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ABSTRACT

Networked Control System (NCS) is a recent topic of research wherein the
feedback control loops are closed through a real-time communication network. Many
design challenges surface in such systems due to network imperfections such as random
delays, packet losses, quantization effects and so on. Since existing control techniques
are unsuitable for such systems, in this dissertation, a suite of novel stochastic optimal
adaptive design methodologies is undertaken for both linear and nonlinear NCS in
presence of uncertain system dynamics and unknown network imperfections such as
network-induced delays and packet losses. The design is introduced in five papers.

In Paper 1, a stochastic optimal adaptive control design is developed for unknown
linear NCS with uncertain system dynamics and unknown network imperfections. A
value function is adjusted forward-in-time and online, and a novel update law is proposed
for tuning value function estimator parameters. Additionally, by using estimated value
function, optimal adaptive control law 1is derived based on adaptive dynamic
programming technique. Subsequently, this design methodology is extended to solve
stochastic optimal strategies of linear NCS zero-sum games in Paper 2.

Since most systems are inherently nonlinear, a novel stochastic optimal adaptive
control scheme is then developed in Paper 3 for nonlinear NCS with unknown network
imperfections. On the other hand, in Paper 4, the network protocol behavior (e.g. TCP
and UDP) are considered and optimal adaptive control design is revisited using output
feedback for linear NCS. Finally, Paper 5 explores a co-design framework where both
the controller and network scheduling protocol designs are addressed jointly so that

proposed scheme can be implemented into next generation Cyber Physical Systems.
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1. INTRODUCTION

In the past decade, significant advances in theoretical and applied research have
occurred in computation, communication, and control areas. Control system has made
great strides from analog control (first generation) to digital (second generation) [1] with
the appearance of digital computer in 1940s. Similarly, wireless communication is being
preferred over wired communication as it allows mobility. In the recent control
applications, reinforcement learning which is used for computational intelligence has
been introduced in complex control system design. Most recently, a communication
network is combined with modern control system to form a networked feedback control
system due to the presence of a real-time communication network. This novel networked
control system [2-5] (NCS) concept is considered as a third generation control system [1].
In NCS, a communication packet carries the reference input, plant output, and control
input which are exchanged by using a communication network among control system
components such as sensor, controller and actuators as shown in Fig 1.1.

Compared with traditional control systems, a NCS can not only reduce system
wiring with ease of system diagnosis and maintenance, but also increases the system
agility which is one of most critical factor in developing practical modern system.
Because of these advantages, a NCS, as shown in Fig 1.2., has been implemented in the
manufacturing industry. Multiple devices sense data from controlled plants by using
embedded sensors then packetize the data and transmit the sensed data to remote
controllers through the wireless network. When the respective controllers receive
information from the controlled plant, suitable control inputs can be designed based on

that information and transmitted back to the respective devices through the network.
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Fig 1.2. Networked control system in manufacturing [19].

Similarly, in Fig 1.3, a NCS is implemented on the smart grid which is considered
as the next generation power system. The sensors can report the consumer demand to the
smart grid processor, which can decide how to deal with these demands whether to

request more power generation or utilize the stored energy. Compared with traditional



power system, network control based smart grid can manage the power resource more
efficiently.

However, due to the unreliable communication network, a NCS has many
challenging issues to be solved before reaping their benefits. The first issue is the
network-induced delay that occurs while exchanging data among devices connected to
the shared communication media. This delay, either constant or random, can degrade the
performance of control system and even destabilize the system when the delay is not
explicitly considered in the design process [8]. The second issue is packet losses due to
unreliable network transmission which can cause a loss in control input resulting in
instability [15]. Because of limited network capacity, sensed plant data and designed
control inputs need to be quantized prior to transmission which may lead to quantization
errors for both measured states and control inputs [5,7]. Since these quantization errors

can cause instability of a NCS [7], it is considered as the third issue.
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Fig 1.3. NCS in Smart Grid'

'Photo courtesy of: http: http://www.consumerenergyreport.com/wp-content/ uploads/
2010/04/smartgrid.jpg



Next, an overview of current methodologies for the NCS design is presented, and
their shortcomings are discussed. Subsequently, the organization and the contributions of

this dissertation are introduced.

1.1. OVERVIEW OF NETWORKED CONTROL METHODOLGIES

As introduced in the above section, although the NCS can offer several
advantages, it also brings many challenging issues (e.g. network-induced delays and
packet losses) due to the presence of a communication network and its associated
network protocol utilized for packet transmission. For the NCS shown in Fig. 1.1,
researchers [2-16] analyzed the stability of such NCS starting 1990s. In [4,5,8,9], authors
evaluated stability and performance of a NCS with constant network-induced delay and
derived a stability region of linear NCS. Selecting a conventional stable controller with
constant gains, related maximum allowable transfer interval (MATI) and maximum
allowable delay can be calculated based on the stability region of NCS [8-9]. In addition,
the effect of packet losses on the NCS has been analyzed in [14].

Similar to network-induced delay, authors derived a stability region for packet
losses based on stochastic control [18]. Zhang et. al [8] conducted the stability analysis of
the NCS in the presence of packet losses and delays and proposed the region of stability.
Experimental studies in [8-9] have illustrated that conventional controller can still
maintain a NCS stable in the mean when network-induced delays and packet losses fall
within the region of stability.

On the other hand, optimal control design is also pursued in the NCS research.

Nilsson [6] introduced the optimal design problem and derived optimal controller for the



NCS with a short network-induced delay (i.e. delay less than one sampling interval). In
[6], Nilsson represented the NCS dynamics with augment states. Then, optimal controller
has been derived using standard Riccati Equation-based optimal control theory [18].

Recently, Hu and Zhu extended linear NCS optimal controller design with
network-induced delays of over several sampling intervals (i.e. delay is more than one
sampling interval) [13]. Compared with previous NCS schemes, the work in [14]
considered specific network protocol such as a transmission control protocol (TCP) and
user datagram protocol (UDP), and derived optimal control design for NCS under TCP
and UDP. However, all these methodologies [2-16] required full knowledge of system
dynamics and network imperfections (i.e. network-induced delay and packet losses)
which are not known beforehand in practical NCS. Therefore, methods developed in [2-
16] may not be suitable to yield best performance during implementation. Also, literature
on NCS focuses only on linear dynamic systems. However, practical systems are
inherently nonlinear. Therefore, the control design for such nonlinear NCS is important
and necessary.

In addition, network protocol design is critical for NCS design [5][9]. At present,
limited effort [9][14] has been in place to understand the effect of protocols and most of
them merely evaluate the behaviors of existing network protocols by separating the
controller and network protocol design. However, since controller and network protocol
design are related to each other closely, they cannot be separated in a truly NCS design.
Thus, in this dissertation, a novel controller and network protocol designs are introduced
jointly to address the drawbacks described above. Additionally, stability guarantees are

provided by comparing the proposed schemes with that of the existing NCS.



1.2. ORGANIZATION OF THE DISSERTATION

In this dissertation, novel stochastic optimal adaptive control and network
protocol designs for linear/nonlinear NCS are undertaken while relaxing the knowledge
of the system dynamics and network imperfections. This dissertation is presented in five
papers, and their relationship to one another is illustrated in Fig. 1.2. The common theme

in the five papers is the optimal adaptive control of linear/nonlinear NCS.

Paper 1: Hao Xu, S. Jagannathan, and F.L. Lewis, “Stochastic Optimal
Control of Unknown Linear Networked Control System in the Presence

of Random Delays and Packet losses”, accepted in Automatica.
J

Paper 2: Hao Xu, and S. Jagannathan, “Stochastic Optimal Design for
Unknown Linear Discrete-time Zero-sum Games under Communication
Constraints”, submitted to Automatica.

Stochastic Optimal
Control
Design

J

Paper 3: Hao Xu, and S. Jagannathan, “Stochastic Optimal Controller
Design for Uncertain Nonlinear Networked Control System via Neuro
Dynamic Programming”, Accepted Conditionally in the I[EEFE
Transaction on Neural Networks.

J

Networked
Control
System

Paper 4: Hao Xu, and S. Jagannathan, “Stochastic Optimal Design for
Unknown Networked Control System using Communication Network
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Fig. 1.4 Dissertation Outline

In the first paper, a novel stochastic optimal adaptive control of linear NCS with
uncertain system dynamics in the presence of network imperfections such as random

delays and packet losses is derived. The value function approximation and Q-learning



ideas are used to solve the infinite horizon optimal regulation of unknown linear NCS.
Then, using certainty equivalence property, a stochastic suboptimal adaptive control
scheme is proposed. Lyapunov theory is applied to guarantee that all signals are
asymptotically stable in the mean and estimated control signals converge to optimal or
suboptimal control inputs respectively. In comparison with other works [2-16], the
proposed method relaxes the requirement of system dynamics and network imperfections.

Subsequently, the control design in the first paper is extended to generate optimal
strategies for linear NCS zero-sum games in the second paper. System dynamics and
network imperfections are not needed for the proposed optimal strategy.

In the third paper, a novel nonlinear NCS representation incorporating the system
uncertainties and network imperfections is introduced first by using input and output
measurements for facilitating output feedback. Further, an online neural network (NN)
identifier is introduced to estimate the control coefficient matrix. Subsequently, the critic
and action NNs are employed along with NN identifier to determine the forward-in-time,
time-based stochastic nonlinear optimal adaptive control of NCS without using value and
policy iterations. Lyapunov techniques are used to show that that all the closed-loop
signals and NN weights are uniformly ultimately bounded (UUB) in the mean while the
approximated control input convergences close to its target value over time in the mean.

By contract, in the fourth paper, TCP and UDP are considered with NCS for
evaluating the impact of network protocol reliability on controller performance. Here, a
novel observer is derived to estimate the system states in the presence of unknown system
dynamics and network imperfections first. Next, stochastic optimal adaptive output-

feedback controller by using ADP is utilized to solve the infinite horizon optimal



regulation of linear NCS under TCP and UDP respectively. Finally, Lyapunov stability
analysis indicate that all signals are asymptotically stable in the mean for linear NCS
under TCP, and uniformly ultimately bounded in the mean for linear NCS under UDP.
Finally, the last chapter proposed a cross layer co-design for the Cyber Physical
System (CPS), which is considered as a new breed of promising emerging dynamic
systems. First, by maximizing the utility function which is generated based on the
information from both application and network layer, a novel distributed scheduling
protocol is derived via cross layer approach. Subsequently, a novel adaptive model based
optimal event-triggered control scheme is developed for real-time CPS with unknown
system dynamics in the application layer. Compared with traditional scheduling
algorithms, the proposed distributed scheduling scheme via cross layer approach can not
only allocate the network resource efficiently but also improves the performance of the
overall real-time CPS. Finally, simulation results are included to illustrate the

effectiveness of proposed cross-layer co-design.

1.3. CONTRIBUTIONS OF THE DISSERTATION

This dissertation provides contributions to the field of linear and nonlinear NCS in
the design of an optimal and suboptimal adaptive controller and network protocol. As a
consequence, proposed designs can not only render a desired performance in terms of
attaining optimality but also maintain the NCS stable in the mean in the presence of
unknown system dynamics and network imperfections. Traditionally, the optimal control
design for NCS [2-16] work backward-in-time and require full knowledge of system

dynamics and network imperfections. The ADP-based available optimal techniques, on



the other hand, relax the need for system dynamics and use value and/or policy iterations
which may be difficult to be implemented on hardware since the number of iterations
needed is not known. The proposed effort overcomes these deficiencies.

The contributions of Paper 1 include the stochastic optimal and suboptimal
adaptive control design of linear NCS in forward-in-time in the presence of unknown
system dynamics and network imperfections by using a value function estimator. A
suitable representation of the linear NCS is derived first by using augmented stated and
then optimal and suboptimal adaptive controller is designed by using Q-function
approach. Next, these results are extended to linear NCS zero-sum games, and stochastic
optimal adaptive control and disturbance inputs are now derived in Paper 2.

On the other hand, the contributions of Paper 3 include the development of
nonlinear optimal adaptive controller for nonlinear NCS in presence of system
uncertainties and network imperfections by using input-output measured data. Here as a
first step, a suitable nonlinear NCS representation is obtained for the controller design in
the input-output form. The need for control coefficient matrix is relaxed when compared
to [18] by using a nonlinear neural network identifier.

In addition, a novel optimal adaptive controller incorporating the network
protocol behavior such as the TCP or UDP is introduced. In all the above papers, closed-
loop stability is demonstrated by using Lyapunov analysis. For the case of linear NCS,
asymptotic stability is demonstrated and for the case of nonlinear NCS, uniform ultimate
boundedness of the closed-loop is shown.

Finally, Paper 5 will consider a promising new class of emerging dynamic system

referred to as CPS by using a co-design framework where the optimal adaptive model-
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based event-triggered controller and network distributed scheduling protocol designs are
performed in a joint manner through the selection of suitable utility function. It is
important to note that available current CPS literature [20-22] usually separates the
control and network protocol designs as two separate problems. Instead, in the proposed
co-design framework, the utility function is developed based on information from both
network layer and application layer which in turn optimizes the performance of control

system and the network efficiency.
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PAPER I

STOCHASTIC OPTIMAL CONTROL OF UNKNOWN LINEAR NETWORKED
CONTROL SYSTEM IN THE PRESENCE OF RANDOM DELAYS AND
PACKET LOSSES

H. Xu, S. Jagannathan, and F. L. Lewis
Abstract - In this paper, the stochastic optimal control of linear networked control system
(NCS) with uncertain system dynamics and in the presence of network imperfections such
as random delays and packet losses is derived. The proposed stochastic optimal control
method uses an adaptive estimator (AE) and ideas from Q-learning to solve the infinite
horizon optimal regulation of unknown NCS with time-varying system matrices. Next, a
stochastic suboptimal control scheme which uses AE and Q-learning is introduced for the
regulation of unknown linear time-invariant NCS that is derived using certainty
equivalence property. Update laws for online tuning the unknown parameters of the AE
to obtain the Q-function are derived. Lyapunov theory is used to show that all signals
are asymptotically stable (AS) in the mean and that the estimated control signals
converge to optimal or suboptimal control inputs in the mean. Simulation results are
included to show the effectiveness of the proposed schemes. The result is an optimal
control scheme that operates forward-in-time manner for unknown linear systems in

contrast with standard Riccati equation-based schemes which function backward-in-time.

Key words— Networked Control System (NCS), Q-function, Adaptive Estimator, Optimal

Control.
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1. Introduction

Feedback control systems with control loops closed through a real-time network
are called Networked Control Systems (NCS) (Halevi and Ray, 1988; Branicky et al.,
2000; Wu and Chen, 2007; Cloosterman et al., 2009). In NCS, a communication packet
carries the reference input, plant output, and control input which are exchanged using a
network among control system components such as sensors, controller, and actuators.
The primary advantages of NCS are reduced system wiring, ease of system diagnosis and
maintenance, and increased system agility. However, insertion of the communication
network in the feedback loop brings many challenging issues.

The first issue is the network-induced delay that occurs while exchanging data
among devices connected to the shared medium. This delay, either constant or random,
can degrade the performance of control system and even destabilize the system when the
delay is not explicitly considered in the design process. The second issue is packet losses
due to unreliable network transmission which can cause a loss in control input resulting
in instability. These issues have been identified in the literature and are being studied.

For instance, Cloosterman et al. (2009) analyzed the stability of NCS with
network-induced delays. Walsh et al. (1999) and Lian et al. (2001) considered stability
performance of NCS with constant delays. Azimi-Sadjadi (2003), Wu and Chen (2007),
Schenato et al. (2007) analyzed the stability performance of NCS with packet losses.
Eventually Zhang et al. (2001) conducted the stability analysis of NCS with delays and
packet losses and proposed a stability region.

While stable controllers are encouraging, optimality is generally preferred for

NCS which is very difficult to attain. Lian et al. (2002) proposed the optimal controller
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design by using classical optimal control theory (Lewis and Syrmos, 1995) for NCS with
multiple constant delays embedded into the NCS representation. Using the stochastic
optimal control theory (Stengel, 1986; Bertsekas and Shreve, 1978; Astrom, 1970),
Nilsson et al. (1998) proposed the optimal and suboptimal controller designs for linear
NCS with random delays. Although these optimal and suboptimal controller designs have
resulted in satisfactory performance, they all require information about the system NCS
dynamics and information on delays and packet losses which are not known beforehand.

On the other hand, adaptive dynamic programming (ADP) schemes proposed by
Werbos (1991), Watkins (1989), intend to solve optimal control problems forward-in-
time by using value and policy iterations. There are four techniques in ADP (i.e. heuristic
dynamic programming (HDP), action dependent HDP (ADHDP), dual heuristic
programming (DHP) and action dependent DHP (ADDHP)), but they all require policy
and value iterations.

Al-Tamimi, Lewis and Abu-Khalaf (2007) used the Q-learning policy iteration
method to solve the optimal strategies for linear discrete-time system quadratic zero-sum
games in forward-in-time without requiring the system dynamics wherein the system
dynamics are defined as constant matrices. It is important to note that policy and value
iteration-based schemes are difficult to implement on hardware (Dierks et al., 2009) since
it is not clear how to select the number of iterations required for convergence and
stability while keeping the hardware constraints. Inadequate number of policy and value
iterations can result in instability (Dierks et al., 2009). Therefore, Dierks and Jagannathan
(2009) used two time-based neural networks (NN) to solve the Hamilton-Jacobi-Bellman

(HJB) equation forward-in-time for the optimal control of a class of general nonlinear
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affine discrete-time systems without using policy or value iterations. However, these
papers did not consider the effects of delays and packet losses which are normally found
in a NCS. The delays and packet losses cause instability (Zhang et al., 2001) if they are
not considered carefully which in turn make the optimal controller design more involved
and different than (Al-Tamimi et al., 2007; Zhang et al., 2009).

Thus, this paper introduces ADHDP technique for the optimal and suboptimal
control of linear NCS with uncertain system dynamics and in the presence of unknown
random network-induced delays and packet losses. In other words, first a linear NCS
with random delays and packet losses will be represented by a time-varying linear system
with unknown system matrices. The suboptimal approach in (Al-Tamimi et al., 2007;
Zhang et al., 2009) is not directly applicable to the NCS due to the inclusion of network
imperfections such as these delays and packet losses.

A novel approach is undertaken to the optimal regulation of linear NCS with
random delays and packet losses to solve the Bellman equation (Wonham, 1968) online
and forward-in-time without using policy and value iterations. Using an initial stabilizing
control, an adaptive estimator (AE) (Franklin et al., 1994) is tuned online to learn the
stochastic cost function without needing to solve the stochastic Riccati equation (SRE).
Then, using the idea of Q-learning, the optimal controller which minimizes the stochastic
cost function can be calculated based on the information provided by the AE. Thus the
proposed AE-based scheme relaxes the requirements for system dynamics and
information on random delay and packet losses. Next, the suboptimal controller design is

derived based on NCS representation that is obtained by using certainty equivalence
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property. For the suboptimal control, linear NCS is modeled as a time-invariant system
with unknown matrices. The suboptimal controller reduces computational complexity.
This paper is organized as follows. First, NCS background representation is given
in Section 2. In Section 3, the stochastic optimal and suboptimal regulation controls of
NCS are introduced. Section 4 illustrates the effectiveness of proposed schemes via

numerical simulations, and Section 5 provides concluding remarks.

2. Background

The basic structure of NCS considered in this paper is shown as Figure 1 where
the feedback control loop is closed over a wireless network. Since wireless network

bandwidth is limited, two types of network-induced delays and one type of packet losses
are included in this structure: (1) Tsc(l‘): sensor-to-controller delay, (2) 7,,(¢): controller-
to-actuator delay, and (3) y(¢): indicator of packet received.

The following assumption is needed similar to other works (Liou and Ray, 1991;
Hu and Zhu, 2003):

T, :Samplinginterval

|

Actuator »  Plant Sensor

&

/ Wireless Network

Delay T (1 Delay
And Tca(t) sc( ) And
Packet losses Packet losses

(1)

k k

7(®)

Controller

2

Fig 1. Networked Control System (NCS)
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Assumption 1:

a). Sensor is time-driven while the controller and actuator are event-driven (Hu
and Zhu, 2003).

b). The communication network considered is a wide area wireless network so
that the two types of network-induced delays are independent, ergodic and unknown
whereas their probability distribution functions are considered known (Liou and Ray,
1991; Hu and Zhu, 2003; Goldsmith, 2003).

c¢). The sum of the two delay types is bounded (Liou and Ray, 1991) while the
initial state of linear system is deterministic (Hu and Zhu, 2003).

A linear time-invariant system x(¢)= Ax(¢)+ Bu(t) is considered. However,
considering the effects of network-induced delays and packet losses, the original
controlled plant can be expressed as

x(t) = Ax(2) + y (1) Bu(t — 7(1)) (1

I if thecontrolinputis received at time ¢

where y(¢) ={ , x(t) e R",u(t) €

0" if the controlinputis lost at time ¢

R™and A € R™", B € R™™Mrepresenting system matrices. From Assumption 1, we can

assume that the sum of network-induced delays 1is bounded above i.e.
T(I)=ZYL,(I)+Tca(t)<C7]; where d represents the delay bound while T is the sampling
interval.

During a sampling interval [kT,(k +1)I) Vk , the controller inputu(¢) to the plant

is a piecewise constant. According to Assumption 1, there are at mostd current and
previous control input values that can be received at the actuator. If several control inputs

are received at the same time, only the newest control input is allowed to act on the
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controlled plant during any sampling interval [kT,(k+1)T)) Vk , and other previous
control inputs are deduced. Since controller is event driven, the plant will implement
control input at these time instant k7 +£*,i =0,1,...,d and ¢’ <t where t* =" —iT as
illustrated in Figure 2 (Liou and Ray, 1991).

(k=d-3T (k=d-DT, (k-d-DT, (k-d)T, ---(k —1)T, kT, (k+DT,

ANINENERNFRNN
NN NN

Time axis notation: tk
1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted
3. Bottom line: Actuator received control action

dadla’])o

Fig 2. Timing diagram of signals in NCS.

For the event driven controller, the control input becomes u, in response to the
sensor signal x, . Integration of (1) over a sampling interval [kT,,(k+1)T,) Vk yields

_ k., a k., a k,  a
X = Ax, + Byu, + Blug_ +--+ By, 5, @)
a —
Ui = Vi—iMy—i

where x, =x(kT ),AS =e"" ,u, is the control input computed at controller, u is
control input received at actuator with

—I _,T DI, LA, s)dSB.q)(];+Tl{f_l_z-lff).¢(flf‘_i];) ‘v’i:l,Z,...,O?,

B =1%e""dsB e pl(k+1)1, -7/ )

_ |0, if u,_, wasreceived during [kT,(k+1)T)
P71, if w,_, waslost during [k, (k +1)T.)
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Using (2), a new augment state variable vector consisting of current state and past
inputs, z, = le u_, o oo J "€ R™4™M js defined such that (2) can be expressed as
Zy = Ayz + By 3)

where the time-varying system matrices are given by

Ay BY - v B ey B 7B,

0 0 0 I
L 0 I, 0 0 5 _ 0
o0, 0 1o

0 0 T 0 | 0

2

In this paper, we derive the optimal controller to minimize the stochastic cost

function

J, = E[ i(xinm +u'Ru, )} k=0,,2,... (4)

Y m=k
where S and R are symmetric positive semi-definite and symmetric positive

definite constant matrices respectively and £ (O)is the expected operator (in this case the
.y

mean value) of i(xinm +unT1Rum)based on the random network-induced delays and

m=k
packet losses. After redefining the augment state vector z, , original stochastic cost

function, (4) can be expressed as

J, = E[ >(21S.z,, +ulRu, )} k=0,12,.. (5)

oY m=k
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< o 0
o X0
S=. d .
00 . X% |
where L d—,andRz=jR.

Note the matrices S. and R are still symmetric positive semi-definite and
symmetric positive definite respectively.

Remark 1: ifd =1, then the overall network-induced delay (sum of the two
delays) is less than a sampling interval. Then stochastic optimal and suboptimal designs

for known NCS system dynamics can be found in (Nilsson et al., 1998).

3. Optimal and Suboptimal Regulator Design

In this section, the idea of Q-learning (Watkins, 1989) and concept of AE are
utilized to develop the stochastic optimal and suboptimal control designs for NCS with
unknown linear time-varying dynamics in the presence of unknown random delays and
packet losses. In Section 3.1, a novel stochastic optimal control will be formulated for the
NCS. First, Q-function is set up for NCS with random delays and packet losses. Second,
model-free online tuning of the parameters based on AE and Q-learning algorithm will be
proposed. Eventually the convergence proof is given. Subsequently, stochastic
suboptimal control is proposed in Section 3.2.

3.1. Optimal Control

In this section, stochastic optimal control of NCS is obtained without knowledge
of system dynamics and wireless network imperfections. First, NCS dynamics (3) with

random delays and packet losses is used. It is important to note when time-varying NCS

dynamics 4, B, are known, the stochastic optimal control can be obtained by solving
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Stochastic Ricatti Equation (SRE) in backward-in-time manner. However, in practice
random delays and packet losses will affect the dynamics 4,,,B, which makes the

dynamics uncertain. Therefore, a novel Q-function approach is introduced to overcome
this drawback but this cost function is not known before hand. Consequently, a novel AE

is proposed to learn this Q(e) function online. Eventually, even when NCS dynamics

A,,B,, random delays and packet losses are unknown, stochastic optimal control still

can be obtained in terms of estimated Q-function in a forward-in-time manner without
using value and policy iterations in contrast with existing Q-function based ADP schemes
where value and policy iterations are needed. Next the Q-function setup is described.
3.1.1. Q-function Setup

Consider the NCS in the presence of practical random delays and packet losses

Zi

described by (3) as z,,, = 4,2, + Bu, where |B,| < B, (Note|e|_denotes the Frobenius

norm and B,, is the Frobenius norm bound of B, ). Given the unique equilibrium point at

z =0 for the NCS system on a set(2, assume that the states are considered measurable.
According to these conditions, the stochastic optimal control input which minimizes the

cost function J, (5) for NCS system (3) can be derived asu, =K, z, with K, being the

optimal gain and u,f being the control input. According to the optimal control theory

(Lewis and Syrmos, 1995), the stochastic cost function can be represented as
Ji :TE;(ZkTPka) (6)
where B, > 01is the solution to the SRE (Wonham, 1968). The optimal action dependent

value function or simply QO-function denoted as Q(o) of NCS is defined in terms of

expected value as

Ozu )= E{Irzew )+l = EAlZ w1H, (=] w1} (7
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where r(z,,u,)=2z,S.z, +u/Ru, . It is important to note that the matrix H, is time-
varying as opposed to the one defined for stochastic suboptimal control in the next

section. Since the stochastic optimal control, u,, is dependent on state z, which is known
. . T 7 T VRV
at time k , Q-function can be expressed as O(z,,u, ) =[z] u(z,) 1E(H,)[z} u(z,)'1". Then
.y

using Bellman equation (Lewis and Syrmos, 1995) and stochastic cost function

definition, the following equation can be formulated by applying O-function (7) as

DT E(Hk)tk} = g{["(zk,ukﬁ Joa ]

.y
k k
7 T T
=z 8.z, tu, Ru, + TE;(ZkJrlBHleH)

— T T
_| & S 0]z B z, | | A P Al | z,
u, | |0 R |Ju, “|\|u, | | B B! ||lu,
(8)
S +E(4,P,4,)  E4P,B,)

k+1

Z,
LUy ] L E(Bz/fP/mA ) R +E(kak+13zk)]|: ki|

1
|
~

1
I
-\J

Therefore E (H ‘ ) can be written in terms of the system matrices and solution to the
.y

SRE as
_ I__[zz I__[zu
H =E(H)=|_* _*
k T,v( k) {H:Z H:u}
S +E(AszPk+1A ) (AzTAPkHB )

)

k+1

E(B \P.A,) R +E(B P,.B.)

The optimal action dependent value function Q(Zk,uk)is equal to stochastic cost

function J, . Therefore, we have

J, =0(z,.u,) (10)
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Then using (9) and stochastic control theory (Stengel, 1986), the optimal time-

varying gain can be expressed in terms of /1, as

— uu Y1 Truz
K, =[R + E(BLR.BV E(B)R.A,)=(H") H] (an

Z Z

Remark 2: According to (11), if the solution to the SRE, B, is known, then the
time-varying system matrices 4, B, are still required to compute the controller gains in a

backward-in-time manner. On the other hand, if time varying matrix /, can be learned

online at time k without the knowledge of linear time-varying system dynamics, optimal
controller gain can be solved not only without NCS system matrices, but also forward-in-
time.
3.1.2. Model-free Online Tuning based on Adaptive Estimator and Q-Learning

The proposed online tuning approach entails one AE which is used to learn Q-
function. Since Q-function include //, matrix, this matrix can be solved online and the
control signal can be obtained using (11). We make the following assumption (Middleton
and Goodwin, 1988) since the NCS is linear, the delays of NCS are bounded above,
packet losses satisfy the Bernoulli distribution and the delays and packet losses change
slowly (Goldsmith, 2003).

Assumption 2: The Q-function, Q(zk,uk), can be expressed as the linear in the
unknown parameters (LIP).

By using the stochastic adaptive control theory (Jagannathan, 2006) and the

definition of Q-function (7), Q(zk,uk)can be represented in vector form similar to the AE

representation as
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Q(Zkauk)zwkTHka =}_ZkT"_"k (12)

j25 r T T n+(d+1)m=1 — 2
where A, :vec(Hk),wk =zl u"(z)] W, € RVTE@D , and W, =(W,...,
W Wii> Weyseres Wy Wy, Wy ) is the Kronecker product quadratic polynomial stochastic

independent basis vector and 4, = vec(ﬁ . )with the vector function acting on/ x/matrices

thus yielding a / (l + 1)/ 2x1column vector (Note: the vec(O) function is constructed by
stacking the columns of the matrix into one column vector with the off-diagonal elements

which can be combined as 4, + H, ).

The time-varying matrix 7/, can be considered as slowly varying (Middleton and
Goodwin, 1988). Then Q-function can be expressed as unknown time-varying target
parameter vector and the regression function w, . Next, the Q-function O(z,, u,)

estimation will be considered.
3.1.3. Q-function Estimation for Optimal Regulator Design

The Q-learning was originally proposed in (Watkins, 1989; Werbos, 1992) to
solve the optimal control problems for time-invariant systems by using policy or value
iterations. Here, the Q-function scheme is extended to time-varying linear systems
without using iterative approach. According to the definition of Q-function and

relationship between Q-function and stochastic cost function (10), the relationship
between H , matrix in (9) and the stochastic cost function is given as
Jo =w How, =h!w, (13)

Then Q-function Q(Zk U ) can be approximated by an AE as

A
A Eal

Q(Zk’uk): hkTWk (14)
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where Z{T is the estimate value of the target parameter vector 2 with regressor satisfying
7 = Ofor|z, | = 0.

It is observed that Bellman Equation can be rewritten asJ,,, —J, +r(zk,uk)= 0.
This relationship, however, is not guaranteed to hold when the estimated matrix H . 1s
applied. Hence, using delayed values for convenience, the residual error, e,,, associated

with (14) can be expressed asJ, —J,_, +7(z,_,,u, ,)=e,,, i.€.

U k
= r(zk—l’uk—l)+ }zkr Wy — V_Vk—l) (15)
= r(Zk—l’uk—l)+ N
where AW, =W, =W,

The residual dynamics in (15) are then rewritten as
Chirt = "(Zka”k)+ }_ZI:-IAVV/{ (16)

Next, we define an auxiliary residual error vector as

By =Ty + 1/ Qe RO (17)
where L =lrGz,u) r(z,,u,) 1 (Zk—l—[’ukflfj )] and
Q. =[AW,, AW, - AW, ; 1,0<j<k-1€ Nwith N being the set of positive

natural numbers. It is important to note that (17) indicates a time history of the previous

Jj +1residual errors (15) recalculated by using the most recent l?k .

The dynamics of the auxiliary vector (17) are generated similar to (16) and

revealed to be
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Ep =T + }_lkTHQk (18)

Now define the update law of the time-varying matrix , as

A

b, =,QQ,) (@2, -17) (19)
where 0 < ¢, <1. Substituting (19) into (18) results
S =002 (20)
It is observed that the stochastic cost functionJ, and AE (14) will become zero

only when z, = 0. Hence, when the system states have converged to zero, the Q-function

approximation is no longer updated. It can be seen as a persistency of excitation (PE)
requirement for the inputs to the Q-function estimator wherein the system states must be
persistently exiting long enough for the AE to learn the stochastic cost function. In this

paper, exploration noises are added to satisfy the PE condition.

Definition 1: (Persistence of Excitation) A stochastic vector f, € RPis said to be
persistency exciting if there exist positive constants &, and k, 21, such that
ky+0 T
kg{ E[pp 1z
where I is identity matrix, £ {0} is the mean value of {0}

Lemma 1: The vector AW, in (15) and Q, satisfy the persistently exciting

condition with exploration noise.

Proof: Refer to the Appendix.
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Now define the parameter estimation error to be}:zk =h, —hik . Rewrite Bellman
Equation using the target AE representation (13) revealing 4, w, = r(z,,u, )+ h',W,,,
which can be expressed as

(2w, ) = 2w, =B W = —hLAW, 1)

Substituting (z, ,u, )into (16) and utilizing (15) withe,,., = a,e,, from (20) yields

]/zllilAVI/k = _ahr(zk—l’uk—l)_ah]/ilkTAVVk—l (22)

Similar to r(zk,uk) , we define r(z, ,, u, ,)=—hAW, , , and substitute this

expression into (22), to get
WA, = a,hI ATV, (23)

Next, the convergence of the stochastic cost function estimation error with

adaptive estimation error dynamics l?k given by (23) is demonstrated for an initial

admissible control policy. The linear NCS time varying system dynamics are shown to be
asymptotically stable in the mean if an initial admissible control policy can be applied
provided the system matrices are known. However, introducing the estimated Q-function

results in estimation errors for the stochastic cost function J, , and stability of the

estimated stochastic cost function needs to be studied. Subsequently, the results of
Theorem 1 will be used for proving the overall closed-loop system stability in Theorem 2
by using an initial admission control policy. In order to proceed, the following definition

is needed before presenting the theorem.
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Definition 2: (Asymptotic stability) An equilibrium point x, is said to be
asymptotically stable (AS) if there exists a setS —R"such that, for every initial condition
X, €S, one has ||xk —xe|| — 0ask — oo. In other words, the state x, converges to x, .

Theorem 1: (Asymptotic Stability of the Cost AE Errors). Given the initial
conditions for the AE parameter vectors }?Obe bounded in the setS, letu, (zk)be an initial
admissible control policy for the linear NCS (3). Let the AE parameter update law be
given by (19). Then, there exists a positive constant &, satisfying 0 < o, <1such that the

adaptive parameter estimator errors converge to zero asymptotically.

Proof: Consider the positive definite Lyapunov candidate
V() = (I AW, ) (24)
The first difference is given by AV, (i:zk) = (li,mAWk)2 - (EkAW,H)2 , and using (23)
yields
AV, () = (@i AW, ) = (R AW, ) S (1= (BAWY (25
Since V, (}:zk) is positive definite and AV, (l:zk) is negative definite (due to PE
condition; Lemma 1) provided %' is selected as above. Therefore, the parameter errors

converge to zero asymptotically. This implies that J ., —J, and }_zk —>0whenk — 0.

Next, we show that the estimated control input based on this estimated matrix
will indeed converge to the optimal control input.
3.1.4. Estimation of the Optimal Feedback Control Signal

There are two ways to estimate the optimal control signal for regulating the NCS.

One is based on time-varying matrix A, . » and the other one is based on standard optimal
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control theory by minimizing the stochastic cost function. The difference being that the
latter method requires the system dynamics and it solves the optimal controller backward.
However, it is shown here that ultimately both are equivalent and therefore are used in

the proofs.
Method I: As mentioned before, the time-varying matrix /, can be estimated by
using an AE. According to Q-learning and equation (11), the estimated optimal control

input for NCS can be expressed by using the adaptive estimation of H . as
uy =—Kz, = _(Hzim)_l H:ZZk (26)
Method II: Alternatively, the estimated optimal control signal which minimizes

the estimated stochastic cost function (13) with the adaptive estimator (AE) H, as

. | N (.Y
u, =——RE| B, — L 27
2k 2 z r,y( zk aZ,MJ ( )
where
R I roa
Jin = 1_E}:(Wk+lHk+ka+l ): TE;:(ZkHPkHZkH) (28)

Next, it will be shown that the optimal control input obtained by method I and II

are equivalent.

Lemma 2: The optimal control obtained using the estimated value of Q(Zk,uk)is
same as the optimal control calculated by minimizing the stochastic cost functionJ,, i.e.
Uy =y

Proof: Refer to the Appendix.

Since the equality proven in this lemma is in both ways and noting the drawback

of second method, we use the first method to solve the optimal controller design for NCS.
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However, we will use the Lemma 1 to complete the convergence proof since they are
equivalent. Next, the stability of the cost estimation, control estimation, and adaptive
estimation error dynamics are considered.

3.1.5. Closed-loop System Stability
In this section, it will be shown that time-varying /, matrix and related stochastic

cost function estimation errors dynamics are asymptotically stable in the mean. Further,
the estimated control input for NCS (26) will approach the optimal control signal
asymptotically. Before introducing the theorem on system stability, we present the block
diagram in Figure 3 for the proposed stochastic optimal regulator of linear NCS with

unknown system dynamics.

(9

A *u(zk)=(ﬁ:"T‘f1:sz

T = Ay + By ”(zk )
Linear Network Control System with Unknown 4 .andB,,
L 2

A A 4 \4

Adaptive Estimator of
O;\z;,u, ) function

< 1w,

A _ TL
Iy _wkawkI

Cost Function
Network

Fig 3. Stochastic optimal regulator block diagram

Next, the initial system states are considered to reside in the same set as that of

the initial stabilizing control inputu,, . Further sufficient condition for the AE tuning gain
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a,1s derived to ensure the all future states will converge to zero. Then it can be shown

that the actual control input approaches the optimal control asymptotically.

Before the convergence proof, the following result is needed to establish bounds
on the optimal closed loop dynamics when the optimal control is applied to the NCS (3)
with random delays and packet losses.

Lemma 3: There exists an admissible control policy be applied to the NCS (3)

such that the system dynamics 4z, + B _,u, are bounded above with the bounds satisfying

|42, + B | <&z (29)

0<k <1/2.

where 1S a constant.

Proof: Consider the Lyapunov function candidate
Vo(z.)=2,z, (30)
whose first difference of ¥,(z, )is given by AV, (z,)=zT,,z,,, —z z, . Note that
since u, 1s an admissible control policy, it follows from the definition of admissible

control that the NCS dynamics (3) with optimal control applied are asymptotically stable

in the mean, and the sequence||z,

, k=12,...,comonotonically decreases until it reaches
zero. This result directly implies that z7 z,, —z7z, <0or AV,(z,)<0 . Using the fact
AV,(z,)<0 , it is clear that z' .z, <z'z, . Substituting the system dynamics
Z,, = A,z, + B u, yields

AV, (z,) = (4,2, + szuk)T(Aszk + B ;) - ZkTZk <0
=4,z + szuk”2 - ||Zk||2 <0

€2))
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Next, we must identify a bound on||4,,z, + B_,u,|which guarantees the sufficient
condition AVD(Zk)< 0 for stability is still met. Selecting the bound shown in optimal

control policy, (38) reveals AV, (zk ) < —(1 - k*) z] z, < 0as required.

Theorem 2 (Convergence of the Optimal Control Signal): Given the initial
conditions for the system state z,, cost function and AE parameter vectors EO be bounded

in the setS, letu,, be any initial admissible control policy for the NCS (3) with random
delays and packet losses satisfying the bounds given by (29) for0<k" <1/2. Let the AE
parameter be tuned and estimation control policy be provided by (12) and (26)

respectively. Then, there exist positive constants«, given by Theorem 1 such that the
system states z, and stochastic cost function parameter estimator errors Ek are all

asymptotically stable in the mean. In other words, ask —,z, =0, i:zk —0,J, > J, and
iy, —>u, i, —>u,.

Proof: Refer to the Appendix.

Remark 3: It is important to note that when the delay bound is increased in NCS,
the dimension of augmented state z, increases and computational complexity also goes

up due to the presence of the communication network within the control loop. While the
recent embedded processors can handle the computational complexity to some extent, the
delay bound due to the network phenomenon can be reduced by a suitable design of
networking protocols, which is relegated as part of future effort. In the next subsection,
suboptimal control scheme is presented in order to reduce the computational complexity

of the controller.
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3.2. Suboptimal Control

In the previous section, a new stochastic optimal control policy for NCS is
introduced. It is important to note that if the linear system is time-varying, no steady-state
solution to the Riccati equation (Lewis and Syrmos, 1996) can be found in general.
Therefore, in this section the stochastic suboptimal control is introduced based on
certainty equivalence property (Maybeck 1982; Hespanha et. al. 2007). Although, the
performance of stochastic suboptimal control is not same as that of stochastic optimal
control, computational complexity is reduced significantly due to constant feedback
control gains without too much loss in performance from the optimality.

By using certainty equivalence property and random process (Papoulis, 1991),

the NCS dynamics (3) can be approximated as a deterministic system as

Zyy =A.z, + B,

H 7T 1y
0 0 0 .
where 4. = I, 0 0 LB =|0
0 0 I, 0 | | 0]
and

. | . . 1 & (i s . . .
w=limo Sy, B =l 20 [ e s T+, ~7/ )o ple/ —iT.)

n—w f iZ

Vi=12...d;u, ~lim 3y

k—o k j=1

B/ =lim~ 3y [ dsB o gl(k + 1)1, - 7;)

Joi k—o k j=1

It is important to note that the system matrices 4. and B, in (32) are deterministic.

Suboptimal control can be obtained by solving algebraic Riccati Equation (ARE) for the

known certainty equivalence deterministic NCS representation. However, due to
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unknown network imperfections, the system matrices are still unknown. In this section,
suboptimal controller is obtained based on AE proposed in Section 3.1 and Q-learning
without requiring 4_and B, .
3.2.1. Q-function Setup for Suboptimal Control of NCS

Based on linear optimal control theory (Lewis and Syrmos, 1995), stochastic cost
function of (32) can be expressed as.J, =z, Pz, where P> 0 satisfies the ARE. Then,
applying the Q-learning method (Watkins, 1989; Al-Tamimi, Lewis et al., 2007),
stochastic suboptimal control can be formulated without knowing NCS system dynamics
(32) but with policy iteration. In this part, we extend the (Q-learning to certainty
equivalence deterministic NCS representation given by (32) without using the iterative
approach.

The optimal action dependent value function Q(O) of certainty equivalence

deterministic NCS during sampling interval [k, (k +1)7,) can be defined as

T T T
Q(Zk’uk) = r(Zk’uk ) tJea=z.82,tu Ru, +z,,,Pz, |

z, |[S. 01z z, ! AZT_T A | z,
= + P

w |10 R Ju | (u | |B| [B |
JaTl[s.+4Pa  APB |3
w, || BIPA. R +B!PB_|

- T T
_uk Huz Huu uk uk uk (33)

where H is the constant matrix associated with P which is a solution of the ARE.

1
I
~

The relationship between P and the H can be written as
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e H, H,| |S.+4/PA, A PB,
H, H, BIPA. R +B!PB,
Therefore, based on optimal control theory (Lewis and Syrmos, 1995), optimal

controller gain can be expressed in terms of H as

K = (Rz + BZTPBZ TIBZTPAZ = (Huu )_lHuz (34)
Thus, if the matrix H is known, the NCS system dynamics (32) are not needed to

calculate the suboptimal controller gain. According to ADP-based value iteration

approach (Al-Tamimi et al., 2007), the O(e) function and H matrix can be learned at every

sampling interval iteratively provided the number of iterations are large. In addition, in
many cases a simulator or a model is needed to obtain the states in order to perform
iterations which are not impossible in the case of NCS. Therefore, in this paper, the AE is

tuned to learn Q(e) and H matrix online and subsequently utilized to calculate the

suboptimal gain (34). This control input is then applied to the certainty equivalence NCS
(32). Next, the suboptimal controller design is introduced.
3.2.2. Adaptive Estimation of Q-function

First, based on adaptive estimation used in stochastic optimal control (Section

3.1), we define the Q-function for the NCS (32) as
Q(zk,uk)=w,wak =h"w, (35)

while the adaptive estimation of Q-function (35) can be expressed as

A

Q(Zk’uk)zwkrﬁkwk :hkrwk (36)
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where the augment state w, = [z,f ukT]T,wk e ROAM=L 55 — (w2 w w,, Wiy,
ces Wy Wy,Wy) Which is nothing but the Kronecker product quadratic polynomial

stochastic indepent basis vector, and 4 = vec(H ) .

Using the adaptive estimation algorithm that is proposed as part of stochastic

optimal control in Section 3.1, the update law of estimated A matrix can be written as

A

—1 —_
By =€, (Qigk) (ahdg -I; ) (37
where 0 <, <1, AW, andI, are defined in equation (19), E, is an auxiliary

residual error vector with residual error e, is defined as

€ = ”(Zka“k)"‘l;kTHAWk (38)

~ A

Based on Theorem 1, the parameter errors s, =h—h, converge to zero

asymptotically. This implies that.J, —.J,, Q(zk )= Oz,,u, Jand h, — O when k — oo .

Next, with the estimated # matrix and equation (34), stochastic suboptimal control
can be obtained as

iy, =—(H{") " H 'z, (39)

3.2.3. Closed-loop System Stability for Suboptimal Control

In this section, it will be shown that matrix # and related stochastic suboptimal
cost function estimation errors dynamics are asymptotically stable in the mean. Further,
the estimated control input for NCS (32) will approach the suboptimal control signal
asymptotically in the mean.

Theorem 3 (Convergence of the Suboptimal Control Signal): Given the initial

system conditions for the system state z,, cost function and AE parameter vectors };0 be
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bounded in the setS, lety,, be any initial admissible control policy for the NCS (32) with

Az, +Bzuk||2 <k zk”2 and0 <k <1/2. Let the AE parameter be tuned

bounds given by

and estimation control policy be provided by (37) and (39) respectively. Then, there exist

positive constants «, such that the system states z, and stochastic suboptimal cost function

parameter estimator errorsikare all asymptotically stable in the mean. In other words, as
k—>o,z, >0,k —0,J, —>J, and i, —>u, .
Proof: Refer to the Appendix.

The performance of this suboptimal control design (37) and (39) with adaptive
estimation algorithm will be shown to be close in comparison (Nilsson et al., 1998) to a
tradition suboptimal control with known NCS system dynamics even though no
knowledge of NCS system dynamics are required here. Although controller derived based
on certainty equivalence deterministic NCS representation (32) is suboptimal, it is still of

a great practical interest (Hespanha, et. al. 2007).

4. Simulation Results

In this section, stochastic suboptimal and optimal control of NCS is evaluated. At
the same time, the standard suboptimal and optimal control of NCS with known
dynamics and network imperfections is also simulated for comparison.

Example: The continuous-time version of a batch reactor system dynamics are
given by (Carnevale et al. 2007)

138 —02077 6715 —5.676 0 0

_05814 —429 0 0675 | |5679 0
1067 4273 —6.654 5893 [ |1.136 —3.146]"
0.048 4273 1343 —2.104| |1.136 0

(40)
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where x € R**1and u € R?*! . It is important to note that this example has
developed over the years as a benchmark example for NCS, see e.g., (Carnevale et al.
2007; Walsh et al. 1999).

The parameters of this NCS are selected as

1. The sampling time: 7, =100ms ;

2. The bound of delays is two, i.e. d=2;

3. The mean random delay values are £ (z‘sc) =80ms, E(r)=150ms;

4. Packet losses follow Bernoulli distribution with p =0.3.

The distribution of random delays between the sensor and actuator are shown in
Figure 4 and the packet losses are shown in Figure 5. In order to incorporate the random
delays z(¢) and packet losses y(t) to the batch reactor (40), the original time-invariant
system (40) was discretized and represented as a time-varying linear NCS given by (3) in

Section 2. For instance, when k =20, ¢=2sec, 7,, =170ms,7,, =168ms , 7, = 121ms ,

7,0 =Ly,,=1, and y;, =1, the NCS dynamics can be calculated based on (3) as

[ 1.48 0.04 147 -123 001 —0.14 0.02 —0.23]
-0.10 045 —-0.13 020 0.07 0.01 0.06 0.02
007 054 -0.18 1.09 01 -0.06 0.11 0.01
-0.18 054 -1.33 221 009 014 0.11 021

Zry = Zy

0 0 0 0 0 0

S O o O
S O o O

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

N 0.0035 0.1170 0.1097 0.1096 1 0 0 0]
u
—-0.0697 0.0021 —0.1886 0.0671 0 1 0 0] °
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when k =50,¢=5sec 75, =150ms, 7,,=152ms, 7,3=145ms, y5,=17,=1

and y,, =0, the NCS dynamics become

(148 004 147 —123 001 —013 0 0
~0.10 045 —0.13 020 012 00l 0 0
007 054 —018 1.09 013 —017 0 0
~0.18 054 —133 221 013 012 0 0
S I R SR o 0 0 o0 of*
0o 0 0 0O 0 0 00
0o 0 0 0O 1 0 00
0o 0 0 0O 0 1 00

{0.0002 0.0317 0.0234 0.0234 1 0 0 OT
U,

+

—0.0041 0 —-0.0577 0.0040 0 1 0 O
. 0.1 : . : :
o
a Ww
> 0.08: ]
&
a

0'060 4 8 12 16 20

Time (Sec) (a)

02 g . : .
(5]
& LI~
> 0.15 ]
5
a

0'10 4 8 1,2 1r6 20

Time (Sec) (b)

Fig 4. The distribution of random delays in NCS: (a) delay between sensor and controller
7. (b) delay in total NCS 7 .

0.5

Packet Losses

0 4 8 12 16 20
Time (Sec)

Fig 5. The distribution of packet losses (“1” means packet received, “0” means packet
lost).
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On the other hand, certainty equivalence deterministic NCS representation (32)
can be calculated based on information of Batch reactor dynamics (61) and network

imperfections (i.e. networked-induce delay and packet losses) as

148 0.04 147 -123 0.02 -0.19 0.01 -0.1]
-0.10 045 -0.13 020 046 0.01 0.15 0

0.07 054 -0.18 1.09 036 -022 0.16 -0.07
-0.18 054 -133 221 035 -0.03 0.16 -0.02

! 0 0 0 0 0 0 0 0o [*
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

N 0.0056 02361 0.1338 0.1337 1 0 0 0]
u
~0.0636 0.0014 —0.1170 —0.0110 0 1 0 0| °

- T o R8X1
wherez, =[x, u, , u,_,] € R®*%

15

) 10[‘\ ed
S ---e4
w5
: E k
o
w® ] L
o |
® 5
10 4 8 12 16 20
Time (Sec)

Fig 6. Performance of conventional stochastic optimal controller.
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Time (Sec)

Fig7. State regulation errors of ADP value iteration (VI) controller when random delays
and packet losses are present.

First, Figure 6 indicates that the stochastic optimal control of NCS with known
dynamics and information of network imperfections (e.g. random delays and packet
losses) obtained by solving the SRE backward-in-time. The controllers can make the state
regulation errors converge to zero while ensuring the NCS stable in the mean when the

delays and packet losses are accurately known.



41

30

20 \ ..... e2»

10

Regulation Error Values
(=)
=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 4 8 12 16 20
Time (Sec) (a)

14000

12000 )

10000

8000

6000

4000

System Total Costs J(k)

2000 |~ AE-based Optimal Control | |
— AE-based Suboptimal Control

0 5 10 15 20
Time (Sec) (b)
Fig 8. Performance of suboptimal and optimal controller for NCS with unknown

dynamics: (a) State regulation errors with AE-based optimal control; (b) Comparison of
system costs with AE-based optimal and suboptimal controllers.

Next, the ADP value iteration (VI) control (Al-Tamimi et.al., 2007) input

_ {(1801 0.868 —0.242 1.377

x, 1s designed by using policy iteration scheme.
~1.150 0.035 -1.961 LSSS} ¢ Sneq DY HRINE poTey

This ADP VI controller though does not require system dynamics cannot maintain batch
reactor system stable in the mean in the presence of random delays and packet losses as

shown in Figure 7.
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Finally, the proposed adaptive stochastic optimal and stochastic suboptimal
controller designs are implemented for the NCS with unknown system dynamics in
presence of random delays and packet losses. The augment state z, is generated as

RlOXl

z, =[x, u,_ u,_,] e R®*orw=[z u]e . The initial stabilizing policy for the

0.88 0.77 -0.11 1.07 0.25 0.01 0.14 0.02

algorithm was selected asu,(z,)=— z,
-1.65 -0.08 —2.93 2.61 —0.02 0.68 —0.03 0.51

while  the  regression  function for  Q-function was  generated as
{wf,wlwz,wlw3,...,wzz,...,wg,...,wfo} as per (24).
The design parameter for Q-function Q(z,,u,) was selected as «, =10~° while

initial parameters for the AE were set to zero at the beginning of the simulation. The
initial parameters of the action control network were chosen to reflect the initial
stabilizing control. The simulation was run for 200 times steps, and for the first 50 times
steps, exploration noise with mean zero and variance 0.006 was added to the system at
odd time steps and exploration noise with mean zero and variance 0.003 was added to the
system at even time steps in order to ensure the persistency of excitation (PE) condition
holds (Lemma 1).

In Figure 8 and 9, the performance of proposed AE-based optimal controller is
evaluated. As shown in Figure 8(a), the proposed AE-based optimal controller can also
make the NCS state regulation errors converge to zero even when the NCS dynamics are
unknown which implies that the proposed controller can make the NCS closed-loop
system stable in the mean. The cost-to-go function of proposed optimal and suboptimal

controllers is compared in Figure 8(b) where the proposed AE-based optimal controller
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can minimize the cost-to-go (J, = E[ i(zi 0.z, +u' R.u,)]) function more than proposed
TV m=k

m z o m

suboptimal controller based on certainty equivalence deterministic NCS model.

I

Contorl Input

-based Optimal Control u1
— AE-based Suboptimal Control u1

-4}
u
0 5 10 15 20
Time (Sec) (a)
40 | | |
--- AE-based Optimal Control u2

30 — AE-based Suboptimal Control u2
5 20
a
5 1of|
[
8 OIHVAV A

-10 '|

20 5 10 15 20

Time (Sec) (b)

Fig 9. Comparison of control inputs with stochastic optimal and suboptimal controllers
w=(u,f e R?>L,
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This clearly shows that the proposed AE-based optimal controller is more
effective than suboptimal control based on certainty equivalence deterministic NCS
representation. Now in Figure 9(a) (b), the control inputs of proposed AE-based optimal
and suboptimal controllers are compared. The proposed AE-based optimal controller can
force the NCS states converge to zero quicker than suboptimal control based on certainty
equivalence deterministic NCS model. The proposed suboptimal controller has a smaller
overshoot initially when compared to stochastic optimal controller.

According to the above results (Figures 6 through 9), the performance of
proposed AE-based stochastic optimal and suboptimal controllers nearly has the same
performance of stochastic optimal/suboptimal control with known system dynamics and
wireless imperfections. The slightly higher overshoot observed at the beginning for the
proposed optimal/suboptimal controller is due to an initial online learning phase needed
to tune the optimal/suboptimal controller. After a short time, proposed AE-based
stochastic optimal and suboptimal controllers will have similar performance even when

NCS system dynamics and wireless imperfections are unknown.

5. Conclusions

In this work, we proposed an online adaptive dynamic programming technique
based on AE to solve the stochastic optimal and suboptimal regulation control of NCS
with uncertain dynamics in presence of unknown random delays and packet losses.

The availability of past state values ensure that NCS system dynamics were not

needed when an AE generates an estimated Q-function and a novel stochastic optimal

control law based on the estimation of Q(zk,uk). An initial admissible control policy

ensures that the system is stable in the mean while the AE learns Q-function Q(Zk,uk)and
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the matrix /{, , stochastic cost function and optimal control signal. All AE parameters

were tuned online using proposed update law and Lyapunov theory demonstrated the

asymptotic stability of overall closed-loop system.
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Appendix
Proof for Lemma 1. The exploration noise vector which obeys normal
distribution with variances changing over time is added (i.e.n”* ~N'(0, 71)).
For given positive constant § andk, 21, exploration noise vectors can be added to
system, in turn vector w, is as
w, =[z{ u" ) +) k=ky,...k, +3,... (A.1)
where n?¢ =[n”*(1) n?*(2) ... n?*(I)] € R**@*Dm=lis a row vector and n’*(i)

represent ith scalar element in the row vector.Without loss of generality, the Kronecker

product quadratic polynomial stochastic independent basis vector w, can be expressed
w, =[w, (D, w, D) xw,(2),...,w, ([ =D)xw,(0), w;())]". Since the exploration noise obeys
the normal distribution with zero mean and is independent over time, and also

independent with vector w, Vk . We have

E(nf@(i)wk(j))={02 =002, (A22)
o, 1=]
E(n2*()nf (7)) = EmP GNE®L,(j)) Vi, j =0.1.2,...1 (A.2b)

According to the definition of AW, , E[AW, (AW )'1Vk = k,,k, +1,...k,+ 3
satisfies the inequality
E[AW, (AW,)" 12 E[(}" — 0/ )(m)* —1n79)"]
>(o; —0;)°, (A3)
where n/“are the Kronecker product quadratic polynomial stochastic indepdent

basis vector based on exploration noise vectorn;*, and I, is/ x / identity matrix.
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2

., » then there exists positive constant &, = (o} — o, )’ such that

Sinceo;, # o

ko+6 ko+6

ko+6 0
k;k E[AW, (AW, )] k;} (o7 o, )1, = k;} al, =d, (A4)
In the other words,
ky+o
S EAW, (AW, ) 12 di, (A.5)
k=k,

kot+o . . .
where = ) a, >0 . Therefore, when exploration noise is added to the
k=k,

polynomial stochastic independent basis vector AW, , the PE condition is satisfied.

On the other hand, based on the definition of Q, , we have

E[AWIAW,] - 0
ko+0 r ko+0 X A .
> E[Q,Q, 1= X : . :
k=k, k=k, r
0 - E[AW_ AW, ]
ko+0 ) A . ko+0 ) )
> 2| " |2 2 el 2o,
k=k, ) k=k,
0 - a

ky+o
where p, :nﬁn{ak,ak_l,...,ak_j}and p’ = p;. Therefore, the PE condition of
K=k,

Q, is also satisfied.
Proof for Lemma 2. Using the Bellman equation and Q-learning with estimated

stochastic cost function and matrix /, , we have

~

jk € :r(Zk9u(Zk))+Jk+l (A.6)
Now consider (A.6) and

1) The left part of (A.6) can be expressed as
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J _ }?T— _| s Zk
e =M W te, = u(z) k u(z) e
k k
:{ Zk }T HLkZZ HZM
M(Zk) ﬁ]:tz Huu

2) The right side of (A.6) can be shown as

(A.7)

A

V(Zkou(zk ))"' Jin = r(zk7u(zk ))"‘ E(Wk+1[:[k+lwk+l) r(Zk9u(Zk ))"' £(x£+1éc+1xk+1)

. TlElrp 4,) B2, 8,)] -
I z, zk T k+17 T zk ; zk " k+177 zk k
' u(Zk) TEy(B; Ak+1Azk) Ei(B;émsz ):“:u(zk ):| (A.S)

1
|
~

z, _E(AzrkﬁlmAzk )+ S, €<A;é+1sz ) z,
_”(Zk )_ TE(BTkﬁkﬂAzk) E(BTkﬁk B, )+ R, L‘ }

Z,

According to (A.7) and (A.8), (A.6) can be derived as

T =~ -~
Zy H> H." { z, }4_6
L‘(zk)} |:17,fz ﬁ;’“:| u(zk) "k
_ Zk ! TE,}:(AZZ;féfHAzk )+ S E(Azz;fﬁ;fHsz) Zk

- (Zk E(BszBmA ) E(Bszéwlek +R
Hence,

. >HZ g} ) LZL)T

(
E(ATPMA )+S E(A BB, )

z
E(B P"”A ) TE;(BzT Pk+1sz)+ RZ]L(Zkk )} ~

) { - } Epades,  ElLR.B,) { - }
B ”(Zk) TE’;(BZ;fﬁlwlAzk) E(BTBc+lek)+R ( )

Z
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- tr
ulz)] | 7EE u(z,)

:{ 5 T E(A P A, )+S _tr{j:z} {E(A \P.,.B, ) { z, }

u(Zk) E(B }7k+1A ) E(B Pk+1B )+RZ u(Zk)

and
F qu} B es -t BuRB) |
i E(BLE 4, E(BLEB,) R

where

A oy R (A.10)
H;:Z = E(BZTkPIMAzk)
HLJ?M TE;(Bsz Ak+lek )+ R,

According to the estimation optimal control law (11), we have
u, = —(ﬁ ,‘ﬁ‘“)"ﬁ + z,, which is expressed by using (23) as
u, = E(szPkHsz +R)™! E(B Pk+1Ak)Zk (A.11)
At the same time, according to the optimal control theory (Lewis and Syrmos,

1995) and (22) we know J il —E (Zk+l P.z.,) . Therefore, we can minimize of the

stochastic cost function to get the optimal control as
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’221{ : R_l E Bsz a k+] - R_l E(BszPk+1Zk+1)
2 ey Zk+1 &4
=—R"EB" P (A4,z, +B_il,, )] (A.12)

=R E(BT Bod ), —R E(BTP,MB
The term iZ,, can be solved by (15) as

[1 +Rz_1 E(Bszﬁ/msz )jﬁzk = _Rz_1 TE;(Bszf)kHAzk )Zk

(R +E(B P.B., )j 0, ( k+1Azk)Z

ﬁzk = _(R + 5(321}3/”132/{ )j_l E(BszémAzk )Zk

(A.13)
A —1 A
- ER+ BLA.B.) EBLE. Ak
According to (A.11) and (A.13), we have

~ Luu : Luz

U, = —(H Hz, A 14
; 1 ) (A.14)

:—E(R+B "P_B., ) E(B PoA )k, =iy,

A

Therefore, u, =u,, —u,, =0sinceu, =1u,,
Proof for Theorem 2. Consider the following positive definite Lyapunov
function candidate
V=V,(z,)+V,(h) (A.15)
where VD( )1s defined in (30) and V (h ) is defined as
Y, ) = (%, = b5, )’ = (AW, (A.16)

The first difference of (A.15) can be expressed as AV = AVD(zk)+ AVJ(Ek), and

considering that AV, (h,) = (h, AW, )? — (b, AW,_)? with the AE, we have
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AVJ (}_lk) = (}_lkHAVVk)Z - (];JCAVV/H)2
= (o, AW, )’ = (R AW,_,)?

=—(-a)hAW,,)’

2

<—(1-a))| AW, ||, (A.17)

Next, considering the first part AV, (z, ) = z!,,z,,, — z1 z, and applying the NCS and
Cauchy-Schwartz inequality reveals

AV, (Zk ) < ”Azkzk +Bu, — szﬁk||2 - ZkTZk

A.18
<2 Az, + B, || + 2Bt~z 2, (A19)

Applying the Lemma 3 (bounds on the optimal closed loop system in (29)) and

recalling#,, =u,, from Lemma 1 and (A.14), we know

.. 2. = | ;Y
U, =, —i,, = —(H:“) Hz, +5RZ‘B; az—k“ =0 (A.19)
k+1

Therefore, AVD(Zk)is expressed in terms as the adaptive estimator (AE) error

dynamics of the matrix H, and the relationship between Q(zk,uk),}_zk and J, , (A.18)
revealing

AV, (z) < (12K )z| + 2| B, |

2

< -2k e, 28 () Bz, + L, P
2 aZk-H
<—(1-2k")z | (A.20)

At final step, combining the equation (A.18) and (A.20), we have
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AV =126 e~ (=2 Jaw [ i]

(A.21)

Since 0<k* <1/2and 0< ¢, <1, AV is negative definite (See Lemma 1 on PE

condition) and ¥ is positive definite. Note that =|V,, —V,| <o since AV <0 as long

S AV,
k=k,

as (A.21) holds. Therefore, system state z, and ik are all asymptotically stable in the mean.

In other words, as k —>o,z, >0, Ek — 0, then jk — J, . Since optimal control

.1 0 j . 5 :
u, :ERZ_IBZZ;‘(%—M y Uy = %RZIBZT,{% and ,, =u,, (Lemma 2), then #, —>u, and
k+1

e+l
i, —>u;,whenJ, —J,.

Proof for Theorem 3. Consider the Lyapunov function candidate as

VS =V3(z)+VEh) (A.22)

where VS (z,) =z z, andV?* (b, ) = (h, AW, )* with Zk =h-— i;k .

The first difference of (A.22) can be expressed asAV® = AVS (zk)+ AV} (IZ), and
considering that AVS (i) = (h,,AW,)* —(h, AW, ,)* with AE, we have

AV, () = (h AW ) = (R AW, ) =~(1=a] )W AW, ,)?
<o) A, ] (A23)

Now considering AV;S(z,)=z],z,,,—zl z, and deploying the NCS (32) and

applying Cauchy-Schwartz inequality reveals

AV; (Zk)S Az, +Bu, - Bzftk”2 - ZkTZk

<24z, + Bu,| +2|Bi| -2z,

(A.24)

By using QO-learning, we know
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A

g, =—{fe) frez, + Lropr Pas g (A.25)
2 8Zk-H

Therefore, the first difference of (A.22), AV®, can be given as

AV <—(1-2k')

~ 112
5| (-2 )aw, [ (A.26)
Since0 < k* <1/2and 0 <, <1,AV is negative definite and V is positive definite.

Note that

> AV,
k=k,

= |Vw - VO| <wosince AV <0as long as (A.26) holds. Therefore, system

state z, and /, are all asymptotically stable in the mean. In other words, ask —0,z, —0,

1 oJ,

h, =0, thenJ, — J, . Since suboptimal control is given by u; =—R.'B’ 5 and
Z k41
0, =—(H") " H"z, =%RZ‘IBZT Wi (Lemma 2), then it follows that &, —>u, when
Z sl

jk—>Jk.
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PAPER 11

STOCHASTIC OPTIMAL DESIGN FOR UNKNOWN LINEAR DISCRETE-
TIME SYSTEM ZERO-SUM GAMES UNDER COMMUNICATION
CONSTRAINTS

H. Xu and S. Jagannathan

Abstract - In this paper, stochastic optimal control strategy for unknown linear discrete-
time system quadratic zero-sum games with communication imperfections (e.g. network-
induced delays and packet losses), or referred to as networked control system (NCS)

zero-sum games, related to H, optimal control problem is solved in forward-in-time

manner. The proposed stochastic optimal approach, referred to as adaptive dynamic
programming (ADP), estimates the cost or value function to solve the infinite horizon
optimal regulation of unknown linear discrete-time system quadratic zero-sum games in
the presence of network imperfections and subsequently optimal control and worst case
disturbance inputs are derived based on the estimated value function. Update law for
tuning the unknown parameters of the value function estimator is derived and Lyapunov
theory is used to show that all signals are asymptotic stable (AS) in the mean and that the
estimated control and disturbance signals converge to optimal control and disturbance
inputs in the mean respectively. Simulation results are included to verify the theoretical

claims.

Key words— Linear discrete-time system, Networked control system, Adaptive

estimation, Optimal control, Zero-sum games.
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1. Introduction

Feedback control systems with control loops closed through a real-time network
are called networked control system (NCS) (Halevi and Ray, 1988). In NCS, a
communication packet carries the reference and control inputs, and plant outputs within a
network among control system components such as sensors, controllers, and actuators.
Though advantages of NCS are reduced system wiring, ease of system diagnosis and
maintenance, and increased system agility, however, insertion of the communication
network in the feedback loop brings many issues which have to be addressed before these
benefits can be harvested.

First issue being the network-induced delay that occurs while exchanging data
among devices connected to the shared wireless communication network. This delay,
either constant or random, can degrade the performance of control system and even
destabilize the linear system when the delay is not explicitly considered in design
process. Second issue is the packet losses due to unreliable wireless communication
network transmission which can cause a loss in control input resulting in instability.
Therefore, recently Walsh et al. (1999) and Lian et al. (2001) consider stability and
performance of NCS with constant delays. Krtolica et al. (1994) analyzes the stability of
NCS with random delays while Wu and Chen (2007) study the stability of NCS with
packet losses. Eventually, Zhang et al. (2001) conducts the stability analysis of NCS with
communication imperfections (e.g. network delays and packet losses) and proposed a
stability region.

On the other hand, Lian et al. (2003) introduces the optimal controller design

(Lewis and Syrmos, 1995) for NCS without taking into account the disturbance input. By
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contrast, using the stochastic optimal control theory (Astrom, 1970), Nilsson et al. (1998)
introduces the optimal and suboptimal control design for linear NCS with random delays.
Although these optimal and suboptimal controller designs have resulted in satisfactory
performance, the NCS system dynamics and information on communication
imperfections (e.g. network-induced delays and packet losses), which are difficult to
know beforehand, need to be known accurately for the controller design while the
optimality is achieved backward-in-time. However, these designs did not consider the
optimality of the unknown NCS quadratic zero-sum games (Basar and Olsder, 1995;
Littman 1994).

In contrast, adaptive/approximate dynamic programming (ADP) schemes
proposed by Werbos (1990) and Watkins (1989), intend to solve optimal control design
in forward-in-time manner for unknown nonlinear systems in contrast with traditional
optimal control techniques (Lewis and Syroms, 1995) which work backward-in-time for
known system dynamics. In ADP, one combines adaptive critics, a reinforcement
learning technique, with dynamic programming where the optimal control is obtained
through value and policy iterations. Recently, Tamimi et al. (2007) employs the Q-
learning method to solve the optimal strategy for discrete-time linear time-invariant
system quadratic zero-sum games without using the system matrices. Though the value
and policy iteration-based approach works forward-in-time for optimal control (Tamimi
et al. 2007) but it requires a large number of iterations within a sampling interval for
convergence which can be a bottleneck for real-time control. Moreover, convergence of

the algorithm is only shown while the stability of the overall system is not given.
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By contrast, Dierks and Jagannathan (2009) uses two neural networks (NN) to
solve the Hamilton-Jacobi-Bellman (HJB) equation forward-in-time for the optimal
control of a class of general unknown nonlinear affine discrete-time systems. In this
approach, value and policy iterations are not utilized; instead the value function and
control policies are updated once per sampling interval by using past history of residual
errors thus making the technique suitable for real-time control. However, these ADP-
techniques are not suitable for NCS since they ignore the effects of communication
imperfections (e.g. network-induced delays and packet losses). These communication
imperfections can make the optimal design more involved (Tamimi et al., 2007) and
cause instability (Zhang et al. 2001) if they are not properly accounted for.

Therefore, in this paper a time-based adaptive dynamic programming approach is
undertaken to the stochastic optimal regulation of linear NCS quadratic zero-sum games
with unknown system dynamics and communication imperfections (i.e. network-induced
delays and packet losses) in order to solve the Bellman equation (Wonham, 1968) online
and in forward-in-time manner. Using an initial stabilizing control, the value function is
estimated online adaptively (Jagannathan, 2006) while its unknown parameters are tuned
by using a novel update law since solving the Game Theoretic Riccati Equation (GRE)
requires the system matrices. Then, using the idea of dynamic programming, the optimal
control and worst case disturbance inputs which optimize the cost function can be
calculated based on the information provided by the estimated value function. Thus the
proposed time-based ADP scheme relaxes the need for system dynamics and information

on communication imperfections (i.e. delay and packet losses) and it renders optimal
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solution without using value and policy iterations. Finally, the overall stability of the
closed-loop system is demonstrated by using Lyapunov theory.

The importance of the paper stems from the fact that a game-theoretic adaptive
system is proposed to create controllers for NCS quadratic zero-sum games that learn to
co-exist with a L, -gain disturbance signal (Basar and Bernhard, 1995; Dragan and
Morozan, 1997). In the control system design, this problem is defined as a two-player
game that corresponds to the well-known H _ control. Next some background information

1s introduced.
2. Background

2.1. Linear NCS Quadratic Zero-sum Games

T’ :Samplinginterval

!

Actuator »| Plant »| Sensor
A
\.Virel.ess C.oml;luni;atio;l ) ) ) ) )
. Network A 4
e |0 @) | D
Packet losses }/(t) ]/(I) Packet losses

A

. . 0 . . . . . . . . . . . .

Controller |«

Fig 1. Networked Control System (NCS).

The basic structure of NCS considered in this paper is shown as Figure 1 where

the feedback control loop is closed over a communication network and in particular a
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wireless communication network. Since wireless communication network is bandwidth

limited, two types of network-induced delays and one type of packet losses are included

in this model: (1) 7 (¢) : sensor-to-controller delay, (2) 7, (¢): controller-to-actuator delay

and (3) y(¢): indicator of packet received at actuator. The following assumption is needed

similar to other works (Liou and Ray, 1991; Hu and Zhu, 2003):

Assumption 1:

a). Sensor is time-driven while the controller and actuator are event-driven
(Goldsmith, 2005).

b). Communication network is a wide area wireless communication network so
that two types of network-induced delays are independent, ergodic and unknown while
their probability distribution functions are assumed known (Liou and Ray, 1991; Hu and
Zhu, 2003).

c). The sum of sensor-to-controller delay and controller-to-actuator delay is
bounded (Liou and Ray, 1991) while the initial state of linear system is deterministic (Hu
and Zhu, 2003).

Remark 1: The definition of “event-driven” implies that an action is taken in
response to an event which may not be generated uniformly in time. In linear NCS
quadratic zero-sum games, control and disturbance signals can be considered as the
signals generated in response to the feedback sensor inputs; similarly, the actuator applies
the control and disturbance inputs to the plant in response to the controller output. Since
both a controller and an actuator respond upon receiving an event, they are referred to as

“event-driven” controller and actuator in the NCS quadratic zero-sum game.
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Consider the following linear time-invariant system with communication

imperfections (i.e. network-induced delays and packet losses) which is given by
3(t) = Ax{e)+ p(e)Bult —o(0))+ 7{e)Dl(e - 2(r)) )

where y( ): { I if the control input is received at time # with x(t) cR™, u(t)e

0" if the control input lost at time ¢

R™, d(t)e R' represent the system state, control input and disturbance vectors
respectively, 4e R™", Be R™™, De R™™ denote the system matrices. From
Assumption 1, it can be deduced that the sum of networked-induced delays is bounded
above such that z'(t) =7, (t)+ T, (t) <bT, where b represents the delay bound while 7 being
the sampling interval.

During a sampling interval [¢7.,(k+1)1)) vk , the controller input «() and
disturbance inputd(r)to the plant are piecewise constants. According to Assumption 1,

there are at most » number of current and previous control and disturbance inputs that can
be received at the actuator. If many control and disturbance inputs are received at the

same time, only the newest control and disturbance inputs are allowed to act on the
controlled plant during any sampling interval [kﬂ,(k+1)TS) Vk , and other previous

control and disturbance inputs are deduced. Since control and disturbance inputs are

based on event driven, the plant will implement control and disturbance inputs at these
time instants k7, +¢/,i =0,l,...band ¢ <t' wheret' =7/ —iT, as illustrated in Figure 2

(Liou and Ray, 1991; Hu and Zhu, 2003).
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For the event-driven controller and disturbance, the control and disturbance inputs

becomeu,,d, in response to sensed signal x, . Integration of (1) over a sampling interval

[kT,(k+1)T) Vk yields

b b
X =4, + ;)7 k—iBikuk—i + %7 k—iDikdkfi (2)
k _ (T _A(T-s) .
where X, = x(kT ), A =e" By = Lg e’ VdsBe 1(T 7, )

Bf = jr“kfl T QA7) Is B @ l(T +7 -1t )

i kT
(e —iT)Vi=12...b; Df =] e s AT + 2t — ) Jo(cf —iT) Vi=12,...b

Dy =[ly g asD o (k1) 74 ); | () {1, x>0
0, x<0

| Lif w,_, was received during[kT;,(k+1)T)
o "700, if u,, was lost during[kT,(k +1)T))

By using a new augment state variable z, =[x] u, ,---u] ,d]  ---d],]", equation
(2) can be expressed as a linear time-varying discrete-time system described by
Zyy = Ayzy + By + D,y d, 3)
where the system matrices are a function of the unknown random delays, and

packet losses which are given by



_A.y 7k—1Blk 7k—iBik
0 I 0 .« 0 0
0 0 I - 0 0
A4,=[0 0 I 0
0 0 0 0
0 0 0 0
0 0 0 0
00 0 0

andB, =[(y,BX)" I, 0---0]",D, =[0---(y,

where /,,, 1, are m x mand / x / identity matrices.

: 7kbe: 71(71D1k

0
0
0

SRS

o oo oo o

[}

(=}

7 k—hDIf
0
0

0
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Remark 2: 1t is assumed that wireless communication network changes more

slowly (Goldsmith, 2005) when compared to the sampling rate.

Therefore, the NCS

system description (3) can be considered as a linear but slowly time-varying system with

uncertain dynamics. The communication imperfections (i.e. network-induced delays and

packet losses) are not accurately known except their upper bounds thus making the NCS

dynamics uncertain. In this paper, the optimal strategy is proposed based on the slowly

varying unknown linear NCS.

k=b-3T; ke=b=2); (k=b-VI; (k—=b)T; - (k.— DT kT, (k+DT,

SO

NN N

Ny

Time axis notation:
1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted
3. Bottom line: Actuator received control action

k Lk k ok
Ly 18

Fig 2. Timing diagram of signals transmitting in NCS.
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Thus in this paper, based on optimal control theory (Lewis and Syrmos, 1995;

Astrom, 1970), stochastic cost function can be defined as

J, = E[i(xf Gx, +u’ Ru, —d"Sd, )} Yk =0,2,.. 4)

oLk
where u,,d; are control and disturbance inputs respectively, G is a symmetric

positive semi-definite matrix, R is a symmetric positive definite matrix, and S is a

symmetric positive definite matrix defined equal to the square of upper bound y on the

desired L, gain disturbance attenuation (i.e. S =/ ,Iis identity matrix) (Basar and

Bernhard, 1995), and £ (0) is the expectation operator (in this case the mean value) of
.y

Z(xf Ox, +u; Ru, —d; Sdi) based on the communication imperfections (i.e. network-

i=k
induced delays and packet losses) at various time interval. After redefining the augment

state variable z, , original stochastic cost function, equation (4) can be expressed as

J, = E[i(zf G.z,+u/ Ru,—d!S.d, )} Vk=0,12,... (5)
oyLi=k
0 0 0
where G, =| . . .R=RS =S
0O 0 -~ 0

Note that G. is still symmetric positive semi-definite matrix while R , S, are
symmetric positive definite matrices respectively. Next traditional optimal control of
discrete-time linear zero-sum games (Lewis and Syrmos, 1995; Basar and Bernhard,

1995) is introduced before presenting the proposed scheme.
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2.2. Traditional Optimal Control Of Descrete-Time Systems

Consider the discrete-time linear time-varying zero-sum game dynamics

described by

Xpn= Ax, + By, + Did, (6)

where ' € R"is the system states, “s € RMis the control input, d, € Rlis the

disturbance input and A SR, B € R™>m, Dy € grxt gre system dynamics matrix.
Based on optimal control theory (Lewis and Syrmos, 1995; Basar and Bernhard, 1995),

the infinite-horizon value function can be defined as

V" (x,) = min max ir(xj,uj,dj)

Uj dj  j=k (7)
= min max Z(foxj +ufRuj —dedj)
uj i J=k

with 7(x,,u, ) =x;Ox, +u, Ru, —dSd, , Q is symmetric positive semi-definite

matrix, R and S are symmetric positive definite matrix.
Using dynamic programming, the optimization problem for discrete-time linear
zero-sum game (6) and (7) can be derived as
V" () = min max (.. d,) + 7 (5,1) ®)
Then Bellman equation can be represented as
O=rr£n rr;?x(r(xk,uk,dk)+V*(xk+1)—V*(xk)) )

Assuming that minimum on the right side of (9) exists and is unique then optimal
strategy for linear zero-sum game can be expressed as (Lewis and Syrmos, 1995; Basar

and Bernhard, 1995)
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MZ = _lR*IBk aV*(karl)
2 0%y (10)
d = lele oV (X.1)
2 Xy

Substituting optimal control policy (10) into Bellman equation, then Bellman

equation with optimal strategy u, and d; can be derived as

*T * *T *
0= X[ka +l oV (xk+1) BkTR—lBk ov (xk+1) _l oV (xk+1)DkTS—1Dk oV (xk+l)
X, x4 4 Ox, Xy,
V() =V (%) (11)

For linear system, assuming that zero-sum game has a value and is solvable, then
value function (7) is known as a quadratic form of state and is represented as (Lewis and

Syrmos, 1995, Basar and Olsder, 1995)
V' (x,)=x Bx, (12)
where P, is positive semi-definite matrix. Substituting (12) into (11), Bellman

equation becomes Game-Theoretic Riccati equation (GRE) as

-1

B;F.,B,+R  B/B,D,
DkT PkHBk DJ(T Pk+1Dk =)

B{F.4

0=A4/P, A +Q-P,—-[A P, B, AP,
kkle k k" k1" Tk Tk D]{TBHIA]{

D]

+1

] (13)
It is obvious that P, is the solution of Riccati Equation. Meanwhile, optimal

strategy can be expressed in terms of ), and system matrix as

”Z = (BkTBmBk +R- BkTBka (DkTBH—le - S)_leTBmBk )_1
X (BkTP/ka (DkTPkHDk - S)_l DkTP/mAk - BkTPkJrlAk )X,

d: = (DkTPk+le -§- DkTPk+lBk (BkTPk+13k + R)il BkTBka )71

14
X (DkTPkHBk (BkTPkHBk + R)_l BkTPk+1Ak - DkTBcHAk )X, (1)



68

Remark 3: Traditional Game-Theoretic Riccati equation (13) is solved backward-
in-time and optimal strategy (14) is obtained by using P, , 4, , B, and D, . For linear zero-

sum game with uncertain system dynamics, solving (13) and (14) is a challenge. Instead,
policy and/or value iteration algorithm (Tamimi et al., 2007) have been implemented to
approximate the value function in ADP and subsequently the control and disturbance
inputs based on estimated value function using (10) are obtained so that the system
dynamics are not needed. However, with the policy and value iteration-based schemes, it
is not clear how to select number of iterations required for convergence and stability
while keeping the hardware constraints. Inadequate number of policy and value iteration
can lead to instability (Travis and Jagannathan, 2011).

Hence, in this paper, a time-based ADP method with adaptive estimation will be
proposed to solve stochastic optimal strategy of NCS quadratic zero-sum games in
forward-in-time manner and without using iteration methodology and known system
dynamics as will be discussed in the next sections.

3. Stochastic Optimal Strategy for NCS Quadratic Zero-Sum Games

In this section, we use the idea of ADP (Watkins, 1989; Tamimi et al., 2007) and
the concept of adaptive estimation of value function to develop stochastic optimal
strategy for NCS quadratic zero-sum games with uncertain linear time-varying system
dynamics that change slowly in comparison with the sampling interval due to
communication imperfections (i.e. network-induced delays and packet losses). Thus, in
this section, first, we introduce an adaptive estimation scheme to obtain the unknown

value function for NCS quadratic zero-sum games with network imperfection. Second, a
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model-free online tuning of the parameters based on adaptive estimation and ADP
algorithm will be proposed. Eventually the convergence proof is given.

3.1. Value Function Definition for NCS Quadratic Zero-Sum Games

In this section, we formulate Bellman’s optimality principle for the NCS quadratic
zero-sum games by using the concept of ADP under communication imperfections (i.e.

network-induced delays and packet losses) described by (3). It is easy to verify that NCS

quadratic zero-sum games has a unique equilibrium point,z=0, on a setQ while the
states are still measurable. According to these conditions, the stochastic optimal strategy

which optimize the stochastic cost function J, for NCS system (3) can be derived as
(Tamimi et al., 2007; Basar and Olsder, 1995), u,t =-K,z, d; =—Lz, withK,,L,

being the optimal Kalman gains for the control and disturbance inputs respectively.

If we assume that there exists a solution to the GRE, that is strictly feedback
stabilizing, and then it can be shown (Basar and Olsder, 1995) that the policies attain a
saddle-point equilibrium (Basar and Bernhard, 1995), which implies that minimax is
equal to maximin, in the restricted class of feedback stabilizing policies. Assuming that
the game has a value and is solvable, and then it is known that the value function is

quadratic in the state and is given by (Lewis and Syrmos, 1995)

J :g(szPka) (15)

where matrix £, > 0is a solution to the GRE (Dragan and Morozan, 1997). The

optimal action dependent value function of NCS quadratic zero-sum games is now

defined to be

z

V(Zk Uy, dy ) =E {Z/ZQZZ/( + ”/fRz“k - d/cTS di +J } (16)
Ty



where r(z, ,u, ,d,
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= Bz, )+ J = B o] [ ol ]

7.y

):ZZQsz +u, Ru, —d/S.d.

Since stochastic optimal control and disturbance inputs, u,t,d,t, are dependent on

state z, which is known at time k , value function can be expressed as

Vi(zeou,.d,)=[z" u’ d'1" E(H,)[z; u, d]]. Then using Bellman equation and cost
T,;l

function, we can get

Zy Zy
Uy TE;(Hk) Uy :g{r(zke“kedk)+']k+1} (17)
dk_ d;

_Zk T_Gz 0 0 Zk Zk ! 2k ' Ay |z,

Uy 0 R 0 Jlu, +TE}: U 4 | Boa| B | Wi

_dk L 0 0 - z dk dk Dzk Dzk dk

G, +TE}:(Az];cI)k+1Azk) TE}:(Azz;c})kHsz) TE;(A;PI(HDzk) z,
TE}:(BZka)kHAzk) R + TE;(BszBmsz) Tb;(BszPkJrlDzk) U

E(DLP.,4,) E(DLP,B,) E(DLP..D,)-S. |4
(274 T,y T,y

Therefore, £ (H . ) can be written as
14

HF HY HY
H =E(H,)=|\H" H" H" (18)

HE H* HY
G.+E(p,A,)  ELR.B,)  EUR,.D,)
E(BLP.A,) R+EBLP.B,) E(BLP.D.)
E(Dzrlc[)kHAzk) E(DZ(P]C+IBZ/() E(DZTkBHIDzk)_ Sz

.y .y .y
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Then using (9), for the zero-sum game (Basar and Bernhard, 1995), the gain

matrix associated with the optimal control and disturbance inputs can be expressed in

terms of H, as

=—(R.+ E(BTPk
xE(DTPk

+lBk) E(BTPk
sz)) (E(BTPk

+1D k)(E(DTPkHD k) S )
Dk)(E(DTPk D )-S5 E(D B di) = E( Fiady))

+1

+1 +1

—(H - H Y Y S B ) (19)
and

L :_(E(D;BH—IDzk)_S - E(DZT;{BfHsz)(E(BZTkB{Hsz)ﬁLR )"
xE(BTﬂ Dzk))il(TE(DTB;+1sz)(E(BTB{ sz)+R) XE(BTBc+1Azk) E(Dsz 2 a4)

+1 +1

— _(ﬁ;{u _ ﬁkdu ([7;:14)—1 ﬁ:d)—l (ﬁkdu (ﬁ/?u)—l ﬁ]gz _ ﬁ]zh) (20)

Equations (19) and (20) represent time varying gains based on the solution of the

GRE and hence some interesting observations can be stated using (19) and (20). If the
matrix P, is known in (11) and (12), then one still need the slowly time-varying system
matrices to compute the controller gains. On the other hand, if the slowly time-varying
matrix /, can be learned online without the knowledge of NCS dynamics (3), the NCS
system matrices are not required to compute the optimal strategy gains. This observation

is consistent with the work of (Tamimi et al., 2007) where time invariant gains are

derived for suboptimal control of time invariant linear discrete-time zero-sum games.
While an adaptive estimator will be utilized to learn the time-varying matrix, 7, , which
in turn will be used to obtain the optimal gains.

Remark 4: It is important to note there are several differences between optimal

design in this paper and Tamimi et al. (2007). First, Tamimi et al. (2007) method cannot
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even maintain the stability of NCS. By contrast, the proposed approach can be utilized for
either NCS and uncertain linear time-varying or time-invariant discrete-time zero sum
game without the communication imperfections. Second, equations (19) and (20) are
based on slowly time varying system (3) and equations in (Tamimi et al., 2007) are only
for time-invariant system. Third, Tamimi et al. (2007) uses value iteration within each
sampling interval which in turn requires a significant number of iterations for
convergence of the algorithm while the proposed scheme updates the value function and
control policy once every sampling interval. Therefore, the proposed optimal strategy
based on adaptive estimation of cost or value function is an online and forward-in-time
approach and does not require policy and value iterations. Eventually, this paper derived
closed-loop system stability which is not addressed in (Tamimi et al., 2007).

3.2. Model-Free Online Tuning Based on Adaptive Estimator

The proposed online tuning approach estimates the value-function (17) online.
Since value-function includes the /7, matrix (18) which can be solved, the control signal

and disturbance input can be obtain using (19) and (20). Next we make the following
assumption since the NCS is a slowly linear time-varying unknown system (see Remark
3) and the delays are bounded above while the packet losses satisfy the Bernoulli
distribution, and both of them change slowly (Goldsmith, 2005).

Assumption 2: The value-function, V(z,,u,,d,), can be expressed as linear in the
unknown parameters (LIP)—a standard assumption in adaptive control (Jagannathan,
2006; Ioannou and Sun, 1996).

By using the stochastic adaptive control literature (Chen and Guo, 1991) and (16),

the value-function can be represented in vector form as
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V(zk,uk,dk)=w,fﬁkwk =h!'w, (21)

where h, =vec(H,),w, =[z! u’(z,)d"(z)]",w,€ R, gq=n+ b+ 1)m+ (b +

DL, and W, = (W},...., wklwkq,w,fz,...,wkq_lwkq, w;,) is the Kronecker product quadratic

polynomial stochastic indepdent basis vector. }_zk = vec(ﬁ k) with the vector function
acting on ¢ X ¢ matrices thus yielding a q(q + 1)/ 2 x1column vector.

Note: The vec(®) function is constructed by stacking the columns of matrix into

one column vector with off-diagonal elements which can be combined as H,, + H

nm *

Therefore, the value-function can be expressed as target unknown parameter vector
multiplied by the regression function w, .
The time-varying matrix //, can be considered as slowly varying (Goldsmith,
2005). Then it can be expressed as a time-varying target parameter vector and a known
regression function w, . Now, the value-function(z, ,u, ,d, Jestimation will be considered.
According to the definition of value-function (16) and relationship between value-
function and stochastic cost function (Tamimi et al., 2007), we can use matrix H, in (17)
to express the stochastic cost function as
']k(Z)=V(Zk’uk’dk)=WkTﬁka =}_’kT"_Vk (22)
Then the value-function, 7(z, ,u,,d, ), can be estimated by an adaptive estimator in

terms of estimated parameter vector /, as

jk(z)zﬁ(zk,uk,dk)zl_z;v_vk (23)
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wherew, =[z] u'(z,) d" (z,)]" and W, is Kronecker product quadratic polynomial
stochastic indepdent basis vector of w, .

It is observed that Bellman Equation can be rewritten as.J,,, —J, +r(z,,u,,d,)=0.
This relationship, however, is not guaranteed to hold when we apply the estimated matrix

H , - Hence, using delayed values for convenience; the residual error associated with (15)

can be expressed as J,,, —J, +(z,.u,.d,)=e, , i.c.

A AL
€ = r(Zk—I’uk—I’dk—l)_'_ ]Zk Wy = h W
2o
r (Zk—l’uk—lﬂdk—l)+ }fk (Wk - Wk—l) (24)
=T
r(zk—la”k—ladk—1)+ h, AW,

where AW, =w, —w_,.

The dynamics of (24) are then rewritten as
e, =z, d, )+ }szilAWk (25)
Next, we define an auxiliary residual error vector as
%, =T + 1/, eRC+D (26)
where T, =[r(z,u,nd, ) Mzt rnd ) Pz ttnd, )] and
Q. =[aw,_, aw,_, - AW, ,],0<i<k—-1eN with N being the set of natural real numbers. It
is important to note that (18) indicates a time history of the previousi+1residual errors
(16) recalculated by using the most recentfz . The time history of previous residual errors

allows one to overcome the need for any iterative-based value and policy update schemes
while still rendering optimal control solution. Therefore, the proposed approach can be

referred to as time-based ADP.
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Next the dynamics of the auxiliary vector (26) are generated similar to (25) and

revealed to be
th+1 = rk + l’_l/cTJrle (27)

Now define the update law of the slowly time-varying matrix 7, as

A

h =0, (Q0Q, ) (], ~T7) (28)
where 0 < , <1. Substituting (28) into (27) results in

X =02 (29)

Remark 5: It is observed that the cost functionJ, and adaptive estimation (23)

will become zero only whenz, =0. Hence, when the system states have converged to

zeros, the value-function approximation is no longer updated. It can be seen as a
persistency of excitation (PE) requirement for the inputs to the value function estimator
wherein the system states must be persistently existing long enough for the adaptive
estimator to learn the optimal stochastic cost function. Therefore exploration noise is
added to the control and disturbance inputs in order to satisfy the PE condition (Tamimi

et al., 2007) which is given next.

Definition 1: (Persistence of excitation) A stochastic vector £, € RPis said to be

PE if there exists positive constants 5, and k, =1, such that
ko+o r
k% E[Bf )]z
wherel is identity matrix, £ {O}is the mean value of {0}

Lemma 1: Persistence of excitations of vector AW, (24) and (2, can be satisfied

by adding exploration noise.
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Proof: Refer to Xu, Jagannathan and Lewis (2011).

Now define the parameter estimation error as }_Tk =h, —}Azk. Rewrite Bellman
equation using an adaptive estimation with target parameters (21) revealing
Mz, oup,d,)+h!w,., = h' W, which can be expressed as

Mz ud,)=hl W, —hl W, =—hl AW, (30)

Substituting »(z,,u,,d, ) into (25) and utilizing (24) with e,,,, = a,e,, from (29)

yields
BT AW, =—a,r(z, u,.d, ) —a,hT AW, G1)

Using the similar method as r(z,,u,.d,), we can form »(z,_,u,_,.d, ), and

substituting this expression into (31), we have
hl AW, = a,hl AW, (32)
Next, the convergence of the cost function errors with adaptive estimation error

dynamics ik given by (32) is demonstrated for an initial admissible control (Jagannathan,

2006) policy. The NCS slowly time-varying system dynamics are known to be
asymptotically stable in the mean if an initial admissible control policy can be applied

provided the system matrices are known. However, introducing the estimated value-
function results in estimation errors for the stochastic cost functionJ,, and therefore

stability of estimated stochastic cost function needs to be studied. Similarly as (Xu,

Jagannathan and Lewis, 2011), cost adaptive estimator errors can be proven to be

asymptotic stable in the mean, i.e. J . —J, and l:zk — 0 when £ — oo . Subsequently,
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asymptotic stability of cost adaptive estimation errors will be used for proving the overall

closed-loop system stability in Theorem 1 by using an initial admission control policy.
Next, we show that the estimated control and disturbance input based on this

estimated matrix will indeed converge to the optimal control input and disturbance input.

3.3. Estimation of the Optimal Feedback Control and Disturbance Signal

There are two ways to estimate the optimal control and disturbance signal inputs
for regulating the NCS quadratic zero-sum games. One is based on time-varying matrix
H, while the other is based on standard optimal theory by minimizing the cost function.

The difference being that the latter method requires the system dynamics and it solves the
optimal controller backward. However, it is shown next that ultimately both are

equivalent and can be used in the proofs.
Method I: As mentioned before, slowly time varying matrix /, can be

estimated by using an adaptive estimator. According to ADP scheme and equation

(19)(20), the estimated optimal NCS control and disturbance inputs can be expressed by

the adaptive estimation /7, as

n A ~ A 1~ -l A A 1~ ~
ﬁlk:_Kka:(ng_H;d(H:d) H:u) (H;‘d(H:d) H:Z_Hl?z)zk

) R ) (33)
by =L = e -relae | | (el -

Method II: Alternatively, the estimated optimal control and disturbance signal

which optimize the estimated cost function (22) with adaptive estimation H , as

ly, = _%RZ“B; —ZJ"“
Z i1 (34)

6;'21( — l SZ—IDZTk %
2 aZlc+l
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whereJ, = E(w[+1 H,, W, ): E(z;1 P, zk+1). Next, it will be shown that the optimal

k+1
T,y .y
control and disturbance input obtained by method I and II are equivalent.
Lemma 2: The optimal control and disturbance estimations calculated with the

adaptive estimation of ¥(z,,u,,d, ) are equal to the optimal control and disturbance inputs
obtained by optimizing the cost functionJ, , i.e.u,, =u,,, é’l = é’z i -
Proof: Use the Bellman equation and ADP algorithm with estimated stochastic

cost function and matrix /, , we have

~

jk +é, :r(zk’u(zk)bd(zk))—i_JkH (35)

1) Left side of (35) can be expressed as

Zk T ijzz I_{kzu [:I_;d Zk
= ”(Zk) ﬁ,ﬁ’z ﬁ,:m ﬁ:d ”(Zk) e (36)
d(z, A e fe d(z,

2) Right side of (35) can be shown as
Ey{r(zk ’uk 4 dk) + jk+1} = ZZGsz + ukTR:uk - d/Z-Szdk + EV(ZZ+1[)k+12k+I) (37)

r T T T

Z

Zk G. 0 0 Zk Zk Ay Ay |l oz
=|uz) || 0 R0 uz) |+ Ey|uz) | | By B.| B, | u(z)
_d(zk) 0 0 =S |d(z) d(z,)| | D, D, | d(z)
[z V| GHEULRA)  E(LR.BY)  E(4R.DL) T o
=lu(z) || E(BiRuA)  R+E(BLR,B,) E(BLR.D,) |u)
G| EWDLE. 40 E(DLB.BL)  E(DLR,D,)-S. 4@
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According to the (36) and (37), equation (35) can be derived as

Zk T I?kzz ﬁ{kzu {[Lkzd Zk
u(z) | | HE He HY | ulz,) |+ ey (38)

z, G, +E(A Ao E(Azk 1 B) TE(A Pk+1D 0)

=|u(z,) E (BszszAzk) Rz+5(B:ch+1sz) TjEy(BszBszk) u(z;)

d(z,) E(D B4 E(DLB,B,)  E(DLE,D,)-S. [4)
. Ty

Hence
Zk T ]?kzz I_L{kzu ]?kzd Zk
”(Zk) 17,32 ﬁ,im ﬁ,?d ”(Zk) + €
d(z,) e He d(z,)
o, || GHEMB.A)  EULEB,) E(4LE,D,)
=\uz) | | E(BiB,A,)  R+EBLE.B,) EBLED,)
d(z,) E(DTPkHAzk) E(DTP,HIB%) E(DTPMDZQ—SZ
z, z, r ehk/tr(z,fzk) 0 0 z,
x| u(z,) |- u(zk) 0 0 0 u(zk)
d(z)| Ld(z) 0 0 ofdz) 49)
i T € T D
Z, T G +E(A P/¢+1A ) m E(AszIHisz)
= u(Zk) E(Bz];c])kHAzk) RZ+E(BZTI(])k+Isz)
d(z ) o T WT 5
k E (DszH—lAzk ) E(DszcHsz )
E(Azy;c f)k+1Dzk )



Hence, we have

-~ P N L W AN I 2
alk{H:“—H:"(H:"] H,:’“) (H,:“’[H,:’") H:Z—H,?ijk
=[(R. + E(BLF.B.) = E(BLED)EDLE D) =S.)
% E(DLE B)) (EBLE (D (E(DLh D,) = S.)

X E(DszBmAzk) - E(BszBchlAzk)]Zk (40)

~ -~ R 1a XY~ [~ 1.~ ~
io-(ie il e el -

=[(E(DLPD.) = 5.~ E(DLRBE(BLR. B+ R

k+17z
X E(BLB D)) (E(DLE By )E(BLE. B+ R.)
X E(BLE14,) = E(DLE Az,

k+1

method II can be expressed as:

as

A

ﬁzk = _lRilBT % = _RQIBT/LBMZM

z zk zk
2 Aazkn (41)
6;12k = lSz_lDsz a]kﬂ = Sz_lDszi)kJrIZkJrl
2 2

Since z,,, = 4,424, + By + D.id, , (41) can be derived as

i,, =—R'BLP,

2 Dol iZin

= _R;l E(BszpkﬂAzk)Zk - Rj E(BZCCB(+IBZ/€)uA2k - R;l E(B;Bc+1Dzk)d2k

dy = S Dob, 2 (42)

=82 E(DL B Az, + ST E(DLE (B )iy + ST E(DLE (D, )dy

zi k+17="z
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On the other hand, the optimal control and disturbance signals i,,,d,, generated by

It is obvious that equation (42) is an equation with, k,ciz » Which can be simplified
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(1 +R E(BT BB, ))@k R'E (BT PkHAzk)Z
- R E(BT Bszk )dzk

(1 - Sj E(Dszészk ))d2k = SQIE(Dlech+1Azk )Zk
+ Sz_l E(Dsz[)kﬂsz A2k

In theother words,
(Rz + TE; (BszPkHsz ))ﬁzk E (BszPkJrlAzk)Z (BZ;cPkJrlDzk )de
and (43)

(Sz - E(Dzz;(éHlDzk ))‘2 (DT B{JrlAzk)Z + E(D BmB )u2k

This equation (43) can be solved to obtain

Uy = (Rz + g(BszﬁkHsz)_ TE(Bsz[)kHDzk ITE(DZT"IE;‘”DZ")_ Sz J_l

-
XE(D Pk+1sz)) (E k+1DzkI DTPk+1D Sz)

x E(DTPk A - E(BTPk+1A D2

+1 oy (44)
LUU Luu’ LWW’)I LVVU B LUW L‘VW’)1 LWZ Luz ~
Z[Hk —-H, (Hk H, ) (Hk (Hk H” - H; jzkzulk

d,, = (E(D, B D)= S. ~(R. + E(BLF,B,)) "

X E(BLE D)) (E(DLF 1 By)(R, + E(BLE,,B.))

XE(BT ) — E(DTBchIAzk))Zk (45)

-1
A A 2 1 ~ A A 1 ~ A ~
— ww _ wu uu uw wu uu uz _ wz —
—( v —H, (Hk )Hk ) (Hk (Hk H" -H,; ]Zk =d,

Therefore,u, =u,, —u, =0,d, =d,, —d, =0sinceu, =u,,,d,, =d,,.



82

Since the equality proven in this lemma is in both ways and noting the drawback
of second method, we use the first method to solve the optimal strategy design for the
NCS. However, we will use the Lemma 2 to complete the convergence proof since they
are equivalent. Next, the stability of the cost function, control estimation, and adaptive
estimation error dynamics are considered.

3.4. Closed-Loop System Stability

In this section, it will be shown that slowly time-varying matrix 7, and related

value function estimation errors dynamics are asymptotically stable in the mean. Further,
the estimated control and disturbance input for NCS (33) will approach their optimal
control signal asymptotically. The block diagram representation of stochastic optimal
regulator of NCS quadratic zero-sum games with unknown system dynamics is shown in
Figures 3 and 4 presents the flowchart of proposed stochastic optimal strategy for NCS
quadratic zero-sum games wherein the optimal strategy are obtained without using value

and policy iterations.

[
Update Optimal Zero-sum

Game Strategies: u(zk ) =K,z

K, L, d(z,)= Lz,

A

T = Ay 2y + Bz, )+ D4d(z,)
Linear Network Control System
with Unknown 4, , B, and D,

IR
Adaptive Estimator of Function
V(z PRI )
A - Sr—
J o =wiH,w,| v

] Cost Function

Fig 3. Stochastic optimal regulator block diagram.
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Start Proposed
Algorithm

Initializ"ation
J,=0, =0
W, =g, dy =dy

A 4

Update adaptive estimator (AE)

’A'k+1 = Qk(glgkyl(ahzz" _r"T)

A 4
Update control inputs and disturbance inputs

y ==Kz

A 2~ (2 IS 1~ A
= (H,;'" -Hy (H,“"') H,f") (H;“ (H,‘,"’) Hi - H;”Jzk

== k
~ Ao fa Yta N fa Y1 ~
e el ) i) (el e Yo

| k=k+1, Vk=12,.

Update the time interval

Fig 4. The flowchart of proposed stochastic optimal scheme.

Next, the initial system states are considered to reside in a set when the initial

stabilizing control and disturbance inputs u,,,d,, are being utilized. Further sufficient

condition for the adaptive estimator tuning gain ,, 1s derived to ensure the all future states

will converge to zero. Then it can be shown that the actual control and disturbance input
approach the optimal strategy asymptotically.

Before convergence proof, the following result is needed to establish bounds on
the closed loop dynamics when the optimal control and disturbance inputs are applied to
the NCS system (3) with communication imperfections (i.e. network-induced delays and
packet losses).

Lemma 3: There exists admissible control and disturbance policies be applied to

the unknown NCS such that the system dynamics are satisfying
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2

|42, + By + Do <]z, (46)

. 1.
where0 < k™ < E 1s a constant.

Proof: Consider the Lyapunov function candidate
Volz)=ziz, (47)
whose first difference of V,(z, )is given by AV,(z,)=z!,,z,., — = z, . Note that
sinceu, ,d, are admissible control and disturbance policy, it follows from the definition of

admissible control and disturbance that the NCS dynamics (3) with optimal control and
disturbance applied are asymptotically stable in the mean, and the sequence

, k=12,...,00 monotonically decreases until it reaches zero. This result directly

|z
implies thatz”, z, , —z'z, <0orAV,(z,)<0. Using the fact AV, (z,)<0, it is clear that
z!.\2.. <zl z, . Substituting system dynamics z,,, = 4z, + B_,u;, + D_,d, yields

AV, (z,) =(A,z, + szuz + Dzkd;f)T (Ayz, + szuz + Dzkd;:) - ZkTZk

= HAszk + B +D,,d; ’ _”Zk"2 <0

(48)
Eventually, we must identify a bound onHAszk +Bu, +D.,d, Hwhich guarantees
the sufficient condition for stability AV, (z, ) < Ois still met. Selecting the bound shown in

optimal control policy, (46) reveals AV, (z, ) < —(1 -k )szzk < 0as required.

Theorem 1(Convergence of the Optimal Control and Disturbance Signals):

Given the initial conditions for the system state z,, cost function and adaptive estimator

parameter vectors /4, be bounded in the setQ, letu,,,d,, be any initial admissible control

and disturbance policies for the NCS with communication imperfections (i.e. network-



85

induced delays and packet losses), which can maintain initial system condition to be
bounded in the setQ while satisfying the bounds given by (46) forO<k <1/3. Let the
adaptive estimation parameter vector be tuned and estimation control and disturbance

policy be provided by (28) and (33) respectively. Then, there exist positive constants «,

given by Theorem 1 such that the system states z, and stochastic cost function parameter

estimator errors 4, are all asymptotic stable (AS) in the mean. In other words, as

A A

* *

k—ow,z, >0,h —0,J, >J, andd,, >u, .0, —>u,,d,, —>d,d, —>d,.
Proof: Consider the following positive definite Lyapunov function candidate

V=V, (z)+V,(h) (49)

where Vb (Zk )is defined in (39) and V) (}:lk ) is defined as
V,(h) = (b, ~ b5, = (RAW, )’ (50)
The first difference of (49) can be expressed as AV = AV, (z,)+AV, (}:zk) , and
considering that AV, (i:zk) = (Z,HIAW,()2 - (}:zkAW,H)2 with the adaptive estimator, we have

AVJ (}_lk) = (EkuAka)z - (ZkAVVk—I)Z = (ahEkAVVk—l)z - (EkAVVk—l)z

2

——(—al)h AW, ) <—(1—a)AW2, |, (51)

Next, considering the first part AV, (z,)=z/,,z,., — 2. z, and applying the NCS
quadratic zero-sum games and Cauchy-Schwartz inequality reveals

_2
* * ~ T
AV, (Zk ) <|A4.z, + B u, + D, d, — B, — DzkdkH —Zy %

<3z, + Byl + D, 3B+ D]~z (5D
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Applying the Lemma 3 (bounds on the optimal closed loop system in (46))

and recalling i, =1, ,d,, = d,, from Lemma 2 and (45), we know

1 .. 0d]
~ _A S - k+1
U, =uy, —u, =—R B,

2 aZk-H

-~ ~ A 1~ YA ([~ 1~ ~
+(H,f” —Hk“d(H,f’d) H,f’“j (HZ"’(H;M) H —H,;‘Z)zk =0

~

gk :‘;’21( _6211{ :_lS_lDT %

z zk
2 0z (53)

A 2 S N - 2 ~ Nl 2
J{H;’d —H;’”( k) ;‘dJ (H:”(H,:‘“) Hf-HF jzk =0
Therefore, AV, (Zk )is expressed in terms as the adaptive estimator error dynamics

of the matrix A, and the relationship between O(z, ,u, ,d, ), Zk andJ,, (52) revealing

AV, (z,) < —(1-3k") D[ <—(1-2k")

2~ 2 [~ VA Y~ [~ V1~ ~
(H:u —H:d(H:d) H:uj (H:d(H:d) dez _H:zjzk

Zk"2 + 3||szt7k”2 +3) Zk”2

+3B;,

A 2
1 oal.
+—R'Bl —L

SR +3D;,

A ~ fa WA N
(ded _H;u(Hglu) H:d)

Z k+l

2

~ N -1 A ~ 7

2 (2 NTa s 1 o)
x H,f“(H,’:”j H“ —H{ |z, —=s_'DI, =k
2 aZk+1

<—{1-3k") 2| (54)

At final step, combining the equation (51) and (52), we have

AV <(1=3k )z, - (- a2 AW, |, 2

(55)
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Since0 < k" <1/3and0 <, <1, AV is negative definite with V being positive

definite. Also, observe that = |Vw — V0| < oo since AV <0 as long as (55) holds.

S AV,
k=k,

Now, taking the limit as k —oo , the system states z, and h, converges to zero

asymptotically. In other words, ask — 0,2z, >0, ]’:lk —0, thenJ . —J,. Since optimal

1 aJ j N
control u, =——R_'Bl, =—*L 4 :—lRZ“BZTk% and u,, =u,, (Lemma 2), then
2 0z 2 0z;
i,, —>u, anddi, —>u, when J, —J, . Also since optimal disturbance input
* 1 8..] A i s s
d,==S.'D, =~ | 4, :lSZ’IDZTk Yt ang d,=d, (Lemma 2), then
2 0z, 2 0z,

622,{ —>d, andaAVlk —)d,:whenjk —>J,.

Remark 6: In traditional ADP (Tamimi et al., 2007), policy and value iteration
methods are employed during a fixed sampling interval, and system states and inputs are
recalculated and stored for learning optimal strategy. For example, during time

[kT,(k+1)T.] the system states J; , and »; will be recalculated and stored for learning

k+1
optimal strategy J ; and u,t when iteration index changes from 1 to®, i.e.i=12,...,0.

Consequently, traditional ADP value and policy iterations can consume significant
amount of time which may not be practically viable in real-time environment. However,
the proposed novel stochastic optimal design does not require value and policy iterations
while the cost function and control input are updated once every sampling interval and

therefore will be referred to as time-based ADP. Only the measured real-time data is used
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to tune the cost function, optimal control inputs and optimal disturbance inputs, i.e. when

k—ow, J —J,, i, >u, ,and d, —>d,.

4. Simulation Results

In this section, stochastic optimal control of NCS quadratic zero-sum games is
evaluated. At the same time, the standard optimal strategy of NCS quadratic zero-sum
games with known dynamics is also simulated for comparisons.

Example: The continuous-time version of a batch reactor system dynamics is
given as (Dacic et al., 2007)

138 —02077 6715 —5676 0 0
_05814 —429 0 0675 | [5679 0
1067 4273 —6654 5893 [ |1.136 -3.146|"
0048 4273 1343 -2104| |1.136 0

4{10 0 10 0} J (56)

0 5 0 5

where x e R¥1, u e R?*1and d € R?*1. It is important to note that this example
has developed over the years as a benchmark example for NCS, see e.g. (Dacic et al.,
2007; Dacic and Nesic, 2007; Walsh et al., 1999).

The parameters of this NCS quadratic zero-sum games are selected as (Hu and

Zhu, 2003)
1. The sampling time: 7, =0.8sec ;
2. The bound of delay is two, i.e.h =2;

3. The mean value of random delays: E(z,)=0.5sec, E (2') =1.1sec;
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changed.
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es follow Bernoulli distribution with p =0.3. These values can be

Sensor-to-controller Delay

0.8
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T

0.2

Delay (Sec

T T T T

8 16 24 32 40 48
Time (Sec)
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(5]
3]
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>
o
805
0 r
0 8 16 24 32 40 48
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Fig 5. The distribution of random delays in NCS
Packet Losses Distribution
("1" means packet received, "0" means packet lost)
1WF*P
[72]
<]
0
[72]
o
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©
o d ¥ oUW
0 .F r I
0 8 16 24 32 40 48

Time (Sec)

Fig 6. The distribution of packet losses

The distribution of random delays, includes sensor-to-controller delay 7 with a

total delay of z , are shown in Figure 5 and the packet losses are shown in Figure 6.

Incorporating the random delays T(l‘)and packet losses jf(t)to batch reactor system (56),
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the original time-invariant system (53) was represented as a slowly time-varying linear

NCS given by (3). For instance, when k =20, =kT =16sec, networked-induced delay

7, =0.41sec,7, , =0.45sec,7, , =0.85sec , packet losses , =Ly, =L 7, ,=0, the

NCS dynamics can be calculated based on (3) as

[ 482 0.89
-0.47 0.08
0.19 0.86
-0.29 0.78
0 0
1o 0
Zrn = 0 0
0 0
0 0
0 0
0 0
| 0 0
-0.66 0 0] [093
030 0 0 1.44
130 0 0 2.80
130 0 0 2.73
0 00 1
0 00 0
0 0 o*] o
0 00 0
0 00 0
0 0 0 0
0 00 0
1 00 |0

345 -1.71 0.93

-0.30
0.30
—-0.05

S O O O O O o O

—2.44]
0.15

-0.79

-0.19

S O O O o o = O

028 0.10
0.60 0.97
0.79  0.89
0o 0
0 0
0o 1
0 0
0o 0
0 0
0 0
0o 0
[20.03
~1.45
331
0.26
0
0
u, + 1
0
0
0
0
0

-153 0

0.13
-0.16

0.0004

0

S O O O = O O

~-1.90]
1.67
3.52
4.32
0

S O O O = O O

0
0
0
0
0
0
0
0
0
0
0

0

o O

S O O O O O o o O

11.68
-1.07
0.79

|
=
o8
\O

S = O O O O o O



where

networked-induced delay

Ve =Ly =Ly, =1 , the NCS dynamics become

7, =0.39sec,7, , =0.91sec,7, , =0.87sec

_ T
zp =lx ey w, dy di ] € R12x1

. When

482 0.89 345 -171 1.76 =343 0.03
-0.47 008 -030 028 0.60 0.27 0.001
0.19 086 030 060 291 -049 0.02
-029 078 -0.05 0.79 276 -0.11 0.02

0 0 0 0 0 0 0

0 0 0 0 0 0 0

z =

! 0 0 0 0 1 0 0

0 0 0 0 0 | 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
2648 -199 032 -0.02] [0.07 —0.49] [ 4.91
-227 1.06 -0.03 0.007 0.94 0.01 -0.22
244 369 002 0.03 0.84 —0.45 1.65
—034 399 -0.01 0.03 0.84 —0.08 0.22
0 0 0 0 1 0 0
0 0 0 0 0 1 0

Zk+ uk+

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 | | 0 0 | | 0

k=

91

54,t =kT =43.2sec

2

, Ppacket losses

-0.04
0.004
-0.004
—0.0005
0

S O O O o o o

-0.56
0.91
1.02
1.60

0

S O O O = O O

First, Figure 7 depicts the performance of the conventional stochastic optimal

strategy for NCS quadratic zero-sum games with known dynamics and information of

communication imperfections (i.e. network-induced delays and packet losses) obtained

by solving the Game-theoretic Riccati Equation (GRE) in backward-in-time manner. The
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control and disturbance inputs can force the state regulation errors converge to zeros
while ensuring the NCS stable in the mean when communication imperfections (i.e.

network-induced delays and packet losses) are accurately known.

10

—_—e1
—-==e2

8 H

e3

-=e4

Regulation Error
N I
_

0 8 16 24 32 40
Time (Sec)

Fig 7. Performance of the conventional stochastic optimal control scheme with known
system dynamics and communication imperfections.
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0 7 § 7 K\ ¥
-500 u

-1000, 8 16 24 32 40
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Fig 8. Performance of the ADP value iteration-based scheme [14] in the presence of
communication imperfections.
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Next, by using the ADP value iteration (VI) method and modifying the strategy

(Tamimi et al., 2007), the control and disturbance inputs,

2

—-0.019 0.186 0.026 0.172 -0.149 -0.063 -0.114 0.023
k= X and k= Xk
—-0.040 -0.011 -0.029 0.012 0.077 -0.273 -0.003 -0.269

are designed. The ADP VI scheme normally does not require any system dynamics and
information of communication imperfections. However, the ADP VI based control cannot
maintain the batch reactor system stable in the mean in the presence of communication

imperfections (i.e. network-induced delays and packet losses) as shown in Figure 8.

15

—e1
10 ===e2]

el

) ———od]
LV

et

-5

-10

Regulation Error

-15

-20

-25 |

30 8 16 24 32 40

Time (Sec)

Fig 9. Performance of the stochastic optimal controller for NCS with uncertain system
dynamics and with communication imperfections.

Finally, the proposed adaptive stochastic optimal strategy is implemented for the
NCS quadratic zero-sum games with unknown system dynamics in presence of

communication imperfections (i.e. network-induced delays and packet losses). The

. T
augment state is generated as z =[x u_ u,_, d,_ d_] € R?' v or

W, z[zk u, dk]T € R1®*1  The initial stabilizing policy and disturbance input for the
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012 -0.02 008 -0.06 -0.12 -0.05 -0.024 -0.029

algorithm were selected as 4 (; )=
120,045 0015 -0.03 0.035 0.06 0008 0.027 0.006

_ - -095 -025 -0.70
0.46 0.214 0.236 0.064 - and d, (Zk):
-0.13 0.108 -0.073 0.051 041 -012 0.25

028 -051 061 -0234 0274 -4591 0.055 -2.07 0.02

. while the regression
-0.297 -0.77 -0.135 —0.253 -0.077 1438 -133 072 -047|"

: : 2 2 2 2
function for value-function was generated as {w; , wyw,, Ww;,..., Wy ..., Wis,..., W} as (21).

—ul
i w2
[ ]
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F
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8 16 24 32 40
Time (Sec) (a)
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—d1
10 ===d2]]

S N » O ©

Disturbance Inputs

0 8 16 24 32 40
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Fig 10. Performance of the proposed optimal controller: (a) Control inputs u = (u, u,)" e
R2*1; (b) Disturbance input d = (4, d,)” e R?*1.
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The design parameter for the value-function¥(z, ,u,,d, )was selected asa, = 10°°

while initial parameters for the adaptive estimator were set to zeros at the beginning of
the simulation. The simulation was run for 40 seconds, and for the first 22 seconds,
exploration noise with mean zero and variance 0.08 was added to the system in order to
ensure the persistency of excitation (PE) condition holds (Lemma 1).

In Figures 9 through 11, the performance of proposed adaptive estimation based
optimal strategy is evaluated. As shown in Figure 8, the proposed adaptive estimation
based optimal strategy can also force the NCS quadratic zero-sum games state regulation
errors converges to zero even when the NCS dynamics are unknown which implies that
the proposed strategy can make the NCS closed-loop system stable in the mean. Due to
an initial online tuning phase needed to learn optimal control and disturbance inputs,
there is a slight overshoot at the beginning. In Figure 10 (a), (b), the control and
disturbance inputs of proposed adaptive estimation based optimal strategy are shown.
Proposed adaptive estimation based optimal control and disturbance inputs can make the
NCS states converge to zero quickly.

Estimated value-function for NCS quadratic zero-sum games are shown in Figure

1. Estimated value-function is defined in (23) as
Vizou,.d,)=[z" ul d"T H,[z ul d']. If all the states are equal to zeros exceptz,,z,,
the estimated value-function is shown as Figure 11 (a), while Figure 11 (b) illustrates the
estimated value-function when all the states are equal to zeros except z;,z,. It is

important to note two key points. First, based on definition of estimated value-function, if
all the states are equal to zero, the estimated value-function can be zero. Otherwise,

estimated value-function should be a quadratic positive value. This is why a valley is
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observed in Figure 11 (a)(b). Second, the proposed stochastic optimal strategy is designed

to minimize the estimated value-function.
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Fig 11. Estimated value-function: (a) in the z,, z,direction (b) in the z,, z, direction
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Based on the results presented in Figures 6 through 10, and after a short initial

tuning time, the proposed adaptive estimation based stochastic optimal strategy for NCS

quadratic zero-sum games with uncertain dynamics and imprecise information on



97

communication imperfections will have nearly the same performance as that of the
conventional optimal strategy for NCS quadratic zero-sum games when system dynamics

and communication imperfection are known.

5. Conclusions

In this work, a direct adaptive dynamics programming scheme is proposed which
combines the adaptive estimation and the concept of ADP to solve the Bellman equation
in real time for the stochastic optimal regulation of NCS quadratic zero-sum games with
communication imperfections (i.e. network-induced delays and packet losses). The
availability of past state values ensured that NCS quadratic zero-sum games dynamics
were not needed when an adaptive estimator generates an estimated value-function and

the novel stochastic optimal control and disturbance laws based on the estimation of

V(zk,uk,dk). An initial admissible control and disturbance policies ensured that the

adaptive estimator learns the value-function V(Zk,uk,dk)and the matrix £ (H k) , cost
T’}/

function and optimal control and disturbance signal online. Initial overshoots are
observed due to the online learning phase while they quickly die with time. All adaptive
estimation parameters were tuned online using proposed update laws and Lyapunov

theory demonstrated the asymptotic stability (AS) of the closed-loop system.
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PAPER IIT

STOCHASTIC OPTIMAL CONTROLLER DESIGN FOR UNCERTAIN
NONLINEAR NETWORKED CONTROL SYSTEM VIA NEURO DYNAMIC
PROGRAMMING

H. Xu and S. Jagannathan

Abstract - The stochastic optimal control design for the nonlinear networked
control system (NNCS) with uncertain system dynamics is a challenging problem due to
the presence of both system nonlinearities and communication network imperfections
such as random delays and packet losses, which are considered unknown. In the recent
literature, neuro dynamic programming (NDP) techniques, based on value and policy
iterations, have been widely used to solve the optimal control of general affine nonlinear
systems with known partial knowledge of system dynamics. However, for real-time
control, value and policy iterations-based methodology is not suitable and time-based
NDP techniques are preferred. In addition, output feedback based controller designs are
preferred for implementation. Therefore, in this paper, a novel NNCS representation
incorporating the system uncertainties and network imperfections is introduced first by
using input and output measurements for facilitating output feedback. Then, an online
neural network (NN) identifier is introduced to estimate the control coefficient matrix.
Subsequently, the critic and action NNs are employed along with the NN identifier to
determine the forward-in-time, time-based stochastic optimal control of NNCS without
using value and policy iterations. Here, the value function and control inputs are updated
once every sampling instant. By using novel NN weight update laws, Lyapunov theory is
used to show that all the closed-loop signals and NN weights are uniformly ultimately

bounded (UUB) in the mean while the approximated control input converges close to its



101

target value with time in the mean. Simulation results are included to show the

effectiveness of the proposed scheme.

I. INTRODUCTION

Feedback control systems with control loops closed through a real-time
communication network are called networked control systems (NCS) [1]. In NCS, a
communication packet carries the reference input, plant output, and control input which
are exchanged by using a communication network among control system components
such as sensor, controller and actuators. A NCS results in reduced system wiring with
ease of system diagnosis and maintenance, and has increased system agility. Adding a
communication network in the feedback control loop, however, brings challenging issues.

First main issue is the network-induced delay in the control loop that occurs when
exchanging data among devices connected to the shared medium. The delay, either
constant or random, can degrade the performance of the control system and even
destabilize the system when the delay is not explicitly considered in the design process.
Second main issue is the packet losses in the communication network due to unreliable
path transmission which can cause a loss in control input resulting in instability.

Recently, Walsh [2] proposed a scheduling protocol and analyzed the asymptotic
behavior of nonlinear NCS (or NNCS). Polushin [3] proposed a model-based stabilizing
control for NNCS. Using model predictive control theory [4], Liu [5] proposed a
predictive stable control for NNCS. However, the only objective of these controller
designs [2-5] is to make the NNCS stable when the dynamics are considered known. In

general, optimality is generally preferable for NCS and especially for NNCS, which is
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very difficult to attain. The unknown dynamics and network imperfections in the case of

NNCS further complicates the optimal controller design.

List of Abbreviations

Symbol Quantity

T, Sensor-to-controller delay

7, Controller-to-actuator delay

s Indicator of packet losses

T Sampling time

ar Upper bound on delay

z, Augmented states of NCS at time &

I Modified state vector with current output and pervious
inputs

v, Stochastic value function at time &

W, Target weights of NN-identifier

WC/ Estimated weights of NN-identifier at time &

e, Identification errors at time k&

W, Target weights of Critic NN

VIA/V Estimated weights of Critic NN at time k&

en Residual error

W, Target weights of Action NN

W \ Estimated weights of Action NN at time &

en Action NN estimation error

ac.a, ,a, Tuning parameters for NN-identifier, Critic NN and Action
NN respectively
eq-Em-€  Reconstruction errors for NN-identifier, Critic NN and

Action NN respectively

Table 1. List of abbreviations for NNCS

On the other hand, Neuro dynamics programming (NDP) and
adaptive/approximate dynamics programming (ADP) techniques proposed by Bertsekas

and Tsitsiklis [8] and Werbos [6] respectively, intend to solve optimal control problem
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forward-in-time similar to a standard Riccati equation-based backward-in-time solution
for linear systems. In NDP and ADP, one combines adaptive critics, a reinforcement
learning technique, with dynamic programming [22-24]. Zhang et al. [25] introduced
near-optimal control of affine nonlinear discrete-time systems with control constraints by
using iterative ADP algorithm. Greedy ADP iteration algorithm is derived to obtain
optimal tracking control for discrete-time nonlinear system in [26]. Recently Lewis and
Vrabie [9] introduced the methods of reinforcement learning and NDP for feedback
control to obtain the optimal controller for both linear time-invariant and nonlinear
system with partially unknown dynamics by using value and policy iterations.

In contrast, in [10], neural networks (NNs) are utilized to solve the optimal
regulation of a discrete-time nonlinear system in an offline manner by assuming that
there are no reconstruction errors. Besides ignoring the online approximator (OLA)
reconstruction errors, complete dynamics are needed to implement offline NN training.
To overcome the iterative offline training methodology, authors in [11] used two NNs to
solve the Hamilton Jacobi Bellman (HJB) equation in forward-in-time for time-based
optimal control of a class of general nonlinear affine discrete-time systems. However,
these papers [9-11, 25-26] are not applicable for NNCS since the effects of delays and
packet losses are not considered while state measurement is assumed. Moreover, value
and policy based schemes are not suitable for hardware implementation.

The network imperfections such as delays and packet losses can cause
instability [1] if they are not considered carefully which in turn make the optimal
controller design for NNCS more involved and different than [9-11]. Although NDP is an

effective technique to solve the optimal control of NNCS, traditional NDP techniques
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[9,16] require partial knowledge of the system dynamics which becomes a problem for
NNCS due to the presence of unknown random delays and packet losses. In addition, an
NDP technique using value and policy iterations [9,16] is not suitable for real-time
control since the number of iterations needed for convergence within a sampling interval
is unknown. Also, in some cases [9,17], a model may be needed to iterate the value and
policies. Therefore, the standard HDP value and policy iteration methods [9,17] cannot
be utilized for NNCS and a novel scheme is necessary.

Besides the need to relax value and policy iterations, it would be desirable to be
able to convert the system dynamics in state space form to the dynamics in terms of
input/output since the system states are normally not measurable. Such techniques
belong to the field of data-based control techniques [12], where the control input depends
on output/input data measured directly from the plant. To the best knowledge of the
authors, there are no known NDP methods developed in the literature for the control of
unknown nonlinear NCS in the input-output form.

Thus, in this paper, a novel time-based NDP algorithm is derived for NNCS with
uncertain dynamics and in the presence of network imperfections such as random delays
and packet losses which are normally unknown. To learn the partial dynamics of NNCS,
an online neural network (NN) identifier is introduced first. Then by using an initial
stabilizing control, a critic NN is tuned online to learn the value function of NNCS since
solving the discrete-time Hamilton-Jacobi-Bellman (HJB) equation requires system
dynamics. Subsequently, an action NN is utilized to minimize the value function based
on the information provided by the critic NN and NN identifier. Therefore, the proposed

novel input-output feedback-based NDP algorithm relaxes the need for system dynamics
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and information on random delays and packet losses. Value and policy iterations are not
used and the value function and control input are updated once a sampling instant making
the proposed NDP scheme a time-based model-free optimal controller for NNCS.

The main contribution of this work includes a time-based NDP optimal control
scheme using output feedback without utilizing value and policy iterations for uncertain
NNCS. Closed-loop stability is demonstrated by selecting novel NN update laws. This
paper is organized as follows. First, Section II presents the NNCS background and
output/input system representation for NNCS. A novel online optimal control scheme
with online identifier is proposed in Section III for unknown NNCS with network
imperfections while the stability of this optimal control scheme is verified by using
Lyapunov theory. Section IV illustrates the effectiveness of proposed schemes via

numerical simulations and Section V provides concluding remarks.

II. NONLINEAR NETWORKED CONTROL SYSTEM BACKGROUND

A. NNCS Structure

|-

Nonlinear
Actuator Plant » Sensor
A
Communication Network
Delay 7. (t Delay
7. (t

And ea®) SC( ) And

Packet losses ’y(t) ’y(t) Packet losses

Y

r

Controller

Fig 1. Nonlinear Networked Control System (NNCS)



106

The NNCS structure considered in this paper is shown in Figure 1 where the
feedback control loop is closed over the communication network. Due to unreliable

communication network, networked-induced delays and packet losses are included in this

structure such as: (1) Tsc(l‘): sensor-to-controller delay, (2) 7, (t): controller-to-actuator

delay, and (3) 7(1‘): indicator of packet losses at the actuator.

(k-d-3T (k—d-2

Jﬂ

AT, (kDT KT, (k+DT,

S NN
DN AN

Time axis notation: tk
1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted
3. Bottom line: Actuator received control action

d’dl’ 7t170

Fig 2. Timing diagram of signals transmitting in NCS.

Next the following assumption is needed that is consistent with the literature in
NCS [13,19]:

Assumption 1:

a). Sensor is time-driven while the controller and actuator are event-driven [14].

b). Communication network is a wide area network so that the two network-
induced delays are considered independent, ergodic and unknown whereas their
probability distribution functions are considered known [13,19].

c). The total delay (sum of both types) is bounded [13] while the initial state of

the nonlinear system is deterministic [19].
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B. NNCS System Dynamics Representation

In this paper, a continuous-time affine nonlinear system of the form
x= f(x)+g(x)uand y = Cx is considered, where x, y and« denotes system state, output
and input vector while f(e)and g(e)are smooth nonlinear functions of the state and C is
the output matrix. When the random delays and packet losses of the communication
network are considered, the control inputu(¢)is delayed and can be lost at times due to

packet losses. Therefore the nonlinear system after the incorporation of delay and packet

loss effects can be expressed as

x(2)= £ (x(0))+ p(0)g (e )t — 2(2)) 1)

where 7({) _ { I if controlinputis received by theactuator at time t with I™ s

0™ if controlinputis lost at time t
identity matrix, u(s—z(¢)) is the delayed control inputs x(t)eR",u(t)eR", y(t)e R",
f(x)eR", g(x)eR™™ and CeR™ being invertible. From Assumption 1, sum of
network-induced delays is considered bounded above, i.e. 7(f)=7,.(f)+7,(t) < d T,

where d represents the delay bound with 7' being the sampling interval.

For wireless network-based NNCS, the controller has to convert the control inputs
into packets [21] and transmit them to the actuator through the communication network.
Then actuator applies the control inputs in response to a received packet from the
controller. Consequently, the controller for NNCS is normally referred to as event-driven

and the control inputu(t)to the plant is considered as a piecewise constant [1,7] during a

sampling interval. This actual control input during the sampling interval [kT,(k+1)T)
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without delays can be obtained as u(t)=u,[0(t—kT)—56(t—(k+1)T,)] where

0, <0 . : : : : :
o(t)= {1 50" This means that a piecewise constant control inputu, is applied to the

continuous-time  plant  during the time interval [kT,(k+DT)) (i.e.
ult)=u,, te [kT,(k+1)T), vk).
For general representation of NCS, Consider the communication imperfections

and according to Assumption 1, there are at mostd number of current and previous
control input values to arrive at the actuator in the form of packets. If several control

inputs arrive at the same time, only the latest control input will be selected during any
sampling interval [k];,(k +1)I) Vk while the others are ignored. It is possible that some
packets carrying the control inputs arrive without any delay. System states change at time
instants k7, +l‘ik, i=0,,..,d —1and tl.k < tik_  where ¢ =7/ —iT as illustrated in Figure 2
[13,19].

Since the controller is event-driven [14], (the controller updates the control input

upon the receipt of the sensor measurement), the term u, can be used to express the
controller when the sensor signal x, is transmitted to the controller. Thus, integration (1)
over a sampling interval [k]: , (k + I)TS )yields

(k+1)T, x(t)dt — (k+1)T, f(x(l‘))dt

kT, kT,

ok —a) iz ™ gkl - @),
et (= N7y @ (e (ke — )T,

ety (KT N[ g (et W(kT) i =12, 1
WKT,)=Cx(kT,)
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It is important to note that control signal u(r) can be taken outside the integral since

u(t)is a piecewise constant during[kT,(k+1)T,) which appears to be the integration
interval.

In other words, by incorporating the two random variables (i.e. random delays and
packet losses), the above becomes a stochastic nonlinear discrete-time system given by

Xpn =2, (Xou s ou )+ P (0,00, )y

yk = ka (2)

where x(kT.)=x,, (kT )=y, y(k—i)T)=y,_and u((k-i)T) =u,, i=0,1,2,....d

i

are  pervious control inputs, and Z_ (x,u-u,_5) =X+ ,EI;H)TA‘ f (x(t))dtﬂ/kﬂ;

X (le}lx_gry g(x(t))dt)‘kfgfl + L (J:;:?T; g(x(t))dt)uk—l > and Pr,y('xk SU 5 'u/Hi)

— 7, (15 gl ).

Using (2), define a new augment state variable z, = [ka u e ulig]r eR"“"and a

: r T T d : g :
modified state vector as y; = [yk U, uk_g]r e R, whereu, i =1,...,d are previous

control inputs. Now equation (2) can be represented as

7 Zf,}/ (xk sUpys 'uk—c?) P, (X045 '”k,g)
Xer1
0 I,
U
. = U, + 0 u,
u —
k—d+1
L U Ga 1 L 0 _
Wi c 0 0 x
Wy | |01, 0| u
u_z|1 10 0 L, | u s

The above stochastic equation can be written as
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Zrn :H(Zk)+L(Zk )"‘k» yi=C,z, (3)

where I, € R™" is the identity matrix,

_Zr,y (xk sUp Uy 7 )_ _})T,y (‘xk s U5t U, 5 )_
0 I )
H(z, )= u,, L(z, )= 0 andC, = i
' : 0 0 I
L uk—;ﬂ a L 0 .

It is important to note that H(z,)e R and L(zk)eiR("“;”’}"” are nonlinear

matrix functions in terms of newly defined augmented state vector z, . Since effects of
random variables (i.e. random delays and packet losses) are included in (3), the NNCS
dynamics (3) still remains as a stochastic affine nonlinear discrete-time system in terms
of the augmented state vector. Representing the NNCS in terms of augmented state
vector does not change the stochastic properties of the NNCS due to random delays and

packet losses. The output matrix C, will be invertible since C is considered as invertible.
Next, the NNCS can be expressed in the input-output form as

¥ =CH(C vy )+ CLUC 37 by = F(37 )+ Gy e, 4)

where F(y,f)z COH(CO_IJ’/? ): G()’lf ): C0L<C0_1y,fl HG()}Q

. <Gy, with||0||F denoting

the Frobenius norm [15]. Here due to the effects of random variables (i.e. random delays
and packet losses), F(y,f) and G(y,f )are stochastic real-valued functions and F(y,‘j),G(yZ)
can be calculated based on equation (2) and (3) provided information on random delays
and packet losses are available. In other words, the network imperfections can make the

nonlinear dynamics uncertain and stochastic requiring adaptive techniques.
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C. Stochastic Value Function for NNCS

Since NNCS dynamics (4) is stochastic, the stochastic optimal adaptive controller

is derived to minimize the stochastic value function [20][7] as

v, = E[i(xf Ox, +u' Rul.)} k=0,12.. (5)

oYL=k
where Q0 and R are symmetric positive semi-definite and symmetric positive

definite constant matrices respectively and E (o)is the expectation operator (in this case
Ty

the mean value) of i(xiTQxl. +u] Ru, )based on the random networked-induced delays and
i=k

packet losses at different time intervals.

The stochastic value function (5) can be expressed in terms of the augmented state

variable z, as

v, = E[i(zf 0.z, +u'Ru, )} k=0,12,. (6)
Y| i=k
o 0 o
o & .0 i
where 0. = d : ,andRz=7R.
o0 .. %
L d |

Using the input-output form of NNCS (4), the stochastic value function (6) can be

represented as

Ms

Ve

1
oYL

= E[ > (370,07 +ul Ryu, )} k=0,1.2,..
i=k

(4

ber(c Y 0.ctye +u Ru)}

Il
=

(7)
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where 0, = (CO”YQZCO'I, R, =R.. Note the matrices 0, and R, are still symmetric

positive semi-definite and symmetric positive definite respectively. Equation (7) can be

also expressed as

Vo= Eb0t +ul R} E| £ (70,57 +uR )

©Y|Li=k+1 8

’ ) ®)
:TE}:(yk nyi +uy Ryuk )+ Via

Based on the observability condition [20], when y° =0, ¥ =0, the stochastic

value function V), serves as a Lyapunov function [16]. According to Bellman principle of

optimality [11], the optimal stochastic value function V,j satisfies the discrete-time

Hamilton-Jacob-Bellman (HJB) equation in the infinite horizon optimization case as

zf;m%ﬁ@fgﬁ+¢kﬂgﬂﬁg )

Differentiating (9), the optimal control u, is given by

aE(y,‘(’Tny,‘: +ukTRyuk) o Syt
7.y + k+l1

k+1 ; — (10)
Ou, ou, Oy,
Namely,
o W 1 - NV,
w i) RIGTbp) (an
k+1

Substituting (11) into (8), the discrete-time HJB [17] can be represented by using

the system inputs and outputs as

*

. 1oV " oV, .
Vi =E| "0, y; +— Gy} JRTG" ) )22 |+ 7, 12
k W(yk nyk 497, (yk )R (yk ) YR K+l (12)
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where V,: is the stochastic value function corresponding to the optimal control

input# (7). Note that when F(s),G(s) are linear matrices, discrete-time HJB equation

becomes Riccati equation.

III. OPTIMAL REGULATION OF NNCS

In this section, to overcome the drawbacks of HDP-based value iteration
algorithm, first a novel online identifier is introduced to relax the partial knowledge of
NNCS dynamics. Subsequently, the critic NN is used to estimate stochastic value
function. Eventually, novel optimal regulation control of NNCS is proposed by using
action NN, identified partial NNCS dynamics and estimated stochastic value function. It
is important to note that this work by using online identifier and online critic and action
NN, the optimal control with guaranteed convergence in the mean is obtained without
using value and policy iterations in contrast to [17] which offered an offline solution with

no proof of convergence.

A. Online NN-Based Indentification of G(y]).

In this part, a novel online NN-based identifier is proposed to generate G(y,f).

According to [23], NNCS (4) can be expressed by using following approximation

representation on a compact set €2 as

¥ =Fl G
:WTQ (y/(: 1)+ Epa Tt ( (yZ 1)+56k 1)"
—[WT WT][GT(yk 1)‘9T(yk 1 dv ”k 1] tlema aalll ”k 1]

=Wl y, (y,‘j_l )UH + Ecia (13)



114

Where WC = [W; WGT ]T 4 l//C (y:—l ) = [0; (yZ—l) eg (yl(:—l )]T > Uk—l = [1 U, ]T > ng—l =
[‘9%1 €6 ] ,and &, =¢&,,U,_,, with Hl//C (yZ—l 1‘ <y, and H‘//C (yZ—l k]k—lu <Y, are the
bounds while the estimation error satisfies ||§C,H|| <&y Vk . Since the NN activation

functions 6, (#),6,(¢),and _(e)are known, NNCS dynamics G(y? )can be identified (i.e.
G(y:)=w76,(y? )+ ¢, ) when NN-based identifier weights ¥, are updated. Hence, in this

section, a suitable update law will be proposed to tune the NN weights. Here, in Theorem
1, the inputs are assumed to the bounded for purpose of the identifier stability whereas it
is relaxed during controller design and in the proof of Theorem 3.

The output y¢ can be estimated at time k by using a NN-based identifier as

P =W b, (14)
Using (13) and (14), the identification error is defined as
e, =i =3 =yl Wiy v U, (15)
The identification error dynamics (15) are expressed as
€ = Vi = = via W (0, (16)
Based on [16], an auxiliary identification error vector can be written as

)

vk

= Y/cn - Wc]/; A Vi Uk—l (17)

where Y =[y{ i, Vi LAV, :[l//c<y1?—1) ‘//c(y;—z)""//c(ylf—l—l)] and U,_, =[
U_,U_-U_,] , 0<l<k-1 .Obviously equation (17) represents / previous

identification errors which are recalculated by using most recent NN-based weights 7, .

Similar to (17), the auxiliary identification error dynamics are revealed to be
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L =Y~ WCTkHA‘//CkUk (18)

vk+1

It is desired to tune the NN identifier weights W, such that the identification error
e, converges to zero asymptotically, i.e. kK —o0,e, — 0. Hence, the update law for NN

weights can be defined as
7 T T 77777 L (vr0
Wern =U Ay, (A v U, UA ‘//Ck) (Y/m - aCzyk (19)
where o is the tuning parameter of the NN-based identifier satisfying 0 < o, <1.
Substituting (19) into (18)
Zykﬂ = aCZyk (20)

Remark 1: We can define B, =¥, (y,? )Uk , and B, has to be persistently exiting
[15] long enough for the online NN-based identifier to learn the NNCS dynamics G(y,f )

Next, NN-based identifier weight estimation error is defined asW,, =W, —-W,,,

and recalling (13), the identification error dynamics can be rewritten as

€ — Vi = Vin = WCTV/C(yli )Uk +Eq — WCTM‘//C()’Z )Uk

~ 1)
= WchM//c(y; )Uk + &y
Usinge,,, =ae, from (20), we have
WeaWe (yllZ kjk =ac (Wch‘//c (yZ—l )Uk_l )+ AcEcyy ~Ecy (22)

Eventually, the boundedness of the identification error dynamicse,, given by (15)

and NN weights estimation error dynamics W, given by (22) will be demonstrated. In

order to proceed, the following definition is needed.
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Definition 1 [15]: An equilibrium point x, is said to be uniformly ultimately

bounded (UUB) in the mean if there exists a compact set S < R"so that for allx, € S

< uforall k>k,+N.

there exists a bound 4 and a number N (14, x,,) such that ka —X,

Theorem 1 (Boundedness of the identifier). Let the proposed NN-based identifier

be defined as (14) and NN weights update law be given by (19). Under the assumption

that 3, defined in Remark 1 satisfies PE condition, there exists a positive constant ¢,

satisfying 0 <o, <min{l,'¥ ;, / \/E‘PM} and computable positive constants B,,.,B, , such

wcsPey >

that the identification error (15) and NN weights estimation errors VTN/Ck (21) are all
uniformly ultimately bounded (UUB) in the mean with ultimate bounds given by
Heyku <B, andHVIN/CkH < By

Proof: Refer to the Appendix.

Next the optimal regulation control of NNCS is introduced.

B. Approximation of the Optimal Stochastic Value Function and Control Policy
Using NN

In [15], by using universal approximation property of NN, the stochastic value

function (7) and control policy (11) can be represented with critic and action NN as
o\_1iyT 4
V(yk)_ Wy Lg(yk )"’ S 23)
and
*[..0 T 0
u' ()= 8l )+ 2. 24)
where W, and W, represent the constant target NN weights, &,,&,, are the

reconstruction errors for critic and action NN respectively, and S(O)and ¢(0)are the vector
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activation functions for two NN, respectively. The upper bounds for the two target NN

weights are defined as HWVHSWW and‘Wu

<W,, where W, ,W , are positive constants

[15], and the approximation errors are also considered bounded as “Eyk“ﬁé‘m and

Eull S Eywhere £, , €, are also positive constants [15] respectively. Additionally, the

< g, with &y,

gradient of approximation error is assumed to be bounded as H@S,,k Jove,

being a positive constant [11,15].

The critic and action NN approximation of (23) and (24) can be expressed as

[11.15)
Pl )=z o) 03)

and
ily )=15gly7) (26)

where W, and W, represent the estimated values of the target weights W, and W, ,

respectively. In this work, the activation functions H(e),¢(e)are selected to be a basis
function set and linearly independent [15]. Since it is required that V(y,‘j =0):0 and

u(y,f = 0)2 0, the basis functions $(s),¢(s) are chosen such that B(y,f = 0)= 0, ¢(y,‘; = 0): 0,

respectively.

Substituting (26) into equation (8), it can be rewritten as
WVT (lg(ylf+1 )_ 19()/; ))+ g(yZTnyk + quyuk ): ng - ch+1
In other words,

WAy )+ (v, )= Asy, 27)
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where  7(yy ,uk)=§(yZTnyZ +uRu) A =90~ Hy)) and

Ae, =¢,—¢,, . However, when implementing the estimated value function (25),

equation (27) does not hold. Therefore, using delayed values for convenience, the

residual error or cost-to-go error with (27) can be expressed as
w=E i,y +uf R )+ Vvt )-7 (1) (28)

= r(yZ U, )+ WViAS(yZ)

Based on gradient descent algorithm, the update law of critic NN weights is given

by
~ 1w Alg(ylf) T
Wi =Wy —a, AST(y,‘: )Ag(y,‘j )+ 1 €y (29)
. AS(y)

=W, -« e u )+ AS (v W
Vk VAST(yZ)AS(yZ)+l[ (yk k) (yk)WVk]
Remark 2: It is important to note that the stochastic value function (8) and critic

NN approximation (25) all become zero only when ¥, = 0. Therefore, once the system

outputs have converged to zero, the value function approximation is no longer updated.
This can be also viewed as a PE requirement for the inputs to the critic NN where the
system outputs must be persistently exiting long enough for the approximation so that
critic NN learns the optimal stochastic value function. In this paper, the PE condition is
met by introducing noise.

As a final step in the critic NN design, define the weight estimation error as

W, =W,-W, . Sincer’ (y,f,uk)z —AI" (3, W, +Acl in equation (27), the dynamics

of the critic NN weights estimation error can be rewritten as
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o A b)) o aslyi e,
W =W,y — W
e = W =X AG [y nglyy )+1 e N (30)

Next, the boundedness of the critic NN estimation error dynamics VT’Vk given by
(30) is demonstrated in the following theorem.

Theorem 2: (Boundness of the Critic NN estimation errors). Letuo(yZ)be any
admissible control policy for nonlinear NCS (4), and let the critic NN weights update law
be given by (29). Then there exists positive constant &, satisfying 0< ¢, <1/2 and

computable positive constant B, , such that the critic NN weights estimation error (30) is

UUB in the mean with ultimate bounds given by HVIN/W H < By,

Proof: Refer to the Appendix.

Now we need to find the control policy via action NN (26) which minimizes the
approximated value function (25). First, the action NN estimation errors are defined to be
the difference between the actual optimal control input (26) that is being applied to

NNCS (4) and the control input that minimizes the estimated value function (25) with

identified NNCS dynamics é(y,f ) This error can be expressed as

k¢(yk)+ RIGT( )a‘%(fm)WVk
Vit (31)

The update law for action NN weights is defined as

Wya =W, —a, ¢T( f)¢( Z)+leuk

where 0 <o, <lis a positive constant. By selecting the control policy u, to

T - ¢( :) T (32)

minimize the desired value function (23), it follows that
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A T ’ f
WIplvi )+ e, = —%RylGT(yZ {%Z{H)WV +§yiiij

In other words,

R T 0 T
AT +§R;Gf(yz{a‘%y(zy+ lk“)WV o j =0 (33)

Substituting (33) into (31), the action NN estimation error dynamics can be

rewritten as

| R 0 (v )~ 1 =i 0L
ER),‘G (v) ay(kﬂ“)WVk +§R);’G (yk)aygg—gek (34)

e, = WIg(v)-

where é(y,f)= G(y,‘j)— é(yZ) s Ea = Eur +%Ry1GT(y,f)§j§‘

= %eM
k+1
T
with €,,, being a positive constant, and <&y
Vi1
The action NN weight estimation error dynamics can be represented as
- = ¢(y . ) T
VV;{ = VVM + all o o eu (35)
K+l k ¢T (yk )¢(yk )+ 1 k
~ 0 09" \yy,
7, - WL o) L)L,
¢ i i )+1 Vin

1 = oe/.
—ERylGT(y )ayM +&,]

Remark 3: In this work, the proposed NN-based identifier relaxes the need for

partial NNCS dynamics G(y,f). Compared to [11], the knowledge of the input

transformation matrix G(y; ) and internal dynamics F'(; ) are considered unknown here.
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Next, the stability of NN-based identification error dynamics, NN identifier
weight estimation errors, critic NN estimation and action NN estimation error dynamics
are considered.

C. Closed-Loop Stability

Start Proposed
Algorithm

v
Initialization
V., =0,u, =u,
la
+

Update the NN identifier weights
z:y,lf+1 =Y, - W£¢+1A‘/ICI¢UI¢
T 7 7T T rr I( 0 )T
WCk+1 = UkA Vo (Uk A WCkUkA Vo T Yk+1 - aCEyk
y

Update critic NN weights and value function
W W —a AS(Y)Ir (piu )+ AS" (YW, ]
Vi +1 Vk T 0 4
AG (y)AS(y)+1

v

I}k+1 = WWT¢+1'97(J’Z)

h 4
Update action NN weights and control policy

A

Woo—W —a $(Vi-1) el
uk — uk—1 u 0 0 uk—1
¢T(yk—l)¢(yk—1)+ 1

A

i, =Whe(y)

- o o 1 inaf , \OS 7 )
Cutcr =W B+ 5 R;IGT(Vk_l )—(’,&)Ww_1
k

k=k+1,Vk=12,.
Update the time interval
Fig 3. Flowchart of the proposed optimal controller for NNCS

In this section, it will be shown that the closed-loop system is bounded. On the
other hand, when the NN approximation errors for the identifier, action and value
functions are considered negligible [21], as in the case of standard adaptive control [21],
or when the number of hidden-layer neurons is increased significantly, the estimated

control policy approaches the optimal control input asymptotically. Before introducing
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the theorem on system stability, we present the flowchart in Figure 3 of the proposed
time-based NDP for NNCS with uncertain system dynamics and unknown network
imperfections.

For the closed-loop stability in the mean and convergence proof, the initial system
outputs are considered to reside in a compact set Q2 € R" because of the initial admissible
control inputu, (y,f) In addition, the critic NN basis function and its gradient as well as
the activation function of the action NN are considered bounded with

Jolv: ]

conditions for the three NN tuning parameters, &, anda,, are derived to guarantee

<9,, and H¢(y,f}‘£¢M, respectively in Q. Further, sufficient

a9ly: )/ oy

<3,,

that all future outputs never leave the compact set. In order to proceed, the following
lemma is needed.

Lemma 1: There exists admissible control policy be applied to the controllable
NNCS (4) such that system dynamics satisty

3 (36)

oll?
Vi

|F(y )+ Gy Jus ()

where 0 < k" <1/2is a constant.

Theorem 3: (Convergence of the Optimal Control Signal). Let uo(y,?)be any
initial stabilizing control policy for the NNCS in (4) which satisfy the bounds in (A.5)
and0< k" <1/2. Let the NN weight tuning for the identifier, critic and the action NN be
provided by (19), (29) and (32), respectively. Then, there exists positive constant

v 1 3+4/3

1
 — <<, <
TR

a.,a,,q, satisfying o < a, <min{l, and 1 <a <- respectively,
6 " 3

and positive constants b ,b,, b,.,b,, and b, such that the system output vector y,, NN
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identification error e, , weight estimation errors W, , critic and action NN weight

estimation errors 1¥,, and W, , respectively, are all UUB in the mean for all k > k, +T with

~

WCkH < by,

€y H <b,,

ultimate bounds given by Hy,f”ﬁby, ‘WW“SbV and HVIN/M,(HSbM .

Further, ﬁ(y,’j )— u*(y,f 1‘ <0, for a small positive constant 5, .

Proof: Refer to the Appendix.

Remark 4: It is important to note that Theorems 1 and 2 demonstrated UUB in
the mean of NN identifier and Critic NN estimation errors respectively. In Theorem 3,
boundness of NN identifier, Critic NN and estimated stochastic optimal control from

action NN are all considered simultaneously.

IV. SIMULATION RESULTS

In this section, stochastic optimal control of NNCS with uncertain dynamics in
the presence of unknown random delays and packet losses is evaluated. The continuous-
time version of original nonlinear affine system is given by

X=f(x)+g(xu, y=Cx (37)

Cex } g(x){cos(z(jcl)u}’andc:[g (1)}

where =
f(x) {_ 0.5x, —0.5x,(1—(cos(2x,) +2)*)

3

The network parameters of the NNCS are selected as [13,19]:

1. The sampling time: 7, =100ms ;

2. The bound of delay is set as two, i.e.d =2 ;

3.The mean random delay values are given by £ (TSC) =80ms E(r)=150ms ;

4. Packet losses follow Bernoulli distribution with p =0.3.
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The distribution of random delays, includes sensor-to-control delay 7, with a total

delay of 7, is shown in Figure 4 while the packet losses are shown in Figure 5.

Incorporating the random delays r(t)and packet losses 7/(1) into the original nonlinear

affine system (51), yields the unknown NNCS given by (4).

Sensor-to-controller Delay

100

Delay (ms)
(o]
o

r

3
)

4 8 12 16 20
Time (Sec)
Delay in total

N
[=]
o

Delay (ms)
&
o

-
3
o

4 8 12 16 20
Time (Sec)

Fig 4. The distribution of random delays in NCS

Packet Losses Distribution

("1" means packet received, "0" means packet lost)

1

0.5

Packet Losses

4 8 12 16 20
Time (Sec)

Fig 5. The distribution of packet losses.

First, the effect of random delays and packet losses for NNCS is studied. The

initial state is taken as x,

=[5 —3] . The initial static controlu, = [—2 —51xk , which

maintains the original nonlinear affine system (51) stable, is shown in Figure 6 (a). By
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contrast, this controller cannot maintain system stable in the mean for NNCS in presence

of random delays and packet losses as Figure 6 (b).

—e1
4 —--e2"

Regulation Error Values
- N
i

0 5 10 15 20
Time (Sec) (a)

x 10

—el
-=e2

0.5 i
1

Regulation Error Values
o
i
E-
<
g

0 5 15 20

10
Time (Sec) (b)

Fig 6. Performance of a static feedback controller: (a) random delays and packet losses
are not present; (b) with random delays and packet losses.

Next, the proposed stochastic optimal control is implemented for the NNCS with

unknown system dynamics in presence of random delays and packet losses. The augment

state y¢is generated as y? =[y, u,, u,_,] eR*, Vk, and the initial stabilizing policy
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for proposed algorithm was selected asu, (y,f ): [-2 -5 —1 -—1]y;generated by using

standard pole placement method, while the activation functions for NN-based identifier

were generated as tanh{(yf )z’ Wy ,...,(yj)z, (yf )4,()/1" )3 V5 ,...,(yf{ )6} , critic NN activation

function  were selected  as sigmoid  of  sixth  order  polynomial

{(yf )Z, Wys ,...,(yj)z,(yl" )4,(y1° )3 V5 ,...,(yf{ )6} and action NN activation function were
generated from the gradient of critic NN activation function.
The design parameters for NN-based identifier, critic NN and action NN were

selected as o, =0.002,¢, =10*and &, = 0.005 while the NN-based identifier and critic

NN weights are set to zero at the beginning of the simulation. The initial weights of the
action NN are chosen to reflect the initial stabilizing control. The simulation was run for
20 seconds (200 time steps), for the first 10 seconds (100 time steps), exploration noise
with mean zero and variance 0.06 was added to the system in order to ensure the

persistency of excitation (PE) condition (See Remarks 1 and 2).
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Fig 7. Performance of stochastic optimal controller for NNCS: (a) State regulation errors;
(b) Critic NN and Action NN parameters. (c) Control input.
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The performance of proposed stochastic optimal controller is evaluated from
several aspects: 1) as shown in Figure 7(a), the proposed stochastic optimal controller can
make the NNCS state regulation errors converge to zero even when the NNCS dynamics
are uncertain which implies that the proposed controller can make the NNCS system
stable in the mean; 2) the proposed critic NN and action NN parameters converge to
constant values and remain bounded consistent with Theorem 3 as shown in Figure 7(b);

3) The optimal control input for NNCS with uncertain dynamics is shown in Figure 7 (c)

which is bounded.

—e1l

Regulation Error Values
o

[P R ———

0 5 10 15 20
Time (Sec) (a)

x10"

—e1
3/ |---e2

Regulation Error Values

0 5 10 15 20
Time (Sec) (b)

Fig 8. Performance of HDP value iteration for NNCS: (a) Iterations=100 times/sample;
(b) Iterations=10 times/ sample.
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For comparison, HDP value iteration (VI) [9,17] is also implemented for NNCS
with known dynamics G(O) by incorporating the g(O)(3 7) and information of delays and

packet losses which are normally not known before hand. The initial admissible control,
critic NN and action NN activation function are same as proposed time-based stochastic
optimal control.

As shown in Figure 8 (a), the HDP VI method can make the NNCS state
regulation errors converge to zero when the number of iterations is 100 times/sample. By
contrast, HDP VI cannot maintain NNCS stable in the mean when iterations become 10
times/sample as shown in Figure 8 (b). It implies that HDP VI scheme not only needs
partial knowledge of original nonlinear affine system dynamics, g(O) , but also
information on delays and packet losses. The number of iterations required for a given
nonlinear system is unknown. Due to these drawbacks, the HDP VI is not preferred for
NNCS implementation in real-time.

Based on the results presented in Figures 4 through 8, the proposed stochastic
optimal control scheme with uncertain NNCS dynamics and unknown network
imperfections can overcome the drawbacks of HDP-based value iteration method and
will render nearly the same performance as that of an optimal controller for NNCS when

the system dynamics, random delays and packet losses are known.

V. CONCLUSIONS

In this work, an online approximate dynamic programming technique for NNCS
is proposed by using identifier NN, critic NN and action NN to solve the stochastic
optimal regulation of NNCS with uncertain dynamics in presence of random delays and

packet losses. Compared with other recent NNCS and NDP research works, this paper
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has developed a NNCS representation with augment states. The NN identifier relaxed the
requirement of input gain matrix for NNCS while the information on random delays and
packet losses are not needed. Consequently, proposed time-based, forward-in-time
scheme can be implemented in practical NNCS. Therefore no value and policy iterations
are required since a history of cost to go errors are utilized.

The initial admissible control policy ensured that NNCS is stable in the mean
while NN identifier learns the input gain matrix, the critic NN approximates the

stochastic value function V(y,f ), and the action NN generates the approximate stochastic

optimal control. All NN weights were tuned online using proposed update laws and
Lyapunov theory demonstrates the asymptotic convergence of the approximated control

input to its optimal value over time in the mean.
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APPENDIX
Proof of Theorem 1: Consider Lyapunov function candidate
Lo =trlehe, J+ 2, o7, | (A1)

where o < 2 SH(‘//c(ylll ..) *is ensured by the PE condition described in

Remark 1 [19,23]. The first difference of (A.1) is given by
= trlelue,n = trlele b Vo 0 Wy - WL,
ALc =triey ey f— ey f+ Vo [r WeaWop j— r Weol o §l

< tr{ekaHeykﬂ }_ r {ekaeyk }"’ r Wchﬂl//c (yZ )’/k )f (WN/CTkH'//c (yl{t) )Uk )}_ \Pjﬁntr{NCTkWCk

and using (15) and (22) yields

2

2
2
AL, <o +

€,

—le

- 2 ~ 2
T o - - 2
‘ac (WCkl//C(yk—ly/k—l)_F Oc&cpy — ‘C"CkH - Yo WCkH

vk

<—(1-a2 e, | + 202w (v W[ +2llercin s — 5| — W2 7.
sl=ac ey T2 |\WalWc\Via M| + ||anCk—1_SCk|| = Toin ([ ek

<—(1-a2 e - (¥2, ~ 20292 WA + 2, — 2ol (A.2)
<(i-a? e —(¥2, — 20292 .| +2822,

_ — 2 A= i AZ2 . Lo
where ||0{C5Ck_1 —€Ck|| <Ag}, , withAEZ,, is a constant which is guaranteed by the

boundedness of &, in Section III-A. When tuning parameter . satisfies
0 <a,. <min{l,—=""—} the first difference of (A.l) is less than zero provided the
2y,

following inequalities hold

AE;
CM —
=B,. or Heyku>

. 4z,
(Svnfm - 2052?/1\; )

WCk

=B (A3)

2 ey

l-a.
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Using the standard Lyapunov extension [23], the identification errors and NN
weights estimation errors are UUB in the mean.

Proof of Theorem 2: Consider the Lyapunov function candidate

L, (Ww ): tr {WWT W } (A4)

~

The first difference of (A.4) is given by AL, (7, )= oL, .., |- W{WWT W, } and

using (30) yields

ALV( ' ): tr{VIN/WTCVIN/W }_ A,gT(y;)Z,Vg(y;j)+ 1 W{WWiAS(yZ)Agr(y; )WW}

20 o\
e e b

L arTiadbw g b Wby W (i 7, §
(287 (v ol )+ 1)

2 a9 (v ol W (07 7, |
(29" (v slyy )+ 1f

N A Y R

(87 (7 g )1

T )(ZV&(;VZ )+ 1)[(2 ~a, Jad bW

~(2+2a, )2 (0 W7, e, | ~a, |4z, [']
<- (Algr(y,, )CZIQ(J/O )+ 1)[(1 — 2aV X AT (y;: )WVk 2 (2aV . 11|A8Vk”2]
k k
— aV _ 5 ~ 2 _ 5
: (2 —a, )(A‘gr (y: )AS(J’Z )+ 1)[(1 2ay )Algmi" W (2aV + I)AgVM ]
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a,(1-2a,)A9

min

W 2 a,(2a, +1)As],
(2—q, 49 +1) (2-q, 49 +1)

<_

(A.5)

where0< A3 . < HAQ(J’ZJ

is ensured by the PE condition described in Remark 2

and||Ag, | < Ag,, for a constant Ag,,, is ensured by the boundness of ¢, . Therefore,

a1, (7, )< 0ir

W, (A.6)

wv

2a, +1
S B L PE
(1-2a,)A8;,

~

Using standard Lyapunov theory [15], it can be concluded that AL, (WV,()is less

than zero outside of a compact set rendering the critic NN weights estimation errors to be

UUB in the mean.
Proof of Theorem 3: Consider the Lyapunov function candidate

L=L, +L,+L,y+Loy+L, +Lg (A7)

where Lpy = (y k Yy k., Lov> Lyw> Loy Lav and Ly are defined as

L,y :”{VT/:I;QVT/;%}; Ly :”{WWTAWW}

(A.8)
Loy =iriele f+ir AW
Lo =W, « Ly, =l i, ff
with g:%wl A= 288%;;;(?;‘? H)X(G; +12%)1 :

' 2 2 =2 2 4=2 = 5 5
O=2AL +9(8VMV;ZV) WE oz, Vo ZAZA;CzM n,T= 85\/ Evut Fosi 1] |
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and ® { MJI are positive definite matrices, I is identity matrix, =is defined
as 4. (R")9,G,,, and 4, (R_l)is the maximum singular value of R . The first difference
of (A.7)is given by AL=AL,,, + AL ,, + AL, + AL +AL,, + AL, .

Considering first difference AL, = (yk+1) Vi~ (y,f )T v, , using the NNCS
dynamics (4), and applying the Cauchy-

Schwartz inequality reveals that the first difference becomes

Flyg 1+ Gl e () -Glog e (%) J
+Glog iyt )-GO by J+ Gl Jalys

[FGo)+ f(y;;)u 1
-Gl Wiol:)-

<2F(y; )+ Gl b (ka + 4HG i b 1‘

2

(O)T 0

ALy, <

T €0 A R 1Y O ) (A9)

<12k oz [ +4lGO2 Rl || +862 7ol )| +8G2e2,
* 2 ~ 2 ~ 12
<—(1-2k" | + 4wz Ta| +sGra || +8Giel,
Next, first different z, can be expressed as

ALuN = W{V’IV/UII;HQV?/LWH }_W{V’VLIZI;QV,V;J](}

—r {WJ(Q Wuk }
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(24

Wrion mma A T AR

. a;¢" (v v7) irle, Q" ) (A.10)

(0" Gy ol )+1)

Substituting (34) into (A.10) we get

2 ~r 0N 1 N0 (v, ) ~
AL = e T a5 &6 0) ay(;f : )i,
IR )a'gr(oy L, LRG0 25 g 0 (1,
2 aykﬂ 2 k+1

- DR o gl )L a o ()02 i,

(" (v ooy )+ 1)

22

~ 2
3a, 2 1Y a0

205 M(yZ)H)JFAgeM + P )¢(y,f)+1”¢ (yzf )WkH

] PR T 3 PO B
oo o e e R Oy
20!5HQH lR lar(y )6‘9T<YZ+1)W +1R—1C~;T( )ag;k i
W 2 ‘ Wi oo ‘ Vil
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<_ (e, —6a,)dn "Q” H ~ “ (a] + a )_ |Q||
diu +1 20" (o )+ 1)

HW,,k H +|Qasz,

(2a? +a, 2w, Pl ~ (2a? +a, ey S0
e 1]+ |

2p +1)G2, 20p +1)G2,
< (at, - 6a; )¢m||Q||H~ H (o2 +0‘ ): ||Q|| H W{u

do +1

+

S T <2“f *““XE‘”M*"""HW u“
alg2 +1)G, Ve (g +1)G2, Vi

+ (2a +ta X‘—’SVMl//M) ” ”

2p; +1)G;,

where0 < g . < H¢(y,f 1‘ is ensured by the PE condition described in Remarks 1&2,

" +2]as2, (A.11)

C/

|Ae.,, k||2 =71 ll ”: <Asg?,, which is a bounded positive constant.
" i oy )+1)

Next, first difference L ,, can be expressed as

AL, < (77 0w, I =i iow, )

S”F”2 _(1 OCV 1 2aV A19 JH Vk” aV ZaV +1 A&‘VM :lz i
- [0 77 |

2-a, A9 +1) 2-a, A9 +1)

of e, (1-2a, )M, A3 -
Sl B vy +12(A%+1)ZJHW H

2
I gl e~

(ay 242 _1jAsnim Iof
ol

(A9 +1)

s A
3A92+1 a
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4||r|| Agp,,

9(A.92 +1)f "
Next, the first difference of L, can be expressed as
ALy, = (tr {WCTM@WCM })2 - (tr {Wch@WCk })2
2
< ||®||2(2aé ;’—ﬁiu%\f " 2A§C2Mj el 7|
min (A.13)

| 8acy o |~ 4o’
oo (14t o o+ g s, + AL,
Next, using (A.2), (A.5), (A.9), (A.11),(A.12)and (A.13) to form AL as:
AL <=2k |z | +a¥2 5| +8GL a3 +8GE <2,

12642 o +a,

24634 b, a7 [+ 2EE )
4
B B !

N 120202 + @, JEep vy 7., H2 N 24(¢3, +1)G1 4% AE>,

2 2
¢min ¢ml
2 2
2 =2| 2 Wulém |1 |2
288, (1-2a, )9, 2 (GMHZ A9, j VkH 576G ¢u 2" |
_ + A
¢2. ¢2. A]gZ M
2
2 2 Yy =2
~(1-a e, 1620 ARS
R o B HWCkH
LI’l’l’lll‘l

RN L R T

min

=2
Ag;,
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216( ~24? —lj(uchfﬁM )y

B 12 H ”4 288( ‘//M¢M) AgVM ” ”
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96( vuby) As) Y |12Evud) 1z |
oo [ S
96 ‘P ~ _ 48(= _
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| 4608y, 8, ) Aty 96(Ey, ) ¢y ALy
@2 AGL Boin Vi

— 48[1 — 20!2 ;15/[ J (E WZZ?ZiAZAECM H NCk “
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where 2= (4 (R )9, Gy ). =1 + 9(%?;42,)%32 - e )\5”’ B2 and
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Therefore, AL is less than zero when the following inequalities hold
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or (A.15)

4 ‘E‘TM\P4 ¢mm }Eb
Velws, —8a2%: \Ew, 0, ¢

HVIN/W ” > max{ St 1
288A] -2a) ——
@V a? uj
2
', ¢min1 y=byy
e Towon
or
=p
\/ 3G 4, 18a2 1) ™ or

yo > gTM =
, (1-2k")

provided the tuning gains are selected according to (19) (29) and (32) for the
NNCS (4). Using the standard Lyapunov extension [15], the system outputs, NN
identifier and weight estimation errors, critic and action NN estimation errors are UUB in

the mean while the system outputs never leave the compact set.

Next using (24) and (26). we have 207)—u %)= L) When

k — oo, the upper bound of ﬁ(y ¢ )_ u’ (i )can be represented as
il - (o )| < 7 oo ) + e < |77 0% )

<by, +E.u =8, (A.16)
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Now, if the NN identifier, critic and action NN approximation errors &,,&, and &,

are neglected as in [24,29] and when k —> oo, &, in (A.15) and &,,in (A.16) will
become zero. In this case, it can be shown that the NN-based identification, action NN

and critic NN estimation errors converge to zero asymptotically, i.e. ﬁ(y,f) — u*(y,f)



144

PAPER IV

STOCHASTIC OPTIMAL DESIGN FOR UNKNOWN NETWORKED
CONTROL SYSTEM WITH COMMUNICATION NETWORK PROTOCOLS

H. Xu and S. Jagannathan

Abstract—In this paper, stochastic optimal control and estimation problems have been
considered for linear discrete-time systems with wireless imperfections referred to as
linear networked control system (NCS). The network imperfections include packet losses
and random delays. For evaluating the impact of network reliability on controller
performance, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
are considered with NCS. First a novel observer is introduced to estimate the state vector
in the presence of unknown system dynamics due to network imperfections and the
communication protocols. Next, a novel stochastic optimal adaptive output-feedback
controller by using adaptive dynamics programming (ADP) is utilized to solve the infinite
horizon optimal regulation of NCS under the TCP and UDP protocol respectively by
estimating the value function. Update laws for tuning the unknown parameters of
proposed novel observer and value function estimator are derived. Stable regions of
proposed observer for linear NCS under TCP and UDP with and without known system
dynamics are given respectively. Lyapunov stability analysis indicate that for NCS under
TCP, all signals are asymptotically stable (AS) in the mean and the estimated control and
observed state signals converge to optimal control inputs and actual states of NCS in the
mean respectively, and for NCS under UDP all signals are uniformly ultimately bounded

(UUB) in the mean while the approximated control input converges close to its optimal
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value with time in the mean. Simulation results are included to show the effectiveness of

the proposed scheme.

I. INTRODUCTION

Networked Control Systems (NCS) [1] are feedback control systems wherein the
control loop is closed through a real-time communication network. Although NCS brings
many advantages (e.g. saves installation cost, etc.), insertion of a communication network
into the feedback loop causes many challenging issues due to network imperfections such
as network-induced delays and packet losses that occur while exchanging data among
devices. In fact, the performance of the control system degrades significantly due to these
network imperfections.

Therefore, recently, the authors in [1] analyzed the stability of NCS with network-
induced delays, whereas the work in [2] proposed a stability region for NCS with
network-induced delays and packet losses. The optimal controller design is derived for
NCS with random delays in [3]. On the other hand, the authors in [4] introduced
stochastic optimal control of NCS with network imperfections [5]. These optimal control
designs [3-4] are obtained backward-in-time by assuming that the NCS system dynamics
and information of network imperfection such as network-induced delays and packet
losses, which cannot be obtained beforehand, are assumed to be known accurately. In
addition, current NCS designs [1-4] did not include the impact of network protocols (e.g.
TCP, UDP etc.) that cause these network imperfections until recently in [12].

On the contrary, adaptive dynamic programming (ADP) techniques, proposed by
Werbos [6], intend to solve optimal control design for unknown nonlinear system in a

forward-in-time manner instead of traditional optimal control scheme [8] where
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backward-in-time approach is utilized with known system dynamics. In ADP, the
dynamic programming is utilized via value and/or policy iterations [6][8][27] to generate
optimal control input. However, the value and policy iteration-based optimal control
design [6][8][27] needs a significant number of iterations within a sample interval for
convergence which can be an issue for closed-loop stability and hardware
implementation. Less iteration within the sampling interval can lead to instability.

Therefore, Dierk and Jagannathan [9] utilized the Hamilton-Jacob-Bellman (HJB)
equation in forward-in-time manner for the optimal control of a class of general unknown
nonlinear affine discrete-time systems by using state feedback. Here, value and policy
iterations are not utilized; instead the dynamic programming based optimal control over
time utilizes past history of system states and cost errors thus making the technique
suitable for real-time control. However, the ADP-approaches from [6-9][27] are not
suitable for NCS since effects of network imperfections caused by practical network
protocol is not considered. Addition of network protocol will require output feedback
which is more involved than state feedback.

In our previous paper [18], stochastic optimal design of state-feedback NCS is
undertaken in the presence of uncertain dynamics due to unknown network imperfections
by assuming the states are measurable. However, the impact of network protocol such as
the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are not
studied. For TCP or UDP protocols, an observer is required [12] in the controller design
which can complicate the optimal controller design [18] and stability analysis.

Therefore, optimal adaptive output feedback control technique is undertaken in

this paper to obtain stochastic optimal regulation of linear NCS in discrete-time under
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TCP or UDP protocol with uncertain system dynamics and unknown network
imperfections. The network imperfections considered in this paper include network-
induced delays and packet losses. First, for implementing the output feedback under
standard TCP or UDP protocol, a novel observer is introduced to estimate the system
states when the dynamics are unknown.

Next, by using the observed system states and an initial stabilizing control, the
value function is estimated [9] and its parameter vector is tuned online and forward-in-
time by using Bellman Equation [7]. Eventually, stochastic control inputs which optimize
the value function can be calculated based on parameters provided by the value function
estimator. Compared with traditional optimal control theory which requires the
knowledge of system dynamics to solve the Stochastic Riccati Equation (SRE), the
proposed novel observer and value function estimator relax the need for system states and
dynamics, and information on network-induced delays and packet losses respectively for
NCS under TCP or UDP, and yields optimal control without using value or policy
iterations.

This paper is organized as follows. In Section II, the background of NCS under
TCP or UDP and traditional optimal control for linear discrete-time system is given first.
Next, the stochastic optimal control of NCS under TCP without known system dynamics
is derived and stability of proposed stochastic optimal scheme is verified by using
Lyapunov theory in Section III. Section IV proposes stochastic optimal control of NCS
under UDP with unknown system dynamics and analyzed stability of the proposed

scheme based on Lyapunov theory. Then the effectiveness of proposed schemes is
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illustrated via numerical simulations in Section V, and Section VI provides concluding

remarks.

II. BACKGROUND
A. NCS Under TCP or UDP
In Figure 1, the basic structure of NCS is shown where the feedback loop is
closed over a communication network by using either TCP or UDP network protocol.
Due to the presence of a communication network, two types of network-induced delays

and two types of packet losses are observed: (1)z,(7): sensor-to-controller delay, (2)
z,,(t): controller-to-actuator delay, (3)y(¢): indicator of packet lost at controller and (4)

u(t): indicator of packet lost at actuator.

T, :Samplinginterval

!

Actuator » Plant »| Sensor
7'y
Communication Network
with TCP or UDP Protocol A 4
Delay Delay
7., (7
And cal®) 7o (D) And
Packet losses U(l) y(t) Packet losses

r 3

N>

Adaptive |
observer

Controller |«

Fig 1. Networked Control System under TCP or UDP.

Based on standard TCP and UDP protocols [12] and other recent NCS results, the
following assumption is needed for NCS under TCP or UDP [13-14]:
Assumption 1:

a) Sensor is time-driven; controller and actuator are event-driven [13].
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b) Communication network is wide area network such that two types of
networked-induced delays are independent, ergodic and unknown whereas their
probability distribution functions are considered known. The sensor-to-controller delay is
kept less than one sampling interval [14].

c) The sum of the two delays is bounded while initial state of the system is
deterministic [14].

After incorporating the network-induced delays and packet losses, the original
time-invariant plant x(z) = Ax(¢) + Bu(t), y(¢) = Cx(¢) can be expressed as

X(f) = Ax(?) + Bu“ (f)

a C (1)
u (6) = v(Ou (¢ ~ 7., (1))

(0 =y(OCx(t — 7, (1))

I if controller received x(¢) from NCSplantat time¢
where y(t)=

0" if controller lost x(¢)at time¢

I™" if actuatorreceived controlfromcontroller at ¢ .
u(?) ={ with x()e R™" |

0™ if controller lost controlinputat ¢

u(t),u’(t) e R™™Mand y(r) e R™" represent the system state, control inputs computed

at the controller and control inputs received at the actuator, and output of NCS plant
respectively and 4 € R™™and B € R™ ™ denote the system matrices. According to

Assumption 1, sum of network-induced delays is considered to be bounded. (i.e.

7..(t)+1,,(t) <bT whereb denotes the delay bound while 7, being the sampling interval.)

Since actuator is event-driven, control input received by actuatoru“(¢) to the plant

is a piecewise constant. According to NCS under TCP or UDP protocols, at mosth

number of current and previous control inputs can be received at the actuator at the same
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time, and only the latest control input is allowed to be applied on the plant during any
sampling interval (i.e.[kT,(k+1T.), Vk ), and other previous control inputs are ignored.
It is important to note that since controller and actuator are event-driven, the plant can
implement control inputs at the time instant k7, +¢',i=0,1,2,...,d and ! <t!, where

t" =7/ —iT, as shown in Figure 2 [13-14].

Time axis notation: tk otk th ¢k
. d>"d-1°2°>"1°%0

1. Top line: Sensor Packet Sent

2. Middle line: Controller received packet and computed control action transmitted

3. Bottom line: Actuator received control action

Fig 2. Timing diagram of signal transmission under TCP and UDP

Since controller is event-driven, the integration of (1) over a sampling interval

[KT,(k+1T)yields

X =Ax, + B,iu,f_l + B,fu,f_z +oeet B,fu,f_b + B,?u,f
u, , =v,_u,_, vi=0,.,..,b,Vk=0,1,. (2)
v, =7.Cx, Vk=0,12,..

wherex, = x(kT)), 4, =™, B, = [ """ dsBS(T, - 13),

Bl =[N GsBe ST, + 7k, — 7t ) S(zf —iT)  Vi=12,.,b , and

rIk =T

L, x>0 | ) ) ) e
o(x)= {O 0 u; is the control input received at the actuator and at time k7, whileu; is
, X<

the control input computed at the controller and at timek7,, and y,,v, are the packet loss
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indicators at the controller and actuator respectively, which are also independent and

identically distributed Bernoulli random variables with P(y, =1)=y and P(u, =1)=0 .

T, :Samplinginterval

Actuator » Plant » Sensor
7y
/ Communication Network \
| with TCP Protocol |
Del Y
ela
Y 7,0 7. (1) Delay
And And
| Packe‘t‘losses Ok 7k |Packet losses/‘
= i |,
z Adaptive |« -
Controller |e—= p 7k
observer [

Fig 3. Block diagram of NCS under TCP

For simplifying the NCS representation (2), a new augment state variable

consisting of  current state and previous control inputs (i.e.

T T T T 1T T 1T = : : :
z, =[x, up, ug, up, 1 € up,] € RE™PM) s introduced. Equation (2) can be
rewritten as

Vk=0,12,... (3)

— c —
Zyg =Ayzp +Buuy, v =Tz,

where time-varying system matrices are given by

A, Uk—lBli Uk—b+lBlf71 Uk—bBlf_ _UkBI?_
0 0 0 0 I,
0 1 0 0 0
Azkz . m ) . ,sz: O sz[CkaOO]
0 0 I, 0 | | 0 ]

Here the system matrices are uncertain due to the presence of network imperfections
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caused by the communication protocol TCP or UDP with output vector alone is
measurable. The block diagrams of NCS under TCP or UDP are shown in Figure 3 and 4.

Compared with UDP, the TCP [23][25] uses acknowledgments to indicate the

reception of a packet (i.e. v, ,). Therefore, similar to [12], the following network
information set y,,¢, can be defined for NCS under TCP or UDP respectively as

Wi =i Vi Tt V)
k k k k-1 k—1 (4)
S = Wi VirTin)

where Y, ={Vi, Vi s Vb Yi = s Vi id 5 T =40 o7} and
v, ={U,,U,_,,...,U, } represent current and previous outputs, packet loss indicators at the

controller and the actuator, and network-induced delays respectively.

T, :Samplinginterval

!

Actuator » Plant » Sensor
A
Communication Network
with UDP Protocol A 4
Delay Delay
(T
e 0 7 () elay
Packet losses Uy Yk Packet losses
A
L — Uk
z Adaptive
Controller [« = P Lk

observer |y,

a

Fig 4. Block diagram of NCS under UDP

In this paper, based on the representation of NCS under unreliable communication
network (TCP or UDP) (3), the stochastic optimal control of NCS under TCP or UDP are

derived respectively by minimizing the related value function
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V"(z,) = min E[ 3. (102, +u/ Ru, )|y, ] ——NCSunder TCP
Uy, m=k
(%)
V"(z,) = min E[ 3. (702, +u/Ru,)|¢,] ——NCSunder UDP
Uy, m=k

where the value or cost function, V*(zk), is defined in next section, O and R are
symmetric positive semi-definite and symmetric positive definite constant matrices

respectively and E[(0)|1//k],E[(0)|4’ ] are the expected operators (i.e. mean value) of

i(z; Oz, +u’ Ru,) based on the TCP information sety/, or UDP information set {,

m=k
defined in (4). Next a brief introduction of the optimal control of linear discrete-time

system by using dynamic programming is given.

B. Trational Optimal Control of Discrete-Time Systems

Consider a linear discrete-time system given by
X A X + By (6)
where x, € R™is the system state vector, u, € R™is the control input vector and

A, e R™™ | B e R™™ are system matrices. According to [7], the infinite-horizon

optimal value function can be defined as

V*(xk)zngn:%r(x,,u,)=rr5n§(foxl +u, Ru,) (7

with #(x, ,u, ) = x, Ox, +u; Ru, , and Q, R are symmetric positive semi-definite and
definite matrices respectively.

Using dynamic programming, the optimization problem for linear discrete-time

system (6) and (7) can be derived as
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Vi(x,) =min(r(x,,u)+V"(x,,)) ®)

where V'(x,) is the infinite-horizon optimal value function. Then Bellman

equation in discrete-time can be represented as

0= min(r(x,,u,) + 7 (x,,) V" (x,)) ©)

Assuming that minimum on the right hand side of (3) exists and is unique, and

then optimal control policy can be derived as [7]

UZ — _lR—lBk aV (xk+l)

10
2 axk+1 ( )

Substituting optimal control policy (10) into Bellman equation (9), discrete-time

(DT) HJB equation with optimal control u, can be expressed as

oV’ ov’ . .
0=x;0x, +%MBZR_IBkM+V (X)) =V (x,)

Xy Xy (11)
For linear systems, value function (7) is taken as a quadratic function of state

vector [7] given by
V(%) =x{Bx, (12)
where P, is a positive-definite kernel matrix. Substituting (12) into (11), DT HIB

equation becomes Riccati Equation (RE) given by

0=A/[P,,~F.B,(BP

k= k+1

B, +R)'B'P

k= k+1

+1 ]Ak + Q - Pk (13 )
with P, becoming the solution of the Riccati Equation. Meanwhile, optimal control

input can be expressed in terms of £, and system matrices as

=B, BB, +R)" B/ P, Ax, (14)
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Traditionally RE (13) is solved backward-in-time and optimal control input (14)
is obtained by using P, and system dynamics 4, , B, [7]. For linear systems with

uncertain system dynamics, solving (13) and (14) is a challenge. Instead, in ADP, policy
and/or value iteration algorithms [6-7] have been implemented to approximate the value
function (12) and subsequently to obtain the control inputs based on estimated value
function using (10) so that system matrices are not needed. However, with policy and
value iteration-based schemes, it is not clear how to select the number of iterations
required within a sampling interval for convergence and stability while meeting the
hardware constraints. Inadequate number of policy and value iteration can lead to
instability [15].

Therefore, to mitigate this drawback with policy and value iteration-based ADP, a
time based value and policy update scheme will be proposed to solve stochastic optimal
control of NCS under TCP or UDP. This proposed scheme works in forward-in-time
manner and does not use an iterative methodology and known system dynamics as will be

discussed in the next section.

C. Representing System States in Terms of Measured Output and Input Sequence Data

Similar to [26], NCS states can be expressed by using available measured data i.e.

current and historical input and output sequences. Consider the NCS dynamics (3) as
Zpy = Az, + B, y, =T,z where (4,,,B,,)is controllable and (4,,,I,) is observable.

Zi

According to observability property of (A4,,I;), the full system states z, can be
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reconstructed by using observations of NCS output y, over a long-time horizon. For

current time k£ , NCS dynamics on the time horizon[k — N, k] can be written as

Uy
k=1 k-1 “1:72
Zk = AziZk—N + sz—l Azk—lek—Z o ( zi)sz—N . (15)
i=k-N i=k—N+l :
Uy y
0 I B, . I A B r ( T4 jB |
[ k=2 ] k-1Pzk2 L1 Az2Pz3 0 Ll zi |Pzk-N
Vi1 L i:HNAzi t:kk—_l\3/+l U
k=3 0 0 I, ,B ST A, |\B ¢
J’kfz _| T, T4, P k-2Dzk-2 kZ(ikgvﬂzz) k-N u,(._2
. SN . . . . . :
Yi-n r 0 0 0 v L vBaw Uy _y
L k=N _
0 0 0 0 |
Defining controllability and observability matrices of NCS as
) =
Fo =\ By Ay Bosy - ('_kgfzi)szN
16
, k=2 r k=3 T ; ! (16)
Hy, = (Fkl HAZ[) (sz HAZJ o Dy
i=k-N i=k—N

Meanwhile, Toeplitz matrix of Markov parameter and the available measured data

(i.e. input and output sequences) over time horizon [k -Lk-N ]can be defined as

k-2 ]
0 T, k—lek—Z rk—lAzk—2sz—3 Fk-l( HAzi)sz—N

i=k—N+1

k-3
0 0 L k-szk—z o Fk—z[ I1 Aziszk—N

i=k—-N+1

|
0
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Vi Uy
_ u,
v =" [and u,, = 2 (17)
Yi-n Uy y

Using (16) and (17), (15) can be represented as

k-1
zp= 1Az v+ Fou,_,
i=k-N (18a)

Yoo =Hyz, y+Gru, (18b)

o

Since(4,,,I,)is observable, there exists an observability index/such that Hy, is
full rank when N > /. Therefore, let N >/, then left inverse of H}, is given as
(H3)'" = (HyHY,) ™ Hy (19)
Multiplying left inverse of Hj, on both side of (18b), then
z, v =Hy)'yr, —(HY) Gyu, . Substituting z,_, into (18a), NCS states z, can be

expressed as

k-1
% = _A{lzi[(H;k )" Vi —(H5) GRu I+ Fou,

i=k

(20)

k-1

k-1 T
:( NAZ[ j(HX/kyy:l +|:F]\{,]k —[i_k A, )(vak)*G;k :|llk1

i=k— N

= Dyy;c—l + Duuk—]

I 22

uk—l

k-1

T4, o and 0 = -

k-1

A ) x(H3,) Gy, - Also since
-N

Zl

where D;’ =(

i i=k
(A,I;)is observable and N>/, D} is full column rank and left inverse of D] can be

expressed as
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(Dy)" =(D; D))" D 1)

On the other hand, it is important to note thatHD;’

< D,,and D,, is known since D}

is composed by NCS dynamics 4., B,,,I, which are bounded as |4, < 4,,,

sz

<B,,

|| <T, and 4,,, B,,,T,, are assumed known.

III.OPTIMAL CONTROL DESIGN FOR NCS UNDER TCP

In this section, observers [12] and ADP [17] are used to derive stochastic optimal
control of NCS under network protocol such as TCP with uncertain system dynamics due
to unknown network imperfections. First, a novel observer is designed online to estimate
the augment system state vector at the controller. Second, we estimate the unknown value
function for NCS with network imperfections under TCP. Third, a model-free online
tuning of the parameters of observer and value function estimator by using ADP method
incorporating the observed augment system states is proposed. Eventually, the
convergence proof is given.

A. Novel Observer Design for NCS Under TCP

An observer or estimator is normally utilized when certain states are unavailable
for measurement. However, the observer design for NCS requires the knowledge of
system dynamics [12], which is unknown due to the presence of unknown network
imperfections such as packet losses and random delays. Therefore, in this section, a novel
observer is proposed to estimate the system states online for NCS under TCP by relaxing
the need for system dynamics and network imperfections.

The observer design, similar to a [12][24], can be separated into two steps: 1)

Innovation step where the system states are predicted based on current and previous
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system information (e.g. system outputs and control inputs); 2) Correction step where the
estimated system states obtained from the innovation step in the previous time interval
are adjusted based on current measured system output. Next, the details of novel
observer design are given.

In the presence of TCP, the system states z, can be estimated at the correction step

of time instant, k7, , as

2k\k = Elz, |l//k] = E[lngMk—lsAk—l|nk—l 1+KY,, (22)
N 70 |
~yk 0 v,
where Y| = ylf_l , M, =] R : | and I" is a mxn identity
5 0 v, 0
k=N+1
0 0 - 0 o]
matrix, v, =y, =V, , Ek—l\k—l :Zk—l_ék—l\k—l is the correction step estimation error at

(k=DT, , S,=ay ., a =Bz u w1, with o | <V, , and

s, =Ellz ukT_l]T|l//k_1] +n,_ since E[EI{T_M k_1|wk7,] ,M, are known at time k7, 19k is the
estimated parameters for the observer and n, is independent and identically distributed
white Gaussian noise (i.e. n, ~ N(0,0; ) where o, is the variance of white Gaussian noise
witho, #0), and. The observer design is detailed using the two mentioned steps.

a) Innovation step at time k7 :

In this step of the observer design, future system states Z, ., can be predicted as

k+1|k

= E[Z ‘//k] = E[ngMk§k|nk]+ Koyzfl (23)

Zk+l\k k+1
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According to (20), Z,, can be express as zk‘k D)y, + E[Q,(TMk§k|nk]. Since

desired system state vector is given byz, , =9 M,s, , the prediction error €.y 0 this
step can be derived as

Zistlke = Zient T Zpalk

_ (24)
=[U. -,(D)) 12, +[1-x, (D) 1ELS;

]

where U, =diag{A4.,1,,---1,} € RO+@-Dmx@+@-1m) g i the observer

m’

parameter estimation errorg;c = 19—9k. Since U is composed by A and identity matrix,

v 1s also known. Therefore, x, is designed

as x,=(U, —n)D, where |U|<U, and 0<7n< L . Meanwhile HUZ — K, (D)) =

V2

U. = Uy —mD, (D))"

b) Correction step at time (k +1)7.:

Now define the update law for the parameter vector 9k of the observer as

M S (Vew =2 )
3 =8 +aE L (25)
(M Sk k+l) M SA]—;cH +1
Substitute (3) in (25), 9k+1 can be expressed as
n n M.s F+ .
'91{+1 = '91{ +ao}/k+1E - ]‘k | (26)
(MS k™ k+1

where ¢, is the tuning parameter satisfying 0<a, <1 . Meanwhile, observer

parameter estimation error dynamics 4, can be represented as
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§ :g —ay E Mk§k1_;f+13kr+1\k |
o ‘ oo (Mk§kEc+1)TMk§kF +1

k+1

n, (27)

Eventually, at time (k +1)7 in the correction step, the observed state §k+1\ +,and the
estimation error dynamics Ekﬂ‘ .. 1n this step can be expressed as
2k+1\k+1 = E[Zk+1 l/jk+l ] = E[19:+1Mk§k |nk ] + Ko,yZ—l (28)

Zistlkrt = Zhent T Z gkt

=[U, —«,(D})" Ey, +[1-&,(D}) 1ELI,M, 3, |n, ]
Next the convergence of observer parameter estimation error vector §k and
observation errors Ek‘k is demonstrated. Before convergence proof, the following

assumption is needed.
Assumption 2 [12]: (Observability) In order to meet the observability criterion,

critical arrival probability of packets between the sensor and the controller need to be in

the region [12] defined by P(y, =1) > NL where P(y, =1)is the arrival probability at the

0

controller and N, is a finite positive constant.

Remark 2: This assumption implies that a broken communication link is not
present between the controller and the system which in turn ensures that there exists at
least one packet that traverses through the network so as to observe the system states.

Theorem 1: (Convergence of observer parameter estimation and errors
dynamics): Let the proposed novel observer, estimation errors and parameter vector

update be defined by (22), (24) and (25) respectively. Under Assumption 2 and TCP,
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2 2
there exists positive constant «, and n satisfying 1w =t | o =3 <o:0<l Yo !
2 2o +1 V22 D 2\ L #1

1

\/ - - such that the estimation errors Z,
U, -D°2+16a, +32c)

2 p—
+ 1%3 and0 <7 <
2(Zin +1)

and parameter estimation errors §k (27) converge to zero asymptotically, where

Ko <[TeaMS
Proof: Consider the Lyapunov candidate function L, =L.+L, where

- I
=t Zl andL, =14r{ ¥ 9" 3 with= = 1 is a positive definite
. kZNO =il LE W)U, -1 P

matrix with I being an identity matrix. Then the first difference can be expressed as

AL =AL.+AL, . Now take first term L. (ie. AL =t Z z+l‘l+1'_‘

i=k—N,
k
ZH‘M}—W{;Z‘, Nlﬁ'" l‘l}) Using (27) and (28), and

Applying the Cauchy-Schwartz inequality reveals

k k
T
AL~ - ZT{ z l+l‘z+l z+1\z+1} ZT{ Z l‘l "’}
k—N i=k—N,

i= 0

=tr{ Z {U. —x,(D;) 12, +[1-x,(D;) JE9L M 3,

xZ{[U, -k,(D})" ]Z,\, +[1-x,(D)" ]XE[19+1MS NT"N }
S2Etr{i:§v k(D) TEZ, U, k(D) 1}
Yo Y B M3 [1-K,(D)) T

x[1=x,(D)) 19, M5 |n 1} - Zir{ z EIES (29)
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- 2
[ -,
l‘l

[§iMiMiTSiT |nz }17'{19 19 })

i+1 70+

<3 z|u,

tkNO

i=k—N

2 k k o
<-0-28 3 [l +2 3 (i-x, 00y .90
i=k-N, i=k-N,
k
<1-22 3 [E] 42 X (@, -n-0 s el g
i=k—N, i=k—N,

Next, according to parameters estimation error dynamics (27), the term AL, can be

derived as
AL _14W{ Z :+1 :+1} 14”{ 219 19} (30)
i=k—N, i=k—Ny
14 S {8 M5 L | ) (9,
= =Y.
i=k—Ng ' 07/”'1 (M, i ,+l) M! i i+l +1‘
Mtslj—:H ti]‘l | 14 575
— ) —14mr&. &
aoytﬂ (M S, r ) Mi i1—:‘+1 +1‘n‘ )} { | I}}
k ~r~ k
=14 Y{r{9 3} -28tr{ Y (e 1,
i=k—N, i=k—N,
E Mszrz+lzz+l\z | 19 14 Z
+ 14tr a
(MS l—‘H—l) Mz i i+l +1‘ ) } {l k_( yHl
I M Sll—‘l+lzl+1‘l |
X E ,' )T(a07i+l
(Ml ; 1+1) MsI,, +1
MSF;HZIH\I | ] & GT g
‘E )-140r{ $37)
(M S; 1—‘1+1) Ml i i+l + 1‘ i=k=Ny

Substituting (24) into (30), AL, can be expressed as
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.9 Ms I (M.s 9
AL, <14 Ek:{—ZaJmti’{E S (M L) | b
i=k—Ng (M, i ,+1) M,Szl—;ﬂ +1 ‘
.9TM,S,F,+,[U -x,(D)) Tz,
_2 ztr{a l+1 ni
i=k—Ng (ML i :+1) Mtslj—:” +1 ‘
U, -x,(D))1ZZ,[U, -
+2 Sirfaly’ E - &
i=k—Ny (Ml i l+|) M1S1E+I +1 ‘
3 MsIT (M.s 3
+2 Syl E L “f o) | }
i=k—N (ML i ,+1) ML i 1+1+1‘

=

<14 Z{ ayHZT{S 9}+2a y {83}

i=k—=Ng

53 (31)
+2a,y. r{E i + Yoy, (+2a,y.,
0}/’+I { {(Ml i l+1 ) Ml i i+1 + 1‘ }} } = kz: 0 7/’+ ( 7/‘ 1 )

[[Uz— (D)) T EZ U, ~x,(D; ]
xtr{E n,
(M,sT,) Ms T, +1 |

iTiT il

k 2 ~ o~ k
_14ao ':kZ—:N{}/Hl (1 - a(;}/iﬂ - 2 + l)tr{‘ng"gz} } + 14aa ':I;N}/Hl (1 + 2a07/i+l)

0

[U.-x,(D)) T'Z[Z,IU. -

l‘l ‘l

n |}
(MsT.) MsT ., +1 |

0T il

XZT{E{

< l4a, Sy . (-ay. - ﬁ)uﬁi [ +14a, ¥y,,0+2, ;/1))([{7—:_1”? I

i=k-Ng i=k-Ny
Finally consider the overall first difference and using (29) and (31), AL, can be

expressed as

AL = AL + AL,
=il ¥ Z ol X EE e $909.0 14 £973)

i=k—Ng i=k—N, i=k—Ny

<1-272 1 [ [ 2 & (W, =1~

i=k—N,

81941 (32)
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o S e N w02

i=k-N, i
Since packet loss indicator y,,, can be equal to 0 or 1, AL, (32) needs to be

separated into two different cases for further consideration as given below.

Case 1:y,,, =1 (No packet losses).

Substituting y, ,, value into (32), AL, can be derived as

AL = AL + AL, (33)
g_(1_2772)5i:év0 “E‘H +2i:§% W, - 8.
+14' i{ —a07i+](1—0507i+1 )HSH +0‘071+1(1+2ao71+1) H z\z
i=k-N,
<-(1-27")E|Z,, 2 +2(U,, —n-1)° en
2 ymp 7 s P
~l4a,(1-a, —ﬁ)uskﬂ +14a, (1+20,) 5 [F,,
-2
(o DU, ""‘H
Fa 1420 H z,| ~14a,0-a, - )HS [ +14a (+2a) - H Zo

Toin

_(1—772(U -1)*(2+16a, +32a)) ||~
(Zmin + DU, =1)°

" (16a ("““_l—aa>—2>\\@\\2

Zilk

Case 2: y,,, =0. (with packet losses)
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Based on Assumption 2, packets lost probability between the sensor and

controller has to satisfy the observer stability region (i.e. P(y, =1)> NL). Therefore, if
0

7ia =0, then there exists jelk-Ny.k] such that ., =y, ==y, =0 and y,_, =1.
Therefore, using update law for observer estimated parameters (25), observer parameters

estimation errors 9, can be expressed as&,,, =& ;. Then, substituting 3, =9, ; into

(32), AL, can be derived as

AL =AL.+AL,
<-a-22 % [ +2 & Wy ==V M3 2G5
i=k—N,
14 Sa -z, -———|B] T A e H AR
i=k=N, ;(ml (34)

< _(1_2772)5 i HZ‘\;‘HZ +2(U,, _77_1)2“Mk—j§k—j“25tr{§;c{j§;c—j})

i=k—N,

—14a0(1—a0—Z s o

min

\ +14a (1+2a) +1, 2, H

(1-27°)
(DU, -1 .

“ —-l4a,(1-a _12,2”)“5"!'1H2+2(UM_77—1)2

*“Mk—j§k—.f“23” {9, .9, ) +14a,(1+ 20, )

+llkNH

(1- 277) H 2 277a(1+2a) H
(;( +1)(U,, —1)* i=iw, 7o+l N,
2 -
2-ama, ol vl |
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2

+14a,(1+ 2, )

et

_(1 n'U, -1)’Q2+16a, +32a’ ))
(Zoin + DU, —1)°

k—j-1

‘2

[, -6 (“““:—a) 2|9

Since ZE is defined as = = I ande, ,n are positive constants which satisfy

2

Y, +1
2 2 2 2 _
l Zr;m 1_ ijzn 3 < ao <l Zr;m 1 + Zmlzn 3 and
2\ X 1V 202 +D) 2\ Hin +1 2(Zin +1D
1 . . .
0<n< , then according to (33) and (34), AL, is negative

JU, ~1?@2+16a, +32a7)
definite and L, is positive definite. Therefore, observer error dynamics Ek‘ , and its
parameter estimation errors §k for NCS under TCP are asymptotically stable in the mean

for both cases. In other words, ask — oo, Ek‘k — 0Oand §k —0.

Next, stochastic optimal control for NCS under TCP with estimated system states
Ek‘ . 1s proposed by using the value function estimator.
B. Value Function Definition for NCS Under TCP

Consider NCS under TCP with network imperfections represented by equation (3)

where ||A k” <4 < B, and |e || || denote the Frobenius norm. Given NCS under

sz

TCP with a unique equilibrium point,z =0, on a setQ, minimizing the stochastic value
function ¥, (z) (5) renders the stochastic optimal control input asu =-K,z, where K,
being the optimal gain. According to [7], the stochastic value function can be rewritten as

V(Zk) E[z PZk|l//k (35)
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with B, > 0is the solution of the SRE [5]. Then we can define the optimal action

dependent value function in terms of expected value as

v (z,)=E{[r(z;,u) + v (Zgs )]|Wk}

T T 7T (36)
=E{[z; u 10[z, u;] |‘//k}

with cost to go defined as (z,,u,) =z, Oz, +u/ Ru, . Then, similar to [18], using

Bellman equation and stochastic value function, substituting value function into the

Bellman equation results in
T

Zk Zy .

{ } E(®k|l//k)|: } = E{[r(z,,u)+V (Zk+1)]|l//k}
Uy U
T

_ |:Zk:| O+ E(Asz])kHAzk ;) E(AszPkHsz ;) |:Zk:| 37)
U E(BszP/m Ay R+ E(BszP/msz W) | Uy

Therefore, E(® k|l//k) can be expressed as

) = |:§kzz ékzu:| - O i E(AZk k+1 Zk '//k) E(Azk k+1 zk Wk)
E(BLP,A,lv,) R+E(BLP, B,lv,)

abind,
(38)
Then, according to [5] and (38), the optimal control gain for NCS under TCP can
be represented in terms of value function parameters, @k ,as
K, =[R+E(BLA, B,

vl EBLFaAuly) = (0;") O (39)

According to optimality [7], since K is the optimal control gain,

forall k(ie. [K,[<K, ).

It is important to note that even if the kernel matrix £, is known; solving time-

varying optimal control gain still requires slowly time-varying system matrices.
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However, if the parameter vector ®, which is slowly-varying can be estimated online,
then system dynamics are not needed to calculate the optimal control gain.
C. Model-Free Online Tuning Value Function Estimator

In this section, when the value function (35) is estimated online, matrix ®, is
obtained which in turn is used to derive stochastic optimal control inputs via (39) without
the system matrices. By assuming the value function, V*(Zk) , can be represented as the
linear in the unknown parameters (LIP) and according to [5] and (35), the value function
is given as

Vi(z) =900, = @T@ (40)

with 6, =vec(®,) , o, =z u(z)" e Robm=L and @, =(
Dhioeees PirPugs Piaseees Py 1P » @) 18 Kronecker product quadratic  polynomial stochastic
independent basis vector [17] consisting of current state and past control inputs, vec(e)
function is constructed by stacking the columns of matrix into one column vector with
off-diagonal elements [17]. Since matrix ®, can be considered as slowly time varying,
value function can be represented as a function of target unknown parameter vector and
regression function ¢, .

Meanwhile, value function can also be represented in terms of ®, as

Vi(z)=0,00, =69, (41)
Since the observed system states Z,, are only available at the controller, the value

function with observed system states can be expressed as

V. () =000 =60 (42)
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where @] = [Ekr‘k u; ] and @ is Kronecker product quadratic polynomial stochastic

independent basis vector of ¢, .
Next, we will derive the residual errors by using the Bellman equation. Normally,

the Bellman equation can be rewritten as V, (z)-V, (z)+r(z,,u,) =0. However, this
relationship does not hold when we apply the observed states ék‘ , - Hence, substituting

observed system states into the Bellman equation, the residual errors V*(ék\k)_V*(ék—l\k—l)

. PR o :
+r(zk_1‘ w1-U) = e, . It is important to note e} is caused by observer error dynamics €k

and can be derived as

e = —E,LMHPA AN -2z N +2€W(PZ Zk‘kP Zy +2Z] 1192 —N,{TI‘,HQ'ZVH,F1
+2(A, %~ Zg) BAA, ~BLK)E (4,7 ) P.(A,%
=-Z,_ W lP Z,. o -2z, m Pz, +2zk‘sz Zk‘kP Zyi +2§k_]‘k_lek_1 +ZkT_1\k_1QEk_1\k_1
+2zZ,_ l\kl !P(A, -B,K,)z,  — ZZk‘kPZ +2Zk\kPAszk jia 2, 1“ ALPAZ
-2z k\kPAka et +Zk‘szk‘k
2 (B~ Q= AL B (A, ~ B K )2, +3),, (O P+ ALPALE, .
23[% (P —Q-A P A, +A,PB, (B.PB, +R)'B,PA,)):,

(O-P  +APA. )Z“‘“
kl\kl( _Br—l)ék—l kl\/ 1(Q P +A PAzk)Z

2k k\k #Z k1 Zk\k)

ES kl\kl

kl\A]

k=1]k-1
= Ekr—l\k (O-B_ +ALRAZ, k-1 (43)
In other words,

(e;)z < (Ekr—l\k_lozk—l\k—l )2 (44)

<P, and O = Q|+ P, 4;, which will be

used in the proof of Theorem 2.
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Next, the value function estimation with observed system states will be

considered. First, value function with observed system states Vk*(f) can be expressed in

terms of estimated parameters 6, as
V(QA‘k) = ¢:T§k¢: = ékTake (45)

where 67,6 is the estimated value of the target parameter vector 6, defined before.

Substituting (45) and estimated system states into Bellman equation, the equation
is not guaranteed to hold. By using delayed values for convenience, the residual error

associated with (45) can be expressed as

e: + 6: = V(2 ) - V(ék—l‘k—l ) + r(ék—l‘k—l ’uk—l) = r(é/ﬁl\/ﬁl ’uk—l) + ngA@: (46)

K|k
where Ap,” = ¢ — @, is the first difference of regression function and e; represent

estimation errors.
The dynamics of (46) can be expressed ase],, +e;,, = r(ék‘ )+ 08 AP . Next
define the update law for the parameter vector 0_,( as

A

~ AQS (e +el)'
0..=6,+a, A—keTk——ek
o, Apl +1

(47)
where 0 < ¢, <lis the tuning parameter for value function estimation.
Remark 3: It is observed that the value function?” (z,)and its estimation I}(ék‘ )

(45) will become zero only when z, =0and 2,(‘ . =0. Hence when system states have

converged to zero, the estimated system states Qk‘ , will also converge to zero according to

Theorem 2 and the value function estimation is no longer updated. It can be seen as a
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persistency of excitation (PE) requirement for the inputs to value function estimator
wherein the system states must be persistently existing long enough for the estimator to
learn the optimal value function. Therefore, exploration noise is added to NCS in order to
satisfy the PE condition [18].

Next dynamics of parameter estimation errors of the value function can be

expressed as

) = Ap( (e + eZ)T
0..,=06,—¢,

48
L ApTAQS +1 @)

Then, the convergence of the value function estimation errors with parameter

error dynamics@zk given by (48) is demonstrated for an initial admissible control [10]

policy. It is important to note that slowly time-varying [21] linear NCS is asymptotically
stable in the mean if an initial admissible control can be implemented provided system
matrices are known. However, proposed estimated value function with observed system

states results in estimation errors for the value functionV,, whose stability needs to be

studied. Therefore, Theorem 2 will prove the value function estimation errors converge
while the overall closed-loop system stability is shown in Theorem 3 with an initial
admissible control policy.

Theorem 2: (Asymptotic stability of the value function estimation errors). Given
the initial parameter vector @, for the value function estimator to be bounded in the setQ,

letu,, be an initial admissible control policy for the linear NCS under TCP (3). Let the

observer parameter update law be given by (47). Then there exists positive constants

2Af,

<——"mn _ withO<Ad. < |A@S
3(Agl, +1) < |29

a,,a, and n satisfying 0 < ,

,and Ag, ;. is the lower



173

bound of |Ap;

2 2
0<n<s ! > ,Zm+1<ao<Mand such that the
2(4+276a,(1+6a, +9a)) " 72 36

value function estimation errors for NCS under TCP converge to zero asymptotically,

2 ~ |12
where g, < [T M3,

Proof: Consider the positive definite Lyapunov candidate

L,=L,+L, (49)
where L, =0, 110, and L, =276t{ $9".8 97,8 }+1rf
i=k—Dy
k .
z Zi—l‘i—lzi:‘i—lAE[—I‘[—IE:IM—I} with A ! | and

-, T (U, ) (P 1 1)
(A +1)

= > ~Tand are positive definite matrices, I is identity matrix and
46{110 (me +l) (UM _1)

Vk =1,2,.... The first difference of (49) is given by AL, =AL,+AL, . Since Lyapunov
candidate function (49) includes observer parameters, we have to separate the proof into
two cases similar to Theorem 1.

Case 1:y,,, =1. (No packet losses)

Using (27), (28) and (48), AL, can be derived as

AL, =AL, + AL,
~ Aa,ﬁ(ea +ea)T , ~ Aae(e‘,l +ea)7‘
:tr{(ﬁk—a,7 %) H(eA _ah%
Ap. Ap. +1 Ap. Ap. +1

4

V-0, 116, 1+ Az, | (50)

Zk\k

191(

9

A, | +2768 ] ~276
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(ef +e)Ap,”
aeTAake

Ap/ (e, +e; )

StrgTﬂg —a,tr
{k k} {( aeTAae_‘_l

)170} a tr{h T1( )}

ApS (el +e))" )TH(A(ok (e,c +e/)'

+a’tr
el A(ﬁ AP +1 AP ApS +1

)} — {0 170, } + 44|,

/1\1(1

Zk—l\k—l —3a 2) ‘9

k-1

Sl -4

6
—276a,(1-12a, — —2
X min +1

+276

kl\kl

(Lo 1)’
Ap/ (e +e])'

Api (el el AB (el 1)
—eTA—e
Ao A +

< 2a,tr 6? Vi
{ ( (5”41(5; +1 A(peTAgﬁe 1

Dita Hr{(

)}

1
1-4n* -276(U E % _3a2)-1)9
(DU, - )( ! (O ' " Xmtl .

xa,(1+6a, +9a2)n")|z

kl\kl

(0, Ap; +e))Ap." [TAp; (¢} + 49,"6,)
(4o Ap; +1)°
1
(oAD', -
x(1—4n* -276(U, —1)'a,(+6a, +9a ')z

0, Ag; +e)[IAG,",

<2a.tr ol
h { A(EeTA¢ +1 } h {

}

— 4(70c, (1

kl\/\l

+2a;17tr{%}<—2a 140 110, - 2a ”{%Hza 40 110,
A, Aco +1 Ap" Ap; +
0, ITi _
+20 ﬂ’{_r—_ 3 O!j _1) ‘gm 4 ) 21 2
ApS Ap; + X +1 Zow *D° U, =1

x(1-4n*-276(U,, - 1)’ a,(1+6a, + 9 )|z,

‘4

2 1]k-1
g )
< 20,1107 116,} —2a tr{%}+2a {0, 110, } + 2 tr{—_ff")_e
AP Ap; + A Ap; +1
6. 116, 6 ~ 1
20, {2y~ 4700, (1- 120, ——22——3a2) - D3| - ——— 2
A¢mm +1 O-O +1 (Zmin + 1) (UM - 1)

x(1-4n* -276(U, -1)’a,(1+6a, +9a’)n*)le

k=1k-1

e HAqo,fTG

T} can be
Ap” Ap; +1

According to Cauchy-Schwartz inequality, the term —2a,tr{

derived as
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m eTg 0\2 ETA—em—eTg
{%} < ahnﬂ’{_(Tek—)_} +a,r{—* _qpkf _(Dk ‘
Ap. Ap; +1 A9, Ap, +1 Ap Ap, +1
<o, 11—+ 00187 176 (51)
AP +1 '

Substituting (51) into (50), AL, can be rewritten as

AL, = AL, + AL,

~ ~ 1 =~ =~ = = 52
~2a,1r{0] 110, } + mﬂ(@f Y rae@ g 20 gy Y
:TH’:‘ _
20 1) 3 }+2ahw{u}—4(70aa(l—12ao - f“o —3a)-1)3,
A¢m1n + 1 A¢min +1 zmin + 1
1

—(1-4n" =276(U,, =)’ a, (1+ 6a, + 92 "2,

kl\kl

(LD, -

4

2 17
)tr{t9 " 116, }_,_&

2
<-a,2-3a, -
A¢mm + A¢mm +1

Zi 1[k-1

6a

— 470, (1- 120, ———2 !
me

Loin + D' (U, =1)°

-3 0fa

x(1-4y* =276(U,, ~1) e, (1+6a, +9a>)n )H

Zk- k- 1”

2 ~ 2 1 ~ 6

<-a,(2-3a, -——)1|0,| +—— [z | - 4700, 1~ 120, -2
A¢min +1 2(Zmin + 1) (UM - 1) Zmin +1
2 1 4

-3al) _(Zz- +1)2(UM Y (1-4n" -276(U,, -D'a ,(1+6¢, +9a mH\Z, Ze i

2 ~ 2 6 -
<@, - — 4(70a, (1- 1201, — — —3a)) D9,

min + Zmin +

1
_(Zrzmn"'l)z(U 1) (5—477 -276(U,, - D)'a,(1+ 6, +9a)n*)|Z,

Zi i

Case 2: y,, =0.(With packet lost)
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Based on Assumption 2, packets lost probability between sensor and controller

has to satisfy the observer stability region (i.e. P(y, =1)> L). Therefore, ify,,, =0,
NO

then there exists j €[k—N,,k]such thaty,,, =y, ==y, ,,, =0andy, , =1. Therefore,
using update law for the estimated parameters of observer (25), the observer parameter
estimation errors 9,

.., can be expressed as §k+1 = 9;{7 ;- Then substituting @m = 5,67 ;into

AL, , we have

AL, =AL, + AL,
~ A—e a oN\T ~ A—e a oNT ~ ~ 4
(0, -0, 280 g g A0 O) L Grimpyea 3 (59
Agoke A(pke +1 A(ﬂ: A(pke +1 i=k—Ng Il 11
-4 3 [z, 216 2 8] -276 3 |8
2 =2 60( 2 ~ 4
< _ _ = _ _ _ o _ _
<-a,(2-3a, v 0, ~4(710a,(1-122, Py 302)-1)9 .|
- ! 4t — 276U, 1) ar (1460 +9a2)n") 3 s )
(zjﬁn + 1)2 (UM _ 1)4 2 M o 0 o i, i-1li-1
2 2 2
. . - +1 - +1
Since O<ah<% , ZL<050<7(L and O<n
3(Ag2 +1) 72 36
1 . . . . L
<4 Z >—, AL, is negative definite and L, is positive
2(4+276(U,, —1)*a,(1+6a, +9a>))

definite. Therefore, for the two cases, the observed system states Qk‘k, value function

parameter estimation errors&zk and value function estimation errors for NCS under TCP

~

are all asymptotically stable in the mean. In other words, ask — o, gk -0,z

i — 0, and

VE -V ().
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Next, it is shown estimated control input based on estimated parameter vector ék
will indeed converge to the optimal control input.
D. Stochastic Optimal Control Signal Estimation for NCS under TCP

Similar to [18], there are two ways to estimate stochastic optimal control signal
for linear NCS under TCP. One is based on slowly time-varying matrix @k , and another

is based on standard optimal control theory by minimizing the stochastic value function.
The main differences are that the later method needs the system dynamics and solves the
optimal controller backward-in-time. However, it is shown here that ultimately both are

equivalent and therefore are used in the proofs.

Method I: Slowly time-varying matrix ®, can be approximated by using
proposed value function estimation. Using (39), the estimated optimal control signal for

NCS can be expressed in terms of estimated ©, as

i, =Kz, =~6,")"'0,"%,, (54)

k< K|k

Method II: Alternatively, estimated optimal control signal that minimizes the

estimated stochastic value function (41) with actual parameters @k is given by

LG
Y S A

Py Vi

k+]k+1

(35)

whereV(2,,) = E(¢{' 0,0

v,).

Next, it will be shown that optimal control input obtained by method I and II are

equivalent.
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Lemma 1: The estimated optimal control obtained with the value function
estimation of V*(Zk) is equivalent to the optimal control calculated by minimizing the
stochastic value functionV, , i.e.i, =i, .

Proof: Using the Bellman equation and estimated value function with matrix @k ,
we have

V@) +el +ef =r(Z,, u(G, N +VE, ) (56)

Now consider (56) and

1) The left part of (56) can be expressed as

A T ~ A T~ . A
5 A o R T = 2 | ] Fue 605 67 Z ik
o L8 & L) @

2) The right side of (56) can be shown as

r(ék\k’“(ék\k))+ I}(ékﬂ\kﬂ) = r(ék\k ’u(ék\k »+ E(¢I§Il®k+l¢lf+l|y/k)
= (ék\k ’ u(ék\k ))+ E((Azkék‘k + sz”k)Tﬁ;m (Azkék‘k + B, )|V/k)

Ll iy

(58)

J{ Z }T EA;[}HAM% EA;f:;lBZkh,,k { 2 ]
M(Zk\k) E B;EmAzk |l//A E B:I;])k-Hsz |l//k u(fk\k)_

‘/’k)+0 E(Asz]skﬂsz ‘//k) 1 Ek\k :I
Wk) E(Bszﬁkﬂsz ‘/’k)"‘R _u(ék\k)

. r .
:I: Zile } |:E(Asz])k+1Azk

u(ék\k E(BszéHlAzk

According to (57) and (58), (56) can be derived as

A T~ 2 A

Z zZ zZu Z
K|k ® ® K|k
UChe)] | ©F O | ¥\
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:I: ék‘k }T[E(Azrkﬁ/f+l’4zk|wk)+0 E(Aszf)kuszh//k) :l{ ék\k )}

u\z E(BszPkJrlAzkh//k) E(Bszéﬁlekh//k)-i_ Ry 2""‘

Kk

Hence,

A T o 2 A A T
Zklk O O | Zuk | | Zuk
[“(Qkkﬂ {@Z‘Z @Z’“L(@kﬂ ) L‘(QM)}

B4’y )v0  EALB.Bw,) }{ B }_ .
XI: EkBiéc+1;zker) E(BszénkBlzkh/ik):R u(ék\k) GG

= 2""‘ _T{E(AszécﬂAzkw/k)-"O E(Azz;cﬁkHszh//k) :l{ ék\k }
u(fk‘k) EBZTkéfHAszk) EBszémszw/k +R u(ék\k)

7 e t+e A
— = 0| Zy
e )

i 0 0 Kk

:{ ék\k } {E(ATP/( 1Ak|‘//k)+0_ % +€Z E(Azrlféf+lek|l//k) }{ ék\k )}

trizy 2w
EBLE. Al E(BLB.. By, )+ R

U\Zy

And
4 o] st o- S bl ](59)
~ 1~ k\k k\k
@/ @k E(BkPklA |l//k) E(BkPk 1B |l//k)+R
where
@ :E( AL klAzk|z//A)+0 n:ZJre}
klk™ k|k
o7 =El42,B,ly,) (60)
5 =E< & klAk|l//A)l//k
5 :E( zk le |l//k)+R
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According to the estimated optimal control law (39), we have
u, = (@“”) '©“2,, which is expressed by using (47) as

k k\k’

= {E(B}P,

& k41 J\T V/k)+R] E(BzA k+1Azk|l//k)2k\k (61)
At the same time, according to the optimal control theory [7] we define

I}kﬂ (2)= E((Azkfk‘k +szuk)TPk+1 (Azkék‘k +szuk)|z//k). Therefore, we can minimize the

stochastic value function to get the optimal control as

0z

k+]k+1

= —RilEI_sz P, (Azkzk\k + szMZk ]l//k J

R (62)
= _RilE(BszBmAzk Vi )Zk\k - RilE(BszPknsz Vi )22k
The term iZ,, can be solved by (62) as
([ +R'E (Bszf)kusz Vi »’;Zk =—R'E (Bszf)kJrlAzk Vi )2k\k
(R +E (BszﬁkHsz Vi »’;21{ =-F (Bszﬁkquk Vi )2k\k
Uy, = (R + E( e+ )) E(B Pk+1Azk Vi )2k\k
R R (63)
_[R + E(BszPkHsz Vi )} E(BszPkHAzk Vi )fk\k
According to (61) and (63), we have
Uy = —@Z")Aéﬁk\k
(64)

= —[R + E<Bsz]3k+1sz Vi )r E(BszP/mAzk Vi )2k\k =y,

Iy

Therefore,u, =u,, —u,, =0sinceu,, =u,,
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Since the equality in this lemma is both ways and noting the drawback of second
method, we use method I to solve the optimal control inputs for NCS under TCP.
However, we will use the Lemma 1 to complete the convergence proof because they are
equivalent. Next, stability of estimated stochastic value function and control input,
observation error and estimation error dynamics are considered.

E. Closed-Loop System Stability

In this section, we will show that observer errors, slowly time-varying parameter
and value function estimation error dynamics are asymptotically stable in the mean.
Moreover, the observed system states and estimated control inputs for NCS under TCP
will converge asymptotically to actual system states and optimal control signals
respectively. Next, the flowchart of proposed stochastic optimal regulator of linear NCS

under TCP is shown in Figure 5.
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Start Proposed
Algorithm

<
<

) 4
Initialization n
A

J,(z)=0,u=u,,3,=0,6,=0

Y

Update the adaptive observer parameters
A _ T A ~o
Shek T E[9; Mksk|nk]+ KoYi-1
~ A T
A A M, 5, (Vi _rk+1zk+1\k) |
=8 +a E — — n,
(M, 30" M5, +1 |

Y

Update the adaptive estimator parameters
4 a oA 2 A A
e, t+ep = Vk (Z) - Vk—l (Z) + r(zk—l‘k—l SUL_q )
5 5o AP+l
0 =60, +a,—— ———
Ap, Ap; +1

Y

Update control policy

A - A _ Luu —lLuz"
w=—K,z, =—(0,") 07z,

k=k+1,Vk=12,..

Update the time interval

Fig 5. Stochastic optimal regulator for linear NCS under TCP

Here the initial system states are assumed to reside in the set Q stabilized by using
the initial admissible control inputu,. Then, sufficient conditions for the observer and
value function estimator tuning gains ¢, ,, are derived to guarantee all the future states

will approach to zero asymptotically. Eventually, it can be shown that actual control

inputs converge to the optimal control asymptotically.
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Before introducing the convergence proof, the following lemma is needed to
establish the bounds on the optimal closed-loop dynamics while the optimal control is
implemented on the NCS under TCP with network imperfections.

Lemma 2: Consider the NCS under TCP, and then there exists an admissible
control policy such that the following inequality is satisfied

|Auz, + B | <k =] (65)

where 0 < k, <1/21s a constant.
Proof: Proof follows similar to [18] but omitted.

Theorem 3 (Convergence of Optimal Control Inputs): Given the initial conditions

for the system state z,,, observer parameter estimation vector 4, , value function parameter

VectorH_O are bounded in the setQ, letu,be any initial admissible control policy for NCS

under TCP in the presence of network imperfections satisfying the bounds given by (65)

for0 <k, <1/2. Let the observer, value function estimated parameters be tuned and the
estimated control policy be provided by (26), (47) and (54) respectively. Then, there exist

positive constants & ,77 given by Theorem 1 and 2, and «, given by Theorem 2 such that
the system states z, , observer parameter estimation error Vectorgk and value function
parameter estimation error Vectorgk for NCS under TCP are all asymptotically stable in
the mean. In other words, ask —>o0,z, >0 ,§k —>0,Ek‘k _)0’51\' -0, V(ék‘k) - V*(zk)and
Uy, —> U, Uy, —> U, .

Proof: Consider the following positive definite Lyapunov function candidate

L=L,+L,+I, (66)
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where L, is defined as L, =tr{z;Qz,} with Q= is positive definite

8B, K, (72 +1)

min

matrix, L, (32) with positive matrix Zis defined in Theorem 1, L, (49) with positive

matrices A,ITare given by Theorem 2 and1is identity matrix. The first difference of (66)
can be expressed as AL=AL,+AL,+AL, . Consider the first part

AL, =tr{z] Qz, ‘—tr{z/Qz }and by applying NCS under TCP and Cauchy-Schwartz
inequality, we have

ALD = W{Z;—l&kﬁ-l} - W{ZkT‘Qk}
> ) (67)
< 0|4,z +Bu, +B,KZ, -B.i| -

klk

2
<20z, + B[ + 4Q“sz[<k§ MH +40|B it | -z,

k

Using the Lemma 2 and recalling#,, = i1,, from Lemma 1, we know

~ ~ A iz A I - 81}(2k+1 k+1)
U, =, — Uy, =—(0,") 1®k Z |k +ER 'E Bszaé—‘l//k =0

k+1]k+1 (68)

Therefore, (67) can be expressed as

2

ALy <~(1-2k,)Qz || + 4B, | + 40 B,K 2 " 190

K|k

Ek\k
<—(1-2k,)Qz, | + 4B, + 4B} K3, H2

2

2 2 Luu -1 Luz A 1 -1 T 8VA(2k+l‘k+l)
<—(1-2k)Q|z,[" +408;,|-(©,)" 6,72, +5R E| B! "

k+1|k+1

+aB K0z, [

(69)

~

Zk\k

<—(1-2k)Qz,| +4BL KL
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Similar to Theorem 1 and 2, we separate the proof into two cases: 7,,, =1and
71 = 0as following

Case 1: y,,, =1. (No packet losses)

Combining (33), (52) and (69), AL can be derived as

AL=AL,+AL, +AL,
<~(1-2k, )0l [ + 48, 2.0, |

K|k

cwo3a—— 2 el —ase Kl )23
h h A¢§“ +1 k 0 Z;m_'_l 0 k
1—p*(2+1 20
{2 +16a, +33a,)) 2, -4(70a, (- 124, - ba, (70)
o, +1 o, +1
Bay-pfa [ o] A a2, a1 +6a, + 92 E, .
Xmn tD° U, =D 2

C(1-27°(U, -1’2 +16a, +3222))
22X +DU,, =1)°

~

K|k

<—(1-2k)z|

2

~(16a,(

2

2

2

2
=1 ol
Zr;# —a)-2)4
min Zmin +1
6 ~
-4(70a,(1-12a, - 2050 _30!02)_1) 3 = 2 21 4
e (i + U, -

X(l_4774 -276(U, —D)'a (1+6a, +9a’)n")
2 " ’ o

6,

-a,(2-3a, - 1)]7

Zk-l\k-l

Case 2: y,,, =0. (With packet losses) After applying Assumption 2, (34), (53)

and (69), we can express AL as

AL=AL, +AL,+AL,
2 2 2 Al P
<—(1-2k,)0z [ + 48, K5,z |
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2 = |I2 60!0 2 N 4
~y2=3a, — 6, —4(70a,(1-12a, - =3 I
- ! C_an —276, ~1) e (1 6c, +922)0") ¥ o
(o 1 (Uy =12 R L
2 12 2 ) 2 _ -
0r U0 C 16, 3m) & g Zan) o) o)
(2 +D)(U,, —1) = 7+l J
<—(1-2k)z, |~y 2~ 3a, -2, 2 (71)
‘ Agl +1
6a 2 ~ 4 1
—-4(70a (1-12c, — 3o )-D|G_..| -
(e (=t20, == 53 W | G v,
1 4 4 24y S |l 4
X(5=40" 276U, ~1)'a, (4 6at, +9a)0") X ...
(1-27°U,, -1)*Q+16a, +32a2)) & |- |2 72 -1 ~
- o 2% | =60, (=" _ g y-2)|3,_
0y 17 il 06 E e8|
2 2 2
Since  0<k, <l , max{l Zrin =1 | Zwin =3  Zmin +1}<oz <rnin{l
2 2| 2+ 202+ ) 72 ’ 2
2 _ 2 _ 2 2042
Zr;m 1+ Zmlzn 3 ,Z““"H} , 0<05h<—2¢ml and 0 <77 <min
T *1 20 +D) ) 36 3(Adnn +1)
{4\/ 41 —, ! y, AL is negative
2(4+276(U, —D'a,(+6a,+9a,))  [WU, -1))2+16a, +32a})

definite and L is positive definite for both two cases. It is important to note that

2AL,

k=ko

= |Lw — LO| < oo since AL <0 as long as (70) and (71) hold. Therefore, system state

z, , observed system state Ek‘ ,» observer errors Ek‘ . » observer parameter estimation error

Vector§k and value function parameter estimation error&zk for NCS under TCP are all
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asymptotically stable in the mean. In other words, for the two cases, ask —>,z, >0,

Zyp 210y > 0,89 > 0and 6, >0, then V' (,,) > V' (z,) and iy, —>uy 1y, —>u

K|k

IV.OPTIMAL CONTROL DESIGN FOR NCS UNDER UDP

In this section, stochastic optimal control of NCS under UDP with uncertain
system dynamics due to unknown network imperfections is derived by using a novel
observer and ADP [17] technique. Unlike TCP protocol, there is no-feedback
acknowledgement of received packets generated in UDP and therefore the development
of the controller design is different. First, a novel observer is proposed to estimate
augment system state at the controller by using UDP information set{, ={y,,vy,,T,,}-
Second, similar to the case of TCP, we propose a model-free online tuning of the
parameters-based value function estimation algorithm under UDP with augmented
observed states. Finally, the convergence proof is given.

A. Novel Observer Design for NCS under UDP

Compared with TCP protocol, UDP does not support the acknowledgements.
Therefore, packet transmission information between the controller and actuatorv, is not
known at the controller. However, according to Assumption 1, certain statistical
information on packet loss indicator between the controller and actuator v, is known 1i.e.
mean value U and variance o> is known. This information ofv, (i.e. U ) is used to design
the observer for NCS under UDP . Next, the details of observer design are given.

a) Innovation step at time k7 :

In this step, future system states Z, ,, can be predicted as

k+1]k
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2k+1\k = Elz., |§k] = E[ngM §k|nk] +K,Y) (72)
I" 0
where M = 0 _ : and /" is nxn identity matrix. The prediction error
00
Ekﬂ‘ , can be expressed as
Ek+1\k =k T 2k+1\k (73)

=[U. = 1, (D)) Ty, +[1-, (D) LS (M, = M)3,|n 1+ [1 -, (D3) 1ELS] IS,

]
b) Correction step at time (k +1)7 :

The update law for the parameter vector of the observer 9k for NCS under UDP is

defined as

. . ,
- A |: M $; (Y — Fk+1Zk+1\k) |

G, =8 +a E — — n,
(M3T,,) M§T,, +1
k™ k+1 k™ k+1 ‘ | (74)

k+1|k

— — n
(M §krk+1)TM§krk+l +l

. M3.T,. Z]
=3 +a,y . E k

where ¢, is the tuning parameter for the observer satisfying 0 < ¢, <1. Meantime,

the parameter estimation error dynamics 4, can be expressed as

- o M3,z
G =8 —a, 7B — ! Tkili I |nk (75)
(M 5,T )" M 5,1, +l‘
Eventually, the observed NCS state 2k+1\ ,; and estimation error dynamics Ekﬂ‘ 4up 10

this step can be derived as

2k+1\k+1 = E[Zk+1|V/k+1] = E[‘ng-HM §k|nk] +K,Y, (76)



189

~

Zestler1 = Zrel T Zpalk

=[U. - x,(D)) Jey, +[1- &, (D)) 1ELS (M, = M)§,|n ]+ [1— &, (D)) 1ELS] M5,

1]

Ik
Next, the stability of the observer parameter estimation error g, and state

estimation error Ek‘ . dynamics are analyzed.

Theorem 4: (Convergence of observer parameter estimation and error dynamics
for NCS): Given the observer (72), estimation error dynamics (76) and parameter update

law (74), according to Assumption 2, there exists positive constant ¢, and 7 satisfying

2
! and —Zmin +l < a, <1 computable positive constants

2(fmn =)

0<n<

(- gy g (1+a,)
+1

2

By, B,, such that estimation errors e, and parameter estimation errors 9, (66) for NCS
under UDP uniformly ultimately bounded (UUB) in the mean with ultimate bounds given
byHEk‘kH <B, andugku < B,, where 2, <[[,..Ms5,|.

Proof: Select the Lyapunov candidate function as L =L.+L, where

I is a positive

k kK o~~~ 1
L =tr z/5Z t and L,=3r{ > 3"} with ==
AT o =3 N (¥, +D(U,, 1)’

definite matrix. Then the first difference of this Lyapunov candidate function can be

represented asAL, = AL, +AL,.

~T
Zi+1\i+l

k
First, we consider first difference of L. (ie. AL =w{ X
i=k—N,

T

k
ENZM‘HI} - Zr{i:EN Z,-\PZ;\Z-} ). Applying Cauchy-Schwartz inequality and equation (75) and

(76), AL:can be derived as
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ALN —17"{ Z z+1‘1+1~ z+1\z+1} ZT‘{ Z ZI‘TZH "’}

i=k—N,

=ur{ z (U, —x,(D}) T2, +[1=x,(D)) 1EL(S" (M, = M)3)|n

+[1-x,(D) 1EN(SE,

n ]} E{[U, -&,(D)) 12, +[1-&,(D})’]

S|n 1+ 1= x,(D;) 1EN(T,

nlh-irl z )

0l 3 AU, -x,(D))E, +[1- (D)) JEI(S"

S ]+[1-x,(Dy)']

i=k—-N,
~ Mﬁ,zg\z T 37~ T 0
><E[((l9i—aa7i+1W) M3 ) 1Y E{U, - &,(D)' Iz, (77)
+[1-x,(D)) 1E[(S
+[1-x,(D)1EL((I - MEEEy > ZlEE)
o\y i i (M rz+1) Mz NS A Gl ii
k
S”’{.EN U, - x,(D)) [z +[1-,(D}) JE[(S S\, ]
2
1=K, (D) VELI Mi ] - —Em gy 7 | VE{U, — &,(D) By, +[1-5,(D))’]

;(2‘ +1

min

E[(9'

2
+E TMS |n 2me 07/1+th+]‘! } tr{ z ,\;‘7;—‘ "‘}
T +1

min

<trf z {[U. KO(D;)Jr]el.‘i+[1—K0(D;)+]E[(19T(Mi—]\7)§i n

i=k—N,

"“““ Vim@ AU, (D) Je,

+[1-x (D") ]E[STMS )i
- +1

+[1-x,(D))']
x E[(9"

IK‘(DO) [97 M3 |n 13 2{[U. -K,(D))' 1z

l‘l

+[1-x, (Dy” )'1E [(9T

5\ 1+ [1-x,(D0) 1EL9" M5, ]

meao}/ﬁl {[U — K (DO) ]Z

- 1=K, (D) 1LY

min
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+[1-x,(D)) 1E[9 [97 M5 |n

AiRRee W{ZZ i)

k ;{2, ;{2.
< tr{ z {(1 _2&“0}/141)[(]2 - K()(D;)+]Zi‘i + (1 ) mm aoyi-#l)[l - Ka(D;)Jr]

i=k—N, X +1 Xowin T1

*E[($

n]+(1- "mllaoym)[l—KO(D§>*]E[§TA7§i|n,«]}T

min

<E{(1- L U~k (D), + (-2 ){1— (D))
+1 7o +1

min min

2
*E( T, =K, (D)) JELS MG
—r{ Z e ,‘l}
i=k—D,

.—K,(D))"

k
= X (1-30- Zm
- Zn

min

+ Z (3(1_ me
;( +1

i=k-N

min

_ me 2 T N1
+1r{ Z 31 +10507,-+1) E[(M D3 3(M 1)’|n,1}

i=k—N, ‘min i i

Secondly, using observer parameter estimation error dynamics (75), the term AL,

can be expressed as

AL, =3 z 79,4 -30r 2373

i=k—D,
k N MSIFH i+ = Mszrvr Zz+
=30{ ¥ (F-an, kG gy PP )
i=k=N, (Msiriﬂ) Mszrz+1 +1 (Msiriﬂ) Mszrz+1 +1
k ~. . ~
=3r{ »3'3}
i=k—N,
k ST MSll—‘l+]Zz+l‘
= { 219 '9} 617"{ Za071+1 i }

=k, (MST.,) MsT,, +1

i i+l
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kO yz+lzz+1‘l(Msz 1+1) MS
i=k—Dy (MsT,

it i+l 1+1‘ 3T
3r{ 979
Y MST,, +1 - {1 kZDO g
MsT, Z" aj7;ilZ+1\ (M3T,,) M5,z

k ~ i i+l 1+1‘ K
=—6tr{ Yay. 3 — +3tr
 Z (MsT,)" MST, L, (MST,) MST,, +1)°

i~ i+l

i i+l

l+1‘l

i~ i+l

Ay (AT TF: 0
_6ir ST MsT, k(D) Iz
{, kZNO (MST.)" M5 T, 1L P ML (U~ %, (D)

+[1-,(D?) IE[(I S, 1+[1— &, (D7) 1E[8" Ms,

l‘l

n DI}

i 1+1

a27/2
+9¢r it +[1-x (D°) 1E[(S"
9 kzNo(Ms ) MST,, +1 =R, (D) B

i~ i+l

027:2+1r:+1
_*O(M T+l) MSF +1

*(U, = x,(D)) Je, +[1-,(D)) 1E[(S"

+[1-x,(D?) 1E[8" Ms5,|n,

7)) E[S M |n,

(U, = (D)) [z, +[1-x,(D))"1E[(S )1

+[1-x,(D0) 1EL8" M5 |n, )"}

<-6 S 1 ‘9T1 4Sl 7+121\1[U -K (Da) ]
=—or &Y inl= &7, n,
{[:](Z_:NO 07/1+1( n)/Hl) [ (M 1_,+1) MSIFH_I +1 | i
& STMST, I §TMT 3 i
_6”« av. l_a : i i+ | _3 av
{i:k;NO 071+1( 07/1+]) [(M [ [H) M F + 1| ]} l_:]g 07/,”

i+l

[U. -x,(D) T T.Z,5/ M9

i+l z‘z i

x(2-a y. ) 19T'9 +or{ La
( 07/1+1) { } {172N1)0y1+1 [ (MSFH]) MSF +1

i i+l

| ]} + 3ao 7/1+10-2||]9||2

(U, ~,(D)) T, LT 20U~k (D)) )
+3”{_,§a"71” H (MG T, ) M3 T, +1

i+l

n.1}

i
i+l

3& 7/14—1(2 aoyﬁ—l)lr{ 29T8}+3W{ Za Q/H—l(l aoyH—l)lgT'g}

i=k—-Nj

[U.-x,(D))" ]T~ TuLuZpU. -&,(D)T

ili i+l l+1 ili

(MsT,) MsT,,, +1

it i+l

k
+ 3”{.7];]\/&07/#1 (I-a,7.)El |ni]}
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3 Za y(=a,y,)37 8143 3 Ll Gty qr v 3y, - W)Y 9)
19

i=k=N, i=k—N,
6ir{ 3 9 Y
+ o1 o Lt 6tr o
i=k—N, ol (MAiFm)T(MAirm) 1 i= o71+1

XE[[UZ_KO(D;) ]Tz‘tl—‘lﬁ—ll—‘li l‘l[U KO(D;) ] |n]}
(MST,, ) MsT,, +1 l

i+l

I
<3 kf_No &, (0,11~ )H o+ 3 : (;%1 (&Ua i)

Eventually, combing (77) and (78), the overall first difference ALO can be expressed as

H +30¢07/H1—||19||

AL, =AL. +AL,
_ -~ e (79)
_tr{ Z z+1\z+1 z+1\z+1} W{ z }+tr{ Z z+l 1+1} ”{ /;1\1/9 ‘9}
k
<=2 3 (-30- ’f"““l a e[ + 5, 60 Z"““l CHEM)

L 7(2‘ dmpra (17 ey T.T u 2 3IP
+tl’{ > 3(1_2&%7@1) ‘:E[Si(M_M[)lg ‘g(M_Mi) S; |n[]}_3'—1§N ao7i+1(ao7i+1 _ﬁ)“lgl”

i=k-Ny Toin 1

d ao]/i+l (1+a07/i+1)

+3 3

~ |P o’
i=k-N, Ziu‘n +1 ><772 Z"\"H +3,7,. 5_3"‘9"2

Similar to NCS under TCP, packet loss indicator between the sensor and controller y,
can be equal to 0 or 1. Therefore, AL needs to be separated into two different scenarios

as shown below.

Case 1: y,, =1 (No packet losses)

Substituting y,,, value into (70), AL, can be represented as

0, y,,)' )H 2 H + Z (3(1 Znun

o+

- < I
AL <-E 3 (1-3(0- min_
i=k-N me"'l

w«=..ralq k lriin d=prA (TT T ar v r T T
Er{d 1) +ir{ ¥ 3(1-—35 +101071~+1) BE[S,(M -M )3 KM -M,)" s/ |n]}

i=k=N, i



£ 30507,+1 (1 + ao}/Hl)
)3
i=k—N, )( +1

- 31‘1?—:% V(Y0 — ﬁ)ug“z +

1=3(1=—Em g YW, -1

_ rnm-i-1 2 _ lrfnn 2
: o DU, 17 ] P02
~ |12
i I 7 af -3
X(UM—1)2+(_;( +1 )_2(U 2” [ ~3a,(a, -
3 & d+a) , 2 O a2
e +1>H9 H —+1 ,{\,‘H +3a, 25 |9

o

(1-37*(U,, - 1*((1 - Zm; ca,) - a,(+a,)

< min H 2 6(me —
) (07 + (U, —1)’ i
F3(——Lm g ) g ) ||9||
41
2
A-37°U, -D*(1-—5"—a,)’ —a,(1+0a,))) ,
- 2 2 k\k
(lmin + 1)(UM - 1) min +1

Z[Ul[l

where ¢!, =3((1-—4M0— ¢ )’ + & ) ”‘9”
+1

min

Case 2: y,,, =0.(With packet lost)
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2 2
i\i” + 30‘07/#1 %",9”2

(80)

1 lys
i lal

-3l v

According to Assumption 2, observer stability region needs to be satisfied by

packets lost probability between the sensor and controller. Hence, ify,,, =0, then there

exists j €[k — Ny, k]such thaty,,, =y, ===y, ,,=0andy,_, =1. In this case, first

difference AL, can be derived as

me

AL <-E i =30~ me : ‘H Ly 60—

i=k /Ymm I=k=N,
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*Z1878)) +r{ 3 3(1- me a7, ) EELS, (M M )" (M - M,)" 5" |n,]}

i=k—N, me +1

)“ a “ ) : 3,7 (1+a m)

2
Ny ;( +1 “ 30,71 3"‘9"2 (81)

K
-3 Y a7y -

i=k-N,

1=31- 2w gy, -1 3
mln+1

< i=k— Do
B (X + DU, —1)°
5 2
2 2

n k=j-1 min O-U 2 —2 9 ?

+3(1—Z¢060)2 231 )2 O 3a, (o, —— )H‘gkfffl‘
Toin +177 Uy =) Xwin +1 770 Zin 1
a,(+a) ,
+3 2 ) H ili
Homin +1 i=k=D,

(1=37° (U, - D (1~ +10!) ~a,(1+a,))

I Hoin ~
< min 6 min 9
(Zmin + DU, = 1)? i=k=Ny H ( )H k’ l‘
2
+3((1-
me
2
(1=37° (U, =D~ o) -a,(+a,)
<_ oin 2 1
] (oo + DU, =1 s
7t SO N - R L
— 6(2—+1 o — E)ngk_j_l + gM
2
where g7, =3((1— Z =3 ||9||
2
Since a, and 77 are positive constants which satisfy 2(}(%”1) <a,<1 and
Zmin -
1 2
O<n< , and 554:3((1——05) +a, ’isa

U, -1)((1- me @) -a,(+a,) Ko

min
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bounded constant, then based on (80) and (81), the first difference of Az, is less than zero

provided the following inequalities hold

(Xan +Dey,

Cule]| > > =B, or
1=3° (U, ~1*(-—Zm g ) —a,(1+a,))
~ 80
8> | =8, (82)
Zmin _1 1
ziaa _—
Zmin +1 2

Using the standard Lyapunov extension [10], the observer error and its parameter
estimation errors are UUB in the mean.

Next, we will propose stochastic optimal control for NCS under UDP with
observed system state 2,{‘ , by using value function estimation.
B. Value Function Definition for NCS under UDP
Based on the optimal control theory [7], NCS description (3) and UDP protocol,
the stochastic value function for NCS under UDP can be rewritten as
V*(Zk) :E[Z/ZPkaMk] (83)
where ¢, 1s network information set for NCS under UDP and £, > Ois the solution
of SRE. Meanwhile, optimal action dependent value function can be expressed as
Vi(z) = E{r(zu) +V (z,)]¢0 = Edlz 10,0z u 1'|¢,} (84)
Similar to NCS under TCP, we can substitute value function into Bellman

equation to derive E(®, |y, ) as

o 0 o
®k:E(®k|é’k):{ y k:|

muz uu
®k ®k
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[o+Ectin e BRI 5
E(BszPk+1Azk é/k) R +E(Bzz;ch+1sz gk)

Therefore, optimal control gain for NCS under UDP can be expressed in terms of

parameter, ®, ,as

K, =[R+E(BLP. B

k+1""zk

¢ E(B P, A

zk

¢ =)0 (86)

Obviously, if slow-varying parameter ®, can be estimated online, optimal control

gain can be calculated without known system dynamics by using (86).

C. Value Function Estimation of NCS under UDP

Based on value function estimator used in stochastic optimal control of NCS

under TCP (Section 2.3), we can define the value function with observed system states

for NCS under UDP as
* A el A€ NT—e
V (Zk‘k) = ¢k ®k¢k = Hk gok (87)
While the value function estimation can be represented as
5ia eTL e LT—e
V(Zk‘k) = ¢k ®k¢k = gk <0k (88)
where  the  augment state ¢ = [ékT‘ Lu e RIMEL D Ge

@) PP (B PPy (P0)7) 1s nothing but Kronecker product quadratic

polynomial stochastic independent basis vector, and ék = vec(@k) .

Using the value function estimation algorithm that is proposed as part of

stochastic optimal control for NCS under TCP in Section III.B, the parameter update law

of value function estimation ék for NCS under UDP can be derived as
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A—e eo+ea T
Aolate) (89)
Ap. Ap, +1

: a o _ Ja AT —e : :
where the residual errore],, +e,,, = r(zk‘ HU)+0.,A@ and ¢, is tuning parameter

for value function estimation.
Next dynamics of parameter estimation errors of value function estimation can be

expressed as

I

A (e + eZ)T

0 =5 -a
k+1 k h AakeTAake +1

(90)

Since the estimated value function with observed system states results in
estimation errors for value function V*(Zk), stability of the estimation error dynamics
need to be ensured.

Theorem 5 (Boundness of the Value Function Estimation Errors). Given the
initial conditions for the parameter Vectoré0 of value function estimation is bounded in
the setQ, letu,, be an initial admissible control policy for the linear NCS under UDP. Let

observer parameter update law be given by (89). Then there exists positive constants

2 2 2 _
a,,a, , N osatisfying  0<g< % , 0O<a, <w with
3(A¢mm +l) 21(/%/min +1) +3
3’ _
0<n<y S 7.0<Ag,, < HAgo,f ,where Ag,, is the lower bound of
(I+6a,+%; +a)U, -1)

HA@e ,and computable positive constant B,, such that the value function estimation

parameter estimation errors (90) are UUB in the mean with ultimate bounds given by

~

O,

— |12
< B,, where 7, <[ M5, .

+1
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Proof: Consider the positive definite Lyapunov candidate function

L =L,+L, o1
where L,=1{6/T16,} and ot S95.9.,99 Y+
i=k—N,
£ e (A, +Dar, a,
) > Zi—l\i—lziil\i—lAZ i—1Ji— 1% 1\1 1} with IT = 2120 .,2 ;1 a A= 2 2 4 Tare
=i, 2020% (32 +1) 4yl +1)*(U,, -1)

positive definite matrices. The first difference of (91) can be derived asAL, = AL, +AL .

Since Lyapunov candidate function includes observer parameter, we have to separate
proofs into two cases which is similar to NCS under TCP.

Case 1: y,,, =1. (No packet losses)

According to (75), (76) and (90), AL, can be expressed as

AL, =AL,+AL,,

~ —e a o\T ~
—ir((0, o, A G g AAE Ay gy nfs, [ O
A, A(Dk +1 A(Pk A(Pk
0 A I cA e o |
=, = e, +e))A e +e
<0r{f/116,} - m{(%)m} ahzr{hTmM)}
A Apf + ApS Apf +1
A’ (el +e A e +e 4
vagur AT ) AT ) i
Ap; Agok +1 Ago A +
a8 s, | +4A I~ Afe, 1” —a, (me S 7+
- 9
(zmm + 1)2) ((zmm +1)° k"”
+467 7“44_(3& (2+30[ ) )”19”
(Ko + 1) L (Zoin + 1

< (G110} - oyt {(%)He}— zr{hme)}
AT ADY + Ap. A, +
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A@ (e +e Ap (e +e Ap (e +e
eI AZE D, e (/’_kak_ek) yr@Zie td)),
Ap. Ap; + y Agp +1 Ap. Ap; +1

~0r{6;T16,} -

(4o’ —a,(1+6c, +9a’ +a)U,, —)'*n* )H
(Zow +D*U,, —1)?

Z- 1k— 1”

O 1 6
_ao(lrgm _(7+ P 2)0!0 _( P B
Zmin +1 (Zmin +1) (Zmin +l)

3a(2+3a,)
(Zriin + 1)2

k-1

+(

< 2amFTE - zahzr{%} a7, + 2ahtr{—_ff" -
AP A + Apy Ag; +1

4 4

HTHH (4a) —a,(1+6a, +9a’ + YU,
ath{ } 2 2 4
A¢mm (O-O + 1) (UM - 1)

kl\kl

6
7+ a,-(——5
Zriin +l (me + )2 (me +1)2

~ 4
3
9|

3a)(2+3a,)
2 2 +
(X +1)

min

+(

20{;0 HH 4
+1 2k 1[k—1

4

<-a,(2-3a, - A¢ )nf{efne}
4

(4, —a,(1+6a,+9a; +a)(U,,
(o; +1)* (U, -1’

kl\kl

2 5 1 6
—a, (2 (T g, —(———— +12)a]

3a(2+3a,)
Zmin +1)°

8]+

~ > 1
———)r{6/116,} - 3a)—a (1+6a +9a’ +a’
A¢§un+l) {k k} (Z‘fﬂn+l)2(UM—l)4( 0 o( 0 0 o)
% _ me_s_ 1
Uy -l )“ “\““ (s n+1 (7+(;(2. +1)2)a”

30: (2+3a )
241y’

<-a,(2-3a, -

=

+12)a -5a))

k-1

6
(Zmin +1)°
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2 =2 1
<-a,2-3a, -———)|6,| - 30t —a (1+6a
VS L e T T
+9a> +)U, -1)'nh) |- 4 2 _5
02 0)2( x ):7) k-1k-1 _ao(?(n;n -(7+ 2)
(Zmin +1) (UM _1) /{min +1 (/%mn )
6 4
o +1)2+12)a02— | e
3a’(2+3a,)
where g,/ =(—— +1+ —=.
(Zmin +1) v

Case 2: y,., =0.(With packet lost)

Using the Assumption 2 and update law for observer estimated parameter, the

first difference of AL, can be expressed as

AL, =AL,+AL,,
= AP (el +e)' o AQS (el +e)'
=tr{(6, - «, %")) H@‘%% ;
ApS Ap; +1 ApS Ap; +1
=~ k ~ 114 k ~ 4
~1r{6), | H Zigp oy ol - = 18] ©3)
i=k—N, —k Ny i=k—N, i=k—N,
2 = |2 (3aj—a0(l+6a+9af+aj)(U -1y ),
<-a,(2-3a, ~———)g,| - — = >
Agy, +1 (X +D° Uy, -1) i=kNy
;{ -5 6 NI 2
min —(7+ - 3. . +¢&
e +1>2) P s 4o

2AQH

min

Since ,,,, and 5 are positive constants which satisfy 0<e, < ——mo— |
3(Adun +1)

3
O0<ea, < Wnin + Dia =) and O0<7n<4 . 34, — and ¢ is
21y, +D* +3 U, -D)'(+6a,+%, +a,)

3a.(2+3a,)

> = . Then, according to (92) and (93), the

defined as £ = (

first difference of AL, is less than zero provided the following inequalities hold
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Hék > - =B, or (94)
a,(2-3a, - AP 1 1)1'[
N 2- +1 2 AE
Z 1k >3 4 (e )2 ng iy OF
QBa, —a,(1+6a, +9%, +a)U, —1)'n")
~ AE
G > it

4 :_5 1 6
a, (P (T e, (o +12)a’ - 5a))
lmin +1 (Zmin +1) (Zmin +1)

Therefore, based on Lyapunov theory [10], value function estimator parameter

estimation errors are UUB in the mean.
Next, with the estimated @k and equation (86), stochastic optimal control for NCS
under UDP can be obtained as
iy, = _(@Zu)%@/?zzk 95)
D. Closed-Loop System Stability for NCS under UDP

In this section, it will be shown that observer error dynamics and its parameter
estimation errors and value function parameter estimation errors are UUB in the mean.
Further, the closed-loop NCS under UDP will be proven to be UUB in the mean.

Theorem 6 (Convergence of the Optimal Control Signal). Given the initial

conditions for the system states z,,, observer parameter vectors 9, , value function and its

parameter vectors &, be bounded in the set@, letu, be the initial admissible control policy

for NCS under UDP with the bounds given by| 4z, + B | <k,||z,[ and0<k, <1/2.

Let the observer, value function estimator parameters be tuned and estimated control

policy be provided by (74), (89) and (95) respectively. Then, there exists positive
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constants ¢, ,n given by Theorem 4 and 5, «, given by Theorem 5 and positive constants

b.,b,,byand b, such that the system states z, , observation error ?k‘ . » observer parameter

estimation error 9, and stochastic value function parameter estimation errors 6,
respectively, are all UUB in the mean for all k > k, +7 with ultimate bounds given by
0,

AR 9

ek‘kHsz,

<bgand

<b,.

Proof: Consider the positive definite Lyapunov candidate function as
L=L,+L,+L, (96)

where L, is defined as L, =#{z/Qz} with positive definite matrix

1
8BLKL (1l +))

I,L,(77) with positive matrixZis defined in Theorem 1, L, (91)

with positive matrices A,ITare given by Theorem 5 and1is identity matrix. The first
difference of (96) can be represented as AL = AL, + AL, + AL, , then considering the first

part AL (i.e. AL, ) by applying NCS under UDP and Cauchy-Schwartz inequality, we

have

AL, = tr{ZIQrIQZkH}_tr{ZIZQZk}
O7)

Kk

2
<Oz, + B+ B,K Z - Byt ~ Q[

<204,z + B[ +40

2
B KZy| +49B | -,

Similar to NCS under TCP, there are two methods to obtain stochastic optimal

control, and both of them are same. Namely,

- R R A1z A 1 617(2+ +)
u, =u,, —u,,=—(0,") 1®k Zik +§R IELBZ(%

ng =0 (98)

k+1)k+1
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Meanwhile, (98) can be written as

AL, < ~(1-2k)Qz,| +4Q|B. i, | +4Q

2 2
55, [ o0l |

2 - 2
<—(1-2k)Qz, || +4Q Zos)

B + 4B}k,

2

al}(ékﬂ\kﬂ)
oz

<—(1-2k)Qz,[ +40QB2, (99)

k+1k+1

S CRORC =N %R'E{Bfk

g

2
+ 43541(;19“5,(‘,( H

2 _ 2
<—(1-2k)0z [ + 48} K}, |
Similar to NCS under TCP, we separate the proof into two cases y,,, =1 and

Vi = 0as following.

Case 1: y,,, =1. (No packet losses)
Combing (77), (93), and (99), then AL can be expressed as
AL=AL,+AL, +AL,

~ P 2 ~ ~
<—(1-2k )z, [ + 4B,124K;Qsz‘kH - (2 =30, —ir (6116,

min

Ba) —a,(1+6a,+9. +a YU, —1)*'n") |- 4 o, -5 1

- 2 2 4 k-1jk-1 —a,(— T+ —5—3)a,
(X +1)° Uy, =) o, +1 (o5 +1)
2 4

1) s Skfl“4+(w+l+a:) g2

(Zmin +1) (ijn +1) v

2

(=37 U, - D (- 20, ~a,(+a,)

- v Ek\k

(i + DU, —1)’
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_6(7@1 - )Hg I +3((l_;(fm1 @) +a,) 7 .|

2

~

2
AgZ +1
Bal-a,(1+6a, +9a +a)U, -D'n’
) (Lo + DU, — D)

)

<—(1-2k )z, — @, (2 -3, -

4

k—=1lk-1

2
Homin — 3 1
- Amn 7 7+— a —(————
"(zi,mﬂ ( (zﬁﬂﬁl)z) ’ ((Zi,m+1)2

~ 4
3
9|

3a2(2+3a, )+

1+«
X +1)°

+(

(1-6n°(U,, —=D*((1- 7“ a,)’ -2a,(1+a,))

— i Z

2y + DU, 1) e

(100)

2
_6(Zmin 1

s |

% o

2

a, =B + 3001~

2

2
Al +1

~

)

<—(1-2k)Qz,|" ~ @, (2 -3, -

4

(2. +D)’ (U, -1 k-1k-1

2 5 1 6
- o, (T ———)a, ~ (s
Koo +1 (yo.. +1) T +1

2
min min ( min )

~ 4
3
|

) (1-67*(U,, ~1)*((1- I a,) —2a,(+a,)))
o2 e. -l - ! F
T +1 2y, + 1)(UM -1y He

;(2 3a (2+3a,)

4
where ¢,,, =3((1- +1+ah) 3”4 f—‘; .

)
Case 2: y,,, =0. (With packet lost)

After applying assumption 2, (78), (93), and (99), we can derive the AL as



AL=AL, +AL, +AL,

2 7 ~ 2
<—(1-2k)Qz| -, (2-3e, - m) 0,

_ Ba, —a,(+6a,+9a; +a))U,, -1)*'n") i HE 4

(Zriin + 1)Z(UM - 1)4 i=k—N, i-tji-1

Z -5 1 )

3 T+ )2, ~ (s +12)a

e G 1

2
k—j-1 ‘ +(w+l+

(1-67°(U,, —)*((1- Z"“"lao)z—zao(lmo»)

k 2
— 5 )(mm + . Z Z‘l
Z(me + 1)(UM _1) i=k—N,
12- -1 ;(
65—, - )HSk,l +3((1 — —Zmin_ 2||9||
Sﬂf%XWW—%@%%——ﬁ—aéz
‘ AgL +1
(3a -a,(1+6¢, +9a +a; )(U H
(me +1) (U _1) i=k—N, i= 1‘
2
Kin =3 1 6 ,
- m_=—(T+——3), (= +12
i ;m+1 T ) Gy T
2
X min -1 |~ 2
R P v L
T
(1-6n*U, - (1-—5"—q,)* -2a,(1+a,)))
Yoo +1 koL |2
- Y 2 2 | Zyl e
2(Yin +DWU, 1) =k,
2 2 2
, o 2 3o (2+3a
where &, =3(1-—%m—a,)* +a,) 2 |9] +(—(o§ W) 4

positive constant.

Therefore, AL is less than zero when the following inequalities hold

206

(101)

S a
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> 52 =, o

2
HEk\k“ . 2(Zin +1)8TM _hor
(1-67>(U,, ~1)((1- i e, -2a,(1+a,))
mm+
> (me +1) Sy
k—l\kl 4 4
(3a —a,(1+6a, +9a’ +a)U,, —1)'n")
a gTM
G |> R " =b, or (102)
6(“m " a, )
X 1 2
2 s 1 - 6 "
mn _~_ (74 - +12)a’ =507
“Cpart e G T

Using the Lyapunov theory [10], the system states, observed state and its
parameter estimation errors and value function estimator parameter estimation errors are

UUB in the mean.

V. SIMULATION RESULTS

In this section, the performances of proposed stochastic optimal control of NCS
under both TCP and UDP are evaluated with a single protocol at a time. Meanwhile, the
standard optimal controls of NCS under TCP or UDP with known system dynamics and
network imperfections are also simulated for comparison.

Example: The continuous-time version of a batch reactor system dynamics are

given as [20]:
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138 —02077 6715 —5676 0 0
05814 —-429 0 0675 | |5679 0
1067 4273 —6654 5893 [ |1.136 —3.146]"
0048 4273 1343 -2104| |1136 0

o1 -
Yo 10 of

with x € R**and 4 € R?*!. Note that this batch reactor example has been

(103)

developed over years as a benchmark example for NCS, see e.g. [20][21][22].
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Fig 6. Performance of standard control without network imperfection.

The NCS parameters under TCP are selected as [18]:
1) The sampling time: 7, = 50ms ;
2) The delay bound is selected as two, i.e.b=2;
3) The random delays: E(z,, ) =35ms, E(r) =75ms;

4) Packet losses follow Bernoulli distribution with 7 =0.3ando =0.2.
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First, we consider the effective of network imperfections (i.e. random delays and

packet losses in this paper) for NCS under TCP or UDP. In Figure 5, the standard control

378 1.82  0.50 4.27

designed by pole placement method can
028 098 —091 6.48}6" SNEE DY PO P

inputs u, = —[

maintain stability of the batch reactor system without any network imperfection as shown
in Figure 6. However, this standard control cannot maintain system stable in the mean in

presence of network imperfection caused by TCP or UDP protocol as shown in Figures 7

and 8.
6
3x 10 :
|
—el
2 ... e2
) e3
o1 -=e4
i
S0
s
=]
D1
(4
2 ]
-3
0 5 10 15 20 25

Time (Sec)

Fig 7. State regulation errors of standard control when network imperfections are present
for NCS under TCP
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Fig 8. State regulation errors of standard control when network imperfections are present
for NCS under UDP

Next, proposed stochastic optimal controller and novel observer designs are
applied on NCS under TCP and UDP with unknown system dynamics in presence of
network imperfections respectively. The augment state z, is derived as

RlOXl

z, =[x, u, u,_,]" € R® 1 and ¢° =[2 u]" e . The initial admissible policy for

proposed algorithm is selected as

087 085 -0.1 124 003 0 0.13 0.01
Uy =—
° -1.51 0.09 -255 247 0 0.08 -0.05 0.52

}ék , Wwhile regression
functions for value function estimation is generated as {p{”, @5, P @S ., @5, @ } @S
[18]. The designed tuning rate for value function estimator is selected as , =107 for

NCS under TCP, and o, =10~ for NCS under UDP while initial parameters are set to

zeros at the beginning of simulation.
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Fig 9. Performance of the proposed stochastic optimal control: state regulation errors of
NCS under a) TCP, b) UDP.

The initial parameters of control estimator are chosen to reflect the initial
admissible control. On the other hand, regression function for observer is defined as
equation (6) and (72), and designed learning rate is defined as, =107 for NCS under
TCP and «, = 107> for NCS under UDP when initial parameters of observer are set to

zeros. The simulation was run for 500 time steps, and first 100 time steps, exploration
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noise was added to maintain the persistency of excitation (PE) condition holds (Remark

3).
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Fig 10. Comparison of control inputs « =, u,)” < R**? for the proposed controller of NCS
under: a) TCP, b) UDP.

In Figures 9, 10 and 11, we evaluate the performance of proposed value function
estimator and observer based optimal control for NCS under TCP and UDP respectively.
Even the dynamics of NCS under TCP and UDP are unknown, the proposed value
function estimator and observer based optimal control can still force NCS under TCP and
UDP states regulation errors convergence to zero as shown in Figure 9 (a) and (b).
However, since acknowledge scheme is used in TCP protocol, compared with UDP

protocol more network information (i.e. packet losses indicator between controller and
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actuatorv, ,) can be used in controller design. Meanwhile, only statistical information of
packet losses between controller and actuator (i.e. mean value of v, : ¥ and variance ofv, :
o..) can be used in stochastic optimal control design of NCS under UDP. Since this

statistical information for the UDP is not completely accurate due to lack of feedback,

system states of NCS under TCP converge quicker than NCS under UDP.
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Fig 11. Performance of proposed observer for NCS under: a) TCP, b) UDP.

In Figure 10 (a) and (b), control inputs of the proposed value function estimator
and observer based optimal control for NCS under TCP and UDP are shown and
compared. Because TCP protocol provides more network information for control inputs

design when compared with UDP, NCS under TCP can use smaller control inputs to
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maintain the system stable in the mean. Note that there is a slightly overshoot at the
beginning of Figures 9 (a)(b) and 10 (a)(b) for proposed algorithm. It is because the
initial online learning phase needed time to tune the observer and value function
estimator to obtain the optimal control performance for NCS under TCP and UDP.

After a short time, proposed scheme will have similar performance even when
NCS system dynamics are unknown no matter which ever TCP or UDP protocols are
utilized. On the other hand, performance of proposed observer for NCS under TCP and
NCS under UDP are evaluated in Figure 11 (a)(b). The proposed observer can force
observed system state to converge to actual system state quickly for both NCS under TCP
and NCS under UDP. However, performance of proposed observer for NCS under UDP
is not on par with the case with TCP which alluded earlier due to inaccurate feedback

information with UDP protocol.
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Fig 12. Stability regions of observer for NCS under TCP and NCS under UDP

It is important to know that there is a critical domain of values for the parameters

of the Bernoulli arrival processes (i.e. 7 ando ) which cannot ensure the stability of

observer holds. In Figure 12, this stability region for the proposed observer is shown and
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compared with results in [12]. Since proposed observer does not require knowledge of
system dynamics which is needed in [12], the region of proposed method is much tighter
than [12]. Also since TCP protocol can provide more network information for the
observer design, the stability region of UDP is smaller than TCP.

Based on the results presented in Figures 5 through 12, after a short initial tuning
time, proposed value function estimator and observer based stochastic optimal control for
NCS under TCP and UDP with uncertain dynamics and network imperfection will have
nearly the same performance as that of the conventional optimal control for NCS under

TCP and UDP with known system dynamics and network imperfection.

VI. CONCLUSION

In this paper, a novel adaptive dynamics programming scheme consisting of a
novel observer, value function estimator is utilized to solve the Bellman equation in real
time for obtaining optimal control of NCS under TCP and UDP. By using past input and
estimated states, the system dynamics requirement was relaxed while using the estimated
states and value function estimation, stochastic optimal control inputs were derived.

An initial admissible control ensured that the system is kept stable in the mean
while the observer and value function estimator is tuned. Initial overshoots are observed

due to the online tuning phase of observer and value function estimator while they

disappear with time quickly. All observer and value function estimator parameters 19k,@k

were tuned online using proposed update law and Lyapunov theory demonstrated the
asymptotically stability in the mean of the closed-loop system for NCS under TCP and
the uniformly ultimately boundedness in the mean of the closed-loop system for NCS

under UDP respectively.
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PAPER V

A CROSS LAYER APPROACH TO THE NOVEL DISTRIBUTED SCHEDULING
PROTOCOL AND EVENT-TRIGGERED CONTROLLER DESIGN FOR CYBER
PHYSICAL SYSTEMS

H. Xu and S. Jagannathan

Abstract - In the next generation Cyber Physical Systems (CPS), multiple real-time
dynamic systems are connected through a shared communication network. For such CPS,
the existing network protocols (e.g. Centralized/Distributed Scheduling) cannot be
implemented since the behavior of real-time dynamic systems is ignored though it needs
to be considered during the protocol design. Therefore, in this paper, a novel distributed
scheduling protocol design via cross-layer approach is proposed to optimize the
performance of CPS by maximizing the utility function which is generated by using the
information from both application layer (i.e. event-triggered controllers for each real-
time system) and network layer. Subsequently, a novel adaptive model based optimal
event-triggered control scheme is derived for each real-time dynamic system with
unknown system dynamics in the application layer. Compared with traditional scheduling
algorithms, the proposed distributed scheduling scheme via cross-layer approach can not
only allocates the network resources efficiently but also improves the performance of the
overall real-time dynamic system. Simulation results are included to illustrate the
proposed cross-layer co-design.
Keywords- Cyber Physical Systems (CPS), Distributed Scheduling,; Event-triggered

Control; Cross Layer
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I. INTRODUCTION

In past few years, intelligent control [1] and communication network [2] have
been two of the fast-growing research areas. Most recently, a number of researchers [3-4]
realize that combining these two areas can bring more significant advantages for both
modern control and communication network such as saving installation costs, increasing
adaptability, reliability and usability. For distinguishing from traditional control or
communication network, this novel class of system has been referred as Cyber Physical
System (CPS) [5-7]. In CPS, since the control and communication subsystems are tied
together closely, novel CPS-based control and communication schemes have to be
designed by considering the linkage between control and communication subsystems.
Therefore, incorporating the effects from fixed communication network, authors in [6]
proposed a cyber physical control scheme to maintain the stability of control system part
of the CPS. In [7], from communication network protocol side, authors evaluated the

performance of widely used protocol (i.e. IEEE 802.15.4) for CPS.

However, most of these works [5-7] have not considered real-time interactions
between control and communication subsystem. A revolutionary algorithm for CPS
should utilize real-time interaction to optimize the performance of both control and
communication subsystems. For well known open systems interconnection (OSI)
representation [8], control subsystem belongs to application layer while the
communication network protocol is included in the network and data link layers.
Therefore, to consider the interaction among different layers properly, cross-layer design
[9-12] is necessary. In [9-10], authors have shown that cross-layer design can attain

performance gains by exploiting the dependence between protocol layers compared with
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traditional individual layered protocol design. However, most cross-layer designs are
implemented for data link and physical layers [11-12] where application layer is
neglected. For CPS, application and data link layers should be designed jointly via cross-
layer approach. In other words, the control design at the application layer and the

protocol design for communication at the data link layer have to be considered jointly.

On the other hand, the distributed scheduling is critical for the communication
protocol design [13]. Compared with traditional centralized scheduling [14], the main
advantage of distributed scheduling is that it does not require a central processor to
deliver the schedules after collecting information from all the communication links in the
network. According to IEEE 802.11 standard [13], carrier sense multiple access (CSMA)
protocol is introduced to schedule communication links in a distributed manner where a
communication link wishing to transmit does so only if it does not hear an on-going
transmission from the network. Further, authors [15] derived a throughput-optimal
distributed scheduling algorithm and proven that even distributed scheduling scheme can
still achieve the throughput maximization. However, since random access scheme is
widely used in most CSMA-based distributed scheduling [15-18] and these schemes
focus on improving data link layer performance alone which in turn affect the
performance of application layer (i.e. control system), these protocols are neither optimal
nor suitable for CPS since they can degrade the performance of CPS overall.

Meanwhile, for the application layer, the optimal control design is the most
challenging issue. It is important to note there are two main drawbacks for traditional
optimal control schemes [19]. First drawback is that full knowledge of system dynamics

are needed and optimal control is solved backward-in-time which is not suitable for
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hardware implementation. Second, these traditional optimal control schemes are sampled
periodically which require significant network resources (e.g. bandwidth) for
communication to transmit information between a sensor and a controller potentially
causing congestion. The performance of control system in the application layer degrades

significantly due to congestion.

Therefore, this paper proposed a novel cross layer scheme for CPS which includes
an event triggered controller design for control system design in the application layer and
a distributed scheduling algorithm for communication network in the data link layer. The
main contributions of this paper include: 1) the distributed scheduling via cross layer
approach which improves the performance of CPS by minimizing the cost function from
both data link and application layers; 2) novel adaptive model-based optimal event-
triggered control scheme which is designed in a forward-in-time manner and without the
knowledge of system dynamics. Compared with time-based periodic sampling, the
proposed event-triggered scheme is based on events which are initiated not only by the

control system but also the shared communication network performance.

This paper is organized as follows. First, Section II presents the background for
multiple pairs CPS and event-triggered control schemes. A novel cross-layer design
which includes distributed scheduling and adaptive model-based optimal event-triggered
control is proposed for multiple CPS pairs in Section III. Section IV illustrates the
effectiveness of proposed schemes via numerical simulation and Section V provides

concluding remarks.



222

II. BACKGROUND

A. Multiple Cyber Physical System Pairs

—»| Plant1 j

Controller 1 Sensor 1 <4

Trigger/
Scheduler 1

4

Shared Communication Network

Trigger/
Scheduler 2 Scheduler M

Trigger/ L Sensor 2 Controller 2| ==+« |Controller M Sensor M |«

el L]

Figure 1. Multiple pairs CPS

The basic structure of multiple CPS pairs is shown in Figure 1, where multiple
pairs of real-time subsystems communicate to their respective controllers through a
shared communication network (e.g. IEEE 802.11). Obviously, the shared
communication network can affect performance of control systems. For instance, when
shared communication network is congested due to improper scheduling, system cannot
even maintain stability since the information from the subsystem cannot be transmitted to
the controller successfully and may experience undue delays. Therefore, a novel cross-
layer design is needed for CPS. Without loss of generality, multiple pairs CPS are
assumed to be homogeneous in this paper. On the other hand, to save the network
resources, event-triggered system is used instead of a traditional time-driven sampling.

Next, the background of event-triggered system is given.



223

B. Event-Triggered System

Recently, event-triggered control system has been a topic of significant interest
for CPS due to its network benefits [20-22]. In Figure 2, the basic structure of Zero-
Order-Hold (ZOH) event-triggered system is shown first. Compared with traditional
system, a trigger is included in the sensor to decide when to sense and transmit the
system information (e.g. system state x, ). For sake of simplicity, the CPS subsystem is
considered to be linear discrete-time invariant. Since multiple CPS pairs are

homogeneous, /th CPS pair can be represented as

=Ax, +Bu, (D)

xl,k+1

where x,, eR",u, eR" are Ith CPS system states and control inputs

respectively, and 4, e R, B, € R"" denote system matrices for /2 CPS pair.

R Plant »| Sensor X1k
| X = A+ By, g |
Network
Controller | Xpi |
u,=Kx; " (i : last event triggered time,0 < i < k)

Figure 2. ZOH Event-triggered System

Plant oo X,
| X =A%, + By, i
Uy
|_ Controller | _ %, Adaptive Estimator ‘I{;’d:tle
Uy :I(l,k‘;}l,l. N '%l,kH =A,,,‘.§‘,‘,‘ +B 1y, | (;l,:l}i)

Figure 3. Adaptive model-based event-triggered system
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It is important to note that controller will hold the last received system state vector
until a new system state vector is received. Obviously, the error between the system states
used in the controller and actual values might increase quickly in ZOH event-triggered
control scheme. For overcoming this drawback, a novel adaptive model-based event-

triggered system is proposed and the basic structure is shown in Figure 3. Besides event

trigger, an adaptive model (4 l§,, . ) 1s used for the controller to estimate the system state

1k >
vector when controller has not received any information from the sensor. The estimated

system state vector can be represented as

)’e/,/m = Al,k‘)’e/,k +B U, (2)

Lk

with Izl,ﬁk ESR"X",E,’,( e R are the adaptive model of /zh CPS pair at time k7 . It is

important to note that the adaptive model will be updated once when the most recent
system state vector is received at the controller. Eventually, the adaptive model and
estimated system states will converge close to the actual system and actual system states

respectively, which in turn improves the performance of event-triggered control system.

III. NOVEL CROSS-LAYER DESIGN FOR CPS

In this section, novel cross-layer design is proposed for multiple pairs of CPS.
First the main idea of cross-layer design and classical ZOH event-triggered control
scheme are introduced. Subsequently, a novel adaptive model-based optimal event-
triggered control is derived. Eventually, distributed scheduling is proposed to optimize
multiple CPS pairs by minimizing a cost function which includes the information from

both application and data link layers.
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A. Cross-Layer Design
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Figure 4. The framework of multiple pairs CPS cross-layer design

In the proposed scheme, the novel event-triggered control design and distributed
scheduling protocol are implemented into all CPS pairs which are sharing the
communication network. Each CPS pair tunes its adaptive model-based optimal event-
triggered controller design by using the proposed distributed scheduling algorithm,
computes its value function based on tuned control design, and transmits the information
to the data link layer. Then, data link layer can update the scheduling of the CPS pair
based on network traffic payload from data link layer and the value function information
received from the application layer. The cross-layer design framework of multiple CPS

pair is shown in Figure 4.
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B. ZOH Event-Triggered Control Design

Different from periodic sampling scheme, the ZOH event-triggered controller
might not receive the system state at every sampling time instant. Hence the controller
will hold the latest received system state vector for control input design until a new state

vector is received due to an event caused by condition when state measurement error

ZOH

" exceeds the threshold. Now, without loss of generality, consider the linear discrete-

e

time (1) of /th CPS pair, and the ZOH event-triggered control input given by

o , 0<i<k (3)

" |K,x,,  eventisnotinitiated

{K x event is initiated
u =

where x, , is the latest /th CPS state measurement at the time i7', due to an event and K is

a stabilizing control gain matrix for /th CPS system given by (1) with known system

matrices (4,, B,) . After substituting control inputu,, from (3), the closed-loop system

dynamics of/th CPS pair due to the ZOH event-triggered control input can be expressed

as
x,., =(4 +BK)x,, —BKze" 4)
1k+1 1 1 1 1k 1 1™ 1Lk
0 event is initiated
withe " = . o
: X, =X, event is not initiated

Obviously, if holding time of ZOH event-triggered control system is longer, state

ZOH

measurement errore;, in (4) might be larger which can affect the stability of the system.

Therefore, a threshold [28] is derived fore;” to ensure the stability.
Theorem 1 (ZOH Event Triggering Condition): In linear discrete-time event-
triggered CPS system (1), the event should be triggered and controller should be updated

when the following is not satisfied
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[ <o 2L
1B.&. I

, for i=12,.,M (5)

with0 <o, <landQ,, P, K, are positive definite matrices and designed control gain for

Ith CPS pair which are also the solution of following equation
2(Az +BIK1)TB(A1 +BIKI)_P1 :_Qz (6)

Proof: Consider Lyapunov function candidate asV,,

=x,,Px,, . Usinglth CPS

system representation (4) and Cauchy-Schwartz inequality, the first difference of
Lyapunov function candidate can be derived as

AV

T T
ZOH _xl,lmplx xl,kPlxl,k

1k+1
:[(Al +B1K1 )‘xl,k _BlKleIZOH ]TPI[(AI +BzK1 )xl,k (7)

&
ZOH T
_B/Klelk ]_x/,/fple,k

<x,,[2(4,+B,K,)" P(4,+BK,)-P]lx,,
+2(e") KB/ PB,K e/

1k

<ol [ +28.K IR lJerz* |

Lk
Applying the introduced event triggering condition (5), the first difference of the

Lyapunov function candidate is given by

ZOH

2
AV e, H

ZOH

<o llx..[ +2B.&.'17]
<—(1-o )| .|

®)

after applying the event trigger condition (5) where 0 < o, <1land Q, is obtained from (6).
Then AV, is negative definite whileV,, is positive definite for all CPS pairs (i.e.

[=12,...,M ). Therefore, the ZOH event-triggered closed-loop system is globally

asymptotically stable all CPS pairs. In other words, ask —«, x,, >0 for [=12,...M .
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Remark 1: In ZOH, the system is running open-loop based on control input
derived by the system state vector which is received previously.

It is important to note that although ZOH event-triggered control can save the
communication network resource compared with time-driven control, its efficiency is low
since measured state and control input are held as constants during any two events. On
the other hand, the optimality of event-triggered control design should be considered
carefully which is neglected in this section. Therefore, a novel adaptive model-based
optimal event-triggered control scheme is proposed in next section. It is important to note
that proposed scheme cannot only estimate system state vector and update control inputs
during any two events by using adaptive model, but also consider the optimality of event-
triggered system.

C. Adaptive Model-Based Optimal Event-Triggered Control Design

In this subsection, a novel adaptive model-based optimal event-triggered control
is derived. First, using estimation [23] and adaptation [24] techniques, the dynamic
system state vector is estimated by using an adaptive model which is updated when an
event is initiated. Subsequently, adaptive model-based optimal control is proposed for
CPS based on the state vector which can maintain the stability even with unknown
system dynamics. Eventually, the convergence proof is given for proposed algorithm.

Without loss of generality, /th CPS pair is selected to explain the adaptive model-
based optimal event-triggered control as follows.

1) Adaptive State Estimator Design
According to event-triggered control schemes [20-22], the system dynamics of the
adaptive state estimator will be updated only when the event is initiated and sensed

system states are received at the controller. Recalling (1) and (2), for/th CPS pair the



229

event-triggered control system and adaptive state estimator with received information can

be represented as

_ _ T
xl,k+l _Alxl,k +Blu1,k _el Zl,k (9)

~ 7 D T
xl,k+l - Az,kxz,k + Bl,kul,k z (10)

withd, =[4, B,]"andd, =[4,, B,,]" denote the target and estimated system dynamics of

the /rh CPS pair respectively, and z,, =[x, u,, ] represents the augmented state vector.

Then, the state estimator error dynamics e, can be derived as

141
_ o _ T nT _ AT
€ it = Xt — Xt =6 2 =042, = 042, (1 1)

whered,, =60, -0,,= [Z,,,C B, 1" is the parameter estimator error. Next, define the update law

forith CPS pair estimated unknown parameter vector 6, , as
O =01 + al,e71,k+lzz,kezT,k+1 (12)

with ¢, 1s the tuning parameter satisfying0<e,, <1 and y,,,, 1s an indicator to present

event trigger condition, i.e.

(13)

1 event is initiated
Vikn = 0  event is not initiated

Meanwhile, /iznpair CPS adaptive parameter estimation error dynamics §,yk can be

expressed as

O 41 = O _al,eyl,kﬂzl,kel]:kﬂ (14)
Compared with traditional adaptive estimator schemes [23] where the updates are
taken periodically, event-based non-periodic tuning law is used here which tunes the state

estimator in a non periodic manner. Next, the convergence of /t» CPS adaptive parameter

estimation error 6,, is demonstrated.
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Theorem 2 (Convergence ofith CPS adaptive parameter estimation errors): Let
the proposed adaptive estimator for the /z2 CPS pair be defined as (10), and its parameter

update law be given by (12). Then, there exist positive constant tuning parameter «,, for
ith CPS pair such that the parameter estimation errors §,§k (14) converge to zero

asymptotically as time k£ — .

Proof: Consider the positive definite Lyapunov candidate function as
k ~p e
/0_”"{:; 9[61,[} (15)

with #{.} is the matrix trace operator, ¢ = (k+1)7,is the latest update time of the
adaptive estimator for the /t» CPS pair during the interval [(k—7)T,,(k+1)T,](i.e. the latest

event-triggered time, and y,,_, =7, ... =-=7,=0,7,.,=1). Then the first difference can

be expressed as AV, , = r{ Z 66, —1r{ f 616, .
i=k—1

i=k+l-t

Using (15), and applying the Cauchy-Schwartz inequality reveals that

AV, =l 3 910,3-mrt > 8]0,

i=k+l-t

ko~
= t’”{. > ('91,i - a/,e71,i+1zz,ielr,i+1)T(el,f - al,e,}/l,HlZI,ieIT,Hl)}
e (16)
=10, —a, z,¢" ) (O, —a, .z, ) —trif" 6,
1k~ P21 ;i 1k~ CreZ1 k€ i 1k—O1k—c

Since 7., . =V == =074, =1and equation (14), the parameter vector of

the adaptive estimator has not been updated during[(k —7)T,kT.], 1.e.

5 6 k—r+l =TT gl,k ( 1 7)



231

Next, according to parameter estimation error dynamics (11) for the /z2 CPS pair

and equation (17), the first difference of Lyapunov function candidate AV, , can be derived

as

n T T/n T AT
AV, 4= tr{(el,k _al,ezl,ke1,k+1) (‘9zk _al,ezl,kel,/r+1)} _tr{gl,kfzel,kfr}

nT T T 2 T T T
= f’"{el,kel,k} - zal,etr{al,kzl,kel,kﬂ} + al,etr{(zl,kel,kH) Zl,kel,k+l}

AT T 2 T T T
=20, 10,2 €141} + {2 4€1400) " Z4€0 500

T T 2 T 7 N\T T A
:_2al,etr{01,kzl,kzl,k I,k}+ae tr{(zl‘kzl,kal‘k) Zl,kZl,kgl,k}

~1r{0%.0,,}

nT T A 2 nNT _T T
= _2al,etr{91,/czl,kzz,k 91,k }+ al,etr{gl,kzl,kzl,kZl,kzl,k el,k}

2 ATH 2 4 ATH
<-2a, Zl,k” 10,0, } + oy, Zl,k” 140,60, } 1
2 2= |1? ( 8)
s-a, Zl,k” Q2-a, Zl,k" )”‘91,kH
Since the tuning parameter,, is positive value which satisfieso<a,, <W,
Z| +1

then according to (18), AV, ,1s negative definite and 7, ,is positive definite. Therefore, the
ith CPS pair adaptive parameter estimation errors HN,Yk are asymptotically stable. In other

words, ask —>,6,, >0.

2) Optimal Event-triggered Control System Design

In this part, optimal design for adaptive model-based event-triggered control is
given in a detailed manner. First, a value function is defined and approximated
adaptively. Subsequently, the optimal event-triggered control scheme is derived by using
the information from the estimated value function and adaptive model. Eventually, the

convergence proof of proposed scheme is derived.
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a) Value Function Setup

According to the optimal control theory [19], the infinite-horizon value function
of the adaptive model-based event-triggered control system for iz2x CPS pair can be

defined as

V(xl,k) = Z(sz,igzxz,f + uzT,iSz“z,,') = xlT,kPle,k (19)

i=k

where P, being the solution to the Algebraic Riccati Equation (ARE) [19] ofzn CPS pair

adaptive model-based event-triggered control system. Then, the Hamiltonian for the

system is represented as
H(x uy ) =16t 4) Vg W) =V (51414 (20)

with r(x, . u,,) =x,0x,, +u/ Su,, is a one-step cost-to-go function. Based on the standard

optimal control theory [19], the optimal control input is given by the stationary condition,

OH(x,,,u;,)/0u,, =0 which yields
ul*,k = Kl*xk =—(R + BII,‘kPlBl,k)ilBITkBAI,kxl,k (21)
where K, is the optimal control gain.

Remark 2: It is important to note that solving optimal control in (20) requires the

system dynamics which is not typically known accurately in practical systems.
On the other hand, we can define the optimal action dependent value function as
V(x,)= [sz,k uIT,k 16, [sz,k uIT,k I (22)

Then, similar to [26], using Bellman equation and value function definition (13),

substituting value function into the Bellman equation results in
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T
x X
{ ka} O, quk} =1 () + V(X 0)

Ui Lk

e . (23)

_| K A, B4, +0, A4, 6B, X1k

Uk BszBAz,k BlyjkPIBl‘k +8) | Uik

Therefore, matrix ©, can be expressed as
o — 0 05 _ Alj,-kPIAl,k +0, AIT.kPIBl,k (24)
I ux we |
O 05 BZkBAI,k BIZ,-kP;Bl,k +5,

Next, according to [19] and (24), the optimal control gain for /#2 adaptive model-
based event-triggered control system pair can be represented in terms of value function

parameters, @1 , as
K] =~(8,+ B BB, ) BB A, =~(©15)"f; (25)

It is important to note that if the parameter vector ®, can be estimated online, then

system dynamics are not needed to calculate the optimal control gain for/t» adaptive

model-based event-triggered control system pair.
b) Model-free online tuning of the value function

In this subsection, the adaptive model-based optimal control is developed by

using estimated states from adaptive model without using value and policy iterations.

After incorporating the estimated system states from adaptive model, the value

function can be represented in vector form as
A AT 2 T
V(X ot 1) = 2,0, = p Wiy (26)

where the regression functions Z,, =[x/, /1" € R"™"7, W, =G s ZriZisgs Zikare-EisgaZiug Zi)

is the Kronecker product quadratic polynomial independent basis vector, and p, = vec(®,)
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withvec(e)1s a vectorized function constructed by stacking the columns of the square

matrix into a one column vector with off-diagonal elements summed as®,,+©,,, .

According to standard optimal control theory [19], the Bellman equation is given

in terms of the value function by V(x,,,.,u,..) =V (xu,) +7(x,,u,)=0. However, this
equality cannot be satisfied while the estimated system stats x,, and the estimated term p,,

are used.

After incorporating the estimated system states, we have the estimated Bellman

equation as
V()Acl,kﬂ Uy gr) — V()el,k U )+r (iz,k Up) =€y (27)

with ¢,,,, is the temporary difference (TD) error [13] in the Bellman equation. The

estimated value function for/z» CPS adaptive model-based event-triggered control system

pair can be expressed similar to (26) as
V(X gouyy) = 21T,k®l,k21,k = lalTk Wik (28)

Using the delayed values for convenience, the TD error in (27) can be represented
as
_ 2 AT e AT e
€ =1 (XU j) F PiaWin = PiaWiga
A AT
=7(X s U g) + P (Wi = W) (29)
A AT
=7(Xp Uy gr) + PLAWS
b e € €
With AW =w), =W,

Then, the dynamics of the TD error can be rewritten as

n AT
€ =T (X 45U )+ pl,k+1AVV;,ek (30)
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Next, an auxiliary error vector incorporating the history of pervious cost-to-go is

defined as

O, =T, +p AW, (31
where | D VX C AP TIPS W C AP VAV RETI Y € AR T || and
AW, =[AW) AW, - AW, ;1. Note that (31) indicates a time history of pervious j +1

TD error (29) recalculated by using the most recent p,, . As a consequence, the value and

policy iterations are not needed.

The dynamics of the auxiliary vector are generated similar to (30) as
m,,., =T, +p,.,AW), (32)
Next, the update law of matrix ©, for /¢4 pair CPS can be defined as
Prin = AW (AWTAWS ) (o T, T, (33)
with0<¢,, <11is a tuning parameter for /z» pair CPS. Substituting (33) into (32) yields
I, =a 0, (34)
or
€ =), (35)

Remark 3: It is observed while the system states have converged to zeros, the
estimated value function is no longer updated. It can be seen as a persistency of excitation
(PE) requirement for the inputs to the value function estimator wherein the adaptive

model-based event-triggered control system states must be persistently existing long
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enough for the estimator to learn the value function. The PE condition is well known in

adaptive control theory and can be satisfied by adding exploration noise [25].
¢) Estimation of the Optimal Event-triggered Control

According to [19], the optimal control can be obtained by minimizing the value
function. Recalling (25), the optimal control gain can be developed by using the

estimated states as
121,1( = 1,1(551,1( = _(®1uf/lf )71®?:\1;)%1,k (36)

Based on (36), optimal control gain can be obtained in terms of él,k matrix, which

is solved by approximating value function with adaptive model-based event-triggered
control system states. It relaxes the requirement of the system dynamics when (33)

eliminates the value and policy iterations.

Next, the convergence proof of the optimal control inputs will be given in the

following theorem.

Theorem 3 (Convergence of the Optimal Control Inputs): Letu, ,(k)be an initial

admissible control policy forizzpair CPS adaptive model-based event-triggered control
system. Let the adaptive update law be given by (33). Then there exists a positive

constant 0<e,, <1such that the estimated parameter and optimal signal converges to the

actual parameter and optimal signal respectively, i.e. p,, = p, , i, —>u;, .
Proof: according to the Bellman equation, we have
/SlTkAVVl,ek—l + (X Uy _pzTAWz,k—l = (X s Uyyr) = € (37)

In the other words,
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ﬁkaVVl,k—l +p AWN/J,/H +1, =€y (33)
With 5, = 0, = P s Fray = F(X sty ) = 7R rothy ) and AW, , = AW, — AW, . Then, selecting the
Lyapunov function candidate as
Ve PrasTigs AW, = (BILAWE, + p AW, +77,,)° (39)
Next, the first difference of Lyapunov function candidate as
AV, = (Bl AW + L AW +T7,)°

~(PLAW .+ P AW,y +7750)° (40)

= (= W BAW S+ pf AW, 477, )
When 0<e,, <1, the first difference 4V, is negative definite. Meanwhile, the term

(PLAWE, + pl AW, +7, ) can be represented as

~T
Pk
5]?(AWZIc—1 +p/ Ay 1 T =[AWS Pl 1] AW, (41)

s

Define y,, =[AW,, p/ 11and Z,, =[p,, AW/, #i,]". Using the adaptive control

theory, we know vy, i/, #0providedy,, satisfies the PE condition. Therefore, we have

PZk
Zy=| AW, | >0 (42)

T k1

Therefore, all the signal errors will converge to zero asymptotically. Namely, for

Ithpair CPS adaptive model-based event-triggered control, p,, — p,,4,, —u,, Whenk — oo
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Until now, the adaptive model-based optimal event-triggered control is derived
for multiple pairs CPS. Next, the novel distributed scheduling algorithm will be

proposed.

D. Novel Distributed Scheduling Algorithm for Multiple Pair CPS

In this section, optimal distributed scheduling design is derived at data link layer
mainly. Without loss of generality, traditional wireless ad-hoc network protocol [27] is
implemented into the other layers. For optimizing the performance of multiple CPS pairs
which included performance from both application layer and data link layer, a novel
optimal cross-layer distributed scheduling algorithm is proposed by incorporating control
system information from application layer. Similar to above sections, without loss of

generality, /th CPS pair is considered here.
Firstly, the cost function for/z2 CPS pair is represented as
Ji :xzr,lexz,k +”1T,k51”1,k + LR, (43)

where R, isith CPS pair average traffic payload during[0,47.]and g, is the weight

of average traffic payload for iz» adaptive model-based event-triggered control system

pair. While 3,1s large, it indicates the average traffic payload will affect the total cost

more.

Subsequently, the entire cost function for multiple CPS adaptive model-based

event-triggered control system pairs can be represented as
M M T T
Ji= Z‘]l,k = Z(xl,lexl,k Sy + BiR ;) (44)

with M denotes the number of CPS pairs.
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Next, the optimal design of multiple CPS pairs should minimize the cost function

(44), i.e.
* .M
Ji= I}?}ZHE (xfk Opx;, + ”IT,k Sy + PR, ;) (45)

whereu is the control design and 7 is the scheduling policy.

According to (45), minimizing the above cost function (45) requires two parts: 1)
the optimal control input design and 2) novel distributed scheduling design. For the
control input designing part 1, the above adaptive model-based optimal event-triggered
control scheme have already shown to provide a best performance. For the distributed

scheduling part, novel scheme will be derived in this section.

Obviously, each pair CPS has two options for scheduling: 1) CPS pair is
scheduled; and 2) CPS pair is not scheduled. It is important to note that whether or not
each CPS pair is scheduled depends upon which option can bring more benefits (i.e. large
cost value). For instance,

Case 1: /th CPS pair has been scheduled

Sl _ T T T > Y
Jii =505, + 5, K, S, K %, + R, (46)

= x,T’kQ,x,,k + xlT,kAlxl,k + ﬂlRZk
where A, =1%{ S K . and R/, is the average traffic payload when iz CPS pair has
been scheduled.
Case 2: /th CPS pair has not been scheduled

§2 _ T AT T S N
Jiim =%,0%,, + %, K S K X+ BiR (47)

T N N
=X, 00 + X N X + BR,
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with R/ is the average traffic payload when /¢2 CPS pair has not been scheduled.

Then, the difference between these two cases can be considered as utility function

and expressed as

s 5.1 5.2
A‘]l,k = Jz,k _Jl,/c
T T Y
= (X, QX + X ANpxpy + BiR; L)
T AT A 2 N
- (x/,lexl,k + xl,kA/xl,k + ﬂlR/,/c)

=ole)+ BD,,

(43)

where D, =R/, - R/, is the difference of average traffic payload for i CPS pair

between two cases which can be represented as

N, +1 N 1
]iT - #)N/,bn = ENl,bit
s S S (49)

D,, :Rfk —R,]i =(

with &V, is the number of bits for packetizing the sensed event of /th CPS pair,
e, =x, —%, and ¢(e,)=(x/ Ax, — % AZ,). Obviously, when AJ}, >0, it indicates that
scheduling /#2 CPS pair can obtain more benefits. Otherwise, scheduling /#2 CPS pair will
degrade the performance. Therefore, whenAJ;, >0, this CPS pair can be considered as
scheduled. It is important to note that there are multiple CPS pairs (i.e. M CPS pairs), and
probably several CPS pairs’ utility function are higher than zero which indicates that all
of these CPS pairs have to be scheduled. However, according to communication network
literature [13], only one CPS pair can access the communication network. For optimizing
the performance of network, the optimal scheduling policy should maximize the total

utility function, that is

(AJ/(S)* =max 2 AJJS,k (50)

7 leGy
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where G, is the CPS pair set with positive value of utility function at time 7, (i.e.
AJ}, >0forleG,). Obviously, for centralized scheduling design, the optimal scheduler

has to select the CPS pair that has the maximum value of A/}, . However, in the

centralized scheduling scheme, finding the maximum value AJ;, requires significant

information from every CPS pair which might be too complex to be implemented into the
practical system. Therefore, novel distributed scheduling scheme is needed to solve this

drawback.

In this paper, the main idea of proposed novel distributed scheduling algorithm is
to separate the transmission time of different CPS pairs by using backoff interval (BI)
[27] based on related utility function in a distributed manner. In Figure 5, the framework

1s shown.

[KTs,(k+D)Ty) [(k+D) T .(k+2)T5) [(k+7-1)Ty (k+7)Ty)

1st CPS Pair

XXy

2nd CPS Pair

XX

Mth CPS Pair

Notation: CPS pair obtains wireless channel to transmit data

CPS pair waits wireless channel to be free

Backoff Interval

Figure 5. Framework of proposed cross-layer distributed scheduling scheme
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To solving optimal scheduling problem (50) for multiple pairs of CPS, the BI can

be designed as

—A i

Bl =cx(e " +n,) forleG, (51)

with¢is the scaling factor andn,, is a random variable which satisfies Gaussian

distribution (i.e. n,, ~L*N(0,6%)), and L= Imi(?(e“’ " —¢**) is the range of the random
»JE€U

value n,, . Next, the proposed novel distributed scheduling algorithm steps are shown as

following:

Algorithm 1 Novel optimal distributed scheduling scheme

1: Initialize: The utility function are initialized as AJ,,=0,V/=12,...M
2: While {7, <t<(k+1T, } do
3:  Calculate backoff interval (BI) by different pair of CPS

adaptive model based event triggered control system

Bl,, =gx(¢ " +n,) for IeG,.

4:  Contend shared communication network resource.

5:  If iznpair of CPS has the smallest BI then

6: Schedule /shevent triggered pair and transmit /th CPS
pair’s data through shared communication network.

7: If transmission is over, then

8: Update the scheduled CPS pair’s utility functionAJ,, .

9: end if

10: else

11:  Wait for shared communication network channel to be
free.

12: endif

13: Update time stamp: ¢ =¢+BI,, +T,, ( BI,, is the backoff
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interval of scheduled CPS pair. 7}, is the transmission
time of scheduled CPS pair.)

14: end while

15: Update and broadcast utility functionAJ,, from each

pair of CPS.

16: Go to next time period[(k +1)T,(k+2)T)) (i.e.k=k+1), and go back to line 2.

Remark 4: Since each CPS pair decides its scheduling by only using local
information from application and data link layers, proposed novel cross-layer scheduling

scheme is distributed.

Remark 5: Compared with other distributed scheduling schemes [14-18], the
proposed algorithm generates the backoff interval intelligently by optimizing utility
function instead of selecting it randomly as in [14-18], which can be considered as main

contribution of developed novel distributed scheduling algorithm in this paper.

Next, the optimality of proposed novel distributed scheduling is shown in

Theorem 4.

Theorem 4: (Optimal distributed scheduler performance) Given the multiple
CPS pairs and event triggered control scheme, the proposed distributed scheduling
scheme selects the adaptive model based event-triggered CPS pair with highest utility
function value since it has the shortest backoff interval (i.e. BI) and highest priority to
access the shared communication network. In addition, the proposed algorithm can render

best performance schedules for every CPS pair.

Proof: Assume /rn CPS pair has the highest utility function value (i.e.

AJ ) =max AJ..), then we have AJ,, >AJ, for anyi=G,,i#/. Therefore,
eGy

i
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e M<e i=G,,i#l (52)

Next, for anyi=G,,i#/, the backoff interval (BI) can be expressed as

BI,, = gx(eiN’* +n,,)

Uy . Mg Ak
<cXle T+ min (e T—e !
g [ l,je[l,M]( )]

< gx(e—All’k +efM""‘ _e—All’k)

—AJ, —AJ,
<gxe " <gox(e M 4ny) (53)
<BI;,

Hence, BI,, <BI,, for anyi=G,,i#/. Based on proposed distributed scheduling

algorithm, /#4» CPS pair can be scheduled to use shared communication network due to its

shortest backoff interval (BI).

Next, the cost-optimality of proposed scheme will be proven by using

contradiction method.

Assume that there exists another jth CPS pair, and scheduling jz» CPS pair can
render better performance than scheduling /12 CPS pair even/th CPS pair has shortest BI

(i.e. cost function value J? <J;', but Bl,, <BI,, ). According to the definition of cost

function (45), J;/ can be defined as
JP =(%J,)-A,, for j=12,.M (54)
i=1 ’

Since BI,; < BI,, 1s given in assumption above, we have AJ, <AJ,, by using (51)

and (53). Meanwhile, the cost function of jzz CPS pair can be derived as
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X M M sl
Ji :(E‘]i,k)_AJj,k>(§Ji,k)_AJl,k:Jk (55)

It is important to note that.Jy >Jin (55) is contradicted with assumption that
J7 <J¢. According to contradiction method, there does not exist any other scheduled

CPS pair can obtain the better performance than scheduling/z2CPS pair which has the
shortest backoff interval. In the other words, proposed distributed scheduling algorithm
can render the best performance by scheduling the CPS pair with shortest backoff

interval.

On the other hand, any CPS pair with negative utility function value (i.e. AJ,, <0)

should not contend the shared communication network resource since it will degrade the

performance. Next, the proof about this is given in details.

Assume pth CPS pair with a negative utility function (i.e. AJ

p.k

<0) is scheduled,

then the cost function with this scheduling decision can be expressed as

M M
S =2Jd AN, > > J,, =J(nopairisscheduled) (56)
i=1 i=l

Therefore, scheduling a CPS pair with negative utility function will degrade the

performance.

Remark 5: Fairness is an important factor to evaluate the performance of

scheduling schemes. For proposed distributed scheduling algorithm, a fairness index is
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> K
=y (xiZ:jQixi,j + uiT,jRiui,j) +BR
defined as FI = - — to measure the fairness among different
e A

= i(xij[x;,‘/ + quRiui,j) +BR,
=
CPS pairs.

IV. SIMULATION RESULTS

In this section, the proposed cross-layer CPS co-design included novel optimal
adaptive model-based event-triggered control and cross-layer distributed scheduling
algorithm is evaluated in the following example. The CPS includes six pairs which are
located within 300m*300m square area randomly. For maintain the homogeneous
property, all six pairs are using the similar control system as [22]. The discrete-time

model is given as

1.1138 —0.0790 O+ 0.2033 ® 57)
X = X U
1710.0592  0.8671 0.1924

with sampling interval 7, =0.15seconds, the number of bits for the six quantized
sensed data for the CPS pairs are defined as v,, =[10 8 6 7 8 4] . The initial system states

are given by x,, =[20 71", x,, =[12 51", x,, =[10 3]", x,, =[8 41", x5, =[10 5]" and x , =[0.1 6]" .

First, the performance of proposed optimal adaptive model-based event-triggered
control is shown. Due to the page limitation and without loss of generality, an average
value of state regulation errors for the six CPS pairs is shown in the Figure 6. The results
indicates that proposed optimal adaptive model-based event-triggered control design can

not only force the regulation errors converge to zero asymptotically, but also make the
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state regulation errors converge to zero quickly while ensuring all CPS pairs are stable. It
is important to note that overshoots observed at the beginning because the optimal control

and adaptive model tuning needs a short time.
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Figure 6. State regulation errors with optimal adaptive model-based event-triggered
control system.
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Figure 7. Performance of optimal control for CPS with unknown system dynamics.
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Next, the performance of proposed CPS optimal adaptive model-based event-
triggered control is evaluated. Without loss of generality, the design of 5™ CPS pair’s
adaptive model-based event-triggered control input is shown in Figure 7. It is important
to note that the proposed optimal control inputs can make the CPS state regulation error
converge to zero when the CPS dynamics are unknown which implies that the proposed
controller can make the CPS closed-loop system stable. Meanwhile, proposed optimal
control design has a small overshoot initially since the optimal controller needs a short

tuning phase.

2
lle, I

0 5 10 15 20 25 30 35 40 45
Time (Sec)

Figure 8. Performance of the adaptive model-based event-triggered CPS estimation error
norm|e, |’

Then, the performance of adaptive model-based event-triggered CPS’s error event
is shown. Without loss of generality, we pick 5™ adaptive model-based event-triggered
CPS to evaluate the performance. As shown in Figure 8, when error event is triggered
and scheduled, the estimation error will be reset to zero since actual CPS state will be

received at the controller. On the other hand, if the error event is not triggered and
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scheduled, the estimation error increases due to inaccurate adaptive model. Once the
adaptive parameters are estimated accurately, the estimation error converges to zero. It is
important to note that the state estimation error is large and error event are triggered and
scheduled more frequently at the beginning since adaptive model needs to be tuned. After
a short period error events are obviously triggered and scheduled much less frequently

which would reduce communication network traffic.
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Figure 9. The cost function comparison for different scheduling schemes
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Figure 10. The fairness comparison for different scheduling schemes
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Next, the performance of proposed cross-layer distributed scheduling has been
evaluated. For comparison, classical widely used embedded round robin (ERR) [27] and
Greedy scheduling [27] are added. In Figure 9, the cost function of multiple pairs of CPS
with three different scheduling schemes is compared. Proposed novel cross-layer
distributed scheduling maintain a lowest value while costs of multiple pairs of CPS with
ERR and Greedy scheduling are much more than proposed scheduling scheme. It
indicates that the proposed distributed scheduling scheme can improve the performance
of multiple pairs CPS much better than widely used ERR and Greedy scheduling. It is
important to note that: 1) Since ERR only guarantees that each CPS pair can have the
same probability to access the shared communication network resource and does not
consider to efficient the usage of network resource for the multiple pairs CPS, it cannot
optimized the multiple pairs CPS performance, and 2) Since Greedy scheduling only
focuses on data link layer performance optimization and cost function of multiple pairs
CPS is defined from both data link layer and application layer, it also cannot optimize the

performance of the multiple CPS pairs.

Eventually, the fairness of different scheduling schemes has been evaluated. As
shown in Figure 10, fairness indices of proposed cross-layer distributed scheduling and
widely used ERR schemes are close and equal to one, whereas that of Greedy scheduling
is much less than one thus indicating fair allocation of shared communication network
resource for the proposed one while meeting the overall performance. The ERR method

though is fair has higher cost than the proposed one.

According to above results (Figure 6 through 10), the proposed cross-layer co-

design included optimal adaptive model-based event-triggered control scheme and a
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cross-layer distributed scheduling scheme to optimize the performance of both

communication network and the CPS subsystems.

V. CONCLUSION

In this work through a novel cross-layer co-design for multiple pairs Cyber-
Physical System, it is demonstrated that the proposed scheme can optimize not only the
performance of control system, but also the shared communication network. The novel
optimal adaptive model-based event-triggered control does not require system dynamics
and use event-triggered instead of an inefficient time-driven sampling which is quite
useful for hardware implementation. The novel scheduling algorithm is distributed,

simple and requires less computation than centralized scheduling algorithms.
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2. CONCLUSIONS AND FUTURE WORK

In this dissertation, adaptive dynamic programming (ADP) techniques are utilized
to develop model-free stochastic optimal and suboptimal adaptive design for
linear/nonlinear networked control system (NCS) in the presence of uncertain system
dynamics and unknown network imperfections. First, a novel system representation has
been derived for linear and nonlinear NCS respectively. Subsequently, using ADP
techniques, a novel value function estimator design is included and a suite of stochastic
optimal adaptive control schemes is derived based on estimated value function. Besides
state-feedback, output-feedback based stochastic optimal adaptive control has been
derived for both linear and nonlinear NCS. Value and policy iterations are not utilized;
instead the value function and control policies are updated once a sampling interval thus
making the proposed scheme suitable for hardware implementation.

The proposed optimal adaptive designs are not only able to maintain the stability
of the NCS but also force the system performance to attain optimality even when system
dynamics and network imperfections are unknown. Finally, the behavior of network
protocols is investigated and a cross-layer framework to design both the controller and

the protocol is introduced for next generation Cyber Physical Systems (CPS).

2.1. CONCLUSIONS

In the first paper, an online ADP technique based on adaptive value function
estimator is introduced to solve the stochastic optimal adaptive and suboptimal regulation
of linear NCS with uncertain dynamics in presence of unknown network-induced delays

and packet losses. Considering effects of network imperfections, the linear NCS is



255

represented in terms of augmented state vector consisting of past values of state and
inputs. Due to unknown network imperfections, the linear NCS dynamics with
augmented state vector becomes unknown and time-varying, and all traditional control
schemes which neglect the network imperfections cannot maintain linear NCS stable in
the mean. Linear NCS dynamics and network imperfections are not needed while
estimating the value function and stochastic optimal adaptive control law is derived based
on estimated value function by using past values of cost to go errors thus relaxing the
value and or policy iterations. In addition, by using the proposed parameter update law,
all value function estimator parameters are tuned forward-in-time, online and asymptotic
stability of overall closed-loop system is demonstrated by using Lyapunov stability
analysis. Exploration noise is shown to provide the needed persistence of excitation
condition which is required for parameter convergence.

In the second paper, the optimal adaptive design was extended to solve linear
zero-sum games in the presence of network imperfections. First, a novel linear NCS
zero-sum games representation with augment states was derived. Subsequently, the
optimal adaptive approach that combines value function estimator and ADP is utilized to
solve Bellman equation of linear NCS zero-sum games in real-time without the
knowledge of system dynamics and network imperfections. Since optimal adaptive
scheme balances control and disturbance effects for linear NCS, Pareto optimality has
been achieved. Finally, stability proofs guarantee the asymptotic convergence of value
function estimator parameters in the mean and closed-loop system while simulation
results reaffirm the satisfactory performance of the proposed stochastic optimal adaptive

design.
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On the other hand, in the third paper, a novel time-based stochastic optimal
adaptive control scheme for nonlinear NCS referred to as neuro dynamic programming
for NCS has been introduced in presence of unknown system dynamics and network
imperfections. First this paper has developed the nonlinear NCS representation with
augment states in the input-output form. A neural network (NN)-based identifier relaxes
the requirement of input gain matrix for the nonlinear NCS while the action NN does not
need information on network imperfections. Since proposed scheme is time-based and
forward-in-time, value or policy iterations were not required because a history of cost-to-
go errors was utilized in the value function estimator. Using Lyapunov theory, all NN
weights and closed-loop signals had been proven uniformly ultimately bounded in the
mean, and simulation results indicate the satisfied performance of proposed scheme even
when the system is represented in the input-output form.

In the past three chapters, though the effect of delays and packet losses are
included in the design, a specific network protocol behavior is not considered. In
addition, the above stochastic adaptive optimal control designs for linear NCS are all
based on state-feedback design while a network protocol behavior requires output
feedback. Therefore, the behaviors of TCP and UDP by using output feedback design are
considered in the fourth paper. First, a linear NCS representation under TCP and UDP
was developed which is different from the past three chapters. Subsequently, an ADP-
based scheme consisting of a novel observer, value function estimator is utilized to solve
the Bellman equation in real-time for obtaining optimal control of linear NCS under TCP

and UDP. Since past control inputs and estimated states have been used, the requirement
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of system dynamics and network imperfections was relaxed to obtain the stochastic
optimal adaptive design.

In addition, stability region of designed observer is derived and compared with
traditional observer. Although stability region of the proposed adaptive observer is
smaller, it relaxed the requirements for unknown system dynamics. Eventually,
Lyapunov theory is used to prove the observer and its parameters, adaptive value function
estimator parameters and closed-loop system are asymptotically stable in the mean for
NCS under TCP and uniformly ultimately bounded in the mean for NCS with UDP.

Furthermore, it is important to note that novel event-triggered control technique
has attracted significant interest than traditional time-driven control due to its network
benefits. The joint network protocol and controller design is necessary for CPS.
Therefore, a novel cross-layer co-design is developed in the fifth paper. In this paper,
first, an event-triggered control scheme is introduced instead of a traditional time-driven
scheme. Subsequently, a novel optimal adaptive model-based event-triggered control
scheme is derived. Compared with other event-triggered control schemes (e.g. ZOH,
Fixed-model), proposed algorithm can not only save more network resources but also
improves the performance of control system while relaxing the requirement of system
dynamics. Then, a novel distributed scheduling is derived by maximizing the utility
function which is based on information from both the application and network layers.

2.2. FUTURE WORK

As part of the future work, more network imperfections (e.g. quantization errors

etc.) could be considered for NCS design. This would complicate the design and brings
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more challenges for proving stability. However, the major benefit is to make our design
more suitable for real-time implementation.

On the other hand, although event-triggered control schemes are derived in the
fifth paper, they only focus on linear discrete-time system. Since nonlinear system is
more generic than a linear system, proposed event-triggered control schemes should be
extended to the case of nonlinear systems. Therefore, the development of an adaptive
model-based event-triggered control for nonlinear system can be considered as one part
of future work. After that, optimal event-triggered controller scheme development can
also be introduced as part of future work.

Another possibility would be efficient CPS co-design. Until now, most control
and networking researchers separated the control and network protocol designs for the
sake of convenience. However, such designs will degrade the performance of CPS since
controller and network protocol designs can influence each other. Therefore, it is
necessary to derive a novel co-design framework to overcome this drawback. Besides the
fifth paper, more CPS co-designs such as joint intelligent control with novel routing,
adaptive modulation/demodulation and encoding/decoding can be considered. Although
developing an efficient co-design framework and proving its superiority mathematically

are difficult, it is an interesting and promising area to explore.
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