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Dispersion of Longitudinal Waves Propagating in a Continuum with 
Randomly Perturbated Parameters Paper No. 10.16 

J. Naprstek 
Chief Scientific Officer, Institute of Theoretical and Applied Mechanics, Prague, Czech Republic 

SYNOPSIS The author investigates the propagation of wave motion in a continuum the material parameters of which are random 
functions of longitudinal coordinate. The analysis is based on the theory of Markov processes and the subsequent solution 01 
the respective Fokker-Planck-Kolmogorov equation. The fully deterministic response in the excitation point transforms into non
homogeneous random process in the longitudinal coordinate with the growing distance. The quota of the deterministic compone1\L 
in overall response drops until it disappears completely. The model of uncorrelated imperfections ( white noise ) of the continuum 
is inacceptable, because it is at variance with the energy equilibrium law. The results are compared with the conclusions resulting 
from the application of the integral spectral decomposition analysis and the finite element method based on correlation method. 

INTRODUCTION 

Seismic waves of natural or technological ongm propagate 
through the continuum the physical parameters of which are 
of the character of random process in space. The wave mo
tion propagating in such a continuum has a number of specific 
properties which we shall try to demonstrate on a kinemati
cally excited semifinite bar with an axis x 2: 0. In dependence 
on the structure and extent of random deviations from nomi
nal values the absolute value of the measurable deterministic 
part of the response drops with the distance x from the point 
of excitation, while its random part quickly increases from zero 
leaving certain small area around the excitation point. From 
the initially deterministic process in the point of excitation the 
response, with the increasing x, is becoming a process with a 
continuously growing portion of stochastic component. 

The effects of random imperfections have been introduced 
to the response mechanism in previous papers in most varied 
ways, but always on the basis of the small parameter method
see e.g. Deodasis et al.(1991), or Nakagiri and Hisada (1985). 
The application of this method is equivalent with the assumtion 
of statistic independence of response in adjacent points in the 
generalized meaning. Moreover, it assumes that the determin
istic part of the response is dominant for all values of x, while 
the random part has the meaning merely of a certain not very 
significant supplement. This approach can be accepted only as 
a certain approximation in case of bodies of finite dimensions 
and with sparse spectrum of natural frequencies and determin
istic boundary conditions with not very significant increase of 
the quota of indeterminateness and a drop of determinism of 
the response with the distance from the point of deterministic 
excitation. On global scale, however, this model clashes directly 
with the energy equilibrium law. The significance of the deter
ministic and stochastic parts of the response for increasing x 
is getting to reverse from that in the proximity of the point of 
excitation which is not enabled by the philosophy of the small 
parameter method. Most difficulties resulting from these pro
cedures can be eliminated by the admission of statistic depen
dence of imperfections in the longitudinal direction. If one of 
the two parameters (~(x)- density, E(x) - Young modulus of 
elesticity) or both (when the term ou(x, t)jox. oE(x)jox could 
be neglected) are random variables, it is possible to describe 

the propagation of the longitudinal wave motion along a semi
infinite bar by the well known equation: 

where : 

1 o2 u(x, t) = 
0 

c2 (x) ot 2 

c2 (x) = E(x)j ~(x) = (1/; 2 + <p(x))- 1 

e(x) =eo+ e,(x); le,(x)l <<eo 

c(x) - velocity of longitudinal wave propagation, 

1/; 2 = E{c- 2(x)J- mathematical mean value of the 
process c- ( x) 

E{ ·} - mathematical mean value operator 

<p(x)- centered random Gaussian homogeneous process. 

(1) 

(2) 

In case of harmonic excitation in point x = 0 it is possible to 
write: 

u(x, t)ix=O = [{ · eiwt ; u(x, t) = v(x) · eiwt (3) 

which transforms the problem (1), (2) with respect to (3) into 
solution of an ordinary differential equation with a randomlv 
variable coefficient: 

with the necessity of complying with the Sommerfeld's con
dition for x --. ex>. 

Influence of imperfections, or Eq.(4), has been analyzed b.v 
Naprstek (1993) using the decomposition in the form of Stilt
jes integrals with non-continuous spectral differentials and ver
ified by Naprstek and Fryba (1994) using the finite elernei\L 
method respecting non-zero correlation of imperfections along 
the x axis. In this short contribution we shall outline the most 
important steps and the results obtained by the procedure based 
on Markov processes and compare them with the results of both 
afore mentioned methods. 
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UNCORRELATEDIMPERFECTIONS 

To demonstrate the properties of the uncorrelated imperfections 
model, we shall introduce the random process <p(x) describing 
them as a Gaussian white noise ~(x). The corresponding Ito 
system can be written by means of two phase variables v 1(x) = 
v(x),v2(x) = v(x) in the form of 

v~ ( x) = 
v~(x) = (5) 

from which there follows the Fokker-Planck-Kolmogorov 
equation for the non-homogeneous cross density of probability 
p(v1,v2,x): 

ap =- a(v2p) + w21/;2 a(v1p) + ~w2s a2
(vrp) (6) 

ax av1 fJv2 2 av~ 

where : 

s- intensity of white noise ~(x) 

In point x = 0 the response process is deterministic ; there
fore, it holds that 

(7) 

where : b(·)- Dirac function. 
The classic solution of Eq. (6),(7) does not exist. Therefore, 

we shall seek a generalized solution in the meaning of stochas
tic moments- see e.g. Bolotin (1979) or Pugachev and Sinitsyn 
(1987). We shall multiply Eq. (6) by the factor v{v~ and inte
grate within the whole phase area. After modifications we shall 
arrive at the system of equations: 

d u 2 2 k . s 2k( ) dx i,k = -w 1/J · Uj+1,k-1 + JUj-1,k+1 + 2w k-1 Uj+2,k-2 

(8) 
00 

uj,k = 11 p(v1, v2, x)v{v~dv1dv2 0 ::; j, k < CX) (9) 

-00 

The expression (9) is the statistic moment of the degree j + k 
according to the phase variables v1 ,v2 . Consequently, it also 
holds that : 

(10) 

The structure of Eq. (8) reveals that a certain degree of mo
ments K (i.e. for j + k = K =canst.) it will always disintegrate 
into separate systems of K + 1 equations. That means that the 
moments of the K degree influence one another only within this 
degree. For K = 1 , i.e. for the mathematical mean values of 
the quantities v 1 , v 2 , we shall obtain : 

U{ o = 
u'· -0,1 -

(11) 

from which, by the elimination of U0 , 1 , we obtain the equation 
which formally coincides with Eq. (4) for <p(x) = 0. The mean 
value of the deviation of U10 or E{v 1 (x)}, therefore, with the 
assumption of the delta-correlated process <p( x), equals to the 
solution of the classic problem for ideal parameters of (]o, Eo: 

U1o = I< · exp( -iwif;x) ( 12) 

For K = 2, i.e. for autocorrelations and cross correlation of 
v1(x),v2(x), it follows from Eq.(8): 
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U2 0 = 2u11 } 
U{ 1 = -w 21/; 2U2o + Uo2 
Ufn = -2w21/;2Uu + w2sU2o 

The system of Eq.(13) is homogeneous similarly as all others 
for K > 2. Because the response in point x = 0 is deterministic. 
also the initial conditions for all partial systems are homoge
neous for K > 1. With regard to the fact that we are seekinp, 
the solution within an infinite interval, the solution of the sys
tem of Eq.(13) and all others for K > 2 can be only trivial. 

This results is, obviously, contradictory. It would mean that 
response is by no means influenced by imperfections. From 
Eq.(S) we would obtain jU10I = canst., meaning that all en
ergy would be permanently concentrated in the deterministic 
part of the response. The stochastic part of the response would 
equal zero, and should it not be so, the source of energy produc
ing it would be unclear. Therefore, we can conclude, in accor
dance with the results of the spectral decomposition method. 
Naprstek (1993) and the finite element method, Naprstek ana 
Fryba (1994), that the response cannot be modelled as white 
noise and that the non-zero correlation of <p(x) in longitudinai 
direction must be admitted. 

IMPERFECTIONS OF DIFFUSION TYPE 

The autocorrelation of imperfections in longitudinal direction 
can be described in the simplest case by the exponential func
tion. We shall arrive at white noise as input by the "filter" 01 

the first order in the variable x, described by the equation 

<p'(x) + a<p(x) = ~(x) (14\ 
which corresponds with the spectral density of imperfections 

-see e.g. Bolotin (1993), or Pugachev and Sinitsyn (1987): 

u~ a 
S'l'(a) = - 2 2 

7r0' +a 
where : 

~(x) - white noise of intensity s = 2u~ 
a - constant 

(lql 

With regard to Eq.(14) the Eq.(5) will be replaced by a sys
tem describing the three-dimensional Markov process 

v~ (x) = 
v~(x) = 
v~(x) = 

(lQl 

leading to the Fokker-Planck-Kolmogorov equation for the 
cross probability density of p( v 1 , v 2 , v3, x): 

together with the initial conditions : 

p(v1, v2, V3, x)ix=D = Cb(v!)b(v2)b(v3) (1&\ 
The same procedure as that used in the previous chapter will 

lead us with regard to Eq.(18) from Eq.(14) to the system of 

U{ o 1 = 
U,·' -

0,1,1-

} l = 0 } 

} l = 1 

(19) 



00 

Uj,k,l = j j j p(v1, v2, v3, x)v{v~v~dv1dv2dv3 (20) 
-00 

In this process the system closing operation was performed 
in Eq.(19) by the introduction of the assumption of the quasi
Gaussian response. The individual moments in Eq.(19) have 
the following interpretations : 

U1 ,o,o, U0 ,1 ,0 - mathematical mean values of displacement and 
its derivative (scale of normal force ) respectively, 

U1 0 1 U0 1 1 - cross correlation of the displacement and its 
'de~iv~tive with the imperfections process. 

We shall solve the system of Eq. ( 19) for the initial conditions 

U1,0,0 lx=O = J( ; U1 ,o,dx:O = 0 (21) 

In this process the second initial condition results from the 
fully deterministic response in point x = 0. The remaining two 
initial conditions results from the Sommerfeld conditions. For 
the afore mentioned mathematical mean values we shall obtain 

Uo,l,O = :([(a+ 20>.2e(- ta+E-i1J)x - (a- 20>.4e(- ~a-{-i'l)x] 
~ (23) 

Eq.(22) is fully identical with the formula for the mathemati
cal mean value of the displacement of E{ v(x)}, computed by the 
integral spectral decomposition method, see Naprstek (1993). 
Both addends in Eqs. (22) and (23) have the same pericd and 
the damping differs the less the higher 0'6, i.e. the indetermi
nateness of the bar density. For 0'6 ---+ 0 the second addend 
approaches zero and the first changes into the solution of the 
classic deterministic problem. The derivative of the amplitude 
of both addens in Eq.(22) is identical and, consequently, the 
decrement of the amplitude of U1 ,0 ,0 , i.e. the rate of determin
ism of the displacement in the proximity of point x = 0, is very 
small. In this the investigated case differs from the case of vis
cous damping, when the greatest drop of amplitude occurs at 
the very proximity of the origin. In contradistinction to viscous 
damping, however, our case does not concern the dissipation 
of energy, concerning merely the successive tranformation of its 
form from the deterministic to the stochastic one. The drop 
of the rate of determinism of the normal force according to 
Eq.(23) corresponds approximately with the drop of the rate 
of determinism of the displacement according to Eq.(22). Only 
the phase shift of U0 ,1 ,0 differs from that of U1 ,o,o and changes 
significantly with the dispersal 0'6, while for 0'6 ---+ 0 approaches 
7r /2. 

The correlation of the deviation and imperfection is described 
by the expression 

} ,• 2 2 

U - \W O'o [e<-*a+{-i'l)x _ e<-!a-{-i'l)x] 1,0,1 = • 
2~(a- 2iTJ) 

(24) 

The mutual relation of the displacement and imperfections 
in the origin equals zero. Its amplitude rises to a certain local 
maximum and then asymtotically approaches zero. 

The solution given by Eqs.(22) or (23),(24) holds, if 0'6 is 
relatively small or, in other words, if the condition 

(25) 

has been complied with. Under normal circumstances the 
condition (25) will be complied with, as a rule, if the spectral 
density (15) in point a= 0 is not too "sharp". The relative dis
persal of imperfections 0'6/1/;2 is compared with the square 01 

the inverted value of a certain velocity related with the length 
of the registrable correlation of the process If'( x ). The condi
tion (24) is complied with, if the length of the propagating wave 
exceeds the length of this correlation. This divide recalls the 
critical frequencies in the continuum discretized by the FEM. 
except that in our case the divide does not consist in the cross
ing over the natural frequency of the subsystem, but in the 
crossing over the boundary of determinism of the parameters 
of the continuum. Beyond this boundary the problem has not 
more the character of a genuine random process problem. The 
cases in which the condition (25) is not complied with can be 
divided into three categories : 

(2tjl 

(2(1 

Category (26) results in the solution characterized by beat
ing in space, thus forming a certain transition area. The cate
gories (27),(28) do not yield physically meaningful results. The 
solutions is either partly or entirely aperiodical which would 
mean that the excitation propagates at an infinitely high speea 
through such continuum. However, if c- 2 (x) drops to zero, it 
would mean a high probability of the state in which the imper
fections will absorb entirely ( on the dispersal level ) the whole 
nominal value of corresponding parameter. This case is out ol 
our analysis with regard to (2). 

Therefore, we can conclude that physical meaning is yielded 
by the cases complying the condition (25) or maybe the cases 
from the transition region (26). 

As it follows from the preceding considerations of the quasi
Gaussian response, the second order moments of the processes 
v1 (x), v2 (x) ( i.e. j + k = 2) are the highest independent re
sponse moments- all that with the assumption that I = 0, i.e. 
without the links with imperfections. 

Let us compile for the quantities U2,o,o, U1,1,o, Uo,2,o a system 
similar to U1,o,o,Uo,1,o,UJ,o,1,Uo,1,1 dealt with in the precedin.e; 
chapter. The links with these four moments will originate ex
pressing the moments U 2,o, 1 , U1, 1,1 with regard to the afore men
tioned hypothesis of quasi-Gaussian character of the response_ 
which will make the system closed and non-homogeneous. 

After lengthy and laboursome considerations, while neglect
ing the higher order terms, we shall arrive at the expression for 
the dispersal of the displacement v1(x): 

0'; = (A+ C +E)+ (A- C + E)exp( -a+ 2~)x
-2v' A2 + B 2 · cos(2w'l/;x- 'YA) · exp( -a+ 20x-
-2v' E2 + F2 · cos((w'l/;- TJ)X- 'YE) · exp(- ~a+ Ox 
tg-yA = B/A tg-yE = F/ E 

(2~l 
In Eq.(29) the A, B, C, D, E, F are constants dependent on 

input parameters E 0 , eo,w, uo, a. The first two terms are non
periodical and represent a certain "trend" around which the 
remaining two terms, which are of the character of a linearly 
damped harmonic wave, oscillate. 

The dispersal O';(x) rises from zero in point x = 0, where 
the response process v( x) is deterministic, and with rising x 
approaches asymtotically the sum of A+ C +E. The damping 
of the first periodical term is relatively small and influences the 
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I M{K)l .. 

a 

P1.9 
1.5 
1.1 

u 'a:!~ . ... 

Figure 1: Amplitude of the mathematical mean value lvo(:c)j 
and dispersal lu~(:c)l of the response (w = 2, 1/J = 2, uo = 1). 

Figure 2; Probability density p( Vc, x) at various distances from 
the point of x = 0; a) a = l.l,w = 2,1/J = 2,u0 = 1; b) 
a= 1.1, w = 1, 1/J = 1, u0 = l. 

image of (29) much more significantly than the second periodic 
term the damping of which is much greater. The significance of 
the second term increases with the growing u~; in opposite case 
it has a tendency to disappear. 

If we compare a few typical examples of the history of 
U1,o,o(z) and u~(z) (see Fig.l), we can see that the drop of the 
deterministic component response with the growing distance 
from the excitation point is accompanied by the approximately 
the same increase of the stochastic component until the de
terministic component practically disappears and the response 
becomes an almost homogeneous process with constant disper
sal. 

The successive transformation of energy form manifests itself 
on the probability density curve p( v) for the Individual points 
x. In point x = 0 this curve has the form of Dirac function 
which subsequently changes, in accordance with Eq. (29), into 
the "definite" Gauss curve (see Fig.2). This corresponds with 
the adopted assumtion of the pseudo-Gaussian character of the 
stochastic part of the response, if the imperfections are Gaus
sian. 

CONCLUSIONS 

In the propagation of harmonic wave mol ion in a continuum the 
material characteristic of which are burdened with random im
perfections it is possible to observe many specific effects which 
have been identified by the analysis outlined in the preceding 
text. 

The mathematical mean value of the response characterizing 
its deterministic part drops, slowly at first in the proximity of 
the excitation point. This is followed by a fast drop and finally 
by an asymptotic monotonous approach to zero for x -+ oo. 
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In the corresponding intervals of x the dispersal increases from 
zero ( fully deterministic process ) first slowly, then very speed
ily, and finally approaches asymptotically the constant charac
terizing energy per unit volume induced into the bar. Typicai 
is its alternating character while preserving the positive value. 
For x in the first two intervals, consequently, we can observe the 
response transformation from the deterministic into the stochas
tic part of the response with the preservation of the energy per 
unit volume. 

The probability density curve changes in dependence on tbe 
distance from the excitation point from the Dirac function in 
point x = 0 ( full deterministic response ) over the curves with 
irregularly growing dispersal to the typical Gaussian curve 01 

constant dispersal indicating that the process has become ho
mogeneous .. 

Remarkable phenomenon is the existence of the upper limh 
of the excitation frequency and the lower limit of the length 
of the propagating wave which is comparable with the mean 
correlation length of imperfections ( see an analogous effect in 
the FEM ). There are also transition zo11es. 

The mathematical model describipg the imperfections as 
white noise is inapplicable, as it leads to results which either 
neglect the imperfections or are at variance with the energy 
equilibrium law. For the same reasons the small parameter: 
method is inapplicable, too. It is necessary to apply at least 
the diffusional model which is characterized by the exponential 
conelation in space. 

The conclusions, obtained in this study by means of the the
ory of Markov processes, are in full agreement with the results 
arrived at by the author by the method of integral spectral d~ 
composition and the finite element method, i.e. by the methods 
based on an entirely different philosophy. The practical conse
quence of this and other author's papers is the recognition of the 
necessity of abandonment of the so far very widespread models 
of uncorrelated imperfections, as their application yields, par
t icularly in infinite regions, in not only quantitatively, but also 
qualitatively false results. 
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