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ABSTRACT

The application of the sieve bootstrap procedure, which resamples residuals ob-

tained by fitting a finite autoregressvie (AR) approximation to empirical time series, to

obtaining prediction intervals for integrated, long-memory, and seasonal time series as

well as constructing a test for seasonal unit roots, is considered. The advantage of this

resampling method is that it does not require knowledge about the underlying process

generating a given time series and has been shown to work well for ARMA processes.

We extend the application of the sieve bootstrap to ARIMA and FARIMA pro-

cesses. The asymptotic properties of the sieve bootstrap prediction intervals for such

processes are established, and the finite sample properties are examined by employing

Monte Carlo simulations. The Monte Carlo simulation study shows that the proposed

method works well for both ARIMA and FARIMA processes.

Following the existing sieve bootstrap frame-work for testing unit roots for non-

seasonal processes, we propose new bootstrap-based unit root tests for seasonal time

series. In this procedure, the bootstrap distributions of the well known Dickey-Hasza-

Fuller (DHF) seasonal test statistics are obtained and utilized to determine the critical

points for the test. The asymptotic properties of the proposed method are established and

a Monte Carlo simulation study is employed to demonstrate that the proposed unit root

tests yield higher powers compared to the DHF test. Also, a sieve bootstrap method is

implemented to obtaining prediction intervals for time series with seasonal unit roots. The

asymptotic properties of the proposed prediction intervals are established and a Monte

Carlo simulation study is carried out to examine the finite sample validity.

Finally, we derive expressions for the asymptotic distributions of the Dickey-Fuller

(DHF) type test statistics, under weakly dependent errors and show that they can be

expressed as functional of the standard Brownian motions. Currently, the asymptotic

results are available only for non-seasonal time series.
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1. INTRODUCTION

Time series analysis is an important area of specialization in the field of Statistics.

It also plays a prominent role in economics and finance. Other areas where time series

methodology is utilized include Geophysical Sciences and branches of electrical engineer-

ing, such as signal processing. In all these areas, time series methodologies are used not

only to model empirical data observed over time, but also to forecast future values of such

processes. In this dissertation, both these aspects would be studied, with major empha-

sis giving to the use of a re-sampling technique know as the Sieve Bootstrap, to obtain

estimates for the distribution of certain statistics as well as to obtain prediction intervals

for future values of a time series. The proposed sieve bootstrap procedures provide im-

provements to existing methodologies for obtaining prediction intervals for specific types

of processes and testing for the presence of a certain seasonal structure in the underlying

time series model.

In order to discuss the specific classes of time series for which prediction intervals

or statistical hypothesis tests are proposed, a basic background in the terminology and

models used in time series analysis is required. As such, preliminary concepts and defini-

tions are given in the remainder of this section.

1.1. INTRODUCTION TO TIME SERIES ANALYSIS

The followings are some fundamental terms used in time series analysis (see Brock-

well and Davis (1991)). We begin with the definition of a time series and then go onto

introduce various concepts such as stationarity and specific time series models that will

be considered in the following sections.

Definition 1.1. (Stochastic Process). A stochastic process is a family of random variables

{Xt, t ∈ T} defined on a probability space (Ω,F ,P), where T denotes an index set, which

is usually a subset of R.

When T denotes a set of points in time, {Xt, t ∈ T} is called a time series. If in

addition, T ⊆ Z, it is called a discrete time series.
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Definition 1.2. (Realization of a Stochastic Process). The functional values {X.(ω), ω ∈

Ω} on T are known as a realizations or sample-paths of the process {Xt, t ∈ T}.

The term “time series” is used to mean both the data and the process of which it

is a realization. The most important behavioral characteristic of a given time series is its

dependent structure, which is defined below.

From here on we shall assume that T = Z or T = N0. Also note that we shall use

the notations {Xt, t ∈ T} and {Xt}t∈T interchangeably in the reminder of this thesis.

Definition 1.3. (The Covariance Function). If {Xt, t ∈ T} is a time series such that

V ar(Xt) <∞ for each t ∈ T , then the covariance function γX(·, ·) of {Xt} is defined by

γX(r, s) := Cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], r, s ∈ T.

Definition 1.4. (Stationarity). The time series {Xt, t ∈ T}, with index set

Z = {0,±1,±2, ....}, is said to be stationary if

(i) E|Xt|2 <∞ for all t ∈ Z,

(ii) EXt = m for all t ∈ Z, and

(iii) γX(r, s) = γX(r + t, s+ t) for all r, s, t ∈ Z.

Note that the stationarity defined above is sometimes referred as weak stationar-

ity, covariance stationarity, stationarity in the wide sense, or second-order stationarity.

The covariance function of a stationary time series , known as “autocovariance function”

(ACVF), is reduced to a function of a single variable as given below.

γX(h) := γX(h, 0) = Cov(Xt+h, Xt) for all t, h ∈ Z.

This autocovariance function has the following elementary properties.
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Proposition 1.5. If γX(·) is the autocovariance function of a stationary processes {Xt, t ∈

Z}, then

γX(0) ≥ 0,

|γX(h)| ≤ γX(0) for all h ∈ Z, and,

γX(h) = γX(−h) for all h ∈ Z.

Proof. See Brockwell and Davis (1991), page 26.

The autocorrelation function (ACF) of a stationary process {Xt, t ∈ Z} is then

defined as,

ρX(h) :=
γX(h)

γX(0)
for all h ∈ Z.

The characterization of the autocovariance function is given in the following the-

orem. The proof can be found in Brockwell and Davis (1991), page 27.

Theorem 1.6. A real-valued function defined on the integers is the autocovariance func-

tion of a stationary time series if and only if it is even and non-negative definite.

In practice, these unknown autocovariance and autocorrelation functions are esti-

mated based on the empirically observed data {x1, x2, ..., xn} using the following defini-

tions.

Definition 1.7. (The Sample Autocovariance Function). The sample autocovariance

function of {x1, x2, ..., xn} is defined by

γ̂(h) := n−1

n−h∑
j=1

(xj+h − x̄)(xj − x̄), 0 ≤ h < n,

and γ̂(h) = γ̂(−h),−n < h ≤ 0, where x̄ is the sample mean determined by x̄ :=

n−1
∑n

j−1 xj.

The following defines the White Noise process, which is assumed for the innovations

(errors) in certain types of time series models.
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Definition 1.8. (White Noise Process). The process {Xt} is said to be white noise if,

γX(h) =

 σ2 for h = 0.

0 otherwise.

In the following, time series models that are extensively used in the literature are

presented. These are sometimes called Box and Jenkins models because of their intro-

duction to the wider audience of empirical time series analysts by Box and Jenkins (1976).

1.2. ARMA PROCESSES

Definition 1.9. (ARMA Process). A real-valued process {Xt}t∈Z is said to be an Au-

toregressive Moving Average (ARMA(p,q)) process if it is stationary and satisfies

α(B)(Xt − µ) = θ(B)εt, t ∈ Z,

where α(z) = 1−α1z− ...−αpzp and θ(z) = 1 + θ1z+ ...+ θ(q)zq represent autoregressive

and moving average polynomials of degrees p and q respectively. The innovations (or the

error terms), {εt}, are assumed to be zero-mean white noise with variance σ2. The mean

of the process is µ = E[xt] for all t. The back-shift operator, B, is defined by Bkxt = xt−k

for k ∈ N.

When the order of autoregressive polynomial p is equal to 0, we obtain the class

of Moving Average Processes. Similarly, the class of Autoregressive Processes is obtained

when q = 0.

Sometimes, it is necessary to represent a given ARMA time series as an infinite

order moving average of the current and past innovations. When a time series can be

represented in this manner it is called a causal process.

Definition 1.10. (Causality). An ARMA(p, q) process defined in Definition 1.9 is said

to be causal if there exists a sequence of constants {ψj}j∈N0 such that
∑∞

j=0 |ψj| <∞ and

Xt =
∞∑
j=0

ψjεt−j, for t ∈ Z. (1.1)
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The following theorem from Brockwell and Davis (1991, page 85) gives necessary

and sufficient conditions for an ARMA process to be causal.

Theorem 1.11. Let {Xt}t∈Z be an ARMA(p, q) process for which the polynomials α(.)

and θ(.) have no common zeroes. Then {Xt}t∈Z is causal if and only if α(z) 6= 0 for all

z ∈ C such that |z| ≤ 1. The coefficients {ψj}j∈N0 in (1.1) are determined by the relation

ψ(z) =
∞∑
j=0

ψjz
j =

θ(z)

α(z)
, for |z| ≤ 1, with ψ0 = 1. (1.2)

Similar to the case where a causal ARMA process is expressed in terms of the past

innovations, under certain conditions it can also be written as an infinite sum of the past

realizations. This concept is called invertibility.

Definition 1.12. (Invertibility). An ARMA(p, q) process defined in Definition 1.9 is said

to be invertible if there exists a sequence of constants {φj}j∈N such that
∑∞

j=1 |φj| < ∞

and

Xt =
∞∑
j=1

φjXt−j, fort ∈ Z. (1.3)

Similar to the conditions that ensure causality, we have the following theorem

(Brockwell and Davis (1991, page 86)) giving the conditions needed for invertibility.

Theorem 1.13. Let {Xt}t∈Z be an ARMA(p, q) process for which the polynomials α(.)

and θ(.) have no common zeroes. Then {Xt}t∈Z is invertible if and only if θ(z) 6= 0 for all

z ∈ C such that |z| ≤ 1. The coefficients {φj}j∈N in (1.3) are determined by the relation

φ(z) =
∞∑
j=0

φjz
j =

α(z)

θ(z)
, |z| ≤ 1, with φ0 = 1. (1.4)
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Observe that the autocovariance function γX(h) of an ARMA(p, q) process decays

exponentially to zero as h → ∞. This exhibits the short-rage dependence among the

values of the time series. Therefore, ARMA processes are employed to model time series

that show short-memory behavior. The short memory property of a time series is usually

recognized by inspecting the sample autocovariance function of the empirical series (Box

and Jenkins 1970).

1.3. ARIMA PROCESSES

The ARMA(p, q) processes discussed in the previous section can be generalized to

include non-stationary behavior. The traditional generalization of ARMA models leads

to the ARIMA(p, d, q) process, which is defined below.

Definition 1.14. (ARIMA process). A real-valued process {Xt}t∈Z is said to be an

Autoregressive Integrated Moving Average (ARIMA(p,d,q)) process if the process {Yt}t∈Z

with Yt := 5d(xt − µ), is a causal ARMA(p, q) process, where 5 = 1−B and d ∈ N.

Observe that an ARIMA(p, d, q) process can be written as α∗(B)(Xt−µ) = θ(B)εt,

εt ∼ WN(0, σ2), t ∈ Z, where α∗(B) := (1 − B)dα(B), α(z) is a polynomial of order p

and θ(z) is a polynomial of order q. Moreover, α(z) 6= 0 for |z| ≤ 1. Such processes are

also called unit root processes because the polynomial α∗(z) has d roots equal to unity. In

the formulation (1−B)dα(B), these unit roots are factored out so that α(z) has all roots

outside the unit circle (i.e. |z| > 1 if α(z) = 0). Thus, {Yt}t∈Z obeys the ARMA(p, q)

model α(B)Yt = θ(B)εt, t ∈ Z because Yt = (1 − B)−dXt and (1 − B)dα(B)Xt =

α(B)(1−B)dXt = α(B)Yt.

Many financial and economics time series are nonstationary and hence the ARIMA

processes are extensively used in these areas. Figures 1.1 and 1.2 show the behavior of

simulated ARMA and ARIMA time series, respectively. The sample path of the model

given in Figure 1.2 is an example of nonstationarity or unit root behavior. It is necessary to

difference the original non-stationary repeatedly to render the stationarity; see Brockwell

and Davis (1991 Ch. 9) for more details.
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Figure 1.1. Simulated ARMA(1, 1) time series

Figure 1.2. Simulated ARIMA(1, 1, 1) time series
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The sample autocorrelation functions of the above simulated ARMA and ARIMA

time series are displayed in Figures 1.3 and 1.4, respectively. As mentioned before, the

sample ACF of the ARMA time series exponentially decays to zero as h→∞. Whereas,

Figure 1.4 exhibits the typical behavior of the sample ACF of a unit root process.

Figure 1.3. The ACF of ARMA(1, 1) time series
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Figure 1.4. The ACF of ARIMA(1, 1, 1) time series

So far, we have discussed stationary processes with short-memory and unit root

processes that exhibit long-memory. A class of time series that exhibit long-memory, but

are still stationary, straddles the gap between ARMA and ARIMA processes. These are

called Fractionally Integrated Moving Average processes.

1.4. FARIMA PROCESSES

The long-memory time series that are very common in geophysical sciences, macroe-

conomics, asset pricing, stock returns and exchange rates can be modeled using Fraction-

ally Integrated Autoregressive Moving Average (FARIMA or ARFIMA) processes (see,

for example, Baillie (1996) and Taqqu et al. (2003)).

Definition 1.15. (FARIMA process). A real-valued process {Xt}t∈Z is said to be a

Fractionally Integrated Autoregressive Moving Average (FARIMA(p,d,q)) process if the

process Yt := 5d(xt − µ) is a causal ARMA(p, q) process, where the difference parameter

d ∈ (−0.5, 0.5).
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Instead of an exponential rate of decay for γX(h) as in the case for ARMA models,

the autocovariance function of a FARIMA(p, d, q) process decays to zero at a hyperbolic

rate. This is the reason for empirical processes with long-memory are being modeled using

FARIMA processes.

A FARIMA(p, d, q) process is stationary if d < 0.5. The sample paths of two

FARIMA models were simulated for d = 0.3 and d = 0.49, and displayed in Figures

1.5 and 1.6. As seen in Figure 1.6, the series with d = 0.49 behaves almost like an

ARIMA process and thus is near non-stationarity. If d ≥ 0.5, then the process given

by Definition 1.15 is not stationary. Note that FARIMA processes with 0 < d < 0.5

are called long-memory processes while those with −0.5 < d < 0 are called intermediate

memory.

Figure 1.5. Simulated FARIMA : (1− 0.7B)(1−B)0.3Xt = (1− 0.4B)εt time series
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Figure 1.6. Simulated FARIMA : (1− 0.7B)(1−B)0.49Xt = (1− 0.4B)εt time series

The sample autocorrelation functions of the above simulated FARIMA processes

are displayed in Figures 1.7 and 1.8. Both of the sample ACF exhibit the long-range

dependence among the observations. As seen in Figure 1.8, however, the FARIMA

process with d close to 0.5 is embedded in a wider long-range dependence structure.
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Figure 1.7. The ACF of FARIMA : (1− 0.7B)(1−B)0.3Xt = (1− 0.4B)εt time series

Figure 1.8. The ACF of FARIMA : (1− 0.7B)(1−B)0.49Xt = (1− 0.4B)εt time series
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1.5. THE SIEVE BOOTSTRAP PROCEDURE

Non-parametric Bootstrap techniques play vital role in statistics as they can be

utilized to make asymptotically valid statistical inferences even when the underlying prob-

ability distributions are not known. The Sieve Bootstrap method for constructing pre-

diction intervals for invertible processes is based on re-samples of residuals obtained by

fitting a finite degree autoregressive approximation to the time series. The advantage of

this technique is that it does not require the knowledge of orders associated with the orig-

inal model. In order to understand the merits of the sieve bootstrap method in relation

to other re-sampling techniques in time series, a brief discussion of the adoption of the

bootstrap techniques to time series analysis is needed. This is the motivation behind the

following discussion.

The first application of bootstrap technique to time series was by Stine (1982,

1987) and Findley (1986), who proposed a bootstrap method to estimate the prediction

mean squared error of the estimated linear predictor of an AR(p) processes with unknown

order p. They assumed that the error distribution is symmetric and with finite moments.

Thombs and Schucany (1990) presented a bootstrap procedure for obtaining forecast in-

tervals that required the ability to express the time series as a linear function of future

values (Backward Representation). While this condition is met for stationary AR pro-

cesses, it is, however, not possible for time series with a moving average component. Thus

their method has limited applicability. Cao et al. (1997) studied a computationally faster

conditional bootstrap method as an alternative to the procedure of Thombs and Schucany.

All the above methods assumed that the order of the process is known and the coverage

probabilities can suffer if the order is grossly misspecified. Masarotto (1990) and Grigo-

letto (1998) were the first to propose a bootstrap method for AR(p) processes with finite

but unknown order p. Their method is based on the assumption that some consistent

estimator, p̂, is available. This approximation is the basis for the sieve bootstrap.

The foundation for this sieve bootstrap approach was laid by Kreiss (1988, 1992),

for time series that can be represented by an infinite autoregressive process. Bühlmann

(1997) and Bickel and Bühlmann (1999) extended this approach to a more general class

of time series that can be written as an infinite order moving average and introduced the
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term “sieve bootstrap”. The advantage of the sieve bootstrap is that it does not require

the knowledge of the orders associated with the underlying process. The class of time

series, however, is limited to the processes whose infinite moving average coefficients are

absolutely summable. In another seminal paper, Poskitt (2006) discussed the ways of re-

laxing the assumption of absolutely summability of the infinite moving average coefficients

while maintaining the validity of an AR approximation. He achieved this by computing

the coefficients of the AR approximation using the Yule-Walker equation. The class of

time series considered by Poskitt (2006) were known as regular processes, whose infinite

moving average coefficients are square summable. Poskitt (2008) went onto establish the

large sample properties of the sieve bootstrap for such processes. He showed that the

method of sieves yields asymptotically valid estimator of the distribution of test statistics

that satisfy some regularity conditions.

Alonso, Pẽna and Romo (2002) applied the Bühlmann (1997) sieve bootstrap pro-

cedure to obtain prediction intervals for processes that have an infinite moving average

representation with absolutely summable coefficients (such processes are called linear pro-

cesses). In 2003, the same authors established the large sample properties of their sieve

bootstrap method, and further refined the technique in 2004 by introducing methods to

incorporate the variation due to model uncertainty in parameter estimation. The cov-

erage probabilities obtained with this method, however, are liberal in many situations.

Mukhopadhyay and Samaranayake (2010) proposed a rescaling factor for residuals to im-

prove the coverage probabilities of the method of Alonso et al. (2004). Their adjustment

is based on an intuitive observation. The same residual could be resampled many times

and as a results, the variance of the bootstrapped residuals may be smaller than that of

the original sample. The effect of the rescaling factor introduced by Mukhopadhyay and

Samaranayake (2010), however, is asymptotically negligible.

Another important application of the sieve bootstrap is in hypothesis testing. In

particular, our interest is on the use of the sieve bootstrap for testing seasonal unit roots.

Psaradakis (2001) was the first to introduce the application of the sieve bootstrap to

test the presence of non-seasonal unit roots. He assumed that the errors are weakly

dependent. Complications with the regular Dickey-Fuller (DF) (1979) and Augmented-
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Dickey-Fuller (ADF) (Said, Dickey and Fuller (1984)) unit root tests arise when there

is a root near unity in the moving average polynomial of the underlying process. As a

solution, Psaradakis suggested bootstrapping the DF test statistics using the method of

sieves. Following Psaradakis (2001), the sieve bootstrap versions of the ADF tests for non-

seasonal unit roots were suggested by Chang and Park (2003). Palm, Smeekes and Urbain

(2008) proposed an alternative way of computing residuals by fitting the DF regression

model instead of fitting an AR(p) model to the differenced series. Moreover, Psaradakis

(2000) proposed a (nonsieve) bootstrap method to obtain the empirical distribution of

the Dickey-Hasza-Fuller (DHF) seasonal unit root test statistics. He, however, assumed

that the errors are independently and identically distributed. One of the advantages of

the bootstrap based unit root tests is that the critical values need not to be read from

standard tables. Instead, the critical values are computed from the percentiles of the

empirical (bootstrap) distribution of the test statistics.

The remaining portion of this dissertation is organized the form of a series of

papers. Paper I is about establishing the asymptotic properties of the sieve bootstrap

based prediction intervals for FARIMA processes utilizing some of the results of Poskitt

(2006 and (2008). We generalize the Alonso et al. (2003) sieve bootstrap procedure

to FARIMA processes by adjusting the order of p(n), where p = p(n) is the order of

the AR approximation. In Paper II, we continue our interest on the proposed method by

carrying out an extensive Monte Carlo simulation study. Our method is compared with the

only existing method for obtaining prediction intervals for FARIMA processes proposed

by Bisaglia and Grigoletto (2001). An interesting application of the sieve bootstrap

based prediction intervals is implemented in Paper III, where the re-sampling technique

is applied to ARIMA processes. The main advantage of the proposed method is that it

does not use pre testing for unit roots and select the prediction interval procedure based

on the results of these tests. The large sample properties of the intervals obtained using

this method are also established. In Paper V, we apply the Psaradakis (2001) and Pam

et al. sieve bootstrap techniques to seasonal time series with weakly dependent errors. A

method for computing prediction intervals for (non)seasonally integrated time series using

sieve bootstrap is also proposed with asymptotic validation. Papers II, III and V carry
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out extensive Monte Carlo simulation studies to investigate the finite sample properties

of the proposed methods.

Paper IV is, actually, little off from the theme of this dissertation but is essential

for Paper V in establishing the asymptotic properties of the proposed sieve bootstrap pro-

cedure in that paper. The literature, surprisingly, lacks an expression for the asymptotic

distribution of the DHF seasonal unit root test statistics under weakly dependent errors.

We fill this gap by deriving the asymptotic distributions of the DHF seasonal unit root

test statistics as functional of the standard Brownian motions.
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PAPER

I. ASYMPTOTIC PROPERTIES OF SIEVE BOOTSTRAP PREDICTION

INTERVALS FOR FARIMA PROCESSES

ABSTRACT

The Sieve Bootstrap is a model-free re-sampling technique that uses autoregressive

approximations to model invertible linear time series and assumes that the order of the

autoregressive process, p, goes to infinity with sample size n. The asymptotic properties

of sieve bootstrap prediction intervals for stationary invertible linear processes with short-

memory, such as autoregressive moving average time series, have been established under

conditions that specify the rate of increase of the order p as a function of n. In this paper

we extend these results to long memory (FARIMA) processes. We show that under certain

regularity conditions the sieve bootstrap provides consistent estimators of the conditional

distribution of future values of a FARIMA processes, given the observed data.

Keywords: ARFIMA; Forecast Intervals; Fractionally Integrated Time Series;

Long Memory Processes; Autoregressive approximations
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1. INTRODUCTION

Long memory processes are increasingly used in modeling time series prevalent in

many areas, for example, in geophysical sciences, macroeconomics, asset pricing, stock

returns and exchange rates (see Baillie (1996) and Taqqu et al. (2003)). The Fraction-

ally Integrated Auto Regressive Moving Average (ARFIMA or FARIMA) processes have

been used extensively to model such processes (Granger and Joyeux (1980) and Hosking

(1981)). In addition to estimation, obtaining forecasts and forecast intervals for such

series are an important part of the empirical modeling process. As shown by Alonso

(2002, 2003 and 2004) and Mukhopadhyay and Samaranayake (2010), the Sieve Boot-

strap method works well in obtaining prediction intervals for invertible ARMA processes.

Therefore, it is worthwhile to investigate its utility in obtaining prediction intervals for

FARIMA processes as well. The assumptions under which the sieve bootstrap produces

asymptotically valid prediction intervals in the ARMA case, however, do not hold for

FARIMA processes. In this paper we present a modified formulation under which the

sieve bootstrap based prediction intervals for FARIMA processes do achieve nominal cov-

erage probabilities asymptotically. In the following, a brief outline of the origins of the

sieve bootstrap is presented, followed by its adaptation to the FARIMA case.

Stine (1982, 1987) and Findley (1986) were the first to introduce bootstrap methods

to compute prediction mean squared error for time series. These methods assumed that

the order of the process is known. The main idea behind the sieve bootstrap, namely

approximating the process with a finite order Autoregressive (AR) approximation (which

therefore do not require the knowledge of the order of the process), originated with the

proposal by Küsnch (1989) for a nonparametric block bootstrap procedure for obtain-

ing the empirical distribution of some test statistics. Bootstrapping approximately i.i.d.

residuals obtained from an assumed model was presented by Kreisss (1992). Bühlmann

(1997) introduced the term sieve bootstrap and derived the asymptotic properties of the

forecast intervals for a class of linear processes that can be written as an infinite moving

average time series. His method used a truncated version of the AR(∞) representation
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of the time series, whose order increases with sample size. Following Bühlmann (1997),

Alonso et al. (2002, 2003, 2004) further refined this method and presented a sieve boot-

strap approach to obtaining prediction intervals for a general class of linear processes that

includes ARMA processes as a subset. Alonso’s method was modified by Mukhopadhyay

and Samaranayake (2010) to improve the coverages of the prediction intervals.

2. FARIMA PROCESSES

A real-valued process {yt}t∈Z is said to be a Fractionally Integrated Autoregressive

Moving Average (FARIMA(p,d,q)) process if it is stationary and satisfies

α(B)5d (yt − µ) = θ(B)εt, t ∈ Z, (2.1)

where α(z) = 1 − α1z.... − αpzp and θ(z) = 1 + θ1z..... + θ(q)zq represent autoregressive

and moving average polynomials of degrees p and q respectively. The mean of the process

is µ = E[yt] for all t. It is assumed that α(.) and θ(.) do not share common zeros. The

error terms, {εt}, are assumed to be zero-mean white noise1 with finite variance σ2. Note

that 5 = 1−B, where B is the back-shift operator defined by Bkyt = yt−k for k ∈ N.

The process exhibits long-memory when 0 < d < 0.5, in which case the autocovari-

ance function, γY (·), is not absolutely summable but γY (0) < ∞. For −0.5 < d < 0,

the process is said to be intermediate-memory as the autocovarice function is absolutely

summable. When 0 < d < 0.5, θ(z) 6= 0 for |z| ≤ 1, {yt} is invertible and has an AR(∞)

representation,
∑∞

j=0 φj(yt−j − µ) = εt with
∑∞

j=0 |φj| < ∞. Also, when α(z) 6= 0 for

|z| ≤ 1, {yt} can be expressed as yt =
∑∞

j=0 ψjεt−j with
∑∞

j=0 ψ
2
j <∞. FARIMA(p, d, q)

processes with 0 < d < 0.5, however, do not satisfy the assumption that
∑∞

j=0 j
r|ψj| <∞

for some r ∈ N, crucial for establishing the asymptotic results of Bühlmann (1997) and

Alonso et al. (2003), because for such time series ψj ∼ jd−1 as j −→∞.

1The stationary process {xt : t ∈ Z} with an autocovariance function (ACVF) γX(·) is said to be
white noise if (i) Ext = 0 for all t ∈ Z, and (ii) γX(h) = σ2 for h = 0 and γX(h) = 0 for h 6= 0.
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Poskitt (2006) discussed ways of relaxing this condition and yet maintaining the

statistical viability of finite autoregressive approximations to FARIMA processes. In a

later paper, Poskitt (2007) showed how the sieve bootstrap method can be utilized to

compute empirical distributions of specific types of statistics associated with FARIMA

processes. He also derived the asymptotic properties of these empirical distributions

under certain regularity conditions.

While Poskitt (2006 and 2007) did not directly address the issue of determining an

asymptotically valid estimator of the distribution of a future observation from a FARIMA

process, his results provide a theoretical foundation on which such a solution can be

constructed. In the following sections we show how the method proposed by Alonso (2003)

can be modified, based on insights from Poskitt (2006 and 2007), to obtain sieve bootstrap

prediction intervals for a FARIMA(p, d, q) process when 0 < d < 0.5. While Alonso

(2004) and Mukhopadhyay and Samaranayake (2010) provide additional refinements to

the original method proposed in Alonso et al. (2002, 2003), the 2003 paper by Alonso et al.

sets the fundamental theoretical framework for the application of the sieve bootstrap for

invertible processes. As such, we use it as the platform for our proposed modifications.

This would serve as a first, but an important, step in adopting the sieve bootstrap to

obtain prediction intervals for FARIMA processes.

The rest of this paper is organized as follows. Section 3 introduces the sieve boot-

strap procedure for obtaining prediction intervals and Section 4 establishes asymptotic

validity of the proposed method.

3. THE PROPOSED SIEVE BOOTSTRAP PROCEDURE

The proposed sieve bootstrap procedure given below is identical to that introduced

by Alonso et al. (2002, 2003) except for the criterion used in selecting the order of the

autoregressive approximation. This change in the order together with a few additional

lemmas is sufficient to provide the necessary convergence results.
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Let the realization {yt}nt=1 be obtained from the stationary and invertible process

given in equation (2.1) with infinite AR representation yt−µ =
∑∞

j=0 φj(yt−j −µ), t ∈ Z.

As Alonso et al. (2002, 2003, 2004) did, we shall estimate µ by the empirical mean

ȳ = n−1
∑n

t=1 yt. Then proceed as follows.

1. Select the order p = p(n) of the autoregressive approximation, following Poskitt

(2006, 2007), from among models with p ∈ {1, 2, ...,Mn} with Mn = c[log(n)]a for

some c > 0 and a ≥ 1 by AIC criterion. Alonso et al. (2003) preferred AICC over

AIC and used Mn = o{[log(n)/n]1/4}.

2. Calculate the autoregressive coefficients, φ̂1,p,n, ..., φ̂p,p,n, of the AR(p) model, yt−ȳ =∑∞
j=0 φj(yt−j − ȳ) by the Yule-Walker method.

3. Obtain the (n− p) residuals: ε̂t,n =
∑p

j=0 φ̂j,p,n(yt−j − ȳ), t = p+ 1, ..., n and define

the empirical distribution function of the centered residuals, ε̃t = ε̂t,n − ε̂(.), where

ε̂(.) = (n− p)−1
∑n

t=p+1 ε̂t,n, by F̂ε̃(x) = (n− p)−1
∑n

t=p+1 I[ε̃t≤x].

4. Draw a resample ε∗t,n, t = p+ 1, ..., n of i.i.d. observations from F̂ε̃.

5. Set y∗t = ȳ for t = 1, ..., p and obtain y∗t by the recursion:
∑p

j=0 φ̂j,p,n(y∗t−j− ȳ) = ε∗t,n

for t = p+ 1, ..., n.

6. Compute the estimates (φ̂∗1,p,n, ..., φ̂
∗
p,p,n)′ as in Step 2, using {y∗t }nt=1.

7. For h ∈ N, compute the future bootstrap observations by the recursion: y∗n+h− ȳ =
p∑
j=1

φ̂∗j,p,n(y∗n+h−j − ȳ) + ε∗n+h,n where, y∗t = yt, for t ≤ n.

8. Obtain a Monte Carlo estimate of the bootstrapped distribution function of y∗n+h

by repeating steps 4-7 B times and use this bootstrapped distribution is used to

approximate the unknown distribution of yn+h given the observed sample.

9. The 100(1−α)% prediction interval for yn+h is given by {Q∗(α
2
), Q∗(1− α

2
)} where,

Q∗(.) are the quantiles of the estimated bootstrap distribution.
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4. ASYMPTOTIC RESULTS

In order to establish the asymptotic validity of the sieve bootstrap intervals, Alonso

et al. (2003) first established the convergence of φ̂
∗
p,n to φ̂p,n and then went onto prove the

convergence of the conditional distribution of X∗n+h to that of Xn+h. We follow the same

approach, but modify the proofs to accommodate the changes arising out of the presence

of fractional integration.

Some of the results in Bühlmann (1995, 1997) and Alonso et al. (2003) can be

extended to regular processes that include both FARIMA and non-invertible time series.

Note that the process {yt}t∈Z is said to be linearly regular if {yt}t∈Z is covariance stationary

with,

yt =
∞∑
j=0

ψjεt−j, (4.1)

where {εt}t∈Z is a zero mean white noise process with variance σ2 and the impulse response

coefficients {ψj}∞j=0 satisfy the condition ψ0 = 1 and
∑

j≥0 ψ
2
j <∞ (Poskitt (2006)). Since

FARIMA processes satisfy this condition, we can use the AR(p) approximation suggested

by Poskitt (2006) for such time series.

Definition 4.1: Let {yt} satisfy (4.1) and define, for p < n, {εt,p} such that∑p
j=0 φj,pyt−j = εt,p, where the AR coefficients vector φp = (φ1,p, ...., φp,p)

′ is obtained

using the Yule-Walker equations, Γpφp = −γp, γp = (γ(1), ....., γ(p))′, Γp = [γ(i−j)]pi,j=1,

with γ(k) = E[ytyt+k] for k ∈ N0. Note that Lemma 1 of Poskitt (2006) establishes that

εt,p → εt in mean square as p→∞.

The following sets of assumptions are required in order to prove our asymptotic

results.
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A1: Let ξt denote the σ-algebra of events determined by εs, s ≤ t. Also, assume

{εt}∈Z are i.i.d.2 and that

E[εt|ξt−1] = 0 and E[ε2t |ξt−1] = σ2, t ∈ Z. (4.2)

Furthermore, assume E[ε4t ] <∞ for t ∈ Z.

A2: The series yt is a linearly regular covariance-stationary process with Wold

representation yt =
∑

j≥0 ψjεt−j where Ψ(z) = m(z)/(1 − z)d for |d| < 0.5 and m(z) =∑∞
j=0 µjz

j is a causal transfer function with impulse response coefficients satisfying
∑

j≥0 |µj| <

∞.

B: Let p(n) = o{[n/log(n)]1/2−d} and φ̂p,n = (φ̂1,p,n, ...., φ̂p,p,n)′ satisfy the empirical

Yule-Walker equations Γ̂p,nφ̂p,n = −γ̂p,n where

Γ̂p,n = [R̂(i − j)]pi,j=1, γ̂p,n = (R̂(1), ...., R̂(p))′, and R̂(j) = n−1
∑n−|j|

t=1 (yt − ȳ)(yt+|j| − ȳ)

for |j| < n.

Assumptions in A1 imposes a Martingale difference structure on the innovations.

The condition on the infinite polynomial, m(z), in A2 is satisfied by the ARMA component

of FARIMA processes.

Note that in the proposed method, p(n) is chosen from among values {1, 2, ....,Mn},

where Mn = c[log(n)]a with c > 0 and a ≥ 1. As stated in Poskitt (2006) the above

choice of Mn is sufficient to ensure the order for p(n) stated in the Assumption set B.

Poskitt (2006) used c = 1 and a = 1.962 for his simulation studies. Moreover, these

values for c and a produced coverage probabilities close to nominal levels in a Monte-

Carlo simulation study that we conducted to investigate the finite sample performances

of the sieve bootstrap procedure proposed in Section 3. Thus, we recommend using the

above values.

Next we present asymptotic properties of the sieve bootstrap method given in Section

3 by generalizing results in Bühlmann (1995, 1997) and Alonso et al. (2003) to regular

processes. In the following we let, ‖ x ‖∞= max1≤j≤m |xj|, ‖ x‖2 = (
∑m

j=1 x
2
j)

1/2 for

x ∈ Rm, and ‖X ‖row= max1≤i≤m
∑n

j=1 |xi,j| for X ∈ Rm×n.

2One can assume {εt} ∼ WN(0, σ2) for all results except Proposition 1 which requires the i.i.d.
assumption.
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The following lemma is crucial for proving Proposition 1 by providing a way around

the conditions the fractional integration imposes on the infinite moving average MA(∞)

representation of FARIMA processes. Alonso et al. (2003) uses this MA(∞) represen-

tation to establish the convergence of the bootstrap autoregressive parameter estimators

to the original estimators.

Lemma 1: Assume that A1, A2 and B hold. Then,

∑p
j=0(φ̂j,p,n − φj,p)2 = oa.s.{[log(n)/n]1/2−d},

where φj,p, j = 1, 2, ...., p, p < n are the coefficients given in Definition 4.1.

Proof: We follow the same argument as in An et al. (1982, pp. 935, 936).

First, observe that from Theorem 1 of Poskitt (2006),

max
0≤j≤p

|R̂(j)− γ(j)| = Oa.s.{[log(n)/n]1/2−d}, (4.3)

where R̂(·) is the sample ACVF defined in the Assumption set B. Now consider,

Γp(φ̂p,n − φp) = −(Γ̂p,n − Γp)(φ̂p,n − φp)− (γ̂p,n − γp)− (Γ̂p,n − Γp)φp. (4.4)

Observe that ‖ Γp(φ̂p,n − φp) ‖2
2 =

p∑
k=1

[

p∑
j=1

γ(j − k)(φ̂j,p,n − φj,p)]2

≤
p∑

k=1

p∑
i=1

γ(i− k)2

p∑
j=1

(φ̂j,p,n − φj,p)2.
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Also, ‖ (Γ̂p,n − Γp)(φ̂p,n − φp) ‖2
2 ≤

p∑
k=1

p∑
i=1

[R̂(i− k)− γ(i− k)]2
p∑
j=1

(φ̂j,p,n − φj,p)2

≤ p2 max
1≤k,j≤p

[R̂(j − k)− γ(j − k)]2 ‖ φ̂p,n − φp ‖2
2

≤ p2{Oa.s.[[log(n)/n]2(1/2−d)]} ‖ φ̂p,n − φp ‖2
2,

= oa.s.(1) ‖ φ̂p,n − φp ‖2
2 . (4.5)

Furthermore, ‖ γ̂p,n − γp ‖2
2 =

p∑
j=1

[R̂(j)− γ(j)]2 = p{Oa.s.[[log(n)/n]2(1/2−d)]}

= oa.s.{[log(n)/n]1/2−d}, and

‖ (Γ̂p,n − Γp)φp ‖2
2 ≤

p∑
k=1

p∑
i=1

[R̂(i− k)− γ(i− k)]2
p∑
j=1

φ2
j,p = oa.s.(1),

because
∑p

j=1 φ
2
j,p ≤ c <∞ for all p as observed by An et al. (1982).

Now, post multiplying Equation (4.4) by Γ−1
p

3 and then bringing the first term of the

right hand side of (4.4) to the left of the equal sign, we have

[Ip + Γ−1
p (Γ̂p,n − Γp)](φ̂p,n − φp) = −Γ−1

p (γ̂p,n − γp)− Γ−1
p (Γ̂p,n − Γp)φp. (4.6)

But [Ip + Γ−1
p (Γ̂p,n − Γp)] = Ip[1 + oa.s.(1)] since each element of (Γ̂p,n − Γp) is bounded

by
∑p

k=1

∑p
j=1[R̂(j − k) − γ(j − k)]2 = oa.s.(1), and the left hand side of Equation (4.6)

is oa.s.{[log(n)/n]1/2−d}. Therefore, {1 + oa.s.(1)} ‖ φ̂p,n − φp ‖2
2= oa.s.{[log(n)/n]1/2−d}

which implies that ‖ φ̂p,n − φp ‖2
2= oa.s.{[log(n)/n]1/2−d}, as was observed by An et al.

(1982, pp. 935, 936). �

The following Lemma is analogous to Lemma 5.3 of Bühlmann (1997), and estab-

lishes the convergence of the second moment of bootstrap innovations to their theoretical

second moment, which is needed to prove Proposition 1.

3The proof of Corollary 1 in Poskitt (2006) ensures that the minimum eigenvalue of Γp is bounded
away from zero.
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Lemma 2: Assume that A1, A2 and B hold. Then, for any fixed t ∈ Z,

E∗(ε∗2t,n) = E(ε2t ) + op(1). (4.7)

Proof: By definition of expectation with respect to the bootstrap distribution,

E∗(ε∗2t,n) = (n− p)−1

n∑
t=p+1

(ε̂t,n − ε̂(.)n )2, (4.8)

where ε̂
(.)
n = (n− p)−1

∑n
t=p+1 ε̂t,n.

We first show that, ε̂
(.)
n = op(1). Observe that ε̂

(.)
n = (n − p)−1

∑n
t=p+1 ε̂t,n ≤ (n −

p)−1
∑n

t=p+1 |ε̂t,n − εt|+ (n− p)−1
∑n

t=p+1 |εt| and that (n− p)−1
∑n

t=p+1 |εt| = Op(n
−1/2).

Moreover, (n− p)−1
∑n

t=p+1 |ε̂t,n − εt|

≤ (n− p)−1
∑n

t=p+1 |ε̂t,n − εt,p|+ (n− p)−1
∑n

t=p+1 |εt,p − εt| = I1 + I2.

Now, I2 =
∑n

t=p+1(n − p)−1|εt,p − εt| = (n − p)−1op(n − p) = op(1), due to Lemma 1

of Poskitt’s (2006) and the fact that mean square convergence implies convergence in

probability.

In addition, using Holder’s inequality, it can be shown that

I1 = (n− p)−1

n∑
t=p+1

|ε̂t,n − εt,p| = (n− p)−1

n∑
t=p+1

p∑
j=0

|(φ̂j,p,n − φj,p)yt−j|

≤ [

p∑
j=0

(φ̂j,p,n − φj,p)2]1/2{(n− p)−1

n∑
t=p+1

[

p∑
i=0

|yt−i|2]1/2}.

But from Lemma 1,
∑p

j=0(φ̂j,p,n − φj,p)2 = oa.s.{[log(n)/n]1−2d}.

Therefore, I1 = o{[log(n)/n](1−2d)/2}Op(p
1/2)

= o{[log(n)/n](1−2d)/2}Op{[log(n)/n]−(1−2d)/2} = op(1).
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Next we show that, (n− p)−1
∑n

t=p+1 |ε̂t,n|2 = E(ε2t ) + op(1).

Observe that

(n− p)−1

n∑
t=p+1

|ε̂t,n|2 = (n− p)−1

n∑
t=p+1

|ε̂t,n − εt + εt|2

≤ (n− p)−1

n∑
t=p+1

|ε̂t,n − εt|2+

2(n− p)−1

n∑
t=p+1

|εt||ε̂t,n − εt|+ (n− p)−1

n∑
t=p+1

ε2t .

Employing the same argument as used for I1, the first term can be shown to be op(1).

The ergodicity of εt implies that the last term in the above inequality converges to E(ε2t )

in probability. Using Holder’s inequality, the middle term in the above expression can be

bounded above by,

2[(n− p)−1
∑n

t=p+1 |εt|2]1/2[(n− p)−1
∑n

t=p+1 |ε̂t,n − εt|2]1/2 = op(1).

Hence, (n− p)−1
∑n

t=p+1 |ε̂t,n|2 = E(ε2t ) + op(1).

Now, expanding the right hand side of (4.8) we complete the proof. �

The next Lemma states asymptotic convergence of bootstrap innovations to theo-

retical innovations, and is similar to Lemma 5.4 in Buhlmann (1997).

Lemma 3: Assume that assumptions given in A1, A2 and B hold. Then, for each

fixed t ∈ N,

ε∗t,n
d∗−→ εt, in probability.

Proof: Let Fε,n(x) = (n − p)−1
∑n

t=p+1 1[εt≤x], Fε(x) = P[εt ≤ x] for x ∈ R, and denote

the Mallows metric by d2(., .). Then, from standard results it follows that d2(Fε,n, Fε) =

oa.s.(1). Thus we need to only show that d2(F̂ε,n, Fε,n) = op(1). Let S be uniformly

distributed on {p + 1, ....., n} and let Z1 = εS, Z2 = ε̄S, where ε̄t,n = ε̂t,n − ε̂
(.)
n . Then,

d2(F̂ε,n, Fε,n)2 ≤ E|Z1−Z2|2 = (n−p)−1
∑n

t=p+1(ε̄t,n− εt)2 = (n−p)−1
∑n

t=p+1(ε̂t,n− ε̂(.)n −

εt)
2. From the proof of Lemma 2, ε̂

(.)
n = op(1) and (n − p)−1

∑n
t=p+1 |ε̂t,n − εt| = op(1).
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Hence d2(F̂ε,n, Fε,n) = op(1). �

The following proposition is analogous to Proposition 1 of Alonso et al. (2003) and

shows that the bootstrap autoregressive coefficients obtained in Step 6 converge to the

autoregressive coefficients of the fitted model obtained in Step 2.

Proposition 4.1. Assume A1, A2 and B hold. Then, in probability

max
1≤j≤p(n)

|φ̂∗j,p,n − φ̂j,p,n|
P ∗
−→ 0.

Proof. The vector φ̂∗p is defined by the bootstrap empirical YuleWalker equations.

Γ̂
∗
p,nφ̂

∗
p,n = −γ̂∗p,n, where Γ̂

∗
p,n = [R̂∗(i− j)]pi,j=1, γ̂

∗
p = (R̂∗(1), ..., R̂∗(p))′,

and R̂∗(j) = n−1
∑n−|j|

t=1 (y∗t − ȳ∗)(y∗t+|j| − ȳ∗).

Therefore,

‖ φ̂
∗
p,n − φ̂p,n ‖∞ =‖ Γ̂

∗−1

p,n γ̂
∗
p,n − Γ̂

−1

p,nγ̂p,n ‖∞

≤‖ Γ̂
∗−1

p,n − Γ̂
−1

p,n ‖row‖ γ̂
∗
p,n ‖∞ + ‖ Γ̂

−1

p,n ‖row‖ γ̂
∗
p,n − γ̂p,n ‖∞ .

Assumptions A1, A2, B together with Theorem 1 of Poskitt (2006) and results in Hannan

and Kavalieris (1986) can be utilized to show that ‖ Γ̂p,n ‖row and ‖ Γ̂
−1

p ‖row are uniformly

bounded in p. Following Alonso (2003), it is sufficient to show convergence of ‖ γ̂∗p,n −

γ̂p,n ‖2 to zero in probability to establish the convergence of ‖ φ̂
∗
p,n − φ̂p,n ‖∞. Now,

‖ γ̂∗p,n − γ̂p,n ‖2
2 =

p∑
k=1

(R̂∗(k)− R̂(k))2

≤ 2

p∑
k=1

[R̂∗(k)− E∗R̂∗(k)]2 + 2

p∑
k=1

[E∗R̂∗(k)− R̂(k)]2

= 2(S1 + S2),



29

and

S2 =

p∑
k=1

(E∗[ε∗
2

1 ]
∞∑
i=0

ψ̂i,nψ̂i+k,n − E[ε21]
∞∑
i=0

ψiψi+k)
2

=

p∑
k=1

(E∗[ε∗
2

1 ]
∞∑
i=0

(ψ̂i,nψ̂i+k,n − ψiψi+k) + (E∗[ε∗
2

1 ]− E[ε21])
∞∑
i=0

ψiψi+k)
2

≤ 2

p∑
k=1

(
E∗[ε∗

2

1 ]
∞∑
i=0

(ψ̂i,nψ̂i+k,n − ψiψi+k)

)2

+ 2

p∑
k=1

(
(E∗[ε∗

2

1 ]− E[ε21])
∞∑
i=0

ψiψi+k

)2

= I1 + I2.

The MA(∞) transfer function of Φ̂p,n = 1 + φ̂1,p,nz + ... + φ̂p,p,nz
p is Ψ̂p,n = 1/Φ̂p,n. Let

xt be the underline process of this MA(∞) transfer function. Then, xt =
∑∞

j=0 ψ̂j,nηt−j,

where ηt is i.i.d. with E[ηt] = 0 and E[η2] = σ2 for t ∈ Z. The autocovariace function of

xt is γx(k) = σ2
∑∞

j=0 ψ̂j,nψ̂j+k,n. However, as was observed by Bühlmann (1995) in the

proof of Theorem 3.2, γx(k) = R̂y(k) for 0 ≤ k ≤ p. Observe that

I1 = 2E∗[ε∗
2

1 ]2σ−4

p∑
k=1

(R̂(k)− γ(k))2

≤ 2E∗[ε∗
2

1 ]2σ−4p max
1≤k≤p

(R̂(k)− γ(k))2 = Oa.s.{[log(n)/n]1/2−d}.

Moreover, I2 = op(1) since, E∗[ε∗
2

1 ]− E[ε21] = op(1) by Lemma 3.3 and∑∞
i=0 ψiψi+k ≤ (

∑∞
i=0 ψ

2
i )

1/2 (∑∞
i=0 ψ

2
i+k

)1/2 ≤
∑∞

i=0 ψ
2
i <∞.

Therefore, we have S2 = Oa.s.{[log(n)/n]1/2−d}.
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Next we bound S1 using the same technique as Alonso (2002).

S1 =

p∑
k=1

(n−1

n−k∑
t=1

∞∑
i=0

∞∑
j=0

ψ̂i,nψ̂j,nε
∗
t−iε

∗
t+k−j

−
∞∑
i=0

∞∑
j=0

ψ̂i,nψ̂j,nE
∗[ε∗21 ]δi+k,j)

2

=

p∑
k=1

n−2

n−k∑
t,s=1

∞∑
i,j=0

∞∑
h,l=0

ψ̂i,nψ̂j,nψ̂h,nψ̂l,n

× (ε∗t−iε
∗
t+k−j − E∗[ε∗21 ]δi+k,j)(ε

∗
s−hε

∗
s+k−l − E∗[ε∗21 ]δh+k,l),

where δi,j = 1ifi = j, and 0 otherwise. Taking E∗ on S1,

E∗[S1] =

p∑
k=1

n−2

n−k∑
t,s=1

∞∑
i,j=0

∞∑
h,l=0

ψ̂i,nψ̂j,nψ̂h,nψ̂l,n (4.9)

×
(
E∗[ε∗t−iε

∗
t+k−jε

∗
s−hε

∗
s+k−l]− (E∗[ε∗1]2)2δi+k,jδh+k,l

)
The expectation of error terms are given by,

E∗[ε∗t−iε
∗
t+k−jε

∗
s−hε

∗
s+k−l] =


E∗[ε∗41 ] if t− i = t+ k − j = s− h = s+ k − l

E∗[ε∗21 ]2 if two pairs different indices

0 Otherwiswe

and

E∗[ε∗t−iε
∗
t+k−jε

∗
s−hε

∗
s+k−l]− (E∗[ε∗1]2)2δi+k,jδh+k,l =

E∗[ε∗41 ]− E∗[ε∗21 ]2 if t− i = t+ k − j = s− h = s+ k − l

0 if t− i = t+ k − j 6= s− h = s+ k − l

E∗[ε∗21 ]2 t− i = s− h 6= t+ k − j = s+ k − l

t− i = s+ k − l 6= s− h = t+ k − l

0 Otherwiswe

Since
∑∞

i=0 ψ̂i,n <∞ (causality of the model fitted in Step 2 of Section 3),∑∞
i,j,h,l=0 ψ̂i,nψ̂j,nψ̂h,nψ̂l,n < ∞ and using the fact that for fixed i, j, h and l,

∑n−k
t=1 (·)
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contains at most n− k non-zero summands, we have E∗[S1] = Op(pn
−1). The preceding

argument was used by Alonso (2003) in the proof of Proposition 1.

Finally, ‖ γ̂∗p − γ̂p ‖2= Oa.s.{[log(n)/n](1/2−d)/2}, and therefore,

max1≤j≤p(n) |φ̂∗j−φ̂j| = p1/2Oa.s.{[log(n)/n](1/2−d)/2} = oa.s.(1), which completes the proof.

We now establish the main result for our approach of obtaining prediction intervals

for FARIMA processes, which is equivalent to the Theorem 1 of Alonso (2003).

Theorem 4.2. Assume that A1, A2 and B hold with 0 < d < 0.5. Then, in probability,

y∗n+h
d∗−→ yn+h, for h = 0, 1, ...

Proof. Observe that,

yn+h = −
∞∑
j=1

φjyn+h−j + εn+h, (4.10)

y∗n+h = −
∞∑
j=1

φ̂j,p,ny
∗
n+h−j + ε∗n+h,n, (4.11)

where y∗t = yt for t ≤ n. For simplicity of notation, we prove the theorem for h = 1.

From Lemma 3.4, ε∗n+1
d∗−→ εn+1 and thus we need only to show that the difference of

the first terms on the right hand side of (3.4) and (3.5) converges to zero in probability.

Therefore consider,

−
∞∑
j=1

(φ̂j,p,n − φj)yn+1−j

= −
p(n)∑
j=1

(φ̂j,p,n − φj)yn+1−j +
∞∑

j=p(n)+1

φjyn+1−j = S1,1 + S2,1.

Now, E[|S2,1|] ≤ E[|yt|]
∑∞

j=p(n)+1 |φj| = o(p−1) = op{[log(n)/n]1/2−d}.
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Therefore, S2,1 = op{[log(n)/n]1/2−d}. To get the convergence of the first term of S1,1, we

observe that

|S1,1| ≤

∣∣∣∣∣∣
p(n)∑
j=1

(φ̂j,p,n − φj,p)yn+1−j

∣∣∣∣∣∣+

∣∣∣∣∣∣
p(n)∑
j=1

(φj,p − φj)yn+1−j

∣∣∣∣∣∣ = I1 + I2

.

Clearly, I1 = op(1) since,

I1 ≤

p(n)∑
j=1

(φ̂j,p,n − φj,p)2

1/2p(n)∑
i=1

y2
n+1−i

1/2

= {oa.s.[[log(n)/n]
1/2−d

2 ]}{Op[p(n)1/2]} = op(1).

For I2 we apply the Baxter’s inequality which was generalized by Inoue and Kasahara

(2006) for long memory processes for 0 < d < 0.5.

p(n)∑
j=1

|φj,p − φj| ≤ b
∞∑

j=p(n)+1

|φj|

where b is a constant depending on the true structure. Therefore,

E[I2] ≤ E|yt|
p(n)∑
j=1

|φj,p − φj| = O(p−1) = O{[log(n)/n]1/2−d}

which implies,

|S1,1| = Op{[log(n)/n]1/2−d}.

Finally, −
∑∞

j=1 φ̂j,p,nyn+1−j = −
∑∞

j=1 φjyn+1−j +Op{[log(n)/n]1/2−d}.

Then, y∗n+1
d∗−→ yn+1, in probability.
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5. CONCLUSION

The sieve bootstrap method currently available for constructing prediction intervals

for short-memory linear processes is modified to enable its application to FARIMA pro-

cesses. The asymptotic validity of this modified sieve bootstrap based prediction intervals

under certain regularity conditions is established. The proposed method is based on the

version of sieve bootstrap introduced by Alonso et al. (2003), and the fundamental work

in Poskitt (2006, 2007) provides the theoretical foundation for the modifications to the

existing procedure.
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II. OBTAINING PREDICTION INTERVALS FOR FARIMA PROCESSES

USING SIEVE BOOTSTRAP

ABSTRACT

The Sieve Bootstrap method for constructing prediction intervals for invertible

ARMA processes is based on re-samples of residuals obtained by fitting a finite degree

autoregressive approximation to the time series. The advantage of this approach is that

it does not require the knowledge of the orders, p and q, associated with the ARMA

model. The application of this method has been, up to now, limited to ARMA processes

whose autoregressive polynomials do not have fractional roots. In this paper, we propose

the sieve bootstrap method to obtain prediction intervals for ARFIMA (p, d, q) processes

with 0 < d < 0.5. The proposed procedure is a simpler alternative to an existing method,

which requires the estimation of p, d, and q. Monte-Carlo simulation studies, carried out

under the assumption of normal, mixture of normals, and exponential distributions for

the innovations, show near nominal coverages for short term and long term prediction

intervals under all situations. In addition, the proposed method is more precise than the

existing method in most cases.

Keywords: Forecasting, Long Memory Processes, Fractionally Integrated Time

Series, Model-based Bootstrap, ARFIMA processes.
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1. INTRODUCTION

The modelling and forecasting of long-memory processes have become an important

aspect for time series analysts. For example, empirical series that exhibit long-memory are

quite common in geophysical sciences, macroeconomics, asset pricing, stock returns and

exchange rates (see [1,12]). The Fractionally Integrated Auto Regressive Moving Average

(ARFIMA or FARIMA) processes have been used extensively to model such processes,

see [24, 25]. For example, Liu et al. [26] suggests modelling actual web traffic using a

FARIMA process. With the prevalence of empirical processes that are well approximated

by FARIMA models, there is the corresponding need for methods of obtaining prediction

intervals for such processes. In this paper, a relatively simple method for obtaining

bootstrap-based prediction intervals for FARIMA processes is presented and compared

against an existing method through a Monte Carlo simulation study.

The proposed method is based on the Sieve Bootstrap approach of Alonso et al. [6,7].

Monte Carlo study shows that in many cases the sieve bootstrap method performs better

than the only currently available bootstrap-based method introduced by Bisaglia and

Grigoletto [4].

An extensive discussion of research literature on the application of bootstrap tech-

niques to AR and ARMA models are discussed in [5–8]. For bevirity, only a brief discussion

of the literature on the sieve bootstrap is presented here.

As the Gaussian-based prediction intervals produce poor coverages when the distri-

butional assumptions are violated, Stine [9,10] and Findley [11] were the first to introduce

bootstrap methods to compute prediction mean squared error for time series. Thombs and

Schucany [16] presented a bootstrap procedure for obtaining forecast intervals, but their

method required the backward representation of the time series, which was not possible for

time series with a moving average component. All the above methods also assumed that

the order of the process is known. A block bootstrap method for stationary processes with

unknown orders to compute the empirical distributions of statistics was first introduced

by Künsch [13]. The sieve bootstrap approach, which also do not require the knowledge
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of the orders associated with the underline process, was originated by Bühlmann [27]. He

achieved this by expressing the process as a truncated infinite order AR model. It should

be noted that the use of Akaike’s Information Criteria (AIC) to approximate AR models

was introduced by Grenander [19] and Geman and Hwang [20]. Alonso et al. [6–8] further

presented the sieve bootstrap approach to obtain prediction intervals for a general class

of linear processes that include ARMA processes as a subset. In the 2004 article, the

authors discussed two variations of the sieve bootstrap method; one variation is based on

the moving block bootstrap introduced by Künsch [13] and the other uses the information

criterion function order distribution. A modified version of the sieve bootstrap method

of Alonso et al. [8] was implemented and applied to ARMA processes by Mukhopadhyay

and Samaranayake [5]. They were able to improve the coverage probabilities of prediction

intervals with their modifications.

1.1. FARIMA PROCESSES

A good introduction to the mathematical background of the FARIMA processes is

given by Brockwell & Davis [2]. Based on their definition, the process {Xt : t = 0,±1, ...}

is said to be a FARIMA(0,d,0) process with d ∈ (−0.5, 0.5) if {Xt} is a zero mean

stationary solution to the difference equation,

5dXt = εt, t ∈ Z, (1.1)

where {εt} ∼ WN(0, σ2).

The process {Xt} is also known as fractionally integrated noise or fractional Gaussian

noise (fGn). Here,5d = (1−B)d =
∑∞

j=0 πjB
j, whereB is the back-shift operator defined

by BkXt = Xt−k for k = 1, 2, ..., and

πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
=
∏
o<k≤j

k − 1− d
k

, j = 0, 1, 2... ,

with Γ(·) representing the gamma function.
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Notice that when d = 1, the process {Xt} is a random walk, which will not be con-

sidered in our discussion. If d ∈ (−0.5, 0.5) then there is a unique purely non-deterministic

stationary solution {Xt} of (1.1) given by

Xt =
∞∑
j=0

ψjZt−j = 5−dεt.

where,

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
=
∏
o<k≤j

k − 1 + d

k
, j = 0, 1, 2... .

The autocorrelation function of {Xt} is ρ(h) = Γ(h+d)Γ(1−d)
Γ(h−d+1)Γ(d)

=
∏

o<k≤h
k−1+d
k−d , k =

1, 2, ..., and it can be shown that ρ(h) ∼ h(2d−1)Γ(1 − d)/Γ(d) as h → ∞, which implies

the long range dependence among X ′ts when d ∈ (−0.5, 0.5).

The process {Xt : t = 0,±1, ...} is said to be a FARIMA(p, d, q) process with

d ∈ (−0.5, 0.5) if {Xt} is stationary and satisfies the difference equation,

φ(B)5d Xt = θ(B)εt,

where {εt} ∼ WN(0, σ2) with φ(z) = 1 − φ1z − ... − φpzp and θ(z) = 1 + θ1 + ... + θqz
q

representing polynomials of degrees p, q respectively.

If d ∈ (−0.5, 0.5), φ(z) 6= 0 for |z| ≤ 1, and φ(·), θ(·) have no common zeros, then

there is an infinite order moving average representation of {Xt} which can be written as

Xt = ψ(B)5−d εt, (1.2)

where

ψ(z) =
∞∑
j=0

ψjz
j = θ(z)/φ(z).
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Note that the relationship between FARIMA processes and self-similar processes is

addressed by [14]. The process is said to have long-range dependence or long-memory

when 0 < d < 0.5 and “intermediate memory” when −0.5 < d < 0. However, as

many physical phenomena indicate long-range dependence [15], our discussion is limited

to FARIMA processes with 0 < d < 0.5.

1.2. PREDICTION & PREDICTION INTERVALS FOR FARIMA

PROCESSES

Point predictors for future values of a FARIMA(p, d, q) process based on the inno-

vations algorithm are presented by Brockwell & Davis [2]. Ray [28] finds that forecasts

of a FARIMA process can be computed by fitting an AR(p) model, which is a part of the

technique discussed in this paper. Other papers, for example, Brodsky and Hurvich [30],

Ray [29], Geweke and Porter-Hudack [32] and Eisinga et al. [31], continue the discussion

on forecasting a FARIMA process. More recently, Gonzaga et al. [3] introduces a wavelet

based Bayesian estimation for predicting a Generalized FARIMA (p, d, u, q) process.

In spite of the availability of point predictors, there is a dearth of research publica-

tions on prediction intervals for a FARIMA(p, d, q) process. Bisaglia and Grigoletto [4]

was the first to introduce bootstrap-based prediction intervals for FARIMA processes.

The method introduced by these authors will be hereafter referred as B-G method. The

B-G method performs quite well, providing near nominal coverages when the sample size

is large. Their technique involves jointly estimating the fractional difference parameter,

d as well as the AR and MA coefficients using the Whittle approximation [12, 13], which

minimizes the variance of the underlying white noise process.

1.2.1. The B-G method.

An outline of the B-G algorithm is as follows. For a given long-memory process

{Xt}nt=0, the B-G method first fits a FARIMA(p, d, q) model using the Bayesian Informa-

tion Criterion (BIC) and the Whittle approximation, and then uses the residuals of the

fitted model to obtain bootstrap replicates {X∗t }n+k
t=0 , where k is the number of ahead-leads

to be predicted. The first n replicates {X∗t }nt=0 are then used to identify the model and
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estimate parameters of the bootstrapped series using the BIC and the Whittle approxi-

mation. A finite approximation of the AR representation of the fitted model is used to

compute k -step prediction and the prediction error. This step is performed 1,000 times

to obtain the bootstrap distribution of prediction errors. Finally, the prediction interval

is computed based on the percentiles of this bootstrap distribution of prediction errors.

The Whittle approximation for estimating parameters involved with a stationary

Gaussian time series was proposed by Fox and Taqqu [13]. The application of Whittle

estimators for FARIMA(p, d, q) time series is computationally demanding as the opti-

mization step takes a long time even with fast computers. This computational demand

hurts the B-G method even more as it fits FARIMA(p, d, q) model in each bootstrap run.

However, our proposed sieve bootstrap method does not require such optimizations in es-

timating parameters associated with AR(p) models and hence it is computationally much

faster.

2. THE PROPOSED SIEVE BOOTSTRAP METHOD

Let {Xt}nt=0 be a zero-mean FARIMA process defined as (1.1). Under the case of

invertibility (0 < d < 0.5 and θ(z) 6= 0 for |z| ≤ 1 - see Brockwell & Davis [2] for details),

it can be written as an infinite order autoregressive process
∑∞

j=0 φjXt−j = εt for t ∈ Z

with φ0 = 1 and
∑∞

j=0 |φj| <∞.

A direct application of the sieve bootstrap method proposed by Alonso et al. [6–8]

is not feasible for FARIMA processes as the MA(∞) coefficients do not satisfy one of the

key assumptions, namely
∑∞

j=0 j
rψj <∞ for some r ∈ N0, made by the above authors.

Poskitt [33] discussed the ways of approximating a class of more general linear pro-

cesses, which includes FARIMA processes, by finite autoregressive polynomials. In a later

paper, Poskitt [34] showed how the sieve bootstrap method can be utilized to compute

empirical distributions of statistics associated with FARIMA processes. He also derived

the asymptotic properties of these empirical distributions under certain regularity condi-

tions. The coefficients of the AR(p) approximation of Xt, φp = (φ1, ..., φp)
′, are obtained
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using the Yule-Walker equations, Γpφp = −γp, γp = (γ(1), ..., γ(p))′, Γp = [γ(i− j)]pi,j=1

with γ(k) = E[(Xt − µX)(Xt+k − µX)] for k ∈ N0 where, µX = E(Xt). Then the errors,

εt,p =
∑p

j=0 φjXt−j, converge to εt in mean square error as p→∞ [33].

Rupasinghe and Samaranayake [35] utilized some of results in Poskitt [33, 35] to

establish asymptotic properties of the sieve bootstrap prediction intervals for FARIMA

processes generalizing Alonso et al. [7]. In this paper, we continue our interest in the sieve

bootstrap method by carrying out an extensive simulation study based on the method

proposed by Rupasinghe and Samaranayake [35].

The optimal order p is selected by the AIC as recommended by Poskitt [35] but

Alonso et al. [7] preferred the corrected AIC (AICC) for ARMA processes. To find the

optimal order using the AIC criteria, one needs a maximum order pmax to be specified.

Following Poskitt [33,35], pmax is set to 20 and 27 for sample sizes 100 and 200 respectively

as the long-range dependence has to be captured by fitting a large order AR model. In

fact, Poskitt suggested, pmax = [log(n)]1.962.

The following steps are required to compute prediction intervals for FARIMA pro-

cesses by Rupasinghe and Samaranayake [35].

1. Given a realization, {Xt}nt=1 of a FARIMA process, select a maximum order pmax.

Then, find the optimal order pAIC by the AIC criterion among the values p =

1, 2, ..., pmax. Based on our initial investigations, we recommend the value of pmax =

20, 27 for n = 100, 200 respectively.

2. Estimate the coefficients, φ̂1, ..., φ̂p̂ of the AR(p̂) process by Yule Walker or least-

squares method. Alonso et al. [6–8]) uses the Yule Walker method but Mukhopad-

hyay and Samaranayake [5] recommends the least-squares method. The Yule-Walker

method is used in our study as well.

3. Compute the (n − p̂) residuals as ε̃t =
∑p̂

j=0 φ̂j(Xt−j − X̄) ; φ̂0 = 1, t ∈ (p̂, ..., n),

where X̄ is the mean of {Xt}nt=1.

4. The residuals need to be centered when using Yule Walker method [16]. These

rescaled residuals are denoted by ε̂t, t ∈ (p̂, ..., n).
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5. Compute the empirical distribution function of the residuals as

F̂ε̂(x) = (n− p̂)−1
∑n

t=p̂+1 I(−∞,x](ε̂t).

6. Then resample, with replacement, the bootstrap innovations, ε∗t , for

t = −199,−198, ..., 0, 1, 2, ..., n, from this distribution.

7. Generate the bootstrapped series X∗t , t = −199,−198, ..., 0, 1, 2, ..., n based on the

recursion
∑p̂

j=0 φ̂j(X
∗
t−j − X̄) = ε∗t with X∗t = X̄ for t = −199, ..., p̂. The non-

positive lags represent “burn-in” observations which need to be dropped to make

the effect of initial values negligible.

8. Fit an AR(p̂) model to X∗t using the Yule-Walker method and let the estimated AR

coefficients be φ̂∗1, φ̂
∗
2, ..., φ̂

∗
p̂. Note that the same order, p̂ obtained in the Step 1 is

used in this step as well. Alonso et al. [8] suggested the use of AICC to find the

order, which utilizes to capture uncertainties due to model being different, instead

of using the same p̂. However, our initial simulation studies show that the use of

the same p̂ obtained in the Step 1 yields better coverages.

9. Using the new coefficients φ̂∗1, φ̂
∗
2, ..., φ̂

∗
p̂ obtained in the previous step, compute the

k -step ahead bootstrap observations by the recursion as follows:

X∗n+k − X̄ = −
∑p̂

j=1 φ̂
∗
j(X

∗
n+k−j − X̄) + ε∗n+k, where k > 0 and X∗t = Xt for t ≤ n.

The bootstrap distribution of Xn+k should be conditioned on the original observed

data rather the bootstrap {X∗t }nt=1 by setting X∗t = Xt for t ≤ n as implemented by

Cao et al. [23] and Alonso et al. [6, 8].

10. Obtain the bootstrap distribution of Xn+k, denoted by F̂ ∗
X̂∗

n+k

(.), by repeating the

Steps 6 to 9 B times, where B is set to be 1,000 in the simulation study.

11. A 100(1− α)% prediction interval for Xn+k is then computed by [Q∗(α/2), Q∗(1−

α/2)] where Q∗(s) = F̂ ∗−1

X̂∗
n+k

(s) is the sth percentile of the estimated bootstrap distri-

bution. Finally, the lower and upper bounds of the prediction interval are obtained

by sorting the bootstrapped future values X̂∗n+k and choosing the (α/2)100th and

the (1− α/2)100th percentile points.
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3. SIMULATION STUDY

In order to investigate the performances of the method proposed in this paper and

contrast it with the intervals obtained by the B-G method, a Monte-Carlo simulation

study was carried out with three different error distributions and with sample sizes 100

and 200. The coverage, bootstrap length, and the length of the interval theoretically

achievable under known order and parameter values were computed for 95% and 99%

prediction intervals to asses the performance of the two methods.

The representation of Xt in (1.2) was used to generate FARIMA(p, d, q) processes

assuming that the negative lags of εt are zeros. So, one can write Xt =
∑t

j=0 λjZt−j where

λ(z) = ψ(z)(1− z)−d =
∑∞

j=0 ψjz
j
∑∞

k=0 bkz
k =

∑∞
k=0 λkz

k with (1− z)−d =
∑∞

k=0 bkz
k.

The models employed in this study are FARIMA(0,d,0), FARIMA(1,d,0),

FARIMA(0,d,1) and FARIMA(1,d,1) processes with d ∈ {0.1, 0.25, 0.4, 0.49}, φ1 ∈ {0, 0.5}

and θ1 ∈ {0,−0.8}. Bisaglia and Grigoletto [4] also studies the same models except

FARIMA(1,d,1). The standard normal distribution, exponential distribution with mean

1 centered at zero, and the skewed bimodal mixture distribution 0.9F1 + 0.1F2, where

F1 ∼ N(−1, 1) and F2 ∼ N(9, 1), were considered for error distributions for each of the

above combinations of d, φ1 and θ1 but Bisaglia and Grigoletto [4] looked at only normal

errors. Prediction intervals for leads k = 1, 10, 20 were computed using the both methods.

The Matlab (version 2008b) software was used for these simulations. Since, an important

part of this paper is to compare our prediction intervals with that of the B-G method,

simulations on some of the above combinations of d, φ1 and θ1 were also run for the B-G

method. As was mentioned in [4], the simulation study of the B-G method has been coded

in Gauss by the authors. We ran the authors’ code in Gauss version 11 to implement

the prediction intervals of the B-G method. In order that the two methods are compared

using series generated by the same mechanism, we changed their generating algorithm to

match ours. Test runs were made to verify that both algorithms produce similar results

for the B-G method.
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For each combination of model, sample size, nominal coverage and error distribution,

N = 1, 000 independent series were generated and for each of these simulated series, steps

1 to 15 were implemented. To compute the coverage probabilities for each of this N

simulations, R = 1, 000 future observations (Xn+k) were generated using the original

model.

The proportion of those falling in between the lower and upper bounds of the boot-

strap prediction interval was then defined to be the coverage. Thus, the coverage at the ith

simulation run is given by C(i) = R−1
∑R

r=1 IA[Xr
n+k(i)] whereA = [Q∗(α/2), Q∗(1−α/2)],

IA(.) is the indicator function of the set A and Xr
n+k(i), r = 1, 2, ...1, 000 are the R fu-

ture values generated at the ith simulation run. The bootstrap length and theoretical

length for the ith simulation run are given by LB(i) = Q∗(1 − α/2) − Q∗(α/2) and

LT (i) = Xr
n+k(1 − α/2) − Xr

n+k(α/2) respectively. LT (i) is the difference between the

100(1−α/2)th and 100(α/2)th percentile points the empirical distribution of the 1,000 fu-

ture observations that were generated using the underlying time series model with known

order and the true values of the coefficients. Using these statistics, the mean coverage,

mean length of bootstrap prediction intervals, mean length of theoretical intervals, and

their standard errors are computed as:

Mean Coverage C̄ = N−1
∑N

i=1 C(i)

Standard Error of Mean Coverage SEC̄ = {[N(N − 1)]−1
∑N

i=1[C(i)− C̄]2}1/2

Mean Length (bootstrap) L̄B = N−1
∑N

i=1 LB(i)

Standard Error of Mean Length SEL̄B
= {[N(N − 1)]−1

∑N
i=1[LB(i)− L̄B]2}1/2

Mean Theoretical Length L̄B = N−1
∑N

i=1 LB(i)

In total 192 different combinations of model type, sample size, nominal coverage

probability, and error distributions were investigated in this simulation study. However,

due to space limitations, we report only a representative sample of results for 95% inter-

vals, in Table 1 through 7. These tables report the mean coverage, mean interval length,

and mean theoretical length, standard error of mean coverage and standard error of mean

interval length. Tables 1 to 3, 4 to 5, and 6 to 7 represent coverage probabilities and

lengths of computed prediction intervals for normal, exponential and t distribution errors
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respectively. The complete results of the simulation study are available upon request from

the corresponding author.

To investigate the behaviour of the intervals for each of the 192 combinations, the

minimum value, percentiles (25th, 50th, and 75th), and the maximum value of (a) the

coverage probabilities, (b) the bootstrap interval bounds (upper and lower), and (c) the

theoretical interval bounds (upper and lower), were further computed, based on the 1,000

values generated through simulation, and these statistics are also available upon request.

From Tables 1-7, we can see that the both methods provide coverages closer to

the nominal coverage as sample size increases. This is expected since large sample sizes

provide more accurate parameter estimates as well as yield more residuals for resampling.

An interesting observation is that the mean coverages of the proposed Sieve Boot-

strap (SB) method are very close to but just below the nominal coverage for all the lags

while that of the B-G method are more conservative for lags 10 and 20 for normal errors

as seen in Tables 1 to 3. Also, it is observed that the mean bootstrap interval lengths of

the B-G method are larger than the that of the SB method and the theoretical lengths.

For instance, in table 1, the mean coverages for k = 10, for the case with 200 observations

are 0.9486 and 0.9650 while the prediction intervals’ lengths are 4.2493 and 4.5912 for

the SB and B-G respectively. In general, for normally distributed errors, the SB method

provides coverages marginally below the nominal level while slightly wider intervals with

conservative coverages were attained by the B-G method.

For exponential errors, both method yield nearly the same coverages which are close

to the nominal level. However, it is very interesting to see that the SB prediction interval

lengths are shorter even with high coverages, than the B-G prediction intervals. For

example, the SB method outperforms the B-G method when k = 1 with sample size 100,

with shorter prediction intervals as shown in Table 5. The coverages are 0.9536 and 0.9434

for SB and BG respectively, with SB having a shorter length of 4.0014.

The BG method fails to perform accurately for all the leads when the errors are

skewed and bimodal. From Table 6 we can see that the BG method provides very liberal

coverages for lead 1 while near nominal coverages are yielded for the leads 10 and 20.

Notice that in the cases where near nominal coverages are obtained, the BG intervals
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are exceedingly wider than than the SB and theoretical intervals. When the difference

parameter, d is close to 0.5, the BG method performs even worst as shown in Table 7. It

was unable to provide coverages close to the nominal level even with way wider intervals.

The Whittle estimator used in BG procedure, fails to estimate the parameters accurately

when the errors are skewed and bimodal, and this causes to produce poor coverages for

the prediction intervals computed by the BG method.

Table 8 demonstrates average times taken by SB and BG methods to compute

prediction intervals for different various values of difference parameter, d. Both methods

took a longer time for larger values of difference parameters. However, the SB method

is considerably faster than the BG method as expected earlier. The optimization process

of the likelihood function in estimating the parameters causes the BG method to take a

long time to compute prediction intervals.
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Table 1. Coverage of 95% intervals for 50.25Xt = εt with normal errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.9040 0.9395 3.9010 0.9488 4.2147

(0.0025) (0.0338) (0.0098) (0.0364)

200 3.9430 0.9413 3.9217 0.9538 4.0377

(0.0021) (0.0308) (0.0016) (0.0199)

10
100 4.1691 0.9415 4.1955 0.9664 4.7335

(0.0024) (0.0413) (0.0022) (0.0603)

200 4.1684 0.9486 4.2493 0.9650 4.5912

(0.0017) (0.0298) (0.0016) (0.0341)

20
100 4.2020 0.9421 4.2174 0.9651 4.7969

(0.0025) (0.0425) (0.0027) (0.0681)

200 4.1907 0.9480 4.2647 0.9662 4.6592

(0.0020) (0.0337) (0.0016) (0.0385)
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Table 2. Coverage of 95% intervals for 50.49Xt = (1− 0.8B)εt with normal errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.9247 0.9379 3.9693 0.9281 4.2868

(0.0025) (0.0415) (0.0157) (0.0355)

200 3.9003 0.9396 3.9119 0.9341 4.0721

(0.0024) (0.0281) (0.0108) (0.0213)

10
100 4.1318 0.9456 4.1803 0.9733 4.8421

(0.0021) (0.0372) (0.0020) (0.0531)

200 4.1207 0.9457 4.1266 0.9655 4.5659

(0.0017) (0.0251) (0.0024) (0.0248)

20
100 4.1218 0.9472 4.1833 0.9746 4.8453

(0.0022) (0.0389) (0.0018) (0.0532)

200 4.1338 0.9477 4.1521 0.9690 4.5780

(0.0018) (0.0275) (0.0011) (0.0251)
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Table 3. Coverage of 95% intervals for (1 − 0.5B)50.49 Xt = (1 − 0.8B)εt with normal

errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.9283 0.9402 3.9743 0.9528 4.1702

(0.0028) (0.0364) (0.0042) (0.0365)

200 3.9031 0.9441 3.9681 0.9515 4.0182

(0.0020) (0.0240) (0.0015) (0.0187)

10
100 4.0172 0.9554 4.3014 0.9608 4.3922

(0.0025) (0.0517) (0.0020) (0.0512)

200 4.0146 0.9555 4.2798 0.9567 4.2505

(0.0019) (0.0380) (0.0016) (0.0266)

20
100 4.0658 0.9518 4.3139 0.9585 4.4081

(0.0027) (0.0588) (0.0021) (0.0530)

200 4.0858 0.9572 4.3995 0.9548 4.2689

(0.0021) (0.0474) (0.0016) (0.0278)
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Table 4. Coverage of 95% intervals for (1−0.5B)50.4Xt = (1−0.8B)εt with exponential

errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.6677 0.9437 3.9224 0.9437 4.2696

(0.0074) (0.0812) (0.0055) (0.1329)

200 3.6367 0.9514 3.8099 0.9476 4.0068

(0.0046) (0.0545) (0.0015) (0.0423)

10
100 3.7210 0.9584 4.0577 0.9526 4.3695

(0.0031) (0.0809) (0.0019) (0.1518)

200 3.7571 0.9535 3.9549 0.9503 4.0623

(0.0039) (0.0569) (0.0014) (0.0427)

20
100 3.7836 0.9549 4.0749 0.9531 4.3724

(0.0032) (0.0819) (0.0018) (0.1521)

200 3.7811 0.9520 3.9135 0.9487 4.0672

(0.0035) (0.0509) (0.0014) (0.0429)
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Table 5. Coverage of 95% intervals for 50.49Xt = (1− 0.8B)εt with exponential errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.6385 0.9536 4.0014 0.9434 4.3515

(0.0052) (0.0721) (0.0079) (0.1528)

200 3.6609 0.9475 3.8874 0.9457 4.0584

(0.0074) (0.0546) (0.0050) (0.0454)

10
100 4.1541 0.9490 4.2878 0.9603 4.9143

(0.0028) (0.0699) (0.0018) (0.1848)

200 4.1295 0.9467 4.1884 0.9549 4.5200

(0.0026) (0.0542) (0.0014) (0.0540)

20
100 4.1459 0.9503 4.3202 0.9601 4.9189

(0.0027) (0.0713) (0.0020) (0.1850)

200 4.1658 0.9513 4.2786 0.9555 4.5282

(0.0022) (0.0527) (0.0015) (0.0541)
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Table 6. Coverage of 95% intervals for 50.4Xt = εt with Mixture errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.9150 0.9397 3.9312 0.8879 13.0698

(0.0024) (0.0315) (0.0115) (0.1740)

200 3.9149 0.9420 3.9193 0.9030 12.5954

(0.0019) (0.0273) (0.0010) (0.1065)

10
100 4.6746 0.9478 4.9539 0.9434 17.5663

(0.0032) (0.0724) (0.0031) (0.3263)

200 4.6745 0.9471 4.8746 0.9457 17.4127

(0.0028) (0.0548) (0.0025) (0.2354)

20
100 4.8267 0.9478 5.1265 0.9485 18.4148

(0.0034) (0.0903) (0.0032) (0.3930)

200 4.8360 0.9472 5.0685 0.9535 18.3427

(0.0028) (0.0670) (0.0024) (0.2867)
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Table 7. Coverage of 95% intervals for 50.49Xt = (1− 0.8B)εt with Mixture errors

Leads Size TheoLen SB B-G

Coverage Length Coverage Length

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

1
100 3.9247 0.9379 3.9693 0.8958 13.6464

(0.0025) (0.0415) (0.0116) (0.1829)

200 3.9003 0.9396 3.9119 0.8935 12.8626

(0.0024) (0.0281) (0.0081) (0.1242)

10
100 4.1318 0.9456 4.1803 0.9239 15.5551

(0.0021) (0.0372) (0.0027) (0.2577)

200 4.1207 0.9457 4.1266 0.9110 14.3395

(0.0017) (0.0251) (0.0014) (0.1512)

20
100 4.1218 0.9472 4.1833 0.9244 15.5723

(0.0022) (0.0389) (0.0026) (0.2601)

200 4.1338 0.9477 4.1521 0.9130 14.3678

(0.0018) (0.0275) (0.0012) (0.1508)

Table 8. Time comparison with sample size 200 (in seconds)

d SB BG

0.1 41.9 127

0.25 65 204

0.4 88.6 257.3

0.49 128.5 453.25
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4. APPLICATION TO A REAL DATA SET

The proposed sieve bootstrap method have been applied to a historical time series of

663 annual minimal water levels of the River Nile, measured at Rodga Gorge (near Cairo)

between 622 and 1284 A.D.; the data set is available in Tousson [36]. This time series

also has been used by Bisaglia and Grigoletto [4] and they have fitted a FARIMA(0, d, 0)

with d = 0.3842 for the first 563 observations.

Following Bisaglia and Grigoletto [4], we used the observations for the years 622

through 1184 to build prediction intervals for the subsequent 100 years. The lower and

upper bounds of the 95% SB and BG prediction intervals are given in Figure 1. The

prediction intervals reported by Bisaglia and Grigoletto [4] were unable to capture the

true time series for the years 1202 and 1231, whereas, the sieve bootstrap method failed

to capture the true value only for the year 1231. Most beneficially, the sieve bootstrap

approach produced more precise prediction intervals compared to BG method.
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5. CONCLUSION

In this paper we have proposed a sieve bootstrap based prediction intervals for long

memory time series that can be modeled using FARIMA processes. The sieve bootstrap

method produces coverages close to the nominal level with shorter intervals in all cases.

In contrast, the BG method produces slightly better coverages with wider intervals in

some cases, the proposed method performs consistently regardless of the error distribu-

tion. This was further confirmed by the application to the Nile River data set. In general,

we can recommend the sieve bootstrap method over BG for faster, more accurate and

precise prediction intervals for long memory processes.
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III. PREDICTION INTERVALS FOR ARIMA PROCESSES: A SIEVE

BOOTSTRAP APPROACH

ABSTRACT

The sieve bootstrap is a model-free re-sampling method that approximates an in-

vertible linear process with a finite autoregressive model whose order increases with sample

size. Prediction intervals based on this approach have been successfully implemented for

stationary invertible ARMA processes. The coverage probabilities of sieve bootstrap in-

tervals developed for ARMA models, however, are well below the nominal level in the

presence of a unit root in the autoregressive polynomial. An approach that overcomes this

drawback is proposed and the asymptotic properties of the proposed method are derived.

Monte Carlo simulation results indicate that the proposed method provides near nominal

coverage at moderate sample sizes.

Keywords: Unit root processes; Forecast intervals; ARMA; Nonstationarity
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1. INTRODUCTION

Many financial and economic time series are non-stationary, and Autoregressive In-

tegrated Moving Average (ARIMA) processes are often used to model such empirical

process. For the practitioner, one of the main goals of empirical time series modeling

is to obtain forecasts based on its past values. Standard parametric point and interval

forecasts are quite accurate under normally distributed innovations. As noted by Stine

(1987) and Thombs and Schucany (1990), parametric prediction intervals perform poorly

when the normal assumption is violated. Nonparametric bootstrap based prediction in-

tervals, therefore, have been used as an alternative to parametric estimates by time series

analysts. While nonparametric approaches have been proposed for stationary processes, a

method that provides prediction intervals for the class of ARIMA models with unknown

orders p, q is not available. In the following sections, a nonparmetric bootstrap approach

to obtain prediction intervals for ARIMA processes with unknown orders is presented.

One drawback of the original bootstrap methods is the requirement of the knowledge

of the orders associated with the underlying process. For instance, the bootstrap approach

proposed by Stine (1987) assumes the order, p, of the AR(p) process is known. The same

is true for methods introduced by Thombs and Schucany (1990), Cao et al. (1997) and

Pascual et al. (2004).

The method proposed in this paper, however, does not require any knowledge of the

orders associated with autoregressive and moving average polynomials. Our framework

is identical to the Sieve Bootstrap prediction intervals implemented by Alonso, Pena and

Romo (2002, 2003 and 2004), which resamples residuals obtained by sequence of AR(p)

models with order p = p(n), which increases with the sample size n. The foundation of

this sieve bootstrap approach was laid by Kreiss (1988) and (1992), for time series that

can be represented by an infinite autoregressive process. Bühlmann (1997) extended this

approach to more general class of time series that can be written as an infinite order

moving average time series and introduced the term sieve bootstrap. Alonso et al. (2002,

2003) formalized this sieve bootstrap concept and applied it to obtain prediction intervals
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for linear processes. The same authors made further refinements in 2004 by introduc-

ing model uncertainty in computing prediction intervals. Alonso’s method was modified

by Mukhopadhyay and Samaranayake (2010) to improve the coverages of the prediction

intervals. They achieved this by introducing a variance inflation factor for bootstrap

residuals. These preceding bootstrap methods are, however, limited to stationary lin-

ear processes such as ARMA models. Rupasinghe and Samaranayake (2012) extended

Alonso’s 2003 sieve bootstrap procedure to compute prediction intervals for long memory

processes (FARIMA). In this paper, we extend Alonso’s 2003 sieve bootstrap procedure

to obtain prediction intervals for ARIMA processes.

1.1. ARIMA PROCESSES

A real-valued process {xt}t∈Z is said to be a Autoregressive Integrated Moving Av-

erage (ARIMA(p,d,q)) process if it is stationary and satisfies

α(B)5d (xt − µ) = θ(B)εt, t ∈ Z, (1.1)

where α(z) = 1−α1z− ...−αpzp and θ(z) = 1 + θ1z+ ...+ θ(q)zq represent autoregressive

and moving average polynomials of degrees p and q respectively. The mean of the process

is µ = E[xt] for all t. It is assumed that α(.) and θ(.) do not share common zeros. The

error terms, {εt}, are assumed to be zero-mean white noise with finite variance σ2. Note

that 5 = 1 − B, where B is the back-shift operator defined by Bkxt = xt−k for k ∈ N.

The difference parameter, d, can take any non-negative integer, but we assume that d = 1

or 0 which represents the most common type of ARIMA processes used in empirical

modeling.

The literature on methods for obtaining prediction intervals for ARIMA processes

is very limited. Kim (2001) extended the forward and backward bootstrap procedure of

Thombs and Schucany (1990) to obtain prediction intervals for AR(p) models with unit

roots by incorporating a bias correction on the bootstrap estimates of the forward and

backward AR coefficients. The backward AR representation is obtained by reversing the

forward (usual) AR(p) model. This bias correction was adopted from Kilian (1998a) and
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utilized to improve the coverage probabilities in the presence of unit roots. Their method,

however, assumes that the process is AR(p) and the order, p, is known, which could be a

weakness in situations where the order is unknown. They also assumed normal errors in

establishing the asymptotic validity of the method.

In their recent articles, Panichkitkosolkul and Niwitpong (2011, 2012) introduced

parametric prediction intervals for Gaussian AR(p) models that may include unit root

processes. The prediction intervals are computed following preliminary unit root tests

and two different formulations for prediction intervals were used based on the outcome of

the initial tests. They used well known Dickey-Fuller (DF) (Dickey and Fuller (1979)),

Augmented Dickey-Fuller (ADF) (Said and Dickey (1984)), and SSL (Shin, Sarkar and

Lee (1996)) unit root tests. The random walk model is used to obtain point forecasts

in case the preliminary test did not reject the null hypothesis that the process has an

autoregressive root equal to unity. There are concerns on the use of unit root tests prior

to compute prediction intervals, as the power of these tests is small under many situations.

See Psaradakis (2001), Chang and Park (2003) and Palm, Smeekes and Urbain (2008).

Our method, however, do not alter the procedure of computing prediction intervals

based on results of a unit root test. If the observed series {xt} satisfies α(B)(1−B)xt =

θ(B)εt, {εt} ∼ WN(0, σ2), observe that the differenced series yt = xt− xt−1 is stationary.

One can first compute the bootstrap distribution of the future observations, yn+h, of the

differenced series and then use it to obtain that of xn+h. This implementation is simple

if the underlying process of the original observations is ARIMA(p, 1, q) because {yt} is

then both stationary and invertible, but poses a problem if the underlying process is

ARMA(p, q). In the latter case, the differenced series is non-invertible since α(B)yt =

(1 − B)θ(B)εt. To be able to invert the time series, Alonso et al. (2003) and Bühlman

(1997) required that the moving average polynomial has no roots on or inside the unit

circle. This was a key assumption in their sieve bootstrap procedure and was needed in

order to approximate the time series by a sequence of AR polynomials.

Poskitt (2006, 2007) discussed ways of relaxing this condition while maintaining

the statistical viability of finite order autoregressive approximations to non-invertible

processes. Poskitt (2006, 2007) did not show how to obtain an asymptotically valid
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estimator of the distribution of a future observation from a non-invertible process, but his

results provide a theoretical foundation on which such an estimator can be derived. In

the following sections we show how the method proposed by Alonso et al. (2003) can be

modified, based on insights from Poskitt (2006, 2007), to obtain sieve bootstrap prediction

intervals for a non-invertible process. While Alonso et al. (2004) and Mukhopadhyay and

Samaranayake (2010) provide additional refinements to the original method proposed in

Alonso et al. (2002, 2003), the 2003 paper by Alonso et al. set the fundamental theoretical

framework for the application of the sieve bootstrap for invertible processes. As such, we

use it as the platform for our proposed modifications even though Alonso et al. (2004)

and Mukhopadhyay and Samaranayake (2010) give further refinements to the original

method. As the Monte Carlo simulation results in Section 4 show, the proposed method

provide good finite sample coverage even without additional refinements adopted in the

above two papers. Thus, the proposed method can be taken good initial step in adopting

the sieve bootstrap to obtain prediction intervals for ARIMA processes.

The rest of this paper is organized as follows. Section 2 introduces the sieve boot-

strap procedure for obtaining prediction intervals and Section 3 establishes asymptotic

validity of the proposed method. The simulation study along with an application is pre-

sented in Sections 4 and 5.

2. THE PROPOSED SIEVE BOOTSTRAP PROCEDURE

The main difference between the sieve bootstrap procedure given below and the

procedure introduced by Alonso et al. (2002, 2003) is the criterion used in selecting

the order of the autoregressive approximation. This change in the order, together with

Poskitt’s AR approximation to non-invertible processes, are sufficient to establish the

convergence results. Also, note that we introduce a differencing step at the beginning of

the procedure in order to accommodate ARIMA processes.

Assume that a realization {xt}nt=1 is obtained from ARIMA(p, d, q) process given in

Equation (1.1) with d = 1 or 0. Define the differenced series, {yt}, using yt = xt − xt−1.
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1. Select the order p = p(n) of the autoregressive approximation from among models

with p ∈ {1, 2, ...,Mn} with Mn = o{[log(n)/n]1/2} by the AIC criterion. Alonso et

al. (2003) preferred AICC over AIC and used Mn = o{[log(n)/n]1/4}.

2. Estimate the autoregressive coefficients, φ̂1,p,n, ..., φ̂p,p,n, of the AR(p) approxima-

tion,
∑p

j=0 φj,pyt−j = εt,p, by the Yule-Walker method.

3. Obtain the (n− p) residuals: ε̂t,n =
∑p

j=0 φ̂j,p,n(yt−j − ȳ), t = p+ 1, ..., n and define

the empirical distribution function of the centered residuals, ε̃t = ε̂t,n − ε̂(.), where

ε̂(.) = (n− p)−1
∑n

t=p+1 ε̂t,n, by F̂ε̃,n(x) = (n− p)−1
∑n

t=p+1 I[ε̃t≤x].

4. Draw a resample ε∗t,n, t = p+ 1, ..., n of i.i.d. observations from F̂ε̃,n.

5. Obtain y∗t by the recursion:
∑p

j=0 φ̂j,p,n(y∗t−j − ȳ) = ε∗t,n for t = p + 1, ..., n and set

y∗t = ȳ for t = 1, ..., p.

6. Compute the estimates φ̂∗1,p,n, ..., φ̂
∗
p,p,n as in Step 2, using {y∗t }nt=1.

7. For h > 0, compute the future bootstrap observations of the differenced series by

the recursion: y∗n+h − ȳ =

p∑
j=1

φ̂∗j,p,n(y∗n+h−j − ȳ) + ε∗n+h,n where, y∗t = yt, t ≤ n.

Up to this point we have followed Alonso et al. (2003) sieve bootstrap procedure

but the next step is crucial to obtaining bootstrap future observation of the original

time series {xt}.

8. Compute the future bootstrap observations of the original series by the recursion:

x∗n+h = x∗n+h−1 + y∗n+h where, x∗t = xt, t ≤ n, h > 0.

9. Obtain a Monte Carlo estimate of the bootstrapped distribution function of x∗n+h

by repeating steps 4-8 B times.

10. Use the bootstrapped distribution to approximate the unknown distribution of xn+h

given the observed sample.

11. The 100(1−α)% prediction interval for xn+h is given by {Q∗(α
2
), Q∗(1− α

2
)} where,

Q∗(.) are the quantiles of the estimated bootstrap distribution.
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3. ASYMPTOTIC RESULTS

Note that if the original process {xt} is indeed an ARIMA(p, 1, q) process, then the

differenced process {yt} is ARMA(p, q) and the results of Alonso et al. (2003) applies

directly to the bootstrap distribution of y∗n+h. It then follows by simple argument that the

bootstrap distribution of x∗n+h converges to that of xn+h. On the other hand complications

arise if {xt} has no unit root. Then {yt} would not be invertible and hence the results

of Alonso et al. (2003) do not apply. This is where the new order for Mn (Step 1) and

results of Poskitt (2006, 2007) come into play. This approach avoids the need to pre-test

for unit roots and then select the prediction interval procedure based on the outcome of

the test.

In order to establish the asymptotic validity of the sieve bootstrap intervals, Alonso

(2003) first established the convergence of φ̂
∗
p,n to ˆφp,n. We follow the same approach,

but modify the proofs to accommodate the changes arising out of the possibility that

the differenced series is non-invertible. We first establish asymptotic properties of the

differenced series {yt} and then move onto proving results for {xt}.

Rupasinghe and Samaranayake (2012) extended some of the results in Bühlmann

(1995, 1997) and Alonso et al. (2003) to regular processes, a general class of linear pro-

cesses that includes both FARIMA and non-invertible time series. As stated in Poskitt

(2006), the process {yt}t∈Z is said to be linearly regular if {yt}t∈Z is covariance stationary

with,

yt =
∞∑
j=0

ψjεt−j, (3.1)

where {εt}t∈Z, is a zero mean white noise process with finite variance σ2 and the impulse

response coefficients {ψj}∞j=0 satisfy the condition ψ0 = 1 and
∑

j≥0 ψ
2
j <∞.

In the following derivations, we will use the AR(p) approximation suggested by

Poskitt (2006) for such time series.
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Definition 3.1. Let {yt} satisfy equation (3.1) and define, for p < n, {εt,p} such that∑p
j=0 φj,pyt−j = εt,p, where the AR coefficients vector φp = (φ1,p, ..., φp,p)

′ is obtained using

the Yule-Walker equations, Γpφp = −γp, γp = (γ(1), ..., γ(p))′, Γp = [γ(i − j)]pi,j=1, with

γ(k) = E[ytyt+k] for k ∈ N0.

This definition provides us the AR approximation to {yt} even in the case where the

series is not invertible and thus cannot be written as an infinite autoregressive process. It

should be noted that Lemma 1 of Poskitt (2006) establishes that εt,p → εt in mean square

as p→∞.

The following sets of assumptions are required in order to prove our asymptotic

results.

A1: Let ξt denote the σ-algebra of events determined by εs, s ≤ t. Also, assume εt

is i.i.d. and that

E[εt|ξt−1] = 0 and E[ε2t |ξt−1] = σ2, t ∈ Z.

Furthermore, assume E[ε4t ] <∞ for t ∈ Z.

A2: The series yt is a linearly regular covariance-stationary process with Wold

representation yt =
∑

j≥0 ψjεt−j with
∑

j≥0 |ψ2
j | <∞.

B: Let p(n) = o{[n/log(n)]1/2} and φ̂p,n = (φ̂1,p,n, ..., φ̂p,p,n)′ satisfy the empirical

Yule-Walker equations Γ̂p,nφ̂p,n = −γ̂p,n, where

Γ̂p,n = [R̂(i − j)]pi,j=1, γ̂p,n = (R̂(1), ..., R̂(p))′, and R̂(j) = n−1
∑n−|j|

t=1 (yt − ȳ)(yt+|j| − ȳ)

for |j| < n.

Assumptions in A1 imposes a Martingale difference structure on the innovations.

Since the sieve bootstrap scheme draws resamples independently and identically, it is un-

able to capture the correlation structure of the innovations if they are correlated. There-

fore, in Proposition 1 we assume i.i.d. innovations for the underlying processes.

The order of p in Assumption B is slightly different from that of Rupasinghe and

Samaranayake (2012). They assumed that p(n) = o{[n/log(n)]1/2−d}, where d is the

difference parameter taking fractional values from -0.5 to 0.5. The value for d is set to
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zero throughout since we are only interested in ARIMA(p, d, q) models with d = 0 or 1

and differencing removes the unit root, if present.

Next we present asymptotic properties of the sieve bootstrap method given in Section

2 by adopting some results form Rupasinghe and Samaranayake (2012).

The following results follows from the same arguments use in Lemmas 1, 2 and 3 of

Rupasinghe and Samaranayake (2012). Therefore, they are stated without proof.

Lemma 3.2. Assume that A1, A2 and B hold. Then,∑p
j=0(φ̂j,p,n − φj,p)2 = oa.s.{[log(n)/n]1/2},

where φj,p, j = 1, 2, ..., p, p < n are the coefficients given in Definition 3.1.

Lemma 3.3. Assume that A1, A2 and B hold. Then, for any fixed t ∈ Z,

E∗(ε∗2t,n) = E(ε2t ) + op(1).

The next Lemma states asymptotic convergence of bootstrap innovations to theo-

retical innovations, and is similar to Lemma 5.4 in Buhlmann (1997).

Lemma 3.4. Assume that assumptions given in A1, A2 and B hold. Then, for each fixed

t ∈ N,

ε∗t,n
d∗−→ εt, in probability.

The following proposition is analogous to Proposition 1 of Alonso et al. (2003) and

shows that the bootstrap autoregressive coefficients obtained in Step 6 converge to the

autoregressive coefficients of the fitted model obtained in Step 2.

Proposition 3.5. Assume A1, A2 and B hold. Then,

max
1≤j≤p(n)

|φ̂∗j,p,n − φ̂j,p,n|
P ∗
−→ 0, in probability. (3.2)
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The AR(p) approximation described in Definition 3.1 is used to establish the con-

vergence of future bootstrap values of the differenced series. It is, therefore, essential

to show the convergence of bootstrap innovations, ε∗t,n, to the approximated errors, εt,p.

This is a strategic feature proposed to overcome issues raised in generalizing Alonso et al.

(2003) results for regular processes.

Lemma 3.6. Assume that assumptions given in A1, A2 and B hold. Then, for each fixed

t ∈ N,

ε∗t,n
d∗−→ εt,p, in probability.

Proof. Let Fε,n(x) = (n− p)−1
∑n

t=p+1 1[εt,p≤x], Fε,p(x) = P[εt,p ≤ x] for x ∈ R, and denote

the Mallows metric by d2(., .). Then, from standard results it follows that d2(Fε,n, Fε,p) =

oa.s.(1). Thus we need to only show that d2(F̂ε̃,n, Fε,n) = op(1). Let S be uniformly

distributed on {p + 1, ..., n} and let Z1 = εS, Z2 = ε̄S, where ε̄t,n = ε̂t,n − ε̂
(.)
n . Then,

d2(F̂ε̃,n, Fε,n)2 ≤ E|Z1−Z2|2 = (n−p)−1
∑n

t=p+1(ε̄t,n−εt,p)2 = (n−p)−1
∑n

t=p+1(ε̂t,n− ε̂(.)n −

εt,p)
2. From the proof of Lemma 2 in Rupasinghe and Samaranayake (2012), ε̂

(.)
n = op(1)

and (n− p)−1
∑n

t=p+1 |ε̂t,n − εt,p| = op(1). Hence d2(F̂ε,n, Fε,n) = op(1).

Now we establish the convergence of the bootstrap differenced series.

Theorem 3.7. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

y∗n+h
d∗−→ yn+h, for fixed h ∈ N (3.3)

Proof.

Observe that, yn+h = −
p∑
j=1

φj,pyn+h−j + εn+h,p (3.4)

and y∗n+h = −
p∑
j=1

φ̂j,p,ny
∗
n+h−j + ε∗n+h,n, (3.5)

where y∗t = yt for t ≤ n. For beverity, we prove the theorem for h = 1.
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From Lemma 3.6, ε∗n+1,n
d∗−→ εn+1,p and thus we need only to show that the difference of

the first terms on the right hand side of (3.4) and (3.5) converges to zero in probability.

Therefore consider,

−
p∑
j=1

(φ̂j,p,n − φj,p)yn+1−j ≤

(
p∑
j=1

(φ̂j,p,n − φj,p)2

)1/2
p(n)∑

j=1

y2
n+1−j

1/2

= {oa.s.[[log(n)/n]
1/2
2 ]}{Op[p

1/2]} = op(1).

Thus, y∗n+1
d∗−→ yn+1, in probability.

Finally, we establish the large sample validity of sieve bootstrap prediction intervals

for ARIMA(p, d, q) processes with d = 0 or 1 by proving the convergence of the future

bootstrap values of the original time series, obtained in Step 8.

Theorem 3.8. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

x∗n+h
d∗−→ xn+h, for h = 0, 1, ... (3.6)

Proof. The future values of the originally observed time series, {xn+h} can be written as

xn+h = xn+h−1 + yn+h. Then the bootstrap one-step ahead value exhibit the following

property:

x∗n+1 = xn + y∗n+1
d∗−→ xn + yn+1 = xn+1. For h > 1, the result can be proven using the

mathematical induction.

4. SIMULATION STUDY

In order to investigate the finite sample performances of the method proposed in

this paper, a Monte-Carlo simulation study, using a series of models given in Table 1, was

carried out with three different error distributions and sample sizes 100 and 200. The

coverage, bootstrap length, and the length of the interval theoretically achievable under
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known order and parameter values were computed for 95% and 99% prediction intervals to

asses the performance of the proposed method. Results are reported in Tables 2 through

7.

Table 1. Models considered in the simulation study

Nomenclature Model AR roots MA roots

M1 (1− 0.75B + 0.5B2)Xt = εt 1.414, 1.414 -

IM1 (1− 0.75B + 0.5B2)(1−B)Xt = εt 1, 1.414, 1.414 -

M2 Xt = (1− 0.9B)εt - 1.1̄

IM2 (1−B)Xt = (1− 0.9B)εt 1 1.1̄

M3 Xt = (1− 0.3B + 0.7B2)εt - 1.195, 1.195

IM3 Xt = (1− 0.3B + 0.7B2)εt 1 1.195, 1.195

M4 (1− 0.7B)Xt = (1− 0.3B)εt 1.428 3.3̄

IM4 (1− 0.7B)(1−B)Xt = (1− 0.3B)εt 1, 1.428 3.3̄

M5 (1− 0.95B)Xt = (1− 0.3B)εt 1.05 3.3̄

IM5 (1− 0.7B)(1−B)Xt = (1− 0.3B)εt 1, 1.05 3.3̄

Note that the models employed in the study are the same ARMA models studied

by Mukhopadhyay and Samaranakaye (2010) and Alonso et al. (2004). We also consid-

ered corresponding ARIMA models (begin with I) since we are interested in unit root

processes. The standard normal distribution, t-distribution with 3 degrees of freedom,

and exponential (1) distribution centered at zero, were considered for error distributions.

Prediction intervals for leads h = 1, 2, 3 were computed. The Matlab (Version 2011a)

software was used for these simulations.

For each combination of model, sample size, nominal coverage and error distribution,

N = 1, 000 independent series were generated and for each of these simulated series, steps

1 to 15 were implemented. To compute the coverage probabilities for each of this N
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simulations, R = 1, 000 future observations (xn+h) were generated using the original

model.

The proportion of those falling in between the lower and upper bounds of the boot-

strap prediction interval was then defined to be the coverage. Thus, the coverage at the ith

simulation run is given by C(i) = R−1
∑R

r=1 IA[xrn+h(i)] where A = [Q∗(α/2), Q∗(1−α/2)],

IA(.) is the indicator function of the set A and xrn+h(i), r = 1, 2, ...1, 000 are the R fu-

ture values generated at the ith simulation run. The bootstrap length and theoretical

length for the ith simulation run are given by LB(i) = Q∗(1 − α/2) − Q∗(α/2) and

LT (i) = xrn+h(1 − α/2) − xrn+h(α/2) respectively. The theoretical length LT (i) is the

difference between the 100(1− α/2)th and 100(α/2)th percentile points the empirical dis-

tribution of the 1,000 future observations that were generated using the underlying time

series model with known order and the true values of the coefficients. Using these statis-

tics, the mean coverage, mean length of bootstrap prediction intervals, mean length of

theoretical intervals, and their standard errors were computed as:

Mean Coverage C̄ = N−1
∑N

i=1 C(i)

Standard Error of Mean Coverage SEC̄ = {[N(N − 1)]−1
∑N

i=1[C(i)− C̄]2}1/2

Mean Length (bootstrap) L̄B = N−1
∑N

i=1 LB(i)

Standard Error of Mean Length SEL̄B
= {[N(N − 1)]−1

∑N
i=1[LB(i)− L̄B]2}1/2

Mean theoretical Length L̄B = N−1
∑N

i=1 LB(i)

In total 120 different combinations of model type, sample size, nominal coverage

probability, and error distributions were investigated in this simulation study. However,

due to space limitations, we report only a representative sample of results for 95% inter-

vals, in Table 2 through 7. These tables report the mean coverage, mean interval length,

and mean theoretical length, standard error of mean coverage and standard error of mean

interval length. The complete results of the simulation study are available upon request

from the corresponding author.

To investigate the behaviour of the intervals for each of the 120 combinations, the

minimum value, percentiles (25th, 50th, and 75th), and the maximum value of (a) the

coverage probabilities, (b) the bootstrap interval bounds (upper and lower), and (c) the
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theoretical interval bounds (upper and lower), were further computed, based on the 1,000

values generated through simulation, and these statistics are also available upon request.

From Tables 2-7, we can see that our method provides coverages closer to the nominal

level as sample size increases for both ARMA and ARIMA models. This is expected

since large sample sizes provide more accurate parameter estimates as well as yield more

residuals for resampling. Furthermore, the mean coverages of the proposed sieve bootstrap

method are very close to the nominal coverage for all the leads regardless of presence or

absence of a unit root and of the nature their error distribution. Also, it is seen that the

mean bootstrap interval lengths are much closer to the theoretical lengths.

It is interesting how the proposed sieve bootstrap procedure performs for models

M5 and IM5 in which the AR root is close to unity. In practice, many parametric and

nonparametric prediction intervals produce very liberal coverages when the AR polyno-

mial has a root close to unity (see Alonso et al. (2002, 2004)). However, from Tables 4, 6

and 7, we can see that our proposed method is capable of producing accurate prediction

intervals for time series with an AR root close to one.
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Table 2. Coverage of 95% intervals for Models M1 & IM1 with normal errors

Leads Size Model M1 Model IM1

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.9040 0.9548 4.2994 3.9339 0.9561 4.4168

(0.0026) (0.0444) (0.0029) (0.0492)

200 3.9178 0.9503 4.2013 3.9153 0.9598 4.3081

(0.0024) (0.0298) (0.0019) (0.0403)

2
100 6.7753 0.9500 7.5408 10.3208 0.9464 11.1515

(0.0031) (0.0901) (0.0034) (0.1263)

200 6.7719 0.9484 7.4664 10.2422 0.9539 10.9454

(0.0031) (0.0619) (0.0023) (0.1049)

3
100 8.9874 0.9456 10.1540 18.5608 0.9365 19.5478

(0.0041) (0.1308) (0.0040) (0.2382)

200 8.9473 0.9476 10.1857 18.3911 0.9491 19.3903

(0.0036) (0.0961) (0.0027) (0.1969)
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Table 3. Coverage of 95% intervals for Models M4 & IM4 with normal errors

Leads Size Model M4 Model IM4

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.8980 0.9463 4.2205 3.9305 0.9545 4.1908

(0.0031) (0.0275) (0.0020) (0.0380)

200 3.9102 0.9438 4.2945 3.9267 0.9579 4.1649

(0.0037) (0.0462) (0.0012) (0.0218)

2
100 4.2136 0.9425 4.6845 6.7384 0.9528 7.2182

(0.0045) (0.0329) (0.0023) (0.0729)

200 4.2094 0.9512 4.9479 6.7303 0.9573 7.1610

(0.0043) (0.0550) (0.0015) (0.0472)

3
100 4.3746 0.9400 5.0388 9.4048 0.9492 9.9920

(0.0063) (0.0374) (0.0028) (0.1182)

200 4.3675 0.9523 5.3092 9.4416 0.9568 10.0501

(0.0044) (0.0704) (0.0018) (0.0803)
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Table 4. Coverage of 95% intervals for Models M5 & IM5 with normal errors

Leads Size Model M5 Model IM5

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.9134 0.9396 3.9704 3.9281 0.9439 4.0540

(0.0029) (0.0369) (0.0026) (0.0368)

200 3.9051 0.9466 4.0106 3.9068 0.9481 3.9901

(0.0021) (0.0313) (0.0020) (0.0293)

2
100 4.6468 0.9431 4.8376 7.5649 0.9485 8.1119

(0.0029) (0.0469) (0.0024) (0.0854)

200 4.6862 0.9465 4.8470 7.5790 0.9525 7.9298

(0.0021) (0.0378) (0.0019) (0.0573)

3
100 5.2358 0.9468 5.6353 11.6686 0.9480 12.7837

(0.0032) (0.0595) (0.0031) (0.1745)

200 5.2679 0.9488 5.5933 11.6951 0.9523 12.3978

(0.0025) (0.0537) (0.0022) (0.1048)
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Table 5. Coverage of 95% intervals for Models M4 & IM4 with exponential errors

Leads Size Model M4 Model IM4

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.6257 0.9522 4.2604 3.6652 0.9583 3.8065

(0.0081) (0.0626) (0.0045) (0.0502)

200 3.6535 0.9610 4.2893 3.6562 0.9694 4.1766

(0.0055) (0.0743) (0.0020) (0.0766)

2
100 4.0041 0.9499 4.7753 6.4765 0.9520 6.6051

(0.0075) (0.0665) (0.0032) (0.0841)

200 4.0081 0.9617 4.8360 6.4841 0.9662 7.1918

(0.0038) (0.0813) (0.0025) (0.1256)

3
100 4.2433 0.9498 5.1285 9.1766 0.9468 9.2601

(0.0080) (0.0688) (0.0031) (0.1174)

200 4.2318 0.9553 5.1947 9.1801 0.9592 10.0295

(0.0059) (0.0974) (0.0032) (0.1871)



77

Table 6. Coverage of 95% intervals for Models M5 & IM5 with exponential errors

Leads Size Model M5 Model IM5

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.6596 0.9637 4.0219 3.6823 0.9520 4.0145

(0.0041) (0.0525) (0.0048) (0.0725)

200 3.6978 0.9613 4.0387 3.6831 0.9570 3.8241

(0.0036) (0.0723) (0.0043) (0.0558)

2
100 4.4705 0.9481 4.8064 7.2723 0.9479 8.0177

(0.0051) (0.0528) (0.0044) (0.1331)

200 4.4917 0.9493 4.8302 7.2880 0.9510 7.4932

(0.0041) (0.0790) (0.0034) (0.0941)

3
100 5.1322 0.9463 5.5740 11.3299 0.9462 12.6384

(0.0052) (0.0641) (0.0046) (0.2140)

200 5.1352 0.9503 5.6875 11.3583 0.9497 11.7789

(0.0044) (0.0920) (0.0029) (0.1525)
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Table 7. Coverage of 95% intervals for M5 & IM5 with t-dist errors

Leads Size M5 IM5

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 6.3676 0.9367 6.3982 6.3954 0.9442 6.8128

(0.0029) (0.1329) (0.0026) (0.1451)

200 6.3828 0.9428 6.5108 6.3827 0.9445 6.4212

(0.0022) (0.0989) (0.0019) (0.0884)

2
100 7.7655 0.9379 8.2689 12.5904 0.9470 13.9975

(0.0031) (0.1965) (0.0026) (0.3207)

200 7.7979 0.9441 8.1410 12.5435 0.9446 12.7702

(0.0022) (0.1388) (0.0020) (0.1609)

3
100 8.7704 0.9405 9.8278 19.5889 0.9450 22.6252

(0.0034) (0.3086) (0.0032) (0.6393)

200 8.8182 0.9443 9.4723 19.3835 0.9442 20.1380

(0.0026) (0.1757) (0.0022) (0.3077)

5. APPLICATION TO A REAL DATA SET

The proposed sieve bootstrap method was applied to the daily highest Yahoo stock

prices from February 4, 2009 to March 31, 2011; 544 observations in total. The data set

can be found at http://finance.yahoo.com/q/hp?s=YHOO. The time series is displayed

in Figure 1 and clearly exhibits a unit root behavior. The first 535 observations were used

to compute 95% prediction intervals for the next consecutive 10 days using the proposed

method. The dashed lines in Figure 2 show the upper and lower bounds of the computed

prediction intervals. The sieve bootstrap method was able to capture the true future

values of this empirical time series precisely and accurately confirming the results in the

simulation study.
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Figure 1. Daily Highest Yahoo Stock Prices

Figure 2. 95% SB Prediction Bands for Yahoo Stock Prices in dashed lines; Only a seg-

ment of Figure 1 is displayed
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6. CONCLUSION

In this paper, we proposed a sieve bootstrap based prediction intervals for unit root

(ARIMA) processes that provides proper coverage without altering the computational

steps based on the results of a unit root test. Large sample properties are established for

the proposed method and a Monte-Carlo simulation study was carried out. The Monte-

Carlo study indicates that the procedure works very well under normal, exponential and t

distributed errors. Most importantly, the method is stable even when the AR polynomial

of the underlying process has a root close to unity.
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IV. THE ASYMPTOTIC DISTRIBUTIONS OF THE

DICKEY-HASZA-FULLER SEASONAL UNIT ROOT TESTS UNDER

WEAKLY DEPENDENT ERRORS

ABSTRACT

The Dickey-Hasza-Fuller (DHF) test is frequently used by applied time series ana-

lysts to determine whether or not a seasonal unit root is present in the model underlying

an observed process. The asymptotic distributions of the DHF test statistics have been

derived, as functional of the standard Brownian motion, under the assumption that the

time series can be represented by an autoregressive (AR) model that consists of only a

seasonal factor, and independent and identically distributed innovations. In this paper,

the asymptotic distribution of DHF type test statistics are derived under the assumption

of weakly dependent innovations. Autoregressive Moving Average time series with a more

general dependent structure than a purely seasonal AR model satisfy this assumption and

thus the asymptotic results presented here in provides a theoretical framework for the use

of the DHF tests for ARMA processes.

Keywords: Unit root processes; Nonstationarity; Wiener Process; Seasonal Inte-

gration
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1. INTRODUCTION

Seasonal time series models are extensively used in analyzing empirical data, such

as monthly sales, that show annual cycles. Seasonal models that have an autoregressive

moving average (ARMA) structure with unit roots in the autoregressive polynomial were

introduced by Box and Jenkins (1970). Following their formulation we let the seasonal

time series, {xt : t ∈ Z}, be defined by

(1− ρBs)α(B)xt = θ(B)εt, t ∈ Z, (1.1)

where α(z) = 1− α1z − ....− αpzp and θ(z) = 1 + θ1z + ...+ θ(q)zq represent autoregres-

sive (AR) and moving average (MA) polynomials of degrees p and q respectively. It is

assumed that α(·) and θ(·) do not share common zeros and that α(z) 6= 0 for |z| ≤ 1. The

error terms, {εt}, are assumed to be zero-mean white noise with finite variance σ2. When

s ≥ 2 and ρ = 1, we have a seasonal unit root in the AR(p+ s) polynomial (1−Bs)α(B)

and the time series will exhibit cyclical behavior. For example, s = 2, s = 4 and s = 12

indicate that the underlying process follows a cycle with a one year period when the data

are gathered biannual, quarterly and monthly intervals. By inspecting the empirical se-

ries, a practitioner could identify the period of the cyclical behavior and therefore, it is

reasonable to assume that the value of s is known.

2. PRELIMINARIES

To place the asymptotic distribution of the DHF test under weakly dependent errors

(that will be derived later in the paper), it is important to give a brief overview of the

unit root tests for non-seasonal time series. Dickey and Fuller (1979) were the first to

introduce a procedure for testing the null hypothesis of ρ = 1 against the alternative
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|ρ| < 1 for first order autoregressive (AR(1)) processes {xt} satisfying

xt = ρxt−1 + εt, t ∈ Z, (2.1)

where εt ∼ i.i.d.N(0, σ2). Observe that Model (1.1) can also be written in a form similar

to (2.1) by letting ut = [α(B)]−1θ(B)εt, so that

xt = ρxt−s + ut, t ∈ Z. (2.2)

2.1. THE DF TEST FOR NON-SEASONAL (S = 1) TIME SERIES

The widely used procedure for testing the null hypothesisH0 : ρ = 1 versusHa : |ρ| <

1 under the model formulation given in (2.1) is the Dickey-Fuller (DF) test introduced by

Dickey, and Fuller (1979). For an observed realization, {xt : t = 1, 2, ..., n}, that follows

Model (2.2) and ut ∼ i.i.d.(0, σ2), the DF test statistics are:

Mn := n(ρ̂n − 1) and Nn :=
(ρ̂n − 1)

τ̂n
,

where ρ̂n is the least-squares estimator of ρ, given by ρ̂n := (
∑n

t=1 x
2
t−1)−1

∑n
t=1 xt−1xt,

and τ̂n is the standard error of ρ̂n.

The asymptotic distributions of the above test statistics under H0 : ρ = 1, for the

data generated by the process defined in (2.1), are well known (see Dickey and Fuller

(1979)). The same statistics Mn and Nn can be computed even if the underlying process

is given by Equation (2.2), with s = 1, where the innovation are not assumed to be

i.i.d.(0, σ2). Hamilton (1994) provides the asymptotic distribution of Mn and Nn, for the

case s = 1, under the following assumptions about the process {ut} in Equation (2.2).

(C1) {ut}t∈Z is the linear process,

ut =
∞∑
j=0

ψjεt−j, (2.3)

where {εt}t∈Z are i.i.d random variables with E[εt] = 0, E[ε2t ] = σ2 and E[ε4t ] <∞ for all

t ∈ Z.
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(C2) The sequence of constants {ψj}j∈N0 in the condition (C1) is such that∑∞
j=0 j|ψj| <∞,

∑∞
j=0 ψj 6= 0, and

∑∞
j=0 ψjz

j 6= 0 in {z ∈ C : |z| ≤ 1}.

We first begin with the non-seasonal case to provide a perspective for the proposed

method and then move onto seasonal time series. In the following, let L [Y ] denote

the law of Y . Observe that Equation (2.2), with s = 1, under the above assumptions

generalizes the i.i.d. N(0, σ2) condition imposed by Equation (2.1). Under these more

general assumptions, Hamilton (1994) shows that

L [Mn]
w−→ L

[{∫ 1

0

W2
0(r)dr

}−1{∫ 1

0

W0(r)dW0(r) +
λ− λu

2λ

}]
,

and

L [Nn]
w−→ L

[{∫ 1

0

W2
0(r)dr

}−1/2{∫ 1

0

W0(r)dW0(r)) +
λ− λu

2λ

}]
,

where W0 = {W0(r) : r ∈ [0, 1]} is the standard (one-dimensional) Brownian motion, and

λu := var[ut] = σ2
∑∞

j=0 ψ
2
j ,

λ := limn→∞ var[n
−1/2

∑n
t=1 ut] = σ2(

∑∞
j=0 ψj)

2.

2.2. THE ADF TEST FOR NON-SEASONAL TIME SERIES

Said and Dickey (1984) generalized the DF tests, by what is known as the Aug-

mented Dickey-Fuller test (ADF), to accommodate higher order ARMA models. Given

an ARMA(p, q) process with unknown orders p and q, they approimated it with a kth

order AR process, where it is assumed that there exists c > 0, r > 0 such that ck > n1/r

and n−1/3k → 0 as n→∞. They then fitted the regression model

xt = ρxt−1 +
k∑
j=1

γj 5 xt−j + εt (2.4)

using least squares, where 5xt−j = xt−j − xt−j−1. As was done by Dickey and Fuller

(1979), they assumed that the {εt} are independent and identically distributed.
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The ADF test statistics under the above formulation are Pn := n(ρ̂n − 1) and

Qn :=
(ρ̂n − 1)

τ̂n
, where ρ̂n is the least squares estimator of ρ, obtained from the fitting

of Equation (2.4). Observe that unlike estimating ρ in Equation (2.2) with by fitting

an AR(1) model, here ρ is estimated by fitting a model that has xt−1 as well as 5xt−j,

j = 1, 2, ..., k. Moreover, it is assumed that the innovations {εt} are i.i.d.(0, σ2) rather

than weakly dependent. Again, the asymptotic distributions of these test statistics, as

functional of the standard Brownian motion (see Hamilton (1994)), are:

L [Pn]
w−→ L

[{∫ 1

0

W2
0(r)dr

}−1{∫ 1

0

W0(r)dW0(r)

}]
,

and

L [Qn]
w−→ L

[{∫ 1

0

W2
0(r)dr

}−1/2{∫ 1

0

W0(r)dW0(r))

}]
.

2.3. THE DHF TEST FOR SEASONAL TIME SERIES

The Dickey-Hasza-Fuller (DHF) seasonal test is widely used for testing the null

hypothesis H0 : ρ = 1 under the formulation given in Model (2.2) with s ≥ 2. Introduced

by Dickey, Hasza and Fuller (1984), the test assumes that {ut} are i.i.d.(0, σ2). The DHF

test statistics are:

Kn := n(ρ̂n − 1) and Tn :=
(ρ̂n − 1)

τ̂n
,

where ρ̂n is the least-squares estimator of ρ, ρ̂n := (
∑n

t=1 x
2
t−s)

−1
∑n

t=1 xt−sxt, and τ̂n is

the standard error of ρ̂n.
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Under the null hypothesis H0 : ρ = 1, the asymptotic distributions of the above

test statistics, for the process defined in (2.2) with i.i.d. errors, have been established as

functional of the standard Brownian motion. For example, in Ghysels et al. (2000), states

that

L [Kn]
w−→ L

{ s∑
m=1

∫ 1

0

W2
m(r)dr

}−1{
s

s∑
m=1

[∫ 1

0

Wm(r)dWm(r)

]} ,
and

L [Tn]
w−→ L

{ s∑
m=1

∫ 1

0

W2
m(r)dr

}−1/2{ s∑
m=1

[∫ 1

0

Wm(r)dWm(r)

]} ,
where Wm = {Wm(r) : r ∈ [0, 1]} for m = 1, 2, ..., s are independent standard (one-

dimensional) Brownian motions.

The implication of the assumption that {ut} in Model (2.2) are i.i.d.(0, σ2) is that

the DHF test is applicable to only purely seasonal time series. In otherwords, it only ap-

plies to time series whose underlying model satisfies Equation (1.1) with α(z) = θ(z) = 1.

Unlike in the case of non-seasonal unit root testing, there is no “Augmented” extension

of the DHF seasonal unit root test. More recenlty, Castro, Osburn and Taylor (2011),

however, expressed the distributions of the HEGY test statistics (Hylleberg et al. (1990))

under serially correlated errors but did not consider the DHF test. The objective of this

paper is to fill this gap by deriving the asymptotic distributions of the DHF test statistics

under the relaxed assumption of weakly dependent errors.

3. THE ASYMPTOTIC DISTRIBUTIONS

In this section, we derive the asymptotic distributions of the test statistics Kn and

Tn, under the null hypothesis H0 : ρ = 1 for the model given in (2.2). The following

proposition plays the key roll in obtaining the desired results, and an equivalent result for

non-seasonal time series can be found in Hamilton (1994).
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Proposition 3.1. If conditions (C1)-(C2) hold for Model (2.2), then for i ∈ N and

m = 0, 1, ..., (s− 1),

um + us+m + ...+ us(i−1)+m =
s−1∑
j=0

[ψj(1)
i∑

k=1

εs(k−1)+m−j] + ηi,m − η0,m,

where ψj(1) =
∑∞

q=0 ψsq+j, ηi,m =
∑∞

q=1

∑s−1
j=0 αq,jεs(i−q)+m−j, αq,j = −(ψsq+j +ψs(q+1)+j +

ψs(q+2)+j + ...), and
∑∞

q=1

∑s−1
j=0 |αq,j| <∞.

Proof. Observe that, for i ∈ N,

i∑
k=1

us(k−1)+m =
i∑

k=1

∞∑
j=0

ψjεs(k−1)+m−j

= {ψ0εs(i−1)+m + ψ1εs(i−1)+m−1 + ...+ ψsεs(i−2)+m + ...}

+ {ψ0εs(i−2)+m + ψ1εs(i−2)+m−1 + ...+ ψsεs(i−3)+m + ...}

+ ...+ {ψ0εm + ψ1εm−1 + .....+ ψsε−s+m + ...}

= ψ0εs(i−1)+m + (ψ0 + ψs)εs(i−2)+m + ...+ (ψ0 + ψs + ...+ ψs(i−1))εm + ...

+ ψ1εs(i−1)+m−1 + (ψ1 + ψs+1)εs(i−2)+m−1 + ...

+ (ψ1 + ψs+1 + ...+ ψs(i−1)+1)εm−1 + ...

+ ψs−1εs(i−1)+m−(s−1) + (ψs−1 + ψs+s−1)εs(i−2)+m−(s−1) + ...

+ (ψs−1 + ψs+s−1 + ...+ ψs(i−1)+s−1)εm−(s−1) + ...

+ (ψs + ...+ ψs(i−1) + ψsi)ε−s+m

+ (ψs+1 + ...+ ψs(i−1)+1 + ψsi+1)ε−s+m−1 + ...
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= (ψ0 + ψs + ψ2s + ...)εs(i−1)+m − (ψs + ψ2s + ...)εs(i−1)+m

+ (ψ0 + ψs + ψ2s + ...)εs(i−2)+m − (ψ2s + ψ3s + ...)εs(i−2)+m + ...

+ (ψ1 + ψs+1 + ψ2s+1 + ...)εs(i−1)+m−1 − (ψs+1 + ψ2s+1 + ...)εs(i−1)+m−1

+ (ψ1 + ψs+1 + ψ2s+1 + ...)εs(i−2)+m−1 − (ψ2s+1 + ψ3s+1 + ...)εs(i−2)+m−1 + ...

+ ...

+ (ψs−1 + ψ2s−1 + ψ3s−1 + ...)εs(i−1)+m−(s−1) − (ψ2s−1 + ψ3s−1 + ...)εs(i−1)+m−(s−1)

+ (ψs−1 + ψ2s−1 + ψ3s−1 + ...)εm−(s−1) − (ψ3s−1 + ψ4s−1 + ...)εm−(s−1) + ...

+ (ψs + ...+ ψs(i−1) + ψsi + ...)ε−s+m − (ψs(i+1) + ...+ ψs(i+2) + ...)ε−s+m

+ (ψs+1 + ...+ ψs(i−1)+1 + ψsi+1 + ...)ε−s+m−1

− (ψs(i+1)+1 + ...+ ψs(i+2)+1 + ...)ε−s+m−1

+ ... .

Hence, we can write

i∑
k=1

us(k−1)+m =
s−1∑
j=0

[ψj(1)
i∑

k=1

εs(k−1)+m−j] + ηi,m − η0,m,

where

ηi,m = −(ψs + ψ2s + ...)εs(i−1)+m − (ψ2s + ψ3s + ...)εs(i−2)+m + ...

− (ψs+1 + ψ2s+1 + ...)εs(i−1)+m−1 − (ψ2s+1 + ψ3s+1 + ...)εs(i−2)+m−1 + ...

− (ψ2s−1 + ψ3s−1 + ...)εs(i−1)+m−(s−1) − (ψ3s−1 + ψ4s−1 + ...)εs(i−2)+m−1 + ...

η0,m = −(ψs + ...+ ψs(i−1) + ψsi + ...)ε−s+m

− (ψs+1 + ...+ ψs(i−1)+1 + ψsi+1 + ...)ε−s+m−1 + ...
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Notice that ηi,m =
∑∞

q=1

∑s−1
j=0 αq,jεs(i−q)+m−j, where αq,j = −(ψsq+j + ψs(q+1)+j +

ψs(q+2)+j + ....), with

∞∑
q=1

s−1∑
j=0

|αq,j| ≤
∞∑
j=0

j|ψj| <∞,

which establishes the proposition.

The following proposition shows the convergence results of important summations

that appear in the test statistics. Here we denote independent standard Brownian motions

by Wm,j = {Wm,j(r) : r ∈ [0, 1]}.

Proposition 3.2. If conditions (C1)-(C2) hold with ρ = 1 in the model (2.2) and n =

s(N − 1) +m. Then, as n→∞,

(a) L [n−1/2
∑s

m=1

∑N
k=1 us(k−1)+m]

w−→

L
[
s−1/2σ

∑s−1
j=0[ψj(1)

∑s
m=1 Wm,j(1)]

]
,

(b) L [n−1
∑s

m=1

∑N
k=1 xs(k−2)+mεs(k−1)+m]

w−→

L
[
(1/2)s−1

∑s
m=1

∑s−1
j=0 ψj(1)[σ2{W2

m,j(1)− 1}]
]
,

(c) L [n−2
∑s

m=1

∑N
k=1 x

2
s(k−1)+m]

w−→

L
[
s−2σ2

∑s−1
j=0[ψ2

j (1)
∑s

m=1

∫ 1

0
W2

m,j(r)]dr
]
, and

(d) L [n−1
∑s

m=1

∑N
k=1 xs(k−2)+mus(k−1)+m]

w−→

L
[
(1/2)σ2

[
s−1
∑s−1

j=0

(
ψ2
j (1)

∑s
m=1 W2

m,j(1)
)
−
∑∞

j=0 ψ
2
j

]]
.
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Proof. This result follows immediately from Proposition 3.1 and results in Hamilton (1994,

Chap. 17) with the appropriate modifications. For example, for part (b), using Proposi-

tion 3.1,

n−1

s∑
m=1

N∑
k=1

xs(k−2)+mεs(k−1)+m

= n−1

s∑
m=1

N∑
k=1

{
s−1∑
j=0

[ψj(1)
k−1∑
i=1

εs(i−1)+m−j] + ηk−1,m − η0,m}εs(k−1)+m

= n−1

s∑
m=1

N∑
k=1

{
s−1∑
j=0

[ψj(1)
k−1∑
i=1

εs(i−1)+m−j]εs(k−1)+m}

+ n−1

s∑
m=1

N∑
k=1

[ηk−1,m − η0,m]εs(k−1)+m

= s−1

s∑
m=1

s−1∑
j=0

ψj(1){N−1

N∑
k=1

(
k−1∑
i=1

εs(i−1)+m−j)εs(k−1)+m}

+ s−1

s∑
m=1

{N−1

N∑
k=1

[ηk−1,m − η0,m]εs(k−1)+m}.

From Hamilton (1994, Chap. 17), we have

L [N−1

N∑
k=1

(
k−1∑
i=1

εs(i−1)+m−j)εs(k−1)+m}]
w−→ L [(1/2)σ2{W2

m,j(1)− 1}],

and for each m = 1, ..., s,

N−1

N∑
k=1

[ηk−1,m − η0,m]εs(k−1)+m
P−→ 0.

Hence Part (b) is proven.

Remark 3.3. All the other asymptotic results stated on page 507 in Hamilton (1994) can

be established for seasonally integrated processes with weakly dependent errors, but are

omitted to save space here.

We finally derive the asymptotic distributions of the DHF test statistics under

weakly dependent errors.
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Theorem 3.4. Under the null hypothesis H0 : ρ = 1, with conditions (C1)-(C2) holding

for Model (2.2), as n −→∞,

L [Kn]
w−→

L

s∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s2/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j )∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]

 ,
and

L [Tn]
w−→

L

∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j ){∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]}−1/2

 .
Proof. Note that

Kn = n[(
n∑
t=1

x2
t−s)

−1

n∑
t=1

xt−sxt − 1]

= n[(
n∑
t=1

x2
t−s)

−1

n∑
t=1

xt−sut]

and therefore, with the aid of Proposition 3.2 and the fact that
∫ 1

0
Wm,j =

1

2
{W2

m,j(1)−1},

the convergence is established.

Similar proof can be obtained for Tn utilizing Proposition 3.2 as in Hamilton (1994, Chap.

17).

Remark 3.5. One could obtain the asymptotic distributions of the DF non-seasonal unit

root test statistics by setting s = 1 in the above theorem. Moreover, the asymptotic distri-

bution for the seasonal case with i.i.d errors can be obtained by letting ψ0 = 1 and ψj = 0

for j ∈ N.
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4. CONCLUSION

In this paper, the functional of standard Brownian motion are obtained for the

Dickey-Hasza-Fuller seasonal unit root test statistics under weakly dependent errors. This

is a generalization of the standard Dickey-Hasza-Fuller tests for seasonal unit roots and

is applicable to a wider class of seasonal models.
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V. SIEVE BOOTSTRAP FOR SEASONAL TIME SERIES: UNIT ROOT

TESTS AND PREDICTION INTERVALS

ABSTRACT

The sieve bootstrap, which obtains residuals for re-sampling by fitting finite order

autoregressive models to time series, can be utilized to obtain prediction intervals as well as

approximate distribution of statistics of interest. While this re-sampling method has been

used to obtain prediction intervals for ARMA processes and test for non-seasonal unit

roots, it has not been adopted to obtain prediction intervals for seasonal time series or to

test for seasonal unit roots. In this paper, conditions under which the sieve bootstrap can

be applied to time series with a seasonal unit root are derived. In particular, its application

for obtaining prediction intervals and for conducting Dickey-Hasza-Fuller (DHF) type

tests for a seasonal unit root are considered. The asymptotic properties of the proposed

prediction intervals and the unit root tests are derived and finite sample properties of these

procedures are studied using Monte Carlo simulations. The simulation results indicate

that both the prediction intervals and the unit root test based on the sieve bootstrap have

good finite sample properties.

Keywords: Unit root processes; Forecast intervals; Seasonal unit roots; Nonsta-

tionarity; Seasonal integration
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1. INTRODUCTION

In the past decades seasonal time series models have been extensively used in mod-

eling financial and economics data. These seasonal models were originated by Box and

Jenkins (1970) and further studied by many researchers; see Ghysels and Osburn (2001).

The specific type of seasonal time series, {xt : t ∈ Z}, that will be the focus of this paper

is the process given by

(1− ρBs)α(B)xt = θ(B)εt, t ∈ Z, (1.1)

where α(z) = 1−α1z−...−αpzp and θ(z) = 1+θ1z+...+θ(q)zq represent autoregressive and

moving average polynomials of degrees p and q respectively, and B defines the “backshift

operator” given by Bkxt = xt−k for k ∈ N0. It is assumed that α(.) and θ(.) do not

share common zeros. The error terms, {εt}, are assumed to be zero-mean white noise

with finite variance σ2. Note that s ≥ 2 is used to model the seasonality. For example,

s = 2, s = 4 and s = 12 indicate that the underlying process follows semi-annual,

quarterly and monthly seasonal behaviors respectively. By inspecting the empirical data,

the practitioner could identify if the process has a cyclical behavior of a certain period

and therefore, it is reasonable to assume that the value of s is known.

For the practitioner, presence of the term (1 − ρBs) signifies the existence of a

seasonal component of period s. When ρ in that expression equals unity, one obtains a

seasonal unit root process, where the effect of identical seasons in previous years have

on the corresponding season in the current year do not decay with time. Under this

formulation, testing for a seasonal unit root boils down to deciding between the null

hypothesis that ρ = 1 versus the alternative hypothesis that |ρ| < 1. Such a test is

important not only to determine if the underlying process is stationary, but also to provide

the applied time series analyst valuable information as to the seasonal nature of the

underlying process.

Moreover, when |ρ| < 1, Equation (1.1) yields a stationary ARMA process and

existing procedures for obtaining sieve-bootstrap-based prediction intervals can be directly
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applied to the time series. On the other hand, when ρ = 1, currently available sieve-

bootstrap–based prediction intervals fails to provide asymptotically valid coverage and

the intervals provide very liberal coverage for finite sample sizes.

Traditional, and well known, Dickey-Hasza-Fuller test (DHF) (Dickey, Hasza and

Fuller (1984)) is a prominent tool for testing whether or not the underlying process of a

given seasonal time series has a unit root in the autoregressive polynomial. The DHF test

is an extension of the Dickey-Fuller (DF) (Dickey and Fuller (1979)) non-seasonal unit

root test. Since the introduction of the DF test, the unit root tests have attracted the

attention of many researchers. Another seminal regression-based seasonal unit root test,

known as HEGY, was developed by Hylleberg et al. (1990). The HEGY test has both

t− and F− test statistics, and competitively, it has potential for testing unit roots at the

zero, Nyquist and annual (harmonic) frequencies for a quarterly observed series.

The DF-type unit root tests for both seasonal and non-seasonal time series do not

perform well under weakly dependent errors and alternatively, bootstrap methods are used

in the literature. Psaradakis (2000) implemented a bootstrap method for pure seasonal

time series with independent errors and their bootstrap tests have higher powers than the

DHF tests. Psaradakis (2001) was the first to introduce the sieve bootstrap to unit root

testing for non-seasonal time series with weakly dependent errors. Following Psaradakis

(2001), the sieve bootstrap versions of the Augmented Dickey-Fuller tests (ADF) (1984)

for non-seasonal unit roots were suggested by Chang and Park (2003). Palm, Smeekes

and Urbain (2008) proposed an alternative way of computing residuals by fitting the DF

regression model instead of fitting an AR(p) model to the differenced series. Palm et al.

(2008), therefore, named their proposed method as residual based and Psaradakis (2001)

method as difference based. In this paper, we adapt Psaradakis’s (2001) difference based

and Palm et al. (2008) residual based unit root tests for seasonal time series with weakly

dependent errors.

The main feature of the sieve bootstrap is the autoregressive approximation intro-

duced by Kreiss (1998) and further refined by Bühlmann (1997). In their formulation,

the order of the autoregressive approximation is assumed to be increasing with the sam-

ple size thus yielding finer sieves for the underlying infinite-process. The sieve bootstrap
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procedure is considered as a model-free and nonparametric resampling method and its

current formulation requires the assumption that the process is invertible and has an

AR(∞) representation; see Philips and Solo (1992) and Bühlmann (1997) for more de-

tails. Poskitt (2006, 2007) relaxed this condition and showed that the sieve bootstrap

can still be applied to a class of regular processes that includes non-invertible and long

memory (Fractionally Integrated Autoregressive Moving Average - FARIMA) processes.

As the second goal of this paper, we propose the sieve bootstrap method introduced

by Rupasinghe and Samaranayake (2012c) for obtaining prediction intervals for seasonal

time series. The literature is short on research on computing forecast intervals for seasonal

time series and our method would lay the foundation for the future research in this area.

The sieve bootstrap procedure seems to be a promising technique for computing

prediction intervals for many types of time series. Alonso, Pẽna and Romo (2002, 2003)

utilized the Bühlmann (1997) sieve bootstrap method in computing prediction intervals

for a class of linear processes that have an infinite order moving average representation.

They also established the asymptotic justification for this procedure. Note that ARMA

models are examples of the linear processes. Alonso et al. (2004) further refined their

method by introducing the sampling uncertainty in parameter estimation and Mukhopad-

hyay and Samaranayake (2010) introduced a rescaling factor for the residuals to improve

the coverage of the sieve bootstrap based prediction intervals. The method of Alonso et al.

(2003) was extended to FARIMA processes by Rupasinghe and Samaranayake (2012a,

2012b). Following the results in Poskitt (2006, 2007), they establish the large sample

validity of the sieve bootstrap based prediction intervals for FARIMA processes by re-

laxing the invertibility condition. In a seperate paper, Rupasinghe and Samaranayake

(2012c) proposed the sieve bootstrap procedure for obtaining prediction intervals for non-

stationary Autoregressive Integrated Moving Average (ARIMA) processes and showed that

their method works even if the underlying process is ARMA. In contrast all the other

methods currently available to compute prediction intervals either used two different for-

mulations based on the outcome of preliminary unit root tests or assumed the process

has a unit root in the AR polynomial. See for example, Panichkitkosolkul and Niwitpong

(2011, 2012), Kim (2001) and Pascual, Romo, and Ruiz (2004). As the second goal of
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this paper, we propose a sieve bootstrap procedure to obtain prediction intervals for time

series with possible seasonal unit roots.

The structure of this article is as follows. Section 2 introduces the sieve bootstrap

schemes for testing seasonal unit roots. The sieve bootstrap procedure for prediction in-

tervals is implemented in Section 3 along with establishing the asymptotic properties and

a Monte-Carlo simulation study.

2. SEASONAL UNIT ROOT TESTS

Note that the Model (1.1) can be written as,

xt = ρxt−s + ut, t ∈ Z, (2.1)

where {ut}t∈Z is a stationary stochastic process with zero mean given by ut = [α(B)]−1θ(B)εt,

t ∈ Z. We shall assume that {ut} satisfies the following two conditions.

(C1) {ut}t∈Z is the linear process,

ut =
∞∑
j=0

ψjεt−j, (2.2)

where {εt}t∈Z are i.i.d. random variables with E[εt] = 0, E[ε2t ] = σ2 and E[ε4t ] <∞ for all

t ∈ Z, and

(C2) the sequence of constants {ψj}j∈N0 in the condition (C1) is such that
∑∞

j=0 j|ψj| <

∞,
∑∞

j=0 ψj 6= 0, and
∑∞

j=0 ψjz
j 6= 0 in {z ∈ C : |z| ≤ 1}.

The condition (C2) implies that ut is invertible and has an AR(∞) representations

which is one of the assumptions of Bühlmann (1997).

In this section, we focus on testing the null hypothesis H0 : ρ = 1 versus the al-

ternative hypothesis Ha : |ρ| < 1, where ρ is the parameter associated with the factor

(1− ρBs) in the autoregressive polynomial in Model (1.1). The process is nonstationary
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if ρ = 1 and consequently, it should be seasonally differenced to acquire the stationarity.

As discussed in the introduction, the widely used procedure for testing this hypothesis is

the Dickey-Hasza-Fuller (DHF) seasonal unit root test (Dickey, Hasza and Fuller (1984)).

Their test, however, is for pure seasonal models with α(z) = 1 and θ(z) = 1 for all z ∈ R

in Model (1.1). For an observed realization, {xt : t = 1, 2, ..., n}, that follows Model (1.1),

the DHF test statistics are:

Kn := n(ρ̂n − 1) and Tn :=
(ρ̂n − 1)

τ̂n
,

where ρ̂n is the least-squares estimator of ρ, ρ̂n := (
∑n

t=1 x
2
t−s)

−1
∑n

t=1 xt−sxt, and τ̂n is

the standard error of ρ̂n.

Under the null hypothesis H0 : ρ = 1, the asymptotic distributions of the above

test statistics, for the process defined in (2.1) with {ut} ∼ i.i.d.(0, σ2) errors, have been

established as a functional of standard Brownian motions. For example, Ghysels et al.

(2000) states that when {ut} ∼ i.i.d.(0, σ2),

L [Kn]
w−→ L

{ s∑
m=1

∫ 1

0

W2
m(r)dr

}−1{
s

s∑
m=1

[∫ 1

0

Wm(r)dWm(r)

]}
and

L [Tn]
w−→ L

{ s∑
m=1

∫ 1

0

W2
m(r)dr

}−1/2{ s∑
m=1

[∫ 1

0

Wm(r)dWm(r)

]} ,
where W0 = {W0(r) : r ∈ [0, 1]} is the standard (one-dimensional) Brownian motion.
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If the errors {ut} in Model (2.1) are weakly dependent and satisfies conditions (C1)-

(C2), Rupasinghe and Samaranayake (2012d) showed that, under H0 : ρ = 1, as n −→∞,

L [Kn]
w−→

L

s∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s2/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j )∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]


and

L [Tn]
w−→

L

∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j ){∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]}−1/2

 ,
where ψj(1) =

∑∞
q=0 ψsq+j, Wm,j = {Wm,j(r) : r ∈ [0, 1]} are independent standard (one-

dimensional) Brownian motions.

In the next two subsections, we present two sieve bootstrap procedures, difference-

based and residual-based, to test the null hypothesis H0 : ρ = 1 under the model given in

(2.1) with weakly dependent errors {ut}.

2.1. DIFFERENCE-BASED DHF SEASONAL UNIT ROOT TEST

The sieve bootstrap procedure given below is identical to that introduced by Psaradakis

(2001) except for the seasonal differencing. Assume that a realization {xt}nt=1 is ob-

tained from the model given in Equation (2.1). Compute the seasonally differenced series,

ut = xt − xt−s and proceed with the following steps.

1. Obtain the Yule-Walker estimates, φ̂1,n, ..., φ̂p,n of the coefficients of the AR(p)

model,
∑p

j=0 φj,nut−j = εt,n, where φ0,n := 0 and p is chosen so that p → ∞

and p/n→ 0 as n→∞.
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2. Obtain the (n − p) residuals: ε̂t,n =
∑p

j=0 φ̂j,p,nut−j, t = p + 1, ..., n and define

the empirical distribution function of the centered residuals, ε̃t = ε̂t,n − ε̂(·), where

ε̂(·) = (n− p)−1
∑n

t=p+1 ε̂t,n, by F̂ε̃,n(x) = (n− p)−1
∑n

t=p+1 I[ε̃t≤x].

3. Draw a resample ε∗t,n, t = p+ 1, ..., n of i.i.d. observations from F̂ε̃.

4. Obtain u∗t,n by the recursion:
∑p

j=0 φ̂j,p,nu
∗
t−j = ε∗t,n for t = p + 1, ..., n and set

u∗t,n = ȳ for t = 1, ..., p.

5. Using u∗t,n, construct the bootstrap replicates {x∗t}nt=1 according to x∗t = x∗t−s + u∗t

for t = 1, ..., n, where x∗−n = ... = x∗0 = 0. In practice, n + 200 observations are

generated and then the first 200 of them are discarded for the “burn-in” period.

6. The bootstrap versions of Kn and Tn are obtained by computing corresponding DHF

test statistics. That is, K∗Dn := n(ρ̂∗n − 1) and T ∗Dn := (ρ̂∗n − 1)/τ ∗n, where ρ̂∗n and τ ∗n

are, respectively, the least-squares estimators of ρ∗ and the standard deviation of ρ̂∗n

obtained from in the regression equation x∗t = ρ∗x∗t−s + u∗t .

7. Steps 3 through 6 are repeated B (sufficiently large) number of times to obtain the

bootstrap empirical distribution of Kn and Tn.

8. The null hypothesis H0 : ρ = 1 is rejected at γ% significance level if Kn < K∗γ,n and

Tn < T ∗γ,n where K∗γ,n and T ∗γ,n are the γth percentiles of the corresponding bootstrap

distributions.

Whenever it is required, we shall assume that xt = yt = 0 and for t ≤ 0.

2.2. RESIDUAL-BASED DHF SEASONAL UNIT ROOT TEST

As suggested by Pam et al. (2008), one could compute the residuals directly from

the Dickey-Fuller regression model,

ε̂n = xt − ρ̂nxt−s −
p∑
j=1

φ̂j,nut−j, t = p+ 1, ..., n. (2.3)
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The remaining steps are the same as the difference-based seasonal unit root test

given in Subsection 2.1. We denote the corresponding residual-based test statistics by

K∗Rn and T ∗Rn .

2.3. ASYMPTOTIC RESULTS

In this section, the asymptotic convergence results for the difference-based DHF

seasonal unit root test statistics are established relying on the conditions (C1) and (C2).

In addition, the following two conditions are also required.

(C3) The order p of the autoregressive approximation is such that p = p(n) → ∞

as n→∞ with p(n) = o[(n/logn)1/4].

(C4) φ̂p,n = (φ̂1,n, ..., φ̂p,n)′ satisfy the empirical Yule-Walker equations Γ̂p,nφ̂p,n =

−γ̂p,n where

Γ̂p,n = [R̂(i− j)]pi,j=1, γ̂p,n = (R̂(1), ...., R̂(p))′, and R̂(j) = n−1
∑n−|j|

t=1 utut+|j| for |j| < n.

Condition (C3) was imposed by Bühlmann (1995,1997) to establish the convergence

of the infinite moving average representation of the AR approximation to that of theoreti-

cal representation given in Condition (C1). In Condition (C4), the Yule-Walker equations

are used to ensure that the bootstrap process {u∗t}t∈Z, defined in the recursion Step 4,

admits the one-sided MA(∞) representation

u∗t,n =
∞∑
j=0

ψ̂j,nε
∗
t−j,n with

∞∑
j=0

|ψ̂j,n| <∞, (2.4)

where {ψ̂j,n}j∈N0 are determined through the relation

(
∑p

i=0 φ̂i,nz
i)(
∑p

j=0 ψ̂j,nz
j) = 1 (|z| ≤ 1).

The following Lemma is from Psaradakis (2001) and states the properties of the

sieve bootstrap on the process {u∗t}t∈Z, induced by the autoregressive approximation.



104

Lemma 2.1. Let {xt}t∈N satisfy Model (2.1) with ρ = 1 and suppose that the condition

(C1)-(C4) hold. Then, as n→∞,

(a) there exists a random variable n0 such that supn≥n0

∑∞
j=0 j|ψ̂j,n| <∞ a.s.,

(b) sup0≤j<∞ |ψ̂j,n − ψj| = o(1) a.s.,

(c) var∗[u∗t,n]− σ2
u = op(1), where σ2

u = σ
∑∞

j=0 ψ
2
j , and

(d) var∗[n−1/2
∑n

t=1 u
∗
t,n]− σ2 = op(1).

These results are helpful in establishing a weak invariance principle for the sequence

of partial sums of {u∗t}t∈Z. Assuming, for convenience, that n/s =: N ∈ N, define s

stochastic processes U∗N,m = {U∗N,m(r) : r ∈ [0, 1]}, m = 1, 2, ..., s, with trajectories in the

càdlàg-space D[0, 1] by defining

U∗N,m(r) =

 0 : r ∈ [0, N−1)

N−1/2
∑bNrc

i=1 υ∗m,i : r ∈ [N−1, 1]

where b·c indicates the floor function, and υ∗m,i := u∗s(i−1)+m,n. The asymptotic behavior

of {U∗N,m} is presented in the following Lemma.

Lemma 2.2. If the conditions of Lemma 1 hold, then for m = 1, ..., s,

L ∗[U∗N,m]
w−→ L [σ

∑s−1
j=0 ψj(1)Wm,j] in probability in D[0, 1].

Proof. Following the proof of Lemma 3 in Psaradakis (2001), it needs to be shown that

`(L ∗[U∗N,m],L [σ
∑s−1

j=0 ψj(1)Wm,j]) = op(1) as n → ∞, for any metric ` metrizing weak

convergence of laws on D[0, 1]. Let {U∗Nk,m
} be any subsequence of {U∗N,m}. Then it is

sufficient to show that there exists a further subsequence {U∗Nk(i),m
} such that

`(L ∗[U∗Nk(i),m
],L [σ

s−1∑
j=0

ψj(1)Wm,j]) = o(1)a.s. for i→∞. (2.5)

Since {ε∗t,n} is an i.i.d. sample from F̂ε̃,n, with E[ε∗t,n] = 0, Lemma 2.1 (a) implies that any

subsequence {Nk} of N contains a further subsequence {Nk(i)} along which the conditions
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of Proposition 3.1 in Rupasinghe and Samaranayake (2012d) are satisfied. Therefore, we

have

u∗m,n + u∗s+m,n + ...+ u∗s(Nk(i)−1)+m,n =
s−1∑
j=0

[ψ̂j,n(1)

Nk(i)∑
l=1

ε∗s(l−1)+m−j,n] + η∗Nk(i),m,n
− η∗0,m,n.

By utilizing the arguments followed by Proposition 17.2 in Hamilton (1994) and Lemma

5.3 in Bühlmann (1997), it is possible to establish Equation (2.5), which completes the

proof.

The following Lemma is analogous to Lemma A1 of Psaradakis (2001) but incorpo-

rates seasonal periodicity.

Lemma 2.3. Let χ∗0,m,n := 0 and χ∗i,m,n :=
∑i

j=1 υ
∗
m,j for m = 1, ..., s. Then, if the

conditions of Lemma 1 hold, as n→∞,

(a) L ∗[n−3/2
∑s

m=1

∑N
k=1 χ

∗
k−1,m,n]

w−→ L [s−3/2σ
∑s−1

j=0 ψj(1)
∑s

m=1

∫ 1

0
Wm,j(r)dr] in prob-

ability,

(b) L ∗[n−2
∑s

m=1

∑N
k=1 χ

∗2
k−1,m,n]

w−→ L [s−2σ2
∑s−1

j=0 ψ
2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr] in prob-

ability,

(c) L ∗[n−5/2
∑s

m=1

∑N
k=1 tχ

∗
k−1,m,n]

w−→ L [s−5/2σ
∑s−1

j=0 ψj(1)
∑s

m=1

∫ 1

0
rWm,j(r)dr] in prob-

ability,

(d) L ∗[n−1
∑s

m=1

∑N
k=1 χ

∗
k−1,m,nυ

∗
m,k]

w−→ L [s−1σ2{
∑s−1

j=0 ψ
2
j (1)

∑s
m=1 W2

m,j(1)−
∑∞

j=0 ψ
2
j}]

in probability, and

(e) L ∗[n−3/2
∑s

m=1

∑N
k=1[s(k−1)+m]υ∗m,k]

w−→ L [s−3/2σ
∑s−1

j=0 ψj(1)
∑s

m=1

∫ 1

0
rdWm,j(r)]

in probability;
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Proof. Following the same analysis as in the proof of Lemma A.1 in Psaradakis (2001)

but adjusting for the seasonality, we observe that

U∗N,m(r) = N−1/2χ∗bNrc,m,n = N−1/2χ∗t−1,m,n,
t− 1

N
≤ r <

t

N
for t = 1, 2, ..., N,

and ∫ t/n

(t−1)/N

U∗bN,m(r)dr = N−1U∗bN,m
(
t− 1

N

)
for b = 1, 2.

Consequently,

n−3/2

s∑
m=1

N∑
k=1

χ∗k−1,m,n = s−3/2

s∑
m=1

{N−1

N∑
k=1

U∗N,m
(
k − 1

N

)
}

= s−3/2

s∑
m=1

∫ 1

0

U∗N,m(r)dr;

n−2

s∑
m=1

N∑
k=1

χ∗2k−1,m,n = s−2

s∑
m=1

{n−1

N∑
k=1

U∗2N,m
(
k − 1

N

)
}

= s−2

s∑
m=1

∫ 1

0

U∗2N,m(r)dr;

n−5/2

s∑
m=1

N∑
k=1

[(s(k − 1) +m]χ∗k−1,m,n = s−5/2

s∑
m=1

{
N−1

N∑
k=1

(
t

N

)
U∗N,m

(
k − 1

N

)}

= s−5/2

s∑
m=1

∫ 1

0

(
1 + bNrc

N

)
U∗N,m(r)dr;

n−1

s∑
m=1

N∑
k=1

χ∗k−1,m,nυ
∗
m,k = s−1

s∑
m=1

{
(2N)−1χ∗N,m,n − (2N)−1

N∑
k=1

υ∗2m,k

}

= s−1

s∑
m=1

{
1

2
U∗2N,m(1)− (2N)−1

N∑
k=1

υ∗2m,k

}
;

n−3/2

s∑
m=1

N∑
k=1

[(s(k − 1) +m]υ∗m,k = s−3/2

s∑
m=1

{
N−1/2χ∗N,m,n −N−3/2

N∑
k=1

χ∗k−1,m,n

}

= s−3/2

s∑
m=1

{
U∗N,m(1)−

∫ 1

0

U∗N,m(r)dr

}
.

The desired results are obtained using the fact that {υ∗2m,k} obeys the bootstrap weak

law of large numbers, the bootstrap weak invariance principle in Lemma 2.2 and the

continuous mapping theorem.
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Using this bootstrap invariant property, the large sample consistency of the boot-

strap distribution of the difference-based DHF test statistics is established below.

Theorem 2.4. If the conditions C1 through C4 hold, then, as n→∞,

L [K∗Dn ]
w−→

L

s∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s2/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j )∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]


and

L [T ∗Dn ]
w−→

L

∑s−1
j=0

∑s
m=1 ψ

2
j (1)

∫ 1

0
Wm,j(r)dWm,j(r) + (s/2)(

∑s−1
j=0 ψ

2
j (1)−

∑∞
j=0 ψ

2
j ){∑s−1

j=0

[
ψ2
j (1)

∑s
m=1

∫ 1

0
W2

m,j(r)dr
]}−1/2

 .
Proof. The proof immediately follows from Lemma 2.3.

Note that the asymptotic properties of the residual-based DHF tests statistics can

also be established with minor modifications to the results of the difference-based DHF

test statistics.

2.4. SIMULATION STUDY

To investigate the finite sample performances of the proposed difference-based and

residual based DHF seasonal unit roots tests, different combinations of the values of ρ, φ

and θ in the following model were considered:

(1− ρB4)(1− φB)xt = (1 + θB)εt. (2.6)

The sets of values studied are: ρ ∈ {1, 0.95, 0.9, 0.8}, φ ∈ {0, 0.4, 0.8} and θ ∈

{0,−0.5,−0.9}. We also looked at the performances of the tests at significance levels

γ = 0.05 and 0.1 under standard normal and exponential (with mean 1 but centered at
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zero) errors {εt}. Sample sizes of 80 and 200 were employed in the study. These two

sample sizes are chosen because of the availability of the DHF critical values. Using each

combination of parameters, error distributions, sample sizes and significance levels, 1,000

time series were generated and the frequency of rejections of the null hypothesis H0 : ρ = 1

by the regular DHF, difference-based bootstrap DHF and residual-based bootstrap DHF

tests were recorded to study the power and the Type I error of each test. For the regular

DHF test, the critical values were obtained from Tables 2 and 3 in Dickey, Hasza and Fuller

(1984), and for the bootstrap tests, critical values were computed using 1,000 bootstrap

replicates of K∗Dn , T ∗Dn , K∗Rn and T ∗Rn .

From Table 1 through 3, we can see that the powers of all the test statistics increase

with the sample size. It is interesting to observe that the coefficient test statistics of both

difference-based and residual-based bootstrap methods (K∗Dn and K∗Rn ) yield the highest

powers in each case. The regular DHF t-statistic, however, has the highest competitive

powers when |ρ| < 1 only for sample size of 200 for the model presented in Table 1.

Note that this model has a moving average close to unity and the sieve bootstrap based

coefficient test statistics have the greatest power for the sample size of 80 than that of

the regular DHF tests.
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Table 1. Empirical rejection frequencies of H0 : ρ = 1 for the model, (1 − ρB4)xt =

(1− 0.9B)εt with normal errors

ρ ρ

n 1 0.95 0.9 0.8 1 0.95 0.9 0.8

γ = 0.05 γ = 0.10

80 Kn 0.03 0.23 0.55 0.94 0.08 0.45 0.81 0.99

Tn 0.03 0.47 0.64 0.94 0.08 0.62 0.87 0.97

K∗Dn 0.04 0.61 0.9 0.99 0.09 0.78 0.95 1

T ∗Dn 0.03 0.4 0.54 0.92 0.08 0.56 0.8 0.97

K∗Rn 0.04 0.61 0.91 1 0.1 0.76 0.95 1

T ∗Rn 0.03 0.39 0.56 0.9 0.09 0.54 0.77 0.97

200 Kn 0.07 0.74 0.98 1 0.13 0.84 1 1

Tn 0.08 0.85 0.99 1 0.17 0.9 1 1

K∗Dn 0.07 0.82 0.98 1 0.16 0.9 0.99 1

T ∗Dn 0.05 0.63 0.94 1 0.12 0.85 0.97 1

K∗Rn 0.07 0.84 0.98 1 0.16 0.91 0.99 1

T ∗Rn 0.05 0.67 0.93 1 0.14 0.86 0.97 1

The sieve bootstrap based coefficient tests are uniformly most powerful for the model

presented in Table 2. It is interesting to see that the sieve bootstrap based t-statistics

and the regular DHF t-statistic have very close rejection frequencies when |ρ| < 1.
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Table 2. Empirical rejection frequencies of H0 : ρ = 1 for the model, (1 − ρB4)(1 −

0.4B)xt = (1− 0.5B)εt with normal errors

ρ ρ

n 1 0.95 0.9 0.8 1 0.95 0.9 0.8

γ = 0.05 γ = 0.10

80 Kn 0.04 0.17 0.39 0.97 0.1 0.31 0.76 0.99

Tn 0.04 0.33 0.63 0.95 0.09 0.47 0.84 0.99

K∗Dn 0.05 0.67 0.91 1 0.12 0.77 0.95 1

T ∗Dn 0.05 0.35 0.65 0.94 0.13 0.52 0.83 0.98

K∗Rn 0.08 0.66 0.92 1 0.15 0.79 0.97 1

T ∗Rn 0.06 0.33 0.65 0.96 0.12 0.49 0.84 0.97

200 Kn 0.07 0.71 0.99 1 0.12 0.9 1 1

Tn 0.07 0.8 1 1 0.13 0.92 1 1

K∗Dn 0.09 0.95 1 1 0.2 0.99 1 1

T ∗Dn 0.07 0.81 1 1 0.15 0.92 1 1

K∗Rn 0.08 0.94 1 1 0.22 0.99 1 1

T ∗Rn 0.08 0.81 1 1 0.17 0.92 1 1

Table 3 represents the performances of the regular DHF and sieve bootstrap based

tests under exponential errors. Our sieve bootstrap based coefficient test statistics are

most powerful in the cases considered, and this was the case with all the other models as

well.

However, it should be noted that the bootstrap test statistics have more size distor-

tions compare to the asymptotic test statistics. Overall, the sieve test bootstrap statistics

are more powerful than the DHF test statistics with some size distortions.
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Table 3. Empirical rejection frequencies of H0 : ρ = 1 for the model, (1 − ρB4)(1 −

0.5B)xt = εt with exponential errors

ρ ρ

n 1 0.95 0.9 0.8 1 0.95 0.9 0.8

γ = 0.05 γ = 0.10

80 Kn 0.04 0.14 0.51 0.91 0.09 0.22 0.72 0.95

Tn 0.05 0.3 0.65 0.93 0.1 0.46 0.8 0.95

K∗Dn 0.04 0.58 0.88 0.98 0.13 0.79 0.91 1

T ∗Dn 0.03 0.24 0.53 0.89 0.11 0.37 0.75 0.94

K∗Rn 0.06 0.61 0.88 0.98 0.13 0.79 0.91 1

T ∗Rn 0.04 0.24 0.54 0.91 0.09 0.42 0.77 0.93

200 Kn 0.05 0.63 0.96 1 0.08 0.79 0.97 1

Tn 0.05 0.76 0.97 1 0.07 0.9 0.97 1

K∗Dn 0.06 0.91 0.97 1 0.08 0.97 0.97 1

T ∗Dn 0.06 0.67 0.96 1 0.06 0.87 0.97 1

K∗Rn 0.06 0.93 0.97 1 0.07 0.96 0.97 1

T ∗Rn 0.05 0.69 0.95 1 0.06 0.84 0.97 1

3. PREDICTION INTERVALS

In this section, a sieve bootstrap method to obtain prediction intervals for the sea-

sonal time series defined in Model (1.1) with |ρ| < 1 or ρ = 1 is discussed. The following

procedure is identical to the that of Rupasinghe and Samaranayake (2012c) except for the

seasonal differencing. As mentioned before, the proposed method is applicable to both

seasonally integrated (ρ = 1 in Equation (1.1)) and non-integrated processes without

altering the computational steps.
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Assume that a realization {xt}nt=1 is obtained from Model (1.1) regardless of ρ = 1

or |ρ| < 1. Define the differenced series, {yt}, using yt = xt − xt−s. Observe that {yt}

is ARMA if {xt} is seasonally integrated. Then, the methods proposed in Alonso et

al. (2001, 2003, 2004) can be directly applied to {yt} and estimate the distribution of

yn+h. Complications arise, however, if {xt} has no seasonal unit root. In this case {yt}

becomes non-invertible, and this violates the assumption necessary for the application of

the existing methodology. This drawback can be overcome by using the following modified

sieve bootstrap procedure.

1. Select the order p = p(n) of the autoregressive approximation from among models

with p ∈ {1, 2, ...,Mn} with Mn = o{[log(n)/n]1/2} by the AIC criterion. Alonso et

al. (2003) preferred AICC over AIC and used Mn = o{[log(n)/n]1/4}.

2. Estimate the autoregressive coefficients, φ̂1,p,n, ..., φ̂p,p,n, of the AR(p) approxima-

tion,
∑p

j=0 φj,pyt−j = εt,p, by the Yule-Walker method.

3. Obtain the (n−p) residuals: ε̂t,n =
∑p

j=0 φ̂j,p,n(yt−j− ȳ), t = p+ 1, ....., n and define

the empirical distribution function of the centered residuals, ε̃t = ε̂t,n − ε̂(·), where

ε̂(·) = (n− p)−1
∑n

t=p+1 ε̂t,n, by F̂ε̃,n(x) = (n− p)−1
∑n

t=p+1 I[ε̃t≤x].

4. Draw a resample ε∗t,n, t = p+ 1, ..., n of i.i.d. observations from F̂ε̃,n.

5. Obtain y∗t by the recursion:
∑p

j=0 φ̂j,p,n(y∗t−j − ȳ) = ε∗t,n for t = p + 1, ..., n and set

y∗t = ȳ for t = 1, ..., p.

6. Compute the estimates φ̂∗1,p,n, ..., φ̂
∗
p,p,n as in Step 2, using {y∗t }nt=1.

7. For h > 0, compute the future bootstrap observations of the differenced series by

the recursion. y∗n+h − ȳ =

p∑
j=1

φ̂∗j,p,n(y∗n+h−j − ȳ) + ε∗n+h,n, where y∗t = yt for t ≤ n.

The following step is a modification to the method proposed by Rupasinghe and

Samaranayake (2012c) adopted to accommodate seasonal differencing.

8. Compute the future bootstrap observations of the original series by the recursion.

x∗n+h = x∗n+h−s + y∗n+h where, x∗t = xt, t ≤ n, h > 0.
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9. Obtain a Monte Carlo estimate of the bootstrapped distribution function of x∗n+h

by repeating steps 4-8 B times.

10. Use the bootstrapped distribution to approximate the unknown distribution of xn+h

given the observed sample.

11. The 100(1−α)% prediction interval for xn+h is given by {Q∗(α
2
), Q∗(1− α

2
)} where,

Q∗(.) are the quantiles of the estimated bootstrap distribution.

3.1. ASYMPTOTIC RESULTS

It is clear that if the original process {xt} is seasonally integrated, then the dif-

ferenced series {yt} is ARMA(p, q) and that otherwise it is not invertible. Following

Rupasinghe and Samaranayake (2012c), the assumptions below are necessary to establish

the asymptotic results irrespective of the true value of ρ. Here onwards we assume that

the negative lag values of {xt} and {yt} are zero for t ≤ 0.

A1: Let ξt denote the σ-algebra of events determined by εs, s ≤ t. Also, assume εt

are i.i.d. and that

E[εt|ξt−1] = 0 and E[ε2t |, t ∈ Z.ξt−1] = σ2.

Furthermore, assume E[ε4t ] <∞ for t ∈ Z.

A2: The series yt has infinite moving average representation yt =
∑

j≥0 ψjεt−j with∑
j≥0 |ψ2

j | <∞.

B: Let p(n) = o{[n/log(n)]1/2} and φ̂p,n = (φ̂1,p,n, ...., φ̂p,p,n)′ satisfy the empirical

Yule-Walker equations Γ̂p,nφ̂p,n = −γ̂p,n, where

Γ̂p,n = [R̂(i − j)]pi,j=1, γ̂p,n = (R̂(1), ...., R̂(p))′, and R̂(j) = n−1
∑n−|j|

t=1 (yt − ȳ)(yt+|j| − ȳ)

for |j| < n.

Note that Assumption A2 is satisfied by the time series defined in Model (1.1) under

both ρ = 1 and |ρ < 1. The following theorem holds since the process {yt} is assumed to

have the same conditions as Theorem 3.1 in Rupasinghe and Samaranayake (2012c).
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Theorem 3.1. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

y∗n+h
d∗−→ yn+h, for fixed h ∈ N

Using Theorem 3.1, we can establish the large sample validity of the proposed sieve

bootstrap prediction intervals.

Theorem 3.2. Assume that A1, A2 and B hold. Then, in probability, as n→∞,

x∗n+h
d∗−→ xn+h, for h = 0, 1, .... (3.1)

Proof. The future values of the originally observed time series, {xn+h} can be written as

xn+h = xn+h−s + yn+h. For h ≤ s, we have

x∗n+h = xn+h−s + y∗n+h
d∗−→ xn+h−s + yn+h = xn+h.

Now, for h = s+ 1, x∗n+h = x∗n+(s+1)−s + y∗n+h
d∗−→ xn+1 + yn+h = xn+h. For h > s+ 1, the

result can be proven using the mathematical induction.

3.2. SIMULATION STUDY

The finite sample performances of the method proposed in this paper were inves-

tigated using a Monte-Carlo simulation study. A sequence of time series was simulated

from the model, (1 − ρB4)(1 − φB)xt = (1 + θB)εt, with different combinations of the

parameters, error distributions and sample sizes. The values considered for the parame-

ters are: ρ ∈ {0.6, 1}, φ ∈ {0, 0.7} and θ ∈ {0,−0.3}. The standard normal distribution,

exponential (1) centered at zero and t(3) distributed errors are chosen for sample sizes

100 and 200. The coverage, bootstrap length, and the length of the interval theoretically

achievable under known order and parameter values were computed for 95% and 99%

prediction intervals to asses the performance of the two methods.

For each combination of model, sample size, nominal coverage and error distribution,

N = 1, 000 independent series were generated and for each of these simulated series, steps

1 to 11 were implemented. To compute the coverage probabilities for each of this N
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simulations, R = 1, 000 future observations (xn+h) were generated using the original

model.

The proportion of those falling in between the lower and upper bounds of the boot-

strap prediction interval was then defined to be the coverage. Thus, the coverage at the ith

simulation run is given by C(i) = R−1
∑R

r=1 IA[xrn+h(i)] where A = [Q∗(α/2), Q∗(1−α/2)],

IA(.) is the indicator function of the set A and xrn+h(i), r = 1, 2, ....1, 000 are the R fu-

ture values generated at the ith simulation run. The bootstrap length and theoretical

length for the ith simulation run are given by LB(i) = Q∗(1 − α/2) − Q∗(α/2) and

LT (i) = xrn+h(1 − α/2) − xrn+h(α/2) respectively.. The theoretical length LT (i) is the

difference between the 100(1− α/2)th and 100(α/2)th percentile points the empirical dis-

tribution of the 1,000 future observations that were generated using the underlying time

series model with known order and the true values of the coefficients. Using these statis-

tics, the mean coverage, mean length of bootstrap prediction intervals, mean length of

theoretical intervals, and their standard errors were computed as:

Mean Coverage C̄ = N−1
∑N

i=1 C(i)

Standard Error of Mean Coverage SEC̄ = {[N(N − 1)]−1
∑N

i=1[C(i)− C̄]2}1/2

Mean Length (bootstrap) L̄B = N−1
∑N

i=1 LB(i)

Standard Error of Mean Length SEL̄B
= {[N(N − 1)]−1

∑N
i=1[LB(i)− L̄B]2}1/2

Mean Theoretical Length L̄B = N−1
∑N

i=1 LB(i)

In total 96 different combinations of model type, sample size, nominal coverage prob-

ability, and error distributions were investigated in this simulation study. However, due

to space limitations, we report only a representative sample of results for 95% intervals,

in Tables 4 through 7. These tables report the mean coverage, mean interval length, and

mean theoretical length, standard error of mean coverage and standard error of mean

interval length. The complete results of the simulation study are available upon request

from the corresponding author.
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The representative models are labelled as follows:

M1: (1− 0.7B)xt = εt (non-integrated)

IM1: (1−B4)(1− 0.7B)xt = εt (integrated)

M2: (1− 0.7B)xt = (1− 0.3B)εt (non-integrated)

IM2: (1−B4)(1− 0.7B)xt = (1− 0.3B)εt (integrated)

M3: xt = εt (non-integrated)

IM3: (1−B4)xt = εt (integrated)

To investigate the behaviour of the intervals for each of the 96 combinations, the

minimum value, percentiles (25th, 50th, and 75th), and the maximum value of (a) the

coverage probabilities, (b) the bootstrap interval bounds (upper and lower), and (c) the

theoretical interval bounds (upper and lower), were further computed, based on the 1,000

values generated through simulation, and these statistics are also available upon request.

The coverage probabilities of the sieve bootstrap prediction intervals get closer to the

nominal level as the sample size increase for both seasonally integrated and non-integrated

time series. Large samples help to obtain more residuals and yield accurate parameter

estimates. Thus, this phenomenon is expected. Furthermore, the mean coverages of

the proposed sieve bootstrap method are very close to the nominal coverage for all the

leads regardless of the presence or absence of a unit root and of the nature their error

distributions. Only for the Model IM3 with t-distributed errors (Table 6), however, our

procedure yields slightly liberal coverages for the small sample sizes. However, it is seen

that the mean bootstrap interval lengths are much close to the theoretical lengths in all

the situations.
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Table 4. Coverage of 95% intervals for Models M1 & IM1 with normal errors

Leads Size M1 IM1

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.9009 0.9428 4.3907 3.9318 0.9519 4.1224

(0.0040) (0.0384) (0.0021) (0.0415)

200 3.9116 0.9451 4.3411 3.9234 0.9531 4.0502

(0.0039) (0.0291) (0.0017) (0.0299)

2
100 4.7719 0.9483 5.1595 4.7988 0.9449 4.9080

(0.0057) (0.0479) (0.0024) (0.0517)

200 4.7742 0.9490 5.2026 4.8001 0.9471 4.8539

(0.0036) (0.0342) (0.0020) (0.0383)

3
100 5.1522 0.9462 5.5051 5.1785 0.9418 5.2404

(0.0044) (0.0581) (0.0027) (0.0601)

200 5.1553 0.9464 5.5513 5.1681 0.9459 5.2010

(0.0047) (0.0437) (0.0021) (0.0440)
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Table 5. Coverage of 95% intervals for Models M2 & IM2 with normal errors

Leads Size M2 IM2

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.9226 0.9484 4.4733 3.9174 0.9471 4.1413

(0.0040) (0.0389) (0.0025) (0.0392)

200 3.9118 0.9410 4.3499 3.9190 0.9452 4.0331

(0.0052) (0.0316) (0.0021) (0.0267)

2
100 4.2324 0.9610 5.3116 4.1984 0.9693 4.9256

(0.0040) (0.0562) (0.0019) (0.0472)

200 4.2357 0.9579 5.2374 4.2201 0.9693 4.8169

(0.0057) (0.0374) (0.0014) (0.0337)

3
100 4.3564 0.9584 5.5997 4.3658 0.9718 5.2172

(0.0047) (0.0656) (0.0017) (0.0527)

200 4.3597 0.9628 5.5654 4.3506 0.9747 5.1779

(0.0038) (0.0436) (0.0014) (0.0425)
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Table 6. Coverage of 95% intervals for Models M3 & IM3 with t-dist errors

Leads Size M3 IM3

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 6.4154 0.9446 7.4010 6.3989 0.9354 6.3541

(0.0038) (0.1622) (0.0024) (0.1223)

200 6.3542 0.9474 7.0369 6.3906 0.9416 6.3745

(0.0023) (0.1036) (0.0020) (0.0854)

2
100 6.4156 0.9449 7.4803 6.3615 0.9388 6.4068

(0.0042) (0.1742) (0.0024) (0.1256)

200 6.3971 0.9455 7.1497 6.3637 0.9415 6.2822

(0.0066) (0.1114) (0.0019) (0.0748)

3
100 6.4098 0.9467 7.5347 6.3793 0.9392 6.4577

(0.0036) (0.1721) (0.0025) (0.1237)

200 6.4130 0.9385 7.2097 6.4048 0.9422 6.3646

(0.0062) (0.1099) (0.0019) (0.0850)
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Table 7. Coverage of 95% intervals for Models M2 & IM2 with exp errors

Leads Size M2 IM2

Theo. Coverage Length Theo. Coverage Length

Length Mean (SE) Mean (SE) Length Mean (SE) Mean (SE)

1
100 3.6588 0.9486 4.6587 3.6628 0.9540 4.1082

(0.0085) (0.0779) (0.0054) (0.0655)

200 3.6869 0.9441 4.3682 3.6430 0.9388 3.9832

(0.0085) (0.0546) (0.0097) (0.0486)

2
100 4.0538 0.9614 5.4505 4.0700 0.9753 4.8933

(0.0068) (0.0917) (0.0018) (0.0776)

200 4.0306 0.9559 5.1899 4.0280 0.9768 4.8270

(0.0070) (0.0606) (0.0017) (0.0558)

3
100 4.2169 0.9604 5.7912 4.2228 0.9776 5.2121

(0.0074) (0.1013) (0.0016) (0.0830)

200 4.2358 0.9622 5.5229 4.1880 0.9804 5.1613

(0.0058) (0.0651) (0.0012) (0.0578)

4. CONCLUSION

In this paper, sieve bootstrap procedures for testing seasonal unit roots and building

prediction intervals for seasonal time series were proposed. The large sample validities of

the proposed methods were then established

We proposed two sieve bootstrap versions (difference-based and residual based) of

the Dickey-Hasza-Fuller seasonal unit root test. The bootstrap test statistics, however,

have size distortions in some cases. Nevertheless, the simulation study indicate that the

sieve bootstrap tests are more powerful than the asymptotic DHF test in most of the

cases.
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The proposed sieve bootstrap based prediction intervals perform fairly accurately

in all the cases, and the coverages get closer to the nominal level as the sample size

increase. Moreover, the bootstrap prediction interval lengths are very close to the the-

oretical lengths. Interestingly, our method can be applied to both seasonally integrated

and non-integrated processes without altering the procedure. Overall, the sieve bootstrap

perform accurately in unit root testing and in prediction intervals for seasonal time series.
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SECTION

2. CONCLUSION

A modified version of the currently available sieve bootstrap procedure is developed

and applied to ARIMA and FARIMA process in order to obtain asymptotically accurate

prediction intervals. In addition, the asymptotic distributions of the Dickey-Hasza-Fuller

test statistics are derived under the assumption of weakly dependent innovations of the

underlying seasonal model. Furthermore, a sieve-bootstrap based test statistics are de-

rived for making inference about the presence of a seasonal unit root. These results were

presented in five papers as indicated below.

In Papers I and II, a relatively simple bootstrap procedure for obtaining prediction

intervals for FARIMA processes was implemented. The asymptotic properties of the

proposed method were established in Paper I, and the simulation results given in Paper II

indicate that the proposed method performs competitively well compared to an existing

method that was introduced by Bisaglia and Grigoletto (2001), and outperforms this

method when the errors are skewed or bimodal.

In Paper III, sieve-bootstrap-based prediction intervals were proposed for

ARIMA(p, d, q) processes irrespective of whether d = 0 or 1. The advantage is the

lack of the need to test for a unit root prior to deciding on a prediction method. We

established the asymptotic properties of the sieve-bootstrap-based prediction intervals

and our prediction intervals yield coverage close to the nominal level in all the cases as

shown by a Monte Carlo simulation study.

The asymptotic distributions of the Dickey-Hasza-Fuller seasonal unit root tests

were derived in Paper IV as functional of standard Brownian motions under weakly de-

pendent errors. A key proposition was developed to establish these results.

In Paper V, we showed how to employ the sieve bootstrap to approximate the

distributions of the Dickey-Hasza-Fuller seasonal unit root test statistics. The proposed
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sieve bootstrap seasonal unit root tests (difference-based and residual-based) were more

powerful than the asymptotic DHF tests under weakly dependent errors in most of the

situations. The asymptotic properties of the difference-based sieve bootstrap DHF test

were established. Note that the seasonal models considered in this study assumed zero

mean and no trend. The asymptotic results, however, for these case can be easily estab-

lished with minor adjustments. A procedure to obtain prediction intervals for seasonally

integrated time series using sieve bootstrap was also proposed. The asymptotic properties

of the proposed method were established and a Monte-Carlo simulation study was carried

out to examine the finite sample validity.



APPENDIX A

MATLAB ALGORITHM FOR SIEVE BOOTSTRAP PREDICTION INTERVALS
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function EDF = ESeivesBootstrap2

(sigmahat,XSeries,YWPhi,Residuals,PHat,MaxLag,B,XSize,PMax)

XMean = mean(XSeries);

WSeries = XSeries - XMean;

WResiduals = Residuals;

RRESVec = zeros(B,1);

PhatVec = zeros(B,1);

WYRESVec = zeros(B,1);

EDF = zeros(MaxLag,B);

meanWResiduals = mean(WResiduals);

WResiduals = (WResiduals - mean(WResiduals))/std(WResiduals);

for J = 1: B

%Randomize residuals for resampling

RandomIndex = unidrnd(XSize,XSize+200+MaxLag,1);

RResiduals = WResiduals(RandomIndex);

%STEP 9

WSeries =RResiduals;

WSeries(1:PHat)= XSeries(unidrnd(XSize - PHat, PHat,1) + PHat);

for I = PHat +1: XSize +200

for Ip =2 :PHat + 1

WSeries(I) =WSeries(I) -YWPhi(Ip)*WSeries(I-(Ip-1));

end
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end

%Compute bootstrap AR coefficients

[WYWPhi,YWResiduals] = aryule(WSeries(201:XSize+200),PHatMod);

WW = zeros(XSize+PHatMod,1);

WW(1:PHatMod) = WSeries(XSize+200 -PHatMod+1:XSize +200);

WW(PHatMod+1:XSize+PHatMod) = WSeries(201:XSize+200);

for ri = PHatMod + 1:XSize + PHatMod

YWResiduals(ri) = WW(ri) +

WYWPhi(2:PHatMod+1)*fliplr(WW(ri-PHatMod:ri-1)’)’;

end

YWResiduals(1:PHatMod) = [];

WYWPhi = WYWPhi’;

WYRESVec(J) = std(YWResiduals);

%New subroutine

%Calculating Mean of the newly created WSeries

WMean = mean(WSeries(201:XSize+200));

%CONDITIONING on the past values

WSeries(201:XSize+200) = XSeries-XMean;

%PREDICTION STEP 12

for I = XSize +201:XSize+200+MaxLag

WSeries(I) = RResiduals(I);

for Ip = 2:PHatMod +1
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WSeries(I)= WSeries(I)- WYWPhi(Ip)*WSeries(I-(Ip-1));

end

end

EDF(1:MaxLag, J)= WSeries(XSize+201:XSize+200+MaxLag) + XMean; %+ WMean;

%Reinitializing the RResidual Array

RResiduals(:) = 0;

end

end

%-----------------------------------------------------

function f = ACV(X) % Computes the sample ACF

n = length(X);

f = zeros(n,1);

xmean = mean(X);

for k = 0:n-1

sm = 0;

for i = 1:n-k

sm = sm + (X(i)-xmean)*(X(i+k)-xmean);

end

f(k+1) = sm/n;

end

%-----------------------------------------------------

function PHat = AICCSelection(XSeries,ACVector,PMax)

XSize = length(XSeries);

RXSize = XSize;
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%Durbin Levinson Algorithm

PPhi = 0;

PPhi(1,1) = ACVector(2)/ACVector(1);

VarianceVector(1)= ACVector(1)*(1.0- PPhi(1, 1)^2);

for I = 2:PMax

VWork = 0;

for J = 1: I-1

VWork = VWork + PPhi( I-1, J)*ACVector(I-J+1);

end

PPhi(I, I)=(ACVector(I+1) - VWork)/VarianceVector(I-1);

for J = 1: I-1

PPhi( I,J) = PPhi(I-1, J) - PPhi(I,I)*PPhi(I-1, I-J);

end

VarianceVector(I) = VarianceVector(I-1)*(1.00 - PPhi(I,I)^2);

end

I = 0;

MinimumAIC = log(ACVector(1))+ 2.0*(I)/(RXSize);

WorkP =0;

for I = 1: PMax

WorkAIC = log(VarianceVector(I)) + 2.0*(I)/(RXSize);

% trying to get WorkAIC printed out

WorkAICAr(I)= WorkAIC;

if ( WorkAIC < MinimumAIC)

MinimumAIC = WorkAIC;

WorkP = I;
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end

end

PHat = WorkP;

end

%----------------------------------------------------------



APPENDIX B

MATLAB ALGORITHM FOR SIEVE BOOTSTRAP DIFFERENCE-BASED

SEASONAL DHF TEST
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function [H1,H2] = SBDifftest(X,PMax,s,B,alpha)

nx = length(X);

U = X(s+1:nx) - X(1:nx-s);

nu = length(U);

%DF test par estimation

[bx,sebx,rx] = getDFCoef(X,s);

bxtst = nx*(bx(1)-1);

txtst = (bx(1)-1)/sebx(1);

ACVector = ACV(U);

PHat = AICSelection(U,ACVector,PMax);

%SB procedure begins here

[bu,sigu] = aryule(U,PHat);

ru = U; %compute residuals

for i = PHat+1:nu

ru(i)= bu*U(i:-1:i-PHat);

end

ru(1:PHat) = [];

ru = ru - mean(ru);% center the residuals

ru = [zeros(PHat,1);ru];

%bootstrap

bbxtst = zeros(B,1);

tbxtst = zeros(B,1);

for bi = 1:B

indx = unidrnd(nu-PHat,nu+200,1) + PHat;
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bru = ru(indx);

bru = [zeros(PHat,1);bru];

BU = U; % The bootstrap differenced series

for i = PHat+1:nu+200

BU(i) = -bu(2:PHat+1)*BU(i-1:-1:i-PHat) + bru(i);

end

BX = X; %The bootstrap series

for i = s+1:nu+200

BX(i) = BX(i-s) + BU(i);

end

BX(1:200) = []; %delete the first 200 bootstrap observations

[bbx,sebbx,rx] = getDFCoef(BX,s);

bbxtst(bi) = nx*(bbx(1)-1); %bootstrap test statistics

tbxtst(bi) = (bbx(1)-1)/sebbx(1);

end

%find critical values

bperc = prctile(bbxtst,alpha*100);

tperc = prctile(tbxtst,alpha*100);

%Decision of the test

H1 =0; H2 = 0;

if bxtst < bperc

H1 = 1;

end

if txtst < tperc

H2 = 1;

end

%----------------------------------------------------
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function [b,seb,r] = getDFCoef(U,s)

nu = length(U);

UY = U(s+1:nu);

UX = U(1:nu-s);

[b,bint,r] = regress(UY,UX);

sigmahat = ((UY-UX*b).^2)/(nu-s-1);

seb = sigmahat*inv(UX’*UX);

seb = sqrt(seb);

r = [mean(r)*ones(s,1);r];

end

%-----------------------------------------------------

function f = ACV(X) % Computes the sample ACF

n = length(X);

f = zeros(n,1);

xmean = mean(X);

for k = 0:n-1

sm = 0;

for i = 1:n-k

sm = sm + (X(i)-xmean)*(X(i+k)-xmean);

end

f(k+1) = sm/n;

end

%-----------------------------------------------------

function PHat = AICCSelection(XSeries,ACVector,PMax)

XSize = length(XSeries);
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RXSize = XSize;

%Durbin Levinson Algorithm

PPhi = 0;

PPhi(1,1) = ACVector(2)/ACVector(1);

VarianceVector(1)= ACVector(1)*(1.0- PPhi(1, 1)^2);

for I = 2:PMax

VWork = 0;

for J = 1: I-1

VWork = VWork + PPhi( I-1, J)*ACVector(I-J+1);

end

PPhi(I, I)=(ACVector(I+1) - VWork)/VarianceVector(I-1);

for J = 1: I-1

PPhi( I,J) = PPhi(I-1, J) - PPhi(I,I)*PPhi(I-1, I-J);

end

VarianceVector(I) = VarianceVector(I-1)*(1.00 - PPhi(I,I)^2);

end

I = 0;

MinimumAIC = log(ACVector(1))+ 2.0*(I)/(RXSize);

WorkP =0;

for I = 1: PMax

WorkAIC = log(VarianceVector(I)) + 2.0*(I)/(RXSize);

% trying to get WorkAIC printed out

WorkAICAr(I)= WorkAIC;

if ( WorkAIC < MinimumAIC)

MinimumAIC = WorkAIC;
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WorkP = I;

end

end

PHat = WorkP;

end

%----------------------------------------------------------
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