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ABSTRACT 

The ρ Ophiuchi and Serpens molecular clouds are sites of low mass star 

formation. The goals of this study were to identify young stellar objects (YSOs) and 

estimate ages and masses in order to infer an initial mass function (IMF), investigate disk 

evolution, and determine the star-forming history. Optical spectroscopic surveys of an 

unbiased sample of candidate young stars have been completed. Optical images taken in 

different photometric bands were used to create color-magnitude diagrams from which 

sources were selected for spectroscopic observation. In combination with published data, 

135 association members in ρ Ophiuchi and 63 association members plus 16 possible 

members in Serpens have been identified based on the presence of Hα in emission, 

lithium absorption, X-ray emission, a mid-infrared excess, and/or reflection nebulosity. 

Effective temperatures and bolometric luminosities were compared with theoretical 

tracks and isochrones for pre-main-sequence stars to estimate ages and masses.  

Both regions have similar median ages, supporting the idea that star formation is a 

relatively fast process. In ρ Ophiuchi, no age spread was found. In Serpens, an age spread 

of 1-5 Myrs was found; it could not be determined if this age spread was intrinsic or a 

result of contamination from foreground young stars. Consistent with these ages similar 

circumstellar disk frequencies were found. In ρ Ophiuchi, an IMF consistent with the 

field star IMF for YSOs with masses >0.2 M⊙ was inferred. In Serpens, the IMF was in 

agreement with the field star IMF for M>1 M⊙. Previous studies of these regions have 

been biased towards particular stages in the star formation process. This study has 

provided an unbiased sample of pre-main sequence objects, necessary to obtain a 

complete picture of star formation.  
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1 INTRODUCTION

1.1 STAR FORMATION

Stars, being the main source of light in the universe, determine what can be

observed. As a result they are used to establish the nature, structure and evolution

of the universe (Larson 2003). Stars also determine the amount of and evolution

of elements heavier than hydrogen in the universe. This makes understanding how

stars form and evolve very important to understanding the observable universe. It is

believed that planets form out of the circumstellar disks around young stars (Ruden

2009). The environment around young stars sets the conditions for planet forma-

tion, making star formation the main factor in determining how planets form. Star

formation may set limits on the number of planets in the habitable zone, and hence

the likelihood of life. This makes star formation a starting point to understanding

life in the universe. The most massive stars burn their fuel on a timescale of 106

yrs, less than the age of the Galaxy, which demonstrates that star formation is an

ongoing process (Lada 1999). Star formation can in theory be observed as it is hap-

pening. This makes the study of star formation viable as well as fundamental to our

understanding of the universe.

1.2 STAR FORMATION MECHANISMS

Stars form in molecular clouds. There are several proposed mechanisms for

star formation. One of the main means to differentiate between these mechanisms is

the timescale for star formation (Ward-Thompson et al. 2007). A molecular cloud

(MC) will remain in hydrostatic equilibrium as long as other forces, for example

the thermal kinetic energy, balance the self-gravity of the cloud. Using the virial

theorem, the minimum mass required to collapse a cloud, called the Jeans mass,
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can be determined. Jeans (1928) was the first to formulate this mass including only

thermal kinetic energy and gravitational potential:

MJeans = (
5kT

GµmH
)3/2(

3

4πρ
)1/2 (1.1)

where k is the Boltzmann constant, T is the temperature, G is the gravitational

constant, µ is the mean molecular weight, mH is the mass of hydrogen and ρ is the

density of the cloud. This form of the Jeans mass assumes a constant density. As

long as the cloud remains optically-thin, the collapse is isothermal. The free fall time

(τff ) is the characteristic time for a cloud to collapse under its own self-gravity if no

other forces exist to oppose the collapse:

τff = (
3π

32Gρ
)1/2 (1.2)

where ρ is the density of the cloud. Using a density of 108 cm−3 gives approximately

105 yrs, setting a lower limit on how fast stars can form. At some point the density

increases to a point that the star is no longer optically thin and collapse proceeds

adiabatically. At this stage, the gas and dust begin to heat up and radiate. The

Kelvin-Helmholtz time is the time it takes for a star to radiate away all its thermal

energy; this sets a limit on the timescale for the pre-main sequence lifetime of a star:

τK−H =
GM2

RL
(1.3)

where M is the mass of the star, R is the radius of the star and L is the luminosity of

the star. The Kelvin-Helmholtz time determines how quickly a star contracts before

nuclear fusion starts. If thermal kinetic energy were the only force opposing gravity,

MCs would be expected to collapse rapidly and efficiently into stars. However, ob-

servations show that MCs are very inefficient in creating stars. Only 3 - 6% of their
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mass goes into stars (Evans et al. 2009). Therefore other forces must be present

opposing gravity. The two main forces proposed are magnetic fields and turbulence.

One method for MC collapse proposed is that MCs form via matter accumulation

along flux lines. As magnetic fields can only affect the ionized part of the gas, neutral

matter will slip past ions as they are pulled through the field by gravity. This is

called ambipolar diffusion (Shu et al. 1987; Mouschovias 1991; Nakano 1998). This

is a slow process, taking about 108 years, hence most MCs observed should be star-

less (Briceño et al. 2007) and, in areas of star formation, a spread of ages on order

of 10 Myrs (Hartmann 2001) should be observed. Current observations show that

most MCs are active sites of star formation (Elmegreen 2000; Hartmann et al. 2001)

and that most young clusters do not show evidence for large age spreads (Briceño

et al. 1997) making ambipolar diffusion an unlikely mechanism for star formation.

However there is evidence that magnetic fields are important in dissipating angular

momentum (Larson 2003). Another suggested method for star formation is turbulent

fragmentation due to gravity. In this theory, turbulence creates density fluctuations

within the MC. These regions become unstable against gravity and collapse. In this

case, star formation is a quick process, taking approximately 107 years and MCs are

short-lived (Ballesteros-Paredes et al. 2003; Vazquez-Semadeni et al. 2005). This

picture seems to be in better agreement with observations (Elmegreen 2000; Hart-

mann et al. 2001). There are many other factors that may influence the formation

of stars in MCs. These include effects of local density, pressure, rotation, accretion,

and the presence of massive stars and YSOs (Ward-Thompson et al. 2007; Bonnell

et al. 2007).

OB associations are associated with giant molecular clouds. A commonly

observed property of OB associations is that they are made up of sub-groups that

differ in age (Loren 1989; Nutter et al. 2006). This suggests that star formation may

occur by external triggering (Elmegreen & Lada 1977; Lada 1987).
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1.3 STAR FORMATION AND THE INITIAL MASS FUNCTION

The initial mass with which a star forms determines the star’s evolution and

ultimate death. Therefore a key element in explaining both the evolution and for-

mation of stars lies in understanding what determines the mass with which stars will

form. The distribution of masses with which stars form is called the initial mass func-

tion (IMF). Stellar mass is not generally a directly observable quantity, ergo it must

be derived from other observable quantities such as the luminosity and/or effective

temperatures of a star or groups of stars. The first observationally-based field star

IMF was derived by Salpeter (1955), who began by counting the number of visible

stars within the solar neighborhood (known as a luminosity function). In order to

represent the number of stars at birth, a correction must be made to account for mas-

sive stars that have moved off the main sequence since the formation of the Galaxy.

This correction requires the assumption that the both the birthrate and form of the

IMF are constant in time and space. There is no intrinsic reason to assume that either

of these quantities are constant in time and or space, however most estimates of the

field star IMF made to date include these assumptions (Salpeter 1955; Miller & Scalo

1979; Kroupa 2001; Chabrier 2003). With the additional assumption that all stars

counted in the sample are on the main sequence, the main sequence mass-luminosity

relation can be used to relate the luminosity function to the mass of the stars in the

sample. Salpeter defined the mass function ζ (log mstar) as the stellar number density

n per logarithmic mass interval δ log m:

ζ(logmstar) =
δn

δ logm
=

δ(
N

V
)

δ logm
(1.4)

where N is the number of stars in a volume of space V. Salpeter derived an IMF of

the form

ζ(logmstar) ∼ m−1.35
star (1.5)
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for 0.4 < M/M" < 10. It is noteworthy that this form has survived as the best

description of the IMF for stars above 1 M", without much revision (Bonnell, Larson,

& Zinnecker 2007). However, there has been some debate on the form of the low

mass (below 1 M") IMF. Miller and Scalo (1979) suggested that below 1 M" the IMF

flattens out, and can be described by a lognormal function in this range (See Fig.

1.1). Many studies have been done in the low mass range, and observations seem

to support both this functional form, with a peak at around 0.2 M" (Scalo 1986;

Chabrier 2003), and a series of power laws (Kroupa 2001). However, it is currently

unclear if these forms hold below the hydrogen-burning limit (0.08 M") and/or if a

low mass cutoff exists (Bastian, Covey, & Meyer 2010). This uncertainty is largely

due to a lack of observations sensitive enough to sample completely at and below the

hydrogen-burning limit.

The IMF is best observed in young clusters, where large numbers of stellar

objects have formed out of the same molecular cloud, and have likely formed at

around the same time and under the same conditions. Also there will be little or

no loss of objects due to stellar evolution or dynamical effects (Lada 1999, Meyer

et al. 2000). Another benefit to using young clusters to study the IMF is that

young stellar objects (YSOs) are more luminous at this stage in their evolution than

once they are on the main sequence, making observation of low mass YSOs easier.

However, observing in young clusters also has some disadvantages. Evolutionary

models required to derive ages and masses do not necessarily reflect true masses and

ages. Different evolutionary models can predict different masses for a star in the

same position on an Hertzsprung-Russell (H-R) diagram (a plot of temperature and

luminosity which can be used as an evolutionary diagnostic tool)(Hillenbrand et al.

2007). Comparison of masses determined via dynamical mass measurements (such as

eclipsing binaries) to masses determined by evolutionary models suggests that mass

errors may be as much as 30-50% (Hillenbrand & White 2004). Another difficulty
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Figure 1.1 The IMF is a plot of the log of the number of stars in the solar neigh-
borhood per unit log mass, vs. log mass of a star. Examples of derived field star
IMFs including Salpeter (1955); Kroupa (2001); Chabrier (2003) and Chabrier (2005,
labeled present). Color data points are various measurements of the luminosity func-
tion (in either V or K band), which is the number of stars N per absolute magnitude
interval in a volume of space within 5 or 8 pc as labeled. Φbulge is a J band luminosity
function for stars in the Galactic bulge. ΦHip was derived using Hipparcos parallax
data.Figure taken from Chabrier (2005).
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is that regions heavily extincted by dust cannot be observed at optical wavelengths.

However this is also an advantage, in that the light from background stars is blocked

out, so there is little contamination from these stars. There are two main methods

used to derive the IMF in young clusters. The first method determines a luminosity

function for stars in a particular star-forming region (Lada & Lada 1995; Lada, Lada,

& Muench 1998). As these regions are young, little or no correction needs to be made

to account for evolution of higher mass stars (as is done for field stars). As there is

no unique mass-luminosity function for pre-main sequence (PMS) stars, this quantity

must be modeled using evolutionary models and knowledge of the star-forming history

of the region. This has the advantage of providing large samples of stars from which

to derive an IMF, but requires making assumptions about the age of the cluster (Lada

1999). The second method is to obtain spectra for a representative sample of stars

in the region in order to derive effective temperatures. Then YSOs are placed on

an H-R diagram and compared to PMS evolutionary models to obtain both an age

and a mass for each YSO. While this method provides fewer stars to work with, it

does provide a more direct measurement of the masses and hence the IMF (Lada

1999). YSOs in young clusters are obscured by dust in the cloud, allowing brighter

objects to be observed at a greater depth than fainter objects. These bright objects

will be over-represented in magnitude-limited samples. This observational bias can

be overcome by using an extinction-limited sample to determine the IMF (Meyer et

al. 2000; Bastian, Covey, & Meyer 2010).

It is currently unclear if the IMF is universal, or it if varies from region to

region, particularly near the hydrogen-burning limit. Thorough investigations of the

IMF in several star-forming regions ought to give insight on the universality of the

IMF. Should the IMF not be universal these studies should also provide insight to

what physical properties determine the IMF. Most studies of the IMF in different

environments (field stars, young clusters, and old globular clusters) suggest that the
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IMF is universal (Meyer et al. 2000; Bastian, Covey, & Meyer 2010). However within

in our Galaxy, there are two young nearby regions that seem to have IMFs not in

agreement with the field star IMF. The Taurus-Auriga Cloud appears to have a deficit

of brown dwarfs and a higher characteristic mass compared to the field star IMF

(Briceño et al. 2002; Luhman 2004). The Upper Scorpius subgroup seems to have an

excess of brown dwarfs in comparison to the field star IMF (Slesnick, Hillenbrand, &

Carpenter 2008). It is unclear if these brown dwarf excesses and deficits are significant

or the result of bias and incompleteness effects.

1.4 EVOLUTION OF YOUNG STELLAR OBJECTS

The evolution of young stellar objects can be classified into four main stages;

(1) objects in the main phase of accretion radiate mainly in the far-infrared and

submillimeter and display Class 0 spectral energy distributions (SEDs), (2) objects

with a warmer central protostar embedded in gas and dust envelope and disk and

are accreting material at a lower rate and display Class I SEDs, (3) Classical T-Tauri

stars in the final stages of accreting display Class II SEDs and have begun to emerge

from the envelope of gas and dust while retaining their disks, and (4) weak emission

T-Tauri stars have dissipated most of their gas and dust but are still contracting

towards the main sequence when they will begin hydrogen-burning and display Class

III SEDs (Lada 1999; Ward-Thompson et al. 2007) (See Fig. 1.2). The earliest

phases, those displaying Class 0 and I SEDs, are best observed at submillimeter and

infrared wavelengths. YSOs displaying Class II and III SEDs are best examined at

infrared and optical wavelengths. X-ray emission can be seen during several stages

from strong magnetic surface activity and disk interactions, such as when YSOs start

to dissipate their disks via winds and planet formation. These stages make it necessary

to observe star-forming regions in a variety of wavelengths.
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Figure 1.2 A cartoon showing the 4 main evolutionary stages and the SED of each
phase (André 1994).
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1.5 THE ρ OPHIUCHI AND SERPENS MOLECULAR CLOUDS

The ρ Ophiuchi and Serpens molecular clouds have been identified by previous

studies as regions of active star formation. The two regions are located near to the

Sun, giving the highest sensitivity to the widest range of luminosities and masses.

They are in a ring of OB associations called Gould’s Belt. Gould’s Belt is tilted

approximately 20 degrees to the plane of the Galaxy, and has a diameter of about

1000 pc (See Fig. 1.3). ρ Ophiuchi is located 130 pc from the Sun (Wilking, Gagné,

& Allen 2008) (See Fig. 1.4). The distance to Serpens is less clear; some studies

report 260 pc (Eiroa, Djupvik, & Casali 2008) while others derive 429 pc (Dzib et al.

2011, 2010). This study may shed some light on the actual distance (See Fig 1.5).

Figure 1.3 A cartoon showing the position of ρ Ophiuchi and Serpens clouds within
Gould’s Belt, and relative to the Sun. Aqu represents the position of Serpens, which
is located in the Aquila Rift (Perrot & Grenier 2003).

Both young clusters have been observed by numerous surveys ranging in wave-

length from X-ray to submillimeter. As part of the Spitzer Space Telescope’s Legacy
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Figure 1.4 An extinction map of ρ Ophiuchi. The red box is approximately our
field of view. The contour levels are Av=3 and Av= 6 magnitudes. This map was
created using background star counts at red wavelengths (7000 Å. Taken from André
& Saraceno (2007) originally from Cambrésy (1999).)

programs, about 106 objects in ρ Ophiuchi were identified as YSOs due to infrared

excess in the mid- and far- infrared (Allen et al. , unpublished data). This study was

biased towards stars in the earliest stages of star formation, which are still encom-

passed by gas and dust. X-ray studies have also been conducted of the region with

ROSAT, XMM- Newton, ASCA and Chandra (Grosso et al. 2000; Gagné, Skinner, &

Daniel 2004; Ozawa, Grosso & Montmerle 2005). These surveys have targeted more

evolved PMS stars with magnetic surface activity. Due to the highly variable nature

of X-ray emission, YSOs with little or no circumstellar dust have been undersampled.

Optical spectroscopic surveys have been conducted of ρ Ophiuchi, however these

studies have been biased towards objects with X-ray emission or towards stars with

suspected Hα emission (Bouvier & Appenzeller 1992, Mart́ın et al. 1998, Wilking et

al. 2005).
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Figure 1.5 An extinction map of Serpens. The red box is a portion of our field of
view, the east edge of our survey area is off the left edge of the image. Contours
are Av= 6, 9, 12, 15, 20, and 25 magnitudes. The contours are calculated from c2d
Spitzer maps. The grey scale image is 1.1 mm continuum emission from cold dust.
Taken from Enoch et al. (2007).
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The Spitzer Space Telescope has studied Serpens, identifying 235 YSOs with

infrared excesses using observations obtained in both the mid- and far- infrared (Har-

vey et al. 2006; Winston et al. 2007; Winston et al. 2009). X-ray surveys have

also been done, using Chandra and XMM - Newton (Preibisch 2003; Giardino et al.

2007; Winston et al. 2007). These surveys suffer from the same shortcomings as the

infrared and X-ray surveys done in ρ Ophiuchi. As in ρ Ophiuchi, recent spectro-

scopic optical surveys of Serpens have been biased, focusing on objects with infrared

excesses (Oliveira et al. 2009; Winston et al. 2009).

1.6 OBJECTIVES AND METHOD

The objectives of this study are (1) to determine the star-forming history pro-

viding insight into possible triggering events or lack thereof, (2) to infer an initial

mass function (IMF) for comparison with the field and other star-forming regions,

and (3) to characterize disk evolution setting limits on disk timescales for young

clusters in both the Serpens and ρ Ophiuchi molecular clouds. To this end, opti-

cal spectra for an unbiased sample of candidate YSOs in both the ρ Ophiuchi and

Serpens regions have been obtained. These spectra were used to confirm youth, de-

termine effective temperatures and bolometric luminosities, and when compared with

theoretical models, estimate the ages and masses (see sections I.2, I.3 (ρ Ophiuchi)

and II.2 II.3 (Serpens)). Optical images taken in R and I (ρ Ophiuchi) and V and

R (Serpens) bands have been used to create color-magnitude diagrams. These color

magnitude diagrams were then used to select sample candidate YSOs (see sections

I.2.1 (ρ Ophiuchi) and II.2.1 (Serpens)). Cluster membership was established by the

presence of lithium absorption at 6707 Å and/or Hα in emission. Youth was also

confirmed via the presence of X-ray emission and/or an infrared excess, determined

from previous studies. Additionally, a diagram similar to a Wolf diagram was used

to ascertain cluster membership by plotting the extinction versus distance assuming
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the objects (eliminating giants) are on the main sequence. Objects above a certain

extinction (e.g., in ρ Ophiuchi the criteria was anything 1.5 magnitudes or higher)

that appear to be closer than the cloud distance are too extincted to be foreground

objects and too luminous to be on the main sequence. They are likely pre-main se-

quence members (see sections I.4.2 (ρ Ophiuchi) and II.3.2 (Serpens)). These data

have been combined with other optical, and infrared surveys to form an extinction-

limited sample of YSOs, reconstruct the star-forming history, estimate disk survival

times and the onset of planet formation, as well as to begin investigations into the

IMFs. The derived IMFs were compared to the field star IMF as well as the IMFs of

other young clusters such as IC 348 (Luhman et al. 1998; Luhman et al. 2003), Tau-

rus (Briceño et al. 2002; Luhman 2004) and the Orion Nebula Cluster (Hillenbrand

1997; Slesnick, Hillenbrand, & Carpenter 2004) to give insight into the dependence of

the IMF on temperatures and pressures of the gas in which stars are born (Kroupa

2001)(see sections I.4.6.2 (ρ Ophiuchi) and II.3.8 (Serpens)).

As a cluster ages, encounters between stars cause lower mass stars to migrate

outward; this process is known as mass segregation. In younger clusters, mass seg-

regation has not yet occurred to a large extent and YSOs are still bound by the

molecular gas. Therefore any differences in mass distributions between young clus-

ters are likely due to differences in the physical conditions of the cloud from which the

stars were created (Bonnell & Davies 1998). However recent simulations have found

that the timescale for dynamical mass segregation could be shorter than previously

predicted (Moeckel & Bonnell 2009; Allison et al. 2009; Bastian, Covey, & Meyer

2010) therefore, it is unclear if the presence of mass segregation is primordial or not.

There are two timescales that are important to this process: the crossing time and the

relaxation time. The crossing time is the time required for a star to move from one

side of a cluster to the other, assuming it is traveling at the typical random speed of

objects in the cluster. This is the shortest timescale over which significant dynamical
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events can occur and the timescale for the cluster to be virialized:

τcross =
2R

v
(1.6)

where R is the radius of the cluster and υ is the typical speed as measured by the

velocity dispersion of objects in the cluster. The relaxation time is the time for a star

to be significantly perturbed by other objects in the cluster i.e., the time required for

a star to lose all memory of its initial orbit:

τrelax
τcross

≈ 0.1N

lnN
(1.7)

where is N is the number of stars in a cluster (Lada & Lada 2003). Unless Mass

segregation is primordial, it is expected to occur in about the relaxation time, and

likely takes place in a longer time than the crossing time (Mouri & Taniguchi 2002).

Spatial and temporal studies remain important for understanding the physics for how

and why stars end up with their observed mass (Lada & Lada 2003).

Circumstellar disks are important in both star and planet formation. It is

believed that matter is accreted onto PMS stars through disks, and that these disks

are also the sites of planet formation (Strom et al. 1989; Fang et al. 2009). Dust

emission from the circumstellar disks surrounding YSOs are the cause of infrared

emission excess over that from the stellar photosphere. Disk evolution can be studied

by looking at the magnitude of an infrared excess as a function of age and mass. Disk

lifetimes can be inferred by the fraction of sources with disk signatures as a function

of age. Disk lifetimes seem to be inversely correlated to stellar mass (Hernandez

2007). Studies indicate that the inner disk close to the star dissipates faster than

the cooler outer disk (Strom et al. 1989; Hillenbrand 2002; Mamajek et al. 2004;

Carpenter et al. 2005; Fang et al. 2009). Objects displaying evidence of an disk

inner hole may be sites of planet formation (Strom et al. 1989; Fang et al. 2009).
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These disks are called transition disks. The disk frequency of a young cluster can be

obtained by plotting the number objects versus the magnitude of an infrared excess.

Transition disk objects were identified by comparing the 24- µm excess to the 3.6- µm

excess using Spitzer Space Telescope studies (Allen et al. 2011) (see sections I.4.6.1

(ρ Ophiuchi) and II.3.6 (Serpens)).
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Oliveira, I., Merin, B., Pontoppidan, K. M., et al. 2009, ApJ, 691, 672

Ozawa, H., Grosso, N., & Montmerle, T. 2005, A&A, 429, 963

Perrot & Grenier, A&A, 2003, 404, 519

Preibisch, T. 2003, A&A, 410, 951

Ruden, S. 2009 in The Origin of Stars and Planetary Systems, edited by C. Lada &

N. Kylafis, p. 143

Salpeter, E. 1955, ApJ, 121, 161

Scalo, J. 1986 in The Stellar Initial Mass Function, edited by G. Gilmore & D Howell,

p. 1

Shu F.H, Adams F.C, & Lizano S. 1987, ARA&A, 25, 23

Slesnick, C. L., Hillenbrand, L. A. & Carpenter, J. M. 2004, ApJ, 610, 1045

Slesnick, C. L., Hillenbrand, L. A. & Carpenter, J. M. 2008, ApJ, 688, 377

Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ,

97, 1451
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ABSTRACT

We have completed an optical spectroscopic survey of an unbiased,
extinction-limited sample of candidate young stars covering 1.3 deg2 of

the ρ Ophiuchi star forming region. While infrared, X-ray, and optical
surveys of the cloud have identified many young stellar objects (YSOs),

these surveys are biased towards particular stages of stellar evolution and
are not optimal for studies of the disk frequency and initial mass function.
We have obtained over 300 optical spectra to help identify 135 association

members based on the presence of Hα in emission, lithium absorption, X-
ray emission, a mid-infrared excess, a common proper motion, reflection

nebulosity, and/or extinction considerations. Spectral types along with
R and I band photometry were used to derive effective temperatures and

bolometric luminosities for association members to compare with theoret-
ical tracks and isochrones for pre-main-sequence stars. An average age
of 3.1 Myr is derived for this population which is intermediate between

that of objects embedded in the cloud core of ρ Ophiuchi and low mass
stars in the Upper Scorpius subgroup. Consistent with this age we find a

circumstellar disk frequency of 27% ± 5%. We also constructed an initial
mass function for an extinction-limited sample of 123 YSOs (Av≤ 8 mag),

which is consistent with the field star initial mass function for YSOs with
masses >0.2 M!. There may be a deficit of brown dwarfs but this result
relies on completeness corrections and requires confirmation.

Subject headings: stars: formation – stars: pre-main-sequence – ISM:

individual (ρ Ophiuchi cloud) – open clusters and associations: individual

(Upper Scorpius)

1. Introduction

An important question in the theory of star formation is whether the initial mass

function (IMF) of stars is universal. Variations in the IMF from region to region may

hold clues to the roles of accretion, fragmentation, and ejection in producing the stellar

mass spectrum (e.g., Bonnell et al. 2007). One of the best places to investigate the

IMF is in molecular clouds with active star formation since cluster membership is
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well-determined, low mass stars have had a limited amount of time to segregate, and

one can associate variations in the IMF to the physical conditions of the cloud. Due

to large columns of dust obscuring all but the brightest objects in the cloud, IMF

studies of young clusters require unbiased, extinction limited spectroscopic surveys

(e.g., Bastian et al. 2010).

The ρ Ophiuchi molecular cloud complex is a well-studied, nearby region of

active star formation (see Wilking et al. 2008 for review). Located at 130 pc from

the Sun (Mamajek 2008), its proximity guarantees access to the broadest range of

luminosity and mass. Most recently, the Spitzer Space Telescope surveyed ρ Ophiuchi

in the mid- and far-infrared as part of the Legacy and guaranteed time programs.

About 292 young stellar objects (YSOs) were identified with infrared excesses due

to circumstellar disks (Evans et al. 2009) over a field of view of 6.8 square degrees.

X-ray studies have also been conducted of the region with ROSAT, XMM-Newton,

ASCA, and Chandra revealing more evolved YSOs with magnetic surface activity

(Grosso et al. 2000; Gagné et al. 2004; Ozawa et al. 2005). But for studies of

the IMF, one must sample all phases of pre-main-sequence (PMS) evolution from

heavily embedded YSOs in their main accretion phase, to classical T Tauri stars

(CTTS), to weak-emission T Tauri stars (WTTS) with little or no circumstellar dust.

Optical spectroscopic surveys targeting CTTS andWTTS have been conducted of this

region, however these studies have been biased toward objects with X-ray emission or

YSOs with suspected Hα emission (Bouvier & Appenzeller 1992; Martin et al. 1998;

Wilking et al. 2005). Wilking et al. (2005, hereafter Paper I) obtained 136 spectra

from 5820Å- 8700Å at a resolution of 2.9 Å and identified 88 cluster members in the

main L 1688 cloud of the Ophiuchus complex. The members had a median age of 2.1

Myr and included 39 CTTS. However, their survey had a selection bias toward YSOs

with Hα emission.

In this paper, we present the results of a new optical spectroscopic survey
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which, when combined with data from Paper I, enables us to construct an unbi-

ased, extinction-limited sample of YSOs in the L 1688 cloud. Section 2 describes this

new spectroscopic survey, which covered the wavelength range 6249Å-7657Å with a

resolution of 1.4 Å that enabled us to resolve Li in absorption, an indicator of youth.

The analysis of the spectra to derive spectral types and exclude background giants is

described briefly in Section 3. Section 4 discusses the results of our analysis including

the identification of association members, their spatial distribution, their placement in

a Hertzsprung-Russell (H-R) diagram relative to several theoretical models and their

age distribution. The Section concludes by defining an extinction-limited sample and

the resulting disk frequency and distribution of masses in this subsample for com-

parisons with other star-forming regions. Finally, Section 5 compares low-extinction

YSOs in L 1688 with those in Upper Scorpius and explores the relationship between

star formation in Upper Scorpius, the surface population in L 1688, and that in the

cloud core.

2. Observations and Data Reduction

Over 200 moderate resolution spectra were obtained for 184 stars identified

through R and I band photometry as candidate YSOs. Fifty-two of these stars had

spectral classifications reported in Paper I, allowing us to refine our previous spectral

classifications. Newly observed YSO candidates numbered 133. These observations

are described in detail in the following sections.

2.1. Sample Selection

Candidate YSOs were selected from an I vs. (R-I) color magnitude diagram. R

and I band photometry were obtained from short (5 minute) exposure images obtained

with the 0.6 m Curtis-Schmidt Telescope located at Cerro Tololo Inter-American

Observatory in 1995 March (see also Wilking et al. 1997 for description). The CCD
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images covered a 67′ x 68.5′ area centered on RA(2000) = 16h 27m 14.7s, decl.(2000)

= -24◦30′06′′ with a scale of 2.03′′ pixel−1. The survey area is shown in Figure 1

relative to the distribution of molecular gas. Photometry was performed using an

8.1′′ diameter aperture optimized for the 4′′ full width at half-maximum of the point-

spread function (Howell 1989) with local sky background measured in an annulus

10 - 20′′ in diameter. Zero-points were computed in the Kron-Cousins photometric

system using standard star fields established by Landolt (1992). Completeness limits

were estimated by adding artificial stars in half magnitude intervals to the images

and extracting them using DAOFIND in the Image Reduction and Analysis Facility

(IRAF).1 Recovery of ≥90% of the artifical stars occurred for R≤18.1 mag and I≤17.0

mag. Photometry was not reliable for stars with R≤12.4 mag and I≤11.8 due to

saturation of the CCD.

An I vs. (R-I) diagram for over 2500 stars is presented in Figure 2. The ordinate

is the absolute I magnitude assuming a distance of 130 pc. For stars saturated in

our images, R and I band photometry was adopted from the studies of Chini (1981),

Gordon and Strom (1990, unpublished data), Bouvier & Appenzeller (1992), or Walter

et al. (1994). Photometry from Chini was transformed into the Kron-Cousins system

using the relations derived by Fernie (1983). The diagram is complete for the brightest

stars which are candidate YSOs except for RXJ 1624.9-2459, ROXR1-4/SR-8, SR 24n,

HD 148352, and ROXR2-15 for which previous photometry was not available. For

comparison, PMS isochrones and the zero-age main sequence (ZAMS) derived from

the models of D’Antona & Mazzitelli (1997) are shown (see Section 4.4). One of the

known association members, WL 18, has strong Hα emission (EW = 96 Å) relative

to the R band continuum which may explain its position below the ZAMS.

From this diagram, we have drawn a sample for spectroscopic follow-up of stars

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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which are on or above the 107 year isochrone and brighter than our completeness

limits. Samples selected from this region of the color magnitude diagram should be

representative for stars earlier than M6 with Av ≤ 3 mag and ages ≤ 107 years.

Accurate positions (<0.5′′) for these stars were obtained using the ASTROM

program distributed by the Starlink Project and a set of secondary astrometric stan-

dards. The secondary position references were 27 Hα emission line stars with accurate

positions determined relative to SAO stars in a 5 square degree region on the Red

Palomar Sky Survey plate (Wilking et al. 1987). These positions were compared to

counterparts from the Two Micron All Sky Survey (2MASS); matches were found

within a radius of 2 ′′Ṗositions were then shifted by +0.2 s in right ascension to bring

them into agreement with the 2MASS coordinate system (Cutri et al. 2003).

2.2. Hydra Observations

Optical spectra were obtained for stars located over a 1.3 deg2 area centered on

L 1688 using Hydra, the multi-fiber spectrograph, on two different telescopes. Fiber

configurations were designed to observe the maximum number of candidate YSOs;

crowding at the edges of our field restricted the number of sources that could be

observed. The first set of observations were made using Hydra on the Blanco 4-m

telescope at Cerro Tololo Inter-American Observatory on 2003 August 10-12. The

Bench Schmidt camera with the SiTe 2kx4k CCD gave a 40′ field of view. The 2 ′′

diameter fibers coupled with the 790 lines mm−1 KPGLD grating yielded a wavelength

coverage of 6275-7975 Å centered near 7125 Å. The spectral dispersion was 0.90 Å

pixel−1 giving an effective resolution of 2.7 Å. The resolution at the central wavelength

was λ/∆λ=2600. The second set of observations utilized Hydra on the WIYN 3.5m

telescope on 2006 June 15-172. The Bench Spectrograph Camera was used with the

2The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana
University, Yale University, and the National Optical Astronomy Observatory.
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T2KA CCD which gave a 1◦ field of view. The red fiber cable (2 ′′ diameter) and

the 1200 lines mm−1 grating with a blaze angle of 28.7◦ were combined with the

GG-495 filter to cover the range of 6250-7657 Å centered near 6960 Å. The spectral

dispersion was 0.68 Å pixel−1 giving an effective resolution of 1.4 Å. The resolution

at the central wavelength was λ/∆λ=5000. Three fiber configurations were observed

at each telescope, set to observe overlapping regions of the 1.3 square degree target

field.

The spectra were reduced using IRAF. Images were processed for bias and

dark corrections using CCDPROC. Multiple exposures of a given field were median-

combined and then reduced with IRAF’s DOHYDRA package. The images were

flat-fielded using dome flats obtained for each fiber configuration. Sky subtraction

was accomplished using the median of 7-10 sky spectra distributed across the field

for each configuration. The spectra were wavelength calibrated using 5 s exposures

of the PENRAY (CTIO: He, Ne, Ar, Xe) or CuAr (WIYN) lamps taken in each fiber

configuration. Scattered light corrections were not made and no flux calibration was

performed. In Table 1, we summarize the observations by presenting for each field the

observation date and telescope, pointing center, number of candidate YSOs observed,

number of exposures, and the total integration time. The typical signal-to-noise ratio

for stars with R=16 mag was 30 for the CTIO spectra and 20 for the WIYN spectra

as measured by line free regions of the continuum.

3. Analysis of the Spectra

As in Paper I, spectral types were derived from visual classification (visual pat-

tern matching of our smoothed program star spectra with standard star spectra) sup-

ported by quantitative analysis of some spectral indices. For the purposes of matching

spectral features with those of standard stars, our Hydra spectra were smoothed using

a Gaussian filter to the resolution of the standard stars used for direct comparison.
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All spectra have been normalized to 1 by dividing out a fit to the continuae, carefully

excluding regions with emission lines or broad absorption due to TiO. Normalized

spectra were smoothed to a resolution of 5.7 Å for comparison with the spectral

standards of Allen & Strom (1995). For giants and later type dwarfs (M5V - M9V),

optical spectra from the study of Kirkpatrick et al. (1991) were used with an effective

resolution of either 8 or 18 Å. The relative strength of absorption due to Hα and a

blend of Ba II, Fe I, and Ca I centered at 6497 Å is the most sensitive indicator of

spectral type for F-K stars and the depth of the TiO bands for K-M stars.

A rough estimate of the surface gravity of an object is important in distinguishing

PMS stars from background giants. The primary gravity-sensitive absorption feature

available for analysis in our spectra was the CaH band centered at 6975 Å. This band

is evident in the spectra of dwarf stars with spectral types later than K5. Following

Allen (1996), we have calculated a CaH index as the ratio of the continuum at 7035±15

Å to the flux in the CaH absorption band at 6975±15 Å and a TiO index (primarily

temperature sensitive for stars ≥ K5) as the ratio of the continuum at 7030±15 Å to

the flux in the TiO absorption band at 7140±15 Å from the unsmoothed, normalized

spectrum of each program object. In Figure 3, we plot the CaH index versus TiO

index for 136 program objects. Error bars are computed based on the one-sigma error

in the mean in flux averages and propagated to the ratios. The solid lines represent

first- or second-order fits to the standard star spectra.

4. Results

Spectral types were determined for 174 of 184 stars in this study. These data

are presented in Table 2 along with any previous source names, X-ray associations,

RA and decl. in J2000, the (R-I) color indices, I magnitudes, and previous spectral

classifications. The presence of lithium absorption at 6707 Å and the equivalent

width of Hα are also given (emission shown as a negative value). Based on the CaH
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index, we have identified nine background giants and seven possible dwarfs. Spectral

classifications agree well with optical and infrared spectral types previously published

by Bouvier & Appenzeller (1992), Martin et al. (1998), Luhman & Rieke (1999),

Cieza et al. (2010), as well as those in Paper I. A notable exception is WLY 2-

48/ISO-Oph 159. Geers et al. (2007) report an optical spectral type of M0 while

Luhman & Rieke (1999) classify it as earlier than F3. Our spectrum shows broad Hα

absorption partially filled in with emission as well as an absorption line from OI at

7774 Å characteristic of early-type stars. The strength of the latter plus the absence

of an absorption line due to the blend at 6497 Å (Ba II, Fe I, Ca I) leads us to a

spectral classification of A0. This spectral classification is in agreement with that

derived by McClure et al. (2010).

When combined with the results of Paper I, optical spectra have been obtained

for 87% of the stars in the M(I) vs. (R-I) diagram that fell above our completeness

limit and on or above the 107 year old isochrone. A reanalysis of the R and I band

photometry has led us to revise some of the magnitudes published in Paper I. The

revised photometry is presented in Table 4 in the Appendix and used to derive the

stellar parameters in this paper.

4.1. Emission-line Spectra

In our previous study, 39 of 131 sources (30%) were found to have strong Hα

emission characteristic of CTTS. In this sample, which was not biased toward the

detection of Hα emission, 15 sources were found to have EW(Hα) > 10 Å. All of

these are newly identified CTTS using this coarse criterion (Herbig & Bell 1988). An

additional 17 objects showed weaker Hα emission (10 Å > EW(Hα) > 5 Å) with all

but one having an M spectral type. The variable nature of Hα emission is evident

when comparing stars observed days apart and stars observed in this study and in

Paper I.
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4.2. Identification of Pre-main-sequence Association Members

Identification of 35 new PMS objects was accomplished using the same mem-

bership criteria as in Paper I with some additional criteria as described below. An

additional 13 YSOs with optical spectral types were taken from the literature. Com-

bined with the 87 association members from Paper I, there are a total of 135 objects

with optical spectral types that meet one or more of these criteria. These objects are

listed in Table 3.3 Ninety percent of the YSOs in our sample have K or M spectral

types.

The criteria include the following:

• Hα in emission with EW > 10 Å during at least one observation, characteristic

of CTTSs. Fifty-three objects fit this criterion.

• Association with X-ray emission is a signpost of youth and has been observed

in 82 stars in our sample.

• The presence of lithium absorption is an indicator of youth for stars with spec-

tral type K0 and cooler and clearly resolved in the spectra of 46 stars.

• A mid-infrared excess as observed by Infrared Space Observatory (ISO) with

a spectral index from 2.2-14 µm (Bontemps et al. 2001) or the Spitzer Space

Telescope from 3.6-24 µm (Wilking et al. 2008) indicative of a circumstellar

disk. Thirty-eight objects display a mid-infrared excess.

• A proper motion in common with the association mean as noted by Mamajek

(2008). In addition, we include Object 1-3 from this study as a common proper

motion member based on data from the UCAC3 catalog.

3One object, [WMR2005] 3-17, was removed as an association member from Paper I since one
could not rule out that it is a background giant.
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• Two early-type stars, HD 147889 and Source 1, are associated with reflection

nebulosity in the R and I band images.

• Finally, 100 objects (excluding giants identified in Section 3) that are too lumi-

nous to be main sequence objects at the distance to ρ Oph and have an estimate

for Av too high to be foreground to the cloud (Av > 1.5 mag).

We have noted in Table 3 objects with near-infrared variability from the study of Alves

de Oliveira & Casali (2008) but do not require this for association membership. Only

one of the objects classified as a possible dwarf based on the CaH index, Object 4-52,

displayed a criterion for association membership and is included in Table 3.

Mamajek (2008) has noted that proper motion data for two of the objects in

Table 3, X-ray sources GY 280 and HD 148352, are discordant and are possible

foreground objects. Despite this fact, we include them in Table 3 but note that X-ray

emission alone may not be sufficient to identify YSOs.

4.3. Distribution of Association Members

The distribution of the 135 association members identified by this study is

shown in Figure 1 relative to contours of 13CO column density which delineate the

cloud boundaries (Loren 1989). Star symbols mark the locations of the multiple B

star ρ Oph and the three most massive members of the L 1688 embedded cluster:

HD 147889, Source 1, and SR 3. While the association members are concentrated

toward the molecular gas, there is marked lack of association members in the direc-

tion of the cold, dense cores B and E. A comparison of this distribution with that of

association members identified at all wavelengths (Wilking et al. 2008) confirms that

we are missing the youngest and most highly obscured YSOs in the cloud.
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4.4. Hertzsprung-Russell Diagram

To derive luminosities, we began by dereddening sources using the (R− I) color

index assuming the reddening law derived by Cohen et al. (1981) in the Kron-Cousins

system:

Av = 4.76 E(R-I), Sp Ty < A0 (early-type) (1)

Av = 6.25 E(R-I), Sp Ty ≥ A0 (late-type) (2)

where R = 3.2 for early-type stars and 3.8 for late-type stars. R and I band data

were taken from this study except where noted in Column 6 of Table 3. For five

sources, R and I band data were not available and sources were dereddened using J

and H band data from the 2MASS survey (Cutri et al. 2003) and transformed into

the CIT photometric system using the relationships derived by Carpenter (2001). A

sixth source (WL 18) was dereddened using J and H magnitudes since strong Hα

emission distorts its R band magnitude. In these latter cases, we used the relation

for the CIT photometric system

Av = 9.09 E(J-H) (Cohen et al. 1981). (3)

In a few instances, the errors in the photometry and/or spectral classifications yielded

negative values for the extinction of a few tenths and an extinction of 0.0 was assumed.

Effective temperatures were derived from the spectral classifications with typical

uncertainties of ±150 K for K-M stars. We note that the assumption of dwarf, rather

than subgiant, surface gravities will overestimate Teff for stars with spectral types of

G5-K5 by <250 K and underestimate Teff for stars with spectral types of M2-M8 by

<200 K (e.g., Drilling & Landolt 2000). Intrinsic colors and bolometric corrections

for dwarf stars were taken from the works of Schmidt-Kaler (1982) for B8-K5 stars

and from Bessell (1991) for K5-M7 stars. For the three B stars, we adopted the

intrinsic colors, bolometric magnitudes, and temperatures from Drilling & Landolt
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(2000), converting the colors into the Kron-Cousins system. For the M8 brown dwarf

candidates, we assumed values of Teff = 2400, (R − I)0 = 2.5, and BC(I) = -1.7

(Dahn et al. 2002; Hawley et al. 2002).

The absolute I magnitude, M(I), was computed given the extinction and assum-

ing a distance of 130 pc. We then derived the bolometric magnitude and luminosity

given:

Mbol = M(I) + BC(I) (4),

and

log(Lbol/L!) = 1.89 - 0.4 Mbol , Mbol(") = 4.74. (5)

In the situations where J and H were used to deredden, M(J) is recorded in Column 7

of Table 3 and was used along with BC(J) to derive Mbol. The median error in log(L)

is computed to be 0.14 dex by adding quadratically errors in the R and I photometry,

an uncertainty in the distance modulus of 0.17 mag corresponding to a depth of 10

pc, and an uncertainty 0.03 mag in the intrinsic color and 0.1 mag in the bolometric

correction due to spectral type errors. In most cases the dominant error was the

uncertainty in the distance modulus.

H-R diagrams for 135 association members were made using tracks and isochrones

from D’Antona & Mazzitelli (1997, DM) F. D’Antona & I. Mazzitelli (1998, private

communication), Palla & Stahler (1999, PS99), and Siess et al. (2000). Despite

the differences in treatments of the equation of states as a function of mass and of

convection, the models give very similar results for our sample. The diagrams for the

former two are shown in Figure 4 as they represent the broadest range in mass. The

masses and ages interpolated from the DM models are given in Table 3. Since most

of the objects lie on convective tracks, uncertainties in the mass relative to the DM

models were estimated from the errors in the spectral classifications and uncertainties

in the age from errors in the luminosities. Uncertainties in the mass for objects in the
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range of 0.08-1.3 M! were typically 16%-30%, with the higher value corresponding to

the lower mass objects. Uncertainties in the log(age) were 0.17-0.25 dex relative to

DM models with the greater uncertainty for the higher mass objects. We note that

uncertainties in the absolute masses and ages will be larger with theoretical mass

tracks underpredicting absolute stellar mass by 30% - 50% (Hillenbrand 2009). No

age or mass estimate was possible for RXJ 1624.9-2459 as it fell below the 108 year

isochrone.

4.5. Age Distribution

The values for log(age) derived from the DM models are consistent with a normal

distribution with an average log(age) of 6.49±0.05 (3.1 Myr). Ages derived from the

PS99 models agree surprisingly well while the Siess et al. models yield systematically

older ages for log(age)≤7.0; the difference can be as much as 0.4 dex for a DM age of

1 Myr. Given the large areal coverage of our survey (1.3 deg2 or 6.8 pc2), which must

include members of the Upper Sco subgroup, an age spread in our sample would

not be unexpected. However, simulations do not suggest an intrinsic age spread.

Assuming Gaussian-distributed errors in log T and log L and using the DM models

for 3 Myr, a Monte Carlo simulation derived values of log T and log L for over 12,000

samples in the mass range of 0.12 - 1.0 M! weighted by the Chabrier (2003) system

mass function. While the simulated age distribution appears somewhat narrower than

what we observe, a Kolmogorov-Smirnov (K-S) test cannot reject the null hypothesis

that the two samples are drawn from the same parent population at the 3% level.

Lack of strong evidence for a large age spread is consistent with what is found in

other young clusters or associations (e.g., Hillenbrand 2009; Slesnick et al. 2008) and

supports the idea of rapid star formation (Hartmann 2001).

The average age for this sample is somewhat older than the average of 0.3 Myr

derived from more obscured sources in the core using the DM models and dereddened
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using JHK photometry (e.g., Greene & Meyer 1995; Luhman & Rieke 1999; WGM99;

Natta et al. 2002). However, we note that there are systematic differences in our

derived luminosities, and hence ages, when (J-H) photometry is used to deredden

sources instead of (R-I). Using (J-H) colors from 2MASS yields systematically higher

values for Av and hence Lbol. As a consequence, the average log(age) for our sample

dereddened with (J-H) colors is 6.14±0.05 (1.4 Myr) compared to 6.49±0.05 (3.1 Myr)

when (R-I) is used. Indeed, a K-S test applied to both versions of our age distributions

suggests that the difference is significant. The reason for this discrepancy is not

understood but could involve the adopted reddening law (Cohen et al. 1981), surface

gravity effects, or possible excess emission in the J and H bands from optically-thick

disks. J and H band excesses will overestimate the luminosity which leads to an

underestimate of ages (Cieza et al. 2005). Regardless, the older average age for our

sample relative to the more obscured sources is significant when both samples are

dereddened using (J-H) (1.3 Myr vs. 0.3 Myr) even considering that the previous

studies used the pre-Hipparcos distance of 160 pc.

4.6. An Extinction-limited Sample

To explore the frequency of circumstellar disks and the IMF, we considered 123

objects that formed an extinction-limited sample with Av≤ 8 mag. This sample is

representative for objects with M≥0.2 M! for an age of 3 Myr using the DM models.

4.6.1. Disk Frequency

Using published data from the ISO (Bontemps et al. 2001) and the Spitzer Space

Telescope (Evans et al. 2009), we can look for a mid-infrared excess relative to the

photosphere using the spectral index from 2.2-14 µm or 3.6-24 µm, respectively. The

spectral index is defined as



36

α = dlogλFλ/dlogλ

A mid-infrared excess is defined as α ≥ -1.60 which is characteristic of an optically-

thick disk (e.g., Greene et al. 1994). This results in 33 of the 123 sources, or 27%

± 5%, showing evidence for a circumstellar disk lacking a large inner hole (see Table

3) with the uncertainty estimated assuming Poisson statistics (Gehrels 1986). We

adopt this disk frequency estimated over near- to mid-infrared wavelengths as the

most reliable disk indicator. The sample size is not sufficient to investigate possible

variations in the disk frequency with spectral type.

As a check, we can use the slope of the 3.6-8.0 µm flux densities from the Spitzer

Space Telescope to assess the fraction of sources with mid-infrared excesses. A linear

least squares fit was made to the flux densities for each source compiled from the

Spitzer c2d catalog available in NASA/IPAC Infrared Science Archive. Following

Lada et al. (2006), disk models suggest that α ≥ -1.80 over this wavelength range

is indicative of an optically thick disk. The distribution of spectral indices as a

function of spectral type is shown in Figure 5. For the 122 sources for which data

were available, 40 or 33% ± 5% showed evidence for an optically thick disk consistent

with our previous estimate. We can compare this disk frequency to that derived by

Lada et al. for the IC 348 cluster who considered 299 YSOs, most of which reside

in area completely sampled for M > 0.3 M! and Av <4 mag (Luhman et al. 2003).

Their value of 30% ± 4% for IC 348 is consistent with our disk frequency which is

not surprising given the similarity in the cluster’s estimated age of 2-3 Myr (Herbst

2008).

With knowledge of the spectral types, we can also look for evidence of even

smaller infrared excesses from the inner disk in the K band. Using data from the

2MASS survey, we transformed the magnitudes into the CIT system and dereddened

them using Equation (3). Assuming that the excess at J was zero, the difference of
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the dereddened (J-H) color to the intrinsic color was then used to estimate

rH = FHex/FH

where FHex is the broadband flux from circumstellar emission and FH is the expected

stellar flux at 1.6 µm. This was then used to estimate the excess at K:

rK = FKex/FK = (1 + rH)(10
[(H−K)−(H−K)0−0.065Av ]/2.5 − 1).

Values of ∆K = log(1 + rK) were computed and those that equaled or exceeded 0.20

were associated with an optically-thick inner disk (Skrutskie et al. 1990). We note

that three sources with an apparent K-band excess did not display a mid-infrared ex-

cess; all three have values close to ∆K=0.20 and may be identified as excess sources

due to photometric errors. Twenty-three of 123 sources, or 19% ± 4%, showed evi-

dence for an optically thick inner disk. While the assumption of no excess emission

at J could underestimate ∆K, the higher percentage of mid-infrared excess sources

is typical of young clusters and likely reflects the greater sensitivity of mid-infrared

photometry to disk emission (e.g., Meyer et al. 1997; Haisch et al. 2000). The disper-

sal of the inner disk by accretion, stellar winds, and/or planet formation could also

contribute to the lower disk frequency derived from the K-band. Candidate transition

disk objects with a mid-infrared excess and ∆K≤0.10 include WSB 18, ISO-Oph 1,

WSB 52, ISO-Oph 195, and Object 2-57, SR 21, DoAr 25, SR 9, and WMR 2-37. The

latter four have been confirmed as transition disk objects through modeling of their

spectral energy distributions from optical through millimeter wavelengths (Eisner et

al. 2009; Cieza et al. 2010; Andrews et al. 2011).

4.6.2. Initial Mass Function

Previous investigations of the IMF in ρ Ophiuchi have produced diverse results.

Luhman & Rieke (1999) used K band spectra for approximately 100 stars; mass
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estimates for 36 plus completeness corrections were used to construct an IMF. Their

IMF is roughly flat from 0.05-1 M! and peaks at ∼0.4 M!. de Marchi et al. (2010)

use these data and fit it to a tapered power-law, and derive a characteristic mass of

0.17 M!. Marsh et al. (2010) also derive an IMF for ρ Ophiuchi which continues to

rise into the brown dwarf regime, however this study was completely photometric in

nature.

We divided the 123 YSOs that formed an extinction-limited sample (Av≤ 8 mag)

into mass bins with a width in log(mass) of 0.4 dex. No correction was made for close

binaries. A plot of the resulting mass function, shown in Figure 6, displays a peaks

and turns over at 0.13 M!. 4 The last three mass bins are not complete for Av =

8 mag, so completeness corrections were made assuming an age of 3 Myr. To this

end, the maximum visual extinction to which a source could be observed, Avmax ,

was estimated for a source in the center of each mass bin using the DM models and

assuming an I band limiting magnitude of 15.9. This value, estimated from Figure

2, is where the 3 Myr isochrone intersects our completeness limit. To account for

variations in extinction within the region, we used the extinction maps from Ridge

et al. (2006) with an effective resolution of 3′. The fractional area of our survey

box with Av=0-2, 2-4, 4-6, 6-8, and >8 mag was estimated to be 0.09, 0.32, 0.24,

0.14, and 0.21, respectively. We then estimated the number of missing sources for

each extinction interval assuming a uniform stellar surface density weighted by the

fractional area. For the three lowest mass bins, the number of sources would increase

by a factor of 1.04, 1.43, and 3.32. While our completeness corrections are dependent

on the choice of PMS model and reddening law, the use of other models instead of

DM does not significantly change these corrections.

For comparison with our IMF, the lognormal system mass function derived by

4Objects in mass function with known subarcsecond companions include GSS 5, HD 147889,
WLY 2-2, WSB 38, SR 12, SR 9, VSSG 14, SR 24N, ROX 31, SR 20, and SR 13 (see Barsony et al.
2003, and references therein).
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Chabrier (2003) for field stars with M≤1.0 M! is shown in Figure 6 integrated over

our mass bins and normalized to the observed number of objects in the 0.08-0.20 M!

mass bin. For M> 1.0 M!, a power law of the form ζ(log m)∝m−1.3 was used. Error

bars plotted in Figure 6 were calculated using the methods of Gehrels (1986) and

multiplied by our completeness corrections. In order to make an overall (large scale)

comparison of the IMF with other regions and the field star IMF, we computed the

ratio of high (1 - 10 M!) to low (0.1 - 1 M!) mass stars. For our sources, this ratio is

R = 0.12 and 0.10 when including our completeness corrections with an uncertainty of

±0.04 calculated using the methods of Gehrels (1986). Our value of R is in agreement

with values found for ρ Ophiuchi and other young embedded clusters (Meyer et al.

2000). The ratio of high-to-low mass stars for a Chabrier system IMF is 0.16, hence we

conclude that coarsely our mass function is consistent with that of the field star IMF.

To make a more detailed comparison, a K-S test was performed over the mass ranges

for which no completeness corrections were necessary (M>0.2 M!). We cannot reject

the null hypothesis that the samples were drawn from the same parent population

with a probability of 40%, suggesting that the IMF of ρ Ophiuchi is not significantly

different from the field star IMF over this mass range.

When examined in more detail, there might be subtle differences between our

mass function and the field star IMF. Chabrier’s (2003) lognormal IMF underes-

timates the number of objects in the mass bin centered at 0.13 M!. In Chabrier

(2003), a characteristic mass of 0.22 M! was derived for the field star IMF, however

we find that our most frequently occurring mass is 0.13 M!. Moreover we note that

our lowest mass bin, which is made up of brown dwarfs, has fewer objects than pre-

dicted by the model. These differences may be artifacts of methods used to derive our

IMF. To quantify the possible deficit, we calculated the ratio of low mass stars (0.08

- 1 M!) to brown dwarfs (≤ 0.08 M!). Using our completeness corrected sample,

we derive a ratio of 9.1 (+3.3,-2.6) with errors calculated using methods of Gehrels

(1986). While this value is within the range found by Andersen et al. (2008) for
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other star forming regions, it is higher than values derived for ρ Ophiuchi by other

studies (Geers et al. 2011; Alves de Oliveira et al. 2010). We note that both of these

studies were biased toward finding brown dwarfs and only a small subset of their

data was confirmed spectroscopically. However as shown in Figure 6, when the errors

in our completeness corrected values are taken into account, this deficit may not be

significant. We conclude that the turnover in our IMF is real, but it is uncertain

if there is a real deficit of brown dwarfs compared to the field star IMF. Given the

difficulty of estimating completeness corrections for the brown dwarf regime, more

sensitive spectroscopic surveys are needed to sample completely this population.

Finally, we compare our IMF to that derived for other star forming regions,

noting that it is dubious to compare directly IMFs which have been derived using

different methods. The IMF in the Taurus star-forming cloud differs from most other

star-forming regions in that it displays a higher characteristic mass (∼0.8 M!) as

well as a corresponding deficit of brown dwarfs (Briceno et al. 2002; Luhman 2004).

The IMFs derived for the Orion Nebula Cluster (ONC), IC 348 cluster, and Upper

Scorpius are more similar to that in L 1688. While all show a turnover at low mass

(Slesnick et al. 2004; Luhman et al. 1998; Slesnick et al. 2008), a somewhat higher

characteristic mass of approximately 0.2 M! is reported for the ONC and IC 348.

Our peak mass of 0.13 M! is very similar to that reported by Slesnick, Hillenbrand,

& Carpenter (2008) for Upper Scorpius, but unlike our study, they report an excess

of brown dwarfs relative to the field.

5. Temporal Relationship with Upper Sco

Given the larger data set for YSOs distributed in the low extinction regions

of the L 1688 cloud, we revisited the relationship between star formation in this

extended region (6.8 pc2) to that in the L 1688 cloud core and in the Upper Scorpius

subgroup of the Sco-Cen OB association. As noted in Paper I and Section 4.5,
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spectroscopic studies of embedded sources in the 1 pc x 2 pc centrally condensed

core have consistently yielded ages between 0.1-1 Myr when using the D‘Antona &

Mazzitelli tracks and isochrones, with a median age of 0.3 Myr. The median age for

the distributed population is significantly older than that in the higher extinction

cloud core.

In Paper I we compared our H-R diagram for 88 association members in L 1688

with that of the 252 members of the Upper Scorpius subgroup compiled by Preibisch

et al. (2002) and noted there were no significant differences in age between the two

samples. However, comparisons with the Upper Scorpius sample are more complicated

since Preibisch et al. derived temperatures and luminosities in a different manner.

For example, R and I band photometry was obtained from the UKST Schmidt plates,

intrinsic colors from Hartigan et al. (1994), and the reddening law from Herbig (1998)

plus a combination of evolutionary models were used (but primarily those of Palla

& Stahler 1999). To ease the comparison between the two samples, we compiled

(J-H) photometry for sources in both samples from the 2MASS catalog (Cutri et al.

2003), transformed it to the CIT system, and derived extinctions and luminosities as

described in Section 4.4. A dwarf temperature scale was used to relate spectral types

in both samples to effective temperatures. We note that a distance of 130 pc was

used for L 1688 and 145 pc for Upper Sco (de Zeeuw et al. 1999). The H-R diagram

for the Upper Sco sample is shown in Figure 7 relative to the theoretical tracks and

isochrones from D’Antona & Mazzitelli. Ages were interpolated for sources in both

samples using the DM models. The average log(age) for the Upper Sco sample is

6.43 (2.7 Myr) compared to 6.14 (1.4 Myr) for L 1688. A K-S test applied to both

samples suggests that they are not drawn from the same parent population. Hence

in this reanalysis, the low mass objects distributed across the L 1688 cloud appear

intermediate in age between low mass stars in Upper Sco and YSOs embedded in the

centrally condensed core. Consistent with this picture is the lower fraction of K0-M5

stars in Upper Sco with optically-thick disks (19%; Carpenter et al. 2006) compared
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to ∼30% from this study.

Do the timescales involved allow the formation of the distributed population of

L 1688 to be triggered by events in Upper Sco? If a supernova helped power an

expanding HI shell originating in Upper Sco and moving at ∼15 km s−1 as proposed

by de Geus (1992), then in 1 Myr it would move about 15 pc and barely cover the

distance in the plane of the sky between the center of Upper Sco and L 1688. A

triggering event from Upper Sco would be consistent with the average age difference

of ∼1.3 Myr between low mass stars in Upper Sco and L 1688. By retracing the

motions of high proper motion objects, Hoogerwerf et al. (2001) suggest that a

supernova in a binary system occurred in Upper Sco about 1 Myr ago that produced

the runaway star ζ Oph and the pulsar PSR J1932+1059. But this would have been

too recent for a shock wave to cross the 15 pc expanse between the two regions and

initiate the formation of low mass YSOs in L 1688 with an average age of 2-3 Myr,

thus requiring an earlier event.

6. Summary

Over 200 moderate resolution optical spectra were obtained for candidate YSOs

in a 1.3 deg2 area centered on L 1688. When combined with the 136 spectra obtained

in our initial spectroscopic study in Paper I, 135 objects with optical spectral types

are now identified as association members based on the presence of Hα in emission,

X-ray emission, lithium absorption, a mid-infrared excess, a common proper motion,

reflection nebulosity, or extinction considerations. Fifteen of these display Hα in

emission consistent with being newly identified CTTS.

Masses and ages were derived for association members using several theoretical

models. Using the tracks and isochrones from D’Antona & Mazzitelli (1997) and

F. D’Antona & I. Mazzitelli (1998), we derive an average age of 3.1 Myr for this

distributed population. We find a circumstellar disk frequency of 27% ± 5% for
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our sample, consistent with our derived age and results from other studies. Nine

sources are identified as candidate transition disk objects with mid-infrared excesses

and no significant K band excess; four of these have been confirmed by recent studies.

When compared to simulations, our data are consistent with sampling a single age,

artificially spread by uncertainties in the distance, spectral type, and surface gravity

suggesting any intrinsic age spread is small. The age of 3.1 Myr for this surface

population is intermediate between that of YSOs embedded in the cloud core of ρ

Ophiuchi and low mass stars in Upper Sco.

We also constructed an IMF for an extinction-limited sample of 123 YSOs (Av≤

8 mag), which is a significant increase in sample size and mass range over previous

studies. The resulting IMF is consistent with the field star IMF for YSOs with mass

>0.2 M!. However it may be inconsistent for masses below 0.2 M!. We find that our

sample has a lower characteristic mass (∼0.13 M!) than the field star IMF as well as

a possible deficit of brown dwarfs.
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A. Photometry Revised from Paper I

A reanalysis of the R and I band photometry presented in Table 2 of Paper I

necessitated some revisions. These revisions, presented in Table 4, are due in large

part because of saturation problems with some of the brighter association members.

In these cases, photometry was adopted from other studies as noted.
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Fig. 1.— Distribution of association members is shown relative to contours of 13CO

column density. The contours were computed from Loren (1989) assuming LTE and
Tex = 25 K. The values of the contours in units of cm−2 are 6×1014, 3×1015, and

1.5×1016; the lowest contour delineates the outer boundary of the dark cloud. The
dashed box outlines the field included by our Hydra observations. Star symbols mark

the locations of the star ρ Oph A (labeled) and the association members Oph S1,
SR 3, and HD 147889 in the L 1688 core.
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ZAMS 

Fig. 2.— I vs. (R-I) color-magnitude diagram from our R and I band images. The
ordinate is the absolute I magnitude assuming a distance of 130 pc and with no

correction for reddening. Objects observed spectroscopically are shown by open circles
(association members), diamonds (field stars), or ”x”s (giants). Isochrones and the
ZAMS from the DM models are shown for comparison.
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Fig. 3.— Plot of the CaH vs. TiO indices as defined in the text for 136 program
objects. The solid lines were derived from fits to dwarf and giant spectral standards.

For the dwarf standards from K5-M7, the fit was y = 0.126x +0.940 with a correlation
coefficient of r=0.94. We note that for spectral types later than M7, both indices
decrease in response to an overall depression of the continuum so that an M8 V star

has a CaH index similar to that of an M4 V star. For the giant standards from
K5-M5, the fit gave y = -0.0357x2 + 0.191x + 0.795 with a correlation coefficient of

r=0.82.
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Fig. 4.— Hertzsprung-Russell diagrams for the ρ Oph association members with
optically-determined spectral types assuming a distance of 130 pc. The solid dia-
monds mark the positions of YSOs relative to the theoretical tracks and isochrones of

D’Antona & Mazzitelli (1997,1998) in Figure 4a or Palla & Stahler (1999) in Figure
4b. Error bars in Log Teff were estimated from uncertainties in the spectral type and

surface gravity. Error bars in Log Lbol were estimated from errors in the photometry
and uncertainties in the distance modulus and bolometric correction. In Figure 4a,

isochrones shown as solid lines are 105, 3 × 105, 106, 3 × 106, 107, and 108 years.
Evolutionary tracks from 0.02 M! to 2.0 M! are shown by dashed lines. The bold
dashed line marks the evolutionary track for a star at the hydrogen-burning limit. In

Figure 4b, the birthline is shown as a solid line followed by isochrones for 106, 3 ×
106, 107, and 108 years and the ZAMS. Evolutionary tracks from 0.1 M! to 6.0 M!

are shown by dashed lines.
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Fig. 5.— Spectral indices using the IRAC flux densities as a function of spectral type.
The spectral index was computed using a linear least-squares fit to the 3.6-8.0 µm flux

densities. Error bars were calculated from the fit given the statistical uncertainties in
the flux densities.
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Chabrier  

LOG m (solar masses)

Fig. 6.— Initial mass function for our extinction-limited sample. Dashed lines show
the members added from the completeness corrections described in Section 4.6.2. The

dotted line is the Chabrier (2003) system mass function which is lognormal for M<1.0
M! and a power law for M>1.0 M!.
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Fig. 7.— Hertzsprung-Russell diagram for 252 low-mass objects in Upper Sco from
the study of Preibisch & Zinnecker (1999) relative to the DM97 models. Bolometric

luminosities were derived using (J-H) colors from the 2MASS survey (see the text).
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ABSTRACT

We have completed an optical spectroscopic survey of an unbiased

sample of candidate young stars in the Serpens Main star-forming region
selected from deep B, V, and R band images. While infrared, X-ray, and

optical surveys of the cloud have identified many young stellar objects
(YSOs), these surveys have been biased toward particular stages of pre-
main sequence evolution. We have obtained over 700 optical spectra that,

when combined with published data, have led to the identification of 63
association members based on the presence of Hα in emission, lithium

absorption, X-ray emission, a mid-infrared excess, and/or reflection neb-
ulosity. Twelve YSOs are identified based on the presence of lithium
absorption alone. An additional 16 possible association members have

been singled out for further study. Spectral types along with V and R
band photometry were used to derive effective temperatures and bolo-

metric luminosities for association members to compare with theoretical
tracks and isochrones for pre-main sequence stars. An average age of 2

Myr is derived for this population with an age spread of 1-5 Myrs. We are
unable to determine if this age spread is intrinsic or a result of a very large
spread in distance of individual sources. Modeling of the spectal energy

distributions from optical though mid-infrared wavelengths has revealed
three new transition disk objects, making a total of six in the cluster.

Echelle spectra for a subset of these sources enabled estimates of v sini
and surface gravity values for 12 association members. Surface gravities

are found to be consistent with dwarf or sub-gaint stars.

2Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research in Astronomy (AURA) under
cooperative agreement with the National Science Foundation.
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Subject headings:

1. Introduction

Young clusters provide a valuable test bed for star formation theories since large

numbers of stars have formed out of the same molecular cloud under the same con-

ditions. Measurement of the age distribution within a cluster places limits on star

formation time scales and processes. To understand more clearly the star formation

process, measurement of characteristics such as age, mass function, and disk frequency

are necessary. These characteristics can be most fully studied by unbiased spectro-

scopic surveys (Bastian, Covey & Meyer 2010). The Serpens Molecular cloud is an

ideal region for studies of young clusters as it contains objects in all stages of evolu-

tion from protostars to pre-main sequence stars (see Eiroa, Djupvik, & Casali 2008

for review). The Spitzer Space Telescope has studied Serpens in the mid- and far-

infrared as part of the Legacy programs. About 235 objects were identified as YSOs

due to infrared excesses in two main concentrations (Harvey et al. 2006; Winston et

al. 2007; Winston et al. 2009). The best-studied concentration is the Serpens Main

region which contains two dense cores hosting an infrared cluster centered on SVS 20

(Eiroa & Casali 1992) along with numerous submillimeter sources (Testi & Sargent

1998; Testi et al. 2000; Davis et al. 1999; Hogerheijde et al. 1999). Most of these

sources are not visible at optical wavelengths. X-ray studies have also been conducted

of this region with XMM- Newton and Chandra (Preibish 2003; Winston et al. 2007;

Giardino et al. 2007). These surveys have targeted more evolved pre-main sequence

stars with magnetic surface activity and trace an older, more distributed population

surrounding the core of more embedded infrared sources (Kaas et al. 2004). The

second concentration, dubbed Serpens South, is located about 3 degrees south of Ser-

pens Main. While less well-studied, it is a cluster rich in protostars embedded in a

dense filamentary cloud (Harvey et al. 2006; Gutermuth et al. 2008).
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Estimates for the distance to the Serpens Main cloud have varied considerably

over the years and they are complicated by its location toward the Aquila Rift (Dzib

et al. 2010). Initial estimates of 440 pc were based on the spectroscopic parallax of

the B star HD 170634 (BD+01 3694) which lies about 6′ east of the dense molecular

core and illuminates S 68 (Racine 1968; Strom, Grasdalen, & Strom 1974). Later

estimates using a Wolf diagram technique that measured extinction vs. distance to

background stars yielded distances of 200-260 pc (Straiz̆ys et al. 1996, 2003; Knude

2011). However most recently, Dzib et al. (2010, 2011) used the VLBA to measure

parallaxes for both components of EC 95, a YSO binary system embedded in the

Serpens Main molecular core. Their estimate of 429±2 pc suggests that Wolf diagram

techniques are encountering foreground clouds associated with the Aquila Rift. We

adopt 429 pc as the distance to the Serpens Main cloud which is consistent with

distance estimates to S 68. We note that the presence of foreground clouds raises the

possibility that there could be YSOs in our sample foreground to the Serpens cloud

for which we would be overestimating their luminosities and underestimating their

ages.

To gain a complete picture of the star-forming history of a region, all phases of

pre-main-sequence (PMS) evolution must be studied. But due to the highly variable

nature of X-ray emission, YSOs with little or no circumstellar dust have been under

sampled in the Serpens Main cluster. Optical spectroscopic surveys have been con-

ducted of this region, however these studies have been biased towards objects with

X-ray emission (Wilking et al. 2008) or towards stars with infrared excesses (Winston

et al. 2009, Oliveira et al. 2009). We present the results of a new optical spectroscopic

survey of 346 candidate YSOs over a 0.25 square degree region centered on Serpens

Main which provides an unbiased sample of optically-visible YSOs in the Serpens

Main cloud. Section 2 describes B, V, and R band imaging plus both intermediate

and high resolution spectroscopic observations. Data reduction techniques including

analysis of spectra to derive spectral types and surface gravities are also described.
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Section 3 discusses the results of our analysis including the identification of asso-

ciation members and their spatial distribution, placement in a Hertzsprung-Russell

(H-R) diagram relative to several theoretical models, age distribution, disk frequency,

and accretion and rotation rates. Modeling of the spectral energy distributions from

optical through mid-infrared wavelengths is described. Section 4 compares Serpens

to other star forming regions and explores the possibility of an age spread.

2. Observations and Data Reduction

Over 700 moderate resolution spectra were obtained for 346 stars selected from

a (V-R) vs. V color-magnitude diagram as candidate YSOs. These observations and

the data reduction are described in detail in the following sections.

2.1. B, V, and R Photometry and Sample Selection

B, V, and R band images were obtained on 25 May 2007 through light cirrus with

the 90prime wide-field camera on the 2.3 meter Bok Telescope (Williams et al. 2004).

Using one of the four CCDs, the images covered a 30.7′ x 30.7′ area with a scale of 0.45′′

pixel−1 centered on the Serpens Main cluster, RA(2000) = 18h 29m 56.7s, decl.(2000)

= +01◦12′24′′. In order to sample the brightest and faintest sources, four dithered

exposures with integration times of 4 sec and 80 sec were obtained plus several 0.2

sec exposures. Each frame was dark subtracted and flat-fielded using twilight flats.

Image distortion due to the wide field of view was corrected via re-sampling of the

data using astrometric standards from the USNO survey.

Aperture photometry was performed using the phot task in IRAF1. An aperture

radius of r=5 pixels (2.25′′) was used for the 4 sec and 80 sec exposures that matched

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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the full width at half maximum of the point-spread function (Howell 1989). Local

sky background was measured in an annulus of radius 15-25 pixels. An aperture

radius of r=7 pixels (3.15′′) was used for the brightest stars in 0.2 sec exposures to

capture the entire point spread function. Statistical errors were measured in IRAF

which assumes a Poisson detection model. The final instrumental magnitudes were

weighted averages of those from the dithered images.

The primary photometric calibration was established from seven bright stars in

the field (SCB 41, 43, 47, 60, 67, 70, 72; Straiz̆ys et al. 1996). Magnitudes were kindly

provided by Richard D. Schwartz from observations in June and July of 2009 at the

Galaxy View Observatory in Sequim, WA. A number of Landolt standards in the

Johnson-Cousins system covering a wide range of colors and airmasses were observed

throughout the night to obtain coefficients for extinction, instrumental transforma-

tions, and zero points. Considering all sources of photometric errors, the B, V, and R

magnitudes have 1% uncertainties. These sources were used to calibrate the brightest

stars in the 0.2 sec exposures (R<9.6) and the 4 sec exposure frames (R<12.6). Con-

sidering calibration and statistical errors, minimum uncertainties in the B, V, and

R band photometry were (0.03, 0.05, and 0.05 mags) at 0.2 sec and (0.08, 0.09, and

0.03 mags) at 4 sec. A group of bright, unsaturated sources with R=12.6-16.0 mag

were used as secondary standards in the 80 sec images, yielding uncertainties due

to calibration of (0.08, 0.10, and 0.04 mag). Photometric uncertainties for sources

fainter than B∼21, V∼20, R∼18.5 mags are dominated by sky noise. Completeness

limits at V and R of 20.25 mag and 18.75 mag, respectively, were estimated from the

turnover in a plot of the number of stars vs. magnitude.

2.2. Spectroscopy

Candidate YSOs were selected for spectroscopic observations from a V vs. (V-R)

color magnitude diagram (Fig. 1). Targets were located on or above the ZAMS with
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V magnitudes brighter than 20.0. The sample includes objects with masses ≥0.5 M!

and Av < 3.4 mag. Optical spectra were obtained using several instruments; Hydra,

Hectospec, a Boller and Chivens (B&C) spectrograph, and the Magellan Inamori

Kyocera Echelle (MIKE) spectrograph, on the WIYN, MMT, Bok and Magellan Clay

telescopes, respectively. For multi-fiber instruments (Hydra and Hectospec), fiber

configurations were designed to observe the maximum number of candidate YSOs;

crowding at the edges of our field restricted the number of sources that could be

observed. Observing parameters are detailed in Table 1. For all spectral observations,

scattered light corrections were not made and no flux calibration was performed.

All spectra were bias and dark corrected using the ccdproc routine in IRAF unless

otherwise specified. The typical signal-to-noise ratio was 20 - 100 as measured by line-

free regions of the continuum. Spectra were normalized and smoothed for comparison

with dwarf standard stars.

In June and September of 2008, the brightest objects in our sample were observed

on the Bok 2.3 meter telescope using the B&C spectrograph. In June, objects were

observed at red wavelengths (5954 -7115 Å) in first order. In September, objects were

observed at blue wavelengths (3850 -5566 Å) in second order with a copper sulfate

filter used to block first order light. All spectra taken on the Bok telescope were ex-

tracted using the apall routine in IRAF. This routine also performs sky subtraction of

the data. Dome flats were used to correct for pixel-to-pixel variations in responsivity

of the CCD. A HeArNe lamp was used to wavelength calibrate the data.

Spectra were obtained on the WIYN2 3.5 meter telescope using Hydra in 2006,

2009, and 2010. Spectra were extracted with IRAF’s dohydra package using dome

flats obtained for each fiber configuration. Sky spectra were taken by placing fibers

on random positions distributed across each field. Sky subtraction was accomplished

2The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana
University, Yale University, and the National Optical Astronomy Observatory.
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using the median of 10-15 sky spectra. A CuAr lamp was used for wavelength cali-

bration.

In July of 2010 and September of 2011, objects were observed on the MMT

6.5 meter telescope using Hectospec. Spectra observed in 2010 were reduced using

E-SPECROAD created by Juan Cabanela. Dome flats were acquired for flat-field

corrections. The E-SPECROAD pipeline extracts spectra, applies bias, dark, and

flat-field corrections and performs the wavelength calibration. Sky subtraction was

achieved using sky spectra taken by offsetting the telescope. For spectra where this

was unsuccessful, sky spectra taken by placing fibers on random positions distributed

across each field were used. Spectra observed in 2011 were reduced at the OIR

Telescope Data Center using the SPECROAD pipeline, supported by the Smithsonian

Astrophysical Observatory (Fabricant et al. 2005; Mink et al. 2007). Spectra in 2011

were corrected to remove atmospheric water vapor absorption bands at 6870-6955 Å

and 7680-7730 Å. All the spectra were wavelength calibrated using exposures from a

HeNeAr lamp.

Objects observed using the red and blue path on the Magellan Clay 6.5 meter

telescope using MIKE had 33 orders and 32 orders, respectively. All data taken

on MIKE were reduced using the IRAF mtools package created by Jack Baldwin,

along with standard IRAF routines. mtools extracts ”tilted” spectra, performs sky

subtraction, and removes cosmic rays. Dome flats were used to correct for pixel-to-

pixel variations in responsivity of the CCD. These spectra were wavelength calibrated

using exposures of a ThAr lamp.

2.3. Spectral Classification

Spectral classifications were derived for each spectrum. Table 2 presents the

results using the moderate resolution spectra from the B&C, Hydra, and Hectospec

spectrographs. As shown in the last column of Table 2, many sources were observed
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multiple times in blue and red wavelength bands. When spectral classifications for

a given source did not agree between observations, all spectra were compared and a

final spectral type and range determined with the highest weight given to spectra with

the highest signal-to-noise. In general, there was very good agreement in spectral

classifications between observations. Table 3 presents the results from the echelle

spectra obtained with MIKE. The spectral typing procedures are described below.

2.3.1. Moderate Resolution Spectra

Spectral types were first derived from visual pattern matching of absorption

features in our program star spectra with those in dwarf standard star spectra. In

order to match spectral features between standard stars and target objects, all of

our spectra were smoothed using a Gaussian filter to the resolution of the standard

stars. Depending on the wavelength coverage of the spectra, normalized spectra

were smoothed to a resolution of 5.7 Å, 4.5 Å, or 3 Å for comparison with spectral

standards of Allen & Strom (1995), Jacoby, Hunter & Christian (1984), or Le Borgne

et al. (2003), respectively. Spectra at red wavelengths were pattern matched using

the Na I doublet at 5893 Å, Ca I at 6122 Å and 6162 Å for G, K, and M stars, as

well as the TiO bands for stars later than K5 (Torres-Dodgen & Weaver 1993). For

stars with no indicator of youth, the relative depth of Hα to the blend of Ba II, Fe I,

and Ca I at 6497 Å was also used. Spectra at blue wavelengths were pattern matched

using the Ca H and K lines at 3969 Å and 3934 Å, the Ca I line at 4226 Å, and the

Fe I line at 4271 Å. For stars cooler than F5, the G-band around 4300 Å was used

and for stars cooler than K5, the Mg I b band around 5200 Å and MgH band around

4750 Å were also employed (Gray & Corbally 2009).

Classifications were also made using the program SPTCLASS written by Jesus

Hernandez (Hernandez et al. 2005). The program was written to determine spectral

classifications for stars from B2 to M9.5 using numerous spectral features and is
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optimized for spectra obtained with Hectospec with the 270 g mm−1 grating. As our

2011 data were the only data with this observing setup, it is the only set of data

confirmed using this program. The SPTCLASS spectral types agreed with our visual

classifications within 3 subclasses.

A rough estimate of the surface gravity of an object is important in distinguishing

pre-main sequence stars from background giants or field dwarfs. The primary gravity-

sensitive absorption feature available for analysis in our spectra was the CaH band

centered at 6975 Å. A CaH index was calculated as the ratio of the continuum at 7035

±15 Å to the flux in the CaH absorption band at 6975 ± 15 Å and a TiO index as the

ratio of the continuum at 7030 ± 15 Å to the flux in the TiO absorption band at 7140

± 15 Å from the unsmoothed, normalized spectrum of each science object. These

indices were then plotted against each other. For objects with multiple observations,

values are an average weighted by the noise. Dwarfs and giants define distinct curves

on the plot with sub-giants falling between. In both sets of Hectospec spectra, the

strength via visual comparison with standard stars of the sodium doublet at 5893 Å

and Ca II triplet at 8660 Å were also used to determine which sources were giants

(Torres-Dodgen & Weaver 1993).

2.3.2. Echelle Spectra

Spectral classifications for data taken with MIKE were accomplished using visual

comparisons with standard stars retrieved from the ELODIE archive at Observatoire

de Haute-Provence with similar spectral resolution to our data (Moultaka et al. 2004).

For all spectral types, initial classifications were made employing hydrogen lines from

Hα to Hγ along with Ba II, Ti I, Fe I and Ca I around 6497 Å (which are not blended

at this resolution). For B stars, He I lines at 4143 Å and 4417 Å, as well as the Ca II

line at 4267 Å, were employed. For A stars and later, Ca I at 4226.7 Å was also

available. For F and G type stars, Fe I at 4383.5, 4325.7, and 4045.8 Å were used as
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additional criteria. Spectral types from these high resolution spectra generally agreed

with those from our moderate resolution spectra within 2 subclasses. The range of

adopted spectral types are given in columns 5 and 6 of Table 3.

The echelle spectra are well-suited to estimate surface gravity due to a number

of available gravity-sensitive lines (Ginestet et al. 1994; Gray & Corbally 2009). The

procedure for estimating log g was as follows. Equivalent widths of various lines

depending on spectral type were measured and plotted versus temperature from syn-

thetic spectra from the POLLUX database3(Palacios et al. 2010) with log g values of

4.5, 4.0, and 3.5. In order to obtain a full range of temperatures and surface gravities,

synthetic spectra were created using both ATLAS and MARCS model atmospheres.

For sources with spectral types between B6 and A7, equivalent widths of Hα, Hβ, Hγ,

and Hδ were used (Palacios et al. 2010). These lines may be somewhat filled in with

emission, so the values presented for sources in this spectral range were viewed as

lower limits. For the B stars, we then checked that the He I lines at 4009, 4026, 4121,

4144, 4387 and 4471 Å were in agreement with the temperature and log g values.

This was done by visual comparison with standard stars from the ELODIE spectral

database with dwarf, sub-giant and giant luminosity classes. For the A stars, the fit

was checked using the Ca I line at 4226 Å and the Fe I lines at 4271, 4046, and 4383

Å. For sources with spectral types A1-F7, the equivalent widths of the Ca II lines at

8498 and 8542 Å were plotted as described above, with the addition of log g values of

3.0. Line ratios of the Fe II and Ti II blend at 4400 and 4395 Å to Fe I lines at 4271

and 4383 Å and Ca I at 4226 Å were also plotted and used as above. For sources

with spectral types from F5 to K1, the equivalent widths of Ca II at 8498 and 8542

Å, Fe I at 8621 and 8688 Å, and Ti I at 8435 and 8426 Å, as well as the ratio between

Y II at 4376 Å and Fe I at 4383 Å were plotted as above, with the addition of log

3This research was achieved using the POLLUX database (http://pollux.graal.univ-montp2.fr/),
operated at LUPM (Universite Montpellier II - CNRS, France) with the support of the PNPS and
INSU.
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g values of 2.0. The range of values for log g was then determined, and matched to

luminosity classes V, IV and/or III. These values represent a limit, and not a firm

determination of log g. It is also important to note that for stars hotter than about

F5 there is little difference in temperatures and log g values for dwarfs, giants and

sub-dwarfs, making it difficult to differentiate between these.

Using our echelle spectra, esimates for v sini were made by convolving the syn-

thetic spectrum of a standard to match the line widths observed in our spectra. Our

main assumptions were that rotation was the dominant source of line broadening and

that this was significantly larger than the source of broadening in the synthetic spec-

tra. Synthetic spectra were taken from the POLLUX database (Palacios et al. 2010)

which assumed microturbulent broadening of 1-2 km sec−1. Synthetic spectra selected

to match the spectral types and surface gravities of our objects were convolved using

the gauss package in IRAF. v sini for each object was derived from the average of

the individual v sini values measured from the widths of the convolving gaussians

needed to match the full width at half maximum for ∼ 10 metal lines distributed

over the entire spectrum. In most cases, the value of v sini for a given object did not

vary significantly with surface gravity; the average values are presented in Table 3

except for SCB 40 for which a range is given. To check the validity of our technique,

we selected 6 stars with high signal-to-noise spectra in the ELODIE database with

published values of v sini: HD 187642 (α Aquili, A7V), HD 58946 (F0V), HD 70958

(F3V), HD 111456 (F6V), HD 176303 (F8V), and HIP 106231 (K3V) (Glebocki et

al. 2005, White, Gabor, & Hillenbrand 2007; Schroeder, Reiners, & Schmitt 2009;

Lopez-Satiago et al. 2010). With our method, we were able to reproduce the pub-

lished values for v sini to within 10%.
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3. Results

Optical spectra have been obtained for 86% of the stars in the V vs. (V-R)

diagram (Fig. 1) that fell above V=18.5 and (V-R) =1.8.

3.1. Spectral Classifications and Surface Gravities

Spectral types were determined for 336 of 346 stars; 7 of these were adopted from

the literature. These data are presented in Table 2 along with previous source names,

RA and decl. in J2000, some observing details, V magnitudes, and the (B-V) and (V-

R) color indices. For 6 sources with optical spectral types, (V-R) color indices were

not available, so (J-H) values from 2MASS are presented. The presence of lithium

absorption at 6707 Å and the equivalent width of Hα are also indicated (emission

shown as a negative value). Based on surface gravity indicators (see Sec. 2.4), twelve

background giants have been identified. The possible range of surface gravities were

estimated for objects with echelle spectra and are listed in column 7 of Table 3. The

majority are consistent with dwarf or subgiant surface gravities, although as alluded

to earlier, log g values do not vary greatly with luminosity class for stars hotter than

F5 which dominate this sample.

Two sources are of particular interest: KOB 370 and J183037.5+0117581. KOB 370

is a known double with both sources reported to have Hα in emission (Kaas et al.

2004). The sources are not spatially resolved in our moderate resolution spectra and

show Hα in emission with the EW(Hα) varying from -2.4 to -9.5 Å. However our

MIKE spectrum does not show Hα in emission. This could be due to the variable

nature of Hα emission. The X-ray source J183037.5+0117581 has hydrogen lines that

do not match any of the standard stars. The echelle spectrum shows that hydrogen

absorption lines and the Ca II triplet are filled in with emission, making the spectral

type for this source more uncertain. Accounting for this fact, we revised the spectral
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classification derived from moderate resolution spectra from K5 to K0.

Thirty of our sources had optical and infrared spectral types previously published

by Winston et al. (2009) and Oliveira et al. (2009). Our spectral classifications agree

well with those previously published with two exceptions; WMW 124 and WMW 220.

Winston et al. (2009) report spectral types of K6.5 and A3, respectively. Strong H

absorption lines with broad wings in the blue and red, the absence of He I at 4387 Å,

a weak blend of Ba II, Ti, Fe I and Ca I at 6497 Å, and the lack of TiO bands led to

our classification of A2 for WMW 124. It is worth noting that our position and the

position reported by Winston are different by 1.6′′, so it is possible that these may

be different sources, however no source appears that close in our R band image. The

strength of Ca I at 4226 Å and Fe I at 4383 Å relative to the G band at 4300 Å, the

absence of the MgH bands, and the strength of the Mg I triplet at 5167, 5172, and

5183 Å led to our K1 classification for WMW 220.

3.2. Association Membership

Fifteen new pre-main sequence objects were identified using the same criteria of

Erickson et al. (2011) with one exception; proper motions were unknown and not

used as a criterion. These criteria include, Hα in emission with EW > 10 Å during at

least one observation, X-ray emission, the presence of lithium absorption for stars with

spectral type K0 and cooler, a mid-infrared excess, or associated reflection nebulosity.

Fifty-seven objects with optical spectral types meet one or more of these criteria. We

did not include any source solely on the basis of extinction criterion, however we

have noted extinction criterion for objects too luminous to be main sequence objects

at the distance to Serpens and with an estimate for Av too high to be foreground

to the cloud (Av > 3.5 mag). A minimum Av of 3.5 was selected using the results

of Straiz̆ys, C̆ernis, & Bartas̆iūte (2003) who reported a maximum extinction in the

direction of Serpens of Av = 3 mag at a distance <360 pc. Therefore, in general we



86

expect that sources with an Av > 3 mags will be located behind foreground clouds

from the Aquila Rift. Spectral types for an additional 7 YSOs were taken from the

literature giving a total of 63 association members. These objects are listed in Table

4. Eighty percent of the YSOs in our sample have K or M spectral types, with the

majority of these K stars due to the magnitude limit of our survey. A plot of the CaH

index for the association members and giants with spectral types of K5 or cooler is

shown in Figure 2. Most of the association members fall along the dwarf standard

locus and justifies our use of dwarf standards for classification and dwarf colors for

dereddening.

Sixteen sources which met the extinction criterion above and had either weak Hα

emission (10 Å > EW(Hα) > 5 Å) or possible lithium absorption were identified as

possible association members. These objects are listed in Table 5 as “weak criteria”

sources and require further observations to confirm their status.

Fourteen sources were found to have strong Hα emission with EW(Hα) > 10

Å which is characteristic of classical T Tauri stars. An additional 7 objects showed

weaker Hα emission (10 Å > EW(Hα) > 5 Å), all with either a K or M spectral

type. Four of these 7 are association members and one is a weak criteria member.

The remaining sources remain unclassified. The variable nature of Hα emission is

apparent when comparing sources observed months or years apart.

3.3. Spatial Distribution

The distribution of 63 confirmed and 16 possible association members is shown

in Figure 3 relative to the Serpens molecular core as defined by contours of C18O

integrated intensity (McMullin et al. 2000). Star symbols mark the locations of the

two most massive association members in our survey: the B8 star HD 170634 and

a B5 star [CDF88] 7. One has the impression that the B stars have helped shape

the distribution of gas in the core. While our spectroscopic survey included sources
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over the entire field, there is a tendency for association members to be concentrated

toward the molecular core yet avoid the highest column density gas. The distribution

of association members drops off sharply to the north but is continuous to the southern

edge of our survey area. This is consistent with the distribution of cloud material

which continues to the south where it overlaps with the Serpens South molecular core

(Cambrésy 1997, Oliveira et al. 2009).

3.4. Hertzsprung-Russell Diagrams

Effective temperatures were derived from the spectral classifications with typical

uncertainties of ±250 K for K-M stars. We assumed dwarf, rather than subgiant,

surface gravities leading to a possible overestimate of Teff for stars with spectral

types of G5-K5 by <250 K and an underestimate of Teff for stars with spectral

types of M2-M5.5 by <200 K (e.g., Drilling & Landolt 2000). Intrinsic colors and

bolometric corrections for dwarf stars were taken from Drilling & Landolt (2000)

for B4-B7 stars (converting the colors into the Kron-Cousins system), Schmidt-Kaler

(1982) for B8-K5 stars and from Bessell (1991) for K5-M7 stars.

In order to derive luminosities, sources were dereddened using the (V −R) color

index assuming the reddening law derived by Cohen et al. (1981) in the Kron-Cousins

system:

Av = 5 E(V-R), Sp Ty < A0 (early-type) (1)

Av = 5.5 E(V-R), Sp Ty ≥ A0 (late-type) (2)

B, V, and R band data were taken from this study except where noted in Columns 9

and 11 of Table 2. For five sources, V and R band data were not available and sources

were dereddened using J and H band data from the 2MASS survey (Cutri et al. 2003)

and transformed into the CIT photometric system using the relationships derived by

Carpenter (2001). These sources, were dereddened using the following reddening law
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in the CIT photometric system

Av = 9.09 E(J-H) (Cohen et al. 1981). (3)

For sources with an infrared excess and extinction values computed using equation 3,

values for Av and Lbol are quoted as upper limits in Table 4. A comparison between

luminosities derived using (J-H) and (V-R) suggests that infrared colors systemati-

cally overestimate the extinction and thus the luminosity by 0.1 dex. For two sources,

the errors in the photometry and/or spectral classifications yielded slightly negative

values for the extinction and an extinction of 0.0 was assumed.

The absolute V magnitude, M(V), was computed given the extinction and as-

suming a distance of 429 pc. Then the bolometric magnitude and luminosity were

derived given:

Mbol = M(V) + BC(V) (4),

and

log(Lbol/L!) = 1.89 - 0.4 Mbol , Mbol(!) = 4.74. (5)

In the situations where J and H were used to deredden, M(J) is recorded in Column

6 of Table 4 and was used along with BC(J) to derive Mbol. By adding quadratically

errors in the V and R photometry, the median error in log(L) is estimated to be 0.12

dex. We assumed an uncertainty in the distance modulus of 0.05 mag corresponding

to a depth of ±10 pc, and an uncertainty of 0.03 mag in the intrinsic colors and

bolometric corrections due to spectral type errors. In most cases, the dominant

errors were the uncertainties in the distance modulus and the extinction, which were

on average about the same.

H-R diagrams for association members and weak criteria members were made

using tracks and isochrones from D’Antona & Mazzitelli (1997) and F. D’Antona & I.

Mazzitelli (1998, private communication), Palla & Stahler (1999, PS99), and Siess et
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al. (2000). The diagrams for the D’Antona & Mazzitelli models (hereafter DM) and

PS99 are shown in Figure 4. The models give very similar results for our sample, even

with the differences in treatments of the equations of state as a function of mass and

of convection. Luminosities for several intermediate mass association members are

only consistent with the current distance estimate of 429 pc; a distance to the cluster

of 230-260 pc would place several association members below the main sequence.

The masses and ages interpolated from the DM models are given in Tables 4 and

5. There is no clear separation of sources which have an infrared excess and/or Hα

emission from sources with lithium absorption and/or X-ray emission. This implies

that evolution occurs on different time scales for each source. Since most of the

objects lie on convective tracks, uncertainties in the mass relative to the DM models

were estimated from the errors in the spectral classifications and uncertainties in the

age from errors in the luminosities. Uncertainties in the mass for objects in the range

of 0.14-4.7 M! were typically 5%-23%. Uncertainties in the log(age) were 0.17-0.38

dex relative to DM models. It is important to note that theoretical mass tracks may

underpredict absolute stellar mass by 30% - 50% and absolute age by up to a factor

of two if optical colors are used (Hillenbrand 2009; Bell et al. 2012; 2013).

3.5. Age Distribution

The values for log(age) derived from the models are consistent with a normal

distribution with a median log(age) from the DM models of 6.2±0.6 (2 Myrs). This

is in agreement with findings of Kaas et al. (2004) of 2 Myrs for class II sources

based on modeling of luminosity functions. Median ages derived from the PS99 and

Siess et al. models are systematically older by 1 Myrs and 2.5 Myrs, respectively,

although all are consistent within the uncertainties. Simulations suggest an intrinsic

age spread. Assuming Gaussian-distributed errors in log T and log L and using the

DM models for 2 Myr, a Monte Carlo simulation derived values of log T and log L
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for over 12,000 samples in the mass range of 0.12 - 1.0 M! weighted by the Chabrier

(2003) system mass function. A Kolmogorov-Smirnov (K-S) test was run with the

association members and simulation sources restricted to stars that overlapped with

the DM models with masses between 0.14 M! (lowest association member mass) and

1.7 M! (the highest value in the simulation). The K-S test suggests that there is

only a 0.05% chance that the two age distributions were drawn from the same parent

population.

3.6. Infrared Excesses and Transition Disk Objects

An initial assessment of the presence of a circumstellar disk can be determined

by the slope of the mid-infrared energy distribution. Following the analysis of Lada

et al. (2006), we performed a least squares fit to the IRAC flux densities observed

with the Spitzer Space Telescope (SST). A spectral index a≥-1.80 is indicative of an

optically thick disk while -1.80≤a≤-2.56 is representative of an “anemic” and possibly

a transition disk. The results of our fits are shown in Fig. 5 and suggests there are 22

association members with optically-thick disks and 3-4 sources with “anemic” disks.

We can refine these classifications given the spectral types, visual extinctions,

and optical/infrared photometry available for each association member. Dereddened

spectral energy distributions were constructed for each association member using

optical data from this study, near-infrared data from the 2MASS catalog (Cutri et al.

2003), and mid-infrared data from 3.55 µm - 70 µm from the SST compiled in the C2D

Fall ’07 Full CLOUDS Catalog (Evans et al. 2003). The dereddened spectral energy

distributions could then be compared to that expected from a stellar photosphere and

from a face-on reprocessing disk scaled to the source flux at R or J. Disk models were

taken from Hillenbrand et al. (1992) for A0, F0, G0, K0, K5, M0, or M3 stars.

The presence of an infrared excess from an optically-thick disk is indicated for

21 association members as noted in the last column of Table 4. Our results agree well
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with previous classifications using data from the Infrared Space Observatory (Kaas et

al. 2004) and the SST (Winston et al. 2009) with a few exceptions. Kaas et al. list

BD+01 3687 as a possible transition object while our analysis indicates no excess out

to 24 µm. We would include WMW 166 as having an optically-thick disk as opposed

to the previous classification as a transition disk object (Winston et al. 2009). We

identify six association members as possible transition objects and show their spectral

energy distributions in Fig. 6. Three of the sources, WMW 124, WMW 128, and

WMW 157 have been previously identifed as such by Winston et al. (2009). We add

WMW 205 to this category (previously classified as class 3) and note two sources

with evidence for inner disk holes: WMW 74 and WMW 79. None of our spectra

for these six sources show Hα in emission, hence they do not show evidence of active

accretion. However, as Hα maybe slightly filled in, it is possible that sources are

weakly accreting. On average the ages for these sources are 1-6 Myrs, only WMW 74

is younger at 0.2 Myrs.

In summary, 21 association members show evidence for an optically-thick disk

and 6 objects for an optically-thin or possible transition disk. At face value, this

suggests a disk frequency of 42%(+10%,-8%) with the uncertainty estimated using

Poisson statistics (Gehrels 1986). One obtains a nearly identical disk frequency of

37%, but with much greater uncertainties, if one considers only an extinction-limited

sample of 19 association members with M≥ 0.6 M! and Av ≤ 4.0 mag. This compares

well with the disk frequency derived for optically-visible association members in the

Rho Ophiuchi L 1688 cloud (Erickson et al. 2011).

3.7. Accretion and Rotation Rates

For association members with strong Hα emission, the Gaussian full width at

10% of maximum was used to estimate an accretion rate using the relation developed

by Natta et al. (2004) when the velocity width at 10% maximum was greater than 270
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km sec−1. This relation assumes a negligible contribution from an outflow. Accretion

rates were estimated for 10 sources, with a range of log Ṁ from -9.4 to -7.0. One

source had a log Ṁ outside of this range, but with an Hα profile showing blue-shifted

absorption that will result in an overestimate of the accretion rate. All ten sources had

an infrared excess, with spectral indices determined from mid-infrared data between

-0.24 and -1.30 (see Sec 3.5), however, there was no trend found between the spectral

index and accretion rate.

The values we derived for v sini are generally consistent with those found in

main sequence and/or pre-main sequence stars of the same spectral type. Of the

seven YSOs with v sini values, all are on their radiative tracks (Fig. 4) and only

WMW 124 shows evidence for a circumstellar disk, albiet with a large inner disk hole

(Fig. 6). Both WMW 192 andWMW 124, with v sini values around 30 km sec−1, have

projected rotational velocities slower than typical A stars which have median values

around 100 km sec−1 (Glebocki & Gnacinski 2005; Wolff, Strom, & Hillenbrand 2004;

Dahm, Slesnick, & White 2012). The presence of a circumstellar disk could explain

the lower value for WMW 124 via a disk-braking mechanism (Koenigl 1991), although

a low source inclination could equally well explain the values of both sources. Our

echelle spectrum of the YSO J183037.4+0117581 has both the hydrogen lines and

Ca II triplet partially filled in with emission. This is an X-ray source that has no

infrared excess, leading us to believe this is a result of chromospheric activity. This

interpretation is consistent with our estimate of v sini = 39±3 km sec−1 which is

significantly higher than the median value of 5 km sec−1 for K0V stars (Glebocki &

Gnacinski 2005) but consistent with pre-main sequence stars on radiative tracks in

the Orion and Upper Sco OB associations (Wolff, Strom & Hillenbrand 2004; Dahm,

Slesnick, & White 2012).
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3.8. Radial Velocities and IMF

We attempted to derive radial velocities from the echelle spectra, using the cross-

correlation IRAF routine fxcor, however we were unsuccessful. This was largely due

to scarcity of usable lines in early type stars. We derived an Initial Mass Function

using sources marked as association members. The slope of our IMF is consistent

with the field star IMF for sources above 1 M! given our uncertainties.

4. Discussion

4.1. Is There an Age Spread?

A K-S test between the age distribution for our 63 association members and

a simulated cluster suggests there is an apparent age spread in the Serpens Main

cluster. To explore the origin of this spread, we followed the example of Reggianai et

al. (2011) and increased the assumed error in log L in our Monte Carlo simulations

to mimic an age spread of 0.5 Myr to 5 Myr in steps of 0.5 Myr. K-S tests between

our sample and the simulations indicate that the age distribution of the association

members is consistent with a median age of 2 Myr and an intrinsic age spread of 1-5

Myr assuming a constant star formation rate. Finding an age spread is not unexpected

as other studies also report an age spread for this region (Casali, Eiroa, & Duncan

1993; Kaas et al. 2004; Harvey et al. 2007; Winston et al. 2009).

There are two potential explanations for this apparent age spread; the age spread

is intrinsic to the cloud, or is a result of sampling YSOs over a wide range of dis-

tances. The latter could be due to contamination by YSOs formed in foreground

clouds associated with the Aquila Rift. There is strong evidence for multiple cloud

components toward the Serpens cloud core (McMullin et al. 2000; Duarte-Cabral

et al. 2010; Levshakov et al. 2013). In order to investigate the latter possibility,

a Monte Carlo simulation for an average age of 2 Myr was run using the procedure
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described in Sec. 3.6 with error in distance of ±170 pc designed to include YSOs at

a distance of 260 pc where extinction from the Aquila Rift is first seen. A K-S test

suggests that we cannot reject the null hypnosis that they are drawn from the same

parent population with a probability of 11 %, i.e., the apparent age spread could

be due to observing YSOs of the same age, distributed over a large distance. We

then used our simulations to calculate the minimum spread in distance which results

in an apparent age spread; we found this value to be approximately ±100 pc. We

would expect to underestimate the age of sources belonging to a foreground cloud.

We would also expect sources having low extinction (Av < 3.5 mag) and a young

age (age < 1 Myrs) to be good candidates to belong to the foreground cloud. We

found eight sources meet these criteria. When these eight sources were removed from

our sample and a K-S test was run against a Monte Carlo simulation with no age

spread, we could not reject the null hypothesis that they were drawn from the same

population with a probability of 10%. While this is again not definitive, it does lend

credence to the idea that the age spread may be the result of contamination from a

foreground cloud.

4.2. Comparisons with Other Regions

Optical spectroscopic studies have been done in several star-forming regions such

as the Orion Nebula Cluster (ONC), Chamaeleon I, Lupus, and Rho Ophiuchi (Hil-

lenbrand, Hoffer & Herczeg 2013; Luhman et al. 2003, 2007; Mortier, Oliveira, van

Dishoeck 2011; Erickson et al. 2011). These studies are often biased towards a partic-

ular stage in stellar evolution, e.g., objects with infrared excesses or X-ray emission.

Erickson et al. (2011) conducted an unbiased optical spectroscopic study of the Rho

Ophiuchi molecular cloud using the same techniques as the moderate resolution por-

tion of this study and identified 132 YSOs. This allows for direct comparisons with

the Serpens Main region although this survey is biased toward slightly more massive
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stars. The smaller number of observed YSOs (63-79) in this study is a result of the

greater distance to Serpens and the larger number of candidate YSOs due to the

location of the cloud near the galactic plane. Like other regions (i.e., Rho Ophiuchi,

ONC), Serpens has a younger embedded population with class 0 and 1 spectral energy

distributions in several dense molecular cores surrounded by a slightly older, more

distributed population. This older population tends to avoid the highest density of

gas in these regions. Like the optically-visible YSOs in Rho Oph, the distributed

population may have been exposed by a large-scale event such as a supernova shock

wave although we are not aware of candidates for this event. We report a disk fre-

quency of 42%±10% for the optically-visible sources in Serpens. This is in agreement

with disk frequencies found in other regions; 27% in Rho Ophiuchi (Erickson et al.

2011) and 30% in IC 348 (Lada et al. 2006). This is not surprising given the similar

age estimates of the clusters of 3 Myrs for the surface population of Rho Ophiuchi

(Erickson et al. 2011) and 2 Myrs for IC 348 (Luhman et al. 2003) and the trend of

decreasing disk frequency with the age of the cluster (e.g., Briceño et al. 2007). It is

difficult to compare the mass functions (IMF) of Serpens to other regions, as we were

not able to probe the lower end of the mass function due to Serpen’s greater distance.

However at the high mass end (M>1 M!), the IMF agrees with the field star IMF as

is usually found in other regions (i.e., Rho Ophiuchi, ONC). In Serpens, we report an

apparent age spread of 1-5 Myrs. While we cannot rule out that this age spread is

an artifact of sources having a spread in distance between 260 pc and 429 pc, it may

be intrinsic to the region. Other studies of young star-forming regions have reported

both intrinsic age spreads such as in the ONC (Reggiani et al. 2011; Alves & Bouy

2012) and no age spreads such as in Rho Ophiuchi and Upper Sco (Erickson et al.

2011; Slesnick et al. 2008). The absence or presence of an age spreads may indicate

differences in triggered vs. spontaneous formation mechanisms.
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5. Summary

We present the first deep B, V, and R band survey of a 30.7′ x 30.7′ area centered

on the Serpens Main cluster. A V vs. (V-R) color magnitude diagram was used

to select candidate YSOs for an unbiased optical spectroscopic survey. Over 700

moderate resolution optical spectra were obtained for 346 candidate YSOs.

Sixty-three objects with optical spectral types were identified as association mem-

bers based on the presence of Hα in emission, lithium absorption, and when combined

with published data, X-ray emission, a mid-infrared excess, and/or reflection nebu-

losity. Fifteen of these are newly identified pre-main sequence objects, 12 solely on

the basis of Li absorption. This underscores the need for multi-wavelength surveys to

obtain a complete census of YSOs in star-forming regions. An additional 16 possible

association members have either a weak detection of Hα emission, possible lithium

absorption, or association through extinction considerations; their pre-main sequence

nature is in need of confirmation.

Masses and ages were derived for association and possible association members

using multiple theoretical models. Our sample is complete for sources with M≥0.6 M"

and Av <4 mag. Luminosities for several association members are only consistent with

the current distance estimate of 429 pc; a distance to the cluster of 230-260 pc would

place several association members below the main sequence. Using the tracks and

isochrones from DM models, we derive a median age of 2 Myr for this sample. When

compared to simulations, we find an intrinsic age spread of 1-5 Myr. Contamination

from foreground objects (particularly foreground YSOs located in the Aquila Rift)

may be a contributing factor to this age spread. However, we cannot rule out the

possibility that the age spread is inherent to the region.

Dereddened spectral energy distributions from optical through mid-infrared wave-

lengths were modeled for association members and compared to expected flux densi-
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ties from a stellar photosphere and face-on reprocessing disk. We find a circumstellar

disk frequency of 42% ±10% for our sample, which agrees fairly well with findings

from other young star-forming regions of similar age for optically visible association

members. Six sources are identified as candidate transition disk objects; three of

these are newly identified. Accretion rates for sources with strong Hα emission range

from log Ṁ of -9.4 to -7.0, however, no trend was found between the spectral index

and accretion rate.

Surface gravities and rotation velocities were estimated from high resolution

echelle spectra obtained for 12 association members. Estimates for log g are found to

be consistent with dwarf or sub-giant stars. Twelve objects have been identified as

background giants based on surface gravity indicators from moderate resolution spec-

tra. From the CaH indices association members with spectral types K5 and cooler,

have surface gravity values in agreement with dwarf standards. Values for v sini are

in agreement with values for pre-main sequence stars of the same spectral type with

the exception of two A stars which have lower rotation rates. One of these is a can-

didate transition disk object, suggesting that disk braking could be playing a role in

the slower rotation. Finally, the spectrum for J183037.4+0117581 shows hydrogen

lines and Ca II triplet lines partially filled in with emission which is likely the result

of chromospheric activity.
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Fig. 1.— V vs. (V-R) color-magnitude diagram from our V- and R-band images.

Isochrones for 1 Myr (dot-dashed, red) and 5 Myr (dashed, blue) derived from the
DM models are shown as well as the ZAMS (solid black). Objects observed spectro-
scopically are shown by triangles (association members), “x’s” (possible association

members), open squares (giants), or diamonds (unclassified). Black dots represent
sources that were not observed spectroscopically.
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Fig. 2.— Plot of CaH vs. TiO indices as defined in the text for 32 association

members (triangles) and 10 background giants (squares) with spectral types K5 and
cooler. The solid lines were derived from fits to dwarf and giant spectral standards.
Error bars are based on statistical errors in each band pass, and do not account for

systematic errors in normalization. For the dwarf standards from K5-M7, the fit was
y = 0.126x +0.940 with a correlation coefficient of r=0.94. For the giant standards

from K5-M5, the fit gave y = -0.0357x2 + 0.191x + 0.795 with a correlation coefficient
of r=0.82.



105

Fig. 3.— Distribution of association members is shown relative to contours of C18O
integrated intensity (McMullin et al. 2000) that define the core of the Serpens molec-

ular cloud. The map covers the 30.7′ x 30.7′ area of our imaging survey. Contours
are in units of 1, 2, 3, 5, and 7.5 K km sec−1. Association members are marked by
triangles and possible association members by “x’s”. Circles locate sources for which

echelle spectra were obtained. Star symbols mark the locations of the two most
massive association members of the Serpens Main cluster: the B8 star HD 170634

(BD+01 3694) which illuminates S 68 and the B5 star [CDF88] 7.
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Fig. 4.— Hertzsprung-Russell diagrams for the Serpens Main association members
with optically-determined spectral types assuming a distance of 429 pc. The solid

triangles mark the positions of association members and “x’s” of possible association
members relative to the theoretical tracks and isochrones of D’Antona & Mazzitelli
(1997,1998) in Figure 4a, or Palla & Stahler (1999) in Figure 4b. Error bars in Log

Teff were estimated from uncertainties in the spectral type and surface gravity. Error
bars in Log Lbol were estimated from errors in the photometry and uncertainties in

the distance modulus and bolometric correction. In Figure 4a, isochrones shown as
solid lines are 105, 3 × 105, 106, 3 × 106, 107, and 108 years. Evolutionary tracks

from 0.02 M! to 3.0 M! are shown by dashed lines. The bold dashed line marks
the evolutionary track for a star at the hydrogen-burning limit. In Figure 4b, the
birthline is shown as a solid line followed by isochrones for 106, 3 × 106, 107, and

108 years and the ZAMS. Evolutionary tracks from 0.1 M! to 6.0 M! are shown by
dashed lines.
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Fig. 5.— Spectral indices using the IRAC flux densities as a function of spectral

type. Running numbers for spectral types B0, A0, F0, G0, K0, K5, M0, and M5 are
0,10, 20, 30, 40, 50, 60, and 70, respectively. Dotted lines are α = -1.80 and α =
-2.56, sources above α = -1.80 have optically thick disks and sources below α = -2.56

have no disks, sources between these values are potential transition disk objects. The
spectral index was computed using a linear least-squares fit to the 3.6-8.0 µm flux

densities. Error bars were calculated from the fit given the statistical uncertainties in
the flux densities.
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Fig. 6.— Dereddened spectral energy distributions are presented for six possible tran-
sition disk objects. B, V, and R band data points are from this study, J, H, and K

band data from 2MASS, and 3.6-8 µm and 24 µm data from IRAC and MIPS on
the Spitzer Space Telescope. The solid curve is the spectral energy distribution of a
blackbody given the effective temperatures from our spectral classifications, normal-

ized to the R or J band flux density. The dashed curve is the flux density expected
from a face-on reprocessing disk.
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(Å
)

(m
ag

)
(m

ag
)

(m
ag

)

10
M
,1
1M

18
:3
0:
35

.0
00

:5
9:
02

.7
K
3-
K
4

K
3

ye
s

19
.1
6

2.
44

1.
88

2R
11

M
18

:3
0:
35

.1
01

:2
7:
12

.1
K
3

K
3

n
o

19
.2
8

2.
59

1.
96

1R
10

M
18

:3
0:
35

.1
01

:0
7:
31

.9
F
7-
K
0

G
2

p
os
s

19
.5
3

1.
98

1.
56

1R
X
M
M

06
W

,1
0W

,1
1M

18
:3
0:
35

.3
01

:0
5:
57

.8
K
6-
K
7

K
6

ye
s

-0
.6

to
-2
.3

16
.5
1

1.
62

1.
27

1B
,
3R

10
M

18
:3
0:
35

.4
01

:1
9:
07

.0
K
1-
K
2

K
1

ye
s

18
.4
0

2.
46

1.
77

1R
10

M
,1
1M

18
:3
0:
35

.9
01

:1
3:
36

.3
G
0-
G
4

G
2

n
o

19
.1
7

2.
20

1.
64

2R
10

M
18

:3
0:
36

.0
01

:2
4:
28

.2
G
0-
G
4

G
2

n
o

18
.3
7

2.
13

1.
47

1R
10

W
,1
1M

18
:3
0:
36

.4
00

:5
9:
54

.8
F
5-
G
4

F
9

n
o

16
.6
1

1.
99

1.
42

1B
,
2R

10
W

,1
1M

18
:3
0:
36

.5
01

:1
2:
49

.1
M
2-
M
4.
5

M
3

n
o

17
.9
9

1.
54

1.
15

2R
08

B
,0
9W

,1
0W

18
:3
0:
37

.1
01

:0
1:
36

.2
K
4-
M
2

K
7

n
o

14
.4
7

2.
97

2.
40

1B
,
3R

X
M
M

06
W

,0
8B

18
:3
0:
37

.4
01

:1
7:
58

.3
K
5

ye
s

14
.8
0

1.
37

0.
94

2R
10

M
18

:3
0:
38

.1
01

:0
0:
19

.0
G
4-
K
0

G
7

n
o

19
.2
3

2.
51

1.
75

1R
10

M
,1
1M

18
:3
0:
38

.1
01

:2
3:
39

.1
K
0-
K
4

K
2.
5

n
o

18
.0
5

2.
52

1.
78

2R
10

W
18

:3
0:
38

.2
01

:0
6:
02

.9
G
9-
K
0

G
9

p
os
s

18
.1
2

1.
88

1.
40

1R
10

W
,1
1M

18
:3
0:
38

.5
01

:2
5:
17

.2
A
1-
A
8

A
5

n
o

16
.8
6

1.
72

1.
28

1B
,
2R

11
M

18
:3
0:
38

.6
01

:2
0:
08

.2
K
2-
K
3

K
3

n
o

17
.3
8

··
·

1.
69

1R
10

M
18

:3
0:
38

.6
00

:5
7:
07

.0
G
9-
K
2

K
0

n
o

19
.6
4

2.
42

1.
83

1R
11

M
18

:3
0:
38

.6
01

:1
1:
40

.8
K
3-
K
5

K
3

n
o

18
.4
0

2.
45

1.
87

1R
11

M
18

:3
0:
39

.1
01

:2
0:
58

.8
G
9-
K
1

K
0

n
o

19
.0
7

2.
33

1.
56

1R
10

M
18

:3
0:
39

.2
01

:1
1:
54

.6
M
3-
M
4

M
3.
5

n
o

18
.6
2

1.
55

1.
16

1R
10

M
18

:3
0:
39

.3
01

:0
2:
44

.9
K
2-
K
4

K
3

p
os
s

19
.4
3

1.
91

1.
73

1R
10

M
18

:3
0:
39

.3
01

:0
7:
43

.6
G
0-
K
0

G
5

p
os
s

18
.7
6

2.
07

1.
60

1R
X
M
M

06
W

,0
9W

,1
0W

,1
1M

18
:3
0:
39

.6
01

:1
8:
03

.1
K
4-
K
5

K
4

ye
s

-0
.1

to
-0
.2

15
.6
7

1.
48

1.
04

4R
10

M
,1
1M

18
:3
0:
39

.9
01

:0
5:
04

.0
K
1-
K
2

K
2

n
o

17
.0
8

1.
54

1.
07

2R
X
M
M

06
W

18
:3
0:
40

.2
01

:1
0:
27

.6
M
1-
M
2

M
1.
5

p
os
s

16
.2
1h

··
·

1.
32

h
1R

10
M
,1
1M

18
:3
0:
40

.5
01

:0
1:
06

.1
K
0-
K
2

K
1

p
os
s

19
.2
0

1.
96

1.
67

2R
10

W
,1
0M

18
:3
0:
40

.7
01

:0
8:
48

.8
G
9-
K
2

G
9

n
o

18
.2
4

2.
48

1.
80

2R
08

B
,0
9W

,1
0W

18
:3
0:
41

.9
01

:0
6:
15

.2
F
6-
F
9

F
8

ye
s

13
.0
1

0.
98

0.
63

2B
,
3R

10
W

,1
1M

18
:3
0:
42

.2
01

:2
2:
42

.5
F
0-
F
9

F
5

n
o

16
.7
3

1.
78

1.
19

1B
,
2R

10
W

,1
1M

18
:3
0:
42

.2
01

:2
0:
03

.1
F
7-
G
4

G
1

n
o

16
.5
2

1.
75

1.
36

1B
,
2R



119

T
ab

le
2—

C
on

ti
nu

ed

N
am

ea
Y
rs
.
ob

s.
b
&

T
el
.

c
R
A
(J
20

00
)

D
E
C
(J
20

00
)

S
p
.
T
y.

A
d
op

t
L
i?

d
E
W

(H
α
)

V
(B

-V
)

(V
-R

)
N
o.

ob
s.
e

(h
h
m
m
ss
.s
)

(◦
′
′′
)

R
an

ge
S
p
.
T
y.

(Å
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ū
te

(1
9
9
6
);

(X
M

M
)
X
M

M
-N

e
w
to

n
su

rv
e
y

b
y

P
re

ib
is
ch

(2
0
0
3
);

(W
M

W
)
S
p
it
z
e
r
su

rv
e
y

b
y

W
in

st
o
n

e
t
a
l.

(2
0
0
7
);

(C
D
F
8
8
)
re

fl
e
c
ti
o
n

n
e
b
u
la
e
st
u
d
y

b
y

C
h
a
v
a
rr
ia
-K

.
e
t
a
l.

(1
9
8
8
);

(G
F
M

)
C
h
a
n
d
ra

su
rv

e
y

b
y

G
ia
rd

in
o
e
t
a
l.

(2
0
0
7
);

(E
C
)
E
ir
o
a
,
&

C
a
sa

li
(1

9
9
2
);

(S
V
S
)
S
tr
o
m

,
V
rb

a
,

&
S
tr
o
m

(1
9
7
6
);

(K
O
B
)
IS

O
su

rv
e
y

b
y

K
a
a
s
e
t
a
l.

(2
0
0
4
);

(2
M

A
S
S
)
2
M

ic
ro

n
A
ll
-S

k
y

S
u
rv

e
y
.

b
Y
e
a
rs

th
a
t
so

u
rc

e
s
w
e
re

o
b
se

rv
e
d
:
2
0
0
6
,
2
0
0
8
,
2
0
0
9
,
2
0
1
0

a
n
d

2
0
1
1

c
T
e
le
sc

o
p
e
s
u
se

d
fo
r
o
b
se

rv
a
ti
o
n
:
M

fo
r
th

e
M

M
T
,
W

fo
r
th

e
W

IY
N

te
le
sc

o
p
e
,
a
n
d

B
fo
r
th

e
B
o
k

te
le
sc

o
p
e
.

d
“
p
o
ss
”

st
a
n
d
s
fo
r
p
o
ss
ib

ly

e
S
p
e
c
tr
a
l
re

g
io
n

o
b
se

rv
e
d

a
n
d
n
u
m
b
e
r
o
f
o
b
se

rv
a
ti
o
n
s
in

e
a
ch

w
a
v
e
le
n
g
th

ra
n
g
e
:
B

st
a
n
d
s
fo
r
b
lu

e
a
n
d

R
fo
r
re

d
(s
e
e
te

x
t
fo
r
e
x
a
c
t
w
a
v
e
le
n
g
th

ra
n
g
e
fo
r
e
a
ch

te
le
sc

o
p
e
/
se

t
o
f
o
b
se

rv
a
ti
o
n
s)
.

f
S
o
u
rc

e
h
a
s
a

k
n
o
w
n

c
o
m

p
a
n
io
n
,
n
o
t
re

so
lv
e
d

in
o
u
r
p
h
o
to

m
e
tr
y

g
S
p
e
c
tr
a
l
ty

p
e
s
fr
o
m

W
in

st
o
n

e
t
a
l.

(2
0
0
9
)
a
n
d

O
li
v
e
ir
a

e
t
a
l.

(2
0
0
9
)

h
P
h
o
to

m
e
tr
y

fr
o
m

2
M

A
S
S
:
J

re
p
la
c
e
s
V

a
n
d

(J
-H

)
re

p
la
c
e
s
(V

-R
)



122

T
ab

le
3.

O
p
ti
ca
l
P
ro
p
er
ti
es

of
C
an

d
id
at
e
Y
ou

n
g
S
te
ll
ar

O
b
je
ct
s
w
it
h
E
ch
el
le

S
p
ec
tr
a

O
b
je
ct

a
R
A
(2
00

0)
D
E
C
(2
00

0)
D
at
e

S
p
.
T
y.

R
an

ge
S
p
.
T
y.

b
S
u
rf
ac
e

v
si
n
id

Y
S
O
?d

(h
h
m
m

ss
.s
)

(◦
′′
′ )

(Y
Y
M
M
D
D
)

G
ra
v
it
y

(k
m

se
c−

1
)

S
C
B

40
18

:2
8:
56

.2
01

:0
6:
27

.6
20

09
08

11
F
7-
G
0

G
0

V
-I
V

13
±
2
-
25

±
3

S
C
B

41
18

:2
8:
58

.4
01

:1
0:
59

.7
20

09
08

11
A
9-
F
2

F
4

··
·

30
±
5

S
C
B

43
18

:2
9:
08

.0
01

:0
5:
25

.4
20

09
08

11
F
6-
F
9

F
7

V
-I
II

··
·

W
M
W

12
4

18
:2
9:
08

.2
01

:0
5:
43

.1
20

09
06

09
A
1-
A
3

A
1

V
-I
II

33
±
5

IR
X
,
T
D

20
10

07
10

B
D
+
01

36
86

18
:2
9:
27

.6
01

:1
2:
56

.8
20

09
08

11
F
2-
F
6

F
6

V
-I
II

25
±
2

X
B
D
+
01

36
87

18
:2
9:
31

.7
01

:0
8:
19

.1
20

09
06

09
F
3-
F
9

F
6

V
-I
V

12
±
3

re
f.

n
eb

.
20

10
07

10
W

M
W

82
/K

O
B

17
3

18
:2
9:
33

.4
01

:0
8:
22

.8
20

09
06

09
A
3-
A
4

A
3.
5

V
··
·

IR
X
,
re
f.

n
eb

.
[C

D
F
88

]
7/

X
M
M

18
:2
9:
56

.1
01

:0
0:
21

.7
20

10
07

10
B
3-
B
6

B
6

II
I

··
·

X
,
re
f

W
M
W

19
3/

B
D
+
01

36
89

B
18

:2
9:
57

.5
01

:1
0:
46

.4
20

10
07

10
A
1-
A
8

A
5

V
-I
II

13
5±

9
X

W
M
W

19
2/

H
D

17
05

45
18

:2
9:
57

.6
01

:1
0:
52

.9
20

10
07

10
A
1-
A
3

A
2.
5

V
31

±
5

X
18

:3
0:
07

.4
01

:0
1:
01

.5
20

09
08

11
G
6-
K
2

G
9

IV
··
·

K
O
B

37
0

18
:3
0:
08

.7
00

:5
8:
46

.5
20

10
07

11
G
9-
K
4

K
1

IV
··
·

L
i,
H
α
,I
R
X

e

B
D
+
1
36

93
18

:3
0:
10

.4
01

:1
9:
33

.7
20

09
08

11
A
5-
A
8

A
7

II
I

··
·

W
M
W

22
0

18
:3
0:
24

.5
01

:1
9:
50

.7
20

09
08

11
K
0-
K
2

K
1

··
·

12
±
2

X
H
D

17
06

34
18

:3
0:
24

.9
01

:1
3:
23

.0
20

10
07

10
B
6-
B
9

B
9

II
I

··
·

re
f.

n
eb

.
X
M
M

18
:3
0:
37

.4
01

:1
7:
58

.3
20

10
07

11
F
8-
K
5

K
0

V
-I
V

39
±
3

X
18

:3
0:
42

.3
00

:5
8:
48

.9
20

10
07

11
F
4-
F
6

F
5

II
I

34
±
4

S
C
B

70
18

:3
0:
54

.5
01

:1
2:
52

.7
20

09
08

11
F
4-
F
7

F
7

V
-I
V

22
±
2

a
S
o
u
rc

e
n
a
m
e
s
fr
o
m

x
ra

y
,
o
p
ti
c
a
l
o
r
in

fr
a
re

d
st
u
d
ie
s
b
y
:
(S

C
B
)
S
tr
a
iz̆
y
s,

C̆
e
rn

is
,
&

B
a
rt
a
s̆i
ū
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SECTION

4 DISCUSSION

4.1 INTRODUCTION

An unbiased, optical spectroscopic survey of two low mass star-forming regions,

the Rho Ophiuchi and Serpens Main clusters, has been conducted. In both regions,

photometry was used to place sources in a color-magnitude diagram. Candidate

YSOs were then selected for spectroscopic observation based on their position in the

color-magnitude diagram. These spectra have been used to confirm youth, determine

effective temperatures, visual extinctions, and bolometric luminosities. Comparisons

with theoretical tracks and isochrones for pre-main sequence stars led to estimates for

the ages and masses of association members. Data from the Spitzer Space Telescope

was also used to determine infrared excesses and disk frequencies for the regions.

Distributions of ages and masses place limits on star formation timescales and mech-

anisms, while studies of disk frequencies limit timescales for planet formation.

4.2 CONTRIBUTIONS AND LIMITATIONS OF WORK

Both the Rho Ophiuchi and Serpens molecular clouds are well-studied regions

of low mass star formation. The young clusters associated these clouds have been

observed by numerous surveys ranging from X-ray to submillimeter wavelengths (See

sections 1.1.3, I.1, and II.1 for details). However, previous studies have been biased

towards particular phases in the formation process and few have yielded spectral

types. The surveys of Rho Ophiuchi and Serpens described here have filled in the

gaps of these previous studies; 35 (Rho Ophiuchi) and 15 (Serpens) new PMS objects

have been identified. These are mainly YSOs which have dissipated their circumstellar
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disks and can be identified though Li absorption or variable Hα or X-ray emission.

This study, combined with previous surveys, provides a more complete sample of

YSOs with class 2 or class 3 spectral energy distributions. As star formation takes

place in stages which are best observed at different wavelengths, it is necessary to

probe all stages in order to form a complete picture of star formation within a region.

However, optical studies are only complete for pre-main sequence objects; protostars

in the earliest stages of star formation are not included (class 0 and 1 sources; see

section 1.3). It is of interest to note that median ages for class 2 and class 3 objects

in this study are not distinct; this would suggest that the timescales for these stages

are source dependent.

In Rho Ophiuchi, the first IMF for the region based on an unbiased extinction-

limited spectroscopic survey has been presented. While this is not the first IMF

derived for the region (see section I.1.2), an unbiased extinction-limited spectroscopic

study provides a more direct measurement of the mass distribution and therefore the

IMF. The mass function is found to peak and turn over with a characteristic mass of

0.13 M". There is marginal evidence for a deficit of brown dwarfs, however, the lowest

mass bin suffers from incompleteness and hence any firm determinations about the

extent of the lowest mass population of Rho Ophiuchi cannot be made. The situation

in Serpens is much less clear. While the high end of the IMF is in agreement with

the field star IMF, one cannot make any statement at all about sources below 1 M".

See figure 4.1.

The average age in most star-forming regions is found to be less than 5 Myrs

(Lada & Lada 2003; Hillenbrand 2009). This supports the idea of star formation being

a relatively fast process. Median ages of 3 Myrs and 2 Myrs are found for the optically

visible members of the Rho Ophiuchi and Serpens Main clusters, respectively. How-

ever, these ages are based on theoretical tracks which are highly uncertain and may

under-predict low mass stellar ages by 30-100% and over predict high mass stellar
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Chabrier  

LOG m (solar masses) 

Figure 4.1 The initial mass function for the Serpens (Blue) and Ophiuchi (Black)
clusters. Dashed lines show the members added from the completeness corrections.
The red dotted line is the Chabrier (2003) system mass function which is lognormal
for M<1.0 M" and a power law for M>1.0 M".

ages by 20-100% (Hillenbrand et al. 2007). Hence, while these age determinations

are useful for relative comparisons, they are not absolute ages.

A disk frequency of approximately 30% is found in both regions and 9 (Rho

Ophiuchi) and 6 (Serpens) potential transition disk objects have been identified. Sam-

ple sizes in both regions are not large enough to investigate variations in disk frequency

with spectral type or with age. The limited sample size also means that the errors

on the disk frequency are large. In Serpens the sample was so small that one could

not meaningfully analyze the extinction-limited subsample of sources, a reflection of

the bias towards brighter sources. Transition disk object studies (e.g., Muzerolle et

al. 2009) have suffered from small sample size; the 15 sources identified in this study

as potential transition disk objects will add to the sample size of future studies.

In Serpens, assuming a distance of 260 pc places YSOs below the main se-

quence while assuming a distance of 429 pc fixes this problem. This study therefore
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supports the idea that the distance to Serpens should be revised to 429 pc (Dzib et

al. 2010, 2011).

4.3 FUTURE WORK

With the new, larger distance to Serpens, an unbiased extinction-limited sur-

vey that probes down to lower mass would be needed to derive a complete IMF for the

region. This would hopefully also provide a larger sample for disk studies, allowing

for an unbiased disk frequency to be derived. This could be done with use of GMOS

(Gemini multi-object spectrograph) at optical/ near infrared wavelengths. With the

8.1 m Gemini optical/ infrared telescopes, lower luminosities, hence lower masses

could be probed. Similarly the use of FLAMES (Fibre Large Array Multi-Element

Spectrograph) at optical wavelengths on the 8.2m VLT would not only allow probing

to lower masses but would provide high-resolution optical spectra. This could also be

done with further observation using Hectospec on the MMT at moderate resolution.

In Rho Ophiuchi, the low mass regime of the IMF could be inferred via obser-

vation of lower luminosity sources, determining if the possible deficit of brown dwarfs

is real or not. This could easily be accomplished using Hectospec on the MMT. In

Serpens the sub-stellar IMF could be inferred using NIRSpec at medium resolution

on the James Webb Space Telescope

Studies of other star forming regions (i.e., NGC 1333 and/or Chamaeleon I),

using the same techniques as used in this study to survey an unbiased extinction-

limited sample of candidate YSOs would allow for direct comparison of several re-

gions. Hectospec on the MMT would be best to observe sources in NGC 1333, with

its distance of 240 pc (Hirota et al. 2008). Sources in Chamaeleon I could be observed

using Hydra-CTIO, given the cluster’s distance of 165 pc (Whittet et al. 1997; Wich-

mann et al. 1998; Bertout et al. 1999). Both of these regions could also be studied

using FLAMES on the VLT, so that even lower mass objects could be observed.
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High-resolution spectroscopic studies of both regions would be useful to derive

radial velocities, vsini, and surface gravities. These would further confirm association

membership. Meaningful radial velocities for the more massive Serpens members

could not be derived by this study due to the lack of usable lines. For lower mass

members high resolution spectra could be obtained using NIRSPEC on Keck II with

infrared echelle spectra or with further observation using MIKE on the Magellan

telescopes. This would provide a larger sample of sources in both regions and allow one

to probe to the low mass regime. With these data, kinematic studies of star formation

regions could be used to derive velocity dispersions and to set limits to timescales for

stellar encounters. These studies also could be used to determine sub-structures

within star forming regions providing further insight into the star formation process.

These same high-resolution spectra could also be used for follow-up observations

of possible transition disk objects in order to measure accretion rates. In Serpens,

echelle spectra were obtained for only one potential transition disk object and no

echelle spectra were taken for sources in Rho Ophiuchi. With low-resolution spectra,

weakly accreting sources can be misidentified as non-accreting sources. As outlined

above, there is still a lot of work to be completed in both regions in order to form a

complete picture of star formation.
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5 CONCLUSIONS

Rho Ophiuchi and Serpens appear to be fairly typical low mass star-forming

regions and bear many similarities. The highest mass stars in both regions are B

type stars. The total mass of molecular gas in both regions, adjusted for the distance

used in this study, is approximately 1000 M" (Loren 1989b; Omli and Testi 2002).

Hence the size of these two clouds is comparable. Several new PMS objects have been

identified in both regions, demonstrating the need for unbiased spectroscopic samples

in star-forming regions. From these spectra, temperatures and luminosities have been

obtained and used to derive ages and masses for association members.

Median ages of 3 Myrs (Rho Ophiuchi) and 2 Myrs (Serpens) have been found.

Both of these ages support the theory that star formation is a relatively fast process

(Hartmann 2001). Both regions have a younger embedded population with class 0

and 1 spectral energy distributions in several dense molecular cores surrounded by a

slightly older, more distributed population. This older population tends to avoid the

highest density of gas in both regions. Taken together, the young age of both the

distributed and embedded populations indicate that either the star formation rate

has increased in the last few Myrs (Palla & Stahler 2000), or molecular clouds are

younger than previously assumed.

No age spread is found in Rho Ophiuchi. In Serpens, an age spread of 1-5

Myrs is inferred. It is difficult to interpret these results. Age spreads of greater than

10 Myrs would indicate long lifetimes for molecular clouds and that magnetic flux is

important in regulating star formation (Hartmann 2001). However it is not clear what

a small age spread (less than 10 Myrs) indicates in comparison to regions with no age

spread. Perhaps this is a result of different formation mechanisms (i.e., triggered vs.

spontaneous star formation or a combination of the two).
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At the high mass end, both regions agree with the field star IMF, indicating

that the IMF may be universal for M>1 M". However this study did not probe to

low enough masses in Serpens to detect a turnover (and hence a characteristic mass)

and see variations from the field star IMF at the lower masses. In Rho Ophiuchi, even

with completeness corrections, the expected number of sources in the lowest mass bin

was not observed which may suggest a deficit of brown dwarfs. Although the error

bars are such that this is a marginal result, if the deficit is real it would indicate that

at the lowest mass end the IMF may depend on environmental factors.

Both clouds also show similar disk frequencies: 27% ± 5% in Rho Ophiuchi

and 42% ± 10% in Serpens. This is not surprising given the similar relative ages of the

two clusters (3 Myrs for Rho Ophiuchi; 2 Myrs for Serpens from the DM models) and

the trend of decreasing disk frequency with the age of the cluster (Lada et al. 2006;

Sicilia-Aguilar et al. 2006; Hernandez et al. 2007). Ultimately, these studies of Rho

Ophiuchi and Serpens have added sources to the list of known association members

toward a complete sample, and support the picture that star formation takes place

on relatively fast time scales.
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