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SYNOPSIS New expressions for stiffness and radiation damping, which have been developed for a new forcing function, are based on the simple 
equation of wave propagation in a perfectly elastic half space for different modes of vibrations, particularly vertical and horizontal vibrations. A 
differential equation including the effect of foundation mass is presented and the results of the amplitudes of vibration obtained from this 
differential equation are compared with those in the standard differential equation in soil dynamics textbooks. Furthermore, added soil masses for 
vertical and horizontal vibrations are also derived based on the equation of wave propagation and discussed with other findings. 

Finally, this paper also compared different ways of using the total damping, which is composed of radiation damping and internal damping. 

INTRODUCTION 

The periodic function of Poe;"' has been used extensively in 
deriving old lumped parameters, and predicting resonant frequency 
and amplitude of vibration of foundations (Arnold et al. (1955), 
Bycroft (1956 and 1959), Hsieh (1962), Hall (1967) and Dobry and 
Gazetas (1985 and 1986)). In this paper, a new periodic forcing 
function, P(t) = P0 T + Po sinwt, has been introduced. Using the 
treatment of Lysmer and Richart (1966) based on a simple equation 
of wave propagation with an appropriate correction of pressure 
distribution, new expressions have been generated for stiffness and 
damping for use in calculations of permanent displacements of 
different modes of vibrations and to confirm the findings by Truong 
(199la). Note that expressions of stiffness and damping are 
completely dependent on the type of the forcing function (Truong, 
1992). 

For the new forcing function, Truong (199la), using the method by 
Hsieh (1962), derived new dynamic stiffness and damping values, 
which are dependent on the frequency of the dynamic load. The new 
dynamic damping value, which is inversely proportional to the 
circular frequency, has the same form as material damping, while the 
value of stiffness increases with increase in the circular frequency. 
Similar methods can be used to obtain the new dynamic spring and 
damping values for other modes of vibrations such as vertical, 
rocking and torsional (Truong, 1992). The new expressions of 
stiffness and damping have been introduced into calculations of 
horizontal permanent displacement (Truong, 1991 b, c and d and 
Truong 1992). 

The effect of mass of footing system on new expression of 
stiffness and damping for the new forcing function, which was not 
covered in Truong (199la), are investigated by using the treatment 
by Hsieh ( 1962). This process leads to a new differential equation in 
soil dynamics. 

NEW HORIZONTAL STIFFNESS AND ADDED SOIL MASS 

If a horizontal force P(t) applied to the footing has the following 
form: 
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P(t) = P,T+P,si.n.(i)t (I) 

where T and Po are constants, PoT is a constant load, w is the 
circular frequency of the forcing function and t is the time variable. 

Using the symbol Re to mean "the real part of'', then 

P(t) = P,T + Re( -iP, ~'"") (2) 

Since expressions of stiffness and damping are related to the values 
of the oscillatory part of Eq. (1), and if T = 0, then 

P(t) = Re( -iP, ~""') = P, si.n.(i)t (3) 

The way to find a new horizontal stiffness for the new forcing 
function (Eq.l) is to consider the simple equation of wave 
propagation of horizontal vibration in a perfectly elastic half space. 
This method, presented by Lysmer and Richart ( 1966) for vertical 
vibration, will also be repeated in determining the new vertical 
stiffness in the next section. 

The elastic half space is excited by a horizontal load, Po e'"'', and 
the horizontal displacement u of the free surface is to be evaluated. 
Assuming linear elasticity of the material, the shear stress can be 
given by 

du 
't =G-

dt 
(4) 

m which G IS the shear modulus and du/dt stands for the shear 
strain. 

The horizontal displacement u on a horizontal plane is 

(5) 

which is the general expression for a sinusoidal wave with amplitude 
Ah propagated horizontally with the constant shear velocity V,. 



Taking the derivative of Eq. (5), 

du . iw(t-...!.) 
- = -~A,e v, 
dz. v .. 

The shear stress on a horizontal plane is 

du 
. iw(t-...!.) 

() -G - J(,)G~ Y, "t z- ---- n 11 e 
dz. v .. 

(6) 

(7) 

and the stress boundary condition at the surface (=0) yields, 
consequently, 

Peiwt · 
"t(O) = --"- =- Jw GA e1"'' A y II 

in which A is the area of the footing. 
Then 

.. 

. P,Y., A,=_, __ 
AwG 

The horizontal displacement u(O) at the surface is 

y . 
u(O) = --"-(-iP,e""') 

AwG 

(8) 

(9) 

(10) 

Eq. (10) has shown that the new stiffness, K'. of the new forcing 
function (Eq.1) can be expressed as follows: 

1 AwG ~ 
Kz = ----y- =Aw v pG 

.. 
(11) 

which is independent of the Poisson's ratio, ).1. 

For a circular footing with uniform pressure distribution, 

I 2 ~ Kz = xr, wypG (12) 

For a rectangular footing, 

(13) 

For a circular footing with a rigid base pressure distribution, the 
stiffness increases with the change in pressure distribution from 
uniform to rigid base as found by Nagendra et al. (1982), so the new 
stiffness with their central displacement condition is as follows: 

I 2 ~ 8 2 ~G Kz = wr, ypG(x-) =4wr,ypv 
2x 

First derivative of Eq. (10), 

du(O) = _1_ P e""' 
dt A{PG " 

(14) 

(15) 
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Eq. (15) shows the old value of damping for the old function, Po e' .. , 
is proportional to (pG)112 (Richart et al., 1970). 

Taking the second derivative of the horizontal displacement u(O), 

(16) 

This is also the equation of motion for the simple mass, which has 
been considered as the added soil mass for the old function. This 
mass, m; - increasing with the area of the footing, shear modulus 
and density, and decreasing with the circular frequency - is 
presented as follows: 

I_A{PG 
mz---­

(1) 

(17) 

The new value of damping, C',, to be used with the new horizontal 
stiffness (Eq. 14), is given by Eq. (18) as follows: 

8 Gr., 
C·=----

z (2-ll) (,) 
(18) 

The derivation for the equation (18) can be found in Truong (1991 a 
or 1992). 

lHE EFFECT OF MASS OF lHE FOOTING SYSTEM 

Lysmer and Richart (1966) extended the work by Hsieh (1962) by 
including the effect of the mass m of the footing. The displacement, 
x of the mass m can be written in the form 

where F' is the displacement function and k is a quantity having the 

dimension force/length. 

P F' e""' 
."K = __::"'----

k 
(19) 

The quantity k, referred to as the "spring constant", is usually 
equal to the static spring constant (Lysmer et al., 1966). The 
displacement function can be expressed as 

(20) 

where F 1" and F2' are functions of the dimensionless constant a and 
Poisson's ratio ).1. 

F • = _(a-'4'-+_i_aJ:._ 

<ai+~1 
(21) 

(22) 

(23) 



F
• • 

a" = 0:3 1 - aflz (24) 

(25) 

Different expressions for stiffness and damping for two different 
forcing functions have been derived in the following section. 

(a). The forcing function in Eq. (19) is P(t) = P. eirut and the 
relationship between displacement, velocity and force is as follows: 

The general expressions for stiffness K and damping C for 
different modes have been derived (Lysmer et al., 1966) as follows: 

(26) 

(27) 

(28) 

K and C will be K,., C., K" C" K9 and C9, if k is used as the 
static constant of horizontal, vertical and rocking vibration, 
respectively. 

(b). If the forcing function is given by Eq. (1 ), then Eq. (25) 
becomes 

(29) 

The new general values of stiffness K' and damping C' are 

(30) 

(31) 

For vertical vibration, K' and C' will become K'z and C'v 
respectively. The undamped natural frequency, W

0
, is the same value 

(= (k/m)1n) for a simplified analog, when C' = 0. It seems much 
more logical than letting K = 0 (Eq.27). The static vertical constant 
k (Timoshenko & Goodier, 1951) is 

Then Lysmer and Richart ( 1966) also found that the variation of F" 
with J.l is insignificant for practical calculations. For vertical 
vibration, • 
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4Gr., 
1=-­

(1- j.L) 

F" = 4(1; +if;) 
(1- 1-L) 

(32) 

(33) 

where f1 and f2 are functions (first introduced by Reissner (1936) 
which depend upon the Poisson's ratio J.l of the medium and a 
dimensionless quantity a described by 

(34) 

NEW VERTICAL STIFFNESS BY THE EQUATION OF WAVE 
PROPAGATION 

The method, presented by Lysmer and Richart (1966) for vertical 
vibration, is repeated to determine the new vertical stiffness in the 
following section. 

The elastic half space is excited by a vertical load, Po e' .. , and the 
displacement w of the free surface is to be evaluated. Assuming 
elasticity of the material, the tensile stress can be given by 

dw 
a(z) =E-

'tk 
(35) 

where EP, which is the constrained elastic modulus with zero lateral 
displacement, is as follows: 

(36) 

m which 

(37) 

The velocity of the push wave (P-waves) propagated downwards is 

(38) 

The vertical displacement, w, on a horizontal plane with no 
reflected wave due to infinite half space is 

lw(t-...!.) 

w(z) =A.,e v, (39) 



which is the general expression for a sinusoidal wave with amplitude 
A, propagated downwards with the constant velocity VP. Taking the 
derivative of Eq.(39), 

(40) 

The tensile stress on a horizontal plane is 

dw iw ;.,(r- ; > 
a(z) = E- = --E A e ' Pdz V p" 

p 

(41) 

and the stress boundary condition at the surface (z=O) yields, 
consequently, 

p e;.,, . ;.,<r-..!.> 
a(O) = -- -" - = - Jw E A e Y, 

A V P " p 

(42) 

then 

P., V -isP., 
A, = - i--P- = ----=--

AwEP Aw{PG 
(43) 

The vertical displacement w(O) at the surface is 

w(O)= s (-iP.,e1"") 

Aw{PG 
(44) 

Eq.(44) has shown that the new stiffness of the new forcing function 
can be expressed as follows: 

Kl = Aw .fPG 
% s 

(45) 

For circular footing with uniform pressure distribution, 

I 1t 2 ~ K% =-r.,wypG 
s 

(46) 

For circular footing with rigid base pressure distribution, the 
stiffness increases with the change in pressure distribution from 
uniform to rigid base (Nagendra et al., 1981), so the new stiffness 
can be expressed as follows: 

I 32 2 ~ K =--r wypG 
% 3S1t " 

(47) 

For ll = 113, the ratio of the coefficient of new stiffness and that 
of new stiffness is 0.88 compared with 0.85 by Lysmer et al. (1966) 
for 0.3 < a < 0.8. 

First derivative of Eq.(44), 
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dw = __ s_ P e'"'' 
dt A{PG " 

(48) 

Eq.(48) shows the that old value of damping for the old function, 

Po e'w', is proportional to (ll G) 112 (Richart et al. 1970). 

Taking second derivative of the vertical displacement w(O), 

(49) 

which is also the equation of motion for the simple mass, which has 
been considered as the added soil mass for the old function. This 
mass, m; - increasing with the area of the footing, shear modulus 
and density, and decreasing with the circular frequency - is 
presented as follows: 

1_A{PG 
m ----

% ws 
(SO) 

The horizontal added soil mass is smaller than that of the vertical 
vibration by a factor, s. The new value of damping to be used with 
the new horizontal stiffness, Eq.(47), is as follows (Truong, 199la or 
1992) 

4 Gr 
C~=--(-") 

% 1 -1' w 

NEW DIFFERENTIAL EQUATION 

(51) 

The old lumped parameters (Hsieh, 1962 and Richart, et al. 1970) 
are derived based on the forcing function, Po e'"", so the initial value 
of stiffness (wt = 0) is the static stiffness, which is mainly deduced 
using the theory of elasticity (Nagendra and Sridharan, 1982). The 
static stiffness, consisting of the initial (or maximum) shear modulus, 
is the maximum value of stiffness for any footing system under 
vibration. The stiffness for this case will reduce with the increase in 
the value of wt from 0 to rr./2. The old lumped parameters are useful 
in many cases involving with elastic displacement, e.g. for predicting 
the maximum amplitude of vibration and resonant frequency. For 
most cases, the value of damping is very small and can be 
considered as zero (Barkan, 1962). 

The new forcing function, Po sinwt, brings in the new stiffness, 
which becomes 0 when the term, wt, is equal to 0. While the value 
of damping becomes very large, as w approaches to 0. When wt = 

rr./2 or at high frequencies, the value of stiffness is equal to the static 
stiffness. The new lumped parameters should be used for cases 
related to plastic displacement, e.g. in the calculation of horizontal 
and vertical permanent displacements. Initial static shear modulus (or 
Young's modulus) has to be used for cases with low frequencies, e.g. 
smaller than 1 Hz. 

There are some cases, especially with high frequencies, either one 
of the two methods will end up with the same results in predicting 
permanent displacements or resonant frequency. Actually, the 
amplitude of vibration and resonant frequency, obtained from the 



following differential equation for the new forcing function (Eq.l) 
based on Eq.31 for each individual mode of vibration, actually are 
the same values. 

(52) 

where k,. and K', are the values of static and new dynamic stiffness 
for the horizontal vibration, respectively. 

If T = 0, the following equation of the amplitude of vibration, 
obtained after solving the above equation (Truong, 1992), can be 
found in standard textbook, e.g. Richart et al. (1970) 

p(J 
(53) 

where the square of the new dynamic stiffness K', based on Veletsos 
and Wei (1971) (Truong, 1991a or 1992) is 

2 

K' Jt 

4.6r; ..fPG 2 2 
[ (2- ~) ] (i) 

(54) 

The phase angle between the new forcing function (Eq.l) and 
displacement, which is different from the old one in text books, e.g. 
Richart et al. (1970) about 90 degrees, is 

1-(~f 
(i)(J 

tancl! (55) 
K' Jt 

K' J< 

where W
0 

is the undamped natural frequency as derived from Eq.31 
(= (k/m)112

). The frequency at which the maximum amplitude occurs 

is not the undamped natural circular frequency W
0

, but a frequency 
slightly less than W0 • Note that the damping ratio D, can be derived 
from the denominator of Eq. (55). 

The coefficients of old and new values of stiffness and damping, 
derived in the above sections, are not very important compared with 
the decision to choose and use the appropriate value of dynamic 
shear modulus. Other coefficients for stiffness and damping can be 
found in Nagendra et al. ( 1 982 and 1984) and Gazetas ( 1 987b ). 

ADDED SOIL MASSES 

The above added soil mass, sometimes called an apparent mass or 
the in-phase mass of soil, which vibrates in sympathy with an 
oscillating footing. The added soil masses for horizontal and vertical 
vibrations, which are linearly proportional to the area of the footing 
and inversely proportional to the circular frequency of the footing, 
increase with the square root of the density and the shear modulus of 
the soil (Eqs. 17 and 50). This findings have relatively combined all 
of those of others, e.g. Pauw (1953) found that the vertical added 
soil mass is linearly proportional to unit weight and inversely 
proportional to the gravity. While Barkan (1962) introduced the 
added soil mass in terms of a coefficient of mass increase, the latter 
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increases as the mass ratio decreases. Barkan and Ilyichev (1977) 
have expressed the view that this mass, which cannot be ignored in 
engineering calculations, depends on the sizes of foundation, its 
embedment, geological formation of a construction site and soil 
properties and does not depend on the foundation mass. They 
calculated values of the coefficient of mass increase ranging from 
1.5 to 4.1. Finally, Golubtsova (1986) also found that the vertical 
added soil mass are dependent on the circular frequency, but in a 
rather complicated form than the ones above. 

TOTAL DAMPING 

The damping ratio normally represented by viscous dashpot in the 
mass-spring-dashpot model represents the total damping which is a 
combination of radiation damping and internal damping. For 
horizontal vibration, Sankaran et at. (1977) presented that the 
internal damping is also inversely proportional to the circular 
frequency as the new expressions of damping. Dobry et at. (1985) 
have suggested the values of stiffness and damping corrected with 
the internal damping constant as follows: 

• <iiC}J 
K =K---z J< 2 

(56) 

• bKz 
C =C +-z J< (i) 

(57) 

where b is the material damping constant. 

CONCLUSIONS 

1. Expressions of stiffness and damping are dependent on the 
forcing function, but the resonant frequency and the maximum 
amplitude of vibration did not change, and the exceptions are the 
permanent displacements. 

2. Added soil masses are linearly proportional to the area of the 
footing and the square root of the shear modulus and soil density. 
The horizontal added soil mass is smaller than that of the vertical 
vibration. The expressions of horizontal and vertical added soil 
masses are very simple to use compared with others. 
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