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ABSTRACT

Disorder can have a wide variety of consequences for the physics of phase

transitions. Some transitions remain unchanged in the presence of disorder while

others are completely destroyed. In this thesis we study the effects of disorder on

several classical and quantum phase transitions in condensed matter systems. After a

brief introduction, we study the ferromagnetic phase transition in a randomly layered

Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide

numerical evidence for the exotic infinite-randomness scenario.

We study classical and quantum smeared phase transitions in substitutional

alloys A1−xBx. Our results show that the disorder completely destroys the phase

transition with a pronounced tail of the ordered phase developing for all composi-

tions x < 1. In addition, we find that short-ranged disorder correlations can have a

dramatic effect on the transition. Moreover, we show an experimental realization of

the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in

Sr1−xCaxRuO3.

We investigate the effects of disorder on first-order quantum phase transitions

on the example of the N -color quantum Ashkin-Teller model. By means of a strong-

disorder renormalization group, we demonstrate that disorder rounds the first-order

transition to a continuous one for both weak and strong coupling between the colors.

Finally, we investigate the superfluid-insulator quantum phase transition of

one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-

Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder-

dependent critical behavior.
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1. INTRODUCTION

1.1 PHASE TRANSITIONS AND QUANTUM PHASE TRANSITIONS

Phase transitions are one of the most active condensed matter research ar-

eas, undergoing intensive investigations by both theorists and experimentalists. The

main question is how the macroscopic properties of many-particle systems change

under the variation of a control parameter such as temperature, pressure, magnetic

field or disorder. The phase transitions occur when the system reaches a point of

non-analyticity in the free energy F . Based on the continuity or discontinuity of

the free energy derivatives, the phase transition can be classified as a first-order

or a second-order transition. First-order phase transitions, at which a first deriva-

tive is discontinuous, are distinguished by latent heat and phase coexistence on the

phase boundary. Second-order phase transitions are also known as continuous phase

transitions because the first derivatives of the free energy, such as entropy and mag-

netization, are continuous at the transition point while the second derivatives, such

as magnetic susceptibility and specific heat, show a divergence in the control param-

eter space. Non-analytic properties of systems near a second-order phase transition

are known as critical phenomena while the point of transition in the phase diagram

is called the critical point. At absolute zero temperature, the phase transition can

be driven by a non-thermal control parameter such as pressure, magnetic field, and

disorder. This type of phase transition is called quantum phase transition because it

occurs due to quantum fluctuations [1, 2, 3, 4, 5].

1.1.1. Order Parameter and Landau Theory. In 1937, Landau [6, 7, 8, 9]

developed a theory of phase transitions by introducing the general concept of an order

parameter, a macroscopic thermodynamic quantity, which is zero in a disordered phase
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and develops a finite value in an ordered phase. The magnetization m is an order

parameter in the case of a ferromagnetic phase transition.

Landau theory is a thermodynamic approach. It starts from the free energy

in terms of the order parameter FL(m). Landau suggested that the free energy is

an analytic function of the order parameter and that the critical phenomena can be

explained by expanding the free energy FL(m) in a power series of a spatially uniform

order parameter m (m is small at the vicinity of a critical point)

FL(m) = F0 − hm+ rm2 + vm3 + um4 +O(m5). (1.1)

Here r, v, u are m-independent system parameters and h is an external field conjugate

to the order parameter. If the system is invariant under the symmetry transformation

m → −m, the coefficients of the odd powers of m vanish. The physical state is

obtained by minimizing FL(m) with respect to m. In the absence of an external

magnetic field h, the minimum free energy for r < 0 is always located at m 6= 0

(ordered phase) and at m = 0 for r > 0 (disordered phase). At r = 0, the transition

from m = 0 to m 6= 0 occurs discontinuously for v 6= 0 (first-order phase transition)

and continuously for v = 0 (second-order phase transition). Thus, r is measuring

the distance from the critical point in the control parameter space, r ∝ (T − Tc)

for a thermal transition. In the case of a second-order phase transition, the order

parameter vanishes as m = ±
√

−r/2u when r → −0. Landau theory thus predicts

the order parameter singularity m ∼ |r|β with β = 1/2 for all critical points. This is

an example of the so-called super-universality of Landau theory.

The deficiency of Landau theory is that it assumes that there are no fluctua-

tions in the order parameter about its average value. It turns out that the validity of

this assumption depends on the system’s dimensionality d and on the number of the

order parameter components n since the order parameter fluctuations decreases with

increasing d and n. This leads to the introduction of the upper critical dimension d+c
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and the lower critical dimension d−c . Above d+c , fluctuations can be neglected and

Landau theory provides the correct description of critical behavior. On the other

hand, below d−c , the fluctuations are sufficiently strong to prevent any ordered phase,

and thus there is no phase transition. If d−c < d < d+c , the phase transition exists but

with a critical behavior different from Landau theory predictions. For the thermal

ferromagnetic transition, for example, d+c = 4 for any symmetry and d−c = 2 or 1,

respectively, for Heisenberg and Ising symmetries.

The failure of Landau theory below d+c can be overcome by generalizing the

Landau order parameter m to a coarse-grained position-dependent field φ(x). It is

not a microscopic variable but represents the average of the order parameter over

some small region of space. The Landau free energy (1.1) can now be generalized to

the Landau-Ginzburg-Wilson free energy functional

FLGW =

∫

ddx
[

|∇φ(x)|2 + rφ2(x) + uφ4(x)− hφ(x)
]

. (1.2)

Here, the term |∇φ(x)|2 punishes rapid spatial variations of the order parameter. The

partition function can be found by integrating over all possible fluctuations in φ(x),

which leads to the functional integral,

ZLGW =

∫

D[φ]e−FLGW . (1.3)

1.1.2. The Scaling Hypothesis and Universality. In general, observables

exhibit power-law behavior in the vicinity of the critical point (similar to the order

parameter in the Landau theory), characterized by critical exponents.

Consider, for example, the fluctuations of the order parameter. They are

characterized by its correlation function

G(x) = 〈φ(x)φ(0)〉 (1.4)
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which is generically short-ranged in the bulk disordered phase and decays exponen-

tially with separation x as

G(x) ∼ e−|x|/ξ. (1.5)

Here ξ is the typical length scale of correlations (correlation length). When the critical

point is approached, r → +0, the correlations become longer and longer ranged; ξ

diverges at the transition point,

ξ ∼ |r|−ν (1.6)

where ν is the correlation length critical exponent. The diverging correlation length

suggests that it is the only length scale affecting thermodynamic observables at crit-

icality.

The crucial idea of scaling theory is that thermodynamics properties are in-

variant under a rescaling of all length by positive length scale factor b if the exter-

nal parameters are adjusted such that the correlation length retains its old value.

This leads to a homogeneity relation for the singular part of the free energy density

f = −(T/V ) lnZ,

fs(r, h) = b−dfs(rb
1/ν , hbyh) (1.7)

where yh is another critical exponent [10]. As the scale factor b is arbitrary, we can

set it, for example, equal to r−ν . Inserting this into the free energy density, we obtain

fs(r, h) = rdνψs

(

h

rνyh

)

(1.8)

where ψs is a scaling function that depends on the combination hr−νyh only. Anal-

ogous homogeneity relations can be derived for other thermodynamic quantities by

taking the appropriate derivatives of fs(r, h):

m(r, h) = rβMs

(

h

rνyh

)

, χ(r, h) = r−γχs

(

h

rνyh

)

, C(r, h) = r−αCs

(

h

rνyh

)

(1.9)
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where m,χ and C are the order parameter, susceptibility, and specific heat, respec-

tively. Here β, γ, and α denote the order parameter, susceptibility, and specific heat

critical exponents. For example, the zero field magnetization m can be found by

differentiating the free energy with respect to h giving

m
∣

∣

h=0
= −

(

∂fs
∂h

)

T

= rdν−νyhMs(0) ∝ rβ. (1.10)

Therefore, by comparison, β = dν − νyh. Similarly, at the critical point (r = 0),

m ∼ h1/δ ∼ h(d−yh)/yh . Because the free energy (1.8) contains only two independent

critical exponents, the other critical exponents are related by the so-called scaling

relations

δ − 1 =
γ

β
Widom’s Identity (1.11)

2β + γ + α = 2 Rushbrooke’s Identity. (1.12)

Finally, consider the scaling of the correlation function G(x, r, h),

G(x, r, h) = b−2β/νGs(xb
−1, rb1/ν , hbyh) ∼ x−(d−2+η), (1.13)

for x . ξ. As the susceptibility is given by the following integral

χ ∼
∫ ξ

1

ddxG(x), (1.14)

this leads to

γ = ν(2− η) Fisher’s identity. (1.15)

Now, if one uses the correlation length to scale the free energy (b = ξ), one obtains

fs ∼ ξ−d ∼ r2−α with

2− α = dν Josephson’s Identity. (1.16)
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All these scaling relations hold below d+c where the critical behavior is dominated by

fluctuations. In dimensions higher than the upper critical dimension d+c , the critical

behavior is governed by the conventional mean field theory (MFT) where all the

critical exponents assume dimension independent values. Therefore, the Josephson

relation (also known as the hyperscaling relation) which depends on the dimensionality

d is valid only below the upper critical dimension, d < d+c .

1.1.3. Finite-Size Scaling. In general, a sharp phase transition can only

emerge for infinite system size (thermodynamic limit) where the correlation length

is the only relevant length scale. The effects of a finite system size on the critical

behavior are very important for computational applications and also for many exper-

iments, for instance in nano-materials. Finite-size effects are quantitatively described

by the finite-size scaling theory [11, 12, 13]. This theory starts from the observation

that the inverse linear system size L acts as an additional parameter similar to the

reduced temperature r on the external field h which drives the system away from the

critical point at L =∞. For sufficiently large but finite systems, the finite-size effects

are governed by the ratio L/ξ∞ only. Thus, the classical homogeneity relation (1.7)

for the free energy density [10] can by generalized to

f(r, h, L) = b−dfs(rb
1/ν , hbyh , Lb−1). (1.17)

As b is arbitrary, one can set b = L and h = 0 to obtain f(r, L) = L−dΘf (rL
1/ν) where

Θf (rL
1/ν) is a dimensionless scaling function. Let us apply this scaling form to a situ-

ation in which the finite-size system does have a sharp phase transition (for example,

a layered system in which only the thickness is finite). As this transition corresponds

to a singularity in Θf at some nonzero argument xc = rcL
1/ν , its transition tempera-

ture Tc(L) is shifted from the bulk value Tc0(L =∞) as Tc(L) = Tc0 +AL−1/ν . Here,

A is non-universal constant. This finite-size scaling argument is only valid below the

upper critical dimension d+c of the phase transition. Above d+c , finite-size scaling can
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be generalized and the shift in the critical temperature is given by

Tc(L) = Tc0 + AL−φ (1.18)

where the shift exponent φ is in general different from 1/ν.

This finite-size scaling theory is widely used to analyze computer simulations

data of phase transitions. By fitting the simulation data to finite-size scaling forms,

we can get values of the critical exponents which are required to describe the critical

behavior.

1.1.4. Quantum Phase Transitions. So far, we have discussed phase tran-

sitions occurring at nonzero temperatures. In 1976, Hertz [14] pioneered the investiga-

tion of a new class of phase transitions occurring at zero temperature. He started from

the fact that the critical temperature Tc of a given transition depends on other pa-

rameters such as the doping and external magnetic field. In some systems, the critical

temperature can be suppressed without limit, leading to Tc = 0. This can be seen in

Figure 1.1 where the classical critical point (dotted line) decreases continuously with

increasing nonthermal parameter g. At gc where the transition temperature reaches

T = 0, there will be no thermal fluctuations, and thus the order-disorder phase tran-

sition must be driven by nonthermal fluctuations. At this point, quantum mechanics

starts playing an important role. The zero-temperature phase transition is driven by

quantum fluctuations [3] which stem from Heisenberg’s uncertainty principle. It is

thus called a quantum phase transition.

The basic phenomenology of a second-order quantum phase transition is sim-

ilar to that of a second-order classical transition. As the phase transition point, i.e.,

the critical point, is approached, the spatial correlations of the order parameter fluc-

tuations become long-ranged. Close to the critical point their typical length scale,

the correlation length ξ, diverges as ξ ∼ r−ν where ν is the correlation length critical
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Figure 1.1: Schematic phase diagram in the vicinity of a quantum critical point
(QCP). The dotted line is the finite-temperature phase boundary while
the dashed lines are crossover lines separating different regions within the
disordered phase.

exponent and r is some dimensionless distance from the quantum critical point. Anal-

ogously, the typical time scale for a decay of the fluctuations is the correlation time

ξτ . As the critical point is approached the correlation time diverges as ξτ ∼ ξz ∼ r−zν

where z is the dynamical critical exponent. Correspondingly, the typical frequency

scale ωc goes to zero and with it the typical energy scale ~ωc ∼ rνz.

An argument for explaining when quantum phase transitions become impor-

tant can be achieved by distinguishing fluctuations with predominantly thermal and

quantum character. Because of the competition between the thermal energy kBT

and the quantum energy scale ~ωc, quantum fluctuations are important as long as

~ωc > kBT . The zero-temperature phase transition is thus completely controlled by

quantum physics. Consequently, transitions at zero temperature are called quantum

phase transitions. However, if the phase transition occurs at a finite temperature, it

is entirely classical even if the properties of the order state are determined quantum
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mechanically because ωc → 0 at criticality. The crossover to quantum behavior oc-

curs when |r| > rx ∝ T
1/νz
c , see Fig. 1.1. Here, r is the reduced distance from the

quantum critical point along the quantum tuning parameter axis, r = (g − gc)/gc.

To generalize the homogeneity law (1.7) to the case of a quantum phase tran-

sition, one can consider a system characterized by a Hamiltonian H = Hkin + Hpot.

Because the quantum Hamiltonian terms Hkin and Hpot in general do not commute,

the partition function does not factorize, Z 6= ZkinZpot. However, the canonical den-

sity operator eH/kBT can be reformulated to look exactly like a time evolution operator

in imaginary time τ . This can be achieved by identifying 1/kBT = τ = −it/~ where

t denotes the real time. This introduces the so-called imaginary time direction into

the system.

As we will see later in this subsection, since the extension of the system in

imaginary time direction is infinite at zero-temperature (1/kBT =∞), the imaginary

time acts similarly to an additional spatial dimension. Using the fact that the time

and the length scales are related by the dynamic critical exponent z as ξτ ∼ ξz, one

can adapt the homogeneity relation (1.7) to the case of a quantum phase transition.

It therefore reads

f(r, h) = b−(d+z)f(rb1/ν , hbyh). (1.19)

Comparing the homogeneity laws in a thermal case (1.7) and a quantum case (1.19)

explicitly shows that a quantum phase transition in d dimension and a classical phase

transition in d+ z spatial dimension are equivalent.

The behavior at small but finite temperatures is determined by the crossover

between the quantum critical behavior at T = 0 and classical critical behavior at

non-zero temperatures, see Fig. 1.1. The crossover from quantum to classical be-

havior occurs when the correlation time ξτ reaches 1/(kBT ). The quantum-classical

crossover can be observed by fixing the temperature at a small finite value and tuning
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the nonthermal parameter g from the quantum-disordered regime all the way to the

ordered phase.

The quantum homogeneity law (1.20) can be generalized to finite temperature

by including the temperature as an explicit parameter which scales like inverse time

(imaginary time). Thus, the free energy reads

f(r, h) = b−(d+z)f(rb1/ν , hbyh , T bz). (1.20)

The quantum critical point also controls the so-called quantum critical re-

gion [15]. This region is located at gc but at relatively high temperatures where the

fluctuations are thermal. In this region the system is driven away from criticality at

gc by the temperature (i.e., the temperature protects the system from being singular).

Therefore the temperature scaling at the quantum critical point can be observed by

carrying an experiment that lowers the temperature at fixed g = gc. Because statics

and dynamics are coupled, the scaling properties of static quantities in the quantum

critical region are also affected by the dynamical scaling exponent z of the quantum

phase transition. Thus, quantum criticality is not just an abstract concept, it can be

observed experimentally.

Now, we briefly demonstrate the quantum-to-classical mapping method which

connects the observables of a d-dimensional quantum system to that of a (d + 1)-

dimensional classical system. Technically, this method relies on factorizing the canon-

ical quantum partition function Z into kinetic and potential energy parts even if they

are coupled (do not commute)! This can be performed as follows: One can rewrite

the partition function using the Trotter decomposition [16, 17] as

Z = Tre−H/kBT = lim
N→∞

Z(N) (1.21)
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where Z(N) is the N -approximant of the partition function given by

Z(N) = Tr
[

e−τH/N
]N

= Tr
[

e−∆τH
]N
. (1.22)

where ∆τ = τ/N . The commutator of the kinetic and potential energies is obtained

by including the imaginary time increment ∆τ in the calculations which leads to

[∆τHkin,∆τHpot] = (∆τ)2[Hkin, Hpot] ≈ 0. (1.23)

Thus, since ∆τHkin and ∆τHpot commute to leading order in τ , the Trotter decom-

position e(A+B) = eAeBe−1/2[A,B] can be applied to factorizing the N -approximant of

the partition function as

Z(N) = Tr
[

e−∆τHkine−∆τHpot
]N
. (1.24)

By inserting N complete sets of eigenstates for the Hkin terms, the partition function

can be written as

Z(N) =
∑

{αj,n}

N
∏

n=1

e−∆τHkin(αj)
〈

{αj}n
∣

∣e−∆τHpot(αj)
∣

∣ {αj}n+1

〉

. (1.25)

Here, n is the index of the imaginary time. To get the classical Hamiltonian of the

system, we need to evaluate the off-diagonal terms (Hpot terms in Eqn. 1.25). As an

example, consider the transverse-field Ising model,

H = −
∑

<i,j>

JijS
z
i S

z
j −

∑

i

hiS
x
i , (1.26)

one of the famous models in the theory of quantum phase transition. After the

quantum-to-classical mapping, the classical Hamiltonian of the transverse-field Ising
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model is found to be

Hclass = −
∑

〈i,j〉,n
J̃iS

z
i,nS

z
i+1,n −

∑

i,n

J̃τi S
z
i,nS

z
i,n+1 (1.27)

where J̃i = βJij/N and J̃τi = ln
√

coth(βhj/N) are the coupling in the space and

time directions, respectively.

1.2 QUENCHED DISORDER EFFECTS

Completely pure systems rarely exist in the real world and thus many investi-

gations focus on disordered systems. Disorder can appear in various forms including

impurity atoms and crystal defects. This work focuses on time-independent disorder

(quenched disorder). This means the impurities and defects are frozen-in, in contrast

to so-called annealed disorder which fluctuates on short time scales. Moreover, we

consider weak (random-Tc or random-mass) disorder, whose main effects are spatial

variations of the coupling strength.

Random-Tc disorder does not change the bulk phases qualitatively and it only

affects the phase transition point. Random-Tc disorder can be considered in a LGW

theory by making the bare distance from the critical point a random function of

spatial position, r → r0 + δr(x). For example, a d-dimensional LGW theory in the

presence of disorder reads

FLGW =

∫

ddx
[

|∇φ(x)|2 + (r0 + δr(x))φ2(x) + uφ4(x)− hφ(x)
]

. (1.28)

Adding weak, random-Tc, quenched disorder to a clean system that exhibits a

phase transition raises the following questions:

(a) Will the transition remain sharp (associated with a true singularity in free energy

F ), or it will be smeared out?
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(b) Will the order of the transition (first-order vs. continuous) change?

(c) If the transition remains sharp and continuous, does the disorder change the

critical behavior quantitatively (different universality class with new exponents)

or qualitatively (exotic non-power law scaling)?

(d) Does the disorder only affect the transition itself or also the behavior in its vicin-

ity?

1.2.1. Harris Criterion. Harris [18] derived a criterion for the stability of

a clean critical point against weak, random-Tc, disorder. He divided the system into

blocks of volume V = ξd [13]. Each block i behaves independently so that it has

its own effective local critical temperature Tci found by averaging r + δr(x) over the

volume of block i, see Fig. 1.2. Harris observed that a sharp phase transition can only

occur if the standard deviation ∆r of these local critical temperatures from block to

block is smaller than the global distance from the critical point r. For short-range

correlated disorder, the standard deviation of ∆r can be found using the central limit

theorem yielding ∆r ∼ ξ−d/2. By considering the definition of ξ ∼ r−ν we have

∆r ∼ rdν/2. Thus, a clean critical point is perturbatively stable for r → 0, if the

clean critical exponents fulfill the inequality rdν/2 < r or dν > 2.

The behavior of the disorder strength with increasing the length scale, i.e,

under coarse graining, can be used to classify critical points with quenched disor-

der [19, 20, 21] as:

(i) The Harris criterion is fulfilled. In this, case the relative disorder ∆r/r decreases

under coarse graining, and the system becomes asymptotically homogeneous at

large scales. Consequently, the critical behavior of the dirty system is identical

to that of the clean system. An example of this class is the three dimensional

Heisenberg model which has ν = 0.698 [22] for both clean and dirty cases.
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Figure 1.2: Schematic depiction of a random-Tc model shows the fragmentation of the
system by disorder into independent blocks with different local critical
temperature.

(ii) The relative disorder strength increases to a finite value, i.e., the system stays

inhomogeneous at large length scales. In this case, quenched disorder generally

makes quantitative changes to the critical behavior of the clean system. The

phase transition stays sharp and features power-law scaling but with new critical

exponents, i.e., the system is in a new universal class. The three-dimensional

Ising model is an example of this class with ν = 0.627 in the clean case [23] and

a different value ν = 0.684 in the disordered one [24]. Note that the new value

of ν = 0.684 satisfies the inequality dν ≥ 2.

(iii) The relative disorder strength increases without limit under coarse graining. In

this class, quenched disorder makes qualitative changes to the critical behavior

of the clean system, i.e., the scaling is qualitatively modified to be exponential

instead of power-law. This class was first found in the McCoy-Wu model [25, 26]

(two-dimensional Ising model with disorder perfectly correlated in one dimen-

sion) or in the one-dimensional random quantum Ising model.
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The critical point of class (iii) is known as an infinite-randomness critical

point [19, 27, 28]. Its macroscopic observables have extremely broad probability

distributions whose widths diverge with system size. Consequently, the averages

of the observables are dominated by rare events, e.g., spatial regions with atypical

disorder configurations. This type of critical point was fully understood only when

Fisher [28] solved the random transverse-field Ising chain using the Ma-Dasgupta-Hu

real space renormalization group [29, 30].

1.2.2. Rare Regions and Griffiths Effects. In the last subsection, it was

mentioned that if the critical point belongs to Harris class (iii), it will be dominated

by rare events. In this subsection, we explain the physics of these rare events in more

detail, using a diluted classical ferromagnet as an example. The random dilution

reduces the clean system’s critical temperature Tc0 to Tc. In a sufficiently large system,

one can find arbitrarily large regions that are devoid of impurities and are known as

rare regions (RR), see Fig. 1.3. For temperatures between the clean and disordered

critical temperatures, these regions show local magnetic order even though the bulk

system is globally in the paramagnetic phase (disordered phase). Griffiths [31] found

that these rare regions lead to a singularity in the free energy, the Griffiths singularity,

in the entire temperature range Tc < T < Tc0 which is now known as the Griffiths

region or Griffiths phase [32]. Analogous singularities also exists on the ordered

side of Tc. The probability of finding a rare region depends on its volume VRR as

P (VRR) ∼ exp (−pVRR) where p depends on the impurity concentration. In addition,

the dynamics of rare regions are very slow because flipping them requires a coherent

change of the order parameter over a large volume VRR. In classical systems with

short-ranged disorder, the Griffiths singularity in the free energy is only an essential

one [33, 34, 35, 36] implying very weak thermodynamic Griffiths effects. The rare

regions effects can be qualitatively increased by long-range correlated disorder. In

particular, if the disorder is perfectly correlated in some spatial direction, the rare

regions are extended objects in space which generally enhances their effects.
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Figure 1.3: Sketch of a diluted magnet. The shaded region is devoid of impurities
and therefore acts as a piece of the clean bulk system.

The significance of rare regions in a given system can be characterized based

on the competition between their probability P (VRR) and their contributions to the

thermodynamic observables. We know how their probability exponentially depends

on their volume, P (VRR) ∼ exp (−pLdRR), so we need to know how the thermodynamic

quantities depend on LRR. For this purpose, let us consider a rare region that is locally

in the ordered phase. Its bare distance from criticality in the LGW theory is r < 0.

Three different scenarios emerge depending on the effective dimensionality dRR of the

rare regions [21, 37]:

(i) For dRR < d−c , the rare region can not undergo the phase transition by itself.

Thus, its renormalized distance from criticality r̃(LRR) > 0 decreases as a power

of LRR for LRR → ∞. Therefore, the contributions of the rare region to the

thermodynamic quantities increase at most as power-laws in LRR which can not

overcome the exponential reduction in p(VRR). Thus, all the rare regions effects

are exponentially weak at the critical point.
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(ii) For d = d−c , the rare region still can not undergo the phase transition by itself

but the renormalized distance form the criticality r̃ decreases exponentially with

VRR. Its contributions to observables therefore grow exponentially with LRR

which can overcome the suppression in P (VRR). The resulting effect is that the

rare regions dominate the critical point leading to exotic exponential scaling

(e.g., infinite-randomness critical point of McCoy-Wu model) and power-law

(quantum) Griffiths singularities.

(iii) For dRR > d−c , the rare region can undergo the phase transition by itself and

independently from the bulk system. This case implies that the dynamics of

the locally ordered rare regions completely freezes leading to a true static order

parameter. Because the transition point depends on LRR (see section 1.2.3),

different rare regions can order at different values of the control parameter.

These local phase transitions destroy the sharpness of the global second-order

phase transition leading to a smeared phase transition. The ordered phase

features an exponential tail. The three-dimensional Ising model with planar

defect (layered Ising model) is an example of such behavior [38, 39, 40].

Indications of quantum Griffiths singularities (class ii) were recently observed

in experiments on some metallic systems such as magnetic semiconductor

Fe1−xCoxS2 [41, 42, 43], Kondo lattice ferromagnet CePd1−xRhx [44, 45], and transi-

tion metal ferromagnet Ni1−xVx [46, 47].

1.2.3. Smeared Phase Transition. In the last subsection, we have seen

that disorder smears the global phase transition if the rare regions can undergo the

transition independently, i.e., if their dimensionality dRR > d−c . This can happen both

for thermal phase transitions (see e.g., [38, 39, 40]) and for quantum phase transitions

(see e.g., [48, 49, 50]).

The first route to a smeared phase transition involves extended defects. At

nonzero temperatures (i.e., for thermal transitions), a rare region can only undergo



18

a true phase transition if it is infinitely large in at least one dimension. Thus, the

smearing of the thermal phase transition requires extended defects of a dimensionality

larger than d−c (disorder perfectly correlated in some of the directions). For example,

the layered Ising model with planar defects has rare region dimensionality dRR = 2

larger than the lower critical dimensionality of Ising symmetry d−c = 1. This model

was shown to have a smeared phase transition [39, 40]. On the other hand, the same

layered system but with Heisenberg spin symmetry has dRR = d−c = 2. We will

show in this thesis that its transition is not smeared but sharp and governed by an

infinite-randomness critical point [51].

At zero-temperature quantum phase transitions, the quantum-to-classical map-

ping relates the d-dimensional quantum system to a (d+1)-dimensional classical sys-

tem where the extra dimension represents imaginary time τ . Quenched disorder is

time-independent, thus it is perfectly correlated in time direction. These strong corre-

lations dramatically increase the effects of the rare regions because they are infinitely

extended in the time direction (see Fig, 1.4) even if they are finite in space. For exam-

ple the d-dimensional random quantum Ising model maps onto a (d+1)-dimensional

classical Ising model. Point defects in the quantum model correspond to line defects

in the classical one. In this case dRR = 1 ≤ d−c , thus the transition is still sharp.

However, line defects in the quantum model lead to plane defects in classical one and

thus a smeared phase transition.

The second route to a smeared phase transition involves damping of the order

parameter fluctuations and works only for zero-temperature quantum phase transi-

tions. The damping of the order parameter fluctuations in a metal is an example of

this case. This damping is caused by the coupling between the magnetic modes and

the gapless particle-hole excitations in the metal. Quantum phase transitions in met-

als are theoretically approached by the so-called Hertz-Millis theory [14, 52] which can

be derived from an appropriate microscopic Hamiltonian of interacting electrons. By

integrating out the fermionic degrees of freedom in the partition function in favor of
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Figure 1.4: Sketch of the rare region in a quantum system. The rare region is perfectly
correlated in imaginary time direction τ .

the order parameter field φ, one can obtain the free energy functional S[φ]. Assuming

that the resulting free energy functional S[φ] can be expanded in a power series in the

order parameter field φ with spatially local coefficients yields a (d + 1)-dimensional

Landau-Ginzburg-Wilson (LGW) order parameter field theory [53, 54, 55, 56]. For

definiteness, let us consider the itinerant antiferromagnetic transition at d > 2. The

Landau-Ginzburg-Wilson free energy functional of the clean transition reads [14]

S =

∫

ddxddydτdτ ′φ(x, τ)Γ(x, τ,y, τ ′)φ(y, τ ′) + u

∫

ddxdτφ4(x, τ) (1.29)

where Γ(x, τ,y, τ ′) is the bare interaction (bare two-point vertex) and its Fourier

transform has a linear dependence on the Matsubara frequency ωn as

Γ(q, ωn) = r + ξ0q
2 + γ(q)|ωn|. (1.30)
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Here, r is the bare distance from criticality, ξ0 is a microscopic length scale, and the

dynamic term γ(q)|ωn| accounts for the damping of the order parameter fluctuations

due to the excitation of fermionic particle-hole pairs. This linear dependence on

ωn implies that the so-called Landau damping is Ohmic. In contrast, undamped

dynamics would lead to an ω2
n term.

Weak, random-mass disorder can be introduced by making r a random func-

tion of position, r → r0 + δr(x) [14, 57]. The rare regions in this system are large

spatial regions where the local r is smaller than its average value. The significant

difference between the itinerant magnets and localized spin systems is in the dynam-

ics of the rare regions. Millis, Morr, and Schmalian [58, 59] explicitly calculated the

tunneling rate of a locally ordered rare region in an itinerant Ising magnet. Their

results showed that the tunneling rate vanishes for sufficiently large rare regions. This

means, these rare regions completely stop tunneling, and thus they undergo a true

phase transition. In other words, the low-energy behavior changes qualitatively in

the presence of damping. In particular, each locally ordered cluster (Griffiths rare

region) corresponds to a dissipative two-level system [60] whose dissipation strength

increases with its size. This model undergoes a quantum phase transition from a

fluctuating ground state (weak dissipation) to a localized ground state (strong dis-

sipation). Thus, if rare regions are sufficiently large, they freeze and develop static

order [58, 59]. The same result can be obtained from the quantum-to-classical map-

ping [48]. In the equivalent classical system (quasi-one-dimensional Ising model), the

rare region is finite in the space directions and infinite in the time-like direction. The

linear frequency dependence in the two-point vertex Γ is equivalent to a long-range

interaction in imaginary time of the form (τ − τ ′)−2. Each rare region is thus equiv-

alent to one-dimensional Ising model with a 1/x2 interaction. This model is known

to have a phase transition [61, 62]. Thus, true static order can develop on those rare

regions which are locally in the ordered phase. As a result, the global phase transition
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in the itinerant Ising magnet is smeared [48] by the same mechanism as the transition

in a classical Ising model with planer defects.

Moreover, smeared phase transitions can be modified by short-range spatial

disorder correlations (changes in the exponents that characterize the order parameter

and the critical temperature), thus systems with uncorrelated disorder and short-

range correlated disorder behave differently [63]. This stems from the fact that form-

ing Griffiths rare-regions is easier in case of short-range correlated disorder than for

uncorrelated disorder leading to an enhancement of the smeared phase transition’s

tail. It is in contrast to continuous phase transitions, where both uncorrelated and

short-range correlated disorder lead to the same critical point. The reason is that

smeared phase transitions are governed by a finite length scale (the minimum size of

ordered rare region) whereas the critical behavior emerges at infinitely large length

scales.

1.2.4. Rounding of First-Order Phase Transitions. All previous discus-

sions about quenched disorder effects were based on assuming that the clean system

undergoes a second-order phase transition. Thus, the obvious question is what are

the effects of quenched disorder on a first-order phase transition? As first-order phase

transitions are characterized by phase coexistence, we can ask, is macroscopic phase

coexistence at the transition point still possible in the presence of disorder?

Imry and Ma [64] first attacked this question by extending Peierls argument ∗

[65, 66] to the case with randomness. They noticed that disordered systems tend to

lower their free energy by forming domains of the competing phases. The free energy

difference due to forming a domain contains two contributions, bulk and surface terms.

Consider a clean system undergoing a first-order phase transition between

phases A and B. At the transition point, the Gibbs free energy densities are identical

fA = fB = f0. In the presence of disorder, one phase is locally preferred over the

∗in order to deform the ground state {↑} in the interior of a contour C to another ground state
{↓} costs a “surface energy” 2|C|, while by symmetry, the “bulk energies” of the two ground states
are the same.



22

other

fA(x) = f0 + δf(x), fB(x) = f0 − δf(x) (1.31)

where δf(x) is a random quantity with standard deviation ω. The domain wall

between the A and B phases has a surface energy (energy per area) σ. For an Ising

magnet, the surface energy between the up and down phases at low temperatures is

σ = 2J . The free energy density fd = fsurf + fbulk of a domain of size Ld is given by

fd =
σ

Ld
− ω

L
d/2
d

. (1.32)

The first term is the domain wall energy. The second term stems from aligning the

domain with the average δf(x); the L
d/2
d dependence stems from the central limit

theorem.

To find the minimum size Lmind for a stable ordered phase, one can differentiate

the free energy density, Eqn. 1.32, with respect to Ld to get

Lmind =

(

2

d

σ

ω

) 2
2−d

. (1.33)

For d > 2, the surface term dominates with an unphysical peak at Ld smaller than

the lattice space a; and the minimum free energy can be reached only at Lmind →∞,

see Fig. 1.5. Thus, the formation of finite-size domains is unfavorable, and quenched

disorder does not round the first-order phase transition for d > 2. If d < 2, the

minimum free energy occurs for finite domains with typical linear size Lmind . Con-

sequently, disorder prevents macroscopic phase coexistence, and thus destroys the

first-order phase transition. Often, this results in a continuous phase transition, but

other scenarios such as intermediate phases or a complete destruction of the transi-

tion cannot be excluded. For d = 2, the two parts of free energy density fd compete

and a more rigorous analysis is required. Aizenman and Wehr [67] rigorously proved
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Figure 1.5: Sketch of the free energy density vs. domain linear size.

that phase coexistence cannot be found for d ≤ 2. Greenblatt et al. [68] extended the

Aizenman-Wehr theorem to quantum systems at zero temperature.

1.3 RENORMALIZATION GROUP THEORY

The renormalization group is a theoretical framework for investigating how the

properties of a physical system change with changing length scale. Coarse graining

to larger length scales introduces a mapping of the physical system onto itself but

with changed parameters. The fixed points of this mapping correspond to self-similar

systems. Critical points are examples of such fixed points, they are self-similar be-

cause the correlation length is infinite. The renormalization group (RG) technique

for critical phenomena was inspired by the scaling concept of Kadanoff [69] and sub-

sequently developed by Wilson [70] to be a powerful technique for the understanding

of the phase transition problems.

The basic idea of the RG can be illustrated by Kadanoff’s block-spin argu-

ment. As the critical point of a system is approached, its correlation length increases

dramatically. Kadanoff argued that since spins are correlated over scales up to the
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correlation length ξ, it is plausible to regard spins within regions up to size ξ to be-

have as a single block spin. Thus, one should be able to describe the physics close to

the transition in terms of these block-spin variables. In this spirit, Kadanoff’s real-

space renormalization group procedure can be summarized as follows: (a) Divide the

system into blocks of linear size b . ξ where each block contains bd spins (b) Replace

each block of spins by a single spin using some coarse graining rule (c) Rescale all

lengths by b to restore the original lattice space. After each RG step, the system’s

partition function has to retain its original form but in terms of the new couplings

so that the transformed system has the same physical behavior as the original one.

This RG procedure decreases the number of degrees of freedom and generates a flow

in parameter space. Analyzing this flow gives access to the critical behavior.

1.3.1. Strong-Disorder Renormalization Group Technique. Conven-

tional RG methods only treat the evolution of a small number of parameters in the

Hamiltonian under coarse graining. Moreover, they are often implemented in mo-

mentum space. These methods are not particularly well suited to disordered systems

which are not translationally invariant and contain a large number of independent

parameters. In 1979, Ma, Dasgupta, and Hu [29, 30] developed an RG method for

disordered systems. Because it works the better the stronger the disorder is, this

method is now called the strong-disorder renormalization group (SDRG).

The basic idea of the SDRG method is to determine the largest local energy

(e.g., the strongest exchange coupling in a spin system) and the ground state of its

corresponding local Hamiltonian exactly. Then we perturbatively treat the interaction

of this degree of freedom with the remaining system. After neglecting the excited

states of our strongest coupling, a new effective Hamiltonian arises with a reduced

number of degrees of freedom. This step is iterated till we reach the desired low-energy

description of the system.
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D. Fisher [27, 28] successfully applied the SDRG technique to the one-dimensi-

onal random transverse-field Ising model (RTFIM)

H = −
∑

i

Jiσ
z
i σ

z
i+1 −

∑

i

hiσ
x
i (1.34)

where he exactly calculated the critical behavior. Here, the transverse field hi > 0

and the nearest-neighbor interaction Ji > 0 at the lattice site i are independent

random variables drawn from random distributions. {σαi } are quantum spin operators

represented by Pauli matrices.

At zero temperature, in the absence of a transverse field, all the spins will be

aligned in the z-direction leading to a magnetic moment µz. If we gradually apply

a transverse field at zero temperature, tunneling events between up and down will

occur due to Heisenberg uncertainty principle between σz and σx. These fluctuations

are known as quantum fluctuations which lead to an order-disorder quantum phase

transition (QPT) when the transverse field reaches a critical value hc [2, 3].

1.3.2. SDRG Recursions. We start the procedure by determining the max-

imum local energy in the system, Ω = max(Ji, hi). Suppose the maximum local energy

is the bond at site 2, Ω = J2. The two spins that interact via Ω like to be paral-

lel and flip coherently. The unperturbed Hamiltonian of this segment of the system

HΩ = −Ωσz2σz3, has two degenerate ground states | ↑2↑3〉 and | ↓2↓3〉 where each is

separated by the energy gap 2J2 from two excited states | ↑2↓3〉 and | ↓2↑3〉. Then, the

interactions of the two adjacent spins with the transverse field, V (h) = −h2σx2−h3σx3 ,

are treated in second-order degenerate perturbation theory which results in an effec-

tive Hamiltonian Heff = const.− h̃σ̃x2 with a renormalized field

h̃ =
h2h3
Ω

. (1.35)

This renormalized field interacts with a single effective spin σ̃x2 composed of the rigidly

locked connected spins σ2 and σ3 as a spin cluster. Then, the excited states of HΩ are
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Figure 1.6: A schematic representation of a single strong disorder renormalization
group step for the special case of Ω = J2. The height of the dotted line
represents the coupling’s (J and h) strengths.

neglected, and a new effective Hamiltonian is derived with the number of degrees of

freedom reduced by one. This procedure is explained schematically in Fig. 1.6. The

effective spin σ̃2 has a renormalized magnetic moment given by

µ̃ = µ2 + µ3. (1.36)

On the other hand, suppose the strongest coupling in the system is a field,

say Ω = h2, therefore the local unperturbed Hamiltonian of this piece is given by

HΩ = −Ωσx2 with ground state | →〉 = 1√
2
| ↑〉 + 1√

2
| ↓〉 separated by energy gap 2h2

from its excited state | ←〉 = 1√
2
| ↑〉 − 1√

2
| ↓〉. The coupling to the nearest neighbors

given by V (J) = −J1σz1σz2 − J2σ
z
2σ

z
3 is considered as a perturbation. Because the

spin at site 2 points in the x-direction, it does not contribute to the order parameter.

The SDRG suggests to decimate it, leading to a direct effective interaction J̃ between

its nearest neighbors. This procedure is explained schematically in Fig. 1.7. The
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Figure 1.7: A schematic representation of a single strong disorder renormalization
group step for the special case of Ω = h2. The height of the dotted line
represents the couplings (J and h) strengths.

new effective coupling can be obtained from treating V (J) in the second-order of

perturbation theory. The result is an effective Hamiltonian Heff = const. − J̃σz1σz3 ,

and the effective coupling J̃ reads

J̃ =
J1J3
Ω

. (1.37)

Since both J̃ and h̃ are always weaker than any of the original couplings, the SDRG

steps reduce the overall energy scale of the system. The quantum phase transition

can be reached by iterating SDRG steps until we lower the energy level to Ω = T = 0.

In the paramagnetic phase, decimating sites dominates as Ω→ 0. Therefore, no large

cluster of spins are formed whereas in the ferromagnetic phase, gathering of sites

dominates, and an infinite cluster is built at Ω = 0.

1.3.3. Flow Equations. Iterating the above SDRG steps results in a renor-

malization of the probability distributions of the couplings (h and J) and magnetic

moments µ. For the random-transverse field Ising chain, closed form solutions of the
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fixed-point distributions can be found, and many physical quantities can be derived

from them.

The random transverse-field Ising chain is topologically preserved and the cou-

plings J̃ and h̃ are independent at each stage of SDRG but the probability distribu-

tions of the transverse fields, P (h), and interactions, R(J), evolve during the SDRG

process. To describe how P (h) and R(J) behave as the energy scale is reduced,

Fisher [28] wrote RG flow equations of these distributions. Due to the multiplica-

tive form of the recursion relations, Fisher worked with logarithmic variables ln J

and lnh, and the resulting flow equations showed that the distributions get broader

and broader with decreasing Ω. Therefore, the perturbative decimation approxima-

tion in the SDRG steps gradually improves with iterating the SDRG steps. In the

case of an unbounded increase of the distribution’s width, which is the case in RT-

FIM at criticality, the SDRG technique becomes asymptotically exact, and the errors

made during the early stage of SDRG only affect nonuniversal coefficients but not

the critical behavior. This result can be simply explained: An infinite width of the

distributions means that one is very unlikely to find two neighboring couplings with

high energy, thus any ratio hi/Ji either goes to zero or to infinity.

The flow equations were solved using logarithmic variables, Γ = ln(ΩI/Ω),

ζ = ln(Ω/J), and β = ln(Ω/h) where ΩI is the strongest coupling initially found in

the system. At the critical point r = 0 where r ∼ 〈lnh〉−〈ln J〉 measures the distance

from criticality, the probability distributions were found analytically as

p(ζ) =
1

Γ
e−ζ/Γ, R(β) =

1

Γ
e−β/Γ (1.38)

where the diverging width Γ gives the infinite-randomness critical point (IRCP) its

name. Note that the couplings and the transverse fields are dual variables (RTFIM

Hamiltonian is invariant under the transformations: σzi σ
z
i+1 → τxi , σ

x
i → τ zi τ

z
i+1, and

hi ↔ Ji where {τα} are the dual Pauli operators). Thus, the quantum critical point
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is located at the self-duality point r = 0. In order to completely solve the critical

behavior, the magnetic moment µ and the cluster length l have to be included in the

SDRG calculations in the form of joint distributions R(β, lb : Γ) and P (ζ, ls, µ; Γ).

In addition to this fixed point at r = 0, there are two lines of fixed points for

the ordered (r < 0) and the disordered (r > 0) Griffiths phases.

1.3.4. Summary of Key Quantities. The solution of the critical behavior

is characterized by three independent critical exponents, the correlation length expo-

nent ν = 2, the tunneling exponent ψ = 1/2, and the exponent characterizing the

moments of the clusters φ = (1+
√
5)/2. The correlation length exponent ν describes

how the correlation length diverges when approaching the critical point via

ξ ∼ |r|−ν . (1.39)

On the other hand, the tunneling critical exponent ψ controls relation between length

scale L and the energy scale Ω,

L ∼ [ln (ΩI/Ω)]
1
ψ . (1.40)

It owes its name to cluster dynamics being due to tunneling between up and down

states. This activated scaling formally corresponds to dynamic critical exponent

z = ∞ and is an indication of the qualitative change in the critical behavior due

to the disorder. In other words, the flipping of spin clusters is exponentially slow

with broadly distributed time scales ln τL ∼ Lψ at the critical point. In addition, ψ

describes how the density of surviving clusters nΩ behaves with reducing the energy

scale Ω. Its scaling form reads

nΩ = [ln (ΩI/Ω)]
−d/ψXn[r

νψ ln (ΩI/Ω)] (1.41)
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where the scaling function at the critical point behaves as Xn(0) = constant and

thus nΩ ∼ [ln (ΩI/Ω)]
−d/ψ. In the disordered quantum Griffiths phase, r > 0 and

Ω → 0, the density of surviving clusters is smaller because the strongest couplings

are most likely fields. Fisher found Xn(y) ∼ yd/ψe−const.dy and thus nΩ ∼ rdνΩd/z

where the nonuniversal dynamical exponent z ∼ r−νψ in the Griffiths phase. From

the duality transformation between fields and interactions, he found nΩ ∼ |r|dνΩd/z

in the ordered quantum Griffiths phase.

The value of the exponent φ was found by solving the flow equation for the

probability distribution of the moments µ. Fisher found that φ = (1 +
√
5)/2, the

golden mean. The exponent φ characterizes the typical magnetic moment of a single

cluster µΩ (the number of active spins) at Ω as

µΩ = [ln (ΩI/Ω)]
φXµ[r

νψ ln (ΩI/Ω)]. (1.42)

At the critical point, µΩ ∼ [ln (ΩI/Ω)]
φ where the scaling function Xµ(0) = const. In

the disordered quantum Griffiths phase, µΩ ∼ rνψ(1−ψ) ln (ΩI/Ω). We cannot use the

duality transformation to calculate the magnetic moment in the ordered quantum

Griffiths phase because it depends on the number of active spins in the surviving

clusters not on the number of clusters itself. In the disordered phase, most of the

surviving clusters are single spins, whereas they are effective spins in the ordered

phase. Thus, the typical magnetic moment is inversely proportional to the probability

density of surviving clusters yielding µΩ ∼ 1/nΩ ∼ |r|−dνΩ−d/z. The scaling behavior

of nΩ and µΩ can be used to derive thermodynamic quantities like the entropy as

S ∼ nΩ ln 2 and the magnetic susceptibility as χ ∼ nΩµ
2
Ω/T .

1.4 KOSTERLITZ-THOULESS TRANSITION

All phase transitions we have considered so far were order-disorder transi-

tions that separate a phase without long-range order from a long-range ordered and
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symmetry-broken phase. In this section, we discuss a kind of phase transition that

does not involve long-range order.

1.4.1. General Features of the XY Model. Classical lattice spin systems

can be characterized by two parameters: the dimensionality of the underlying lattice

d and the symmetry of the spin space (the number n of its components). Here, n = 1

for Ising models, n = 2 for XY models, and n = 3 for Heisenberg models. In this

section we will focus on the case d = 2 and n = 2, i.e., on the 2D XY model which is

particularly interesting. The XY spin at any lattice point can be described by a unit

vector in the XY-plane as ~Si = (cos(θi), sin(θi)). The Hamiltonian of this model can

be written as

HXY = −
∑

<i,j>

Ji,j ~Si · ~Sj = −
∑

<i,j>

Ji,j cos(θi − θj) (1.43)

where Jij is a ferromagnetic interaction between the spins, and (θi − θj) is the phase

difference between the spins at neighboring sites i and j. Notice that the Hamiltonian

is invariant under any global rotation of all spins and thus has a O(2) symmetry

(equivalently, we can consider the spin components as real and imaginary part of a

complex variable giving U(1) symmetry). Unlike the Ising model, this system has

an infinite number of ground states because any uniform alignment, see Fig. 1.8, of

the spins is a ground state regardless of its direction in the XY-plane. In addition to

planar magnets, superfluids, and superconducting thin films are known as physical

realizations of the 2D XY model. These systems have a complex order parameter ψ

which represents the boson or Cooper pair “condensate wavefunction”. So, the order

parameter can either be viewed as a two-dimensional vector 〈~S〉 = S(cos(θ), sin(θ))

or a complex number 〈ψ〉 = |〈ψ〉|eiθ where θ is its respective phase or direction.

Let us now consider nonuniform spin configurations. Assuming the direction

of spins to be slowly varying across the lattice, see Fig. 1.9, we can expand the free

energy in powers of ~∇θ. Because the minimum free energy of the system occurs at



32

any uniform θ, the free energy F is not expected to have a linear term of ~∇θ(~x).

Thus, to leading order in ∇θ(~x), we obtain

Fel =
1

2

∫

ρs[~∇(θ)]2d2x. (1.44)

where ρs is known as the spin-wave stiffness or helicity modulus in magnetic systems

or the superfluid density in superfluids. This quantity is a measure of the change

in the energy due to the spatially varying order parameter, and it has the units of

[energy]/[length]d−2.

In order to obtain the free energy, we need to minimize the elastic free energy,

Eqn. 1.44 with respect to the order parameter θ(~x), this gives

δFel
δθ(~x)

= −ρs~∇2θ(~x) = 0. (1.45)

There are two types of solutions for this equation: The first type is θ(x) = ~a · ~x +

b, and the second type of solutions consists of vortices centered by defect point,

see subsection (1.4.3) for more details. Assume we have a system with boundary

conditions θ(x = 0) = 0 and θ(x = L) = θ0. Solving (1.45) under the boundary

conditions gives θ(x) = θ0x/L and the elastic free energy thus reads Fel =
1
2
ρsθ

2
0L

d−2.

Figure 1.8: Different ground states for the XY-Hamiltonian represented by spin con-
figurations with a spatially uniform θ.
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For two-dimensional XY system, the elastic free energy becomes

Fel =
1

2
ρsθ

2
0. (1.46)

1.4.2. Kosterlitz-Thouless Transition. We now discuss the phases and

transitions of the 2D XY model in detail. At sufficiently high temperatures, the

system is in a conventional paramagnetic phase. At zero temperature one might

expect a long-range ferromagnetic phase similar to the one in the 3D XY model.

However, in 1966 Mermin and Wagner [71] showed that two-dimensional systems

having an order parameter with continuous symmetry do not have any long-rage

ordered phase, i.e., the expectation value of the order parameter vanishes for all

non-zero temperatures. In 1973, Kosterlitz and Thouless [72] suggested that the low-

temperature phase of the 2D XY model is actually quasi-long range ordered which

implies that the order parameter correlation function behaves as

G(x) ∼ |x|−η(T ). (1.47)

for large distances |~x|. The exponent η(T ) is not universal. This vanishing of the

correlation function as x → ∞ implies that there is no true long-range order in

agreement with the Mermin-Wagner theorem. On the other hand, the decay of the

correlation function in the low-temperature phase is much slower than the exponential

Figure 1.9: Spin configurations with a spatially non-uniform θ.
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decay

G(x) ∼ e−
|X|
ξ(T ) (1.48)

in the high-temperature phase.

Although the 2D XY system has no true long-range order, the decay of the

correlation function changes its behavior from power-law at low temperatures to ex-

ponential decay at higher temperatures. Therefore, there is a phase transition that

happens when the correlation function changes its behavior. This transition is known

as the Kosterlitz-Thouless (KT) phase transition and its transition temperature is

known as TKT .

1.4.3. Vortices. A critical role in the Kosterlitz-Thouless transition is played

by the vortices which are singular solutions of Eqn. (1.45). A vortex can be thought of

as a topological defect with vanishing order parameter in the center and a singularity

in the phase θ(~x) (∇θ(~x) = 1/|~x| is finite everywhere except at the center). The

vorticity of the vortex n can be found by a line integral along a counter-clockwise

contour surrounding the vortex center,

∮

∇θ · dl = 2πn (1.49)

where n is an integer number and also called the winding number. If n ≥ 1, the

topological defect is called a vortex while if n ≤ −1, it is an excitation known as an

antivortex, see Fig. 1.10.

The elastic cost to create a vortex of vorticity n in a system of size L can be

found by substituting ∇θ(~x) = n/|~x| in equation (1.44) to obtain

Evortex ∼ πn2ρs ln
L

a
(1.50)
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where a is the lattice constant. We notice that the energy of a vortex is quadratic

in the winding number n and therefore it is energetically preferable to create vor-

tices with |n| = 1. Furthermore, the energy of the vortex increases logarithmically

with system size L which implies that the creation of a single vortex at low temper-

ature is very unlikely. However, free vortices gain more importance as temperature

increases. The Kosterlitz-Thouless transition happens when free vortices become

thermodynamically favorable. To estimate TKT , Kosterlitz and Thouless considered

an energy-entropy argument by pointing out that the energy and the entropy depend

on the system size in the same manner. Since there are (L/a)2 available positions

for the vortices, the entropy can be found as S = 2kB ln(L/a). Thus, the free energy

cost to introduce a single vortex with n = ±1 is

Fvortex ∼ [πn2ρs − 2kBT ] ln
L

a
. (1.51)

Therefore, in the thermodynamic limit L → ∞, free vortices can not be created

spontaneously for temperatures T < πρs/(2kB) since in this limit Fvortex → ∞.

However, at T > πρs/(2kB) the system decreases its free energy by creating free

Figure 1.10: (left) Spin vortex with vorticity greater than 0. (right) Spin antivortex
with vorticity smaller than 0.
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vortices because Fvortex → −∞ as L→∞. This temperature at which the Helmholtz

free energy changes its sign is equal to the transition point TKT .

On the other hand, the free energy change due to forming a vortex-antivortex

pair can be found to be

Epair ∼ 2πρs ln
a

d
(1.52)

where d > a is the distance between the vortex centers. This energy remains finite

in the thermodynamic limit. Therefore, for low temperatures thermal excitations are

generated in the form of bound vortex-antivortex pairs interacting via a logarithmic

potential. At the Kosterlitz-Thouless transition, these pairs break down and free vor-

tices proliferate by a mechanism known as vortex-antivortex unbinding, see Fig. 1.11.

1.4.4. Properties of the Kosterlitz-Thouless Transition. Here, we dis-

cuss some properties of the KT transition in a 2D clean XY model. The effect of the

thermally activated vortex pairs is described by the temperature dependent spin wave

stiffness ρs. One of the main features of the KT transition in an isotropic XY model

is the universal jump in the spin-wave stiffness at TKT where the spin-wave stiff-

ness jumps discontinuously to zero. The spin wave stiffness describes how much free

Figure 1.11: Vortex unbinding drives the Kosterlitz-Thouless phase transition at TKT .
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energy it costs to apply a twist to the boundary conditions to the spins. From equa-

tion (1.51), we see that this spin-wave stiffness has a universal value ρs = 2kBTKT/π

at the transition point. Thus, macroscopic twists of the spin direction cost energy

only if T < TKT .

In the high temperature phase but close to the transition, the correlation

length diverges rapidly as [72]

ξ(T ) = AeB|T−TKT |−1/2

. (1.53)

Here, A and B are non-universal constants. In addition, the order parameter suscep-

tibility can be analogously found as [72]

χ(T ) ∝ ξ2−η ∝ eD|T−TKT |−1/2

. (1.54)

Here, η is the correlation function critical exponent andD = (2−η)B. The correlation

function critical exponent has the same universal value as in the two-dimensional Ising

model [73], η = 1/4. However, the conventional critical exponents ν and γ can not

be defined since ξ and χ diverge faster than any power of T − Tc.

If we consider an anisotropic 2D XY model, the behavior of the spin wave

stiffnesses in the x-direction is different from that in the y-direction. Thus, we need

another parameter to study the universality of the KT transitions in anisotropic 2D

XY models. It turns out that even though the individual stiffnesses are not universal,

their product is universal. Moreover, because the 2D XY model is equivalent to the

quantum-to-classical mapping of a one-dimensional bosonic system [74], the Luttinger

parameter g = π
√
ρsκ turned out to be a suited choice to study the anisotropic 2D XY

model. Here, κ is the compressibility. In particular, under this quantum-to-classical

mapping, the compressibility κ maps onto the spin-wave stiffness ρτ in the time-like

direction of the classical XY model. Thus, the Luttinger parameter in a classical
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anisotropic 2D XY model reads

g = (π/T )
√
ρsρτ . (1.55)

It is found to have a universal value of 2 at TKT .
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ABSTRACT∗

We study the ferromagnetic phase transition in a randomly layered Heisenberg

magnet using large-scale Monte-Carlo simulations. Our results provide numerical evi-

dence for the infinite-randomness scenario recently predicted within a strong-disorder

renormalization group approach. Specifically, we investigate the finite-size scaling

behavior of the magnetic susceptibility which is characterized by a non-universal

power-law divergence in the Griffiths phase. We also study the perpendicular and

parallel spin-wave stiffnesses in the Griffiths phase. In agreement with the theoretical

predictions, the parallel stiffness is nonzero for all temperatures T < Tc. In contrast,

the perpendicular stiffness remains zero in part of the ordered phase, giving rise to

anomalous elasticity. In addition, we calculate the in-plane correlation length which

∗Published in Physical Review B 84 184202 (2011).
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diverges already inside the disordered phase at a temperature significantly higher than

Tc. The time autocorrelation function within model A dynamics displays an ultraslow

logarithmic decay at criticality and a nonuniversal power-law in the Griffiths phase.
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1. INTRODUCTION

When weak quenched disorder is added to a system undergoing a classical

continuous phase transition, generically the critical behavior will either remain un-

changed or it will be replaced by another critical point with different exponent values.

Which scenario is realized depends on whether or not the clean critical point ful-

fills the Harris criterion.[18] In contrast, zero-temperature quantum phase transitions

generically display much stronger disorder phenomena including power-law quantum

Griffiths singularities, [75, 76, 77] infinite-randomness critical points featuring expo-

nential instead of power-law scaling, [27, 28] and smeared phase transitions.[48, 49]

A recent review of these phenomena can be found in Ref. [21], while Ref. [20] focuses

on metalic systems and also discusses experiments.

The reason for the disorder effects being stronger at quantum phase transitions

than at classical transitions is that quenched disorder is perfectly correlated in the

imaginary time direction. Imaginary time behaves as an additional dimension at

a quantum phase transition and becomes infinitely extended at zero temperature.

Therefore, the impurities and defects are effectively “infinitely large” in this extra

dimension, which makes them much harder to average out than the usual finite-size

defects and so increases their influence.

For this reason, one should also expect strong unconventional disorder phe-

nomena at classical thermal phase transitions in systems in which the disorder is

perfectly correlated in one or more space dimensions. Indeed, such behavior has been

observed in the McCoy-Wu model, a disordered classical two-dimensional Ising model

having perfect disorder correlations in one of the two dimensions. In a series of pa-

pers, McCoy and Wu [25, 26, 78, 79] showed that this model exhibits an unusual

phase transition featuring a smooth specific heat while the susceptibility is infinite

over an entire temperature range. Fisher [27, 28] achieved an essentially complete
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understanding of this phase transition with the help of a strong-disorder renormaliza-

tion group approach (using the equivalence between the McCoy-Wu model and the

random transverse-field Ising chain). He determined that the critical point is of exotic

infinite-randomness type and is accompanied by power-law Griffiths singularities. In

a classical Ising model with perfect disorder correlations in two dimensions, the dis-

order effects are even stronger than in the McCoy-Wu model: the sharp critical point

is destroyed, and the transition is smeared over a range of temperatures.[40, 80]

Recently, another classical system with perfect disorder correlations in two

dimensions was investigated by means of a strong-disorder renormalization group.[81]

This theory predicts that the randomly layered Heisenberg magnet features a sharp

critical point (in contrast to the Ising case discussed above). However, it is of exotic

infinite-randomness type. Somewhat surprisingly, it is in the same universality class

as the quantum critical point of the random transverse-field Ising chain.

In this paper, we present the results of Monte-Carlo simulations of the ran-

domly layered Heisenberg model. They provide numerical evidence in support of the

above renormalization group predictions. Our paper is organized as follows. In Sec.

2., we define our model and discuss its phase diagram. We also briefly summarize

the predictions of the strong disorder renormalization group theory.[81] In Sec. 3.,

we describe our Monte-Carlo simulations, we present the results and compare them

to the theory. We conclude in Sec. 4..
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2. MODEL AND RENORMALIZATION GROUP PREDICTIONS

We consider a ferromagnet consisting of a random sequence of layers made up

of two different ferromagnetic materials, see sketch in Fig. 2.1.

Its Hamiltonian, a classical Heisenberg model on a three-dimensional lattice of

perpendicular size L⊥ (in z direction) and in-plane size L‖ (in the x and y directions)

is given by

H = −
∑

r

J‖
z (Sr · Sr+x̂ + Sr · Sr+ŷ)−

∑

r

J⊥
z Sr · Sr+ẑ. (1.1)

Here, Sr is a three-component unit vector on lattice site r, and x̂, ŷ, and ẑ are the

unit vectors in the coordinate directions. The interactions within the layers, J
‖
z , and

between the layers, J⊥
z , are both positive and independent random functions of the

perpendicular coordinate z.

In the following, we take all J⊥
z to be identical, J⊥

z ≡ J⊥, while the J
‖
z are

drawn from a binary probability distribution

P (J‖) = (1− p) δ(J‖ − Ju) + p δ(J‖ − Jl) (1.2)

Figure 2.1: (Color online) Schematic of the layered Heisenberg magnet: It consistes of
a random sequence of layers of two different ferromagnetic materials.[81]
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Figure 2.2: (Color online) Schematic phase diagram of the randomly layered Heisen-
berg magnet (1.1). SD and SO denote the conventional strongly disor-
dered and strongly ordered phases, respectively. WD and WO are the
weakly disordered and ordered Griffiths phases. Tc is the critical temper-
ature while Tu and Tl mark the boundaries of the Griffiths phase .

with Ju > Jl. Here, p is the concentration of the “weak” layers while 1 − p is the

concentration of the “strong” layers.

The qualitative behavior of the model (1.1) is easily explained (see Fig. 2.2).

At sufficiently high temperatures, the model is in a conventional paramagnetic (stron-

gly disordered) phase. Below a temperature Tu (the transition temperature of a hy-

pothetical system having J
‖
z ≡ Ju for all z) but above the actual critical temperature

Tc, rare thick slabs of strong layers develop local order while the bulk system is still

nonmagnetic. This is the paramagnetic (weakly disordered) Griffiths phase (or Grif-

fiths region). In the ferromagnetic (weakly ordered) Griffiths phase, located between

Tc and a temperature Tl (the transition temperature of a hypothetical system having

J
‖
z ≡ Jl for all z), bulk magnetism coexists with rare nonmagnetic slabs. Finally,

below Tl, all slabs are locally ferromagnetic and the system is in a conventional fer-

romagnetic (strongly ordered) phase.

In Ref. [81], the behavior in both Griffiths phases and at criticality has been

derived within a strong-disorder renormalization group calculation. Here, we simply

motivate and summarize the results. The probability of finding a slab of LRR consec-

utive strong layers is given by simple combinatorics; it reads w(LRR) ∼ (1− p)LRR =

e−p̃LRR with p̃ = − ln(1 − p). Each such slab is equivalent to a two-dimensional

Heisenberg model with an effective interaction LRRJu. Because the two-dimensional

Heisenberg model is exactly at its lower critical dimension, the renormalized dis-

tance from criticality, ǫ, of such a slab decreases exponentially with its thickness,
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ǫ(LRR) ∼ e−bLRR .[21, 37] Combining the two exponentials gives a power law spec-

trum of locally ordered slabs,

ρ(ǫ) ∼ ǫp̃/a−1 = ǫ1/z−1 (1.3)

where the second equality defines the conventionally used dynamical exponent, z. It

increases with decreasing temperature throughout the Griffiths phase and diverges as

z ∼ 1/|T − Tc| at the actual critical point.

Many important observables follow from appropriate integrals of the density

of states (1.3). The susceptibility can be estimated by χ ∼
∫

dǫ ρ(ǫ)/ǫ. In an infinite

system, the lower bound of the integral is 0; therefore, the susceptibility diverges

in the entire temperature region where z > 1. A finite system size L‖ in the in-

plane directions introduces a nonzero lower bound ǫmin ∼ L−2
‖ . Thus, for z > 1, the

susceptibility in the weakly disordered Griffiths phase diverges as

χ(L‖) ∼ L
2−2/z
‖ (1.4)

and in the weakly ordered Griffiths phase, it diverges as

χ(L‖) ∼ L
2+2/z
‖ . (1.5)

The strong-disorder renormalization group [81] confirms these simple estimates

and gives χ ∼ L2
‖[ln (L‖/a)]

2φ−1/ψ at criticality where φ = (1 +
√
5)/2 and ψ = 1/2

are critical exponents of the infinite randomness critical point.

The spin-wave stiffness ρs is defined by the work needed to twist the spins of

two opposite boundaries by a relative angle θ. Specifically, in the limit of small θ and

large system size, the free-energy density f depends on θ as

f(θ)− f(0) = 1

2
ρs

(

θ

L

)2

. (1.6)
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Because the randomly layered Heisenberg model is anisotropic, we need to distinguish

the parallel spin-wave stiffness ρ
‖
s from the perpendicular spin-wave stiffness ρ⊥s . To

calculate the parallel spin-wave stiffness, we apply boundary conditions at x = 0 and

x = L‖ and set L = L‖ in Eq. (1.6) whereas the boundary conditions are applied at

z = 0 and z = L⊥ to calculate the perpendicular spin-wave stiffness with L = L⊥ in

Eq. (1.6).

Let us first discuss the parallel stiffness. In this case, the free energy difference

f(θ)−f(0) is simply the sum over all layers participating in the long-range order (each

having the same twisted boundary conditions). Thus, ρ
‖
s is nonzero everywhere in

the ordered phase. The strong-disorder renormalization group approach [81] predicts

ρ‖s ∼ m ∼ |T − Tc|β (T < Tc) (1.7)

where β = (3 −
√
5)/2 is the order parameter exponent of the infinite randomness

critical point.

If the twist θ is applied between the bottom (z = 0) and the top (z = L⊥)

layers, the local twists between consecutive layers will vary from layer to layer. Min-

imizing f(θ) − f(0) leads to ρ⊥s ∼ 〈1/J⊥
eff〉−1 where J⊥

eff are the effective couplings

between the rare regions. Within the strong-disorder renormalization group approach,

the distribution of the J⊥
eff follows a power law p(J⊥

eff ) ∼ (J⊥
eff )

1/z−1. Thus, ρ⊥s = 0

in part of the ordered Griffiths phase. It only becomes nonzero once z falls below 1 at

a temperature Ts < Tc. Between Tc and Ts, the system displays anomalous elasticity.

Here, the free energy due to the twist scales with f(θ) − f(0) ∼ L−1−z
⊥ . Thus, the

perpendicular stiffness formally vanishes as ρ⊥s ∼ L1−z
⊥ with increasing L⊥.

To study the dynamical critical behavior, a phenomenological dynamics is

added to the randomly layered Heisenberg model. The simplest case is a purely

relaxational dynamics corresponding to model A in the classification of Hohenberg

and Halperin.[82]
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The dynamic behavior can be characterized by the average time autocorrela-

tion function

C(t) =
1

L⊥L2
‖

∫

d3r〈Sr(t)Sr(0)〉, (1.8)

where Sr(t) is the value of the spin at position r and time t.

The behavior of C(t) in the weakly disordered Griffiths phase can be easily

estimated. The correlation time of a single locally ordered slab is proportional to

1/ǫ.[81] Summing over all slabs using the density of states (1.3) then gives

C(t) ∼
∫

dǫρ(ǫ)e−ǫt ∼ t−1/z. (1.9)

The strong disorder renormalization group calculation [81] confirms this es-

timate. Moreover, at criticality, when z → ∞, it gives an even slower logarithmic

behavior

C(t) ∼ [ln(t/t0)]
φ−1/ψ. (1.10)

where t0 is a microscopic length scale.
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3. MONTE-CARLO SIMULATIONS

3.1. OVERVIEW. In this section we report results of Monte-Carlo simula-

tions of the randomly layered Heisenberg magnet. Because the phase transition in this

system is dominated by the rare regions, sufficiently large system sizes are required

in order to get reliable results. We have simulated system sizes ranging from L⊥ = 90

to 800 and L‖ = 10 to 400. We have chosen Ju = 1 and Jl = 0.25 in Eq. (1.2). All

the simulations have been performed for disorder concentrations p = 0.8. With these

parameter choices, the Griffiths region ranges from Tl ≈ 0.63 to Tu ≈ 1.443. For

optimal performance, we have used large numbers of disorder realizations, ranging

from 100 to 7200, depending on the system size. While studying the thermodynam-

ics, we have used the efficient Wolff cluster algorithm [83] to eliminate critical slowing

down. We have equilibrated every run by 100 Monte-Carlo sweeps, and we have used

another 100 sweeps for measurements. To investigate the critical dynamics, we have

equilibrated the system using the Wolff algorithm but then propagated the system in

time by means of the Metropolis algorithm [84] which implements model A dynamics.

3.2. THERMODYNAMICS . To test the finite-size behavior (1.4, 1.5) of

the susceptibility, one needs to consider samples having sizes L⊥ ≫ L‖ such that

L⊥ is effectively infinite. We have used system sizes L⊥ = 800 and L‖ = 10 to 90.

Figure 3.1 shows the susceptibility χ as a function of L‖ for several temperatures

in the Griffiths region between Tl = 0.63 and Tu ≈ 1.443. In agreement with the

theoretical predictions (1.4) and (1.5), χ follows a nonuniversal power law in L‖ with

a temperature-dependent exponent. Simulations for many more temperature values,

in the range T ≈ 0.76− 1.2, yield analogous results.

The values of the exponent z extracted from fits to (1.4, 1.5) are shown in

Fig. 3.2 for the paramagnetic and ferromagnetic sides of the Griffiths region. z can

be fitted to the predicted power law z ∼ 1/|T − Tc|, as discussed after (1.3), giving

the estimate Tc ≈ 0.933.
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Figure 3.1: (Color online) Susceptibility χ as a function of in-plane system size L‖
for several temperatures in the Griffiths region. The perpendicular size
is L⊥ = 800; the data are averages over 300 disorder configurations. The
solid lines are fits to the power laws (1.4, 1.5).

Figure 3.2: (Color online) Griffiths dynamical exponent z vs temperature. The data
are extracted from the perpendicular stiffness data in Fig. 3.4b, the sus-
ceptibility data in Fig. 3.1, the parallel correlation length data in Fig.
3.3 and the autocorrelation function data in Fig. 3.5. The solid lines are
a power-law fit of z (extracted from Fig. 3.1) to (1.4) and (1.5).

For a deeper understanding of the thermodynamic critical phenomena of the

layered Heisenberg model, we have also studied the behavior of the in-plane correlation

lengths in Griffiths phase. Figure 3.3 shows the scaled correlation length ξ‖/L‖ as a

function of temperature for different values of L‖. Surprisingly, the curves cross at
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Figure 3.3: (Color online) Scaled in-plane correlation length ξ‖/L‖ as a function of
temperature T for several in-plane system sizes L‖ in the Griffiths region.
The perpendicular size is L⊥ = 800; the data are averaged over 300
disorder configurations.

a temperature, T ≈ 1.17, significantly higher than Tc ≈ 0.93. This implies that the

average in-plane correlation length diverges in part of the disordered phase.

To understand this behavior, we estimate the rare region contribution to the

averaged in-plane correlation length. It can be calculated by integrating over the

density of states (1.3) as

ξ2‖ ∼
∫ ǫ0

0

dǫρ(ǫ)ξ2‖(ǫ) ∼
∫ ǫ0

0

dǫǫ1/z−11

ǫ
(1.11)

where ξ2‖(ǫ) ∼ 1/ǫ is the dependence of the in-plane correlation length of a single

region [81, 85] on the renormalized distance ǫ from criticality. Note that we average

ξ2‖ instead of ξ‖ because that is what numerically happens in the second moment

method which defines ξ2‖ via

ξ2‖ =

∑

r
C(r)r2

∑

r
C(r)

(1.12)

with C(r) being the spatial correlation function. The integral in (1.11) diverges for

z > 1 and converges for z < 1. The in-plane correlation length therefore diverges
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already in the disordered Griffiths phase at the temperature at which the Griffiths

dynamical exponent is z = 1. From Fig. 3.3 we estimate this temperature to be

T ≈ 1.17. As can be seen in Fig. 3.2, this value is in good agreement with the result

extracted from the finite size behavior of χ.

We now turn to the spin-wave stiffness. Calculating the stiffness by actually

carrying out simulations with twisted boundary conditions is not very efficient. How-

ever, the stiffness can be rewritten in terms of expectation values calculated in a

conventional run with periodic boundary conditions. The resulting formula which is

a generalization of that used by Caffarel et al [86] reads

ρ⊥s =

〈

∑

〈r,r′〉
Jr,r′ [Sr · Sr′ − (Sr · â)(Sr′ · â)] (z − z′)2

〉

− 1

T

〈





∑

〈r,r′〉
Jr,r′ [(Sr × Sr′) · â] (z − z′)





2
〉

.

(1.13)

Here, â can be any unit vector perpendicular to the total magnetization m.

For ρ
‖
s, (z− z′) has to be replaced by (x−x′). This formula is derived in appendix A.

Figure 3.4a shows the results for the perpendicular and parallel stiffnesses of

our randomly layered Heisenberg model. We have used a system of size L⊥ = 100

and L‖ = 400. The figure shows that the two stiffness indeed behave very differently.

The parallel stiffness ρ
‖
s vanishes at T ≈ 0.9−0.95 in good agreement with our earlier

estimate of Tc ≈ 0.93. In contrast, the perpendicular stiffness vanishes at a much

lower temperature T ≈ 0.7. Thus, in the range between T ≈ 0.7 and Tc, the system

displays anomalous elasticity, as predicted. (Note: The slight rounding of both ρ
‖
s

and ρ⊥s can be attributed to finite-size effects.)

The results of the perpendicular spin-wave stiffness ρ⊥s are analyzed in more

detail in Fig. 3.4b for perpendicular sizes L⊥ = 15− 40. We have used a parallel size

L‖ = 400 and a temperature range T = 0.65− 0.85 where the data are averaged over

1000 disorder configurations. The plot shows a non-universal power-law dependence
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Figure 3.4: (Color online) a: Perpendicular and parallel spin-wave stiffnesses (ρ⊥s
and ρ

‖
s, respectively) as functions of temperature T for system with sizes

L⊥ = 100 and L‖ = 400. The data are averaged over 100 disorder con-
figurations. b: Perpendicular spin-wave stiffness as a function of L⊥ for
temperatures in the weakly ordered Griffiths phase and L‖ = 400. The
data are averaged over 1000 disorder configurations. The solid lines are
fits to (1.14).

of ρ⊥s on L⊥ which agrees with the prediction

ρ⊥s ∼ L1−z
⊥ . (1.14)
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The dynamical exponents z extracted from fits of ρ⊥s to (1.14) are also shown in Fig.

3.2. While they roughly agree with the values extracted from χ, the agreement is not

very good. We believe this is due to the rather small L⊥ values used.

3.3. CRITICAL DYNAMICS. To investigate the behavior of the autocor-

relation function C(t) in the weakly disordered Griffiths phase, we have used system

sizes L⊥ = 400 and L‖ = 100 and temperatures from T = 1.25 to 1.35. From figure

3.5, one can see that the long-time behavior of C(t) in the Griffiths phase follows a

non-universal power law which is in agreement with the prediction (1.9). Fits of the

data to (1.9) can be used to obtain yet another estimate of the dynamical exponent

z. The resulting values are shown in Fig. 3.2, they are in good agreement with those

extracted from χ.

Figure 3.6 shows the behavior of C(t) near criticality plotted such that the

expected logarithmic time-dependence (1.10) gives a straight line. We have used

Figure 3.5: (Color online) Time autocorrelation function C(t) for temperatures from
T = 1.25 to 1.35 (within the Griffiths phase). The system sizes are
L⊥ = 400 and L‖ = 100. The data are averaged over 1720−7200 disorder
configurations. The solid lines are fits to the power-law prediction (1.9)
(with the fit range marked).
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Figure 3.6: (Color online) Time autocorrelation function C(t) for temperatures from
T = 0.86 to 0.91 (near criticality). The system sizes are L⊥ = 400 and
L‖ = 230. The data are averaged over 70 to 80 disorder configurations.
The dashed line shows the logarithmic behavior (1.10) at the estimated
critical temperature Tc = 0.895.

system sizes L⊥ = 400 and L‖ = 230 and temperatures from T = 0.86 to 0.91.

We find that C(t) indeed follows the prediction at an estimated Tc ≈ 0.895. This

estimate agrees reasonably well with that stemming from the finite-size behavior of

χ. We attribute the remaining difference to the finite-size effects and (in case of C(t))

finite-time effects.
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4. CONCLUSIONS

To summarize, we have reported the results of large-scale Monte-Carlo simula-

tions of the thermodynamics and dynamic behavior of a randomly layered Heisenberg

model. Our results provide strong numerical evidence in support of the infinite-

randomness scenario predicted within the strong-disorder renormalization group ap-

proach [81]. Morever, our data are compatible with the prediction that the randomly

layered Heisenberg model is in the same universality class as the one-dimensional

random transverse-field Ising model.

We would have liked to determine the complete set of critical exponents of

the infinite-randomness critical point directly from the numerical data. To this end

we have attempted to perform an anisotropic finite-size scaling analysis as in Refs.

[87] or [88]. However, within the accessible range of system sizes of up to about 107

sites, the corrections to the leading scaling behavior were so strong that we could not

complete the analysis. This task thus remains for the future.

An important question left unanswered by the strong-disorder renormaliza-

tion group approach[81] is whether or not weakly or moderately disordered systems

actually flow to the infinite-randomness critical point. The clean Heisenberg criti-

cal point is unstable against weak layered disorder because it violates the general-

ized Harris criterion drν > 2 where dr = 1 is the number of random dimensions.

Thus, weak layered randomness initially increases under renormalization. Our nu-

merical parameter choices, p = 0.8 and Ju/Jl = 4 correspond to moderate disorder

as the distribution is not particularly broad on a logarithmic scale. The fact that

we do confirm infinte-randomness behavior for these parameters suggests that the

infinite-randomness critical point may control the transition for any nonzero disorder

strength. A numerical verification of this conjecture by simulating very weakly disor-

dered systems would require even larger system sizes and is thus beyond our present

computational capabilities.
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Experimental verifications of infinite-randomness critical behavior and the ac-

companying power-law Griffiths singularities have been hard to come by, in particu-

lar in higher-dimensional systems. Only very recently, promising measurements have

been reported [45, 46] of the quantum phase transitions in CePd1−xRhx and Ni1−xVx.

The randomly layered Heisenberg magnet considered here provides an alternative re-

alization of an infinite-randomness critical point. It may be more easily realizable in

experiment because the critical point is classical, and samples can be produced by

depositing random layers of two different ferromagnetic materials.

Magnetic multilayers with systematic variation of the critical temperature from

layer to layer have already been produced,[89] and our results would apply to random

versions of these structures.
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A. SPIN-WAVE STIFFNESS IN TERMS OF SPIN CORRELATION
FUNCTIONS

Twisted boundary conditions, i.e., forcing the spins on one surface of the

sample of size L to make an angle of θ with those on the opposite surface, lead to a

change in the free energy density f . It can be parametrized by

f(θ)− f(0) = 1

2
ρs

(

θ

L

)2

. (A.1)

which defines the spin-wave stiffness ρs.

For definiteness, assume we apply a twist of θ around the perpendicular axis

between the top and bottom surfaces of the sample. We parametrize the Heisenberg

spin as

Sr =













sin(ϑr) cos(φr)

sin(ϑr) sin(φr)

cos(ϑr)













. (A.2)

The boundary conditions then read φr = 0 at the bottom (z = 0) surface and φr = θ

at the top (z = L⊥) surface. To eliminate the twisted boundary condition, we now

perform the variable transformation

ψr = φr − θ
zr
L⊥

(A.3)

which gives new boundary conditions of ψr = 0 at both zr = 0 and zr = L⊥.

Substituting the variable transformation in the Heisenberg Hamiltonian (1.1),

we obtain



58

H =−
∑

〈r,r′〉
Jr,r′

{

sin(ϑr) sin(ϑr′)

cos

(

ψr − ψr′ +
θ

L⊥
(z − z′)

)

+ cos(ϑr) cos(ϑr′)

}

(A.4)

where the twist is “distributed” over the volume. Thus, the twist angle θ now appears

as a parameter of the Hamiltonian. We can use standard methods to reformulate the

second derivative of the free energy F as

∂2F

∂θ2
=

1

T

〈

∂H

∂θ

〉2

+

〈

∂2H

∂θ2

〉

− 1

T

〈

(

∂H

∂θ

)2
〉

(A.5)

where the first term on the right hand side vanishes due to symmetry. Evaluat-

ing the derivatives of H for the Hamiltonian (A.4) gives the spin-wave stiffness

ρs = L2(∂2f/∂θ2)
∣

∣

θ=0
as

ρ⊥s =

〈

∑

〈r,r′〉
Jr,r′

[

Sr · Sr′ − (Sr · k̂)(Sr′ · k̂)
]

(z − z′)2
〉

− 1

T

〈





∑

〈r,r′〉
Jr,r′

[

(Sr × Sr′) · k̂
]

(z − z′)





2
〉

.

(A.6)

Here, k̂ is the unit vector in the z-direction. The same equation was derived in

Ref. [86] for the XY case. Equation A.6 needs to be evaluated with fixed boundary

conditions at the top and bottom layeres. Applying this formula to simulations with

periodic boundary conditions leads to incorrect results in the Heisenberg case (even

though it works in XY case). The reason is that Eq. (A.6) is sensitive to twist in the

XY plane only.

In the Heisenberg case this can be fixed by aligning the imaginary twist axis

with a direction â perpendicular to the total magnetization in each Monte-Carlo

measurement. We use â = (m× k̂)/|m× k̂|. The resulting formula for the spin-wave
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stiffness can be used efficiently by Monte-Carlo simulations with periodic boundary

conditions. It reads

ρ⊥s =

〈

∑

〈r,r′〉
Jr,r′ [Sr · Sr′ − (Sr · â)(Sr′ · â)] (z − z′)2

〉

− 1

T

〈





∑

〈r,r′〉
Jr,r′ [(Sr × Sr′) · â] (z − z′)





2
〉

.

(A.7)

We have tested that this equation reproduces the results obtained directly

from Eq. (A.1).
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Fawaz Hrahsheh, David Nozadze, and Thomas Vojta

1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT∗

Phase transitions in random systems are smeared if individual spatial regions

can order independently of the bulk system. In this paper, we study such smeared

phase transitions (both classical and quantum) in substitutional alloys A1−xBx that

can be tuned from an ordered phase at composition x = 0 to a disordered phase at

x = 1. We show that the ordered phase develops a pronounced tail that extends over

all compositions x < 1. Using optimal fluctuation theory, we derive the composition

dependence of the order parameter and other quantities in the tail of the smeared

phase transition. We also compare our results to computer simulations of a toy model,

and we discuss experiments.

∗Published in Physical Review B 83 224402 (2011).
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1. INTRODUCTION

When a phase transition occurs in a randomly disordered system, one of the

most basic questions to ask is whether the transition is still sharp, i.e., associated

with a singularity in the free energy. Naively, one might expect that random dis-

order rounds or smears any critical point because different spatial regions undergo

the transition at different values of the control parameter. This expectation turns

out to be mistaken, as classical (thermal) continuous phase transitions generically

remain sharp in the presence of weak randomness. The reason is that a finite-size

region cannot undergo a true phase transition at any nonzero temperature because

its partition function must be analytic. Thus, true static long-range order can only

be established via a collective phenomenon in the entire system

Recent work has established, however, that some phase transitions are indeed

smeared by random disorder. This can happen at zero-temperature quantum phase

transitions when the order parameter fluctuations are overdamped because they are

coupled to an (infinite) heat bath.[90, 91] As the damping hampers the dynamics, suf-

ficiently large but finite-size regions can undergo the phase transition independently

from the bulk system. Once several such regions have developed static order, their

local order parameters can be aligned by an infinitesimally small mutual interaction.

Thus, global order develops gradually, and the global phase transition is smeared.

Classical thermal phase transitions can also be smeared provided the disorder is per-

fectly correlated in at least two dimensions. In these cases, individual “slabs” of finite

thickness undergo the phase transition independently of the bulk system.[92, 93]

The existing theoretical work on smeared phase transitions focuses on situa-

tions in which a sample with some fixed degree of randomness is tuned through the

transition by changing the temperature (for classical transitions) or the appropriate

quantum control parameter such as pressure or magnetic field (for quantum phase

transitions). However, many experiments are performed on substitutional alloys such
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as CePd1−xRhx or Sr1−xCaxRuO3. These materials can be tuned from an ordered

phase (ferromagnetic for the two examples) at composition x = 0 to a disordered

phase at x = 1 while keeping the temperature and other external parameters fixed,

i.e., they undergo a phase transition as a function of composition. The composition

parameter x actually plays a dual role in these transitions. On the one hand, x is

the control parameter of the phase transition. On the other hand, changing x also

changes the degree of randomness. If such a composition-tuned phase transition is

smeared, its behavior can therefore be expected to be different than that of smeared

transitions occurring at fixed randomness.

In this paper, we investigate the properties of composition-tuned smeared

phase transitions in substitutional alloys of the type A1−xBx. We show that the

ordered phase extends over the entire composition range x < 1, and we derive the

behavior of the system in the tail of the smeared transition. Our paper is organized

as follows. In Sec. 2., we consider a smeared quantum phase transition in an itinerant

magnet. We use optimal fluctuation theory to derive the composition dependence

of the order parameter, the phase boundary, and other quantities. In Section 3. we

briefly discuss how the theory is modified for smeared classical transitions in sys-

tems with correlated disorder. Section 4. is devoted to computer simulations of a toy

model that illustrate and confirm our theory. We conclude in Sec. 5. by comparing

composition-tuned smeared transitions with those occurring at fixed randomness. We

also discuss experiments.
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2. SMEARED QUANTUM PHASE TRANSITION

2.1. MODEL AND PHASE DIAGRAM. In this section we investigate

the ferromagnetic or antiferromagnetic quantum phase transition of itinerant elec-

trons with Ising order parameter symmetry. In the absence of quenched randomness,

the Landau-Ginzburg-Wilson free energy functional of this transition in d space di-

mensions reads [94, 95]

S =

∫

dydz ψ(y)Γ(y, z)ψ(z) + u

∫

dy ψ4(y) . (2.1)

Here, ψ is a scalar order parameter field, y ≡ (y, τ) comprises imaginary time τ

and d-dimensional spatial position y,
∫

dy ≡
∫

dy
∫ 1/T

0
dτ , and u is the standard

quartic coefficient. Γ(y, z) denotes the bare inverse propagator (two-point vertex)

whose Fourier transform reads

Γ(q, ωn) = r + ξ20q
2 + γ0(q) |ωn| . (2.2)

Here, r is the distance from criticality,† ξ0 is a microscopic length scale, and ωn is a

Matsubara frequency. The dynamical part of Γ(q, ωn) is proportional to |ωn|. This

overdamped dynamics reflects the Ohmic dissipation caused by the coupling between

the order parameter fluctuations and the gapless fermionic excitations in an itinerant

system. The damping coefficient γ0(q) is q-independent for an antiferromagnetic

transition but proportional to 1/|q| or 1/|q|2 for ballistic and diffusive ferromagnets,

respectively.

We now consider two materials A and B. Substance A is in the magnetic

phase, implying a negative distance from criticality, rA < 0, while substance B is

nonmagnetic with rB > 0. By randomly substituting B-atoms for the A-atoms to

†Strictly, one needs to distinguish the bare distance from criticality that appears in (2.2) from the
renormalized one that measures the distance from the true critical point. We suppress this difference
because it is unimportant for our purposes.
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form a binary alloy A1−xBx, we can drive the system through a composition-driven

magnetic quantum phase transition.

A crucial role in this transition is played by rare A-rich spatial regions. They

can be locally in the magnetic phase even if the bulk system is nonmagnetic. In

the presence of Ohmic dissipation, the low-energy physics of each such region is

equivalent to that of a dissipative two-level system which is known to undergo, with

increasing dissipation strength, a phase transition from a fluctuating to a localized

phase.[60] Therefore, the quantum dynamics of sufficiently large rare regions com-

pletely freezes,[96] and they behave as classical superspins. At zero temperature,

these classical superspins can be aligned by an infinitesimally small residual inter-

action which is always present as they are coupled via the fluctuations of the para-

magnetic bulk system. The order parameter is thus spatially very inhomogeneous,

but its average is nonzero for any x < 1 implying that the global quantum phase

transition is smeared by the disorder inherent in the random positions of the A and

B atoms.[90, 97, 98]

At small but nonzero temperatures, the static magnetic order on the rare re-

gions is destroyed, and a finite interaction of the order of the temperature is necessary

to align them. This restores a sharp phase transition at some transition temperature

Tc(x) which rapidly decreases with increasing x but reaches zero only at x = 1. If the

temperature is raised above Tc, the locally ordered rare regions act as independent

classical moments, leading to super-paramagnetic behavior. A sketch of the resulting

phase diagram is shown in Fig. 2.1.

2.2. OPTIMAL FLUCTUATION THEORY. In this section, we use

optimal fluctuation theory [99, 100, 101] to derive the properties of the tail of the

smeared quantum phase transition. This is the composition range where a few rare

regions have developed static magnetic order but their density is so small that they

are very weakly coupled.
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Figure 2.1: (Color online) Schematic temperature-composition phase diagram of a
binary alloy A1−xBx displaying a smeared quantum phase transition. In
the tail of the magnetic phase, which stretches all the way to x = 1,
the rare regions are aligned. Above Tc, they act as independent classical
moments, resulting in super-paramagnetic (PM) behavior. x0c marks the
critical composition in average potential approximation defined in (2.3).

A crude estimate of the transition point in the binary alloy A1−xBx can be

obtained by simply averaging the distance from criticality, rav = (1 − x)rA + xrB.

The transition point corresponds to rav = 0. This gives the critical composition in

“average potential approximation,”

x0c = −rA/(rB − rA) . (2.3)

Let us now consider a single A-rich rare region of linear size LRR embedded

in a nonmagnetic bulk sample. If the concentration xloc of B atoms in this region

is below some critical concentration xc(LRR), the region will develop local magnetic

order. The value of the critical concentration follows straightforwardly from finite-size

scaling,[102, 103]

xc(LRR) = x0c −DL−φ
RR , (2.4)

where φ is the finite-size shift exponent and D is a constant. Within mean-field

theory (which should be qualitatively correct in our case because the clean transition
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is above its upper critical dimension[94]), one finds φ = 2 and D = ξ20/(rB − rA).

Since xc(LRR) must be positive, (2.4) implies that a rare region needs to be larger

than Lmin = (D/x0c)
1/φ to develop local magnetic order.

As the last ingredient of our optimal fluctuation theory, we now analyze the

random distribution of the atoms in the sample. For simplicity, we assume that the

lattice sites are occupied independently by either A or B atoms with probabilities 1−x

and x, respectively. Modifications due to deviations from a pure random distribution

(i.e., clustering) will be discussed in the concluding section 5.. The probability of

finding NB = Nxloc sites occupied by B atoms in a spatial region with a total of

N ∼ LdRR sites is given by the binomial distribution

P (N, xloc) =

(

N

NB

)

(1− x)N−NBxNB . (2.5)

We are interested in the regime x > x0c where the bulk system will not be magnetically

ordered but xloc = NB/N < xc(LRR) such that local order is possible in the region

considered.

To estimate the total zero-temperature order parameter M in the tail of the

smeared transition (where the rare regions are very weakly coupled), we can simply

sum over all rare regions displaying local order

M ∼
∫ ∞

Lmin

dLRR

∫ xc(LRR)

0

dxlocm(N, xloc)P (N, xloc) . (2.6)

Here, m(N, xloc) is the order parameter of a single region of N sites and local compo-

sition xloc; and we have suppressed a combinatorial prefactor. We now analyze this

integral in two parameter regions, (i) the regime where x is somewhat larger than x0c

but not by too much, and (ii) the far tail of the transition at x→ 1.
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If x is not much larger than x0c , the rare regions are expected to be large, and

we can approximate the binomial distribution (2.5) by a Gaussian,

P (N, xloc) =
1

√

2πN(1−N)
exp

[

−N (xloc − x)2
2x(1− x)

]

(2.7)

To exponential accuracy in x, the integral (2.6) can now be easily performed in

saddle point approximation. Neglecting m(N, xloc), which only modifies power-law

prefactors, we find that large rare regions of size LφRR = D(2φ − d)/[d(x − x0c)] and

maximum possible B-concentration xloc = x0c−DL−φ
RR dominate the integral. Inserting

these saddle point values into the integrand yields the composition dependence of the

order parameter as‡

M ∼ exp

[

−C (x− x0c)2−d/φ
x(1− x)

]

(2.8)

where C = 2(D/d)d/φ(2φ− d)d/φ−2φ2 is a non-universal constant.

Let us now analyze the far tail of the smeared transition, x→ 1. In this regime,

the binomial distribution cannot be approximated by a Gaussian. Nonetheless, the

integral (2.6) can be estimated in saddle-point approximation. We find that for x→ 1,

the integral is dominated by pure-A regions of the minimum size that permits local

magnetic order. This means LRR = Lmin = (D/x0c)
1/φ and xloc = 0. Inserting these

values into the integrand of (2.6), we find that the leading composition dependence

of the order parameter in the limit x→ 1 is given by a non-universal power law,

M ∼ (1− x)Ldmin = (1− x)(D/x0c)d/φ . (2.9)

We thus find thatM is nonzero in the entire composition range 0 ≤ x < 1, illustrating

the notion of a smeared quantum phase transition.

‡This result is valid for d < 2φ which is fulfilled for our transition. In the opposite case, the
integral over LRR is dominated by its lower bound, resulting in a purely Gaussian dependence of M
on x− x0

c .
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So far, we have focused on the zero-temperature order parameter. Other

quantities can be found in an analogous manner. Let us, for example, determine

the phase boundary, i.e., the composition dependence of the critical temperature Tc.

As was discussed in Sec. 2.1, the static magnetism of the rare regions is destroyed at

nonzero temperatures. Consequently, magnetic long-range order in the sample can

only develop, if the rare regions are coupled by an interaction of the order of the

temperature. The typical distance between neighboring locally ordered rare regions

can be estimated from their density, ρ, as rtyp ∼ ρ−1/d ∼M−1/d. Within the Landau-

Ginzburg-Wilson theory (2.1,2.2), the interaction between two rare regions drops off

exponentially with their distance r, Eint ∼ exp(−r/ξb), where ξb is the bulk correlation

length. This leads to a double-exponential dependence of Tc on x for compositions

somewhat above x0c , i.e., ln(1/Tc) ∼ exp{C(x − x0c)
2−d/φ/[dx(1 − x)]}. For x → 1,

we find ln(1/Tc) ∼ (1 − x)−L
d
min/d. However, in a real metallic magnet, the locally

ordered rare regions are coupled by an RKKY-type interaction that decays as a power

law with distance, Eint ∼ r−d, rather than exponentially.[104] (This interaction is

not contained in the long-wavelength expansion implied in (2.2).) Therefore, the

composition dependence of the critical temperature takes the same form as that of

the magnetization,

Tc ∼ exp

[

−C (x− x0c)2−d/φ
x(1− x)

]

(2.10)

for compositions somewhat above x0c and

Tc ∼ (1− x)Ldmin = (1− x)(D/x0c)d/φ (2.11)

in the far tail of the smeared transition, x→ 1.

We now turn to the order parameter susceptibility. It consists of two differ-

ent contributions, one from the paramagnetic bulk system and one from the locally

ordered rare regions. The bulk system provides a finite, non-critical background
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throughout the tail of the smeared transition. Let us discuss the rare region contri-

bution in more detail. At zero temperature, the total order parameter M is nonzero

for all x < 1. The rare regions therefore always feel a symmetry-breaking effective

field which cuts off any possible divergence of their susceptibilities. We conclude

that the zero-temperature susceptibility does not diverge anywhere in the tail of the

smeared transition. If the temperature is raised above Tc, the relative alignment of the

rare regions is lost, and they behave as independent large (classical) moments, lead-

ing to a super-paramagnetic temperature dependence of the susceptibility, χ ∼ 1/T

(see Fig. 2.1). At even higher temperatures, when the damping of the quantum dy-

namics becomes unimportant, we expect the usual non-universal quantum Griffiths

power-laws, χ ∼ T λ−1, where λ is the Griffiths exponent.[97, 98, 105]
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3. SMEARED CLASSICAL PHASE TRANSITION

Classical (thermal) phase transitions with uncorrelated disorder cannot be

smeared because all rare regions are of finite size and can thus not undergo a true

phase transition at any nonzero temperature. However, perfect disorder correlations

in one or more dimensions lead to rare regions that are infinitely extended in the

thermodynamic limit. If the number of correlated dimensions is high enough, these

infinitely large rare regions can undergo the phase transition independently of the

bulk system, leading to a smearing of the global phase transition.[92] This happens,

for example, in a randomly layered Ising magnet, i.e., an Ising model with disorder

correlated in two dimensions. [93]

In this section, we discuss how the theory of Sec. 2. is modified for these

smeared classical phase transitions. For definiteness, we consider a classical Landau-

Ginzburg-Wilson free energy in d dimensions,

S =

∫

dy ψ(y)[r − ∂2
y
]ψ(y) + u

∫

dy ψ4(y) . (2.12)

As in the quantum case, we now consider a binary “alloy” A1−xBx of two materials A

and B. The atoms are arranged randomly in d⊥ dimensions, while they are perfectly

correlated in d‖ = d− d⊥ dimensions. For example, if d⊥ = 1 and d‖ = 2, the system

would consist of a random sequence of layers, each made up of only A atoms or only

B atoms.

If the correlated dimension d‖ is sufficiently large, the “alloy” undergoes a

smeared classical phase transition as the composition x is tuned from 0 to 1 at a (fixed)

temperature at which material A is magnetically ordered, rA < 0, while material B is

in the nonmagnetic phase, rB > 0. The optimal fluctuation theory for the behavior in

the tail of the smeared transition can be developed along the same lines as the theory

in Sec. 2.. The only important difference stems from the fact that the randomness

is restricted to d⊥ dimensions. The dimensionality d in eqs. (2.8) and (2.9) therefore
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needs to be replaced by d⊥, leading to

M ∼ exp

[

−C (x− x0c)2−d⊥/φ
x(1− x)

]

(2.13)

for compositions somewhat above x0c and

M ∼ (1− x)L
d⊥
min = (1− x)(D/x0c)d⊥/φ (2.14)

for x → 1. The same substitution of d by d⊥ was also found for smeared classical

transitions tuned by temperature rather than composition.[92]
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4. COMPUTER SIMULATIONS

To verify the predictions of the optimal fluctuation theory in Sec. 2. and to

illustrate our results, we have performed computer simulations of a toy model, viz., a

classical Ising model with d space-like dimensions and one time-like dimension. The

interactions are between nearest neighbors in the space-like directions but infinite-

ranged in the time-like ones. This (d+1)-dimensional toy model retains the possibility

of static order on the rare regions (which is crucial for the transition being smeared)

but permits system sizes large enough to study exponentially rare events. The Hamil-

tonian reads

H = − 1

L τ

∑

〈y,z〉,τ,τ ′
Sy,τSz,τ ′ −

1

L τ

∑

y,τ,τ ′

JySy,τSy,τ ′ (2.15)

Here y and z are d-dimensional space-like coordinates and τ is the time-like coor-

dinate. Lτ is the system size in time direction and 〈y, z〉 denotes pairs of nearest

neighbors on the hyper-cubic lattice in space. Jy is a quenched random variable hav-

ing the binary distribution P (J) = (1− x) δ(J − Jh) + x δ(J − Jl) with Jh > Jl. In

this classical model Lτ plays the role of the inverse temperature in the corresponding

quantum system and the classical temperature plays the role of the quantum tuning

parameter. Because the interaction is infinite-ranged in time, the time-like dimension

can be treated in mean-field theory. For Lτ → ∞, this leads to a set of coupled

mean-field equations for the local magnetizations my = (1/Lτ )
∑

τ Sy,τ . They read

my = tanh β [Jymy +
∑

z

mz + h] , (2.16)

where the sum is over all nearest neighbors of site y and h → 0 is a very small

symmetry-breaking magnetic field which we typically set to 10−12. If all Jy ≡ Jh, the

system undergoes a (sharp) phase transition at Th = Jh + 2d, and if all Jy ≡ Jl, it

undergoes the transition at Tl = Jl + 2d. In the temperature range Th > T > Tl, the

phase transition can therefore be tuned by composition x.
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Figure 4.1: (Color online) Magnetization M vs composition x for a (3+ 1)-dimensio-
nal system having Jh = 20, Jl = 8 and several values of the classical
temperature T . The data represent averages over 100 samples of size
L = 100. The values of the critical concentration in “average potential
approximation,” x0c , are shown for comparison.

The mean-field equations (2.16) can be solved efficiently in a self-consistency

cycle. Using this approach, we studied systems in one, two, and three space dimen-

sions. The system sizes were up to L=10000 in 1d, and up to L = 100 in 2d and

3d. For each parameter set, the data were averaged over a large number of disorder

realizations. Details will be given with the individual results below.

Fig. 4.1 shows an overview over the magnetization M as a function of compo-

sition x for a (3+1)-dimensional system at several values of the classical temperature

in the interval Th > T > Tl. The figure clearly demonstrates that the magnetic phase

extends significantly beyond the “average potential” value x0c = (Th−T )/(Th−Tl). In

this sense, the magnetic phase in our binary alloy benefits from the randomness. In

agreement with the smeared phase transition scenario, the data also show that M(x)

develops a pronounced tail towards x = 1. (By comparing different system sizes,

we can exclude that the tail is due to simple finite-size rounding.[92]) We performed
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Figure 4.2: (Color online) log(M) vs x in the tail of the transition for three example
systems: (i) (3 + 1)-dimensional system with L = 100, Jh = 20, Jl = 8,
and T = 23, (ii) (2+1)-dimensional system with L = 100, Jh = 15, Jl = 8,
and T = 18, and (iii) (1 + 1)-dimensional system with L = 10000, Jh =
11, Jl = 8, and T = 12.8. All data are averages over 100 disorder configu-
rations. The solid lines are fits to (2.8), with the fit intervals restricted to
x ∈ (0.25, 0.55) in (1+1) dimensions, (0.6,0.72) in (2+1) dimensions and
(0.7,0.82) for the (3+1)-dimensional example.

similar simulations for systems in one and two space dimensions, with analogous

results.

To verify the theoretical predictions of the optimal fluctuation theory devel-

oped in Sec. 2., we now analyze the tail of the smeared phase transition in more

detail. Fig. 4.2 shows a semi-logarithmic plot of the magnetization M vs. the com-

position x for a (1 + 1)-dimensional system, a (2 + 1)-dimensional system, and a

(3 + 1)-dimensional one. In all examples, the data follow the theoretical prediction

(2.8) over at least 2 orders of magnitude in M in a transient regime of intermediate

compositions x.
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We also check the behavior of the magnetization for compositions very close to

x = 1. Since (2.9) predicts a non-universal power law, we plot log(M) vs. log(1−x) for

a (3+1)-dimensional system in Fig. 4.3. The figure shows that the magnetization tail

indeed decays as a power of (1−x) with x→ 1. The exponent increases with increasing

temperature in agreement with the prediction that it measures the minimum size

Nmin ∼ Ldmin a rare regions needs to have to undergo the transition independently.

The inset of Fig. 4.3 shows a fit of the exponent to Ldmin ∼ [x0c(T )]
−3/2 = [(Th −

T )/(Th−Tl)]−3/2. The equation describes the data reasonably well; the deviations at

small exponents can be explained by the fact that our theory assumes the rare-region

size to be a continuous variable which is not fulfilled for rare regions consisting of just

a few lattice sites.

Figure 4.3: (Color online) log(M) vs log(1−x) for a (3+1)-dimensional system with
L = 100, Jh = 20, Jl = 8 and several temperatures. All data are averages
over 100 disorder configurations. The solid lines are fits to the power-law
(2.9). The inset shows the exponent as a function of temperature, with
the solid line being a fit to [x0c(T )]

−3/2.
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Our computer simulation thus confirm the theoretical predictions in both com-

position regions in the tail of the transition. In a transient regime above x0c , we ob-

serve the exponential dependence (2.8) while the magnetization for x→ 1 follows the

non-universal power law (2.9).
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5. CONCLUSIONS

In summary, we have investigated phase transitions that are tuned by changing

the composition x in a random binary alloy A1−xBx where pure A is in the ordered

phase while pure B is in the disordered phase. If individual, rare A-rich spatial regions

develop true static order, they can be aligned by an infinitesimal residual interaction.

This results in the smearing of the global phase transition, in agreement with the

classification put forward in Ref.

As an example, we have studied the quantum phase transition of an itinerant

Ising magnet of the type A1−xBx. At zero temperature, the ordered phase in this

binary alloy extends over the entire composition range x < 1, illustrating the notion

of a smeared quantum phase transition. Upon raising the temperature, a sharp phase

transition is restored, but the transition temperature Tc(x) is nonzero for all x < 1

and reaches zero only right at x = 1 (see Fig. 2.1). Using optimal fluctuation theory,

we have derived the functional forms of various thermodynamic observables in the

tail of the smeared transition. We have also briefly discussed smeared classical phase

transitions that can occur in systems with correlated disorder, and we have performed

computer simulations of a toy model that confirm and illustrate the theory.

Although our results are qualitatively similar to those obtained for smeared

phase transitions occurring at fixed randomness as a function of temperature or an

appropriate quantum control parameter, the functional forms of observables are not

identical. The most striking difference can be found in the far tail of the transition.

In the case of composition-tuning, the order parameter vanishes as a non-universal

power of the distance from the end of the tail (x = 1), reflecting the fact that the

minimum rare region size required for local magnetic order is finite. In contrast, if the

transition occurs at fixed composition as a function of temperature or some quantum

control parameter, the order parameter vanishes exponentially,[90, 92] because the

minimum size of an ordered rare region diverges in the far tail. These differences
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illustrate the fact that the behavior of observables at a smeared phase transition is

generally not universal in the sense of critical phenomena; it depends on details of the

disorder distribution and how the transition is tuned. Only the question of whether

or not a particular phase transition is smeared is universal, i.e., determined only by

symmetries and dimensionalities.

Let us briefly comment on the relation of our theory to percolation ideas.

The optimal fluctuation theory of Sec. 2.2 applies for compositions x larger than the

percolation threshold of the A-atoms. Because the A-clusters are disconnected in this

composition range, percolation of the A atoms does not play a role in forming the

tail of the ordered phase at large x. Instead, distant rare regions are coupled via

the fluctuations of the paramagnetic bulk phase and, in metallic magnets, via the

RKKY interaction. Percolation does play a role, though, in the crossover between

the inhomogeneous order in the tail of the transition and the bulk order at lower x.

We note in passing that the behavior of a diluted system (where B represents

a vacancy) with nearest-neighbor interactions is not described by our theory. In this

case, the A-clusters are not coupled at all for compositions x larger than the A per-

colation threshold. Therefore they cannot align, and long-range order is impossible.

As a result, the super-paramagnetic behavior of the locally ordered clusters extends

all the way down to zero temperature. This was recently discussed in detail on the

example of a diluted dissipative quantum Ising model.[106]

In the present paper, we have assumed that the A and B atoms are distributed

independently over the lattice sites, i.e., we have assumed that there are no correla-

tions between the atom positions. It is interesting to ask how the results change if this

assumption is not fulfilled, for example because like atoms tend to cluster. As long

as the correlations of the atom positions are short-ranged (corresponding to a finite,

microscopic length scale for clustering), our results will not change qualitatively. All

arguments in the optimal fluctuation theory still hold using a typical cluster of like

atoms instead of a single atom as the basic unit. However, such clustering will lead
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to significant quantitative changes (i.e., changes in the non-universal constants in our

results), as it greatly increases the probability of finding large locally ordered rare

regions. We thus expect that clustering of like atoms will enhance the tail and move

the phase boundary Tc(x) towards larger x. A quantitative analysis of this effect re-

quires explicit information about the type of correlations between the atom positions

and is thus relegated to future work.

Let us finally turn to experiment. Tails of the ordered phase have been ob-

served at many quantum phase transitions. However, it is often not clear whether

these tails are an intrinsic effect or due to experimental difficulties such as macro-

scopic concentration gradients or other macroscopic sample inhomogeneities. Recent

highly sensitive magneto-optical experiments on Sr1−xCaxRuO3 have provided strong

evidence for a smeared ferromagnetic quantum phase transition.§ The behavior of

the magnetization and critical temperature in the tail of the smeared transition agree

well with the theory developed here. Moreover, the effects of clustering discussed

above may explain the wide variation of the critical composition between about 0.5

and 1 reported in earlier studies.[107, 108, 109] We expect that our smeared quantum

phase transition scenario applies to a broad class of itinerant systems with quenched

disorder.

§L. Demko et al., unpublished.
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ABSTRACT∗

We investigate the influence of spatial disorder correlations on smeared phase

transitions, taking the magnetic quantum phase transition in an itinerant magnet

as an example. We find that even short-range correlations can have a dramatic

effect and qualitatively change the behavior of observable quantities compared to

the uncorrelated case. This is in marked contrast to conventional critical points,

at which short-range correlated disorder and uncorrelated disorder lead to the same

critical behavior. We develop an optimal fluctuation theory of the quantum phase

transition in the presence of correlated disorder, and we illustrate the results by

computer simulations. As an experimental application, we discuss the ferromagnetic

quantum phase transition in Sr1−xCaxRuO3.

∗Published in Europhysics Letters 97, 20007 (2012).
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1. INTRODUCTION

Quenched disorder has various important consequences in condensed matter.

For example, disorder can change the universality class of a critical point [110, 111]

or even change the order of a phase transition [112, 113, 114].

In theoretical studies, the disorder is often assumed to be uncorrelated in

space even though many sample preparation techniques will produce some degree of

correlations between the impurities and defects. As long as the correlations are short-

ranged, i.e., characterized by a finite correlation length ξdis, this assumption is usually

justified if one is interested in the universal properties of critical points. (There are

exceptions for special, fine-tuned local correlations [115]). The reason why short-

range correlated disorder leads to the same behavior as uncorrelated disorder can

be easily understood within the renormalization group framework. Under repeated

coarse graining, a nonzero disorder correlation length ξdis decreases without limit.

The disorder thus becomes effectively uncorrelated on the large length scales that

determine the critical behavior.

A formal version of this argument follows from the Harris criterion [116]. It

states that a clean critical point is stable against weak uncorrelated disorder if its

correlation length critical exponent ν fulfills the inequality dν > 2 where d is the

space dimensionality. If the inequality is violated, the disorder is relevant and changes

the critical behavior. According to Weinrib and Halperin [117], spatially correlated

disorder leads to the same inequality as long as its correlations decay faster than r−d

with distance r. Thus, short-range correlated disorder and uncorrelated disorder have

the same effect on the stability of a clean critical point.

In this Letter, we demonstrate that spatial disorder correlations are much more

important at smeared phase transitions, a broad class of classical and quantum phase

transitions characterized by a gradual, spatially inhomogeneous onset of the ordered

phase [97]. Specifically, we show that short-range correlated disorder and uncorrelated
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Figure 1.1: (Color online) Schematic of the zero-temperature magnetization-comp-
osition curve (M vs x) and the finite-temperature phase boundary (Tc
vs x) at a smeared quantum phase transition in a random binary alloy
A1−xBx. The cases of uncorrelated, correlated, and anti-correlated disor-
der are contrasted.

disorder lead to qualitatively different behaviors. The disorder correlations do not

only influence quantities usually considered non-universal such as the location of the

phase boundary, they also change the functional dependence of the order parameter

and other quantities on the tuning parameters of the transition, as indicated in Fig.

1.1. We propose that this mechanism may be responsible for the unusually wide

variations reported in the literature on the properties of the ferromagnetic quantum

phase transition (QPT) in Sr1−xCaxRuO3.

In the following, we sketch the derivation of our theory, compute observables,

and illustrate them by simulations. We also discuss the generality of our findings,

and we compare them to experiment.
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2. SMEARED QUANTUM PHASE TRANSITION

For definiteness, we consider a magnetic QPT in a metallic system with Ising

order parameter symmetry. In the absence of quenched disorder, the Landau-Ginzburg-

Wilson free energy functional of this transition is given by [94, 95]

S =

∫

dydz ψ(y)Γ(y, z)ψ(z) + u

∫

dy ψ4(y) , (3.1)

where ψ is the order parameter field, y ≡ (y, τ) comprises d-dimensional spatial

position y and imaginary time τ , the integration means
∫

dy ≡
∫

dy
∫ 1/T

0
dτ , and

u is the standard quartic coefficient. The Fourier transform of the Gaussian vertex

Γ(y, z) reads

Γ(q, ωn) = r + ξ20q
2 + γ0(q) |ωn| . (3.2)

Here, r is the distance from criticality,† ξ0 is a microscopic length, and ωn is a Matsub-

ara frequency. The dynamical part of Γ(q, ωn) is proportional to |ωn|. This reflects the

Landau damping of the order parameter fluctuations by gapless electronic excitations

in a metallic system. The coefficient γ0(q) is q-independent for an antiferromagnetic

transition but proportional to 1/|q| or 1/|q|2 for ballistic and diffusive ferromagnets,

respectively.

We now consider a random binary alloy A1−xBx consisting of two materials

A and B. Pure substance B has a non-magnetic ground-state, implying a positive

distance from quantum criticality, rB > 0. Substance A has a magnetically ordered

ground state with rA < 0. By randomly substituting B atoms for A atoms, one can

drive the system through a QPT from a magnetic to a nonmagnetic ground state.

Due to statistical fluctuations, the distribution of A and B atoms in the alloy

will not be spatially uniform. Some regions may contain significantly more A atoms

†Strictly, one needs to distinguish the bare distance from criticality that appears in (3.2) from the
renormalized one that measures the distance from the true critical point. We suppress this difference
because it is unimportant for our purposes.
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than the average. If the local A-concentration is sufficiently high, such regions will

be locally in the magnetic phase even if the bulk system is nonmagnetic. Because the

magnetic fluctuations are overdamped, the quantum dynamics of sufficiently large

such locally magnetic spatial regions completely freezes (for Ising symmetry [96]). At

zero temperature, these rare regions thus develop static magnetic order independently

of each other. This destroys the sharp QPT by smearing [90, 97, 98] and is manifest

in a pronounced tail in the zero-temperature magnetization-composition curve [118].

At any nonzero temperature, the static magnetic order on individual, inde-

pendent rare regions is destroyed because they can fluctuate via thermal excitations.

Therefore, a finite interaction between the rare regions of the order of the thermal

energy is necessary to align them. This restores a conventional sharp phase transi-

tion at any nonzero temperature. However, the smeared character of the underlying

QPT leads an unusual concentration dependence of the critical temperature Tc which

displays a tail towards large x [90, 118].

The effects of disorder correlations can be easily understood at a qualitative

level. For positive correlations, like atoms tend to cluster. This increases, at fixed

composition, the probability of finding large A-rich regions compared to the uncorre-

lated case. The tail of magnetization-composition curve therefore becomes larger (see

Fig. 1.1). In contrast, like atoms repel each other in the case of negative correlations

(anti-correlations). This decreases the probability of finding large A-rich regions and

thus suppresses the tail.
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3. OPTIMAL FLUCTUATION THEORY

To quantify the influence of the disorder correlations, we now develop an op-

timal fluctuation theory [90, 118]. We focus on the “tail” of the smeared transition

(large x) where a few rare regions show magnetic order but their interactions are weak

because they are far apart.

We roughly estimate the transition point in the alloy A1−xBx, by setting the

average distance from criticality to zero, rav = (1− x)rA + xrB = 0. This defines the

critical composition in “average-potential” approximation,

x0c = −rA/(rB − rA) . (3.3)

For compositions x > x0c , static magnetic order can only develop on rare, atypical

spatial regions with a higher than average A-concentration. Specifically, a single A-

rich rare region of linear size LRR can show magnetic order, if the local concentration

xloc of B atoms is below some critical value xc. Because the rare region has a finite size,

the critical concentration is shifted from the bulk value x0c . According to finite-size

scaling [102, 103]

xc(LRR) = x0c −DL−φ
RR , (3.4)

where φ is the finite-size shift exponent and D is a non-universal constant. In a

three-dimensional itinerant magnet, φ takes the mean-field value of 2 because the

clean transition is above its upper critical dimension. As xc(LRR) must be positive,

a rare region must be larger than Lmin = (D/x0c)
1/φ to show magnetic order.

In the tail of the smeared transition, the magnetically ordered rare regions are

far apart and interact only weakly. To find the total magnetization M one can thus
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simply sum over all magnetically ordered rare regions. This gives

M ∼
∫ ∞

Lmin

dLRR

∫ xc(LRR)

0

dxlocP (N, xloc)m(N, xloc) , (3.5)

where P (N, xloc) is the probability for finding a region ofN sites and local composition

xloc (i.e., a region containing NB = Nxloc atoms of type B), and m(N, xloc) is its

magnetization

Let us analyze the spatial distribution of atoms in the sample to determine the

probability P (N, xloc). Specifically, let us assume that the random positions of the

A and B atoms are positively correlated such that like atoms form clusters of typical

correlation volume (number of lattice sites) Vdis ≈ 1 + aξddis where ξdis is the disorder

correlation length and a is a geometric prefactor. The probabilities for finding A and

B clusters in the sample are 1− x and x, respectively. The number ncl of correlation

clusters contained in a large spatial region of N sites (N ≫ Vdis) is approximately

ncl ≈ N/Vdis = N/(1 + aξddis) . (3.6)

The probability P (N, xloc) for finding a region of N sites and local composition

xloc is therefore equal to the probability Pclus(ncl, nB) for finding nB = xncl clusters

of B atoms among all the ncl clusters contained in the region. It can be modeled by

a binomial distribution

Pclus(ncl, nB) =

(

ncl

nB

)

(1− x)ncl−nBxnB . (3.7)

We now distinguish two cases, (i) the regime where x is not much larger than x0c , and

(ii) the far tail of transition at x→ 1.
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(i) If x is just slightly larger than x0c , rare regions are large and the probability

(3.7) can be approximated by a Gaussian

Pclus ≈
1

√

2πx(1− x)/ncl

exp

[

−ncl
(xloc − x)2
2x(1− x)

]

. (3.8)

We estimate the integral (3.5) in saddle point approximation. Neglecting subleading

contributions fromm(N, xloc), we find that rare regions of size LφRR = D(2φ−d)/[d(x−

x0c)] and composition xc(LRR) dominate the integral. The resultingM(x) dependence

reads

M ∼ exp

[

− C

(1 + aξddis)

(x− x0c)2−d/φ
x(1− x)

]

, (3.9)

where C = 2(D/d)d/φ(2φ − d)d/φ−2φ2 is a non-universal constant. In this regime,

varying the disorder correlation length thus modifies the non-universal prefactor of

the exponential dependence of M on x.

(ii) An even more striking effect occurs in the tail of the transition for x→ 1.

As rare regions cannot be large in this regime, the binomial distribution (3.7) cannot

be approximated by a Gaussian. However, within saddle point approximation, the

integral (3.5) is dominated by rare regions containing only A atoms and having the

minimum size permitting local order. Inserting LRR = Lmin = (D/x0c)
1/φ and xloc = 0

into (3.5), we find that the composition dependence of the magnetization is given by

the power law,

M ∼ (1− x)β (x→ 1) , (3.10)

with β = aLdmin/(1 + aξddis). In this regime, the disorder correlations thus modify the

seeming critical exponent of the order parameter. The exponent value is given by the

minimum number of correlation clusters necessary to form a magnetically ordered

rare region. The results for uncorrelated disorder [118] are recovered by substituting

ξdis = 0 into (3.9) and (3.10).
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So far we have assumed that a typical disorder correlation cluster of A atoms

is smaller than the minimum rare region size required for magnetic order. For larger

disorder correlation length ξdis ≥ Lmin, a single correlation cluster is already large

enough to order magnetically. As a result, (almost) all A atoms contribute to the total

magnetization. Correspondingly, the composition dependence of the order parameter

is given by

M ∼ (1− x) . (3.11)

To combine the power laws (3.10) and (3.11) for different ranges of ξdis, we construct

the heuristic formula

β = (aLdmin + aξddis)/(1 + aξddis) (3.12)

which can be used to fit experimental data or simulation results.

Other observables such as the finite-temperature phase boundary can be found

in similar fashion. As discussed above, at T 6= 0, individual rare regions do not de-

velop a static magnetization. Instead, global magnetic order arises via a conventional

(sharp) phase transition at some transition temperature Tc which can be estimated

from the condition that the interaction energy between the rare regions is of the order

of the thermal energy. To determine the interaction energy, we note that in a metallic

magnet, the rare-regions are coupled by an RKKY interaction which falls off as r−d

with distance r. As the typical distance between neighboring rare regions behaves as

r ∼M−1/d [90], the composition dependence of the critical temperature is analogous

to that of the magnetization. In particular,

Tc(x) ∼ (1− x)β (3.13)

in the tail of the smeared transition, x→ 1.
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4. SIMULATIONS

We now verify and illustrate the theoretical predictions by performing com-

puter simulations of a toy model [90, 92]. Its Hamiltonian is motivated by the so-called

quantum-to-classical mapping [119] which relates a quantum phase transitions in d

space dimensions to a classical transition in d + 1 dimensions. The extra space di-

mension corresponds to imaginary time in the quantum problem. Consequently, we

consider a (3+1)-dimensional classical Ising model on a hypercubic lattice with three

space dimensions and a single imaginary time-like dimension. The interaction in the

time-like direction is long-ranged as the |ωn| frequency dependence in (3.2) corre-

sponds to a 1/τ 2 in imaginary time. In the toy model, we replace this interaction

by an infinite-range interaction in time direction, both on the same site and between

spatial neighbors.‡ This correctly reproduces the smeared character of the phase

transition due to static magnetic order on the rare regions. The Hamiltonian of the

toy model takes the form

H = − 1

Lτ

∑

〈y,z〉,τ,τ ′
J0Sy,τSz,τ ′ −

1

Lτ

∑

y,τ,τ ′

JySy,τSy,τ ′ , (3.14)

where y and z are space coordinates, τ is the time-like coordinate, and Sy,τ = ±1.

Lτ is the system size in time and 〈y, z〉 denotes pairs of nearest neighbors in space.

Jy is a binary random variable whose value, Jh or Jl, is determined by the type of

atom on lattice site y. The values at different sites y and z are not independent,

they are correlated according to some correlation function C(y − z). The average

concentrations of Jh-sites and Jl-sites are 1− x and x, respectively.

Treating the time-like dimension within mean-field theory, which is exact be-

cause of the infinite range of the interactions, a set of coupled nonlinear equations

‡Even though the bare action (3.1, 3.2) does not have an interaction between spatial neighbors
at different imaginary times τ , such a coupling will be generated in perturbation theory (or under
RG) from the short-range spatial interaction and the long-range interaction in time.
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emerge for the local magnetizations my = (1/Lτ )
∑

τ Sy,τ ,

my = tanh
1

Tcl
(Jymy +

∑

z
J0mz + h) . (3.15)

Here, the z-sum is over the nearest neighbors of site y, and h is a tiny symmetry-

breaking magnetic field. According to the quantum-to-classical mapping, the classical

temperature Tcl is not related to the physical temperature of the underlying quantum

system (which is encoded in Lτ ) but rather some quantum control parameter that

tunes the distance from the quantum phase transition.

The local mean-field equations (3.15) can be solved efficiently in a self-consi-

stency cycle. In the two clean limits with either Jy = Jh or Jy = Jl for all y, the

phase transition occurs at Th = Jh + 6J0 and Tl = Jl + 6J0, respectively. We choose

a classical temperature between Th and Tl and control the transition by changing the

composition x.

To generate the correlated binary random variables representing the site occu-

pations, a version of the Fourier-filtering method [120] is implemented. This method

starts from uncorrelated Gaussian random numbers uy and turns them into correlated

Gaussian random numbers vy characterized by some correlation function C(r). This

is achieved by transforming the Fourier components ũq of the uncorrelated random

numbers according to

ṽq =
[

C̃(q)
] 1

2 ũq, (3.16)

where C̃(q) is the Fourier transform of C(r). The vy then undergo binary projection to

determine the occupation of site y; the site is occupied by atom A if vy is greater than

a composition-dependent threshold and by atom B if vy is less than the threshold.

In the majority of our calculations, we focus on attractive short-range disorder

correlations of the form C(r) = exp (−r2/2ξ2dis). Figure 4.1 shows examples of the

resulting atom distributions for several values of the disorder correlation length ξdis.

The formation of clusters of like atoms is clearly visible.



93

Figure 4.1: (Color online) Examples of the atom distribution in a plane of 2562 sites
for several values of the disorder correlation length ξdis = 0, 1.0, 2.0 from
left to right (x = 0.5).
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Figure 4.2: (Color online) Magnetization M vs. composition x for several values of
the disorder correlation length ξdis using one disorder realization of 2563

sites, Jh = 20, Jl = 8, J0 = 1, Tcl = 24.25, and h = 10−10. Also shown
is one curve for the case of anti-correlations (1283 sites), for details see
text. Inset (a): log-log plot of M vs. (1 − x) confirming the power-law
behavior in the tail of the smeared transition. The tail exponent β shown
in inset (b) agrees very well with (3.12) as shown by the solid fit line.

We now discuss the results of the mean-field equations (3.15). Figure 4.2

presents the total magnetization M as function of composition x for several values of

ξdis with all other parameters held constant. At a given composition x, the magneti-
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zationM increases significantly even for small ξdis of the order of the lattice constant.

Moreover, the seeming transition point (at whichM appears to reach 0) rapidly moves

towards larger compositions, almost reaching x = 1 for a correlation length ξdis = 2.

Inset (a) of Fig. 4.2 shows a plot of logM versus log(1−x) confirming the power-law

behavior (3.10) in the tail of the transition. The dependence on ξdis of the exponents

β extracted from these power laws is analyzed in inset (b) of Fig. 4.2. It can be fitted

well with the heuristic formula (3.12).

In addition to the attractive (positive) correlations, we now briefly consider the

case of anti-correlations (like atoms repel each other). We model the anti-correlations

by a correlation function having values C(0) = 1, C(r) = −c for nearest neigh-

bors, and C(r) = 0 otherwise. The positive constant c controls the strength of the

anti-correlations. A characteristic magnetization-composition curve for such anti-

correlated disorder (with c = 1/6) is included in Fig. 4.2. The data show that the

magnetization is reduced compared to the uncorrelated case, and the tail becomes

less pronounced. Analogous simulations using different values of c show that this

effect increases with increasing strength of the anti-correlations, as indicated in Fig.

1.1.
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5. CONCLUSIONS

In summary, we have studied the effects of spatially correlated disorder on

smeared phase transitions. We have found that even short-range disorder correlations

(extending over just a few lattice constants) lead to qualitative modifications of the

behavior at smeared transitions compared to the uncorrelated case, including changes

in the exponents that characterize the order parameter and the critical temperature.

In other words, systems with uncorrelated disorder and with short-range correlated

disorder behave differently

This is in marked contrast to critical points, at which uncorrelated disorder

and short-range correlated disorder lead to the same critical behavior. (Long-range

correlations do change the critical behavior [117, 121].) What causes this difference

between critical points and smeared transitions? The reason is that critical behavior

emerges in the limit of infinitely large length scales while smeared transitions are

governed by a finite length scale, viz., the minimum size of ordered rare regions.

This renders the renormalization group arguments underlying the generalized Harris

criterion [116, 117] inapplicable.

The majority of our calculations are for the case of like atoms attracting each

other. For these positive correlations, large locally ordered rare regions can form

more easily than in the uncorrelated case. Thus, the tail of the smeared transition is

enhanced; and the phase boundary as well as the magnetization curve move toward

larger x as indicated in Fig. 1.1. We have also briefly considered the case of like

atoms repulsing each other. These anti-correlations suppress the formation of large

locally ordered rare regions compared to the uncorrelated case. As a result, the phase

boundary and the magnetization curve will move toward smaller x. In addition

to short-range correlations, we have also studied long-range power-law correlations

which are interesting because they lead to a broad spectrum of cluster sizes. Detailed

results will be published elsewhere [122].
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Figure 5.1: (Color online) Experimental temperature-composition phase diagrams of
Sr1−xCaxRuO3. Data from Hosaka et al. [123], Schneider et al. [124],
Wissinger et al. [125], and Khalifah et al. [126] are for thin films while
those of Kiyama et al. [109], and Cao et al. [107] are for bulk samples.
Published magnetization curves show similar variations.

Turning to experiment, our results imply that smeared phase transitions are

very sensitive to slight short-range correlations in the spatial positions of impurities

or defects. In particular, an analysis of the data in terms of critical exponents will

give values that depend on these correlations. We believe that a possible realization

of the effects discussed in this paper can be found in Sr1−xCaxRuO3. This well-

studied material undergoes a ferromagnetic QPT as a function of Ca concentration.

Because Sr1−xCaxRuO3 is a metallic system with Ising spin symmetry, the transition is

expected to be smeared [90]. Interestingly, the reported experimental phase diagrams

(see Fig. 5.1) and magnetization curves show unusually large variations. Not only does

the apparent critical composition change between x ≈ 0.5 and 1; the functional form

of the magnetization curves also varies. Although part of these discrepancies may

be due to the difference between film and bulk samples [125], large variations within

each sample type remain. We propose that disorder correlations, i.e., clustering or

anti-clustering of like atoms may be responsible for at least part of these variations.
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Finally, we emphasize that even though we have considered the QPT in itin-

erant magnets as an example, our theory is very general and should be applicable

to all phase transitions smeared by disorder including QPTs [91, 127, 128], classical

transitions in layered systems [92, 93] and non-equilibrium transitions [129]

We thank I. Kezsmarki for helpful discussions. This work has been supported

in part by the NSF under grant No. DMR- 0906566.
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ABSTRACT∗

The subtle interplay of randomness and quantum fluctuations at low tem-

peratures gives rise to a plethora of unconventional phenomena in systems rang-

ing from quantum magnets and correlated electron materials to ultracold atomic

gases. Particularly strong disorder effects have been predicted to occur at zero-

temperature quantum phase transitions. Here, we demonstrate that the composition-

driven ferromagnetic-to-paramagnetic quantum phase transition in Sr1−xCaxRuO3 is

completely destroyed by the disorder introduced via the different ionic radii of the

randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map

the magnetic phase diagram in the composition-temperature space. We find that

the ferromagnetic phase is significantly extended by the disorder and develops a pro-

nounced tail over a broad range of the composition x. These findings are explained

by a microscopic model of smeared quantum phase transitions in itinerant magnets.

Moreover, our theoretical study implies that correlated disorder is even more powerful

in promoting ferromagnetism than random disorder.

Classical or thermal phase transitions generally remain sharp in the presence

of disorder, though their critical behavior might be affected by the randomness. On

the other hand, zero-temperature quantum phase transitions [119, 130, 131] – which

∗Published in Physical Review Letters 108, 185701 (2012).
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are induced by a control parameter such as the pressure, chemical composition or

magnetic field – are more susceptible to the disorder. Nevertheless, most disordered

quantum phase transitions have been found sharp as the correlation length charac-

terizing the spatial fluctuation of the neighboring phases diverges at the transition

point.

In recent years, it has become clear that the large spatial regions free of ran-

domness, which are rare in a strongly disordered material and hereafter referred to as

rare regions, can essentially change the physics of phase transitions [97]. Close to a

magnetic transition, such rare regions can be locally in the magnetically ordered phase

– with slow fluctuations leading to the famous Griffiths singularities [132] – even if the

bulk system is still nonmagnetic. These rare regions are extremely influential close

to quantum phase transitions. and expected to dominate the thermodynamics. They

give rise to the the so-called quantum Griffiths phases [97, 98, 132] as recently ob-

served in magnetic semiconductors [133], heavy-fermion systems [134], and transition

metal alloys [135].

When the rare regions are embedded in a dissipative environment the disorder

effects are further enhanced. For example, in metallic magnets, the magnetization

fluctuations are coupled to electronic excitations having arbitrarily low energies. This

leads to an over-damped fluctuation dynamics. Sufficiently strong damping com-

pletely freezes the dynamics of the locally ordered rare regions [96], allowing them

to develop a static magnetic order. It has been predicted [90] that this mechanism

destroys the sharp magnetic quantum phase transition in a disordered metal by round-

ing and a spatially inhomogeneous ferromagnetic phase appears over a broad range

of the control parameter.

The family of perovskite-type ARuO3 ruthanates (with A an alkaline earth

ion) offers an ideal setting to test these predictions. SrRuO3 is a ferromagnetic metal

with a Curie temperature of TC = 165K. On the other hand, no long-range mag-

netic order develops in CaRuO3 and recent studies indicate paramagnetic behavior or
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the presence of short-range antiferromagnetic correlations in the ground state [136].

It is demonstrated that tiny Co doping can drive the system to a low-temperature

spin-glass state [137], however, the ground state of CaRuO3 is still under debate.

Earlier studies of the transport, thermal and magnetic properties of Sr1−xCaxRuO3

solid solutions revealed that the composition x is an efficient control parameter and

the substitution of the Sr ions by the smaller Ca ions gradually suppresses the ferro-

magnetic character and with it the Curie temperature [107, 108, 109, 138]. However,

estimates of the critical Ca concentration at which TC vanishes show large variations

depending on the way of the assignment, experimental methodology and sample syn-

thesis (e.g. bulk crystals versus thin films with strain due to lattice mismatch with

the substrate). In addition, the random distribution of Sr and Ca ions introduces

strong disorder in the exchange interactions controlling the magnetic state.

To investigate the magnetic properties of Sr1−xCaxRuO3 with high accuracy,

we have grown a composition-spread epitaxial film of size 10mm×4mm and thickness

200 nm (∼ 500 unit cells) on a SrTiO3 (001) substrate [139, 140] which sets the easy

magnetization direction normal to the film plane [141]. The Ca concentration changes

linearly from x=0.13 to 0.53 along the long side of the sample, as shown in Fig. 1.a.

The large atomically-flat area observed in the atomic force microscope image (Fig. 1.a)

demonstrates the high quality of this film.

The composition and temperature dependence of the magnetic properties of

the Sr1−xCaxRuO3 film were probed by a home-built magneto-optical Kerr micro-

scope equipped with a He-flow optical cryostat. Its magneto-optical Kerr rotation for

visible light is dominated by the charge transfer excitations between the O 2p and

Ru 4d t2g states [123]. The large magnitude of the magneto-optical Kerr effect, being

the consequence of strong spin-orbit coupling in ruthenates [142], was found to be

proportional to the magnetization measured by a SQUID magnetometer on uniform

thin films. We have performed all these experiments using a red laser diode. The

resulting precisions of the magnetization (M) and susceptibility (χ) measurements
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Figure 1.: (Color online) Morphology and magnetic characterization of the comp-
osition-spread Sr1−xCaxRuO3 epitaxial film. (a) Photographic image of
the 10×4mm2 film with the local concentration, x, indicated along the
composition-spread direction. The large terraces of mono-atomic layers in
the atomic force microscope image demonstrates the high quality of the
film. (b) The contour plot of the remanent magnetization (M) over the
composition-temperature phase diagram. The dotted mesh is the measured
data set used for the interpolation of the surface. The ferromagnetic-
paramagnetic phase boundary, TC(x), derived from the susceptibility and
magnetization data (see text for details) is also indicated by the black
and grey symbols, respectively. (c) Schematic of the magnetism in the
tail of the smeared transition. The spins on Sr-rich rare regions (bright
islands) form locally ordered ”superspins”. Their dynamics freezes due to
the coupling to electronic excitations which also tends to align them giving
rise to an inhomogeneous long-range ferromagnetic order.

were 6 · 10−3 µB per Ru atom and 8 · 10−3 µBT
−1 per Ru atom, respectively. Since

the composition gradient of the sample is about 0.04mm−1, the spatial resolution,

δ . 20µm, of our microscope corresponds to a resolution of δx ≈ 0.001 in the com-

position, allowing us to achieve an exceptionally fine mapping of the magnetization

versus the control parameter of the quantum phase transition. See Supplemental

Material at [143] for more details on the sample preparation, characterization, and

on the experimental methodology.

An overview of the results is given in Fig. 1.b which shows a color contour

map of the remanent magnetization M as a function of the temperature T and the
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composition x. It was obtained by interpolating a large collection ofM(x) andM(T )

curves measured at constant temperatures and concentrations, respectively. The

data clearly show that the area of the ferromagnetic phase and the magnitude of

the low-temperature magnetization are gradually suppressed with increasing x. Fig-

ure 2. displays the temperature dependence of the magnetization and susceptibility

for selected compositions. With increasing x, the upturn region in the magneti-

zation curves significantly broadens and the width of the ac susceptibility peaks

increases. This already hints at an unconventional smearing of the paramagnetic-

to-ferromagnetic phase transition at higher values of the composition x. The critical

temperature, TC(x) in Fig. 1.b, separating the ferromagnetic and paramagnetic states

in the composition-temperature phase diagram was identified with the peak positions

in the susceptibility and in the first derivative of magnetization using both the tem-

perature and the concentration sweeps.

The TC(x) line in Fig. 1.b does not show a singular drop at any concentra-

tion, instead it grows a tail extending beyond x = 0.52 where the zero-temperature

magnetization is about three orders of magnitude smaller than the saturation value

for SrRuO3. Similar behavior is also observed in the low-temperature magnetization

M as a function of the composition, x, as shown in Fig. 3.a. (We found that all

M(x) curves measured below T=6K collapse onto each other without any detectable

temperature variation.) M(x) has an inflection point at x ≈ 0.44 followed by a pro-

nounced tail region in which the magnetization decays slowly towards larger x. The

existence of an ordered ferromagnetic moment is further confirmed by the hysteresis

in the M(B) loops even at x = 0.52 (see the inset of Fig. 3.a). Thus, the evolution of

both the magnetization and the critical temperature with x provide strong evidence

for the ferromagnetic-to-paramagnetic quantum phase transition being smeared.

How can the unconventional smearing of the quantum phase transition and

the associated tail in the magnetization be understood quantitatively? As the mag-

netization fluctuations in a metallic ferromagnet are over-damped, sufficiently large
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Figure 2.: (Color online) Temperature dependence of (a) the remanent magnetization
M and (b) ac susceptibility χ for selected compositions, x. The main panel
of (b) focuses on the region x & 0.4, and the inset displays representative
susceptibility curves over the full range of x. Both the magnetization and
susceptibility curves show the continuous suppression of the ferromagnetic
phase with increasing x and the broadening of the transition.

Sr-rich rare regions can develop true magnetic order (see Fig. 1.c) even if the bulk

system is paramagnetic [90, 96]. Macroscopic ferromagnetism arises because these

rare regions are weakly coupled by an effective long-range interaction [144, 145]. To

model this situation, we observe that the probability for finding NSr strontium and

NCa calcium atoms in a region of N = NSr +NCa unit cells (at average composition

x) is given by the binomial distribution P (NSr, NCa) =
(

N
NSr

)

(1 − x)NSrxNCa . Such a

region orders magnetically if the local calcium concentration xloc = NCa/N is below

some threshold xc. Actually, taking finite-size effects into account [118], the condition

reads xloc < xc − A/L2
RR where LRR is the size of the rare region, and A is a non-

universal constant. To estimate the total magnetization in the tail of the transition

(x > xc), one can simply integrate the binomial distribution over all rare regions

fulfilling this condition. This yields [118], up to power-law prefactors,

M ∝ exp

[

−C (x− xc)2−d/2
x(1− x)

]

(4.1)

where C is a non-universal constant. This equation clearly illustrates the notion of

“smeared” quantum phase transition: the order parameter vanishes only at x = 1 and
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develops a long, exponential tail upon approaching this point. As xc represents the

composition where the hypothetical homogeneous (clean) system having the average

ion size would undergo the quantum phase transition, the extension of the ferromag-

netic phase beyond xc is an effect of the disorder. Starting from atomic-scale disorder

our theory is applicable as long as a large number of clusters are probed within the

experimental resolution, so that the measured quantities represent an average over

the random cluster distribution. The smooth dependence of the magnetization on x

together with the small spot size of the beam (<300µm2) verifies that this is indeed

the case. Based on the given spot size the upper bound for the typical cluster size is

estimated to be 1-2µm2 (see Supplemental Material).

As a direct test of our theory we fit the lowest-temperature M(x) data with

Eq. (4.1). We take the spatial dimensionality d = 3 due to the large thickness of the

sample far beyond the spin correlation length in the system. As can be discerned in

Fig. 3.b, the magnetization data in the tail (x & 0.44) follow the theoretical curve

over about 1.5 orders of magnitude down to the resolution limit of the instrument.

For the critical composition of the hypothetical clean system, we obtain xc = 0.38,

though the quality of the fit is not very sensitive to its precise value because the

drop in M occurs over a rather narrow x interval. The composition dependence of

the critical temperature TC can be estimated along the same lines by comparing the

typical interaction energies between the rare regions with the temperature and the

same functional dependence on x was found [118]. The experimental data in the tail

region follow this prediction with the same xc = 0.38 value, as can be seen from the

corresponding fit in Fig. 3.b.

To summarize, we have studied the paramagnetic-to-ferromagnetic quantum

phase transition of Sr1−xCaxRuO3 by means of a composition-spread epitaxial film.

We found that the disorder significantly extends the ferromagnetic phase. Moreover,

the phase transition in this itinerant system does not exhibit any of the singulari-

ties associated with a quantum critical point. Instead, both the magnetization and
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Figure 3.: (Color online) The smearing of the quantum phase transition in
Sr1−xCaxRuO3. (a) The composition dependence of the remanent magne-
tization M at selected temperatures. The inset shows that the hysteresis
in the field loops at T=4.2K gradually vanishes towards larger x but still
present even at x ≈ 0.52. (b) Semilogarithmic plots of the magnetization
and the transition temperature TC as functions of the control parameter in
the tail region. The symbols represent the experimental data while solid
lines correspond to the theory which predicts xc = 0.38 as the location of
the quantum phase transition in the (hypothetical) clean system.

critical temperature display pronounced tails towards the paramagnetic phase. The

functional forms of these tails agree well with the predictions of our theoretical model.

Our calculations also show that disorder, if correlated over a few unit cells, is even

more powerful in promoting an inhomogeneous ferromagnetic phase. We thus con-

clude that our results provide, to the best of our knowledge, the first quantitative

confirmation of a smeared quantum phase transition in a disordered metal. We ex-

pect that this scenario applies to a broad class of itinerant systems with quenched

disorder.
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ABSTRACT∗

We investigate the effects of quenched disorder on first-order quantum phase

transitions on the example of the N -color quantum Ashkin-Teller model. By means

of a strong-disorder renormalization group, we demonstrate that quenched disorder

rounds the first-order quantum phase transition to a continuous one for both weak

and strong coupling between the colors. In the strong coupling case, we find a dis-

tinct type of infinite-randomness critical point characterized by additional internal

degrees of freedom. We investigate its critical properties in detail and find stronger

thermodynamic singularities than in the random transverse field Ising chain. We also

discuss the implications for higher spatial dimensions as well as unusual aspects of

our renormalization-group scheme.

∗Published in Physical Review B 86, 214204 (2012).
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1. INTRODUCTION

The effects of disorder on quantum phase transitions have gained increasing

attention recently, in particular since experiments have discovered several of the exotic

phenomena predicted by theory (see, e.g., Refs. [146, 147]). Most of the existing work

has focused on continuous transitions while first-order quantum phase transitions have

received less attention.

In contrast, the influence of randomness on pure systems undergoing a classical

first-order transition has been comprehensively studied. Using a beautiful heuristic

argument, Imry and Wortis [148] reasoned that quenched disorder should round clas-

sical first-order phase transitions in sufficiently low dimension and thus produce new

continuous phase transitions. This analysis was extended by Hui and Berker.[149]

Aizenman and Wehr [67] rigorously proved that first-order phase transitions cannot

exist in disordered systems in dimensions d ≤ 2. If the randomness breaks a contin-

uous symmetry, the marginal dimension is d = 4.

The question of whether or not disorder can round a first-order quantum phase

transition (QPT) to a continuous one was asked by Senthil and Majumdar,[150] and,

more recently, by Goswami et al.[151] Using a strong-disorder renormalization group

(SDRG) technique, they found that the transitions in the random quantum Potts and

clock chains [150] were governed by the well-known infinite-randomness critical point

(IRCP) of the random transverse-field Ising chain.[27, 28] The same holds for the

N -color quantum Ashkin-Teller (AT) model in the weak-coupling (weak interaction

between the colors) regime.[151] This implies that disorder can indeed round first-

order quantum phase transitions.

In the strong-coupling regime of the ATmodel, on the other hand, the renorma-

lization-group (RG) analysis of the authors of Ref. [151] breaks down. Goswami et al.

speculated that this implies persistence of the first-order QPT in the presence of dis-

order, requiring important modifications of the Aizenman-Wehr theorem. However,
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Figure 1.1: (Color online) Schematic of the renormalization-group flow diagram in
the disorder-coupling strength parameter space. For ǫ < ǫc (left arrows),
the critical flow approaches the usual Ising infinite-randomness critical
point of Ref. [28]. For ǫ > ǫc (right arrows), we find a distinct infinite-
randomness critical point with even stronger thermodynamic singularities.

shortly after, Greenblatt et al. [68, 152] proved rigorously that the Aizenman-Wehr

theorem also holds for quantum systems at zero temperature. In this paper, we

resolve the apparent contradiction between these results. We show that quenched

disorder rounds the first-order QPT of the AT model in the strong-coupling regime

as well as in the weak-coupling regime. Moreover, we unveil a distinct type of infinite-

randomness critical point governing the transition in the strong-coupling regime. It is

characterized by additional internal degrees of freedom which appear because a higher

symmetry is dynamically generated at criticality. As a consequence, the critical point

displays even stronger thermodynamic singularities than the transverse-field Ising

IRCP. To obtain these results, we have developed an implementation of the SDRG

method that works for both weak and strong coupling. In particular, this method

can deal with the diverging intercolor interactions as well as the associated additional

degeneracies. A schematic of the resulting RG flow in the critical plane is shown in

Fig. 1.1.
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Our paper is organized as follows: In Sec. 2., we define the model and discuss a

few of its basic properties. Section 3. is devoted to our strong-disorder renormalization

group scheme. The resulting phase diagram and observables are discussed in Sec. 4..

We conclude in Sec. 5..
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2. QUANTUM ASHKIN-TELLER MODEL

The Hamiltonian of the one-dimensional N -color quantum AT model [153,

154, 155] is given by

H = −
N
∑

α=1

L
∑

i=1

(

Jiσ
z
α,iσ

z
α,i+1 + hiσ

x
α,i

)

−
N
∑

α<β

L
∑

i=1

(

ǫJ,iJiσ
z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + ǫh,ihiσ

x
α,iσ

x
β,i

)

.

(5.1)

Here, i indexes the lattice sites, α and β index colors, and σx and σz are the usual

Pauli matrices. The interactions Ji and transverse fields hi are independent random

variables taken from distributions restricted to positive values, while ǫh,i and ǫJ,i (also

restricted to be positive) parametrize the strength of the coupling between the colors.†

Various versions of the AT model have been used to describe the layers of atoms

absorbed on surfaces, organic magnets, current loops in high-Tc superconductors as

well as the elastic response of DNA molecules. Note the invariance of the Hamiltonian

under the following duality transformation: σzα,iσ
z
α,i+1 → τxα,i, σ

x
α,i → τ zα,iτ

z
α,i+1, Ji ⇄

hi, and ǫJ,i ⇄ ǫh,i, where τ
x and τ z are the dual Pauli operators. The bulk phases of

the AT model (5.1) are easily understood. If the typical interaction Jtyp is larger than

the typical field htyp, the system is in the ordered (Baxter) phase in which each color

orders ferromagnetically. When htyp ≫ Jtyp, the model is in the paramagnetic phase.

If there is a direct transition between these two phases, duality requires that it occurs

at Jtyp = htyp. In the clean version of our system with N ≥ 3, the QPT between the

paramagnetic and ordered (Baxter) phases is of first-order type.[153, 154, 155, 156]

†Even if we assume uniform nonrandom values of ǫJ and ǫh, they will acquire randomness under
renormalization.
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3. STRONG-DISORDER RENORMALIZATION GROUP

To tackle the Hamiltonian (5.1), we now develop a SDRG method. In the

weak-coupling regime (ǫh, ǫJ ≪ ǫc, where ǫc is some N -dependent threshold), our

method agrees with that of Goswami et al.[151] Here, we focus on the strong coupling

regime ǫh, ǫJ ≫ ǫc where the method of the authors of Ref. [151] breaks down.

The basic idea of the SDRG method consists in identifying the largest local

energy scale and perturbatively integrating out the corresponding high-energy degree

of freedom. As we are in the strong-coupling regime, this largest local energy is

either a four-spin interaction (“AT interaction”) ki = ǫJ,iJi or a two-color field-like

term (“AT field”) gi = ǫh,ihi. We thus define our high-energy cutoff Ω = max{ki, gi}.

We now derive the decimation procedure. If the largest local energy is an AT

field located, say, at site 2, the unperturbed Hamiltonian for the decimation of this

−1N

True Ground
State Sector

Pseudo Ground
State Sector

0 1 2

. . .

E
n

er
g

y

∼ Ω

N # of flips

∼ Ω /

−2N
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Figure 3.1: (Color online) Spectrum of the unperturbed Hamiltonian (5.2) as func-
tion of the number of colors flipped with respect to the ground state
|→,→, · · · ,→〉. As long as T . Ω/ǫh, the pseudo ground state |φ′

0〉 =
|←,←, · · · ,←〉 can be neglected when computing observables (stage 1 of
the RG). When T & Ω/ǫh, |φ0〉 and |φ′

0〉 become effectively degenerate
implying that both states need to be taken into account (stage 2 of the
RG).
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site reads

H0 = −
g2
ǫh,2

N
∑

α=1

σxα,2 − g2
∑

α<β

σxα,2σ
x
β,2. (5.2)

The ground state (GS) of H0 is |φ0〉 = |→,→, · · · ,→〉, with energy E0 = −Ng2/ǫh,2−

N(N−1)g2/2, where each arrow represents a different color. Flipping n colors leads to
(

N
n

)

degenerate excited states with energy En = E0+2ng2/ǫh,2+2n(N −n)g2. In the

strong-coupling regime, ǫh ≫ 1, the state |φ′
0〉 = |←,←, · · · ,←〉 plays a special role.

Its energy E ′
0 = Ng2/ǫh,2 −N(N − 1)g2/2 differs from that of the true ground state

only by the subleading Ising term E ′
0 −E0 = 2Ng2/ǫh,2 (see Fig. 3.1). It can thus be

considered a “pseudo ground state” which may be important for a correct description

of the low-energy physics. The true and pseudo ground states each have their own

sets of low-energy excitations which we call the ground-state and pseudo-ground-state

sectors of low energy states.

The couplings of site 2 to its neighbors,

V = − k1
ǫJ,1

N
∑

α=1

σzα,1σ
z
α,2 − k1

∑

α<β

σzα,1σ
z
α,2σ

z
β,1σ

z
β,2

− k2
ǫJ,2

N
∑

α=1

σzα,2σ
z
α,3 − k2

∑

α<β

σzα,2σ
z
α,3σ

z
β,2σ

z
β,3,

(5.3)

is the perturbation part of the Hamiltonian. We now decimate site 2 in the second-

order perturbation theory, keeping both the true ground state and the pseudo ground

state. It is important to note that second-order perturbation theory does not mix

states from the two sectors as long as N > 4. (The sectors are coupled in a higher

order of perturbation theory, but these terms are irrelevant at our IRCP). After

decimating site 2, the effective interaction Hamiltonian of the neighboring sites reads

(in the large-ǫJ limit)

H̃eff = −
k̃

ǫ̃J

N
∑

α=1

σzα,1σ
z
α,3 − k̃

∑

α<β

σzα,1σ
z
α,3σ

z
β,1σ

z
β,3 − ω̃ζ̃, (5.4)
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Figure 3.2: (Color online) a) Decimating a site results in a renormalized bond (char-
acterized by k̃ and ǫ̃J) between its neighbors, and it introduces an extra
binary “sector” degree of freedom represented as an Ising spin ζ̃ = ±1
in an external field ω̃ [see Eq. (5.7)]. b) Decimating a bond results in
a renormalized site characterized by g̃, ǫ̃h and another sector degree of
freedom.

with

k̃ =
k1k2

2(N − 2)g2
, ǫ̃J =

ǫJ,1ǫJ,2
2

N − 1

N − 2
, ω̃ = Ng2/ǫh,2. (5.5)

Here, ζ̃ = ±1 is a new Ising degree of freedom which represents the energy

splitting between the true and the pseudo ground states. In the large-ǫJ regime, it

is only very weakly coupled to the rest of the chain and can be considered free. In

Fig. 3.2(a), we sketch this decimation procedure.

The decimation of a bond can be treated in the same way. If an AT four-spin

interaction, say k2, is the largest local energy, the unperturbed Hamiltonian reads

H0 = −
k2
ǫJ

N
∑

α=1

σzα,2σ
z
α,3 − k2

N
∑

α<β

σzα,2σ
z
α,3σ

z
β,2σ

z
β,3. (5.6)

Its GS is obtained by any sequence of parallel nearest-neighbors pairs (e.g. |φ0〉 = | ↑↑

, ↑↑, ↓↓, ↓↓, ↑↑, ↓↓, · · · , ↑↑〉) with energy E0 = −Nk2/ǫJ,2 −N(N − 1)k2/2. As above,

in the strong-coupling limit ǫJ,2 ≫ 1, H0 has a pseudo-GS consisting of a sequence of

anti-parallel nearest-neighbors pairs (e.g. |φ′
0〉 = | ↑↓, ↑↓, ↓↑, ↓↑, ↑↓, ↓↑, · · · , ↑↓〉) with

energy E ′
0 = Nk2/ǫJ −N(N − 1)k2/2.
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When integrating out the bond, the two-site cluster gets replaced by a single

site which contains one additional internal binary degree of freedom, namely, whether

the cluster is in the GS sector or in the pseudo-GS sector. Its effective Hamiltonian

reads

H̃eff = −
g̃

ǫ̃h

N
∑

α=1

σxα,2 − g̃
∑

α<β

σ̃xα,2σ̃
x
β,2 − ω̃ζ̃ (5.7)

with

g̃ =
g2g3

2k2[N − 2]
, ǫ̃h =

ǫh,2ǫh,3
2

N − 1

N − 2
, ω̃ = Nk2/ǫJ,2. (5.8)

Here, ζ̃ distinguishes the two sectors as before. The duality of the Hamiltonian can

be seen by comparing Eqs. (5.5) and (5.8) after exchanging the roles of k and g as

well as ǫh and ǫJ .

Note that the magnetic moment µ̃ of the new effective site depends on the

internal degree of freedom ζ̃ [see Fig. 3.2(b)] because neighboring spins are parallel

in the GS sector but antiparallel in the pseudo-GS sector. We will come back to this

point when discussing observables.

The SDRG proceeds by iterating these decimations. In this process, the cou-

pling strengths ǫJ , ǫh flow to infinity if their initial values are greater than some ǫc(N).

This means that the Ising terms Ji, hi become less and less important with decreasing

energy scale Ω. The large-ǫ approximation thus becomes asymptotically exact. The

remaining energies are the AT four-spin interactions ki and the AT fields gi. Their re-

cursions relations have the same multiplicative structure as the recursions of Fisher’s

solution [28] of the random transverse-field Ising model. The flow of the distributions

P (ki), R(gi) and their fixed points are thus identical to those of Fisher’s solution,

see Fig. 1.1. We conclude that the distributions of k, g have an infinite-randomness

critical fixed point featuring exponential instead of power-law scaling. [27, 28, 77] As

the Ising coupling Ji, hi have vanished, this critical fixed point has the symmetry of

the AT interaction and field terms which is higher than that of the full Hamiltonian.
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4. PHASE DIAGRAM AND OBSERVABLES

The zero-temperature phase diagram of our system is determined by the low-

energy limit of the SDRG flow. There are three classes of fixed points parameterized

by the distance from criticality r = ln(gtyp/ktyp) = 〈ln g〉 − 〈ln k〉 (where 〈· · · 〉 de-

notes the disorder average): The critical fixed point at r = 0, and two lines of fixed

points for the ordered (r < 0) and for the disordered (r > 0) Griffiths phases. This

implies that there is a direct continuous phase transition between the ordered (Bax-

ter) and disordered phases. We found no evidence for additional phases or phase

transitions. In agreement with the Aizenman-Wehr theorem,[152] we thus conclude

that disorder turns the clean first-order QPT into a continuous QPT in both strong-

coupling and weak-coupling regimes. We now turn to the behavior of observables at

low temperatures. Let us fix the intercolor coupling parameter at some ǫ > ǫc and

FM
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Ashkin-Teller
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Figure 4.1: (Color online) Phase diagram of the N -color quantum Ashkin-Teller
model as function of r = ln(htyp/Jtyp) and the intercolor coupling ǫ
at fixed disorder strength. The critical line is located at r = rc =
0 (Jtyp = htyp) as expected from the duality transformation. PM
and FM denote the conventional paramagnetic and ferromagnetic (Bax-
ter) phases. OG and DG denote the ordered and disordered Griffiths
phases.
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tune the transition by the ratio htyp/Jtyp = gtyp/ktyp (see Fig. 4.1). The basic idea

is as follows.[157] We decimate the system until the cutoff energy scale Ω reaches

the temperature T . For low enough T , the distributions of all energy scales in the

renormalized system become very broad, and thus, the remaining degrees of freedom

can be considered as free. Applying this procedure, we have to distinguish two stages

depending on the importance of the pseudo ground state. (1) Both AT and Ising

couplings are above the temperature. (In this stage, we decimate sites and bonds

whose internal sector degrees of freedom are frozen in the true ground state, ζ̃ = 1.)

(2) The temperature is below the AT couplings but above the Ising couplings. (Here

we still decimate sites and bonds, but their internal degrees of freedom are free, i.e.,

they can be in either of the two sectors, ζ̃ = ±1.)

Let us illuminate this RG scheme on the example of the entropy. ‡ When the

RG flow stops at Ω = T , all spins are completely free. A surviving cluster has 2N

available states (two per independent color) giving an entropy contribution of N ln 2,

i.e., Schain = nTN ln 2, where nΩ is the density of surviving clusters at energy scale Ω

(Ref. [28]). Moreover, during stage 2 of the flow, residual entropy was accumulated

in the internal degrees of freedom, each of them contributing ln 2 to the entropy.

Noticing that each stage-2 RG decimation generates one extra degree of freedom, and

that stage 2 starts when Ω/ǫJ,h = T , (ǫx is the typical value of ǫx,i at energy scale Ω),

the extra contribution to the entropy is Sextra = [wJ(nǫJT −nT )+wh(nǫhT −nT )] ln 2,

with wJ = 1− wh being the fraction of coupling decimations in the entire stage 2 of

the RG flow. To compute Sextra we need to know how ǫJ and ǫh depend on Ω. From

the recursions (5.8) and (5.5), it is clear that ln ǫh (and ln ǫJ) scale like the number

of sites (bonds) in a renormalized cluster (larger bond).

At criticality, wJ = wh = 1/2, nΩ ∼ [ln(ΩI/Ω)]
−1/ψ, with ψ = 1/2 being the

tunneling exponent, and ln ǫh = ln ǫJ ∼ [ln(ΩI/Ω)]
φ, with φ = 1

2
(1 +

√
5) (Refs. [28]

‡We will focus at low enough temperatures such that the RG flow reaches the nontrivial second
stage A detailed discussion for the high-temperature behavior including crossovers will be given
elsewhere[158]
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and [159]). Thus, summing the two contributions we find that

S = C1

[

ln

(

ΩI

T

)]− 1
ψφ

ln 2 + C2

[

ln

(

ΩI

T

)]− 1
ψ

N ln 2, (5.9)

where C1 and C2 are nonuniversal constants, and ΩI is the bare energy cutoff. As

φ > 1, the low-T entropy becomes dominated by the extra degrees of freedom S →

Sextra ∼ [ln(ΩI/T )]
−1/(φψ).

In the ordered Griffiths phase (r < 0), wJ → 1 and ln ǫJ = Azνψ(φ−1) ln(ΩI/Ω),

with A being a nonuniversal constant of order unity, ν = 2 the correlation length

exponent, and z = 1/(2|r|) the dynamical exponent. As nΩ ∼ |r|ν(Ω/ΩI)
1/z, we find

that

Sextra ∼ |r|ν(T/ΩI)
1/(z+Azφ) ln 2, (5.10)

which dominates over the chain contribution proportional to T 1/zN ln 2. As expected

from duality, the same result holds for the disordered phase (r > 0).

To discuss the magnetic susceptibility, we need to find the effective magnetic

moment µeff of a cluster surviving at the RG energy scale Ω = T . If all internal degrees

of freedom were in their ground state, µeff would be given by the number of sites in

the cluster. However, analogously to the entropy, µeff is modified because of the stage

2 of the RG flow. In this stage, the internal degrees of freedom are free, meaning not

all spins in a surviving cluster are parallel, reducing the effective moment. A detailed

analysis based on the central limit theorem [158] gives µeff ∼ [ln(ΩI/T )]
φ/2+1/2 at

criticality and µeff ∼ rνψ(1−φ)[ln(ΩI/T )]
1/2 in the disordered Griffiths phase, as well

as µeff ∼ r−φ/2T−1/(2z) in the ordered Griffiths phase.

The magnetic susceptibility χ(T ) can now be computed. All eliminated clus-

ters had AT fields greater than the temperature, and thus do not contribute to χ

since they are fully polarized in the x-direction, whereas the surviving clusters are
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effectively free and contribute with a Curie term: χ ∼ µ2
effnT/T . We find that

χ ∼ [ln(ΩI/T )]
φ+1−1/ψ/T (5.11)

in the critical region, while it becomes

χ ∼ rν+2νψ(1−φ)T 1/z−1 ln(ΩI/T ) (5.12)

in the disordered Griffiths phase, and take a Curie form χ ∼ |r|ν−φT−1 in the ordered

Griffiths phase.
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5. CONCLUSION

In summary, we have solved the random quantum Ashkin-Teller model by

means of a strong-disorder renormalization-group method that works not just for

weak-coupling but also in the strong-coupling regime and yields asymptotically exact

results. In the concluding paragraphs, we put our results into broader perspective.

First, we have demonstrated that random disorder turns the first-order QPT

between the paramagnetic and Baxter phases into a continuous one not just in the

weak-coupling regime but also in the strong-coupling regime. This resolves the seem-

ing contradiction between the quantum Aizenman-Wehr theorem [68, 152] and the

conclusion that the first-order transition may persist for sufficiently large coupling

strength.[151]

The resulting continuous transition is controlled by two different IRCPs in

the weak and strong coupling regimes. For weak coupling, the critical point is in

the universality class of the random transverse-field Ising chain. [28] For strong

coupling, we find a distinct type of IRCP which features a higher symmetry than

the underlying Hamiltonian. The associated internal degrees of freedom lead to even

stronger thermodynamic singularities both at criticality and in the Griffiths phases.

Our results apply to N > 4 colors where the true and pseudo ground-state

sectors are not coupled. As a result, the Ising terms in the Hamiltonian are irrelevant

perturbations (in the renormalization group sense) at our IRCP. The case N ≤ 4 is

special because the two sectors get coupled and thus requires a separate investigation.

Interestingly, novel behavior has been recently verified for the classical transition in

the two-dimensional AT model [160] for N = 3.

Our explicit calculations were for one space dimension. However, we believe

that many aspects of our results carry over to higher dimensions. In particular, the

SDRG recursion relations take the same form in all dimensions (as they are purely

local). This implies that the RG flow for large inter-color coupling ǫ will be toward
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ǫ→∞ as in one dimension. Moreover, the flows of the AT energies g and k (although

not exactly solvable in d > 1) are identical to the flows of the random transverse-field

Ising model in the same dimension. In two and three dimensions, these flows have

been studied numerically,[19, 161, 162] yielding IRCPs as in one dimension. We thus

conclude that the strong-coupling regime of the random quantum AT model will be

controlled by an Ashkin-Teller IRCP not just in one dimension but also in two and

three dimensions.

We note that our method is also interesting from a general renormalization-

group point of view. After a decimation, the resulting system cannot be represented

solely in terms of a renormalized quantum AT Hamiltonian because the internal degree

of freedom needs to be taken into account. Normally, the appearance of new variables

dooms an RG scheme. § Here, however, the new variables, despite their influence on

observables, are inert in the sense that they do not influence the RG flow of the other

terms in the Hamiltonian, which makes the problem tractable. We expect that this

insight may be applicable to renormalization-group schemes in other fields.

The strong-disorder RG approach to the random quantum AT model gives

asymptotically exact results for both sufficiently weak and sufficiently strong coupling

(ǫ≪ 1, ǫ≫ 1), see Fig. 1.1. The behavior for moderate ǫ is not exactly solved. In the

simplest scenario, the weak-coupling and strong-coupling IRCPs are separated by a

unique multicritical point at some intermediate coupling, however, more complicated

scenarios cannot be excluded. The resolution of this question will likely come from

numerical implementations of the SDRG and /or (quantum) Monte Carlo simulations.

This work has been supported in part by the NSF under Grants No. DMR-

0906566 and DMR-1205803, by FAPESP under Grant No. 2010/ 03749-4, and by

CNPq under Grants No. 590093/2011-8 and No. 302301/2009-7.

§Or it requires a generalization that includes all new terms in the starting Hamiltonian
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VI. DISORDERED BOSONS IN ONE DIMENSION: FROM WEAK
TO STRONG RANDOMNESS CRITICALITY

Fawaz Hrahsheh, and Thomas Vojta

1Department of Physics, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT∗

We investigate the superfluid-insulator quantum phase transition of one-dime-

nsional bosons with off-diagonal disorder by means of large-scale Monte-Carlo sim-

ulations. For weak disorder, we find the transition to be in the same universality

class as the superfluid-Mott insulator transition of the clean system. The nature of

the transition changes for stronger disorder. Beyond a critical disorder strength, we

find nonuniversal, disorder-dependent critical behavior. We compare our results to

recent perturbative and strong-disorder renormalization group predictions. We also

discuss experimental implications as well as extensions of our results to other systems.

Bosonic many-particle systems can undergo quantum phase transitions be-

tween superfluid and localized ground states due to interactions and lattice effects.

These superfluid-insulator transitions occur in a wide variety of experimental systems

ranging from helium in porous media, Josephson junction arrays, and granular super-

conductors to ultracold atomic gases [163, 164, 165, 166, 167, 168, 169, 170]. In many

∗Published in Physical Review Letter 109 265303 (2012).
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of these applications, the bosons are subject to quenched disorder or randomness.

Understanding the effects of disorder on the superfluid-insulator transition and on

the resulting insulating phases is thus a prime question.

The case of one space dimension is especially interesting because the superfluid

phase is rather subtle and displays quasi-long-range order instead of true long-range

order. Moreover, the Anderson localization scenario for non-interacting bosons sug-

gests that disorder becomes more important with decreasing dimensionality.

Giarmarchi and Schulz [171, 172] studied the influence of weak disorder on

the interacting superfluid by means of a perturbative renormalization group analysis.

They found the superfluid-insulator transition to be of Kosterlitz-Thouless (KT) type

[72], with universal critical exponents and a universal value of the Luttinger parameter

g = π
√
ρsκ at criticality (ρs denotes the superfluid stiffness and κ the compressibility).

This analysis was recently extended to second order in the disorder strength, with

unchanged conclusion [173].

A different scenario emerges, however, from the real-space strong-disorder

renormalization group approach. In a series of papers [174, 175, 176], Altman et

al. studied one-dimensional interacting lattice bosons in various types of disorder. In

all cases, they found that the superfluid-insulator transition is characterized by KT-

like scaling of lengths and times, but it occurs at a nonuniversal, disorder-dependent

value of the Luttinger parameter. The transition is thus in a different universality

class than the weak-disorder transition [171, 172]. However, Monte-Carlo simulations

[177] did not find any evidence in favor of the strong-disorder critical point.

In view of these seemingly incompatible results, it is important to determine

whether or not both types of superfluid-insulator critical points indeed exist in systems

of interacting disordered bosons in one dimension. Moreover, it is important to study

whether they can be reached for realistic disorder strengths.

In this Letter, we employ large-scale Monte-Carlo simulations to address these

questions. We focus on the case of off-diagonal disorder at large commensurate filling;
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Figure 1.: (Color online) Critical Luttinger parameter g and exponent η [plotted as

1/(2η)] of the superfluid-insulator transition as functions of the disorder
strength 1 − r. The critical behavior appears universal for weak disorder
while it becomes disorder-dependent for strong disorder. The lines are
guides to the eye only.

other types of disorder will be discussed in the conclusions. Our results can be

summarized as follows (see Fig. 1.). For weak disorder, we find a KT critical point

in the universality class of the clean (1+1) dimensional XY model, with universal

exponents and a universal value of the Luttinger parameter at the transition. This

agrees with the predictions of the perturbative renormalization group. If the disorder

strength is increased beyond a threshold value, the nature of the transition changes.

While the scaling of length and time scales remains KT-like, the critical exponents

and the Luttinger parameter become non-universal, in agreement with the strong-

disorder scenario [174, 175, 176]. In the remainder of this Letter, we explain how

these results were obtained, we discuss their generality as well as implications for

experiment.

The starting point is the disordered one-dimensional quantum rotor Hamilto-

nian

H = −
∑

j

Jj cos(φ̂j+1 − φ̂j) +
1

2

∑

j

Uj(n̂j − n̄j)2 (6.1)
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which represents, e.g., a chain of superfluid grains with Josephson couplings Jj, charg-

ing energies Uj and offset charges n̄j. n̂j is the charge on grain j and φ̂j is the phase

of the superfluid order parameter. This model has a superfluid ground state if the

Josephson couplings dominate. With increasing charging energies it undergoes a

quantum phase transition to an insulating ground state. In addition to Josephson

junction arrays, the Hamiltonian (6.1) describes a wide variety of other systems that

undergo superfluid-insulator transitions.

Within the strong-disorder approach [174, 175, 176], the type of insulator

depends on the symmetry properties of the offset charge distribution. In contrast,

these details were found unimportant at the critical point. In the following, we

therefore focus on purely off-diagonal disorder, n̄j = 0. In this case, the Hamiltonian

(6.1) can be mapped onto a classical (1 + 1)-dimensional XY model [74]

Hcl = −
∑

j,τ

[

Jsj cos(φj+1,τ − φj,τ ) + J tj cos(φj,τ+1 − φj,τ )
]

(6.2)

where j and τ index the lattice sites in the space and time-like directions, respectively.

The coupling constants Jsj /T and J tj/T are determined by the parameters of the

original Hamiltonian (6.1) with T being an effective “classical” temperature, not

equal to the real physical temperature which is zero. In the following, we fix Jsj and

J tj and drive the XY model (6.2) through the transition by tuning T . The interactions

Jsj and/or J tj are independent random variables drawn from probability distributions

P s(Js) and P t(J t). They depend on the space coordinate j only; this means the

disorder is columnar (perfectly correlated in time direction).

To determine the critical behavior of the classical XY model (6.2), we per-

formed large-scale Monte-Carlo simulations using the efficient Wolff cluster algorithm

[83]. We studied square lattices with linear sizes up to L = 3200 and averaged the re-

sults over large numbers (200 to 3000, depending on L) of disorder realizations. Each

sample was equilibrated using 200 to 400 Monte-Carlo sweeps, i.e., total spin flips per
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site. (The actual equilibration times both above and at the critical temperature Tc

did not exceed about 20 sweeps.) During the measurement period of 5000 to 30000

sweeps, we calculated observables such as specific heat, magnetization, susceptibility,

spin-wave stiffness as well as correlation functions. In most simulations, we employed

a uniform Jsj = 1 and drew the J tj from a binary probability distribution

P t(J t) = cδ(J t − r) + (1− c)δ(J t − 1) . (6.3)

Here, c is the concentration of weak bonds which we fixed at c = 0.8. The disorder

strength was tuned by changing the value r of the weak bonds. In addition to the

clean case r = 1 (which corresponds to the pure superfluid-Mott insulator transition),

we used r = 0.85, 0.65, 0.45, 0.25, and 0.15. We also carried out test calculations with

random Js. All simulations were performed on the Pegasus Cluster at Missouri S&T,

using about 400,000 CPU hours

We now turn to the results. To find Tc for each disorder strength r, we analyzed

the behavior of the correlation length ξs (in the space-like direction indexed by j). It

is calculated, as usual, from the second moment of the disorder-averaged correlation

function. In the high-temperature phase but close to the transition, ξs is expected to

follow the form

ξs = A exp
[

B(T − Tc)−1/2
]

(6.4)

both in the clean KT universality class [72] and in the strong-disorder scenario [174,

175, 176]. A and B are non-universal constants. For all disorder strength, our data

follow this prediction with high accuracy, see Fig. 2. for an example. We extract Tc

from fits of the data to (6.4) restricted to ξs > 10 to be in the critical region but

ξs < L/10 to avoid finite-size effects. In the clean case (r = 1), we obtain Tc = 0.8924

in excellent agreement with high-precision values in the literature [178] †.

†The remaining small difference can be attributed to logarithmic corrections to (6.4) which we
did not account for.
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Figure 2.: (Color online) Spatial correlation length ξs vs. temperature T for disorder
strength r = 0.85 and system sizes L = 200 to 3200. The solid line is a fit
to the KT form (6.4). Inset: Luttinger parameter g at Tc vs. system size
L.

In addition to the correlation length ξs in the space-like direction, we also

studied the correlation length ξt in the time-like direction. We found ξt ∝ ξs for all

disorder strengths which implies a dynamical exponent of z = 1.

The order parameter susceptibility χ can be analyzed analogously. In the

high-temperature phase close to the transition, it is predicted to behave as

χ ∝ ξ2−ηs ∝ exp
[

D(T − Tc)−1/2
]

. (6.5)

Here, η is the correlation function critical exponent and D = (2 − η)B. Figure

3. shows that the data for all disorder strengths r follow this prediction with high

accuracy. The critical temperatures extracted from the corresponding fits are listed in

the legend of the figure. Their values have small statistical errors ranging from about

3× 10−4 for the weak disorder cases to 2× 10−3 for strong disorder. The systematic

errors due to corrections to the leading scaling form (6.5) are somewhat larger. We

estimate them from the robustness of the fit against changing the fit interval. This

yields systematic errors ranging from about 5 × 10−3 for weak disorder to 2 × 10−2
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Figure 3.: (Color online) Susceptibility χ vs. temperature T for several disorder
strengths. The maximum system sizes are at least L = 1500. The solid
lines are fits to the KT form (6.5). The resulting estimates of Tc are listed
in the legend.
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Figure 4.: (Color online) ln(χ/ξ2s ) vs. ln(ξs) for several disorder strengths and max-
imum system size L ≥ 1500 (L = 500 for r = 0.15). The solid lines are
linear fits; their slopes give −η.

for strong disorder. Within these errors the critical temperatures extracted from χ

agree well with those from the correlation lengths.

Equation (6.5) suggests a direct way to measure the exponent η: if one plots

ln(χ/ξ2s ) vs. ln(ξs), the data should be on a straight line with slope −η. Figure 4.

presents this analysis for different disorder strengths. In the clean case, r = 1, we

find η = 0.243 in good agreement with the exact value 1/4 [72]. The weak-disorder



129

curves (r = 0.85 and 0.65) are parallel to the clean one within their statistical errors.

Fits in the range 20 < ξs < L/10 give exponents η close to 1/4. In contrast, the

strong-disorder curves (r = 0.45, 0.25, 0.15) are less steep, resulting in smaller η.

They are also noisier which leads to larger error bars. All η values are shown in

Fig. 1.. They provide evidence for universal critical behavior (in the clean 2D XY

universality class) for weak disorder but nonuniversal behavior for strong disorder.

In addition to simulations in the high-temperature phase, we also studied the

finite-size scaling properties of observables right at the critical temperature Tc. Let us

first consider the Luttinger parameter g = π
√
ρsκ. Under the quantum-to-classical

mapping [74], the compressibility κ of the quantum rotor Hamiltonian (6.1) maps

onto the spin-wave stiffness ρt in the time-like direction of the classical XY model

(6.2). In our simulations, the Luttinger parameter is thus given by

g = (π/T )
√
ρsρt . (6.6)

The stiffnesses ρs and ρt are not calculated by actually applying twisted bound-

ary conditions during the simulation but by using the relation given by Teitel and

Jayaprakash [179] (for a derivation see, e.g., Ref. [51]).

Within KT theory, the Luttinger parameter close to the transition behaves as

g(T ) = g(Tc) + a(Tc − T )1/2 where a is a constant and T ≤ Tc. Together with (6.4),

this suggests the leading finite-size corrections to g at Tc to take the form

g(Tc, L) = g(Tc,∞) + b/ ln(L) (6.7)

where b is another constant. Calculating the Luttinger parameter at Tc for different

system sizes and extrapolating using (6.7) yields the infinite-system value g(Tc,∞)

‡. We performed this analysis for all disorder strengths r and found that the g vs.

‡The extrapolation of g to L = ∞ is nontrivial as g shows a singular temperature dependence
and a jump to 0 for T > Tc. The data must be in the critical region, |T − Tc| . [ln(L/A)]−2, which
appears to be fulfilled in our case.
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Figure 5.: (Color online) Susceptibility at Tc plotted as ln(χ/L2
s) vs. ln(L) for several

disorder strengths. The solid lines are linear fits; their slopes give −η
(values are shown in Fig. 1.) . The inset demonstrates the change of slope
with increasing r.

1/ ln(L) data indeed fall onto straight lines (the inset of Fig. 2. shows an example).

The resulting extrapolated values are displayed in Fig. 1.. For weak disorder (r = 0.85

and 0.65), the Luttinger parameters at Tc agree with the clean value, g = 2, within

their error bars (which are combinations of the statistical Monte-Carlo error and the

uncertainty in Tc). For stronger disorder (r = 0.45, 0.25, 0.15), g(Tc,∞) takes larger,

disorder-dependent values.

Finally, we turn to the finite-size behavior of the susceptibility at Tc. According

to finite-size scaling, the leading size-dependence should be of the form

χ(Tc, L) ∼ L2−η (6.8)

which provides another way to measure η. Figure 5. shows plots of ln(χ/L2) vs. ln(L)

for all disorder strengths r. For weak disorder (r = 0.85 and 0.65), the resulting

values of the exponent η are again close to the clean value 1/4. For larger disorder

(r = 0.45, 0.25, and 0.15), we find disorder-dependent values that roughly agree with

those extracted in the high-temperature phase (Fig. 4.).
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In summary, we used large-scale Monte-Carlo simulations to investigate the

superfluid-insulator quantum phase transition of one-dimensional bosons with off-

diagonal disorder. For weak disorder, our data provide evidence for a KT critical

point in the universality class of the clean (1+1) dimensional classical XY model,

with universal critical exponents η = 1/4 and z = 1 as well as a universal value g = 2

of the critical Luttinger parameter. These results agree with the Harris criterion

[18] which predicts weak disorder to be an irrelevant perturbation at the clean KT

transition. For stronger disorder, the universality class of the transition changes. It

is still of KT-type [ξs and χ follow (6.4) and (6.5)] but the critical exponent η and

the critical Luttinger parameter become disorder-dependent (non-universal) §. This

agrees with the strong-disorder scenario [174, 175, 176].

The important question of whether the boundary between the weak and strong

disorder regimes is sharp or just a crossover cannot be finally decided by means of our

current numerical capabilities. The data in Fig. 1. would be compatible with both

scenarios within their error bars.

Earlier Monte-Carlo simulations [177] did not observe the strong-disorder regi-

me. We believe that the binary disorder used in [177] (equivalent to disorder in Js

with c = 0.5 and r = 0.33 in our model) may not have been sufficiently strong.

In particular, c = 0.5 is much less favorable for the formation of rare regions than

our c = 0.8. To test this hypothesis, we performed a few simulation using c = 0.5

and r = 0.33. They resulted in critical behavior compatible with the clean 2D XY

universality class, in agreement with Ref. [177] ¶.

It is interesting to ask whether the different critical behaviors in the weak

and strong-disorder regimes are accompanied by qualitative differences in the bulk

phases. In particular, are there two different insulating phases or are the weak and

§Fig. 1. suggests that g = 1/(2η) not just at the clean KT critical point but also at the strong
disorder critical point. To the best of our knowledge, the latter has not yet been established theo-
retically.

¶Ref. [177] also studied power-law distributed interactions, but the results showed significant
finite-size effects.
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strong-disorder regimes continuously connected? A detailed analysis of the insulating

phase(s) will also shed light on the mechanism that destroys the superfluid stiffness

above Tc. Is it due to the proliferation of single quantum phase slips as at a clean

KT transition or due to the formation of phase slip “dipoles” as suggested in Ref.

[174, 175, 176]? Simulations to address these questions are under way.

All our explicit results are for off-diagonal disorder and large commensurate

filling. They do not directly apply to the generic dirty-boson problem with diagonal

disorder considered in [171, 172] ‖. Note, however, that the critical behavior does

not depend on the disorder type within the strong-disorder scenario [174, 175, 176].

Simulating the generic case would require a different approach (such as the link-

current formulation [74]) because the mapping onto a classical XY model is not valid

for diagonal disorder.

Finally, we turn to the experimental accessibility of the weak and strong-

disorder regimes. Our results show that the transition between them occurs at a

moderate disorder strengths. We therefore expect both regimes to be accessible in

principle in experiments on systems such as ultracold atoms or Josephson junction

chains (see also Ref. [180]).

We acknowledge discussions with Ehud Altman, David Pekker, Nikolay

Prokof’ev, Gil Refael, and Zoran Ristivojevic. This work has been supported by

the NSF under Grant Nos. DMR-0906566 and DMR-1205803.

‖The critical value of g in the perturbative theory [171] with diagonal disorder is 3/2 rather than
2.



133

SECTION

2. SUMMARY AND OUTLOOK

The main motivation of this work is to make a step forward toward a deeper

understanding of the impurity effects in quantum magnets, superconductors and su-

perfluids. In particular, we try to answer the following question: How are phase

transitions and critical behaviors in these systems influenced by disorder.

In Section 1 we started by introducing basic concepts of phase transitions and

critical behavior in Subsection 1.1. In addition we explained the Landau theory which

introduces the idea of order parameters. Then, we discussed the scaling theory and

its applications before we finished with an introduction to quantum phase transitions.

In Subsection 1.2, we gave a overview over quenched disorder effects. First,

we explained the Harris criterion which governs how weak disorder can affect a clean

phase transition. Then, we discussed how disorder effects are significantly increased

by forming rare regions which can behave independently from the bulk systems. These

rare regions lead to Griffiths singularities close to the phase transition. Sometimes

they even destroy the phase transition by smearing, for example in metallic systems

at zero temperature. Finally, we described the effects of disorder on first-order phase

transitions, and when they are rounded to second-order phase transitions.

In Subsection 1.3, we turned to the renormalization group theory which is a

powerful technique to study phase transitions. Specifically, we introduced the strong-

disorder renormalization group theory (SDRG) which we will use extensively in this

thesis.
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In the last Subsection 1.4, we introduced a special type of phase transitions,

the Kosterlitz-Thouless (KT) transitions. This type of transitions occurs in planar

magnets as well as superconducting and superfluid thin films, Coulomb gas systems,

and one-dimensional interacting bosonic systems. An example of a KT transition can

be found in the 2D classical XY model where the order-parameter has a continuous

O(2) symmetry. This transition is caused by the so-called vortex unbinding process.

The remainder of this thesis consists of reprints of six published refereed pa-

pers. In Paper I, we investigate Griffith’s rare regions effects in a layered Heisenberg

model by Monte Carlo simulations. The results of this work confirm the predictions

of an earlier SDRG study. We found that the critical point is of infinite-randomness

type and accompanied by power-law Griffiths singularities.

In Papers II, III, and IV, we investigate the smearing of phase transitions tuned

by changing the chemical composition. Section 4 focuses on the smearing effects of

uncorrelated disorder. Section 5 studies how the disorder correlations enhance the

smearing effects. Finally, we introduce an experimental realization of the smeared

quantum phase transition in section 6.

Paper V studies how the rare regions round the first-order quantum phase

transition in the N -color Ashkin-Teller model by means of a strong-disorder renor-

malization group theory. In this project, we developed a new implementation of the

SDRG theory that works not only for weak coupling but also for strong intercolor

interactions.

Paper VI deals with the disorder effects on the superfluid-insulator transition

in a one-dimensional quantum bosonic system. It focuses on the change of the critical

behavior of the Kosterlitz-Thouless transition with increasing disorder.

In summary, we have described how quenched disorder influences classical and

quantum phase transitions in magnetic systems, superconductors, and superfluids.

Our investigations so far focused on weak disorder that affects the transition

but leaves the bulk phases unchanged. If the disorder changes the bulk phases, even
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richer disorder effects are expected, and new theories might be needed to study these

phenomena. Moreover, in this work, we have investigated quantum phase transitions

for which the quantum-to-classical mapping at zero temperature can be employed.

The effects of disorder on other quantum phase transitions such as transitions in

Kondo lattice systems received less attention which means that exotic phases and

critical behaviors might be waiting to be discovered.
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