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The measured H(D)OCO survival fractions of the photoelectron-photofragment coincidence ex-
periments by the Continetti group are qualitatively reproduced by tunneling calculations to H(D)
+ CO, on several recent ab initio potential energy surfaces for the HOCO system. The tunneling
calculations involve effective one-dimensional barriers based on steepest descent paths computed
on each potential energy surface. The resulting tunneling probabilities are converted into H(D)OCO
survival fractions using a model developed by the Continetti group in which every oscillation of the
H(D)-OCO stretch provides an opportunity to tunnel. Four different potential energy surfaces are ex-
amined with the best qualitative agreement with experiment occurring for the PIP-NN surface based
on UCCSD(T)-F12a/AVTZ electronic structure calculations and also a partial surface constructed
for this study based on CASPT2/AVDZ electronic structure calculations. These two surfaces differ
in barrier height by 1.6 kcal/mol but when matched at the saddle point have an almost identical
shape along their reaction paths. The PIP surface is a less accurate fit to a smaller ab initio data
set than that used for PIP-NN and its computed survival fractions are somewhat inferior to PIP-NN.
The LTSH potential energy surface is the oldest surface examined and is qualitatively incompatible
with experiment. This surface also has a small discontinuity that is easily repaired. On each surface,
four different approximate tunneling methods are compared but only the small curvature tunneling
method and the improved semiclassical transition state method produce useful results on all four sur-
faces. The results of these two methods are generally comparable and in qualitative agreement with
experiment on the PIP-NN and CASPT?2 surfaces. The original semiclassical transition state theory
method produces qualitatively incorrect tunneling probabilities on all surfaces except the PIP. The
Eckart tunneling method uses the least amount of information about the reaction path and produces
too high a tunneling probability on PIP-NN surface, leading to survival fractions that peak at half
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their measured values. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891675]

. INTRODUCTION

The elementary reaction OH + CO — H + CO, is of
great important in hydrocarbon combustion and atmospheric
chemistry. In combustion, the reaction represents the main
heat release step.! In the terrestrial atmosphere, the reaction
is a major sink for the hydroxyl radical.” In the atmosphere of
Venus, the reaction plays a key role in the cycling of CO,.?
While strongly exothermic, the reaction features a very sta-
ble intermediate, HOCO, and a barrier to activation in the
product channel of roughly similar energy to the reactants.*
As a consequence, the thermal rate constants for this reaction
show significant non-Arrhenius behavior.’> The exact height
and shape of the barrier to the formation of H 4 CO, are crit-
ical to the overall kinetics of the reaction.

Because of its importance, this reaction has been the sub-
ject of a vast number of experimental studies that have re-
cently been reviewed.® These studies are dominated by ther-
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mal kinetics measurements. Until recently, direct measure-
ments of the properties of the HOCO radical consisted of
a few limited spectroscopic studies.””!3> However, a new ap-
proach involving photoelectron-photofragment coincidence
(PPC) measurements starting from the H(D)OCO™ anion has
become available.!*!6 In these experiments, the unimolecu-
lar decay of a neutral H(D)OCO radical by tunneling to H(D)
+ CO, can be directly observed. Of course all the thermal ki-
netics measurements have contributions of tunneling in them
but there is no definitive way from only the measurements
themselves to isolate and characterize the tunneling contribu-
tion. Furthermore, only tunneling processes near the top of
the barrier are able to compete with non-tunneling processes
in thermal reaction rates. The PPC measurements are not done
on thermalized HOCO radicals and are primarily sensitive
to deep tunneling. These measurements will be described in
more detail in Sec. II.

Since the OH + CO reaction has only four atoms, it is
quite amenable to theoretical study and numerous such stud-
ies have been done.® The considerable majority of these stud-
ies have used statistical reaction rate theory of various forms

© 2014 AIP Publishing LLC
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applied to reaction path characterizations of the potential en-
ergy surface (PES) in order to obtain thermal reaction rates
to compare to the thermal kinetics measurements. Several
global representations of the PES have been developed.'’->*
Two of these PES have been explicitly used in comparison
to the PPC measurements. The LTSH PES'® was unfavor-
ably contrasted'® to an adjustable potential optimized to re-
produce measured tunneling of H(D)OCO to H 4 CO,. The
PIP PES, which was previously denoted as the CCSD-3/d
PES,?! was used in full and reduced dimensionality quantum
dynamics calculations® of the dissociation process. Reason-
ably good agreement was made with experiment, although the
cost of the calculations limited the extent of the comparison
to experiment. This PES was also used in classical trajectory
calculations of the OH + CO reaction’®?’ and the reverse
H 4+ CO, reaction.?! The computed fractions of translational,
vibrational, and rotational energy disposal in the CO, product
are noticeably different from experiment. Approximate quan-
tum dynamics calculations?® were also applied to an early ver-
sion of this PES to obtain reaction rates that were somewhat
too low at low temperatures and too high at high tempera-
tures. The newest PES,?* called PIP-NN, increases by ~50%
the number of ab initio points in its fit over those used in the
PIP PES. However, the same classical trajectory and approxi-
mate quantum dynamics calculations used for PIP PES stud-
ies produce on PIP-NN very similar results that remain at odds
with experiment. This surface has recently been used to com-
pute mode specific tunneling probabilities modeling the PPC
experiment.”’ In this paper, we will use the LTSH, PIP, and
PIP-NN PESs to examine deep tunneling in comparison to the
PPC measurements. In addition we will use a calculated reac-
tion path based on the CASPT2 electronic structure method.*
This calculation was done for this study and represents an
exploration of the impact that multi-reference flexibility in
the electronic structure calculations can have on HOCO PES
features.

As mentioned above, quantum dynamics wavepacket cal-
culations in 5D and 6D have been done on both the PIP and
PIP-NN PESs. These calculations are too expensive to be
propagated long enough to allow an extensive comparison to
PPC measurements. However, in reporting the PPC measure-
ments, Johnson et al.'® also develop a model that converts
a computed tunneling probability for a 1D effective poten-
tial into directly measured HOCO survival fractions from the
time of their creation to their arrival more than 7 us later at
the detector. In a similar way, thermal rate constant calcula-
tions typically do not incorporate tunneling based on a full-
dimensional quantum dynamics calculation but rather on an
approximate calculation involving some kind of representa-
tion of the reaction path. These approximate calculations on
the PESs listed above can produce deep tunneling probabili-
ties that can be incorporated into the Johnson ef al. model to
produce survival fractions for direct comparison to the mea-
sured ones.

There are three approximate tunneling methods widely
used for thermal tunneling that can be in principle used for
the deep tunneling processes of importance here. The oldest
is the Eckart method based on an analytic quantum dynamics
solution®! to a three-parameter 1D barrier potential. Probably
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the most widely used tunneling method for thermal kinetics
is the small curvature tunneling (SCT) method embodied in
the software POLYRATE.?> The third method is the semi-
classical transition state theory (SCTST) method developed
originally by Miller et al.’* and embodied in the Multiwell
program suite.** Recently an improvement of this method was
developed? that is specific to deep tunneling and is denoted
iSCTST. Missing from this list of tunneling methods is the
Wigner tunneling method;* it is based on a parabolic repre-
sentation of the reaction barrier which is too approximate for
deep tunneling. The four other tunneling methods enumerated
above will be used in the comparison to experiment.

The rest of this article is as follows. Section II will briefly
review the PPC experiment and describe the model of Johnson
et al. that converts tunneling probabilities into the observed
survival fractions. Section III will review and contrast the four
different PESs and the four different approximate tunneling
methods discussed above. Section IV will discuss the result-
ing tunneling probabilities and then compare for each PES
the calculated and measured survival probabilities. Section V
will summarize what has been learned by the comparison of
experiment and theory.

Il. PHOTODETACHMENT EXPERIMENT AND MODEL

The Continetti group has extensively reported'*'®
photoelectron-photofragment  coincidence (PPC) spec-
troscopy for HOCO and DOCO. As the cis isomer of the
anion has a lower energy, the neutral HOCO/DOCO produced
by photodetachment is dominated by the cis isomer. Hence,
all discussions below will be referred to this isomer if not
indicated explicitly. In the final version of the experiment, the
initially created anions are cooled and stored in a cryogenic
linear electrostatic ion beam trap. Photodetachment at a
fixed wavelength of the cooled anions and measurement of
the electron kinetic energy (eKE) allows determination of
the internal energy of the metastable neutral. The neutral
molecule travels for microseconds down a translational
spectrometer whose detector at the end measures the center-
of-mass translational energy release in coincidence with the
photoelectron. Such measurements detect the tunneling of
H(D)OCO to H(D) + CO, that has occurred during the time
of flight. The reported results for the survival fraction F of
H(D)OCO in the face of this tunneling process is shown and
repeated in each of the three panels of Fig. 1 as a function
of eKE.

The survival fraction was analyzed with a model that con-
nects tunneling probability P through a 1D effective barrier to
the survival fraction F. The primary relationship is

F(E;) = (- PE,)", (1)
where E.

int 1 the internal energy of the H(D)OCO and N is the
number of classical oscillations of frequency w (in cm~!) of
H(D)-OCO in HOCO that occur during the time of flight tq:

N = t;,rwc, 2)

where c is the speed of light. In this model, HOCO gets
an opportunity to tunnel at every outer turning point of the
H-OCO stretch. Because a tygr of 7.8 us for HOCO and
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FIG. 1. Survival fraction as a function of eKE as measured (solid symbols
for HOCO and open symbols for DOCO) and as calculated (solid lines for
HOCO and, dashed lines for DOCO) for the adjustable model potential for
three different initial vibrational quantum numbers for H(D)-OCO stretch.
See text for details.

7.9 wus for DOCO is very long on a molecular timescale, N
is a number measured in hundreds of millions for either iso-
tope. This means that this experiment is sensitive to the very
small probabilities that occur in deep tunneling.

An effective 1D potential in an effective tunneling co-
ordinate dominated by H-OCO stretch is assumed. This im-
plies that only a part of E; is aligned with the tunneling
coordinate. If Eg is the aligned energy, then the model
assumes

Ediss = EOH(D)(vmax) + X[Eint - EOH(D)(vmax)]’ (3)

where Eqyp)(Vn,,) 18 the anharmonic vibrational energy in
the H(D)-OCO stretch mode at the dominant vibrational
quantum number v, . This approximation basically says that
all the energy in the H(D)-OCO stretch and some fraction x
of the rest of the energy is aligned with the effective tunneling
coordinate and contributes to tunneling through the barrier.
The parameters v, and x are unknown and are adjusted to
optimize agreement with experiment. In principle both v,
and yx are isotope dependent but the actual application of this
model to the experiments used a common value y but isotopi-
cally different values for v, . In the context of this model,
E,, is connected to eKE by

Ei,, =hv—(AEA — zpeyyp) — ¢eK E), @)

where hv is the photon energy used in the photodetachment,
AEA is the adiabatic electron affinity of HOCO, and zpeqyp,
is the zero point energy for the H(D)-OCO stretch. The zpe
correction in Eq. (4) ensures that E; ; is measured from the
base of the effective 1D potential which includes the zero
point energy of all HOCO modes except H(D)-OCO. In prin-
ciple, E;, should be quantized and thus has only discrete val-
ues. This implies through Eq. (4) that eKE should be discrete.
However, the measurements at this relatively high photon en-
ergy do not resolve the discrete nature of eKE which in turn
means this model will represent survival fractions as continu-
ous functions of eKE.

This model was applied along with an adjustable effec-
tive 1D barrier and a WKB formula for tunneling through the
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barrier. Optimization of the adjustable barrier to maximize
the agreement with experiment produced the lines in Fig. 1
for the three possible values of (v, [HOCO], v, [DOCO])
indicated in each panel of the figure. For each panel, the op-
timized potential is noticeably different with barriers ranging
from 26.1 kcal/mol to 35.8 kcal/mol (see Sec. 1 of the sup-
plementary material of this article for details of the optimized
potential).’! Only panel (c) for v, = (1,2) was published
and discussed (in Ref. 16 and its supplementary material).
Panel (c) in Fig. 1 is slightly different from the published re-
sults because of improvements in the model detailed in the
Sec. 1 of the supplementary material.’! These improvements
concern a more internally consistent treatment of anharmonic-
ity in the H(D)-OCO stretch and updated experimental con-
stants like adiabatic electron affinities. These improvements
apply to all calculated survival fractions in this article.

In Sec. IV, we will apply the same model but derive
effective 1D barriers directly from the four PESs listed in
Sec. I. The results will be reported in figures analogous to
Fig. 1 only the same effective potential will be used for all
three panels instead of being optimized for each panel as in
Fig. 1. In anticipation of these results, four features of Fig. 1
merit comment:

¢ In panel (c), the computed results terminate for DOCO
and HOCO at an eKE value less than the maximum
in the plot. In the model, the departing electron must
leave at least enough energy to populate the selected
initial H(D)-OCO vibrational states. That caps the eKE
that is possible, leading to a termination of computed
results for panel (¢) at E;, = Eqyp) (V). Since this
termination depends only on the value of v_,., panels
(b) and (c) share the same v, for HOCO and thus
the same termination of the computed results. In panel
(b) this termination is obscured by the DOCO survival
fraction that does not terminate over the range of en-
ergies in the plot. Higher values of v, than those
used in the figure, i.e., (1,2), are not acceptable because
the termination would occur at values of eKE above
which there are measured values of survival fractions.
All plots of survival fractions in this article will have
this termination feature. At the cap of eKE, the tunnel-
ing probability is the smallest it can be because E;
is at a minimum. This in turn means that the survival
fraction is the maximum it can be as a function of eKE.
If a potential is relatively easy to tunnel through, then
the higher values of Eqyp) (V) Will become unsat-
isfactory because the computed survival fractions will
be below measurements and no optimization in x will
be able to corrected it.

The middle panel is in qualitatively poorer agreement
with experiment than the other two panels. This panel
is for the only combination of v, where the en-
ergy in the D-OCO stretch is less than the energy in
the H-OCO stretch. The optimization process of the
model produces x = 1.0, which from Eq. (3) means
that HOCO and DOCO have the identical and max-
imum energy available for dissociation at a common
eKE. The model adjusts the potential to get the correct
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displacement in eKE of the HOCO and DOCO sur-
vival fraction but does not have enough flexibility to
get a large enough range of eKE over which survival
fractions go from O to 1.
® The optimized value of x for panel (a) is larger (0.32)
than that for panel (¢) (0.19). Lower Eqyp,(,,) for
panel (a) is in part compensated in E; . by a higher
value of .
¢ As pointed out by Johnson et al.,'® the difference be-
tween E; , and E ;; represents internal energy not used
in the tunneling process and can be thought of as the
internal energy the product CO, is initially created
with as it appears on the other side of the barrier. At
the completion of the tunneling process, the H 4+ CO,
system 1is initially on a repulsive wall of the poten-
tial. While most of this repulsive potential energy will
largely go into the translational energy with which H
and CO, will separate from each other, some fraction
may perhaps be converted into internal energy of CO,.
This makes E; , — E ;. a reasonable lower bound on the
internal energy of the CO, product. The average prod-
uct internal energy was measured by Johnson et al. at
0.2 eV for HOCO and 0.3 eV for DOCO. It is easy to
show from Eq. (3) that

diss

Ei — Egiss = lEin — Eon) Va1 — ). Q)

Since E;,, depends on eKE, this estimate of the internal en-
ergy of CO, also varies with eKE and the average internal
energy requires a convolution over the measured probability
of eKE for the H 4+ CO, product. However, tests show that
that convolution is essentially the same as evaluating Eq. (4)
where the computed survival fraction is 0.5. In doing this for
the results in Fig. 1, the average internal energy of CO, for the
calculations in all three panels is about the same for HOCO
and DOCO and varies as: 0.4 for panel (a), 0.0 for panel (b),
and 0.2 for panel (c). The 0.0 value for panel (b) is an auto-
matic consequence of x = 1.0, implying all of E; ; is used to
tunnel. Considering this model may underestimate the inter-
nal energy of CO,, panel (c) for v, = (1,2) makes the best
contact with experiment, is the most consistent with the ba-
sic assumption that dissociation is promoted by energy in the
H-OCO stretch, and was the only panel originally published
by Johnson et al.

In Sec. III, the theoretical methods used to develop four
ab initio multidimensional potentials for HOCO and reduce
them to tunneling probabilities will be described. In Sec. IV,
the methods developed in this completed section will then be
applied to these tunneling probabilities to produce survival
fractions for comparison to experiment.

lll. THEORETICAL METHODS
A. Potential energy surfaces

The four PESs listed in Sec. I will now be described in
more detail.

The LTSH'® PES is the oldest of the four. It is composed
of a switched together set of local representations of the PES
where each local representation is fit to potential energies cal-
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culated by electronic structure methods that differ from lo-
cal region to local region. While this PES was successfully
used to produce some of the first credible calculated descrip-
tions of both the kinetics and dynamics of the OH + CO <+ H
+ CO, system, in its original form*’ it is not directly suitable
for this application to deep tunneling. As detailed in Sec. 2 of
the supplementary material,’' the LTSH reaction path for the
tunneling process of interest is discontinuous on the HOCO
side of the saddle point. The small (~0.1 kcal/mol) discon-
tinuity occurs because a switch that mixes together two dif-
ferent representations of the potential is abruptly turned off
when the value of the switch falls out of a finite range. The
actual version of the LTSH potential used, which will be de-
noted LTSHI, simply suppresses the turn off. As discussed in
the supplementary material, this results in little change to the
PES other than to remove the discontinuity.’'

In both LTSH and LTSHI1, there is an additional difficulty
of interpretation of the PES. In the published description of
the PES' and in comment cards within the LTSH code,’” the
saddle point connecting the cis-HOCO and H4-CO, is said
to have a cis geometry. While this is true for the underlying
electronic structure calculations, the saddle point is trans on
the fitted surface. On the LTSH1 PES, the steepest descent
reaction path leads to the trans-HOCO. At equilibrium, the
cis-HOCO and trans-HOCO are separated by an out-of-plane
saddle point. On either fitted PES, progress along the frans re-
action path eventually causes the cis form to become the maxi-
mum in the potential experienced during out-of-plane motion.
Consequently all attempts to find a cis saddle point failed.
Although this disagrees with all substantial electronic struc-
ture calculations, the reaction path on the LTSH1 will be used
in this article as is and that fact that it is trans will be ignored.

The PIP PES is the third and last of a series of three
PESs,? based on increasing numbers of better located poten-
tial energies calculated with the UCCSD(T)-F12b/AVTZ level
of theory*®3° and fit with the permutation invariant polyno-
mial (PIP) method of Bowman and co-workers.*° In this ver-
sion, 53000 ab initio potential energies up to 100 kcal/mol
above the trans-HOCO equilibrium are incorporated into the
fit. The rms error of the fit is 0.86 kcal/mol.

The PIP-NN PES uses a neural network (NN) fit*h42
to 74443 potential energy calculated with the UCCSD(T)-
F12a/AVTZ level of theory with full permutational invari-
ance. This is essentially the same ab initio method used for
PIP but applied to the calculation of more potential energies.
For energies less than ~70 kcal/mol, the rms error of the fit is
0.07 kcal/mol, about an order of magnitude improvement over
the fitting error for PIP. The maximum error is 2.9 kcal/mol.
An earlier version?? of this PES had comparable fitting errors
but imperfect permutational invariance; it was used in a recent
model of the mode specific HOCO tunneling.*}

The CASPT?2 data calculated for this study was part of an
exploration of the use of multi-reference electronic structure
methods for the HOCO system. In a global PES, such meth-
ods are more flexible in representing the many different and
evolving bonding configurations, including for HOCO, at and
between the HCO,, cis and frans HOCO and van der Waals
bonded OH-CO structures. Given a large enough active space,
multi-reference methods can smoothly transition between
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regions where a particular configuration is dominant. There
are some HOCO geometries at which single reference meth-
ods cannot be converged or are unreliable. To avoid including
poor data in a single-reference based PES generally one must
try to identify points with excessive multi-configurational
character by some approach such as the T, diagnostic.** If
the regions without data coverage are too large, then it be-
comes difficult to obtain a well-behaved and well-determined
fit. A T, diagnostic threshold was used to exclude points in
the UCCSD(T) based PESs mentioned above, but for HOCO
this represented a small fraction of the total data set and no
obvious issues arose from lack of coverage.?'-?® MRCI calcu-
lations with large active spaces are extremely expensive for
the HOCO system relative to UCCSD(T) calculations with
the same basis set and predict fairly similar relative energies
for the various critical points. One previously noted differ-
ence is that a presumably correct C,y, geometry is obtained
for the HCO, minimum by multi-reference methods whereas
a slightly skewed C, structure is obtained with UCCSD(T).2¢
Complicated electronic structure and multistate effects have
been noted in this region’®*> and for some purposes a mul-
tistate description would be warranted, but the features most
relevant to the current study occur on the ground state and
are the relative energies of the minima and the heights and
widths of the barriers between them. Determining the reaction
path using POLYRATE/MOLPRO requires several Hessian
and numerous gradient calculations which were determined
to be prohibitively expensive at the MRCI/CBS and full-
valence (17e,130) active space level. The CASPT2 method
(which provides analytic gradients) was tested, but was found
to greatly overly stabilize both cis and trans HOCO isomers
(relative to OH + CO) when used with large basis sets and
a full-valence active space. However, tests found that (pre-
sumably due to cancelation of errors) the relatively inexpen-
sive CASPT2/AVDZ method using a reduced (13e,110) ac-
tive space reproduces some features of much more expensive
MRCI/CBS calculations.

For this work, MOLPRO*® was used to characterize the
following the regions of the PES:

® The cis- and trans-H(D)OCO and CO, equilibrium re-
gions at the harmonic level.

® The saddle point region at the complete cubic and par-
tial quartic level necessary to carry out a second order
vibrational perturbation theory calculation.

® The description of the reaction paths for H(D)OCO
— HMD) + CO, under the direction of a
POLYRATE/MOLPRO combined code.*’

This level of characterization of the PES is sufficient
for all four tunneling methods mentioned in the introduction.
From this portion of the PES, one can compute AH, (0°K)
for HO + CO — H + CO,. At the CASPT2(13e,110)/AVDZ
level the calculated harmonic value of AH,, (0°K) is —24.01
kcal/mol, a few hundredths off from the ATcT experimental
value*® of —24.03 kcal/mol. For HO + CO — ¢is-HOCO, the
calculated harmonic value of AH,, (0°K) is —23.89 kcal/mol,
deeper than the ATcT value of —23.12 + 0.20 kcal/mol
by about 0.75 kcal/mol. However, for trans-HOCO — cis-

HOCO, the computed harmonic value of AH_ (0°K) is

Xn
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FIG. 2. V\p along the steepest descent path from the saddle point versus
the reaction coordinate s. Negative(positive) s values are for the descent to
HOCO(H + CO,). Lines are color-coded for each PES as indicated. See text
for details.

—0.91 kcal/mol, in considerable error from the ATcT experi-
mental value of 42.04 kcal/mol and in contrast to the three
PESs above that all have trans-HOCO as the more stable
isomer. At the CASPT?2 level, the cis-HOCO is somewhat
too stable while the trans-HOCO is significantly not stable
enough.

In Fig. 2, Vygp, the energy along the minimum energy
path, can be obtained as a function of s, the reaction coordi-
nate or the progress along the path, for all four PESs. Here
s = 0.0 is at the saddle point on each PES and negative (pos-
itive) values of s trace the path to HOCO (H+CO,). The re-
action path is formally different for the DOCO system but
the results are only slightly different from those in Fig. 2.
The zero of energy in the figure is the equilibrium of HOCO
in the cis form for CASPT?2, PIP, and PIP-NN but, as men-
tioned above, the frans form for LTSH1. The figure clearly
shows that LTSH1 is an outlier with a barrier qualitatively
thicker than any other PES, a point originally noted by John-
son et al.'® The PIP and PIP-NN PESs have quite similar bar-
riers, as would be expected because they are based on closely
related data sets of ab initio potential energies. Somewhat sur-
prisingly, the PIP-NN PES is generally, but not always, no-
ticeably thinner than the PIP. The CASPT?2 barrier is the high-
est of the four PESs at 32.0 kcal/mol. Alone among the four
PESs, the cis-HOCO is lower than the trans-HOCO and part
of the exceptional barrier height may be this over estimation
of the stability of the cis isomer. If the CASPT2 curve in Fig.
2 is shifted down to match at the saddle point the PIP-NN
curve, there is a near perfect superposition of the two curves
except at the very lowest energies in the figure (see Sec. 2
of the supplementary material for more details).’! At those
lowest energies, the PIP-NN curve tails off to a higher energy
cis-HOCO while the CASPT?2 continues to plunge to a lower
energy cis-HOCO.

The results in Fig. 2 can be considered an approximation
to a 1D tunneling path.** However, the five degrees of free-
dom perpendicular to that path are not accounted for. If one
assumes an adiabatic model for those five degrees of freedom
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and corrects the results in Fig. 2 for the change in the zero
point energy as a function of s for those five degrees of free-
dom, an effective 1D tunneling path is produced. This path
through the model of Johnson et al. can then be processed to
produce survival fractions for comparison to experiment. All
four tunneling methods used in this article carry out this basic
approach in different ways as will be detailed next.

B. Tunneling methods

As mentioned previously, exact quantum dynamics has
been carried out on a number of PESs based on UCCSD(T)
data. However, such calculations cannot feasibly carried out
to characterize tunneling over the microseconds required to
make contact with experiment. In the spirit of the origi-
nal experimental model, four different approximate tunnel-
ing methods are used to estimate tunneling on each of the
four PESs. These four approximations are the Eckart approx-
imation, semiclassical transition state theory as represented
in the software package MULTIWELL and labeled SCTST,
improved SCTST (iSCTST) which is a recent correction to
SCTST appropriate for deep tunneling, and the semiclassical
transmission coefficient in the small curvature limit as repre-
sented in the software package POLYRATE and labeled SCT.

Like the original experimental model, all four of these
methods take as input an effective one-dimensional barrier
potential through which HOCO reactants must tunnel to the
H + CO, products. This one-dimensional potential is zero-
point corrected along its whole length for the five degrees of
freedom perpendicular to the reaction coordinate. Conceptu-
ally at least, that reaction coordinate at the HOCO reactant at
equilibrium is assumed to be the vibrational mode most dom-
inated by H atom motion relative to nearest O atom. At the
top of the barrier, the process of determining the saddle point
on each one of the PESs determines the reaction coordinate.

Each of the four approximate tunneling methods differs
in the construction of the effective one-dimensional barrier
and in the solution of the tunneling dynamics given the barrier.
In the order first listed:

Eckart: This is an exact quantum dynamics solution’' to
an analytic potential with three adjustable parameters that re-
produce the zero-point corrected barriers in the forward and
reverse direction and the imaginary frequency at the saddle
point. Informed of the actual PES by only these three parame-
ters, this method requires the least detailed characterization of
the PES. However, unlike the other methods that are all based
on semiclassical dynamics, the dynamics here is done exactly
quantum mechanically.

SCTST: This is an exact semiclassical dynamics
solution®® to an effective potential as defined by a second or-
der vibrational perturbation theory (VPT2) description of the
saddle point. Such a description is full dimensional, produc-
ing a vector of frequencies defining the harmonic curvature
of the potential at the saddle point, and a matrix, called the x
matrix, of second order anharmonic corrections. The resulting
potential in the vicinity of the saddle point can be thought of
as a multidimensional Morse Oscillator in which for the re-
action coordinate direction the Morse Oscillator potential is
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inverted producing a barrier through which tunneling can oc-
cur. With a sum-of-states approach and this potential, an ele-
gant and analytic solution to the exact semiclassical dynamics
is available. VPT2 uses up to and including multidimensional
fourth derivatives of the PES at the saddle point and therefore
informs this tunneling approach with more detail about the
actual PES. There are operational details about this method
as applied to the HOCO tunneling problem that are described
in Sec. 3 of the supplementary material.’!

iSCTST: For a bound 1D Morse Oscillator, the frequency
w,, the anharmonic correction X, w,, and the dissociation en-
ergy D, are related so that knowing any two of these quan-
tities gives you the third. Similarly, for SCTST, knowing the
vector of frequencies and the x matrix from VPT2 at the sad-
dle point gives the effective dissociation energy or, in the case
of the tunneling coordinate, the effective barrier height of the
inverted Morse Oscillator for that coordinate. However, any
second order theory about the saddle point is typically insuffi-
cient to give a quantitatively correct and, in many cases, qual-
itatively correct forward and reverse reaction barriers. These
barriers are determined from calculations done at the reactant
and product asymptotes that are apart from the VPT2 calcu-
lations at the saddle point. As a consequence, for deep tun-
neling, SCTST can have serious errors. iISCTST?’ creates an
effective one-dimensional potential that reproduces all VPT2
characteristics at the saddle point and in addition reproduces
the correct forward and reverse barriers. Furthermore, for this
particular potential the classical action is analytic and, as in
SCTST, can be directly converted into a semiclassical tunnel-
ing probability. This HOCO tunneling study represents one
of the first applications of iSCTST beyond model problems.
Details of its implementation are described in Sec. 3 of the
supplementary material.>!

SCT: In this approach, a reaction path Hamiltonian is
constructed based on a rigorous, steepest descent description
of the reaction path in both directions from the saddle point.
This approach incorporates the most information from the ac-
tual PES. Formally, a complete reaction path Hamiltonian is
difficult to numerically solve for the semiclassical action that
leads to the tunneling probability. However, in various limits,
such as the small curvature limit used here, the semiclassical
action can be reduced to various integrals that can be conve-
niently and reliably solved using the numerical machinery in
POLYRATE.?? Other limits, such as the large curvature limit,
can also be reduced to stable numerical integrations but tests
showed that the small curvature limit was most appropriate
(as discussed in the supplementary material).’!

Although the SCT approach incorporates the most infor-
mation from the actual PES, there are two reasons why the
SCT one-dimensional potential may not be the best for this
particular application. First, the definition of the reaction path
and its zero-point correction for the one-dimensional potential
depends on the coordinates used. The product OCO is a lin-
ear molecule with a doubly degenerate bend but nowhere else
on the reaction path is there such symmetry. As is discussed
in Sec. 3 of the supplementary material,’' there is no con-
sistent set of coordinates for the whole reaction path flexible
enough to describe the evolution of this symmetry, resulting in
imperfect zero-point corrections near the base of the barrier.
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FIG. 3. The zero-pointed corrected effective one-dimensional potentials V
versus the reaction coordinate s for HOCO (a) and DOCO (b). Lines are
color-coded for each PES as in Fig. 2. See text for details.

Second, it is well known® that a mathematically steepest de-
scent path approaches an equilibrium position on the PES
along a reaction coordinate that coincides with the lowest
frequency equilibrium normal mode direction. In the case of
HOCO this would correspond to an O—-C-O bending type mo-
tion. Unfortunately the experimental model that will convert
the computed tunneling probability into experimentally mea-
sured quantities expects that reaction coordinate for the one-
dimensional potential to have an H-O stretch character. As
discussed in Sec. III, the encroachment of H-O stretch char-
acter in perpendicular modes of motion as the reaction path
approaches reactants causes an increase in the zero-point cor-
rection near the base of the barrier that is inconsistent with the
experimental model.

In Fig. 3, the zero point energy corrected effective one-
dimensional potentials for both HOCO (panel (a)) and DOCO
(panel (b)) are displayed as calculated by POLYRATE where
this quantity is called V. For both panels, the zero of energy
is the equilibrium H(D)OCO potential plus the zero-point for
the five degrees of freedom that are not dominated by the
H(D)-OCO stretch. At the broadest level of comparison, both
panels in Fig. 3 are similar to each other and similar to the
uncorrected potentials seen in Fig. 2. At a higher level of de-
tail, there are three additional observations. First, the flare-out
on the reactant side seen for PIP and PIP-NN in panel (a) is
the manifestation of an H-OCO character invading the zero-
point correction as discussed above. This is not so evident in
panel (b) for DOCO because the absolute size of the zero-
point energy is smaller. For CASPT2 and LTSH1 PESs, this
effect is there but not so exposed over the range plotted in the
figure. This thickening of the HOCO effective barrier first be-
comes noticeable about 15 kcal/mol below the reaction barrier
and thus affects only the deepest tunneling. Second, LTSH1
is unique in two ways. Unlike the other three PESs, the loca-
tion of the zero-point corrected barrier is noticeably displaced
from the saddle point. The uncorrected potential in Fig. 2 is
quite flat in the region of the barrier allowing minor changes
in frequencies to shift the zero-pointed correct barrier in
Fig. 3. Uniquely among the PESs, for LTSH1 the DOCO bar-
rier on the effective one-dimensional potential is noticeably
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lower than the analogous HOCO barrier. This requires that,
for the five non-(H-OCO) degrees of freedom included in the
effective potential, the deuteration-induced lowering in zero-
point energy at the equilibrium has to be smaller than the anal-
ogous lowering at the saddle point. Normally at the saddle
point one expects the zero-point energy for conserved degrees
of freedom to be somewhat smaller relative to the reactant
and thus deuteration effects to be smaller also. Uniquely for
LTSHI1, the zero-point energy of the five degrees of freedom is
higher at the saddle point than at equilibrium and thus deuter-
ation effects are larger. Given an effective potential lower for
DOCO than HOCO, at energies near the top of the DOCO
barrier, D will tunnel through a shorter enough effective bar-
rier than that for H to paradoxically have a higher tunneling
probability. The third and last observation is the very simi-
lar shape of the CASPT2 and PIP-NN effective potentials if
the CASPT2 PES is shifted down in energy to match the ef-
fective barrier on the PIP-NN PES. This is a continuation of
their similarity in Fig. 2 for the potential without zero-point
correction and is developed in more detail in Sec. 2 of the
supplementary material.>!

To summarize the tunneling methods, SCT has a one-
dimensional effective potential most informed by the PES
but imperfectly matched to the Johnson et al.'® model and
SCT solves its dynamics in the small curvature limit. Eckart,
SCTST, and iSCTST have increasing PES content in their
one-dimensional potential but still much less than SCT. How-
ever, their dynamics, quantum or semiclassical, are solved
with more rigor.

IV. RESULTS

The tunneling probabilities on each of the four PESs
are described immediately below in Sec. IV A. These prob-
abilities are converted by the model into survival frac-
tions for direct comparison to experimental measurements in
Sec. IV B.

A. Tunneling probabilities

Figure 4 displays on four panels for the four different
PESs the application of the four different tunneling methods
to produce tunneling probabilities as a function of energy for
both HOCO and DOCO. The plotted range of probabilities
encompasses all that is relevant to the experimentally mea-
sured survival fractions that will be discussed in Sec. IV B.
The zero of energy is that used for the effective one-
dimensional potentials of Fig. 3, namely the H(D)OCO
equilibrium potential energy plus the zero-point energy of
the five degrees of freedom that are not dominated by the
H(D)-OCO stretch. The results in Fig. 4 are not quite compre-
hensive because the SCTST DOCO tunneling probabilities
are not plotted to ease congestion.

At the broadest level of comparison, Fig. 4 shows, not
surprisingly, that the LTSHI results are qualitatively differ-
ent from the other three PESs. The thickness of the LTSH1
PES makes the probabilities drop very rapidly as the en-
ergy falls below the barrier. The flat top to the barrier makes
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FIG. 4. Tunneling probability for HOCO (solid lines) and DOCO (dashed
lines) as a function of energy for four different color-coded tunneling meth-
ods. Each of four PESs is as labeled in the four panels. See text for details.

tunneling based on variable amounts of saddle point infor-
mation (Eckart, SCTST, and iSCTST) grossly different from
each other and from the SCT method that uses the full reac-
tion path. It also makes the SCTST method terminate at en-
ergies just a kcal/mol below the effective barrier where the
method incorrectly locates the base of the effective potential.
The lower effective barrier for DOCO versus HOCO makes
for DOCO tunneling probabilities that exceed that of HOCO
for energies very near the top of the barrier.

In contrast, the results for the CASPT2, PIP, and PIP-NN
are largely qualitatively similar in the general shape of the
tunneling probability as a function of energy and in the echo-
ing of method ordering from HOCO to DOCO. Only in the
behavior of the SCTST tunneling are these three PESs qual-
itatively different. As discussed in Sec. III, starting from the
saddle point on each PES (see Fig. 2), the SCTST method lo-
cates the base of the effective potential well above that of the
zero of energy in Fig. 4 for CASPT2 and PIP-NN but well
below the zero of energy for PIP. Consequently the green line
for SCTST HOCO tunneling probability terminates when this
base is reached (as is also true for LTSHI in Fig. 4). This
results in an odd shape of the tunneling probability as a func-
tion of energy that causes it to stand out from all the other
methods. In contrast, for PIP with a base below the zero of
energy, the SCTST results for HOCO can barely be distin-
guished from the SCT results over the whole range of the plot.
(Of course, had the plot been extended to negative energies,
SCTST would uniquely still produce a finite but very small
tunneling probability.) The SCTST DOCO results not present
in Fig. 4 echo the SCTST HOCO results.

At a finer level of detail, the three PESs do have dif-
ferent tunneling characteristics. The CASPT2 and PIP-NN
tend to have higher tunneling probabilities at the same en-
ergy than those of PIP. Both CASPT2 and PIP-NN have at
the same energy an ordering from high to low of Eckart, SCT,
and iSCTST in the deep tunneling region with Eckart being
clearly higher. As indicated with respect to Figs. 2 and 3 and
in Sec. 2 of the supplementary material,’' the CASPT2 and
PIP-NN have the same shape to Vyzp and V,; if the CASPT2
results are shifted down in energy to match the PIP-NN results
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at the saddle point. As a consequence, the CASPT2 probabil-
ities at a shifted higher energy are quite similar to the PIP-NN
probabilities at an un-shifted energy if the shift is that to align
V¢ for the two PESs (see Sec. 2 of the supplementary ma-
terial for further details).”! In contrast, PIP and PIP-NN have
in Fig. 3 the same effective barrier height, allowing without
any shift a direct comparison of PIP and PIP-NN in panels (c)
and (d). Unlike PIP-NN, PIP has a different ordering of SCT,
iSCTST, and Eckart with all three being clumped relatively
close together.

iSCTST was developed to correct the deep tunneling
flaws for SCTST and the results in Fig. 4 are one of its first
realistic applications. iSCTST does behave in a qualitatively
correct manner over the energy range of the plot for all four
PESs. For CASPT2, PIP, and PIP-NN, iSCTST is quite close
to SCT, closer than Eckart is. For LTSH1, Eckart is closer to
SCT than iSCTST but, as discussed above, there are many
features of LTSHI that are anomalous. As discussed previ-
ously, iSCTST has different but generally less PES content
than SCT and is therefore typically less expensive to obtain.

B. Survival fraction

Given the tunneling probabilities in Fig. 4 and the model
in Sec. II the survival fraction for HOCO and DOCO can
be computed as a function of electron kinetic energy (eKE).
Because the SCTST method is qualitatively flawed for deep
tunneling on most of the PESs, it will not be used to com-
pute survival fractions. The model has two adjustable param-
eters: the initial H(D)-OCO vibrational state and the fraction
x of remaining internal energy that can be used to assist the
tunneling. The parameter values can be optimized to max-
imize agreement with experiment. The range of eKE sam-
pled in the experiment make only three combinations of ini-
tial H(D)-OCO vibrational quantum numbers possible: (0,1),
(1,1), (1,2) where the first number is for H-OCO and the sec-
ond number is for D-OCO. In the results to follow, survival
fractions for each of these three combinations are displayed.
For each combination only x is optimized. While, in principle
X can be isotope dependent, for most of the results to follow
the same x was used for both isotopes as was the case for the
original application of the model to an adjustable potential
discussed in Sec. II. The effect of optimizing x separately for
HOCO and DOCO will be discussed at the end of this section.

For LTSHI, the optimized computed survival fraction
as a function of eKE is displayed in Fig. 5 with the opti-
mized values of y listed in Table I. The experimental results
are the solid (HOCO) and open (DOCO) symbols while the
solid (HOCO) and dashed (DOCO) curves are computed us-
ing Eckart, iSCTST, and SCT color coded as in Fig. 4. The
figure is analogous to Fig. 1 except that the same effective 1D
potential is used in each panel and multiple tunneling meth-
ods are used in each panel. The results in the figure show the
LTSH1 PES is incompatible with the measurements. Because
the LTSH1 PES is so thick, small changes in the energy make
very large changes in the probability no matter what tunneling
method is used. This means the energy range over which the
computed survival fraction goes from O to 1 is much narrower
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than experiment. The thick barrier also means only tunnel-
ing energies near the top of the barrier can lead to zero sur-
vival. High tunneling energies correspond to low values of
eKE, resulting in survival fraction changes all taking place at
far lower values of eKE than that measured. Table I shows
that the results in Fig. 5 are for an optimized value of x that is
1.0, a physically unrealistic value that means that the depart-
ing electron leaves all internal energy in H(D)OCO directed
along the tunneling coordinate. From Eq. (5) this results in
a product CO, with no internal energy, in contrast to experi-
mental measurements of 0.2-0.3 eV. The original application
of the model with an adjustable potential also concluded that
the LTSH PES has a profile along the reaction path too dis-
similar to the optimized potential to be consistent with exper-
iment. The results in Fig. 5 completely support that observa-
tion.

For CASPT2, the optimized computed survival fraction
as a function of eKE is displayed in Fig. 6 with the optimal
value of x listed in Table I. The computed results in Fig. 6
make qualitative contact with experiment. The width of the
eKE region where the survival fraction for either isotope goes

TABLE I. Optimized value of x as a function of the tunneling method, the
PES, and the initial vibrational state quantum numbers.

PES Voo SCT Eckart iSCTST
LTSHI ©.1) 1.00 1.00 1.00
1,1 1.00 1.00 1.00
1,2) 1.00 1.00 1.00
CASPT2 ©.1) 0.74 0.69 0.76
1,1 0.65 0.60 0.68
1,2) 0.34 0.23 0.39
PIP ©.1) 0.73 0.77 0.75
1,1 0.64 0.68 0.66
1,2) 0.33 0.41 0.38
PIP-NN ©.1) 0.64 0.58 0.68
1,1 0.55 0.50 0.58
1,2) 0.15 0.03 0.22
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from O to 1 monotonically increases from panel (a) to panel
(c). The eKE region width is most like experiment in panel
(c) but still too narrow. The separation in eKE space of the
survival fraction for DOCO and HOCO is smallest for panel
(a), largest for panel (b), and intermediate for panel (c). Again
panel (c) is most like experiment but the separation is still too
small. The optimal value of x in Table I decreases monoton-
ically from panel (a) where Eqy(v,..) + Eop(Vinax) 18 small-
est to panel (c) where Eqy (v .. ) + Eqp(v,,,) is largest. This
same trend was mentioned for panels (a) and (c¢) in Fig. 1. To
illustrate this behavior more quantitatively, consider the eKE
value 1.064 eV where the measured HOCO survival fraction
is closest to 0.5. Across the panels, the range in Eqy(v,,,,)
is about 9.3 kcal/mol but at eKE = 1.064 eV, the range
of By from Eq. (3) using the SCT x values in Table I is
1.93 kcal/mol. In others words, the optimal value of x reduces
the variation in Eg, to one fifth the variation in Eqy(v,,.)
across the panels. With Eq. (5) and with the same procedure as
described for Fig. 1, the lower bound estimate to internal en-
ergy of CO, is ~0.15 eV for both HOCO and DOCO in pan-
els (a) and (¢) and ~0.1 eV (HOCO) and ~0.2 eV (DOCO)
for panel (b). These results are in reasonable accord with the
measured values of 0.2 eV(HOCO) and 0.3 eV(DOCO).

Within each panel, the SCT and iSCTST results are quite
close to each other, too close to be distinguished from each
other by measurements with the precision of those given in
the figure. The Eckart results in panel (b) and especially panel
(c) are distinguishable from the results of the other tunneling
methods. To understand the variations in the survival fraction
from panel to panel, it is best to start from panel (c) and work
backwards to panel (a).

In panel (c), all the survival fraction curves terminate at
the maximum value of eKE consistent with Eqy ) (v ,,,) (see
the discussion for Fig. 1). The value of the survival fraction at
the termination point is independent of x and is the maximum
survival fraction possible. The Eckart maximum survival frac-
tion nearly equals the highest measured HOCO and DOCO
survival fractions at nearby values of eKE. By optimizing to
a relatively small value of x, a relatively large range in eKE
maps through Eqs. (3) and (4) into the relatively small range
of B that spans the survival fraction variation from 1 to 0.
This leads to good agreement with experiment. From Fig. 4,
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SCT and iSCTST have lower tunneling probabilities than
Eckart has, leading to noticeably higher maximum HOCO
survival fractions than measured while the maximum DOCO
survival fraction remains consistent with measurement. To
compensate for the too high maximum HOCO survival
fraction, an optimized x value higher than that for Eckart
rapidly drives down the HOCO survival fraction as eKE
decreases, at the price of poorer DOCO agreement and a
narrower range of eKE over which for either isotope the
survival fraction goes from 1 to 0. Consequently, the SCT and
iSCTST agreement with experiment is not as good as that for
Eckart.

In panel (b), Ey has changed by one quantum from the
value used in panel (c). If the optimized x value were to
remain the same between the two panels, then the HOCO
survival fraction would be the same for both panels but the
DOCO survival fraction would be shifted to lower values of
eKE. If eKE(c) is a particular value of eKE in panel (c), then
the eKE whose E ; is exactly the same as that for eKE(c) can
be determined from Egs. (3) and (4) as

1
eKE = eKE (c) — (; - 1> [Eop () —Eop (D], (6)

For the same x value in panel (c), the DOCO survival frac-
tion would shift down in eKE by the second term in Eq. (6).
(This is not precisely so because decreasing E, also re-
duces N in Eq. (2) but it is the dominant effect.) Since Ej(2)
— Egp(1) =~0.3 eV, any value of x listed in Table I for panel
(c) would shift the computed survival fraction to much lower
values of eKE than seen in experiment. The only remedy is to
optimize to a higher value of x than in panel (c) at the price
of an undershoot for the HOCO survival fraction relative to
experiment and too narrow a range of eKE where the survival
fraction for either isotope goes from 1 to 0.

For panel (a), Ey has changed by one quantum from the
value used in panel (b). A generalized version of the shift in
Eq. (6) causes the HOCO survival fraction of panel (b) to shift
to lower values of eKE in panel (a). This shift is smaller than
between panels (b) and (c) because the values of x involved
from Table I are all greater than 0.5, making the the (1/x — 1)
factor in the shift in Eq. (6) a fraction. The shift at the y value
of panel (b) is still too large, leading to an optimization to a
higher x value at the price of primarily an undershoot of the
computed DOCO survival fraction and primarily an overshoot
of the computed HOCO survival fraction.

Overall, for CASPT?2 panel (c¢) with v, = (1,2) makes
the best contact with experiment, especially for the Eckart
method. Of course, the agreement with experiment is not as
good as panel (c) in Fig. 1 where the potential is adjusted to
reproduce the experiment.

For PIP, the optimized computed survival fraction as a
function of eKE is displayed in Fig. 7 with the optimal value
of x listed in Table I. As in Fig. 6 for CASPT2, the eKE re-
gion width over which the survival fraction goes from O to 1
increases monotonically from panel (a) to panel (c). In this
regard, panel (c) is most like experiment. Like CASPT2, the
separation of the survival fractions for DOCO and HOCO is
largest for panel (b) with panel (c) being smaller and panel (a)
being smallest. The general similarity of Fig. 7 to Fig. 6 and
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FIG. 7. Asin Fig. 5 only for PIP.

of optimal yx values for PIP and CASPT?2 as listed in Table I
lead to the same lower bound estimate to internal energy of
CO,: ~0.15 eV for both HOCO and DOCO in panels (a) and
(c) and ~0.1 eV (HOCO) and ~0.2 eV (DOCO) for panel (b),
all in reasonable accord with the measured values.

The variation of the computed survival fraction from
panel to panel in Fig. 7 can be understood in the same manner
as the variation in Fig. 6. The two primary differences be-
tween the PIP and CASPT?2 results derive from (1) the Eckart
tunneling probability is not substantially different from that
for SCT or iSCTST and (2) the HOCO (but not DOCO) tun-
neling probabilities for all methods are lower for PIP at the
same E . One consequence of these differences is that the
Eckart computed survival fractions do not stand out for PIP
as they do for CASPT2. A second consequence is that the
DOCO survival fractions are nearly the same in each panel
for PIP and CASPT2 but the HOCO survival fractions are
somewhat higher, acting to shift the survival fraction to lower
values of eKE. Overall, panel (c) makes the best contact with
experiment. Relative to CASPT2, agreement with experiment
is marginally worse for SCT and iSCTST and substantially
worse for Eckart.

For PIP-NN, the optimized computed survival fraction as
a function of eKE is displayed in Fig. 8 with the optimal value
of x listed in Table I. The most outstanding feature in Fig. 8
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FIG. 8. As in Fig. 5 only for PIP-NN.
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is the strange behavior of the Eckart probability in panel (c).
The origin of this behavior is that the Eckart maximum sur-
vival fraction is a factor of two below nearby measured values.
In Table I, the optimal value of yx is 0.03, just a little above
zero where from Eq. (3) there would be no dependence of sur-
vival fraction on eKE. The slightly positive optimal value of
x 1is simply trying to make the best out of a qualitatively bad
situation. From Fig. 4, the PIP-NN Eckart tunneling proba-
bility is higher in the deep tunneling regime than any other
tunneling probability in the figure. It is too high to be consis-
tent with experiment if the H-OCO quantum number is 1 as
it is in panels (b) and (c).

The two other tunneling methods produce in Fig. 4 higher
HOCO and DOCO tunneling probabilities than their counter-
parts on the PIP and CASPT2 PESs. As a consequence, in
panel (c) the maximum survival fractions for both isotopes are
lower than for the other PESs but not so low to significantly
undershoot the measurements for both isotopes. The optimal
value of x leads to the survival fraction going from 1 to 0
over a relatively broad range of energies similar to the mea-
surements and to the Eckart survival fractions on CASPT2.
In detail, unlike the CASPT2 or PIP PESs, the DOCO max-
imum survival fractions for SCT and iSCTST are lower than
the nearby measured values and noticeably lower than the
HOCO maximum survival fraction. This results in the DOCO
and HOCO survival fractions being closer together in eKE
space than is measured or as found in the Eckart results on
CASPT2.

The variations from panel (c) found in panels (a) and (b)
of Fig. 8 are driven by the same effects discussed for Figs. 6
and 7. Overall, panel (c) makes the best contact with experi-
ment with the exception of the Eckart computed results that
are qualitatively incorrect.

In Table I, the values of x for CASPT2 are all higher
than the analogous values for PIP-NN. For the case of v,
= (1,2) the CASPT?2 values are about twice as big as those for
PIP-NN. As mentioned in regards to Figs. 2—4 and in Sec. 2
of the supplementary material,”' the CASPT? effective poten-
tial has the same shape as the PIP-NN effective potential but
shifted up in energy. As a consequence, the PIP-NN tunneling
probability at a given E;, is similar to the CASPT2 tunnel-
ing probability at a shifted higher E . The higher CASPT2
x values relative to PIP-NN are attempting to do that although
through Eq. (3) x cannot induce a constant shift independent
of energy.

In Figures 6-8, the best agreement with experiment oc-
curs in panel (c) for the highest quantum states in the H(D)-
OCO stretch. This was also the case in the first application
of the model to an adjustable potential. Within panel (c) there
is sensitivity to both the PES and the tunneling method. The
best results are obtained for CASPT2 with Eckart tunneling
followed by PIP-NN with either SCT or iSCTST tunneling.
These results are characterized by a relatively broad range
of eKE over which the survival fractions change from O to 1
which better tracks the dependence of the measured survival
fractions with eKE.

In the model applied above, yx is restricted to be the same
for both isotopes. There is no inherent physical reason why
this should be the case. Removing that restriction produces
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FIG. 9. Asin Fig. 8 only for isotope-specific optimized values of x. See text
for details.

for v, = (1,2) the results in Fig. 9 for the CASPT2, PIP,
and PIP-NN PESs. (In Fig. 9 for PIP-NN, the qualitatively
incorrect Eckart results have been removed.) Each panel in
this figure can be compared to the appropriate panel (c) in
Figs. 6-8. The two large circles in each panel of Fig. 9 high-
light for each isotope the measurement survival fraction clos-
est to 0.5. As can be seen from Fig. 9, all computed survival
fractions pass quite near these two measurements, something
that is not the case in Figs. 6-8. This is the primary change
of allowing isotopically different values of x for all panels of
Figs 6-8 with the exception of the Eckart results on the PIP-
NN PES in Fig. 8. Only results for v, = (1,2) are shown in
Fig. 9 because this value of v, remains the one where exper-
iment and theory most agree. That agreement is an improve-
ment over that in the earlier figures, especially for the PIP
PES. All of the results in Fig. 9 are in reasonable agreement
with experiment with the Eckart results for CASPT2 and the
SCT or iSCTST results for PIP-NN remaining in best agree-
ment. The variations in x for the results in Fig. 9 are listed in
Table II. The results in Table I for for v, = (1,2) are the ap-
proximate average of the results in Table II. For CASPT2 and
PIP-NN, the isotopic differences for each tunneling method
are quite modest at 0.1 or less with the HOCO value being
larger. For PIP, the isotopic differences are about twice as big
at 0.2 or less with again HOCO being larger. Table II and
Fig. 9 give a lower bound to the product CO, internal en-
ergy of ~0.1 eV for both isotopes for CASPT2 and PIP and

TABLE II. Optimized values of isotopically different x as a function of the
tunneling method and the PES, for initial vibrational state quantum numbers
l)max = (1’2)

PES isotope SCT Eckart iSCTST
CASPT2 HOCO 0.40 0.26 0.45
DOCO 0.30 0.22 0.35
PIP HOCO 0.42 0.54 0.49
DOCO 0.28 0.34 0.30
PIP-NN HOCO 0.18 0.28
DOCO 0.12 0.18




054304-12  Wagner et al.

~0.2 eV for both isotopes for PIP-NN. All of these values are
reasonably consistent with experiment.

V. SUMMARY

The measured H(D)OCO survival fractions by the
photoelectron-photofragment coincidence experiments by the
Continetti group have been qualitatively reproduced by tun-
neling calculations on several recent ab initio potential energy
surfaces for the HOCO system. The tunneling calculations
were not full dimensional quantum dynamics calculations that
are not feasible at this time. Rather they are tunneling cal-
culations through effective 1D barriers based on steepest de-
scent paths computed on each potential energy surface. The
resulting tunneling probabilities are converted into H{D)OCO
survival fractions using a model developed by the Continetti
group in which every oscillation of the H(D)-OCO stretch
provides an opportunity to tunnel with an energy equal to the
energy in the H(D)-OCO stretch plus an adjustable fraction of
the energy available in all the other degrees of freedom. Best
agreement with experiment occurs for the maximum amount
of energy in the stretch [v = 1(2) for H(D)OCO] and a modest
fraction of 0.2-0.4 depending on the tunneling method and
the potential energy surface. Similar results were found by
the Continetti group using an adjustable potential that could
be made to quantitatively represent the measured survival
fractions.

Of the four potential energy surfaces investigated, the
most recently published potential energy surface based on
a permutational invariant polynomial neural network fit to
CCSD(T)-F12a/AVTZ electronic structure calculations over-
all best represented the measured survival fractions. This sur-
face has a larger ab initio data set and a more accurate fit to
the data set than the PIP surface which did not do quite as
well. A partial potential energy surface was constructed for
this study based on CASPT2/AVDZ electronic structure cal-
culations. This surface has a higher barrier by 1.6 kcal/mol
than the neural network surface but a very similar shape. The
higher barrier can be partially compensated for by a higher
adjustable fraction of the non-stretch energy contributing to
tunneling, resulting in computed survival fractions that are
overall the second best representation of the measured values.
The fourth and oldest surface tried is the LTSH surface based
on a variety of electronic structure calculations done for rela-
tively small numbers of HOCO geometries. This surface has
a small discontinuity that had to be repaired for this applica-
tion but the computed survival probabilities are in qualitative
disagreement with the measurements.

On each surface, four different approximate tunneling
methods were tried. Two of those methods qualitatively failed
on at least one surface. These two methods used the least
information about the tunneling path. The Eckart tunneling
method, which only uses the barrier from both directions and
the imaginary frequency, produces too high a tunneling prob-
ability on the neural network surface, leading to survival frac-
tions that peaked out at ~0.5 rather than the measured values
of near 1.0. The semiclassical transition state theory method
embodied in the Multiwell suite of codes uses an up to quar-
tic description of the saddle point region but no direct in-
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formation about the barriers. This method produced qualita-
tively incorrect tunneling probabilities (essentially undefined
probabilities) on all the surfaces except the PIP surface. The
two remaining methods worked on all the surfaces and pro-
duced survival fractions fairly close to each other. One of
these methods is the extensively used small curvature method
embodied in POLYRATE that explicitly uses all of the reac-
tion path calculated at a harmonic level. The second method
is a recently developed improved semiclassical transition state
theory method that uses all the saddle point information of the
original method and also the values of the barriers. This ap-
plication is one of the first for this improved method that has
previously only been applied to model problems. The two suc-
cessful methods operationally trade off the electronic struc-
ture expense of calculating a reaction path at a harmonic level
versus characterizing the saddle point up to a partial quartic
level.

There are many approximations in the calculations that
have been described in this article. Nonetheless, they show
that the measurements are supported by calculations using
the most recent potential energy surfaces and using tunnel-
ing methods that use the most information from those sur-
faces. The measurements are capable of distinguishing differ-
ent tunneling methods on the same potential energy surface.
The approach used here can be applied to other systems and
other experiments where deep tunneling through barriers is
probed.
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