, if 01 k , 

then there exists ],[ 0 kNkj  such that  kk  1 01  jk and 1 jk . Therefore, 

using update law for the estimated parameters of observer (25), the observer parameter 

estimation errors
1

~
k can be expressed as jkk  

~~
1 . Then substituting jkk  

~~
1 into

JL , we have 
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 , JL is negative definite and JL is positive 

definite. Therefore, for the two cases, the observed system states
kk

ẑ , value function 

parameter estimation errors k
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and value function estimation errors for NCS under TCP 

are all asymptotically stable in the mean. In other words, as k , 0
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Next, it is shown estimated control input based on estimated parameter vector k̂

will indeed converge to the optimal control input. 

D.  Stochastic Optimal Control Signal Estimation for NCS under TCP 

Similar to [18], there are two ways to estimate stochastic optimal control signal 

for linear NCS under TCP. One is based on slowly time-varying matrix k , and another 

is based on standard optimal control theory by minimizing the stochastic value function. 

The main differences are that the later method needs the system dynamics and solves the 

optimal controller backward-in-time. However, it is shown here that ultimately both are 

equivalent and therefore are used in the proofs. 

Method I: Slowly time-varying matrix k can be approximated by using 

proposed value function estimation. Using (39), the estimated optimal control signal for 

NCS can be expressed in terms of estimated k as 
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Method II: Alternatively, estimated optimal control signal that minimizes the 

estimated stochastic value function (41) with actual parameters k̂ is given by 
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EzV  . 

Next, it will be shown that optimal control input obtained by method I and II are 

equivalent. 
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Lemma 1: The estimated optimal control obtained with the value function 

estimation of )(*

kzV is equivalent to the optimal control calculated by minimizing the 

stochastic value function
*

kV , i.e. kk uu 21
ˆˆ  . 

Proof: Using the Bellman equation and estimated value function with matrix k , 

we have 
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2) The right side of (56) can be shown as 
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According to (57) and (58), (56) can be derived as
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According to the estimated optimal control law (39), we have
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At the same time, according to the optimal control theory [7] we define
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The term ku2
ˆ can be solved by (62) as 
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According to (61) and (63), we have 
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Since the equality in this lemma is both ways and noting the drawback of second 

method, we use method I to solve the optimal control inputs for NCS under TCP. 

However, we will use the Lemma 1 to complete the convergence proof because they are 

equivalent. Next, stability of estimated stochastic value function and control input, 

observation error and estimation error dynamics are considered. 

E.  Closed-Loop System Stability 

In this section, we will show that observer errors, slowly time-varying parameter 

and value function estimation error dynamics are asymptotically stable in the mean. 

Moreover, the observed system states and estimated control inputs for NCS under TCP 

will converge asymptotically to actual system states and optimal control signals 

respectively. Next, the flowchart of proposed stochastic optimal regulator of linear NCS 

under TCP is shown in Figure 5. 
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Fig 5. Stochastic optimal regulator for linear NCS under TCP 

 

 

Here the initial system states are assumed to reside in the setΩ stabilized by using 

the initial admissible control input 0u . Then, sufficient conditions for the observer and 

value function estimator tuning gains ho  , are derived to guarantee all the future states 

will approach to zero asymptotically. Eventually, it can be shown that actual control 

inputs converge to the optimal control asymptotically. 
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Before introducing the convergence proof, the following lemma is needed to 

establish the bounds on the optimal closed-loop dynamics while the optimal control is 

implemented on the NCS under TCP with network imperfections. 

Lemma 2: Consider the NCS under TCP, and then there exists an admissible 

control policy such that the following inequality is satisfied 

                                          
22
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(65) 

where 210 
a

k is a constant. 

Proof: Proof follows similar to [18] but omitted. 

Theorem 3 (Convergence of Optimal Control Inputs): Given the initial conditions 

for the system state 0z , observer parameter estimation vector 0̂ , value function parameter 

vector 0̂ are bounded in the setΩ , let 0u be any initial admissible control policy for NCS 

under TCP in the presence of network imperfections satisfying the bounds given by (65) 

for 210  ak . Let the observer, value function estimated parameters be tuned and the 

estimated control policy be provided by (26), (47) and (54) respectively. Then, there exist 

positive constants  ,o given by Theorem 1 and 2, and h given by Theorem 2 such that 

the system states kz , observer parameter estimation error vector k
~

and value function 

parameter estimation error vector k
~

for NCS under TCP are all asymptotically stable in 

the mean. In other words, as k , 0kz , 0
~
k , 0~ 
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k , )()ˆ(ˆ *
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Proof: Consider the following positive definite Lyapunov function candidate 
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where DL is defined as }{ k
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I
is positive definite 

matrix, JL (32) with positive matrix  is defined in Theorem 1, oL (49) with positive 

matrices , are given by Theorem 2 and I is identity matrix. The first difference of (66) 

can be expressed as oJD LLLL  . Consider the first part

}{}{ 11 k
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kD zztrzztrL   and by applying NCS under TCP and Cauchy-Schwartz 

inequality, we have 
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Using the Lemma 2 and recalling kk uu 21
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Therefore, (67) can be expressed as 
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Similar to Theorem 1 and 2, we separate the proof into two cases: 11 k and

01 k as following 

Case 1: 11 k . (No packet losses) 

Combining (33), (52) and (69), L can be derived as 
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Case 2: 01 k . (With packet losses) After applying Assumption 2, (34), (53) 

and (69), we can express L as 
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definite and L is positive definite for both two cases. It is important to note that
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kz , observed system state
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ẑ , observer errors
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z~ , observer parameter estimation error 

vector
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and value function parameter estimation error k

~
for NCS under TCP are all 
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asymptotically stable in the mean. In other words, for the two cases, as k , 0kz ,

kkk
zz ˆ , 0~ 

kk
z , 0

~
k and 0

~
k , then )()ˆ(ˆ *

kkk
zVzV  and *

1̂ kk uu  , *

2 kk uu  . 

IV. OPTIMAL CONTROL DESIGN FOR NCS UNDER UDP 

In this section, stochastic optimal control of NCS under UDP with uncertain 

system dynamics due to unknown network imperfections is derived by using a novel 

observer and ADP [17] technique. Unlike TCP protocol, there is no-feedback 

acknowledgement of received packets generated in UDP and therefore the development 

of the controller design is different. First, a novel observer is proposed to estimate 

augment system state at the controller by using UDP information set },,{ 1 kkkk τγy . 

Second, similar to the case of TCP, we propose a model-free online tuning of the 

parameters-based value function estimation algorithm under UDP with augmented 

observed states. Finally, the convergence proof is given. 

A.  Novel Observer Design for NCS under UDP 

Compared with TCP protocol, UDP does not support the acknowledgements. 

Therefore, packet transmission information between the controller and actuator k is not 

known at the controller. However, according to Assumption 1, certain statistical 

information on packet loss indicator between the controller and actuator k is known i.e. 

mean value and variance 2

  is known. This information of k (i.e.  ) is used to design 

the observer for NCS under UDP  . Next, the details of observer design are given. 

a) Innovation step at time skT : 

In this step, future system states
kk

z
1

ˆ


can be predicted as 
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b) Correction step at time sTk )1(  : 

The update law for the parameter vector of the observer k̂ for NCS under UDP is 

defined as 

                     



















































k

kk

T

kk

T

kkkk

kok

k

kk

T

kk

T

kkkkk

okk

n
sMsM

zsM
E

n
sMsM

zysM
E

1ˆ)ˆ(

~ˆ
ˆ

1ˆ)ˆ(

)ˆ(ˆ
ˆˆ

11

11

1

11

111

1





                            (74) 

where o is the tuning parameter for the observer satisfying 10  o . Meantime, 

the parameter estimation error dynamics
k

~
can be expressed as 
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Eventually, the observed NCS state
11

ˆ
 kk

z and estimation error dynamics
11

~
 kk

z in 

this step can be derived as 
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Next, the stability of the observer parameter estimation error
k

~
and state 

estimation error
kk

z~ dynamics are analyzed. 

Theorem 4: (Convergence of observer parameter estimation and error dynamics 

for NCS): Given the observer (72), estimation error dynamics (76) and parameter update 

law (74),  according to Assumption 2, there exists positive constant o and satisfying
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1o computable positive constants

eoBB , such that estimation errors
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e and parameter estimation errors
k

~
 (66) for NCS 

under UDP uniformly ultimately bounded (UUB) in the mean with ultimate bounds given 

by eokk
Bz ~ and  Bk 

~
, where kk sMˆ

1
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min  . 

Proof: Select the Lyapunov candidate function as LLL zo  ~ where
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is a positive 

definite matrix. Then the first difference of this Lyapunov candidate function can be 

represented as LLL zo  ~ . 

First, we consider first difference of zL~ (i.e. 
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Eventually, combing (77) and (78), the overall first difference oL can be expressed as
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Similar to NCS under TCP, packet loss indicator between the sensor and controller 1k

can be equal to 0 or 1. Therefore, oL needs to be separated into two different scenarios 

as shown below. 

Case 1: 11 k  (No packet losses) 

Substituting 1i value into (70), oL can be represented as 
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Case 2: 01 k . (With packet lost) 

According to Assumption 2, observer stability region needs to be satisfied by 

packets lost probability between the sensor and controller. Hence, if 01 k , then there 

exists ],[ 0 kNkj  such that  kk  1 01   jk and 1 jk . In this case, first 

difference oL can be derived as 
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bounded constant, then based on (80) and (81), the first difference of oL is less than zero 

provided the following inequalities hold 
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Using the standard Lyapunov extension [10], the observer error and its parameter 

estimation errors are UUB in the mean. 

Next, we will propose stochastic optimal control for NCS under UDP with 

observed system state
kk

ẑ by using value function estimation. 

B.  Value Function Definition for NCS under UDP 

Based on the optimal control theory [7], NCS description (3) and UDP protocol, 

the stochastic value function for NCS under UDP can be rewritten as 
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where k is network information set for NCS under UDP and 0kP is the solution 

of SRE. Meanwhile, optimal action dependent value function can be expressed as 
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Similar to NCS under TCP, we can substitute value function into Bellman 

equation to derive )( kkE  as 
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Therefore, optimal control gain for NCS under UDP can be expressed in terms of 

parameter,
k ,as 
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Obviously, if slow-varying parameter
k can be estimated online, optimal control 

gain can be calculated without known system dynamics by using (86). 

C.  Value Function Estimation of NCS under UDP 

Based on value function estimator used in stochastic optimal control of NCS 

under TCP (Section 2.3), we can define the value function with observed system states 

for NCS under UDP as 
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k   is nothing but Kronecker product quadratic 

polynomial stochastic independent basis vector, and )ˆ(ˆ
kk vec  . 

Using the value function estimation algorithm that is proposed as part of 

stochastic optimal control for NCS under TCP in Section III.B, the parameter update law 

of value function estimation k̂ for NCS under UDP can be derived as 
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where the residual error
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Next dynamics of parameter estimation errors of value function estimation can be 

expressed as 
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Since the estimated value function with observed system states results in 

estimation errors for value function )(*

kzV , stability of the estimation error dynamics 

need to be ensured. 

Theorem 5 (Boundness of the Value Function Estimation Errors). Given the 

initial conditions for the parameter vector 0̂ of value function estimation is bounded in 

the setΩ , let ku0 be an initial admissible control policy for the linear NCS under UDP. Let 

observer parameter update law be given by (89). Then there exists positive constants
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Proof: Consider the positive definite Lyapunov candidate function 
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positive definite matrices. The first difference of (91) can be derived as aoJ LLL   . 

Since Lyapunov candidate function includes observer parameter, we have to separate 

proofs into two cases which is similar to NCS under TCP.
 

Case 1: 11 k . (No packet losses) 

According to (75), (76) and (90), JL can be expressed as 

4

1

44

11

4

~~~

~}
~~

{)}
1

)(~
()

1

)(~
{(  

















kkkk

kkk

T

ke

k

eT

k

To

k

a

k

e

k
hk

T

e

k

eT

k

To

k

a

k

e

k
hk

aoJ

z

ztr
eeee

tr

LLL
















     (92) 

)}
1

)(
(

~
{}

~
)

1

)(
{(}

~~
{











e

k

eT

k

To

k

a

k

e

kT

khke

k

eT

k

eT

k

o

k

a

k
hk

T

k

ee
htr

ee
trtr











 

4

4
4

22

min

24

11

4

22

min

2

4

1

32

22

min

22

min

2

min

2

min
4

11

4

1

4

4

4
4

1

4

1

4

11

4
2

)1
)1(

)32(3
()(

)1(

)961(

~
)4)12

)1(

6
()

)1(

1

7(
1

5
(ˆ4ˆ

~
4

)(4}
~~

{)}
1

)(
()

1

)(
{(



























































































oo

kk

o

yoz
ooo

kooo

okkkkk

kk

o

yozk

T

ke

k

eT

k

To

k

a

k

e

kT

e

k

eT

k

To

k

a

k

e

k
h

eDU

esMsM

eDUtr
eeee

tr

 

)}
1

)(
(

~
{}

~
)

1

)(
{(}

~~
{











e

k

eT

k

To

k

a

k

e

kT

khke

k

eT

k

eT

k

o

k

a

k
hk

T

k

ee
htr

ee
trtr











 



 

 

200 

)}
1

)(
()

1

)(
{()}

1

)(
(

~
{ 2
















e

k

eT

k

To

k

a

k

e

kT

e

k

eT

k

To

k

a

k

e

k
he

k

eT

k

To

k

a

k

e

kT

kh

eeee
tr

ee
htr















 
4

11422

min

44324

~

)1()1(

))1)(961(4(
}

~~
{







kk

M

Mooooo
k

T

k z
U

U
tr






 

4

4
44

22

min

2

4

1

32

22

min

22

min

2

min

2

min

)1
)1(

)32(3
(

~
)5)12

)1(

6
()

)1(

1
7(

1

5
(




















o

oo

koooo

















 

 

4

11422

0

44324

2

min

22

~

)1()1(

))1)(961(4(
}

1

~~

{2

}
1

)(
{2}

~~
{2}

1

~

{2}
~~

{2 

2




















kk

M

Moooook

T

k
h

e

k

eT

k

o

k
hk

T

khe

k

eT

k

k

eT

k

o

k
hk

T

kh

z
U

U
tr

e
trtr

e
trtr


















 
4

1

32

22

min

22

min

2

min

2

min ~
)5)12

)1(

6
()

)1(

1
7(

1

5
( 










 koooo 









 

2

22

min

22

min

2

min

2

min

4

11422

0

44324

4

112

min

22

2

min

4

4
44

22

min

2

)12
)1(

6
()

)1(

1
7(

1

5
(

~

)1()1(

))1)(961(4(

~

1

2
}

~~
{)

1

2
32(

)1
)1(

)32(3
(

ooo

kk

M

Mooooo

kk

h
k

T

khh

o
oo

z
U

U

z
O

tr





























 




































 

4

4
44

22

min

2
4

1

3 )1
)1(

)32(3
(

~
)5









 

o
oo

ko 



 

 

4

4
44

22

min

2
4

1

32

22

min

22

min

2

min

2

min
4

11

44

324

422

min

2

min

)1
)1(

)32(3
(

~
)5)12

)1(

6
(

)
)1(

1
7(

1

5
(~))1(*

)961(3(
)1()1(

1
}

~~
{)

1

2
32(




























o

oo
koo

ookkM

ooooo

M

k

T

khh

zU

U
tr






























 



 

 

201 

AE

Mkoo

ookk

M

Moo

ooo

M

khh

z
U

U

U



















































4

1

32

22

min

22

min

2

min

2

min
4

11422

min

4432

4

422

min

2

2

min

~
)5)12

)1(

6
(

)
)1(

1
7(

1

5
(~

)1()1(

))1)(9

61(3(
)1()1(

1~
)

1

2
32(

 
where

4

4
44

22

min

2

)1
)1(

)32(3
(









 

o
ooAE

M 



 . 

Case 2: 01 k . (With packet lost) 

Using the Assumption 2 and update law for observer estimated parameter, the 

first difference of JL can be expressed as 
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first difference of JL is less than zero provided the following inequalities hold 
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Therefore, based on Lyapunov theory [10], value function estimator parameter 

estimation errors are UUB in the mean. 

Next, with the estimated k
ˆ and equation (86), stochastic optimal control for NCS 

under UDP can be obtained as 

                                            k

uz

k

uu

kk zu   ˆ)ˆ(ˆ 1
                                                (95) 

D.  Closed-Loop System Stability for NCS under UDP 

In this section, it will be shown that observer error dynamics and its parameter 

estimation errors and value function parameter estimation errors are UUB in the mean. 

Further, the closed-loop NCS under UDP will be proven to be UUB in the mean. 

Theorem 6 (Convergence of the Optimal Control Signal). Given the initial 

conditions for the system states 0z , observer parameter vectors 0̂ , value function and its 

parameter vectors 0̂ be bounded in the setΩ , let 0u be the initial admissible control policy 

for NCS under UDP with the bounds given by
22

kakzkkzk zkuBzA  and ak0 21 . 

Let the observer, value function estimator parameters be tuned and estimated control 

policy be provided by (74), (89) and (95) respectively. Then, there exists positive 
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constants  ,o given by Theorem 4 and 5, h given by Theorem 5 and positive constants

bbb ez ,, and b such that the system states kz , observation error
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z~ , observer parameter 

estimation error k
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and stochastic value function parameter estimation errors k
~
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respectively, are all UUB in the mean for all Tkk  0 with ultimate bounds given by
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Proof: Consider the positive definite Lyapunov candidate function as 
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Similar to NCS under TCP, there are two methods to obtain stochastic optimal 

control, and both of them are same. Namely, 
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Meanwhile, (98) can be written as 
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Similar to NCS under TCP, we separate the proof into two cases 11 k and

01 k as following. 

Case 1: 11 k . (No packet losses) 
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Case 2: 01 k . (With packet lost) 

After applying assumption 2, (78), (93), and (99), we can derive the L as 
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positive constant. 

Therefore, L is less than zero when the following inequalities hold 
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Using the Lyapunov theory [10], the system states, observed state and its 

parameter estimation errors and value function estimator parameter estimation errors are 

UUB in the mean. 

V. SIMULATION RESULTS 

In this section, the performances of proposed stochastic optimal control of NCS 

under both TCP and UDP are evaluated with a single protocol at a time. Meanwhile, the 

standard optimal controls of NCS under TCP or UDP with known system dynamics and 

network imperfections are also simulated for comparison. 

Example: The continuous-time version of a batch reactor system dynamics are 

given as [20]: 
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with x     and u     . Note that this batch reactor example has been 

developed over years as a benchmark example for NCS, see e.g. [20][21][22]. 

 
 

Fig 6. Performance of standard control without network imperfection. 

 

 

   The NCS parameters under TCP are selected as [18]:  

1) The sampling time: msTs 50 ;  

2) The delay bound is selected as two, i.e. 2b ;  

3) The random delays: msE sc 35)(  , msE 75)(  ;  

4) Packet losses follow Bernoulli distribution with 3.0 and 2.0 . 
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First, we consider the effective of network imperfections (i.e. random delays and 

packet losses in this paper) for NCS under TCP or UDP. In Figure 5, the standard control 

inputs kk xu 











48.691.098.028.0

27.450.082.178.3
designed by pole placement method can 

maintain stability of the batch reactor system without any network imperfection as shown 

in Figure 6. However, this standard control cannot maintain system stable in the mean in 

presence of network imperfection caused by TCP or UDP protocol as shown in Figures 7 

and 8. 

 
Fig 7. State regulation errors of standard control when network imperfections are present 

for NCS under TCP 
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Fig 8. State regulation errors of standard control when network imperfections are present 

for NCS under UDP 

 

 

Next, proposed stochastic optimal controller and novel observer designs are 

applied on NCS under TCP and UDP with unknown system dynamics in presence of 

network imperfections respectively. The augment state kz is derived as

 

T

kkkk uuxz ][ 21
    and  Te uz ]ˆ[      . The initial admissible policy for 

proposed algorithm is selected as

kk
zu ˆ

52.005.008.0047.255.209.051.1

01.013.0003.024.11.085.087.0
0 












 while regression 

functions for value function estimation is generated as },...,,...,,,{ 2

10
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23121
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eeeeeee  as 

[18]. The designed tuning rate for value function estimator is selected as 410h for 

NCS under TCP, and 310h for NCS under UDP while initial parameters are set to 

zeros at the beginning of simulation.  
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Fig 9. Performance of the proposed stochastic optimal control: state regulation errors of 

NCS under a) TCP, b) UDP. 

 

 

The initial parameters of control estimator are chosen to reflect the initial 

admissible control. On the other hand, regression function for observer is defined as 
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noise was added to maintain the persistency of excitation (PE) condition holds (Remark 

3).  

 

 
 

Fig 10. Comparison of control inputs      for the proposed controller of NCS 

under: a) TCP, b) UDP.  

 

In Figures 9, 10 and 11, we evaluate the performance of proposed value function 
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actuator 1kυ ) can be used in controller design. Meanwhile, only statistical information of 

packet losses between controller and actuator (i.e. mean value of kυ : υ and variance of kυ :

2

 .) can be used in stochastic optimal control design of NCS under UDP. Since this 

statistical information for the UDP is not completely accurate due to lack of feedback, 

system states of NCS under TCP converge quicker than NCS under UDP.  

 

 
 

Fig 11. Performance of proposed observer for NCS under: a) TCP, b) UDP. 
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maintain the system stable in the mean. Note that there is a slightly overshoot at the 

beginning of Figures 9 (a)(b) and 10 (a)(b) for proposed algorithm. It is because the 

initial online learning phase needed time to tune the observer and value function 

estimator to obtain the optimal control performance for NCS under TCP and UDP.  

After a short time, proposed scheme will have similar performance even when 

NCS system dynamics are unknown no matter which ever TCP or UDP protocols are 

utilized. On the other hand, performance of proposed observer for NCS under TCP and 

NCS under UDP are evaluated in Figure 11 (a)(b). The proposed observer can force 

observed system state to converge to actual system state quickly for both NCS under TCP 

and NCS under UDP. However, performance of proposed observer for NCS under UDP 

is not on par with the case with TCP which alluded earlier due to inaccurate feedback 

information with UDP protocol.  

 
Fig 12. Stability regions of observer for NCS under TCP and NCS under UDP  
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compared with results in [12]. Since proposed observer does not require knowledge of 

system dynamics which is needed in [12], the region of proposed method is much tighter 

than [12]. Also since TCP protocol can provide more network information for the 

observer design, the stability region of UDP is smaller than TCP. 

  Based on the results presented in Figures 5 through 12, after a short initial tuning 

time, proposed value function estimator and observer based stochastic optimal control for 

NCS under TCP and UDP with uncertain dynamics and network imperfection will have 

nearly the same performance as that of the conventional optimal control for NCS under 

TCP and UDP with known system dynamics and network imperfection. 

VI.  CONCLUSION 

In this paper, a novel adaptive dynamics programming scheme consisting of a 

novel observer, value function estimator is utilized to solve the Bellman equation in real 

time for obtaining optimal control of NCS under TCP and UDP. By using past input and 

estimated states, the system dynamics requirement was relaxed while using the estimated 

states and value function estimation, stochastic optimal control inputs were derived.  

An initial admissible control ensured that the system is kept stable in the mean 

while the observer and value function estimator is tuned. Initial overshoots are observed 

due to the online tuning phase of observer and value function estimator while they 

disappear with time quickly. All observer and value function estimator parameters kk ̂,̂  

were tuned online using proposed update law and Lyapunov theory demonstrated the 

asymptotically stability in the mean of the closed-loop system for NCS under TCP and 

the uniformly ultimately boundedness in the mean of the closed-loop system for NCS 

under UDP respectively. 
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PAPER V 

A CROSS LAYER APPROACH TO THE NOVEL DISTRIBUTED SCHEDULING 

PROTOCOL AND EVENT-TRIGGERED CONTROLLER DESIGN FOR CYBER 

PHYSICAL SYSTEMS 

H. Xu and S. Jagannathan 

Abstract - In the next generation Cyber Physical Systems (CPS), multiple real-time 

dynamic systems are connected through a shared communication network. For such CPS, 

the existing network protocols (e.g. Centralized/Distributed Scheduling) cannot be 

implemented since the behavior of real-time dynamic systems is ignored though it needs 

to be considered during the protocol design. Therefore, in this paper, a novel distributed 

scheduling protocol design via cross-layer approach is proposed to optimize the 

performance of CPS by maximizing the utility function which is generated by using the 

information from both application layer (i.e. event-triggered controllers for each real-

time system) and network layer. Subsequently, a novel adaptive model based optimal 

event-triggered control scheme is derived for each real-time dynamic system with 

unknown system dynamics in the application layer. Compared with traditional scheduling 

algorithms, the proposed distributed scheduling scheme via cross-layer approach can not 

only allocates the network resources efficiently but also improves the performance of the 

overall real-time dynamic system. Simulation results are included to illustrate the 

proposed cross-layer co-design. 

Keywords- Cyber Physical Systems (CPS); Distributed Scheduling; Event-triggered  

Control; Cross Layer 
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I. INTRODUCTION 

In past few years, intelligent control [1] and communication network [2] have 

been two of the fast-growing research areas. Most recently, a number of researchers [3-4] 

realize that combining these two areas can bring more significant advantages for both 

modern control and communication network such as saving installation costs, increasing 

adaptability, reliability and usability. For distinguishing from traditional control or 

communication network, this novel class of system has been referred as Cyber Physical 

System (CPS) [5-7]. In CPS, since the control and communication subsystems are tied 

together closely, novel CPS-based control and communication schemes have to be 

designed by considering the linkage between control and communication subsystems. 

Therefore, incorporating the effects from fixed communication network, authors in [6] 

proposed a cyber physical control scheme to maintain the stability of control system part 

of the CPS. In [7], from communication network protocol side, authors evaluated the 

performance of widely used protocol (i.e. IEEE 802.15.4) for CPS.  

However, most of these works [5-7] have not considered real-time interactions 

between control and communication subsystem. A revolutionary algorithm for CPS 

should utilize real-time interaction to optimize the performance of both control and 

communication subsystems. For well known open systems interconnection (OSI) 

representation [8], control subsystem belongs to application layer while the 

communication network protocol is included in the network and data link layers. 

Therefore, to consider the interaction among different layers properly, cross-layer design 

[9-12] is necessary. In [9-10], authors have shown that cross-layer design can attain 

performance gains by exploiting the dependence between protocol layers compared with 
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traditional individual layered protocol design. However, most cross-layer designs are 

implemented for data link and physical layers [11-12] where application layer is 

neglected. For CPS, application and data link layers should be designed jointly via cross-

layer approach. In other words, the control design at the application layer and the 

protocol design for communication at the data link layer have to be considered jointly. 

On the other hand, the distributed scheduling is critical for the communication 

protocol design [13]. Compared with traditional centralized scheduling [14], the main 

advantage of distributed scheduling is that it does not require a central processor to 

deliver the schedules after collecting information from all the communication links in the 

network. According to IEEE 802.11 standard [13], carrier sense multiple access (CSMA) 

protocol is introduced to schedule communication links in a distributed manner where a 

communication link wishing to transmit does so only if it does not hear an on-going 

transmission from the network. Further, authors [15] derived a throughput-optimal 

distributed scheduling algorithm and proven that even distributed scheduling scheme can 

still achieve the throughput maximization. However, since random access scheme is 

widely used in most CSMA-based distributed scheduling [15-18] and these schemes 

focus on improving data link layer performance alone which in turn affect the 

performance of application layer (i.e. control system), these protocols are neither optimal 

nor suitable for CPS since they can degrade the performance of CPS overall. 

Meanwhile, for the application layer, the optimal control design is the most 

challenging issue.  It is important to note there are two main drawbacks for traditional 

optimal control schemes [19]. First drawback is that full knowledge of system dynamics 

are needed and optimal control is solved backward-in-time which is not suitable for 
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hardware implementation. Second, these traditional optimal control schemes are sampled 

periodically which require significant network resources (e.g. bandwidth) for 

communication to transmit information between a sensor and a controller potentially 

causing congestion. The performance of control system in the application layer degrades 

significantly due to congestion.    

Therefore, this paper proposed a novel cross layer scheme for CPS which includes 

an event triggered controller design for control system design in the application layer and 

a distributed scheduling algorithm for communication network in the data link layer. The 

main contributions of this paper include: 1) the distributed scheduling via cross layer 

approach which improves the performance of CPS by minimizing the cost function from 

both data link and application layers; 2) novel adaptive model-based optimal event-

triggered control scheme which is designed in a forward-in-time manner and without the 

knowledge of system dynamics. Compared with time-based periodic sampling, the 

proposed event-triggered scheme is based on events which are initiated not only by the 

control system but also the shared communication network performance.  

This paper is organized as follows. First, Section II presents the background for 

multiple pairs CPS and event-triggered control schemes. A novel cross-layer design 

which includes distributed scheduling and adaptive model-based optimal event-triggered 

control is proposed for multiple CPS pairs in Section III. Section IV illustrates the 

effectiveness of proposed schemes via numerical simulation and Section V provides 

concluding remarks. 
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II. BACKGROUND 

A.  Multiple Cyber Physical System Pairs 

Shared Communication Network

Plant 1

Sensor 1Controller 1
Trigger/

Scheduler 1

Plant 2

Sensor 2 Controller 2
Trigger/

Scheduler 2
Controller M

Plant M

Sensor M
Trigger/

Scheduler M
...

 

Figure 1. Multiple pairs CPS 
 

The basic structure of multiple CPS pairs is shown in Figure 1, where multiple 

pairs of real-time subsystems communicate to their respective controllers through a 

shared communication network (e.g. IEEE 802.11). Obviously, the shared 

communication network can affect performance of control systems. For instance, when 

shared communication network is congested due to improper scheduling, system cannot 

even maintain stability since the information from the subsystem cannot be transmitted to 

the controller successfully and may experience undue delays. Therefore, a novel cross-

layer design is needed for CPS. Without loss of generality, multiple pairs CPS are 

assumed to be homogeneous in this paper. On the other hand, to save the network 

resources, event-triggered system is used instead of a traditional time-driven sampling. 

Next, the background of event-triggered system is given. 
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B.  Event-Triggered System 

Recently, event-triggered control system has been a topic of significant interest 

for CPS due to its network benefits [20-22]. In Figure 2, the basic structure of Zero-

Order-Hold (ZOH) event-triggered system is shown first. Compared with traditional 

system, a trigger is included in the sensor to decide when to sense and transmit the 

system information (e.g. system state
k

x ). For sake of simplicity, the CPS subsystem is 

considered to be linear discrete-time invariant. Since multiple CPS pairs are 

homogeneous, lth  CPS pair can be represented as 

                                                            kllklkl
uBxAx

,1,



                                              (1) 

where m

kl

n

kl
ux 

,,
, are lth  CPS system states and control inputs 

respectively, and mn

l

nn

l
BA   , denote system matrices for lth  CPS pair. 
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Figure 2. ZOH Event-triggered System 
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Figure 3. Adaptive model-based event-triggered system 
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It is important to note that controller will hold the last received system state vector 

until a new system state vector is received. Obviously, the error between the system states 

used in the controller and actual values might increase quickly in ZOH event-triggered 

control scheme. For overcoming this drawback, a novel adaptive model-based event-

triggered system is proposed and the basic structure is shown in Figure 3. Besides event 

trigger, an adaptive model )ˆ,ˆ(
,, klkl

BA is used for the controller to estimate the system state 

vector when controller has not received any information from the sensor. The estimated 

system state vector can be represented as 

                                  klklklklkl
uBxAx

,,,,1,
ˆˆˆˆ 

                    
                                    (2) 

with
mn

kl

nn

kl
BA  

,,
ˆ,ˆ are the adaptive model of lth  CPS pair at time

s
kT . It is 

important to note that the adaptive model will be updated once when the most recent 

system state vector is received at the controller. Eventually, the adaptive model and 

estimated system states will converge close to the actual system and actual system states 

respectively, which in turn improves the performance of event-triggered control system. 

III. NOVEL CROSS-LAYER DESIGN FOR CPS 

In this section, novel cross-layer design is proposed for multiple pairs of CPS. 

First the main idea of cross-layer design and classical ZOH event-triggered control 

scheme are introduced. Subsequently, a novel adaptive model-based optimal event-

triggered control is derived. Eventually, distributed scheduling is proposed to optimize 

multiple CPS pairs by minimizing a cost function which includes the information from 

both application and data link layers. 
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A.  Cross-Layer Design 

 

Application Layer:

Controlled Plant
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TCP-like Protocol
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value function) to Data 
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performance of application 
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Figure 4. The framework of multiple pairs CPS cross-layer design  

 

In the proposed scheme, the novel event-triggered control design and distributed 

scheduling protocol are implemented into all CPS pairs which are sharing the 

communication network. Each CPS pair tunes its adaptive model-based optimal event-

triggered controller design by using the proposed distributed scheduling algorithm, 

computes its value function based on tuned control design, and transmits the information 

to the data link layer. Then, data link layer can update the scheduling of the CPS pair 

based on network traffic payload from data link layer and the value function information 

received from the application layer. The cross-layer design framework of multiple CPS 

pair is shown in Figure 4. 
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B.  ZOH Event-Triggered Control Design 

Different from periodic sampling scheme, the ZOH event-triggered controller 

might not receive the system state at every sampling time instant. Hence the controller 

will hold the latest received system state vector for control input design until a new state 

vector is received due to an event caused by condition when state measurement error 

ZOH

k
e  exceeds the threshold. Now, without loss of generality, consider the linear discrete-

time (1) of lth CPS pair, and the ZOH event-triggered control input given by 

                               

ki
xK

xK
u

ill

kll

kl






 0,
initiatednot  isevent 

initiated isevent 

,

,

,
                        (3) 

where
il

x
,

is the latest lth CPS state measurement at the time 
s

iT  due to an event and 
l

K is 

a stabilizing  control gain matrix for lth CPS system given by (1) with known system 

matrices ),(
ll

BA . After substituting control input
kl

u
,

from (3), the closed-loop system 

dynamics of lth CPS pair due to the ZOH event-triggered control input can be expressed 

as 

                                          
ZOH

klllkllllkl
eKBxKBAx

,,1,
)( 

   
                                        (4) 

with







initiatednot  isevent 

initiated isevent 0

,,

,

ilkl

ZOH

kl
xx

e . 

       

Obviously, if holding time of ZOH event-triggered control system is longer, state 

measurement error
ZOH

kl
e

,
in (4) might be larger which can affect the stability of the system. 

Therefore, a threshold [28] is derived for ZOH

kl
e

,
 to ensure the stability.  

Theorem 1 (ZOH Event Triggering Condition): In linear discrete-time event-

triggered CPS system (1), the event should be triggered and controller should be updated 

when the following is not satisfied  
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with 10 
l

 and
lll

KPQ ,, are positive definite matrices and designed control gain for

lth CPS pair which are also the solution of following equation 
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Proof: Consider Lyapunov function candidate as
kll
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klZOH
xPxV

,,
 . Using lth CPS 

system representation (4) and Cauchy-Schwartz inequality, the first difference of 

Lyapunov function candidate can be derived as 
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Applying the introduced event triggering condition (5), the first difference of the 

Lyapunov function candidate is given by 
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                                 (8) 

after applying the event trigger condition (5) where 10 
l

 and
l

Q is obtained from (6). 

Then 
ZOH

V is negative definite while
ZOH

V is positive definite for all CPS pairs (i.e.

Ml ,...,2,1 ). Therefore, the ZOH event-triggered closed-loop system is globally 

asymptotically stable all CPS pairs. In other words, as k , 0
,


kl
x  for Ml ,...,2,1 . 
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Remark 1: In ZOH, the system is running open-loop based on control input 

derived by the system state vector which is received previously. 

       It is important to note that although ZOH event-triggered control can save the 

communication network resource compared with time-driven control, its efficiency is low 

since measured state and control input are held as constants during any two events. On 

the other hand, the optimality of event-triggered control design should be considered 

carefully which is neglected in this section. Therefore, a novel adaptive model-based 

optimal event-triggered control scheme is proposed in next section. It is important to note 

that proposed scheme cannot only estimate system state vector and update control inputs 

during any two events by using adaptive model, but also consider the optimality of event-

triggered system. 

C.  Adaptive Model-Based Optimal Event-Triggered Control Design 

In this subsection, a novel adaptive model-based optimal event-triggered control 

is derived. First, using estimation [23] and adaptation [24] techniques, the dynamic 

system state vector is estimated by using an adaptive model which is updated when an 

event is initiated. Subsequently, adaptive model-based optimal control is proposed for 

CPS based on the state vector which can maintain the stability even with unknown 

system dynamics. Eventually, the convergence proof is given for proposed algorithm. 

Without loss of generality, lth  CPS pair is selected to explain the adaptive model-

based optimal event-triggered control as follows. 

1) Adaptive State Estimator Design 

      According to event-triggered control schemes [20-22], the system dynamics of the 

adaptive state estimator will be updated only when the event is initiated and sensed 

system states are received at the controller. Recalling (1) and (2), for lth  CPS pair the 
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event-triggered control system and adaptive state estimator with received information can 

be represented as 

                                                  kl

T

lkllkllkl
zuBxAx

,,,1,


       
                                    (9) 

                                                 kl
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klklklklklkl
zuBxAx
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                                     (10) 

with T

lll
BA ][ and T

klkll
BA ]ˆˆ[ˆ

,,
 denote the target and estimated system dynamics of 

the lth CPS pair respectively, and TT

kl

T

klkl
uxz ][

,,,
 represents the augmented state vector. 

       Then, the state estimator error dynamics
1, kl

e can be derived as 

                                            kl

T
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T

kklklkl zzzxxe ,,,,,1,1,1,
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                               (11) 

where T

klklkllkl BA ]
~~

[ˆ~
,,,,   is the parameter estimator error. Next, define the update law 

for lth  CPS pair estimated unknown parameter vector kl ,̂ as 

                                                    
T

klklklelklkl ez 1,,1,,,1,
ˆˆ

  
 
                                           (12) 

with el , is the tuning parameter satisfying 10 ,  el  and 1, kl is an indicator to present 

event trigger condition, i.e. 

                                                 




initiatednot  isevent 0

initiated isevent 1
1,kl

     
                                   (13) 

Meanwhile, lth pair CPS adaptive parameter estimation error dynamics kl ,

~
 can be 

expressed as   

                                                      
T

klklklelklkl ez 1,,1,,,1,

~~
                                               (14) 

      Compared with traditional adaptive estimator schemes [23] where the updates are 

taken periodically, event-based non-periodic tuning law is used here which tunes the state 

estimator in a non periodic manner. Next, the convergence of lth  CPS adaptive parameter 

estimation error kl ,

~
 is demonstrated. 
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Theorem 2 (Convergence of lth  CPS adaptive parameter estimation errors): Let 

the proposed adaptive estimator for the lth  CPS pair be defined as (10), and its parameter 

update law be given by (12). Then, there exist positive constant tuning parameter el , for

lth  CPS pair such that the parameter estimation errors kl ,

~
  (14) converge to zero 

asymptotically as time k . 

Proof: Consider the positive definite Lyapunov candidate function as 
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with tr{.} is the matrix trace operator, sTkt )1(  is the latest update time of the 

adaptive estimator for the lth  CPS pair during the interval ])1(,)[( ss TkTk  (i.e. the latest 

event-triggered time, and 1,0 1,,1,,   klklklkl    ). Then the first difference can 

be expressed as }
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Using (15), and applying the Cauchy-Schwartz inequality reveals that 
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 Since 1,0 1,,1,,   klklklkl    and equation (14), the parameter vector of 

the adaptive estimator has not been updated during ],)[( ss kTTk  , i.e. 

                                           klklkl ,1,,

~~~
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Next, according to parameter estimation error dynamics (11) for the lth  CPS pair 

and equation (17), the first difference of Lyapunov function candidate ,lV can be derived 

as 
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      Since the tuning parameter el , is positive value which satisfies
1

1
0

2

,

,




kl

el

z
 , 

then according to (18), ,lV is negative definite and ,lV is positive definite. Therefore, the 

lth  CPS pair adaptive parameter estimation errors kl ,

~
 are asymptotically stable.  In other 

words, as k , 0
~

, kl . 

2) Optimal Event-triggered Control System Design 

In this part, optimal design for adaptive model-based event-triggered control is 

given in a detailed manner. First, a value function is defined and approximated 

adaptively. Subsequently, the optimal event-triggered control scheme is derived by using 

the information from the estimated value function and adaptive model. Eventually, the 

convergence proof of proposed scheme is derived. 
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a)  Value Function Setup 

       According to the optimal control theory [19], the infinite-horizon value function 

of the adaptive model-based event-triggered control system for lth  CPS pair can be 

defined as 

                                           

T T T

l ,k l ,i l l ,i l ,i l l ,i l ,k l l ,k

i k

V( x ) ( x Q x u S u ) x Px




                                      (19) 

where lP being the solution to the Algebraic Riccati Equation (ARE) [19] of lth  CPS pair 

adaptive model-based event-triggered control system. Then, the Hamiltonian for the 

system is represented as 

                                     
),(),(),(),( ,,1,1,,,,, klklklklklklklkl uxVuxVuxruxH            (20) 

with kll

T

klkll

T

klklkl uSuxQxuxr ,,,,,, ),(  is a one-step cost-to-go function. Based on the standard 

optimal control theory [19], the optimal control input is given by the stationary condition,

0),( ,,,  klklkl uuxH which yields 
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1
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**

, )(                        (21) 

where *

lK is the optimal control gain. 

Remark 2: It is important to note that solving optimal control in (20) requires the 

system dynamics which is not typically known accurately in practical systems.  

        On the other hand, we can define the optimal action dependent value function as 
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                                     (22) 

Then, similar to [26], using Bellman equation and value function definition (13), 

substituting value function into the Bellman equation results in 
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Therefore, matrix l can be expressed as 
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Next, according to [19] and (24), the optimal control gain for lth  adaptive model-

based event-triggered control system pair can be represented in terms of value function 

parameters, l , as 
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       It is important to note that if the parameter vector l can be estimated online, then 

system dynamics are not needed to calculate the optimal control gain for lth  adaptive 

model-based event-triggered control system pair. 

b)  Model-free online tuning of the value function 

       In this subsection, the adaptive model-based optimal control is developed by 

using estimated states from adaptive model without using value and policy iterations. 

      After incorporating the estimated system states from adaptive model, the value 

function can be represented in vector form as 
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where the regression functions jmnTT
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is the Kronecker product quadratic polynomial independent basis vector, and )( ll vec 
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with )(vec is a vectorized function  constructed by stacking the columns of the square 

matrix into a one column vector with off-diagonal elements summed as mnnm  . 

       According to standard optimal control theory [19], the Bellman equation is given 

in terms of the value function by 0),(),(),( ,,,,1,1,  klklklklklkl uxruxVuxV . However, this 

equality cannot be satisfied while the estimated system stats klx ,
ˆ and the estimated term kl ,̂

are used. 

      After incorporating the estimated system states, we have the estimated Bellman 

equation as 

                                           1,,,,,1,1, ),ˆ(),ˆ(ˆ),ˆ(ˆ
  klklklklklklkl euxruxVuxV

 
                         (27) 

with 1, kle is the temporary difference (TD) error [13] in the Bellman equation. The 

estimated value function for lth  CPS adaptive model-based event-triggered control system 

pair can be expressed similar to (26) as 
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       Using the delayed values for convenience, the TD error in (27) can be represented 

as 
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e

kl wwW 1,,1,   . 

        Then, the dynamics of the TD error can be rewritten as 
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Next, an auxiliary error vector incorporating the history of pervious cost-to-go is 

defined as 

                                                      
e

kl

T

klklkl 1,,1,,
ˆ

  ΔWΓΠ                                                  (31) 

where )],ˆ(,),,ˆ(),,ˆ([ 1,1,2,2,1,1,1, jkljklklklklklkl uxruxruxr    and

][ 1,2,1,1,

e

jkl

e

kl

e

kl

e

kl WWW   ΔW . Note that (31) indicates a time history of pervious 1j

TD error (29) recalculated by using the most recent kl ,̂ . As a consequence, the value and 

policy iterations are not needed. 

       The dynamics of the auxiliary vector are generated similar to (30) as 
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       Next, the update law of matrix l̂ for lth pair CPS can be defined as 
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with 10 ,  ol is a tuning parameter for lth pair CPS. Substituting (33) into (32) yields 

                                                                 klolkl ,,1, ΠΠ                                         (34) 

or 

                                                                  klolkl ee ,,1,                                                      (35) 

Remark 3: It is observed while the system states have converged to zeros, the 

estimated value function is no longer updated. It can be seen as a persistency of excitation 

(PE) requirement for the inputs to the value function estimator wherein the adaptive 

model-based event-triggered control system states must be persistently existing long 
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enough for the estimator to learn the value function. The PE condition is well known in 

adaptive control theory and can be satisfied by adding exploration noise [25].  

c) Estimation of the Optimal Event-triggered Control 

       According to [19], the optimal control can be obtained by minimizing the value 

function. Recalling (25), the optimal control gain can be developed by using the 

estimated states as 

                                                               kl
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klklklkl xxKu ,,
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ˆˆ)ˆ(ˆˆˆ                                            (36) 

  Based on (36), optimal control gain can be obtained in terms of kl ,̂ matrix, which 

is solved by approximating value function with adaptive model-based event-triggered 

control system states. It relaxes the requirement of the system dynamics when (33) 

eliminates the value and policy iterations. 

       Next, the convergence proof of the optimal control inputs will be given in the 

following theorem. 

Theorem 3 (Convergence of the Optimal Control Inputs): Let )(0, kul be an initial 

admissible control policy for lth pair CPS adaptive model-based event-triggered control 

system. Let the adaptive update law be given by (33). Then there exists a positive 

constant 10 ,  ol such that the estimated parameter and optimal signal converges to the 

actual parameter and optimal signal respectively, i.e. lkl  ,
ˆ , *

,,
ˆ

klkl uu  . 

Proof: according to the Bellman equation, we have 
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In the other words, 
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Next, the first difference of Lyapunov function candidate as 
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When 10 ,  ol , the first difference aeV is negative definite. Meanwhile, the term

)~~~( 1,11,   klk
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Define ]1[ 1,,
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klklkl rWZ ]~~~[ 1,1,,,   . Using the adaptive control 

theory, we know 0,, T

klkl  provided kl , satisfies the PE condition. Therefore, we have 
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Therefore, all the signal errors will converge to zero asymptotically. Namely, for

lthpair CPS adaptive model-based event-triggered control, lkl  ,
ˆ , *

,,
ˆ

klkl uu  when k

. 



 

 

238 

       Until now, the adaptive model-based optimal event-triggered control is derived 

for multiple pairs CPS. Next, the novel distributed scheduling algorithm will be 

proposed. 

D.  Novel Distributed Scheduling Algorithm for Multiple Pair CPS 

In this section, optimal distributed scheduling design is derived at data link layer 

mainly. Without loss of generality, traditional wireless ad-hoc network protocol [27] is 

implemented into the other layers. For optimizing the performance of multiple CPS pairs 

which included performance from both application layer and data link layer, a novel 

optimal cross-layer distributed scheduling algorithm is proposed by incorporating control 

system information from application layer. Similar to above sections, without loss of 

generality, lth  CPS pair is considered here. 

Firstly, the cost function for lth  CPS pair is represented as 

                                      kllkll
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klkl RuSuxQxJ ,,,,,,                                           (43) 

where klR , is lth  CPS pair average traffic payload during ],0[ skT and l is the weight 

of average traffic payload for lth  adaptive model-based event-triggered control system 

pair. While l is large, it indicates the average traffic payload will affect the total cost 

more. 

Subsequently, the entire cost function for multiple CPS adaptive model-based 

event-triggered control system pairs can be represented as 
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with M denotes the number of CPS pairs. 
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Next, the optimal design of multiple CPS pairs should minimize the cost function 

(44), i.e. 
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                       (45) 

where u is the control design and is the scheduling policy. 

According to (45), minimizing the above cost function (45) requires two parts: 1) 

the optimal control input design and 2) novel distributed scheduling design. For the 

control input designing part l, the above adaptive model-based optimal event-triggered 

control scheme have already shown to provide a best performance. For the distributed 

scheduling part, novel scheme will be derived in this section. 

       Obviously, each pair CPS has two options for scheduling: 1) CPS pair is 

scheduled; and 2) CPS pair is not scheduled. It is important to note that whether or not 

each CPS pair is scheduled depends upon which option can bring more benefits (i.e. large 

cost value). For instance,  

Case 1: lth CPS pair has been scheduled  
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where kll

T

kll KSK ,,
ˆˆ and Y

klR , is the average traffic payload when lth CPS pair has 

been scheduled. 

Case 2: lth CPS pair has not been scheduled 
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with N

klR , is the average traffic payload when lth CPS pair has not been scheduled.  

Then, the difference between these two cases can be considered as utility function 

and expressed as 
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where N

kl

Y

klkl RRD ,,,  is the difference of average traffic payload for lth CPS pair 

between two cases which can be represented as 
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                   (49) 

with bitlN , is the number of bits for packetizing the sensed event of lth CPS pair, 

klklkl xxe ,,,
ˆ and  kll

T

klkl xxe ,,, ()( )ˆˆ
,, kll

T

kl xx  . Obviously, when 0,  S

klJ , it indicates that 

scheduling lthCPS pair can obtain more benefits. Otherwise, scheduling lth CPS pair will 

degrade the performance. Therefore, when 0,  S

klJ , this CPS pair can be considered as 

scheduled. It is important to note that there are multiple CPS pairs (i.e. M CPS pairs), and 

probably several CPS pairs’ utility function are higher than zero which indicates that all 

of these CPS pairs have to be scheduled. However, according to communication network 

literature [13], only one CPS pair can access the communication network. For optimizing 

the performance of network, the optimal scheduling policy should maximize the total 

utility function, that is 
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where kG is the CPS pair set with positive value of utility function at time skT (i.e. 

0,  S

klJ for kl G ). Obviously, for centralized scheduling design, the optimal scheduler 

has to select the CPS pair that has the maximum value of S

klJ , . However, in the 

centralized scheduling scheme, finding the maximum value S

klJ ,  requires significant 

information from every CPS pair which might be too complex to be implemented into the 

practical system. Therefore, novel distributed scheduling scheme is needed to solve this 

drawback. 

In this paper, the main idea of proposed novel distributed scheduling algorithm is 

to separate the transmission time of different CPS pairs by using backoff interval (BI) 

[27] based on related utility function in a distributed manner. In Figure 5, the framework 

is shown. 
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Figure 5. Framework of proposed cross-layer distributed scheduling scheme 
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To solving optimal scheduling problem (50) for multiple pairs of CPS, the BI can 

be designed as 

                                       
)( ,,

,

kl

J

kl neBI kl 


   for kl G                                            (51) 

with is the scaling factor and kln , is a random variable which satisfies Gaussian 

distribution (i.e. ),0(*~ 2

, NLn kl ), and )(min ,,

,

kjkl

k

JJ

Gjl
eeL




 is the range of the random 

value kln , . Next, the proposed novel distributed scheduling algorithm steps are shown as 

following: 

Algorithm 1 Novel optimal distributed scheduling scheme 

1:   Initialize: The utility function are initialized as MlJl ,...,2,1,00,   

2:   While { ss TktkT )1(  } do 

3:      Calculate backoff interval (BI) by different pair of CPS 

          adaptive model based event triggered control system                 

                          )( ,,
,

kl

J

kl neBI kl 


  for kl G .    

4:      Contend shared communication network resource. 

5:      If lthpair of CPS has the smallest BI then 

6:        Schedule lthevent triggered pair and transmit lth CPS 

           pair’s data through shared communication network. 

7:        If transmission is over, then 

8:         Update the scheduled CPS pair’s utility function klJ , . 

9:        end if 

10:    else 

11:     Wait for shared communication network channel to be  

           free. 

12:    end if 

13:  Update time stamp: klkl TBItt ,,  ( klBI , is the backoff  
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       interval of scheduled CPS pair. klT ,  is the transmission  

       time of scheduled CPS pair.) 

14:  end while 

15:  Update and broadcast utility function klJ ,  from each  

        pair of CPS. 

16:  Go to next time period ))2(,)1[( ss TkTk   (i.e. 1 kk ), and go back to line 2. 

Remark 4: Since each CPS pair decides its scheduling by only using local 

information from application and data link layers, proposed novel cross-layer scheduling 

scheme is distributed. 

Remark 5: Compared with other distributed scheduling schemes [14-18], the 

proposed algorithm generates the backoff interval intelligently by optimizing utility 

function instead of selecting it randomly as in [14-18], which can be considered as main 

contribution of developed novel distributed scheduling algorithm in this paper.  

Next, the optimality of proposed novel distributed scheduling is shown in 

Theorem 4. 

Theorem 4: (Optimal distributed scheduler performance) Given the multiple 

CPS pairs and event triggered control scheme, the proposed distributed scheduling 

scheme selects the adaptive model based event-triggered CPS pair with highest utility 

function value since it has the shortest backoff interval (i.e. BI) and highest priority to 

access the shared communication network. In addition, the proposed algorithm can render 

best performance schedules for every CPS pair. 

Proof: Assume lth CPS pair has the highest utility function value (i.e.
 

ki
i

kl JJ
k

,, max 
G

), then we have kikl JJ ,,  for any lii k  ,G . Therefore, 
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Next, for any lii k  ,G , the backoff interval (BI) can be expressed as 
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Hence, kikl BIBI ,,  for any lii k  ,G . Based on proposed distributed scheduling 

algorithm, lth CPS pair can be scheduled to use shared communication network due to its 

shortest backoff interval (BI). 

Next, the cost-optimality of proposed scheme will be proven by using 

contradiction method. 

Assume that there exists another jth CPS pair, and scheduling jth CPS pair can 

render better performance than scheduling lth CPS pair even lth CPS pair has shortest BI  

(i.e. cost function value sl

k

sj

k JJ  , but kjkl BIBI ,,  ). According to the definition of cost 

function (45), sj

kJ can be defined as 

                                
kj

M

i
ki

sj

k JJJ ,
1

, )( 


 for Mj ,...,2,1                                       (54) 

Since kjkl BIBI ,,  is given in assumption above, we have klkj JJ ,,  by using (51) 

and (53). Meanwhile, the cost function of jth CPS pair can be derived as 
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It is important to note that sl

k

sj

k JJ  in (55) is contradicted with assumption that

sl

k

sj

k JJ  . According to contradiction method, there does not exist any other scheduled 

CPS pair can obtain the better performance than scheduling lth CPS pair which has the 

shortest backoff interval. In the other words, proposed distributed scheduling algorithm 

can render the best performance by scheduling the CPS pair with shortest backoff 

interval. 

On the other hand, any CPS pair with negative utility function value (i.e.
 

0,  kiJ ) 

should not contend the shared communication network resource since it will degrade the 

performance. Next, the proof about this is given in details. 

Assume pth CPS pair with a negative utility function (i.e.
 

0,  kpJ ) is scheduled, 

then the cost function with this scheduling decision can be expressed as 

                       
)scheduledispairno(

1
,,

1
, k

M

i
kikp

M

i
ki

sp

k JJJJJ 
                     (56) 

Therefore, scheduling a CPS pair with negative utility function will degrade the 

performance.  

Remark 5: Fairness is an important factor to evaluate the performance of 

scheduling schemes. For proposed distributed scheduling algorithm, a fairness index is 
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defined as 
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to measure the fairness among different 

CPS pairs. 

IV. SIMULATION RESULTS 

In this section, the proposed cross-layer CPS co-design included novel optimal 

adaptive model-based event-triggered control and cross-layer distributed scheduling 

algorithm is evaluated in the following example. The CPS includes six pairs which are 

located within 300m*300m square area randomly. For maintain the homogeneous 

property, all six pairs are using the similar control system as [22]. The discrete-time 

model is given as 

                                      

)(
1924.0

2033.0
)(

8671.00592.0

0790.01138.1
1 tutxxk 
















 
                             (57) 

with sampling interval 15.0sT seconds, the number of bits for the six quantized 

sensed data for the CPS pairs are defined as ]4876810[bitN  .  The initial system states 

are given by Tx ]720[0,1  , Tx ]512[0,2  , Tx ]310[0,3  , Tx ]48[0,4  , Tx ]510[0,5  and Tx ]61.0[0,6  . 

First, the performance of proposed optimal adaptive model-based event-triggered 

control is shown. Due to the page limitation and without loss of generality, an average 

value of state regulation errors for the six CPS pairs is shown in the Figure 6. The results 

indicates that proposed optimal adaptive model-based event-triggered control design can 

not only force the regulation errors converge to zero asymptotically, but also make the 
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state regulation errors converge to zero quickly while ensuring all CPS pairs are stable. It 

is important to note that overshoots observed at the beginning because the optimal control 

and adaptive model tuning needs a short time. 

 

Figure 6. State regulation errors with optimal adaptive model-based event-triggered 

control system. 

 

 

Figure 7. Performance of optimal control for CPS with unknown system dynamics. 
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Next, the performance of proposed CPS optimal adaptive model-based event-

triggered control is evaluated. Without loss of generality, the design of 5
th

 CPS pair’s 

adaptive model-based event-triggered control input is shown in Figure 7. It is important 

to note that the proposed optimal control inputs can make the CPS state regulation error 

converge to zero when the CPS dynamics are unknown which implies that the proposed 

controller can make the CPS closed-loop system stable. Meanwhile, proposed optimal 

control design has a small overshoot initially since the optimal controller needs a short 

tuning phase. 

 

Figure 8. Performance of the adaptive model-based event-triggered CPS estimation error 
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scheduled, the estimation error increases due to inaccurate adaptive model. Once the 

adaptive parameters are estimated accurately, the estimation error converges to zero. It is 

important to note that the state estimation error is large and error event are triggered and 

scheduled more frequently at the beginning since adaptive model needs to be tuned. After 

a short period error events are obviously triggered and scheduled much less frequently 

which would reduce communication network traffic. 

 

Figure 9. The cost function comparison for different scheduling schemes 

 

Figure 10. The fairness comparison for different scheduling schemes 
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Next, the performance of proposed cross-layer distributed scheduling has been 

evaluated. For comparison, classical widely used embedded round robin (ERR) [27] and 

Greedy scheduling [27] are added. In Figure 9, the cost function of multiple pairs of CPS 

with three different scheduling schemes is compared. Proposed novel cross-layer 

distributed scheduling maintain a lowest value while costs of multiple pairs of CPS with 

ERR and Greedy scheduling are much more than proposed scheduling scheme. It 

indicates that the proposed distributed scheduling scheme can improve the performance 

of multiple pairs CPS much better than widely used ERR and Greedy scheduling. It is 

important to note that: 1) Since ERR only guarantees that each CPS pair can have the 

same probability to access the shared communication network resource and does not 

consider to efficient the usage of network resource for the multiple pairs CPS, it cannot 

optimized the multiple pairs CPS performance, and 2) Since Greedy scheduling only 

focuses on data link layer performance optimization and cost function of multiple pairs 

CPS is defined from both data link layer and application layer, it also cannot optimize the 

performance of the multiple CPS pairs. 

Eventually, the fairness of different scheduling schemes has been evaluated. As 

shown in Figure 10, fairness indices of proposed cross-layer distributed scheduling and 

widely used ERR schemes are close and equal to one, whereas that of Greedy scheduling 

is much less than one thus indicating fair allocation of shared communication network 

resource for the proposed one while meeting the overall performance. The ERR method 

though is fair has higher cost than the proposed one. 

According to above results (Figure 6 through 10), the proposed cross-layer co-

design included optimal adaptive model-based event-triggered control scheme and a 



 

 

251 

cross-layer distributed scheduling scheme to optimize the performance of both 

communication network and the CPS subsystems. 

V.  CONCLUSION 

      In this work through a novel cross-layer co-design for multiple pairs Cyber-

Physical System, it is demonstrated that the proposed scheme can optimize not only the 

performance of control system, but also the shared communication network. The novel 

optimal adaptive model-based event-triggered control does not require system dynamics 

and use event-triggered instead of an inefficient time-driven sampling which is quite 

useful for hardware implementation. The novel scheduling algorithm is distributed, 

simple and requires less computation than centralized scheduling algorithms. 
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2. CONCLUSIONS AND FUTURE WORK 

In this dissertation, adaptive dynamic programming (ADP) techniques are utilized 

to develop model-free stochastic optimal and suboptimal adaptive design for 

linear/nonlinear networked control system (NCS) in the presence of uncertain system 

dynamics and unknown network imperfections.  First, a novel system representation has 

been derived for linear and nonlinear NCS respectively. Subsequently, using ADP 

techniques, a novel value function estimator design is included and a suite of stochastic 

optimal adaptive control schemes is derived based on estimated value function. Besides 

state-feedback, output-feedback based stochastic optimal adaptive control has been 

derived for both linear and nonlinear NCS. Value and policy iterations are not utilized; 

instead the value function and control policies are updated once a sampling interval thus 

making the proposed scheme suitable for hardware implementation.  

The proposed optimal adaptive designs are not only able to maintain the stability 

of the NCS but also force the system performance to attain optimality even when system 

dynamics and network imperfections are unknown. Finally, the behavior of network 

protocols is investigated and a cross-layer framework to design both the controller and 

the protocol is introduced for next generation Cyber Physical Systems (CPS). 

 

2.1. CONCLUSIONS  

In the first paper, an online ADP technique based on adaptive value function 

estimator is introduced to solve the stochastic optimal adaptive and suboptimal regulation 

of linear NCS with uncertain dynamics in presence of unknown network-induced delays 

and packet losses. Considering effects of network imperfections, the linear NCS is 
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represented in terms of augmented state vector consisting of past values of state and 

inputs. Due to unknown network imperfections, the linear NCS dynamics with 

augmented state vector becomes unknown and time-varying, and all traditional control 

schemes which neglect the network imperfections cannot maintain linear NCS stable in 

the mean.  Linear NCS dynamics and network imperfections are not needed while 

estimating the value function and stochastic optimal adaptive control law is derived based 

on estimated value function by using past values of cost to go errors thus relaxing the 

value and or policy iterations. In addition, by using the proposed parameter update law, 

all value function estimator parameters are tuned forward-in-time, online and asymptotic 

stability of overall closed-loop system is demonstrated by using Lyapunov stability 

analysis.  Exploration noise is shown to provide the needed persistence of excitation 

condition which is required for parameter convergence. 

In the second paper, the optimal adaptive design was extended to solve linear 

zero-sum games in the presence of network imperfections.  First, a novel linear NCS 

zero-sum games representation with augment states was derived. Subsequently, the 

optimal adaptive approach that combines value function estimator and ADP is utilized to 

solve Bellman equation of linear NCS zero-sum games in real-time without the 

knowledge of system dynamics and network imperfections. Since optimal adaptive 

scheme balances control and disturbance effects for linear NCS, Pareto optimality has 

been achieved. Finally, stability proofs guarantee the asymptotic convergence of value 

function estimator parameters in the mean and closed-loop system while simulation 

results reaffirm the satisfactory performance of the proposed stochastic optimal adaptive 

design.  
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On the other hand, in the third paper, a novel time-based stochastic optimal 

adaptive control scheme for nonlinear NCS referred to as neuro dynamic programming 

for NCS has been introduced in presence of unknown system dynamics and network 

imperfections. First this paper has developed the nonlinear NCS representation with 

augment states in the input-output form. A neural network (NN)-based identifier relaxes 

the requirement of input gain matrix for the nonlinear NCS while the action NN does not 

need information on network imperfections.  Since proposed scheme is time-based and 

forward-in-time, value or policy iterations were not required because a history of cost-to-

go errors was utilized in the value function estimator. Using Lyapunov theory, all NN 

weights and closed-loop signals had been proven uniformly ultimately bounded in the 

mean, and simulation results indicate the satisfied performance of proposed scheme even 

when the system is represented in the input-output form.  

In the past three chapters, though the effect of delays and packet losses are 

included in the design, a specific network protocol behavior is not considered.  In 

addition, the above stochastic adaptive optimal control designs for linear NCS are all 

based on state-feedback design while a network protocol behavior requires output 

feedback. Therefore, the behaviors of TCP and UDP by using output feedback design are 

considered in the fourth paper. First, a linear NCS representation under TCP and UDP 

was developed which is different from the past three chapters.  Subsequently, an ADP-

based scheme consisting of a novel observer, value function estimator is utilized to solve 

the Bellman equation in real-time for obtaining optimal control of linear NCS under TCP 

and UDP. Since past control inputs and estimated states have been used, the requirement 
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of system dynamics and network imperfections was relaxed to obtain the stochastic 

optimal adaptive design.  

In addition, stability region of designed observer is derived and compared with 

traditional observer. Although stability region of the proposed adaptive observer is 

smaller, it relaxed the requirements for unknown system dynamics. Eventually, 

Lyapunov theory is used to prove the observer and its parameters, adaptive value function 

estimator parameters and closed-loop system are asymptotically stable in the mean for 

NCS under TCP and uniformly ultimately bounded in the mean for NCS with UDP. 

Furthermore, it is important to note that novel event-triggered control technique 

has attracted significant interest than traditional time-driven control due to its network 

benefits. The joint network protocol and controller design is necessary for CPS. 

Therefore, a novel cross-layer co-design is developed in the fifth paper. In this paper, 

first, an event-triggered control scheme is introduced instead of a traditional time-driven 

scheme. Subsequently, a novel optimal adaptive model-based event-triggered control 

scheme is derived. Compared with other event-triggered control schemes (e.g. ZOH, 

Fixed-model), proposed algorithm can not only save more network resources but also 

improves the performance of control system while relaxing the requirement of system 

dynamics. Then, a novel distributed scheduling is derived by maximizing the utility 

function which is based on information from both the application and network layers. 

2.2. FUTURE WORK 

As part of the future work, more network imperfections (e.g. quantization errors 

etc.) could be considered for NCS design. This would complicate the design and brings 
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more challenges for proving stability. However, the major benefit is to make our design 

more suitable for real-time implementation.  

On the other hand, although event-triggered control schemes are derived in the 

fifth paper, they only focus on linear discrete-time system. Since nonlinear system is 

more generic than a linear system, proposed event-triggered control schemes should be 

extended to the case of nonlinear systems. Therefore, the development of an adaptive 

model-based event-triggered control for nonlinear system can be considered as one part 

of future work. After that, optimal event-triggered controller scheme development can 

also be introduced as part of future work.  

Another possibility would be efficient CPS co-design. Until now, most control 

and networking researchers separated the control and network protocol designs for the 

sake of convenience.  However, such designs will degrade the performance of CPS since 

controller and network protocol designs can influence each other. Therefore, it is 

necessary to derive a novel co-design framework to overcome this drawback. Besides the 

fifth paper, more CPS co-designs such as joint intelligent control with novel routing, 

adaptive modulation/demodulation and encoding/decoding can be considered. Although 

developing an efficient co-design framework and proving its superiority mathematically 

are difficult, it is an interesting and promising area to explore. 
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