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(\ Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics '-S April 2-7, 1995; Volume Ill, St. Louis, Missouri 

STATE OF THE ART (SOA2) 
Liquefaction and Deformation of Soils and Foundations Under 
Seismic Conditions 

Ricardo Dobry 
Rensselaer Polytechnic Institute 
Troy, New York, USA 

SYNOPSIS A summary of significant developments in seismic liquefaction research and applications is presented for the period 
1985-1995. It is concluded that rapid progress is being made, especially in evaluating ground deformation and straining and their 
effects on constructed facilities. Four topics illustrating these developments are selected and discussed in more detail. 

INTRODUCTION 

Liquefaction of loose, saturated granular soil during 
earthquakes has been and continues to be a major cause of 
destruction of constructed facilities. This is shown by simply 
remembering some seismic events of the last decade where 
liquefaction-related damage was paramOlmt: Chile, 1985; 
Lorna Prieta, California, 1989; Philippines, 1990; Costa Rica, 
1991; and of course, Kobe, Japan, 1995. At the time of 
writing of this paper, damage estimates for this last 
earthquake ranged between thirty billion and more than one 
hundred billion US dollars, of which a significant fraction was 
related to liquefaction effects on the port and other facilities. 

While some main aspects of liquefaction are now well 
understood and useful engineering tools are available for their 
evaluation, others remain either mysterious and controversial 
or are understood only at a qualitative level. Despite several 
decades of work on the subject, liquefaction continues to be 
the focus of extensive research in several countries. In fact, 
the pace of the effort has even accelerated in the last decade, 
with half a dozen centers and government organizations in 
Canada, Japan and the US supporting comprehensive and 
systematic liquefaction-related efforts. 

In addition to the practical importance of the problem, 
there are some clear reasons for this continued interest. The 
first is that ground liquefaction, with or without the presence 
of structures, is a very complex phenomenon. In fact, it may 
be advantageous to visualize it as afamily of phenomena, with 
this family having as common denominator a significant 
buildup of excess pore water pressures due to the earthquake 
excitation. These excess pore pressures constitute a necessary 
but not sufficient condition for liquefaction and related 
damage to occur; also, the level of excess pore pressure 
needed to trigger liquefaction may be different ~ a slope than 

in level ground. But even when this level of pore pressure is 
reached, the appearance of significant engineering 
consequences depends on a number of other factors whose 
combined effect is still poorly understood, such as soil 
density, layer thickness, permeability, layering, soil-structure 
interaction aspects, etc. A second reason for the continued 
interest in liquefaction is that for many years the research 
focused on pore pressure buildup and liquefaction triggering, 
with this focus switching only recently to ground deformations 
and liquefaction effects on constructed facilities. And finally, 
a third reason is the increasing importance of retrofitting and 
ground remediation of existing facilities (as compared to the 
more traditional seismic design of new structures), for which 
conservative assumptions can be very costly and thus require 
more precise scenarios and predictions of engineering effects. 

This expanded interest in liquefaction and its effects is 
reflected in the number of State-of-the-Art (SOA) and Special 
Presentation papers in these proceedings that deal with the 
subject. In addition to this article, they include: Finn et al. 
(1995); Youd (1995); Kutter (1995); O'Rourke and Pease 
(1995); Robertson et al. (1995); and Arulanandan et al. 
(1995). Therefore, the author decided that it was not 
necessary-<>r possible-to write a SOA paper covering all 
aspects of what has become a vast and expanding field. For 
further information, the reader is directed to the references 
listed above and in Table 1 (Item 1 ), as well as to the SOA 
papers presented in the two previous conferences by Finn 
(1981, 1991). 

Two things are done in the remainder of this paper. 
Following the tradition established by Prof. Finn in the 
previous conferences, important recent developments are first 
identified and the corresponding references are provided for 
the last decade. Then, four topics of special interest to the 
author are selected and discussed in more detail. 
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RECENT DEVELOPMENTS 

Table 1 summarizes what the author considers to be the 
fifteen most important developments of the last decade, 
including a list of selected publications attached to each item. 
The table starts, under Item 1, with the seminal publication 
developed at the 1985 workshop on liquefaction sponsored by 
the US National Research Council, and organized by Prof. 
Whitman (NRC, 1985), which provides a natural initiation to 
the period covered by the table. Like any attempt of this type, 
the exact organization of the table and the selection and 
wording of the fifteen items are quite subjective, and different 
people could certainly arrive at different versions of Table 1. 
In particular, the table does not imply any order of importance 
(Item 1 is not necessarily more important than Item 15 !). Also, 
there is considerable (and probably unavoidable) overlap 
between different items (e.g., compare Items 3, 4 and 10). 

Still, the table provides useful information and a general 
perspective. While a few of the issues listed are covered in 
more detail in the rest of this paper, an inspection of the table 
suggests the following thoughts about current trends in 
liquefaction research and applications: 

• In the last decade, research incorporating case histories, 
field measurements, and more generally in situ work, 
has become extremely important, especially when 
compared with previous decades, which were 
dominated by laboratory research. 

• Ground deformation evaluation in free field studies, and 
engineering effects of liquefaction on structures and 
lifelines, are receiving increasing attention, as compared 
to the past emphasis on pore water pressure buildup. 
There has been a quantwn jump in the last decade in 
our understanding of these issues, which continues to 
develop at a fast pace. 

• There is a rapid emergence of centrifuge model testing 
as a main, cost-effective tool to clarify the mechanics of 
liquefaction phenomena and provide quantitative 
evaluations of ground deformation and engineering 
effects on different systems. There is also a parallel 
development of sophisticated numerical techniques, 
mostly still in the research stage, which offer great 
promise ofbecoming extremely useful engineering tools 
in the near future. 

• International cooperation, organized team efforts both 
within and between countries, and the leadership and 
support of national centers and government 
organizations have been critical to the success of a 
number of the developments listed in Table 1. 

Expanded discussions of four topics included in Table 1 
are presented in the following sections. These topics range 
from silty sand behavior to the effects of permanent ground 
straining on foundations and structures, and they illustrate 

useful new developments for the evaluation of liquefaction­
induced ground deformation and associated engineering 
damage. 

THE RATIO SrI a'vo IN SILTY SANDS AND THE 
WATER-SEDIMENTATION TECHNIQUE 

A key question when evaluating the potential for post­
liquefaction large ground deformation and flow sliding is the 
determination of the shear strength characteristics of the 
liquefied soil (Finn, 1991). Over the years, limiting 
equilibrium analyses have been developed which assume the 
existence of well defined failure block(s), both for post­
shaking static evaluations of flow sliding (Fig. 1; Castro et al, 
1982; Seed, 1987), and for dynamic evaluation of lateral 
spreading during shaking (Fig. 2; Castro, 1987; Dobry and 
Baziar, 1992). These limiting equilibrium analyses assume 
that the liquefied soil has a well defined shear strength which 
is constant over a wide range of shear strains; this strength has 
been variously identified with the undrained steady-state shear 
strength, Sus , obtained in the laboratory (Castro et al., 1982), 
and with the residual shear strength, Sr, backfigured from case 
histories (Seed, 1987). A number of authors have backfigured 
the average residual shear strength, Sr, of liquefied loose 
sands, silts, and gravels from case histories of lateral 
spreading and flow failure, and have correlated sr to in situ 
penetration resistance. Relevant references are listed in Table 
1, Item 10. For liquefied silty sands and sandy silts, these case 
histories show a consistent increase of Sr with average 
vertical effective confining stress, a'vo• as illustrated by Fig. 
3(b ). (Relevant references which have pointed out this 
influence of a'vo or of depth on Sr are listed in Table 1, Item 
12.) As shown by Fig. 3(b), the ratio SrI a'vo obtained from 
the case histories ranges from about 0.04 to 0.2. Laboratory 
tests using the water-sedimented technique developed by 
Vasquez-Herrera et al. (1990) and Baziar and Dobry (1995) 
for silty sands have helped explain this increase of sr with a'vo 

in terms of the high compressibility of the soil. 

Many loose saturated silty sand deposits have been 
sedimented in water and contain sequences of finely divided 
thin layers composed of soils of different gradations. This 
microlayering is found in natural sediments and hydraulic fills 
and has also been reported in clean sands (Ishihara, 1990; 
Baziar and Dobry, 1995). The slower fall velocities in water 
of the finer grains, which cause the coarser soil to sediment 
first followed by the finer sand or silt, is a main reason 
explaining this type of fabric. For example, the hydraulic fill 
of the Lower San Fernando Dam (LSFD), which experienced 
a flow slide during an earthquake in 1971 (see Fig. 1), was 
found to be intensely stratified by microlayers from about 0.05 
to 0.20 inches thick (Castro et al., 1989). 
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Table I. Recent Developments in Liquefaction Research and Applications: 1985-1995 

Item Explanation Selected References 

1. SOAReviews Publication of several NRC (1985) 
comprehensive state-of-the-art Castro (1987) 
docwnents Seed and Harder (1990) 

Finn (1991) 
Marcuson et al. (1992) 
Ishihara (1993) 
Finn et al. (1995) 
Youd (1995) 

2. Lower San Fernando Dam, Re-visiting of 1971 flow slide in Marcuson et al. (1990) 
California upstream slope of Lower San Vasquez-Herrera et al. (1990) 

Fernando Dam due to San Fernando Castro et al. (1992, 1993) 
earthquake. New field and Gu et al. (1993) 
laboratory studies and re-evaluation Baziar and Dobry (1995) 
of slide. 

3. Hamada's Air Photo Technique Development of Hamada's air photo Hamada et al. (1986) 
surveying technique to study post- Hamada and O'Rourke (1992) 
liquefaction ground deformation 0 'Rourke and Hamada ( 1992) 
values and spatial patterns. 
Application to several Japanese and 

r-- ----- -- U.S. earthquake~·---
4. Cooperative Research Extensive U.S.-Japan cooperative Hamada and O'Rourke (1988, 1992, 

research, joint workshops, and 1992a) 
publication of volwnes docwnenting O'Rourke and Hamada (1989, 1991, 
case histories of liquefaction- 1992) 
induced ground deformation and 
effects on lifelines for 1 0 
earthquakes in Japan, the Philippines 
and the U.S. 

5. In Situ Recording of 100% Pore First in situ recording of initial Holzer et al. (1989) 
Pressure in Earthquakes liquefaction (pore pressure ratio, r u Dobry et al. (1989) 

~ 1.0) at Wildlife site in California, Hushmandetal. (1991, 1992) 
during M = 6.6 Superstition Hills Zeghal and Elgamal (1994) 
earthquake, and in-depth studies and Y oud and Holzer ( 1994) 
discussions of pore pressure and Zorapapel and Vucetic (1994) 
acceleration records. Development 
of Elgamal-Zeghal system 
identification technique to extract 
and image average stress-strain 
response of soil from records. 

Laboratory evaluations of the in situ undrained steady­
state shear strength, Sus, of such soils is very difficult. Castro 
et al. (1982) and Poulos et al. (1985) note that even high 
quality "undisturbed" samples are subjected to inevitable 
densification, which often transforms an originally contractive 
sand to a dilative state when reconsolidated to the in situ 
pressure. They reconsolidate the undisturbed triaxial sample 
to a much higher pressure than that in situ so that the soil 
behaves contractively again, and then correct the measured s .. 

back to the in situ void ratio (Castro-Poulos-France method). 
The procedure recognizes the importance of preserving the 
original microlayered fabric of the soil, as compared with the 
option of ignoring the effect of microlayering by testing 
remolded homogeneous specimens having the in situ void 
ratio. The Castro-Poulos-France method was applied by 
Castro et al. ( 1992) to the re-evaluation of the 1971 flow slide 
of the LSFD, which is further discussed in the next section. 
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6. 

7. 

Table I con. Recent Developments in Liquefaction Research and Applications: 1985-1995 

Item 

1 g and Centrifuge Model Tests 
and VELACS 

Canadian Liquefaction 
Experiment 

1160 -Q) 
Q) 
u.. 1120 
.5 
c: 1080 0 
~ 
cu 
> 1040 Q) 

iTI 

-Q) 1160 Q) 
u.. 
.5 1120 
c: 1080 0 
~ 
cu 1040 > 

Explanation 

Extensive use of base shaking of 
instrumented soil and soil-structure 
models, including especially 
centrifuge models shaken in flight. 
Rapid emergence of centrifuge 
modeling as main tool to evaluate 
mechanics and effects of liquefaction 
and to calibrate numerical codes. 
Cooperative research project 
VELACS (VErification of 
Liquefaction Analysis by Centrifuge 
Studies) involving eight universities 
in the USA and United Kingdom. 

Cooperative Canadian liquefaction 
experiment (CANLEX) involving 
industry, consultants and 
universities. It includes high quality 
in situ sampling at two sites, field 
and laboratory testing, inducing of 
liquefaction event at one of the sites, 
and analytical studies. 

Selected References 

Schofield and Steedman (1988) 
Ishihara and Takeuchi (1991) 
Sasaki et al. (1991) 
Steedman (1991) 
Dobry and Liu (1992) 
Arulanandan and Scott (1993, 1994) 
Dobry and Taboada (1994) 
Kimura et al. (1994) 
Ko (1994) 
Whitman and Ting (1994) 
Zeng (1994) 
Arulanandan et al. (1995) 
Elgamal et al. (1995) 
Kutter (1995) 
Robertson (1993) 
Robertson et al. (1995) 

(a) 

Zone of liquefaction and 
high residual pore pressure 

Q) 

1000 w YIA\il.fu VJI<WA\\ S r J;WX\\ vJA\'W\\ vJJ.\VX\\ 

Figure 1. Flow slide of upstream shell of the Lower San Fernando Dam caused by the 1971 San Fernando Earthquake: (a) initial 
configuration, and (b) final configuration (Baziar and Dobry, 1995, modified after Castro et al., 1992). 
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Table I con. Recent Developments in Liquefaction Research and Applications: 1985-1995 

Item Explanation Selected References 

8. Flow Failure Triggering Development of accumulated strain Dobry et al. ( 1985) 
and pore pressure criteria for Sladen et al. ( 1985) 
triggering of flow failure in Vaid and Chern (1985) 
embankments and slopes. Castro et al. (1989, 1993) 
Recognition that triggering occurs at Seed and Harder (1990) 
r u < 1. 0 in the presence of a static Vasquez-Herrera et al. (1990) 
driving shear stress. Finn (1991) 

9. Post -liquefaction Settlement Development of criteria and Tokimatsu and Seed (1987) 
simplified engineering procedures Nagase and Ishihara (1988) 
for evaluating post-liquefaction Ishihara and Y oshimine ( 1991) 
ground surface settlement due to O'Rourke et al. (1992a) 
compaction. Ishihara (1993) 

-

10. Case Histories ofLateral Documentation and publication of an De Alba et al. (1987) 
Spreading and Flow Failure and increasing number of case histories Castro (1987) 
Their Use of flow failure and lateral spreading, Seed (1987) 

including in situ penetration Y oud and Perkins ( 1987) 
resistance of soil, and use of these Davis et al. (1988) 
case histories to develop: Sladen and Hewitt (1989) 
(i) empirical correlations for Seed and Harder (1990) 
evaluating lateral ground Baziar and Dobry (199la, 1995) 
deformation, (ii) screening Dobry and Baziar (1992) 
procedures to determine if soil in Robertson et al. (1992) 
situ can develop large deformation, Stark and Mesri (1992) 
(iii) corre-lations to evaluate residual Bartlett and Youd (1992, 1995) 
shear strength of soil for limiting O'Rourke and Hamada (1992) 
equilibrium calculations of flow Hamada and O'Rourke (1992) 
failure and lateral spreading, and (iv) Ishihara (1993) 
use of the sliding block analysis O'Rourke and Pease (1995) 
technique for evaluation of Youd (1995) 
horizontal ground deformation in 
lateral spreads. 

11. New Laboratory-Based A number of laboratory-based Been and Jefferies (1985) 
Developments findings and concepts have been Sladen et al. (1985) 

proposed as a basis for practical Been et al. (1986, 1991) 
evaluations involving the undrained Mohamad and Dobry (1986) 
response of liquefied soil. They Alarcon-Guzman et al. (1988) 
include, among others: (i) collapse Kuerbis and Vaid (1989) 
surface, state parameter and similar Vaid et al. (1989) 
concepts providing unified pictures Vasquez-Herrera and Dobry (1989) 
of the responses of different sands, Verdugo (1992) 
(ii) quasi-steady state strength for Ishihara (1993) 
soils exhibiting contractive behavior Baziar and Dobry (1995) 
at intermediate shear strains and 
dilative behavior at larger strains, 
and (iii) use of water-sedimentation 
technique simulating the field 
depositional process for the testing 
of siltv sands and sandy silts. 
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Table I con. Recent Developments in Liquefaction Research and Applications: 1985-1995 

Item Explanation Selected References 

12. Residual Strength of Silty Sands Recognition that the residual Castro and Troncoso (1989) 
and Confining Pressure strength of many loose silty sands, Ishihara et al. (1990) 

sandy silts, and tailings, increases Wightam and Jefferies (1991) 
with confining pressure, and Baziar and Dobry (1991a) 
development of S, I a'vo parameter for Lo et al. (1991) 
engineering applications. McLeod et al. (1991) 

Stark and Mesri (1992) 
Ishihara (1993) 
Baziar and Dobry (1995) 

13. Mechanics of Flow Failure and Vigorous discussions on detailed NRC (1985) 
Lateral Spreading mechanics of large ground Castro (1987) 

deformation, and especially of lateral Seed (1987) 
spreads, and extensive research to Dobry (1989) 
clarify issues still pending, such as: Towhata (1991, 1993) 
(i) purely undrained character of Yasuda et al. (1991) 
flow failure versus partial drainage, Sasaki et al. (1991) 
void ratio redistribution, pore Ishihara and Takeuchi (1991) 
pressure migration/soil cracking, and Dobry and Baziar (1992) 
water interlayer phenomena, (ii) role Dobry and Liu (1992) 
of water interlayer under cohesive Arulanandan and Zeng ( 1994) 
stratum in lateral spreads, (iii) role O'Rourke (1994) 
of distributed shear strains within Fiegel and Kutter (1994) 
liquefied layer in causing lateral Zeghal and Elgamal (1994) 
ground surface deformation in lateral 
spreads, versus strain 
concentration(s) at failure surface(s) 
and validity of sliding block 
analyses, (iv) relative importance 
of gravity and inertia forces in lateral 
spreads, importance of delayed 
deformations occurring after the end 
of shaking and possible mecha-
nism( s) of these delayed 
deformations; and (v) nature and 
properties of liquefied soil, and 
especially role of dilative behavior in 
limiting soil deformation. 

14. Effects of Large Ground Studies of spatial patterns of large Hamada and O'Rourke (1988, 1992, 
Deformation on Constructed ground deformation and ground 1992a) 
Facilities and Soil-Structure strains, as well as their effects on O'Rourke and Hamada (1989, 1991, 
Interaction Aspects buried lifelines, foundations and 1992) 

other constructed facilities using Youd (1989) 
case histories, analyses and model Susuki and Masuda (1991) 
tests. Meyersohn et al. (1992) 

Dobry (1994) 
O'Rourke and Pease (1995) 
O'Rourke et al. (1995) 
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Table I con. Recent Developments in Liquefaction Research and Applications: 1985-1995 

Item 

15. Numerical Techniques to 
Evaluate Liquefaction and Large 
Ground Deformation 

Explanation 

Rapid development of numerical 
techniques aimed at providing 
realistic modeling of liquefaction, 
large ground deformations and 
nonlinear soil-structure interaction. 
Increased use of partially and fully 
coupled effective stress 
computational methods; verification 
and calibration by case histories and 
laboratory/centrifuge test results. 

(Initial Section 

DH 

Selected References 

Finn et al. (1986) 
Bardet (1987) 
Chan (1988) 
Yashima et al. (1988) 
Finn and Yogendrakumar (1989) 
Zienkiewicz et al. (1990, 1994) 
Muraleetharan et al. (1991, 1994) 
Iai et al. (1992) 
Li et al. (1992) 
Towhata et al. (1992) 
Arulanandan and Scott (1993, 1994) 
Ishihara et al (199 3) 
Lacy (1993) 
Popescu and Prevost (1993) 
Bouckovalas et al. (1994) 
Dafalias (1994) 
Darve (1994) 
Smith (1994) 

~~ DefOITTled Section 

Figure 2. Sketch of lateral spread before and after ground deformation; liquefaction occurs in the cross-hatched zone (Youd, 
1984). DR is the horizontal deformation ofthe ground surface. 

The alternative water-sedimentation approach was 
proposed by Vasquez-Herreraet al. (1990) as part of the same 
LSFD study. Remolded layered (microlayered) triaxial soil 
specimens are formed by pluviating equal weights of the sand­
silt mixture sampled from the site into the triaxial preparation 
mold previously filled with water and then waiting enough 
time for full sedimentation to occur before pouring the next 
layer. Figure 4 sketches a typical segregated layered triaxial 
specimen formed this way, which attempts to simulate the in 

situ fabric by, in effect, mimicking the sedimentation history 
of the deposit. This method provides void ratios and values of 
Sus similar to those in the field for very loose, natural or 
artificial silty sands and sandy silts. In the rest of this section 
and in the next section, results obtained on remolded layered 
LSFD silty sand are discussed and compared with other 
relevant in situ and laboratory data summarized by Castro et 
al. (1992), as well as with the average residual strength S, 
exhibited by the LSFD in the 1971 slide. 
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1000 

(N1)6o, blows/ft 

Upper boundary for 
large deformation 
potential in saturated 
silt-sand deposits 

1000 

a'vo 
Symbol DH (H) 

• <!'3 o'vo 
psf 2ooo 0 1 to3 

psf 2ooo 

3000 

4000 

Figure 3. Charts relating: (a) normalized Standard Penetration Resistance, (N 1)
60

, and (b) residual shear strength, S, , to vertical 

effective overburden pressure, dvo• for low plasticity, saturated nongravelly silt-sand deposits with fines contents greater than 
10%, that have experienced large deformations. All data points correspond to case histones obtained from Stark and Mesri (1992) 
and Bartlett and Youd (1992) (modified from Baziar and Dobry. 1995). 

~2 inches~ 

Discontinuously 
sedimented --t--~ 

layers 

mold-~-~~ 

(fJ 
Q) 

..c. 
u 
c: 
~ 

1 
Figure 4. Remolded layered triaxial specimen of silty sand 
prepared by water sedimentation. Technique proposed by 
Vasquez-Herrera and Dobry (1989) to simulate observed 
microlayering of hydraulic fill in Lower San Fernando Dam_ 

The results of fourteen tests performed by Vasquez­
Herrera et al. (1990) and Baziar and Dobry (1995) are 
swnmarized here in Figs. 5-7. In most of the experiments, the 
specimen was composed of four l-inch layers (Fig. 4). 1n all 
cases, the layered triaxial specimen was first consolidated 
under effective vertical (cr..) and horizontal ( a':J stresses, 

either isotropically (K. =d.., I a'Jc = 1) or anisotropically 
(Kc > 1). Then undrained monotonic triaxial or cyclic torsional 

loading was applied to failure. The observed steady-state 
strength response was the same in both monotonic and cyclic 
tests. The deposition method produced a very loose soil with a 
void ratio, e, after consolidation ranging from 0.66 to more 
than 0.8. AU specimens exhibited contractive behavior and 
experienced flow failure at large shear strains, even under 
consolidation pressures as low as 0.2 tsf, representing a depth 
of soil of only a few feet in the field. Figure 5 displays the 
stress-strain curve from one of the monotonic tests and 
illustrates the determination of tl1e steady-state shear strength. 

These tests are plotted together in Figs. 6 and 7, 
irrespective of their being monotonic or cyclic. Figure 6 shows 
that: 

{1) the soil is very compressible, with the void ratio e 
decreasing and s... increasing rapidly as the vertical 
pressure a;., increases; 
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Figure 5. Typical stress-strain curve from monotonic 
Wldrained triaxial test on isotropically consolidated, remolded 
layered specimen of silty sand prepared using water 
sedimentation. Batch Mix 7, Lower San Fernando Dam 
(afc = o'Jc = 0.9 tsf, e = 0.76) (Baziar and Dobry, 1995). 
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(2) the relation between e and afc is unique and independent 
ofKc; 

(3) for a given Kc the ratio s ... I ofc is nearly constant; and 
(4) this ratios ... I ofc increases as Kc increases. 

Conclusions (1) and (3) are reminiscent of the Wldrained static 
strength behavior of normally consolidated clays and of the 
use of similar "clp ratios" for static loading evaluations in 
clays (e.g., see Ladd, 1991 ). The use of an s ... I ofc ratio was 
first proposed by Castro and Troncoso (1989) for tailings 
dams, and the range of s ... I ofc :::= 0.12 to 0.19 in Fig. 6 is 
generally consistent with laboratory results presented by 
Castro and Troncoso (1989), Castro (1991) and Ishihara 
(1993 ). Both relations of e and s ... with afc in Figs. 6(a) and 
(b) are very useful, as afc can be readily interpreted in field 
studies as the vertical effective overburden pressure, o'vo· 
Furthermore, this ratio s ... I ofc :::= 0.12 to 0.19 is included 
within, and covers most of the range SrI o'vo :::= 0.04 to 0.2 
from case histories already discussed and plotted in Fig. 3(b ). 
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Figure 6. Relations obtained from ten monotonic and cyclic Wldrained tests on remolded layered specimens of silty sand, Batch 
Mix 7, Lower San Fernando Dam (Baziar et al., 1992, Baziar and Dobry, 1995). 
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Figure 7. Steady-state relations for the same tests on remolded layered soil of Fig. 6, supplemented by four tests reported by 
Vasquez-Herrera and Dobry (1989), Batch Mix 7, Lower San Fernando Dam (modified from Baziar and Dobry, 1995). 

The same monotonic and cyclic tests are presented in 
Fig. 7, where unique steady-state lines are obtained for these 
remolded layered specimens. Figure 7(a) also includes the 
consolidation curve from Fig. 6(a) for the case of Kc = 2. For 
the range of pressures of interest, the consolidation curve is 
located above the SSL (~ .. versus e), consistent with the 
contractive behavior observed in the tests. Figure 7(b) 
includes a comparison with the s... steady-state line of 
remolded homogeneous specimens of the same soil, obtained 
from tests conducted at four organizations: GEl Consultants, 
Stanford University, US Army Corps of Engineers Waterways 
Experiment Station, and Rensselaer Polytechnic Institute 
(Marcuson et al., 1990; Castro et al., 1992). While the two 
steady-state lines in Fig. 7(b) are parallel, the one for layered 
soil is significantly higher, with s ... of remolded layered soil 
being about four times larger than the s .. of remolded 
homogeneous soil having the same void ratio. Figure 7(d) is 
discussed in the next section. 

APPLICATION TO LOWER SAN FERNANDO DAM 

The 1971 upstream flow slide of the LSFD shortly after the 
end of the ground shaking caused by the San Fernando 
earthquake has been extensively studied. Based on field 
trenching and other investigations, Seed et al. (1973, 1975) 
identified the part of the upstream liquefied hydraulic fill that 
had flowed into the reservoir (cross-hatched zone in Fig l(a)). 
A second effort was conducted in 1985-1989, sponsored by 
the US Army Corps of Engineers Waterways Experiment 
Station (WES), including in situ density and standard 
penetration tests as well as undisturbed sampling in the still 
intact downstream side, undisturbed and remolded laboratory 
testing, and re-evaluation of the 1971 failure. The 198 5-1989 
investigations focused on a location downstream which is 
about the mirror image of the 1971 failure zone in the 
upstream shell; therefore, the soil conditions investigated 
correspond reasonable well to those in the liquefied soil 
upstream (Castro et al., 1992). The author participated in this 
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re-evaluation effort as part of the RPI group (Vasquez-Herrera 
and Dobry, 1989), together with WES, GEl Consultants 
(Castro et al., 1989) and the Berkeley-Stanford University 
group (Seed et al., 1989). The results of the 1985-1989 effort 
have been sununarized by Marcuson et al. (1990), Castro et 
al. (1992, 1993), and Baziar and Dobry (1995). Both Castro 
and Seed used for their analyses values of Sus based on the 
Castro-Poulos-France method and on their best estimates of 
the void ratios of the failed soil upstream prior to the 1971 
slide. They also backfigured average values of the residual 
shear strength sr from analyses of the failure itself. 

All tests on remolded layered water-sedimented 
specimens presented in Figs. 5-7 were done on a 
representative batch of soil obtained by GEl Consultants 
downstream, and distributed and used by all groups 
participating in the 1985-1989 effort. Therefore, a unique 
opportunity arises to verify the validity of the remolded 
layered specimen testing approach, by comparing these 
remolded layered results on water-sedimented specimens, 
both to the laboratory data and interpretations produced with 
the Castro-Poulos-France method, and to the best estimates of 
the state of the soil upstream before the 1971 slide including 
in situ void ratios and backfigured values of sr. These 
comparisons, already presented and discussed by Baziar and 
Dobry (1995), are reproduced in the rest of this section and 
are sununarized in Fig. 7 and Table 2. In all cases, average 
representative values ~o ~ 2 tsf, o'3c ~ 1 tsf, and 
Ko = ~o I o'3c ~ 2 are used for the upstream hydraulic fill 
along the failure surface shown in Fig. l(a). These values 
were obtained from static finite element and stability analyses 
(Vasquez-Herrera and Dobry, 1989; Castro et al., 1992). 

The first comparisons relate to the in situ void ratios. 
The band of void ratios estimated in Castro et al. (1989) for 
the critical hydraulic fill upstream in 1971, e = 0.64 to 0.78, 
has been plotted at o'3c ~ 1 tsf in Fig. 7(a). This range was 
obtained in that publication from 22 in situ density 
measurements made downstream, after Castro et al. corrected 
them for the different confining stresses between upstream 
and downstream and for densification after 1971. The band is 
located above the steady-state line in Fig. 7(a), and thus the 
water-sedimentation procedure predicts that the hydraulic fill 
upstream was contractive and susceptible to flow failure under 
undrained loading. The laboratory consolidation curve for the 
remolded layered soil, obtained from Fig. 6(a) and plotted in 
Fig. 7(a) for the relevant case Ko = 2, predicts e = 0.72 for 
o'3c ~ 1 tsf, essentially identical to the average in situ void 
ratio upstream in 1971 determined from the same 22 data 
points. 

Another interesting comparison is between the Sus 
steady-state line (SSL) for remolded layered soil of Fig. 7 (b) 
and the SSLs obtained from the undisturbed layered 

specimens of the hydraulic fill tested as part of the Castro­
Poulos-France method. This is done in Fig. 7(d) , where the 
remolded layered SSL ofFig. 7(b) is repeated. Two ranges are 
included in Fig 7( d), corresponding to tests on undisturbed 
samples performed by Castro et al. (1989), and Seed et al. 
(1989), respectively. The remolded layered SSL is within the 
two ranges and close to the middle of the whole band. 
Therefore, the SSL obtained with the remolded layering 
water-sedimented technique agrees well with the range of 
SSLs determined by the Castro-Poulos-France procedure. 

Finally, it is most useful to compare the average 
undrained steady-state strength, SUI, predicted along the 
failure surface in Fig. l(a) from the remolded layered, water­
sedimented soil tests, with both: (i) the corresponding 
average Sus predicted by the Castro-Poulos-France method, 
and (ii) the average residual shear strength Sr backfigured 
from the 1971 slide. Table 2 sununarizes the corresponding 
information. The water-sedimentation laboratory technique 
predicts SUI = 0.31 tsf from ~o = 2 tsf and the corresponding 
e = 0.72 as shown in Figs. 6(a) and 7(b); and SUI= 0.37 tsf 
from s ... I ~o = 0.185 corresponding to Ko = 2 in Fig. 6(b). 
These two values compare favorably in Table 2 with the 
average s ... = 0.305 to 0.405 tsf determined using the Castro­
Poulos-France procedure. That is, both the Castro-Poulos­
France method, using undisturbed layered specimens, and the 
remolded layered, water-sedimented soil approach predict an 
average SUI ~ 0.3 to 0.4 tsf along the failure surface of Fig. 
l(a). 

Table 2 also includes various estimates of residual 
strength sr backfigured from analyses of the initial slope 
configuration in Fig. l(a), of the configuration after failure in 
Fig l(b), or of a combination of both. The average driving 
static shear stress in the hydraulic fill ( rdr in Fig. l(a)), 
obtained from slope stability analyses, was 
rdr ~ 0.43 to 0.53 tsf (Castro et al., 1992; see also Gu et al., 
1993). 

The original estimate made by Seed (1987) of 
Sr = 0.375 tsffor the Start of the Sliding iS close tO Tdr, and he 
suggested that this value of sr may have decreased as the 
failure progressed. Confirming this hypothesis of Seed, 
significantly lower values (Sr = 0.15 to 0.25 tsf) are obtained 
from analyzing the failed configuration of Fig. l(b). It is 
interesting that this original estimate at the outset of the 
sliding, Sr = 0.375 tsf, as well as the upper part of the range 
estimated by Castro and Davis, are all within the band 
Sus= 0.3 to 0.4 tsf predicted from the tests on both 
undisturbed and remolded layered soil done at three different 
laboratories. 
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Table 2. Estimates of Residual Shear Strength, Upstream Shell of Lower San Fernando Dam, 
1971 Earthquake (modified after Baziar and Dobry, 1995) 

General Reference(s) (2) Average Average Comments {5) 
Approach (1) Undrained Residual 

Steady-State Shear 
Shear Strength 
Strength Sus sr (tsf) (4) 
(tsf) (3) 

Undrained Castro et al. 0.305 - MethodAa,b 
Laboratory (1989) 
Testing Castro et al. 

(1992) 

Seed et al. (1989) 0.405 - Methodaa,c 
Castro et al. 
(1992) 

V asquez-Herrera 0.35 - Remolded layered specimens and in 
& Dobry (1989) situ void ratios 

Baziar and Dobry 0.37 - Remolded layered specimens: from 
(1995) Sus I ~c = 0.185 and ~c = 2 tsf (Fig. 

6(b)) 

0.31 - Remolded layered specimens: from e = 
0.72 (Fig. 6(a)) and steady-state line 
(Fig. 7(b)) 

Backfigured Seed (1987) - 0.375 Sr at start of sliding (Fig.l(a)) 
from 1971 Flow 
Slide 

Seed et al. (1989) - 0.15 to 0.25 Sr . at end of sliding (Fig. 1 (b)) 
Seed & Harder 
(1990) 
Castro et al. 
(1993) 

Davis et al. (1988) - 0.22 to 0.32 Representative average of whole failure 
Castro et al. process (Figs. 1(a) and 1(b)) 
(1993) 

a Castro-Poulos-France (1982) procedure applied to the dam. Included steady-state strength determinations on 
remolded homogeneous specimens and undisturbed specimens; field density tests; in situ void ratio t:stimates from 
tube samples including corrections for changes during excavation and sampling; void ratio corrections for changes 
between 1971 and 1985 (year of field exploration); and statistical analyses of results to obtain average Sus· 

b Method A: Change of in situ void ratios between 1971 and 1985 estimated by Castro et al. (1989). 

c Method B: Change of in situ void ratios between 1971 and 1985 estimated by Seed et al. (1989). 
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On the other hand, the value of sr estimated at the end 
of the flow failure in Table 2 is significantly lower, having 
decreased by a factor of about 1.5 or 2. A possible reason for 
this reduced Sr may have been the severe remolding of the 
liquefied soil originally in the cross-hatched triangle of Fig. 
1(a) that took place during the flow slide. The field 
investigation after the earthquake revealed that this soil had 
lost its original shape and was spread over a large distance 
throughout the slide zone, with part of it having been extruded 
between blocks of undisturbed material originated from 
outside the triangle and with significant mixing of layers (Seed 
et al, 1973, 1975). Therefore, it is possible that during this 
process the hydraulic fill may have lost part of its original 
microlayering, approaching the state represented by the 
remolded homogeneous SSL in Fig. 7(b) and decreasing its 
s ... from somewhere in the range 0.3 to 0.4 tsf to the final 
value SWI ~ 0.2 tsf. A simple way to visualize this speculation 
is to look at Fig. 7(b ); during the slide the liquefied soil would 
have moved to the left along the horizontal line of constant e ~ 
0.72 from the layered SSL (S ... ~ 0.3 tsf) toward the 
homogeneous SSL, coming to rest at Sus ~ 0.15 or 0.2 tsf. 
This discussion is important because the higher value of 
s ... ~ 0.3 to 0.4 tsf of the intact microlayered soil existing at 
the outset of the slide (which, under this hypothesis, would be 
correctly predicted by the laboratory tests) should be the 
undrained strength relevant for engineering flow failure 
stability evaluations, rather than the lower amount 
s ... ~ 0.15 or 0.2 tsf requiring large amounts of prior straining 
and remolding. 

Therefore, the remolded layered water-sedimentation 
testing approach successfully predicts: the average in situ 
void ratio of the upstream silty sand hydraulic fill in the LSFD 
prior to the 1971 earthquake; the fact that the soil was 
contractive and thus susceptible to flow sliding; and also, 
seemingly, the in situ residual shear strength at the outset of 
the failure. In addition, the predictions based on the water­
sedimentation technique are consistent with those of the 
Castro-Poulos-France method, and they also provide a 
possible explanation for the reported decrease in residual 
strength of the liquefied soil between the beginning and the 
end of the 1971 flow slide. 

It is interesting to note that Ishihara (1993), using a 
different interpretation of the same RPI laboratory results on 
water-sedimented specimens presented in Figs. 6-7, predicts 
an in situ ratio s ... I o'vo ~ 0.11 for the LSFD and thus 
s ... = (0.11)(2) = 0.22 tsf' closer to the lower values of sr in 
Table 2. This illustrates the uncertainty in the prediction of the 
in situ Sua, even when the same laboratory data are used. As 
shown by Table 2 and reflected in the band for LSFD in Fig. 
3(b ), a similar uncertainty exists when backfiguring sr from 
the failure itself. 

Based on this application to the LSFD case history, the 
use of remolded, water-sedimented laboratory specimens is 
clearly an alternative technique for estimating in situ void 
ratios and undrained residual shear strengths of microlayered, 
loose, recently sedimented, natural or artificial silty sand 
deposits. 

SCREENING TECHNIQUES TO EVALUATE LARGE 
GROUND DEFORMATION POTENTIAL 

In many engineering applications, charts such as that proposed 
by Seed et al. (1984) and reproduced in Fig. 8, are used to 
evaluate liquefaction at level or almost level sites during 
earthquake shaking. The curve separating "liquefaction" from 
"no liquefaction" in Fig. 8 was obtained as the boundary 
between clean sand sites that liquefied or did not liquefy 
during earthquakes of magnitude M ~ 7.5. While some of the 
liquefied sites exhibited large ground deformations or other 
manifestations of ground failure or damage to constructed 
facilities, other sites were considered to have liquefied based 
on observed sand boils at the ground surface. Therefore, the 
boundary curve in the figure has been associated with initial 
liquefaction of the soil, that is with an excess pore pressure 
ratio, ru ~ 1.0. The chart is based on (N1)

60 
= Standard 

Penetration Resistance in blows/ft normalized both to 
o'vo = 1 tsf and to a rod energy ratio of 60%. Note that if the 
ground shaking is strong enough, sites with ( N 1) 

6 0 
as high as 

30 blows/ft are predicted to liquefy by Fig. 8 during an 
earthquake of M = 7.5. The value of (NJ

60 
has been 

correlated with relative density, Dr, in clean sands (Tokimatsu 
and Seed, 1987), with (NJ

60 
= 15 blows/ft corresponding to 

Dr ~ 60%, and (N1)
60 

= 30 corresponding to Dr ~ 80%. 

The same Fig. 8 gives other information based on 
undrained laboratory cyclic tests and shaking table tests, 
which shows that a saturated clean sand in a level site with 
(N J 

6 0 
= 30, even if it liquefies, will be able to develop only 

up to a cyclic shear strain of 3% after liquefaction due to the 
dilative response of the sand at large strains. The same sand 
subjected to a driving static shear stress (as in a slope or under 
a foundation), will not be able to develop flow failure when 
loaded undrained due to this same dilative behavior. When 
(NJ

60 
is decreased in Fig. 8, the sand becomes able to 

develop larger and larger cyclic strains, and for ( N J 
6 0 

< 10 or 

15 blows/ft it can strain up to 20% or more, eventually 
becoming contractive and thus able to flow when under a 
static driving shear stress (see also Robertson et al., 1992). 

A number of authors have further calibrated this 
concept with case histories, in attempts to develop reliable 
screening techniques to evaluate the large ground 
deformation potential of a site during an earthquake, rather 
than initial liquefaction. These attempts have utilized either 
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Figure 8. Evaluation of liquefaction and deformation due to 
earthquake loading using the SPT (from Seed et al., 1984 and 
Robertson et al., 1992). 

the same Standard Penetration Test (SPT) used in Fig. 8, or 
the static Cone Penetration Test (CPT). Publications 
addressing the issue include Sladen and Hewitt (1989), 
Robertson et al. (1992), Bartlett and Youd (1992, 1995), 
Ishihara (1993), and Baziar and Dobry (1995). After an 
extensive study of lateral spreads in Japan and the U.S., 
Bartlett and Y oud. found that no significant lateral ground 
displacement had occurred if (NJ

6 0 
> 15 in nongravelly sands 

and silts during earthquakes of moment magnitude Mw < 8. 
Figure 3(a), applicable to nongravelly silty sand or sandy silt 
with fines contents between 10% and 80%, and to level sites 
as well as slopes, makes the boundary value of (NJ60 as 

small as 4 or 5 blows/ft near the ground surface, increasing to 

(N1)
6 0 
~ 15 at o'va ~ 4,000 psf. Figure 3(a) was developed 

by Baziar and Dobry using the same data base for lateral 
spreads compiled by Bartlett and Youd (1992), plus cases of 
flow failure and lateral spreading compiled by Seed (1987), 
Davis et al. (1988), Seed and Harder (1990), and Stark and 
Mesri (1992). As values of lateral displacement DH were 
available from these case histories, the (upper) boundary 
curve in Fig. 3(a) is defined as giving the maximum value of 
(NJ

6 0 
of sites capable of developing more than DH = 1 to 3 

ft. (See Fig. 2 for definition of DH). Figures 9 and 10 present 
similar screening curves or bands presented by Ishihara 
(1993) and Robertson et al. (1992) for clean sands (up to 30% 
fines in the case of Ishihara's chart), using SPT and CPT, 
respectively. 

Screening recommendations and charts such as these 
are obviously very useful in engineering practice. They help 
remove the conservatism associated with predicting 
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liquefaction only in terms of excess pore pressure, in soils 
which are not loose enough for these pore pressures to have 
serious engineering consequences. One particularly useful 
feature is that all these recommendations and charts are valid 
for a wide range of earthquake magnitudes and levels of 
ground shaking; that is, the boundaries for large ground 
deformation in Figs. 3(a), 9 and 10 are not associated with a 
specific earthquake magnitude or ground acceleration. In 
addition to classifying a saturated cohesionless site in terms of 
its ground deformation potential, these screening techniques 
may also be used to establish targets for cost-effective site 
remediation aimed at a significant reduction in the level of 
ground deformation in future earthquakes. 

EFFECTS OF GROUND DEFORMATION ON 
FOUNDATIONS AND STRUCTURES 

Lateral and vertical ground deformations associated with 
liquefaction are an extremely significant cause of damage to 
foundations and structures during earthquakes. Compaction 
settlement, cyclic ground oscillations, and permanent lateral 
and vertical displacements due to lateral spreading are some 
main sources of the problem. Of these, the phenomenon of 
lateral spreading sketched in Fig. 2 is the most important, and 
most of the effects summarized in the case history volumes by 

Hamada and O'Rourke (1992) and O'Rourke and Hamada 
(1992) are associated with lateral spreads (Fig. 11 ). The rest 
of the discussion below on the effects of ground deformation 
is based on several of the references listed in Table 1, Item 
14, and especially Dobry (1994 ). 

Similar to the case of static settlements, the cause of 
earthquake damage to foundations and buildings is not so 
much the ground displacement itself, but the ground straining. 
For example, the destruction of the building on shallow 
foundations in Fig. 11 was caused by horizontal extension of 
the ground associated with a lateral spread. Therefore, it is 
useful to examine the values and spatial patterns of ground 
deformation associated with these liquefaction-related 
phenomena. In the case of compaction settlement, vertical 
deformations as much as 5% or more of the thickness of the 
loose sand layer have been reported. Differential settlements 
and associated vertical shear straining of the ground and of 
foundations placed on it can occur in areas where the 
thickness or density of the compacting soil changes rapidly 
over short distances (Tokimatsu and Seed, 1987; Ishihara and 
Yoshimine, 1991; O'Rourke et al, 1992a). 

In the case of lateral spreads, horizontal displacements 
from a few centimeters to more than 10 m have been 
observed, with the phenomenon sometimes affecting a large 
area which moves, either downslope along a slope as small as 
0.5%, or toward a free face. The amount of lateral 
displacement typically increases with slope and height of the 
free face and decreases with distance from the free face. 
Extensional ground straining including fissures, as well as 
vertical settlements, tend to occur at the head of the spread 
while compression and ground uplifting appear at the toe. 
Ground shear develops especially at the spread margins. Fig. 
12 shows the pattern of lateral ground displacements for the 
1971 San Fernando, California, earthquake, obtained mainly 
by comparison of air photos before and after the earthquake in 
a large area of more than 1 km2. Fig. 13 presents a map of the 
corresponding surficial ground cracks. Although most of the 
lateral displacements were due to liquefaction and lateral 
spreading of a loose alluvium layer, they also included a 
tectonic (faulting) component. The average ground surface in 
the area was 1.5°, with a maximum slope through the Juvenile 
Hall of about 3° (Youd, 1973; Youd and Perkins, 1987; 
Bartlett and Youd, 1992; O'Rourke et al. 1992b). 

Differential lateral displacements-such as associated 
with the variation with distance of the magnitudes of the 
vectors in Fig. 12-can produce horizontal extension, 
compression or shear, while differential vertical displacements 
cause vertical shearing of the ground. As noticed by Y oud 
(1989), generally shallow foundations are most sensitive to 
ground extension and vertical shear, and somewhat less 
sensitive to horizontal shear and compression. A main cause 
of damage to pile foundations is the variation of lateral ground 
displacement with depth. 
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Figure 11. Lateral Spread Failure due to Liquefaction, Marine Sciences Laboratory at Moss Landing, CA, 1989 Lorna Prieta 
Earthquake (Youd, Personal Communication; Photo Taken by G . Castro). 

Therefore, any indication of the type of ground swface 
straining expected due to the design earthquake is useful to 
the engineer and should help his/her judgment when making 
design or retrofitting decisions for shallow foundations . A 
rational evaluation procedure for structural damage should 
include methods to predict the type and amount of ground 
strain in the free field , as well as the degree of 
foundation/building damage associated with such free field 
strain. Susuk:i and Masuda (1991) have studied the measured 
swface ground movements due to lateral spreads at two 
Japanese cities after earthquakes, and have attempted to 
model analytically the corresponding patterns of permanent 
ground straining. A similar attempt has been presented by 
Finn (1991), while Zeghal and Elgamal (1994) have 
backfigured from acceleration earthquake records the transient 
ground shear strains associated with post-liquefaction ground 
oscillations. O'Rourke and Pease ( 1995) and O'Rowke et al. 
( 1995) have used estimated patterns of free field transient and 
permanent ground deformations and strains for damage 
evaluations of buried pipelines. Unfortunately, ground 
straining is very difficult to measure and even more difficult to 
predict. As a result, foundation and building damage have 
been generally correlated to ground displacement rather than 
to strain (Table 3 and Fig. 14). Again, the use of ground 
displacement as in Table 3 is similar to the standard static 

design procedure for shallow footings on sand, where an 
acceptable settlement of2.5 em (1 inch) is taken to imply that 
the differential settlements/vertical shear straining of ground 
foundation will also be small and acceptable. 

There are a couple of cases for which the engineering 
evaluation of ground straining (as different from ground 
displacement) is more feasible. One of them is the vertical 
shear ground straining due to compaction settlement already 
mentioned. Another is the evaluation of the effect of a lateral 
spread on a pile foundation, once the lateral surface ground 
displacement DH at the site bas been determined. As 
reasonable assumptions are possible for the distribution of 
lateral displacement with depth- based on the location and 
thickness of the liquefiable layer-the analysis of piles is 
generally more straightforward than that of shallow 
foundations . Fig. 15 shows the observed damage to reinforced 
concrete point bearing piles 350 mm in diameter produced by 
DH :::::: 1.2 m at the ground surface in the 1964 Niigata 
earthquake. Fig. 16 presents pile bending moments predicted 
using a numerical model developed by Miura and O 'Rourke 
(199 1) and Meyersohn et al. ( 1992). This model accounts for 
geometrical and material nonlinearities of both piles and soils. 
The flexural characteristic of the reinforced concrete piles are 
modeled by moment-curvature relationships, which are 
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Figure 12. Lateral Displacement Vectors Obtained from Air Photo Analyses and Optical Surveys, Juvenile Hall and Nearby 
Areas, 1971 San Fernando, CA Earthquake (O'Rourke et al. 1992b). 
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Table 3. Approximate Amounts of Ground-Failure Displacement Required to Cause 

Repairable and Irreparable Damage (Youd 1989) 

Displacement Required to Cause 

Type of Deformation Foundation Repairable Damage (m) Irreparable Damage (m) 

Shear Poorly-Reinforced 1 0.1 >0.3 

Well-Reinforced2 >0.3 ? 

Extension Poorly-Reinforced <0.05 >0.3 

Well-Reinforced >0.1 ? 

Compression Poorly-Reinforced <0.3 >0.5 

Well-Reinforced >0.5 ? 

Compression with Vertical Poorly-Reinforced <0.2 >0.2 

Well-Reinforced <0.3 >0.3 

Vertical Poorly-Reinforced <0.05 >0.2 

Well-Reinforced <0.1 >0.3 

1 Foundations with minimal or no temperature reinforcing steel. 
2Foundations with adequate reinforcing steel to provide considerable structural strength. 

'"·' 80 * - refer to damage in Keirin-cho 
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Figure 14. Relation between Damage Rate to Houses and 
Permanent Ground Displacements, 1983 Nihonkai-Chubu, 
Japan Earthquake (Hamada 1992). 

obtained by appropriate selection of stress-strain curves of 
concrete under compressive and tensile stress (Meyersohn et 
al., 1992; Meyersohn, 1994). Simplified models of pile group 
performance have also been proposed. This analytical 

procedure for piles and pile groups subjected to lateral 
spreading has been calibrated by field case histories such as 
that of Fig. 15 and is currently being further refined with the 
help of centrifuge models (Abdoun and Dobry, 1995). 

FINAL COMMENTS 

We are clearly somewhere in the middle of a period of rapid 
progress in our understanding of the liquefaction phenomena 
and their engineering implications. Case histories, 
instrumented sites and soil-structure systems, field 
measurements, laboratory results, 1 g and centrifuge 
earthquake model tests, calibrated numerical techniques, and 
team work and international cooperation, are the main tools 
we are using to advance the state-of-the-art. A main trend is 
the increasing importance which is being given to 
understanding and evaluating the effects of liquefaction, such 
as ground deformation and straining and their effects on 
constructed facilities. 

This paper provided a general perspective of where we 
are in the process- through Table l-and discussed in more 
detail four selected topics related to the engineering evaluation 
of liquefaction-induced ground deformation and its effects on 
constructed facilities. 
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