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Campbell penetration depth in low carrier density superconductor YPtBi
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Magnetic penetration depth, λm, was measured as a function of temperature and magnetic field in single
crystals of low carrier density superconductor YPtBi by using a tunnel-diode oscillator technique. Measurements
in zero DC magnetic field yield London penetration depth, λL (T ), but in the applied field the signal includes the
Campbell penetration depth, λC (T ), which is the characteristic length of the attenuation of small excitation field,
HAC, into the Abrikosov vortex lattice due to its elasticity. Whereas the magnetic field dependent λC exhibit λC ∼
Bp with p = 1/2 in most of the conventional and unconventional superconductors, we found that p ≈ 0.23 �
1/2 in YPtBi due to rapid suppression of the pinning strength. From the measured λC (T, H ), the critical current
density is jc ≈ 40 A/cm2 at 75 mK. This is orders of magnitude lower than that of conventional superconductors
of comparable Tc.

DOI: 10.1103/PhysRevB.104.014510

I. INTRODUCTION

The superconducting phase transition temperature Tc of
the Bardeen-Cooper-Schrieffer (BCS) superconductors is typ-
ically of the order of ∼10−4TF , where TF ∼ 104–105 K is
the Fermi temperature [1,2]. This follows from the small
value of the energy gap in the density of states, �(0) ≈
1.76kBTc ≈ 2h̄ωD exp(−1/V N0). For example, for Tc = 10 K,
�(0) ≈ 1.5 meV � EF ∼ 1–10 eV. Here ωD is the Debye
frequency, V is the attractive pairing potential, and N0 is the
density of states at the Fermi energy EF . N0 has an exponential
role in determining the Tc which is often estimated from the
semiphenomenological McMillan equation [3,4]:

Tc ≈ 2h̄ωD

1.76kB
exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (1)

where λ is the electron-phonon coupling parameter and
μ∗ is the screened Coulomb interaction constant. The
weak-coupling BCS formula can be recovered by replacing
(λ − μ∗) with the product V N0 in the limit of small λ � 1.
This relation was successfully applied for many intermetallic
compounds with a typical carrier density n ∼ 1022 cm−3 [5].

However, discovery of superconductivity in materials with
a poor metallic normal state with n ∼ 1017–1019 cm−3

challenged the conventional approach. Such low n super-
conductors include elemental bismuth [6], SrTiO3 [7], and
half-Heusler compound RT Bi (R=rare earth, T =Pd or Pt)
[8–11]. The observed Tc’s (and often critical fields) in these
materials are by orders of magnitude higher than the expected
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Tc from the McMillan formula [12]. These low n supercon-
ductors have naturally much higher values of the ratio Tc/TF ,
pushing them closer to the Bose-Einstein condensation (BEC)
regime in which the spatial range of attractive interaction in
the Cooper pair, the superconducting coherence length, ξ ,
becomes comparable to the characteristic length associated
with the Fermi momentum, ξ ∼ h̄/pF . In YPtBi the kF ≈
0.4 nm−1, whereas in SrPd2Ge2 with a similar Tc it is kF ≈
10 nm−1. There are materials believed to be in the BCS-BEC
crossover regime, notably FeSe1−xSx [13].

Determination of the Cooper-pair density ns is required to
confirm the unusual low n nature of superconductivity in the
material of interest. Traditionally, the normal state electronic
concentration n is used to estimate ns by using a simple rela-
tion ns = n/2. While the relation usually holds in the normal
metals, accurate measurements of n in the normal state with
EF � 1 eV can be challenging due to strong temperature
dependence of n at low temperatures, anomalous Hall effect,
and the presence of the surface states. Here we probe ns

directly in the superconducting state of YPtBi by determining
the theoretical critical current density jc, the quantity directly
proportional to ns.

The half-Heusler compound YPtBi is a topological
semimetal with n ∼ 1018 cm−3 at low temperatures [9,14]. Its
superconductivity is attracting considerable attention because
Tc is about fourfold higher than that of doped SrTiO3 with a
similar n ∼ 1018 cm−3, and it was suggested that its super-
conductivity arises from the j = 3/2 Fermi surface [15]. The
possible superconducting states include unprecedented spin-
quintet and septet states [15,16]. The topological normal state
is driven by strong spin-orbit coupling that inverts the s-orbital
derived �6 band and the p-orbital derived �8 band [15]. The
chemical potential lies about 35 meV below a quadratically
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touching point of �8 bands [9,15] due to naturally occurring
crystal imperfection [17].

Recent experimental results support unconventional su-
perconductivity in YPtBi. Tc can be enhanced by physical
pressure with an initial linear rate of 0.044 K/GPa [18]. The
upper critical field at zero temperature is μ0Hc2(0) = 1.5 T
[9], which is higher than the Pauli limiting field 1.4 T [9]
for a weak-coupling spin-1/2 singlet superconductor. The
temperature dependence of Hc2(T ) is practically linear over
almost an entire superconducting temperature range; quite
different from conventional parabolic behavior [9]. A muon
spin rotation study determined λL(0) = 1.6 μm [19], which is
an order of magnitude greater than that of the strong type-II
superconductor CeCoIn5 where λ(0) ≈ 0.26 μm [20]. Coher-
ence length at zero temperature is ξ (0) = √

φ0/2πHc2(0) ≈
15 nm. The Ginzburg-Landau parameter is κ = λL(0)/ξ (0) ≈
102 � 1/

√
2, placing it in the strong type-II regime of super-

conductivity.
In the mixed state of a type-II superconductor, the small-

amplitude AC magnetic penetration depth is governed by the
elastic properties of the Abrikosov vortex lattice in the lin-
ear response regime. This means that the amplitude of the
AC field excitation, HAC , is not large enough to displace the
vortex out of the pinning potential well, and it only perturbs
the vortex position within the validity of Hooke’s law. In
this case, the penetration depth is described by the Campbell
penetration depth λC that determines the attenuation range
of the AC perturbation from the sample surface to the inte-
rior, BAC (x) ∝ μHACe−x/λC in a semi-infinite superconductor
[21–27]. Here μ is magnetic permeability, and x is the dis-
tance from the surface. Since λC is not commonly measured
due to amplitude/sensitivity limitations of the conventional
AC techniques, we provide a simple derivation of λC in the
Appendix for completeness. The important advantage of em-
ploying λC is that it gives access to the shielding current
density via a relation λ2

C = H0rp/ jc. Here rp is the radius
of the pinning potential, and H0 is the applied external DC
magnetic field (see the Appendix for details). Importantly,
the critical current density is estimated at the frequency of
the measurement, and the rf regime gives access to almost
unrelaxed values. The initial vortex relaxation is exponential,
and hence the conventional techniques estimate relaxed values
far from the true jc [28–30].

While analysis of the relaxed shielding current is com-
plicated because of inclusion of the magnetic relaxation
parameters, the unrelaxed critical current, jc = H0rp/λ

2
C , of-

fers direct access to the superfluid density ns ∝ jc [2,31,32].
In this work, we use a tunnel diode oscillator (TDO) technique
to measure λC (T, H ) and determine jc(T, H ) in YPtBi. The
determined jc is orders of magnitude smaller than that of well-
known superconductors with the typical carrier density, and
its rapid suppression by the magnetic field provides valuable
insight into the fascinating nature of superconductivity at the
low carrier density regime exemplified by YPtBi.

II. EXPERIMENT

YPtBi single crystals were grown out of molten Bi
with starting composition Y:Pt:Bi = 1:1:20 (atomic ratio)
[9,15,33,34]. The starting materials Y ingot (99.5%), Pt

powder (99.95%), and Bi chunk (99.999%) were put into
an alumina crucible, and the crucible was sealed inside an
evacuated quartz ampule. The ampule was heated slowly to
1150 ◦C, kept for 10 h, and then cooled down to 500 ◦C at a
3 ◦C/h rate, where the excess of molten Bi was decanted by
centrifugation.

The variation of the rf magnetic penetration depth �λm

was measured in a dilution refrigerator by using a TDO
technique [35] (for review, see Refs. [36,37]). The sample
with dimensions (0.29 × 0.69 × 0.24) mm3 positioned with
the shortest direction along HAC was mounted on a sapphire
rod and inserted into a 2-mm inner diameter copper coil
that (when empty) produces rf excitation field with amplitude
HAC ≈ 20 mOe and frequency of f0 ≈ 22 MHz. The shift of
the resonant frequency (in cgs units), � f (T ) = −G4πχ (T ),
where χ (T ) is the differential magnetic susceptibility, G ≈
f0Vs/2Vc(1 − N ) is a constant, N is the effective demag-
netization factor, Vs is the sample volume, and Vc is the
coil volume [36]. The constant G was determined from the
full frequency change by physically pulling the sample out
of the coil. With the characteristic sample size, R, 4πχ =
(λm/R) tanh(R/λm) − 1, from which �λm can be obtained
[36].

III. RESULTS

Figure 1(a) shows temperature variation of the rf magnetic
penetration depth λm(T ) in a single crystal of YPtBi in various
applied DC magnetic fields HDC from 0 to 30 kOe (bottom
to top). For HDC = 0, measured �λm(T ) is the zero field
limiting London penetration depth �λL(T ) which exhibits
a sharp superconducting phase transition at T ≈ 0.8 K. We
found �λL(T ) = AT α where A = 1.98 μm/Kα and α = 1.2
[15]. The observed exponent α is consistent with the pres-
ence of line nodes in the superconducting gap and moderate
impurity scattering. The large prefactor, A ∝ λL(0)/�(0) is
compatible with a low carrier density superconductor within
London theory λL(0) = (mc2/4πne2)1/2. For comparison,
A = 4–15 Å/K is observed in d-wave line-nodal high-
temperature cuprate superconductors [38] and 190–370 Å/K
in CeCoIn5 [20,39,40].

Furthermore, YPtBi exhibits very pronounced field depen-
dence of λm. It is notable even at the lowest HDC = 100
Oe which is 0.007Hc2(0). Here we use Hc2(0) = 15 kOe
taken from Ref. [9]. By measuring λm(H, T ) as a function
of temperature in different applied fields we constructed the
magnetic field temperature H-T phase diagram of YPtBi. Due
to the broadness of the superconducting transition, we used
three different criteria for the determination of Tc, as illus-
trated in the inset of Fig. 1(b). T1 was determined at the sharp
maximum of dλm/dT (black squares). T2 was determined at
the intersection of the lines through the data in the super-
conducting state and the normal states (blue circles). T3 was
determined at the onset of �λm(T ) deviation from the normal
state behavior (red up-triangles). The phase diagram from rf
magnetic penetration depth data is shown in the main panel of
Fig. 1(b). For reference, we show the diagram as determined
from resistivity measurements by Butch et al. [9], using zero
resistivity (black solid line), crossing point of linear extrap-
olations (blue dashes), and onset of deviation (red dash-dot)
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FIG. 1. (a) Temperature variation of the radio-frequency mag-
netic penetration depth, �λm(T ), in various applied DC magnetic
fields HDC. (b) The H -T phase diagram constructed from �λm(T, H )
using characteristic temperatures, T1 (maximum of dλm/dT , black
squares), T2 (crossing point of linear extrapolations, blue circles),
and T3 (onset of deviation, red up-triangles) as shown in the inset.
The lines in the main panel of (b) show for reference the H -T phase
diagram as determined from the field-dependent electrical resistivity
by zero resistivity (black), crossing point of linear extrapolations
(blue dashes), and onset of deviation (red dash-dot) criteria [9].

criteria. The phase diagram as determined from maximum of
dλm/dT line is closely following the phase diagram as de-
termined from resistivity measurements using ρ = 0 criteria
[9]. However, we detected an apparent diamagnetic response
in YPtBi at notably higher fields than in resistivity measure-
ments, suggesting persistence of superconductivity in some
nonbulk form [41]. A discrepancy between Hc2 as determined
from bulk thermal conductivity and nonbulk resistivity mea-
surements is a known problem [42] and it is usually assigned
to the superconducting layer surviving at the surface. Perhaps
it is related to the third critical field in superconductors pre-
dicted theoretically by Saint-James and Gennes [43] when
a thin superconducting layer is formed on the flat surface

parallel to the field. Recently, a surface-sensitive tunneling
experiment on YPtBi detected energy gap spectra at higher
temperatures than Tc ≈ 0.8 K [44]. A similar signature of the
superconducting phase was reported in another half-Heusler
compound LuPtBi, which was attributed to the presence of
Van Hove singularity near EF [45] and surface pairing states
[46]. The shape of tunneling spectra in the superconducting
state is inconsistent with an isotropic s-wave gap in both
YPtBi and LuPtBi [44,45].

We focus now on the variation of λm with finite HDC in
the mixed state. The measured magnetic penetration depth
satisfies the relation λ2

m = λ2
L + λ2

C in the approximation of a
linear elastic response of a vortex lattice to a small amplitude
AC perturbation HAC [21–23]. The TDO technique is a per-
fect probe for this measurement because of small frequency,
f0 = 22 MHz, and small amplitude of the perturbation, HAC =
20 mOe. Since λL(T ) = λL(0) + �λL(T ) where λ(0) =
1.6 μm [19], we can readily calculate λC (T ) in various HDC.
However, we took a conservative approach, assuming that this
approximation is valid only at temperatures below 0.5T1 be-
cause λm(T ) becomes comparable to the size of the sample as
temperature increases towards Tc. The calculated λC =√

λ2
m − λ2

L at various HDC is shown in Fig. 2(a). In all mea-
sured HDC, λC (T ) shows monotonic increase with temperature
as the superconductor allows more penetration of the rf field
with increasing temperature.

Figure 2(b) shows the field-dependent λ2
C (H ) at several

temperatures. When critical current density does not vary
much with field, we expect λ2

C (H ) ∼ H and it has been ob-
served in most cases [41,47,48]. However, YPtBi exhibits
significantly more curved λ2

C (H ), indicating nearly logarith-
mic behavior at low fields. This rapid rise of λm(H ) at low
fields is unusual but may be explained considering very large
values of λm leading to strong intervortex interaction due to
significant overlap already in low fields.

In Fig. 3, we compare this anomalous λC (H ) in YPtBi
with SrPd2Ge2 which has a normal carrier density and ex-
hibits H-linear behavior of λ2

C (H ). The observed power-law
behavior of the Campbell penetration depth is highly unusual,
and it is one of the most significant observations in this work.
Typically, λC varies as H1/2, but we found that it varies as
H1/4 in YPtBi. The power-law behavior can be explained if
the Labusch parameter is field dependent and varies as H1/2,
which is consistent with increasing the effective size of the
pinning potential. Alternative possibilities include the anhar-
monic pinning potential or the breakdown of the conventional
picture of Campbell penetration depth.

As noted above from the known λC (T, H ), one can eval-
uate critical current density jc via jc = HDCrp/λ

2
C (see the

Appendix for details) where rp is a characteristic radius of the
pinning potential, usually taken equal to the coherence length,
rp(T ) = ξ (T ) [21,22,41,47,48]. Figure 4 shows the calculated
jc(T ) in YPtBi, obtained from λC (T ) measurements taken
in minimum applied HDC = 100 Oe. We compare jc(T ) in
YPtBi to the jc’s determined in similar Campbell penetration
depth measurements in some representative superconductors,
LiFeAs [49] and SrPd2Ge2 [41]. The former is known as a
two-band superconductor with full gaps [50], and the latter is a
single-gap BCS superconductor [41]. The compared jc(T, H )
in these superconductors were obtained by using the same

014510-3



HYUNSOO KIM et al. PHYSICAL REVIEW B 104, 014510 (2021)

FIG. 2. (a) Temperature variation of the Campbell length
λC (T ) = √

λ2
m(T ) − λ2

L (T ) in DC magnetic fields HDC as indicated
in the panel. (b) Isotherms of field variation of λ2

C (H ) in YPtBi. Inset
shows zoom of the low-field regime.

TDO technique. In particular, we used the same TDO setup
for YPtBi and SrPd2Ge2.

In YPtBi, the highest jc(T ) ≈ 40 A/cm2 is observed
at T ≈ 75 mK, and jc(T ) monotonically decreases with
temperature. In LiFeAs, jc ≈ 1 × 106 A/cm2 at the lowest
temperature, and it monotonically decreases by two or-
ders of magnitude upon warming. In SrPd2Ge2, jc ≈ 8.3 ×
104 A/cm2 at the lowest temperature with HDC = 200 Oe.
However, its temperature variation is nonmonotonic and ex-
hibits a maximum at an intermediate temperature, which
was attributed to a matching effect between temperature-
dependent coherence length and relevant pinning length scale
[41]. At a higher HDC = 4 kOe, jc(T ) recovers a monotonic
decrease with increasing temperature. Even when Tsc(H ) of
SrPd2Ge2 was reduced to 0.86 K in HDC = 4 kOe which is
close to Tsc of YPtBi with 100 Oe, jc is still two orders of
magnitude greater, and the difference gets even bigger at base
temperature. It is also instructive to calculate the depairing
current density at which Cooper pairs break apart reaching
critical velocity, 4πc−1 j = φ0/(3

√
3λ2

Lξ ) ≈ 1 × 107 A/cm2,
which is much larger than jc due to pinning, but two orders

FIG. 3. Field-dependent Campbell penetration depth λ2
C (H ) of

YPtBi (red line with solid circles) shown in comparison with con-
ventional metal/superconductor with similar Tc, SrPd2Ge2. The data
are normalized to the values determined at 0.65Hc2(0) for clarity.

of magnitude less than in “typical” normal carrier density
superconductors [28,30].

In Table I, we compare normal state Hall constants RH

reported for YPtBi [9] and SrPd2Ge2 [51]. In both compounds
the Hall resistivity ρxy(H ) is field linear, which enables RH

definition from the slope of the curve and sample geometry.
The reported RH values are −1.6 × 10−4 cm3/C [51] and
+2.4 cm3/C [9] for SrPd2Ge2 and YPtBi, respectively. In the
single-band Drude model, the carrier density satisfies a sim-
ple relation, RH = 1/ne where e is the electron charge. The

FIG. 4. Temperature variation of the theoretical critical current
density jc(T ) in a selection of superconductors. We show the data in
YPtBi in comparison with iron-based stoichiometric clean LiFeAs,
and the low-temperature conventional superconductor SrPd2Ge2

measured in two different magnetic fields. Tsc stands for the super-
conducting transition at a given magnetic field. For YPtBi, Tsc = T1

(see Fig. 1).
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TABLE I. Hall constant RH , n, and jc in YPtBi and SrPd2Ge2.

RH (cm3/C) n (cm−3) jc (A/cm2)

YPtBi +2.4 [9] 2.6 × 1018 40a

SrPd2Ge2 −1.6 × 10−4 [51] 3.9 × 1022 8300b

aDetermined at 75 mK (0.096Tc) and 100 Oe [0.007Hc2(0)].
bDetermined at 60 mK (0.022Tc) and 200 Oe [0.042Hc2(0)].

calculated carrier densities are electronlike ne = 3.9 ×
1022 cm−3 for SrPd2Ge2 and holelike nh = 2.6 × 1018 cm−3

for YPtBi. For reference we also present jc in both SrPd2Ge2

and YPtBi in Table I.

IV. DISCUSSION

The carrier density n is responsible for the observed the-
oretical current density because jc ∝ nsvs where vs is the
velocity of the supercurrent [2,31,32]. Provided ns ≈ n/2, jc
in YPtBi is two orders of magnitude smaller than that in
SrPd2Ge2, while the normal state n in YPtBi is smaller by
four orders of magnitude. Consequently, vs in YPtBi is two
orders of magnitude greater than that in SrPd2Ge2.

In Ginzburg-Landau theory, jc is associated with the de-
pairing velocity vs = �(0)/h̄kF , and since �(0) values in
both superconductors are of the same order, the different vs

is accounted by different kF values in these two compounds.
In SrPd2Ge2, kF ≈ 10 nm−1 in free electron approxima-
tion, i.e., kF = (3π2n)1/3 with n = 2.6 × 1022 cm−3 which
is about two orders of magnitude greater than that in YPtBi,
kF = 0.37 nm−1 [15]. We note that the expression for the
depairing velocity used above was originally derived in the
context of the BCS theory, and it uses the concept of dimin-
ishing superconducting energy gap due to additional kinetic
energy. However, this relation could be used in any type of
superconductors although the magnitude of the depairing ve-
locity cannot be determined accurately. Hence, this expression
should be used with caution. We employ this expression to
reconcile the orders of difference in the magnitude of the
critical current density between SrPd2Ge2 and YPtBi, and it
provides a reasonable explanation about it.

There has been much effort to elucidate the unconventional
superconductivity in the low carrier density superconductors
including YPtBi and SrTiO3. Recently, the unexpectedly high
Tc in YPtBi was explained by the electron-phonon pairing
mechanism with polar optical phonon mode within the j =
3/2 Luttinger-Kohn four-band model [52]. In the similar low
carrier density superconductors, the plasmonic [53] and nona-
diabatic [54] superconducting mechanisms were proposed in
SrTiO3.

The structure of the superconducting energy gap and the
symmetry of pairing interaction are prerequisites for under-
standing the superconducting mechanism, but low Tc in the
low n superconductors makes the experimental investigation
difficult. The half-Heusler compounds RT Bi (R=Y,La,Lu;
T =Pt,Pd) exhibit relatively high superconducting transition
temperatures Tc ∼ 1 K [9–11], and a nodal superconduct-
ing gap was observed in YPtBi [15]. Subsequently, various
exotic pairing symmetries were proposed including nematic
d-wave [55,56] and j = 3/2 high-spin superconductivity

[15–17,46,57,58]. In general, the high-spin superconductiv-
ity exhibits topological gap structures with the possibility of
harboring the Majorana surface fluid [46,59], which makes
the low carrier density superconductor RT Bi a promising
platform for the fault-tolerant quantum devices.

V. SUMMARY

We measured rf superconducting magnetic penetration
depth in single-crystal YPtBi. The London penetration depth
is consistent with the nodal superconductivity in YPtBi. In
the finite DC magnetic fields, the measured Campbell penetra-
tion depth exhibits unusual subquadratic power-law behavior
in the low-field range. From the variation of the Campbell
penetration depth, we estimated the theoretical critical current
density which is orders of magnitude smaller than that of the
superconductors with a typical carrier density. Therefore, we
confirmed the low carrier density nature of superconductivity
in YPtBi.
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APPENDIX: ILLUSTRATION OF THE CONCEPT
OF CAMPBELL LENGTH

Here we provide simple arguments behind the concept of
pinning and Campbell penetration depth. This physics has
been discussed multiple times in the past 80 years and is
textbook material. However, we felt that it is instructive to
write down the derivation with units and show step by step the
flow. There is still a significant degree of confusion dealing
with currents, fields, and flux in cgs and SI. There is also some
confusion about the Campbell penetration depth written for a
single vortex featuring single flux quanta φ0 vs what should
be with the magnetic induction, B, recognizing that this is a
collective effect. This is because the critical current density
is introduced via the single vortex pinning. Unfortunately, the
original derivation by Campbell [21,22] is too short and too
schematic to our taste and we wanted to explain everything
step by step.

1. Single vortex pinning

Figure 5 shows the schematics of the vortices and pinning
potential model. The vortices move along the horizontal x
axis, the electrical current flows into or out of the page along
the y axis, and the external magnetic field is applied along the
positive vertical direction of the z axis. The displacement u(x)
is the deviation of a vortex from the center of its potential well.
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FIG. 5. Schematic for movement of vortices in the pinning po-
tential. The violet vertical bars represent vortices, and the red
parabolas are the pinning potential, U (u). The vortices move along
the horizontal line (x axis), the electrical current flows into or out
of the page (y axis), and the external magnetic field is applied along
the positive vertical axis (z axis). The displacement u stands for the
horizontal position of each vortex from the equilibrium point.

In equilibrium, u(x) = 0 for all vortices and their distribution
is constant.

Assuming a vortex along the positive z axis in a pinning
potential U (u) (real units energy distance), then for a single
vortex, the Lorentz force per unit length is

fL

[
N

m

]
= j

[
A

m2

]
× ẑφ0[T m2]. (A1)

Here, φ0 = 2.068 × 10−15 Wb = T m2. (Note, we use SI units
throughout the Appendix.)

The electrical current density j along the positive y direc-
tion would push the vortices to the positive x direction with the
magnitude, fL = jφ0. It is usually assumed that the pinning
potential is given by

U (u) = 1

2
αu2

[
J

m

]
, (A2)

where α is the so-called Labusch parameter:

α = d2U (u)

du2

[
J

m3

]
. (A3)

The pinning force due to U (u) is defined by

fp = −dU (u)

du
= −αu. (A4)

In the presence of the electrical current, the two forces, fL and
fp, will act on a vortex in the opposite directions, i.e., fL +
fp = 0. In this case, the critical current density, jc, is reached
when the magnitudes of two forces become equal at a distance
u = rp that is called the “radius of the pinning potential.” In
equilibrium, jcφ0 = αrp, and therefore jc can be expressed as

jc = αrp

φ0

[
A

m2

]
. (A5)

The major contribution to pinning comes from the gain of free
energy in the normal core volume of a vortex and, therefore,
rp is usually assumed to be equal to the superconducting
coherence length ξ . Of course, the pinning theory is much
more complex, and the readers are referred to the excellent
review articles, Refs. [23,28].

2. The Campbell penetration depth

The Campbell length λC is defined for a large number of
vortices since this is a wavelike perturbation in the vortex
lattice treated as an elastic medium [23,28]. In other words, λC

determines how far a small-amplitude AC perturbation on the
superconductor edge propagates into the vortex lattice. [21].
Let us assume a uniform distribution of vortices [e.g., after
field cooling (FC)] and hence a uniform magnetic induction
B0. We apply a small AC field on the sample edge, i.e.,
B = B0 + BAC , where BAC � B0. In equilibrium, the vortices
are equally spaced by the distance d0 found from the condition
that each vortex carries a single flux quantum, φ0:

d0 =
√

φ0

B0
= 45.473√

B[T]
[nm]. (A6)

Here we assumed a square vortex lattice instead of triangular
for simplicity, which does not alter the results.

Consider a one-dimensional problem (semi-infinite super-
conductor positioned at x � 0) with a magnetic field applied
along the positive z axis and electric current flowing along
the positive y axis. At a distance, x, from the edge, a row of
vortices uniformly spaced along the y axis is displaced by u(x)
from their equilibrium positions. The next row of vortices is
displaced by the distance d0 + u(x + d0) − u(x) counted from
the first row of vortices (see Fig. 5). Therefore, the distance
between the vortices, d (x), satisfies

d (x) = d0

[
1 + u(x + d0) − u(x)

d0

]
≈ d0

(
1 + du

dx

)
(A7)

because d0 is the smallest physical distance in the problem.
Therefore, the magnetic induction B at the location x is given
by

B(x) = φ0

dd0
= φ0

d2
0

(
1 + du

dx

) = B0

(
1 − du

dx

)
, (A8)

where we assume that du
dx � 1, which can be easily checked

with the final solution for u(x). Note that if all vortices
were displaced uniformly, u = const, then B(x) remains un-
changed.

This perturbation of B(x) corresponds to the current den-
sity from the Maxwell equation, μ0J = ∇ × B. Assuming
B = B(x)ẑ,

μ0Jy = −∂B(x)

∂x
= B0

d2u

dx2
. (A9)

The Lorentz force on vortices per unit volume is

FL = JB0 = B2
0

μ0

d2u

dx2
, (A10)

which must be balanced by the pinning force. From the pre-
vious (single vortex) section, each vortex experiences pinning
force per unit length, fp = −αu, and there are approximately
N = B0/φ0 vortices per unit area. The total pinning force per
unit volume, Fp, can be written in the form

Fp = N fp = −αB0

φ0
u. (A11)
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The two forces, FL and Fp, balance each other in the steady
state, and the characteristic penetration depth is determined
from the following relation:

FL + Fp = B2
0

μ0

d2u

dx2
− αB0

φ0
u = 0 (A12)

or

λ2
C

d2u

dx2
= u. (A13)

Here we introduced the Campbell length:

λ2
C = φ0B0

μ0α

[
T2m2

H
m

J
m3

= m2

]
. (A14)

Note that the radius of the pinning potential, rp, does
not explicitly enter here. This is true only for parabolic
pinning potential within the validity of Hooke’s law for
vortex displacement. The nonparabolic potentials have also
been considered and lead to a variety of interesting effects
[24,26,27,60].

The Labusch constant α can be evaluated from the mea-
sured λC by using (A14). The solution of Eq. (A13) for u is

u(x) = u0e−x/λC . (A15)

Therefore the magnetic induction can be found by using (A8)
as follows:

B(x) = B0

(
1 − du

dx

)
= B0

(
1 + u0

λC
e−x/λC

)
. (A16)

At the boundary, x = 0, and B = B0 + BAC where

BAC = B0
u0

λC
, u0 = λC

BAC

B0
.

The displacement u(x) in terms of BAC and B0 can be written
in the form

u(x) = λC
BAC

B0
e−x/λC (A17)

and we can express B(x) as

B(x) = B0

(
1 + λC

BAC

B0

u0

λC
e−x/λC

)
= B0 + BACe−x/λC ,

(A18)

which is expected from the boundary conditions.
Finally, we derive a practical expression for Jc in terms of

λC that can be experimentally determined. Using (A18),

λ2
C = φ0B0

μ0α
= φ0H

α
,

φ0

α
= λ2

C

μ0

B0
.

Thus, Jc is related to λC as follows:

Jc = αrp

φ0
= B0rp

μ0λ
2
C

= H0rp

λ2
C

. (A19)

We use the relation (A19) to calculate the critical current
density from the measured Campbell penetration depth in the
main text.
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