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ABSTRACT

For the most part, solutions to the problems of making
inferences about the parameters in the Weibull distribution
have been limited to providing simple estimators of the para-
meters. Little has been known about the properties of the
estimators.v In this paper the small and moderate sample
size properties of the maximum likelihood estimators are
studied and their superiority is established. The problem
of making further inferences which are based on the maximum
likelihood estimates of the parameters is then considered.

The inferences that are presented can be divided into
those based on a single sample and those based on two inde-
pendent samples from Weibull distributions and include solu~
tions to the standard'problems of interval estimation and
hypothesis testing. In addition tolerance limits and con-
fidence limits on the reliability are given. These proce-
dures are accomplished by the discovery of certain pivotal
functions whose distributions can be obtained by Monte Carlo
methods. Although the distributions are only tabulated for
complete samples the procedures which are presented can be
extended to the case of'censored sampling since for this

type of sampling the basic functions remain pivotal.
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I. INTRODUCTION

A. The Weibull Distribution

In 1951, the Swedish Engineer W. Weibull advanced a
statistical distribution which had been found to provide
a good model for a variety of fatigue studies, [l1]. fThe

Weibull cumulative distribution functicn is given by

1 - Exp[—(x—G)c/bc] for x> G, b=0, c=0

Wix:;G,b,c) = {3.
0 otherwise

Here G will be referred to as the location parameter, b
as the scale parameter and c as the shape parameter.

When c=1, the Weibull distribution reduces to the ex-
ponential distribution which has enjoyed wide use as a model
in many failure studies. To csome extent this popularity is
due more to its simplicity than to its appropriateness as a
model since the exponential distribution has the property
that the probability of failure of a component for any given
interval is independent of its age at the beginning of the
interval. This property can be expressed by saying that the
failu;e rate is constant. On the other hand, the Weibull
distribution has the property that for ¢ > 1 its failure
rate is an increasing function of its age and for c < 1 its
failure rate is a decreasing function. This flexibility
along with its success as a medel in empirical studies by
such men as Weibull [2], Freudenthal énd Gumbel [3], and

Lieblein and Zelen (4] has brought it into wide use as a



model for most failure distributions and a wide variety of

cther applications.

B. OCbiectives

In what follows it will be assumed in equation (1) that
the location parameter is known but that the scale and shape
parameters ars both unknown. In this case it can be assumed
that G=0 so that from (1) the Weibull density function may be
written as

w(x;b,c) = cb—cxc—lExp[—(x/b)c] , X > 0. (2)

The problem of making inferences about the population
becomes then a problem of making inferences about the un-
known parameters b and c. In all cases these inferences
will be based on the maximum likelihood estimators, b and é,

which satisfy (see, for example, Leone et al [5]) the

equations

n z xg ln(xi)

= -n - + £ In(x;) =0 (3)

c ; x.C

i
and
b o= (3x,%m) /¢ (4)

where X i=1, 2, ..., n, represent a sample from a Weibull

distribution.

Thevinferences which are presented can be divided into
those based on a single sample and those based on two inde-
dent samples from Weibull distributions. In the case of the
single sample the maximum likelihood estimators are compared

with other estimators available and unbiasing factors for the



estimate of the shape parameter are given. Confidence inter-
vals for each parameter with both parameters assuamed unknown
are presented. From these, tests of hypothesis are easily
obtained. In the case of the test of c=cg against c=Cp the
power is given as a function of cA/co and n. The power of
the test of b=bo against b==bA is given as a function of
(:bA/bo)c and n. In addition, the distribution of the maxi-
mum likelihood estimator of the reliability is studied.

Exact lower confidence limits are given and are compared
with those given by Johns and Lieberman [6]. vy prcbability
tolerance limits for proportion B8 are also derived and tabled
as a function of n, Yy, and B.

In the case of two independent samples, a test of the
‘equality of the shape parameters in two Weibull distributions
with the scale parameters unknown is given. Tests for the
equality of the scale parametefs are also presented along
with a procedure for selecting the Weibull process with the
larger mean life.

In each case the inferences are made possible by the use
of Monte-Carlo methods to generate the distributions of cer-
tain pivotal functions. Tables containing the percentage
points of the generated distributions are given in Appendix A.
A discugssion of the numerical methods and the accuracy of the

results 1s included.

C. Review of the Literature

—— - s e g

Since the maximum likelihood estimators have not been

chtained in closed form, most of the published work on the



Weibull distribution has been concerned with presenting
simple point estimators. Amcng them are estimators given by
Gumbel [7], Menon [8], Miller and Freund [9], and Antle and
Bain [10]. A comparison of these estimators is also made in
[10]. The maximum likelihood estimators have been obtained
by Leone et al [5] and also by Cohen [11l] and Harter and'
Moore [12]. However, no extensive comparison has been made
between the maximum likelihood estimators and the others.
The distributions of these estimators has not been obtained
and little has been given on their properties for small and
moderate sample sizes.

Very little has been done with regard to confidence in-
tervals for the parameters or tests of hypotheses. Bain and
Weeks [{13] have provided confidence interwvals for each para-
meter with the other parameter known based on a single order
statistic, and confidence intervals for b based on the maxi-
mum likelihood estimator of b with ¢ known. Harter and Moore
[12] give confidence intervals for b based on the maximum
likelihood estimator of b wiﬁh ¢ known for censored samples.

Johns and Lieberman [6] have given exact confidence
limits on the reliability which are asymptotically efficient.
The procedure is valid for censored sampling.

The only work on the two sample problems in the Weibull
distribution is due to Qureishi [14] and Qureishi, Nabavian
and Alanen {15]. These papers give procedures for selecting
the Weibull process with the larger mean life when the shape

parameters are equal.
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IT. INFERENCES BASED ON A SINGLE SAMPLE

A. Estimation of ¢ (b unknown)

1. Confidence Intervals for c

In what follows, Ell is used to denote the maximum like—
lihood estimator of ¢ when in fact the sampling is from a
Weibull distribution with b=1 and c=1, i.e. a standard ex-
ponential distribution. The following theorem which was
noted in [10] will be useful.

Theorem A: c/c is distributed independently of b and ¢ and

has the same distribution as 511'

Proof: Let Y i=l,..., n, be a random sample of size n

from a standard exponential distribution and x,, i=1,...,n,

1

the random sample from a Weibull generated by taking

Xi = b(yi)l/c. Now &, the moeximum likelihood estimate based

on the xi's, satisfies (3). But if (3) is expressed in terms

cf the yi's it becomes

_n_ g 2+ ;Ilnyp) = o. (5)

But the sclution of (5) for é/c is the same as the solution

of o
€11
T Vs In(y.)
~~ - n L% 4 pn(y) = O, (6)
¢ C11
11 LY
for éll; Thus é/c = éll wheneverx c and'éll are based on

" samples related in the manner described above, and it follows

that é/c has the same distribution as Cyye



The distribution of Cqp Was obtained by Monte Carlo

mnethods. Table Al contains percentage points of the distri-

bution of C11 which can then be used to construct confidence
intervals for c¢ with b unknown. 100(l-y) percent confidence

intervals will be of the form (8/22, é/zl) where 2, and 2

1 2

from Table Al, are such that

~

P[zl < C

11 < 22] = 1-vy.
2. Unbiased Maximum Likelihood Estimator of c

Theorem A confirms the feeling expressed by Leone et
al [5] that the percent of bias in é is independent of the
true value of ¢ and b. The generated distribution of ;ll
provides the féctors B(n) such that E[B(n)é] = ¢c. These

unbiasing factors are given in Table 1.

Table 1

Unbiasing Factors for the M.L.E. of c

n 5 6 7 8 9 10 11 12 13
B(n) | .669 .752 .792 .820 .842 .859 .872 .883 .893
n 14 15 16 18 20 22 24 26 28

B (n) .901 .908 .914 .923 .931 .938 .943 .947 .951

n 30 32 34 36 38 40 42 44 46

B(n) .955 .958 .960 .962 .964 .966 .968 .970 .971

B (n) .972  .973 .974 .975 .976 .977 .978 .979 .980

n 66 68 72 76 80 85 90 100 120

B (n) .980 .981 .982 .983 .984 .985 .986 .987 .990




3. Tests of Hypotheses of ¢ and the Power of the Tests

c=c_. where

Consider the test of HO: c=c against HA: A

Cp > C4- Clearly, the y significance level test based on the

function c/co yvields the critical region (coz )., The

1-v’
power of this test is ©P|[ c > coll—ylHA ] or, equivalently,
P{ éll > (co/cA)ll_Y }]. It is independent of b and depends
only on co/cA, vy and n. Figures la and 1lb give the power of
the .05 and .10 level tests as a function of CA/CO' where
cA/co > 1 for n=5, 7, 10,’15, 20, 30, 50, 70, 90 and 120.
Similarly, the power of the .10 level test with CA/CO < 1l is

given in Figure 2.
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4. Asymptotic Convergence of the Distribution of c
Although our immediate concern is with é, for future

reference the asymptotic covariance matrix of b and ¢ will

be derived. The asymptotic covariance matrix is given by
T 9% L 31n L 51n L%
~-E[— 5 ] ~-E[ 3 5 ]
3b ¢
1/n
2
3ln L 31ln L 3 1ln L
acC _
where L denotes the likelihood function, w(xi; b, c).

Differentiation of 1n L yields

2

3~l27£ = c/b2 - c(c+1)xc/bC+2

ab
321n L C
35 30 -1/b + (c/D)x/D) 1n(x/b) + (x/b)S/b
821n L 2 2
= ~1/c® - (x/b)%1n“(x/b)

ac

Now E(x®) = b, E[(x/b)®In(x/b)1=(1/e) ftin(t)e fat=[1-r'(1)1/c,

and E[(x/b)clnz(x/b)]'= (1/02) f%ln(t)e—tdt=[2r'(l)+r"(l)]/cz.

Using the results given in [8] that r'(1) -.5772 and
r''(1) = 1.9781, we have

E[(x/b)C1n(x/b)] = .u228/c
and
E[ (x/b)C1n(x/b)]1 = .8238/c>.

2
Thus, E[3°1n L J=c?/b%, B[220 L 7=_ 4228/b% and E[5%1nL1.1.828

Y 3b 3¢ actd T c“
and therefore the asymptotic covariance matrix is
1.109 b2/c? .257 b
1/n v£Y)

.257 b .608 c?
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It is seen then that é/c is asymptotically normal with
mean 1 and variance .608/n. Reference can be made to curves
(2) and (3) of Figure 4 in section II.C and Table 1 for an
idea as to the rate of convergence of the distribution of
é/c fo its asymptotic distribution. It will, however, be of
more interest to consider directly the difference between the
confidence limits obtained from the tabulated and asymptotic
distributions. In the case of a 100(1l-Y) percent lower

confidence limit this difference is

>

D= w——i -

f1-v 1+ /(.608/n)2%_,

where zl—Y is the 100(l-yv) percentage point from the standard

normal distribution. For a 100 (l-Y) percent upper confidence
limit, D is obtained by replacing 1l-y by y. Table 2a gives
approximate values of n at which the absolute difference
relative to é, ]Dl/a, becomes less than .1, .05, .02 for

Y:= 002’ .05' .10'



Table 2a

Sample Sizes at which the Absolute Difference in
Exact and Asymptotic Confidence Limits Relative to & Become
Less than |D|/c

Lower Limits Upper Limits
~|pl/e Y TL62 .05 10 02 05 710
1 22 17 14 40 27 20 |
.05 48 38 30 66 49 37
.02 >130 100 80 | >130 115 90
- |

The convergence rate can be increased if the asymptotic
distribution of the unbiased estimator is used. Since the
unbiased estimator of c, B(n)é, is asymptotically normal
with mean, ¢, and variance, [B(n)]z(.608/n)c2, the differ-

ence in lower confidence limits now becomes

D = 1 - B (n) -
Yi-y 1 + B(n)/<608/n &f_
Table 2k gives the required sample sizes for this case and
it is seen that there is a substantial decrease in the sample

size needed to achiesve a given amount of accuracy.

Table 2b
Sample Sizes at which the Absolute Difference in
Exact and Asymptotic Confidence Limits Based on the Unbiased
Estimator of c Become Less than |D|/c

Lower Limits Upper Limits
Ipl/c .Y .02 | .05 .10 .02 .05 .10
.05 27 18 10 22 16 12
.02 80 52 27 76 35 19
.01 >130 120 64 |>130 54 28
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B. Estimation 92 b (g unknown)

1. Confidence Intervals for b

The following theorem will enable us to establish a
pivotal function of b only, whose distribution is independent
of both parameters.
Theorem B: ln(ﬁs) = C ln(g/b) and és = &/c have a joint
distribution which does not depend-on b and c.

Proof: If bO and c¢_ represent the true values of b and c

o
then z = (x/bo)co has the standard exponential distribution.
From the definition of the maximum likelihood estimators of
b and ¢,

~

c"Expl-2 (x;/B)°1  (x;/b)€ = Max{ c"Exp[~z(x;/D)°]1 (x;/b)€ }

This is the same as R
c
c

el (c/c ) PExp{- Il (x;/b,) %0 (b /b) ®©1%/%} [ (x;/b )b /b) IS,

| ‘ c
= Max{cj (2 "Expi- [ () S0 (D0)%1%/%} [ (x;/b ) 0 (by/b) 01T0}
lo) O

or

chExpL-I(2;/b,)®S1 (z;/b ) ®S=Max{clExp[-z (z;/b )51 (z,/b ) °S}
where cg = c/cO and bs = (b/bo)co. Therefore é; and Bs cor-
respond to the maximum likelihood estimators of b and c when.
the sampling is actually on a standard exponential variate z.
Thus the joint distribution of ln(ﬁs) = C 1n(5/b) and as=é/c
is independent of b and c.

Sincé the joint density of c‘ln(ﬁ/b) and é/c does not
depend on b and ¢, neither does the distribution of ; ln(g/b).

In particular, é ln(ﬁ/b) will have the same distribution as
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~ A

cllln(bll) where, as before, bll will denote the maximum
likelihood estimator of b when in fact the sampling is from
a Weibull distribution with b=1 and c=1.

Clearly 100(1-Y) percent confidence intervals for b can

now be constructed and will be of the form

(be"t2/¢ , pet1/< (8)
where tl and t2, from Table A2e are such that
Gl(tz) - Gl(tl) = 1 - v.
2. Asyﬁptotic Convergence

The asymptotic distribution of c ln(ﬁ/b) can be found

from (7) and the following theorem on functions of asymptotic
normal variables [1l6].
Theorem: If f(Tl, ceey Tk) is a continuous function with con-
tinuous first partials and if vn( T - § ) ~; N(¢ , ) then

‘ - o £, 3 £
ﬁl[f(Tl:"'lTk)-f(ell'- . ,ek)]";—’N(O, Zzoijs—rf;_ "éaTj '6

).

of _
'5-6 = 0 and

For the function f(é, 5) = 8 ln(g/b), b. e
I

of
b
have that Yyn ¢ 1ln(b/b) ~ N( 0, 1.109).

boc = c¢/b. Therefore, from the above theorem and (7) we
14

It would again be useful to determine the sample size
needed so that the normal approximation can be used. The
difference between the approximate and exact 100(1l-y) percent

lower (or uppwer) confidence limits for b is:

- /1.109, ,~ .
e—ﬂ./c - e_g'*( n )/C b]

D = [ (9)

~where 2 is the 100(1l-y) (or 100Y) percentage point from

Table A2e and %£* is the corresponding percentage point from



the standard normal.

and y are given in Table 3 for c

Sample sizes as a function of |D|/b

.6’

l.

and 1.6.

It may

be noted from (9) and Table A2e that for é < .6 and fixed

ID]/b < .02 the sample size is a decreasing function of ;.

16

Thus the sample sizes for ¢ = .6 are conservative estimates

whenever ¢ > .6.

The values of n for c =

the amount of conservativeness.

Table 3

1l and 1.6 indicate

Sample Sizes at which the Absolute Difference in
Exact and Asymptotic Confidence Limjts Relative to b Become

Less than |D|/b

Lower Limits

Upper Limits

¢ ||p|/b 02 | .05 To [ .02 T05 10

6| .02 62 29 17 85 56 45

.01 130 50 31 [>130 80 63

.005 >130 76 52 |>130 105 79

1.0| .02 40 22 14 56 39 32
.01 78 40 25 70 55 48

.005 >130 60 a1 | 100 77 68

1.6] .02 31 18 12 35 27 22
.01 60 28 18 55 46 35

.005 110 50 32 80 72 52




3. Tests of Hypotheses of b and the Power of the Tests

A test of the hypothesis Ho: b=b0 against H_: b=bA can

A
be based on the function ¢ ln(b/b). If bO < bA then the
critical region corresponding to a test at the vy significénce
level is

(b ",

)
where 2, from Table A2e, is such that Gl(z) = l-vy.

In order to obtain the power of the above test it is
useful to generalize the result given in Theorem B as .
follows.

Theorem C: For any positive constant K,
é[ln(ﬁ/b) ~ (1/¢)1n(K)] has the same distribution as

élltln(ﬁ 1n(K)].

ll)

Proof: From equation (3)

Slln(b) - (L/¢)In(K)] = 1n(z xi;/ﬁ) - (&/c) In(K) .
Expressing this in terms of the yi's, where yi=(xi/b)c, we
have -
Sln(b/b) - (1/0)1n(K)] = In(z y;%//n) - (c/0)In(x).
But direct use of (3) and (4)’to obtain the maximum likeli-~

hood estimate of c[ln(b) - 1n(K)] gives

~

cqq[1n(b In(K)1 = In(z y;“11/m) - c;;In(K)

11)
and the theorem follows from Theorem A.
This result reduces, when K#l, to Theorem B. General-

izing the notation of section II.B-1, let Gy denote the
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common cumulative distribution of éll[ln(g - In(K)] and

11)
clln(b/b) - (1/c)1n(K)].

The distributién, Gygr was obtained empirically for sever-
al values of K and percentage points are given in Tables A2a,
b, ¢, 4, e, £, g, ﬁ, i, as a function of N for K = .51083,
.69315, .80, .90, 1., 1.05, 1.10, 1.15 and 2.0. Additional
related tables needed in section II.E to derive tolerance
limits are given. Tables A3a, b, ¢, d, and Tables Ad4a, b, c,

d, give y percentage points of G, as a function of N and K

K
for y = .02, .05, .10, .25, .80, .90, .95 and .98.

The power of the test with bo< bA based on c ln(ﬁ)b) is
P[boe£/°< b| H

At b=b,] = P2 < ¢ In(b/b )| H,]

= P{2 < clln(b/b,) - In(b_ /b | Hy)

A
= 1 - Gg(2) where K = (b_/b,)°.

The power of the test, then, is a function of (bo/bA)c, Y
and N. Figures 3a and 3b give the power of the .05 and .10
level tests as a function of (bA/bo)c for N = 10, 12, 15, 20,
24, 30, 40, 60 and 80 with (b,/b_)° > L.

For large samples the asymptotic normal distribution of
GK may be used. The asymptotic distribution can be found by

applying the Theorem in section II.A-4 to the function

£(b,e) = ¢[ln(b/b) - (1/c)1n(K)]. In this case, £(b,c)= -1n K,

3§ = ¢/b and 3; b = -(1/c)ln(K). Therefore from (7)
ab 1 PrC actPrC

/& &[ln(b/b)-(1/c)1n(K)] ~ N[-1n(K), .608(1n K)2-.5141n K+1.109].
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C. Comparison of the Estimators of b and c

The properties stated in Theorems A and B also hold for
Meron's estimators [10]. All of the work represented so far
was carried out simultaneously for the maximum likelihood and
Mepon's estimators and comparisons will be primarily limited
to a comparison of these. A comparison of the maximum like-
lihood estimators with others available can be achieved
through the comparison with Menon's and by reference to [10].

The biases of the two estimators of ¢ are nearly equal.
Both are highly biased for small n. The bias in the maximum
likelihood estimator is slightly less than that of Menon's
for n > 20.

The variances of both estimators of c¢ as well as the
asynptotic variance of the maximum likelihood estimator are
included in Figure 4 for n > 8. Except for n=5, the variance
of the maximum likelihood estimator is less than that of
Menon's. The ratio of the variances approaches .55, the
asymptotic efficiency of Menon's estimator.

Fortunately, as seen in section II.A-2, the estimators
of ¢ can be unbiased. The variances of the unbiased esti-
mators are given in Table 4. The unbiased maximum likeiihood
estimator is clearly superior for even small values of n.

The varianae of é ln(g/b) based on Menon's and the
maximum likelihood estimators of b and c as well as its
asymptotic variance when it is based on the maximum likeli-

hood estimators is given in Table 5. The variance of_
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é ln(g/b) when it is based oh the maximum likelihood esti-
'mators is smaller for n > 10; however, the difference is
small. The ratio of the variance approaches .95, the
asymptotic efficiency of é ln(g/b) based on Menon's

estimators.

P Figure 4

(1) variance of c/c using Menon's Method.

. 20 o 7: (2) variance of c¢/c using the M.L. Method.

(3) Asymptotic Variance of c¢/c where c is
the M.LIE’.

.
}..l
i

— Variance

<

.05




Table 4

Variance of Menon's and the Maximum Likelihood Estimators

22

of ¢
N 5 6 8 10 12 14 16
Menon's  .334 .236 .147 .108 .086 . .073  .063
M.L.E.  .320 .215 .124 .087 .067 .055 .047
N 18 20 25 30 35 40 45
Menon's .056 .050 .040 .034 .029 .026 .023
M.L.E. .041 .036 .028 .023 .020 .017 .015
N 50 60 70 80 100 120
Menon's .021 .017 .015 .013 .011 .009
M.L.E. .014 .0l11 .0l0 .008 .006 .005

Table 5

Variance of ¢ 1ln(b/b) Using Menon's and the Maximum Like-

lihood Estimators of b and ¢ and its Asymptotic Variance

Based on the Maximum Likelihood Estimators

15 20

N 5 6 8 10 12
Menon's  .604  .387 .233  .169 .128 .097 .070
M.L.E. .642 .406 .234 .168 .125 .094 .067
Asymptotic .222 .185 .139 .111 .092 .074 .055
N 25 30 40 50 75 100
Menon's .055 .045 ,032 .0253 .0163 .0119
M.L.E. .052 .042 .030 .0240 .0154 .0114
Asymptotic .044 .037 .028 .0222 .0148. .0111
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Both estimators have the disadvantage of not being
applicable to censored sampling. It may be noted that the
maximum likelihood estimators corresponding to the cen-
sored sampling, [1ll], possess the same important properties
stated in Theorems A and B. However, the necessity of
tabulating the distribution for each possible point of
censoring greatly enlarges the task.

Even though for complete samples the maximum likeli-
hood estimators appear to be superior to the other esti-
mators they have not, in the past, received as much
attention as they might have if they were of a simpler
type. However, it has been found that if a computer is
available the maximum likelihood estimates can be readily
and accurately obtained from a routine such as the one

given in Appendix B.
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D. Conservative Confidence Limits on the Mean

The mean of the Weibull distribution is given by
br(i+l/c). However, T(l1+1/c) > .886 for all ¢ and assumes

its minimum value at c=2.16. Hence, if % from Table A2e,

1-v'’
is chosen such that

P[ c 1ln(b

1 1) <y 1 =1 -

then (.886b e~zl‘Y/c, =) is a conservative (1-v)1l00 percent
upper confidence intervals for the mean. The true confidence
is

. n ) ~ ’ “ _ -
Py > .886b e 1=/ ] = p[ pI(1+l/c) > .886b e *1-v/C |

= p{ 2, > &[ln(5/b) - 1n(LUEL/C),q,
c
= GK(ll_Y) where K = [ EL%%%%EL ] .

The conservativeness follows from the fact that K > 1 for

all ¢ and that for K > 1, Gk(l > Gl(z 1 - v.

l—Y) l—Y)
The true confidence can be computed from Tables A2e, £,
g, h, for any given value of ¢ and is given as a function of
c in Figure 5a for Yv=.05 and Figure 5b for v=.10. The con-
servativeness is relatively insensitive to the value of c,
especially when the sample size is small. For example, when
n=10 and y=.05 the true confidence is bhetween .95 and .96 for
‘all values of ¢ between 1.3 and 3.4. When n=30, the true con-

fidence is between .95 and .96 for all values of c between

1.5 and 3. It appears that the procedure in section II.A. for
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testing the value of ¢ could be used in conjunction with the
above procedure to make useful inferences about the mean.

Conservative upper confidence limits can also be ob-
tained for ¢ 2 1 since y ¢ b for all ¢ 3 1. Thus, the upper
confidence limit on b developed in section II.B-1 can serve
as a conservative upper confidence limit on y when c > 1.

The true confidence can be seen to be 1 - GK(zy) where

K = P(l+1/c)c. Unfortunately, it is more sensitive to the
true value of ¢. For y=.05 the true confidence exceeds .98

for all ¢ > 1.2.

E. Tolerance Limits

L(x Xn) is said to be a lower probability

l'l'.,
tolerance limit of proportion if

[~

P Jj’ f(x; o0)dx > B { = v.

L(Xl,...,Xn)
For the Weibull distribution this reduces to
Pl L(Xy,eenr X) < b(-1n(g)) /¢ ] = 4. (11)

That is, the problem of finding a lower tolerance limit
reduces to a problems of finding a 100y percent lower confi-
dence limit for b(—ln(s));/c, the (1-y) percentile point
in the Weibull.

If L is chosen such that GK(zy) = y with K = -1n(g)
we see that this reduces to

P[ ¢ ln(b/b) = (c/c)ln(-1n(s)) < & ] =y
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or
Pl ln(g) - QY/; < In(b) + (1/c)ln(-1n(B))] = ¥y
and finally

P[ be *v/C < b(-1n(8)) Y/ 1= 4.

Thus, from (1l1), ge_zY/c is the desired y lower probability
tolerance limit for proportion B.

For a given value of B8, the tabulated distributions, GK’
can be used to find the desired tolerance limits. Tables A3a,
b, ¢, d, give the values of Ly as a functiop of B with
vy = .80, .90, .95, .98. Tables Ad4a, b, c, d, give RY as a
function of B with y = .02, .05, .10 and .25. These can be
used tb find upper y tolerance limits of proportion g from

the fact that they are equivalent to (l-y) lower tolerance

limits of proportion 1l-B8.
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F. Estimation of the Reliability

Y., Introduction

In the application of the Weibull to the distribution
of the time to failure of a component most questions that
arise jinvolve the concept of the reliability of the compo-

nent. The reliability for time t is given by
R(t) = P[ X > t ] = Expl[-(t/b)S}.

Although the maximum likelihood estimators, é and ;, are
computationally tedious to calculate, it has been shown

that they are usually better than other more convenient
estimators of b and c¢. Thus the maximum likelihood esti-
mator, ﬁ(t), of the reliability, R(t) might be expected

to have good properties. It is shown in this section that
ﬁ(t) is nearly a minimum variance unbiased estimator of R(t).
It is also shown that the density of ﬁ(t) depends only on
the parameter R(t). This makes it possible to use the gen-
eral method (see, for example [17]) for obtaining confidence
intervals for R(t) based on ﬁ(t) or for testing hypotheses
concerning R(t). These confidence intervals or tests based
on ﬁ(t) should be expected to have good properties.

The distribution of ﬁ(t) was determined by Monte Carlo
methods and the results were used to form Table A5. For an
observed ﬁ(t), the lower confidence limit for R(t) can_be
read directly from Table A5 for confidence levels Y= .75,
.80, .85, .90, .95, .98 and sample sizes n = 8, 9, 10, 12, 15,

18, 20, 25, 30, 40, 50, 75, 100. Thus the lower confidence
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limit for R(t) is very easy to determine when the maximum
likelihood estimates are available. A comparison of the:
exact confidence limits obtained from the distribution of
é(t) with the approximate confidence limits obtained by
means of a normal approximation shows that the normal
approximation is quite adequate for sample sizes as large
as 50.

Johns and Liéberman [ ¢] héve also presented a method
for obtaining confidence limits for the reliability in the
case of the Weibull distribution. They provide necessary
tables for sample sizes of 10, 15, 20, 30, 50 and 100 and
for various censoring fractions. Their method is asymptot-
ically efficient but no evaluation of it has been reported
for small samples. A preliminary comparison indicates that
these two methods give almost identical lower limits for
any given sample, which is a very interesting result. Thus,
if for some reason a lower confidence limit is desired when
the maximum likelihood estimates are not readily availsble,
it would probably be more convenient to use the tables given
by Johns and Lieberman,

The above results might also indicate that limits based
on maximum likelihood estimators from censored samples would

" be about the same as those given by Johns and Lieberman,
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2. The Distribution of ﬁ(t)

The distribution of ﬁ(t) based on a sample of size n

will now be considered. Let Bq = (g/b)c and és é/c. It

essentially follows from Theorems A and B that the joint
distribution of bs and Cq is independent of both parameters.
It will now be shown that the distribution of ﬁ(t) depends

only on R(t).

~

R(t) = Expl-(t/b)°1,
so that

In[-1n(R(t))] = ¢ 1ln(t/Db)

ll

il

(c/e)1nl(t/b) € (b/b) ™
= C 1n[7b;lln(R(t))].
Thus the distribution of ﬁ(t) depends cn b, ¢ and t only.
through R(t).

This result makes it feasible to study the distribution
of ﬁ(t) empirically. It also now is possible to give confi-

dence intervals for R(t) based on ﬁ(t) with both b and c

unknown.
3. Point Estimation of R(t)

The properties of ﬁ(t) as a point estimator are con-
sidered first. Table 6 gives the bias of R(t), E[R(t)]-R(t),
for R(t) = .50, .60, .70, .75, .80, .85, .90, .925, .95, and
.98 and n = 8, 10, 12, 15, 18, 20, 25, 30, 40, 50, 75, and
100. As indicated in Table 6 the bias is quite small and it

doés not seem worth an attempt to eliminate it.
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Table 6

Bias in R(t)
n
R{t) 8 10 12 15 20 25 30 40 50 70 100

.50 .005 .003 .003 .002 .002 .002 .001 .001 .001 .001 .00l
.60 .012 .009 .008 .006 .005 .004 .003 .002 .002 .002 .001
.70 .015 .011 .010 .008 .006 .005 .004 .003 .003 .002 .00l
.75 .014 .011 .010 .008 .006 .005 .004 .003 .002 .002 .00l
.80 .013 .010 .008 .006 .005 .004 .003 .002 .002 .002 .001
-85 .010 .007 .006 .005 .004 .003 .003 .002 .002 .001 .001
.90 .006 .004 .004 .002 .002 .002 .001 .001 .001 .001 .000
.925 .003 .002 .002 .001 .001 .001 .001 .000 .000 .000 .000
.95 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
.98 =-.002 .002 .001 .001 .001 .001 .001 .000 .000 .000 .000

The variance of ﬁ(t) is given in Table 7 for the same
values of R(t) and n. It is of interest to compare the
variance of ﬁ(t) with the Cramer-Rao Lower Bound, CRLB, for
a regular unbiased estimator of R(t).

The CRBL may be computed directly. HoweYer it is equal
to the asymptotic variance of ﬁ(t)=Exp[—(t/5)c] so that the

Theorem given in section II.A-4 may be used. In this case

IR _ _ 3R e - )
;Z b,c = R 1In(R) 1n(-1n(R)) and aﬁ b,c (c/b)R( In(R)).

Therefore, using (7),
n(R(t) - R(£))~ N[0, R®(in R)%[1.108665 - .514044 1n(-1n R)
+ .607927 (In[-1n RI)?]1}a.
The difference between the variance of ﬁ(t) and the CRLB is
given in Table 8 for certain values of R(t) and n. .The maxi-
mum difference occurred for R(t) = .5. As indicated in the
table the variance of R(t) is approximately equal to the CRLB,

especially for the values of reliability of interest.



| Table 7

Variance of fl(t)xlo4

n
R(t) 8 10 12 15 20 25 30 40 50 75 100

.50 266 200 167 124 090 072 059 043 034 023 Oi7
.60 242 187 154 118 036 068 057 042 033 022 016
.70 194 153 126 099 072 058 048 036 029 019 014
.75 163 130 107 086 062 050 042 031 025 017 012
. €0 130 103 086 070 051 041 034 026 020 014 o0lo
. 85 095 076 063 051 037 030 025 019 015 010 o008
.90 059 047 039 032 023 019 0l6 012 009 006 005
.9251 041 033 027 022 0le 013 011 o008 007 004 003

.95 025 019 0l6 013 009 007 006 005 004 003 002

.28 006 005 004 003 002 002 001 001 001 OOl O0OL

Table 8
Variance [R(t)] - Cramer—-Rao Lower Bound
n
R(t) 10 12 15 20 25 30 40 50 75

.50 .0034 .0029 .0014 .0007 .0006 .C0O04 .0002 .0001 .0001

.75 .000S .0003 .0002 .0000 .0000 .0000 .0000 .0000 .0000

.95 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000



34

4. Exact Confidence Limits for R(t)

Since the distribution of ﬁ(t) depends only on R(t)
confidence limits for R(t) based on &(t) can be determined.
Monte Carlo methods were used to obtain the distribution
of ﬁ(t) for a given R(t) and the general method for con-
structing confidence limits was applied to determine the
lower confidence limit for R(t). Thus for a confidence
level y, sample size n, and observed value of ﬁ(t), the
lower 100y percent confidence limit can be read directly
frem Table A5 for y = .75, .80, .85, .90, .95, .98, n = 8,

io, 12, 15, 18, 20, 25, 30, 40, 50, 75, 100 and a(t)

.50(.02).98. The tables were obtained by generating 10,000

samples for each of the above sample sizes.
5. Approximate Confidence Limits for Large n

The standard prccedure for obtaining confidence limits
for R(t) when n is large is to assume that R(t) is normally

distributed with mean R and variance V(R), where

V(R) = R%(ln R)2{1.108665 - .514044 1ln(-1ln R)

+ .607927[1n(-1n R)1%}/n.

The true reliability, R, could be replaced by R in the ex-
pression for the variance and an approximate lower y con-

fidence limit would be

L

~ a1 1/2
1 R - ZY[V(R)]

where z 1is the y percentage point of the normal distribution.
Y .



The limit Ly will be called the direct approximation to the
exact lower confidence limit L. It was found that L, differs
from L by less than .005 for n=100. Also Ly is usually too
large.

The direct approximation can be improved considerably

by using an iterative procedure. Let

- 1/2 .
Li = R - ZY[V(Li-l)] / ? l=2' 3, e e . -

It was observed that after 4 or 5 iterations the changes

in Li were less than .00005, and the values of L, were in
much better agreement with the exact values. The maximum
difference hetween the exact limits and the lower limits
obtained from the iterative approximation was .005 for

n > 40. The maximum difference was .002 for n=100. Thus
it appears that the iterative approximation methods should
be used if the appropriate table is not available. Perhaps
it should be noted that the iterative procedure results
from applying the general method for obtaining confidence

intervals to the normal approximation of the dénsity.
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G. Example

Lieblein and Zelen [4] give the results of tests of the
endurance of nearly 5000 deep~groove ball bearings. The
graphical estimates of c over all lots tested appear to have
an average value of about 1.6. Consider the following sample
given on page 286, [4].

- The results of the tests, in millions of revolutions,
of 23 ball bearings were: 17.88, 28.92, 33.00, 41.52, 42.12,
45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40.

The maximum likelihood estimate of ¢ is 2.102. The un-
biasing factor (Table 1) is .940 so that the unbiased esti-
mate of ¢ is 1.976. The estimate of b from equation (4) is
81.99. From Table Al, a 90 percent confidence interval for
c is (1.50, 2.€2) and from (8) and Table A2e a 90 percent
confidence interval for b is (68.04, 98.75). (The estimates
of b and c given in [4] were 80 and 2,23, respectively.)

If we had wished to test at the .10 level the hypothesis

k)

H_ : c=1 against H

o c > 1.6, the power of the test from

A’
Figure 1lb would have exceeded .89 and based on the above
sample the test would have led to the rejection of the null
hypothesis.

\From section II.D, a conservative 90 percent lower con-
fidence limit on u is given by 71.26. For values of c be-

tween 1.5 and 2.6 the true confidence, from Figure 5b, is

between .90 and .917.
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From section II.E, the 90 percent lower tolerance limit
for proportion .90 is 18.85. The maximum likelihood estimate
of the reliability for time t=40 is .802 and the .90 percent

lower confidence limit on R40 is, from Table A5, .694.
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ITI. INFERENCES BASED ON TWO INDEPENDENT SAMPLES

A. Introduction

In the work to follow it will be assumed that inde-
pendent random samples of equal size have been drawn from

Weibull distributions w(x; bl’ cl) and w(x; b2, c2) where

wix; by, cg) = c; () CH) ST Bxpl- (x/b)) 11, =1, 2.

The problems to be considered are those of testing Cy=C, and
bl=b2. The procedures for performing these tests will be
based on certain functions of the maximum likelihood estima-
tors of the parameters whose distributions are parameter
free. 1In addition to providing solutions *o the above pro-
blems the functions lead to the construction of a procedure
for selecting the Weibull process with the larger average
life time; a problem considered by Qureishi et al [14], [15].
The assumption of equal sample sizes is not inherently
required by the test procedures presented but was deemed
necessary in order to simplify the task of obtaining the

distributions by Monte Carlo methods.



39

B. Testing the Equality of the Shape Parameters (b unknown)

In order to test cl=c2 we recall from section II.A-1

that the maximum likelihood estimator, é, of ¢ has the pro-
perty that é/c has the same distribution as c* where c* is
the maximum likelihood estimator of ¢ based on a sample from
the standard exponential distribution. It then follows that
(él/cl)/(éz/cz) has the same distribution as that of éi/é;

where, again, ci and c§ are the maximum likelihood estimators

of cq and <, based on independent random samples which are in

-~

fact from standard exponential distributions.

The distribution of éi/é% was obtained by Monte Carlo
methods and percentage points zY such that P[ éi/ég < RY] =y
‘are given in Table A6 as a function of y and the common
sample size n. P&ints, 2%y, for Y < .50 can be found by using

the fact that 2y= 1/2;_,.

A test of Ho: c,=C, against H c

1-°2 A’

be made by using the fact that, under H» 51/62 has the same

1= kcz, k > 1, can now

distribution as éi/cg. That is, P{ cl/c2> 21—y ]Ho] = y and
a size y test is given by rejecting if cl/c2 > ll-Y where
1oy is obtained from Table AS6.

The power of this test is

|[H,: c,= kc,] = P[ éi/éz > (l/k)}l_Y]

2]

which can also be obtained from Table A6. The power as a
function of k > 1 is given in Figures 6a and 6b for certain

" values of n and with vy = .05 and .10.
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The above procedure can, of course, be generalized to
a test of HO: Cy= kc2 against HA: cq1= k'cz. For the case

when k < k' the rejection region becomes

A~

{(eyr ex) | /ey > k 2, 3

1-y

and the power of the test is
ok f ok '
B[ c}/cy > (k/kDap_ 1.

C. Testing the Equality of the Scale Parameters

1. Tests with cy = ¢,

In the development of the one sample test of b=bo in
IT.B it was observed that é ln(g/b) has the same distribution
as c*ln(b*). For the case of two independent samples it
follows from Theorem B that cl/cl, CZ/CZ' clln(bl/bl) and

czln(ﬁz/bz) have a joint distribution which is independent

of the parameters Cyr Cyi bl' b2. Therefore, if Cy= Cy, = Cy

et ey X
z(M) = ———=[In(by/b;) - In(b,/b,) - (1/c)In(M)},  (12)

where M is any positive constant, has a distribution which
is independent of the parameters. In particular it will
have the samg distribution as

cf + c3

z% (M) = —-——-—-—2-—-—-2-[1n(13i) - 1n(6§) - InM)]. (13)

Let HM denote the common cumulative distribution function of

z(M) and z*(M). For simplicity, z(M) will be denoted by z

when M=1l.
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A test of HO: b =b2, c1=C, against H_ : b.,= kb

1 At P1 27 ©17¢;

can ncw be made by using the fact that

P{ ——>—[1n(b } = Hl(t).

Thus, a 100(1l-y) percent critical region for making this

}, where z is such that

test with k > 1 is {z] z > z 1
Y

1-y
Hl(zl—y) = 1-vy.

The power of this test can also be expressed in terms

of HM since

Srd, :
P{ —-—-—[ln(bl) - ln(bz)] > z

2 : b

1-v 17kb,, k>1, cl=cz}

1 -H (z

C l—y)°

The distributions, HM’ were obtained by Monte Carlo
methods for various values of M. The percentage points of
Gl’ needed to make the above test, are given in Table A7.
The power of the test, as seen above, is a function of K€
and is given in Figure 7 for N = 7, 10, 15, 20, 30, 40, 60
and 80 with y = .10.

A test of Hy with k < 1 in the alternative can be con-
structed in a similar fashion. The critical points ZY'
needed to make the test can be obtained from Table A7 by
using the fact that Z,= T Ey_ -

It should be noted that the test of this section on bl
and b2 with =5 and c, assumed equal is equivalent to a test
on the means of the two Weibull distributions since

IE(x) = ¢ (l+1/b). In section III.D the above procedure will
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be used to solve the particular problem of choosing the
Weibull process with the larger mean life with c1¢, and
the procedure will then be compared with procedures that
already exist for handling this special problem.
2. Tests with cy # <,

Consider the test of the one-sided hypothesis H: b,> b

1 2

against HA: bl< b2. In the special case where Cy€ ¢© the

2
test defined by the procedure: reject the hypothesis if

3,48, ..
Ty ln(bl/bz) < zY where zY from Table A7 is such that

H(zY) = vy, can be shown to be conservative in the sense that
the probebility of a type 1 error will not exceed y. This

follows since, under Ho'

él+ 62 A ;:l+ 222 - ~
P[ 3 ——-ln(bl/bz) < ZY] = P{——Z————[ln(bl/bl) - ln(bz/bz)]<ZY}
c,/c + ¢,/c, A -
< P{ ) [Cl ln(bl/bl) - C2 ln(bz/bz)] <ZY}=Hl(zY)=Y'

No extensive work has been done to investigate the con-
servativeness of this test however preliminary investigations
for cz/cl = 1.2 seem to indicate that the amount of conserva-
tiveness when y = .10 is quite small, about .01l.

In a similar manner it can be seen that if Cy%» C, in the
above test then the power of H: bl> b2 against HA: bl= kb2
with k < 1 will be at least the power of the corresponding

(z ).

test in section III.C~1 with ¢, = ¢,, i.e. H c
12 (1/k) 1Y



D. Discrimination Between Two Weibull Processes

Consider two Weibull processes whose distributions have
the same unknown shape parameter, c, but different and un-
known scale parameters, bl and b2. Procedures for detecting
the process with the larger scale parameter, or, equivalent-
ly, the process with the larger average life time, have been
given by Qureishi.et al in [14] and [15]. For example, pro-
cedure Ry given in [14] is to choose, as the process with the
smaller average life time, the one which first prodiuces a
predetermined number, R, of failures from samples each of
size N . The probability of correct selection when bl/b2= o
is greater than one is given by equation 12, [14]. The
probability of a correct selection depends on c¢ through a®
and therefore the evaluation of any particular procedure
requires a knowledge or at least a good estimate of c. An-
other specification of the test procedure is g s the smallest
value of o that is worth detecting. The probability of
correct selection is tabulated in [15] as a function of ag
for a few values of R and Nl’

When the procedure of the previous section is applied
to this problem it leads to the following procedure: compute
Bl/ﬁz,where 51 and 62 are the maximum likelihood estimates
based on the life times of units in samples from each of the

two processes,and choose process 1 if bl/b2 > 1 and process 2

if bl/bZ < 1.
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If the samples are of equal size, say N, then the
distribution GM’ defined in section III.C, can be used to
determine the probability of correct selection fér the above
procedure., If bl/b2 = a and the common shape parameter is c
then the prcbability of correct selection is

Pl pl/b2 > 1 | b;/b, = a > 1]

St o, A
= P{—5 —[1n(b;/b,) - In(b,/b,) - In(b,/b;)] > Olbl/bz-_-. a)

1l -H __(0) from equation (12), section III.C-1.
a

For convenience we will denote the probability of a
correct selection by P(a). Again considering ag (as > 1)
as the smallest value of bl/bZ worth detecting, it follows
that P(a:) < P(ac) for all a > o Values of P(a:) are given
in Table A8 as a function of N and ag. It should be noted

that if a lower confidence bound, is obtained for c¢, as

Cp
in section II.A-1l, the P(agL) will.serve as a lower bound
for P(ac) for all c »> Cr.-
In order to compare this procedure with Ryv the cost of
destructive testing will be set equal by choosing R in pro-
cedure Rl to be equal to N, the number tested in the proce-
dure presented in this section. If Ny is chosen so that both
procedures have the same probability of correct selection
then Nl/N reflects the increased number of items to be put
on test in procedure R,. Using 12, [14], and Table A8 it can
be seen that for ag = 1.4, the value of Nl/N is about 134%

for N = 7 and increases to about 140% at N = 20.
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Weighted against the cost of extra units being placed
on test in procedure Rl is its reduced experiment time. The

expected duration of the experiment for procedure R, was

1
given by equation 15, [14], but should be corrected to read:

R A

- 2 ()2 Z i+j (r-1) [R-1

E (T) = I(1+1/c)b,R (R) E (-1) (i_l) (j_l)
R =

1
{
oS (N=-R+3) [a” C(N-R+i) + (N-R+j)]

1+1/c

1
(N-R+3) [N-R+i) + o S(N-R+3j)]

+ }.

1+1/c

The expected duration in the case of the procedure of this

section can be found in a similar way to be

N Jid
i+3j [N}/N-1
E,(T) = b,y (L+1/c)N » Z(—l)l+3 (j}(i_l)

o F

1 1
[ — +
ac(ia c . j)l+}_/c

i
(i + ja-c)l+l/c

EZ(T)/b2 is given in Table 9 for a few values of ¢ and N

with o€ = 1.4. It should be noted that contrary to a state-
ment in [14] both El(T)/b2 and EZ(T)/b2 depend not only on
o€ but also on c. In fact, as seen in Table 9, this
dependence is quite heavy.

An idea of the time saved in procedure R; can be ob-
tained from El(T)/Ez(T) where, as before, R = N and Nl is
chosen so that the probability of correct selection is the

same for both procedures. The value of El(T)/EZ(T) was
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checked for small values of N and was found to be about .38
for ¢ = 1.4 and about .42 for c¢c = 1.6.

It can be noted that.the parameter free properties . in
section III.C are valid for censored samples and thus so is
the above procedure. The procedure based on the maximum
likelihood estimators is also expected to be better than Ry
for equally censored samples. However, since the existing

tables are valid only for complete samples the truncated

nature of Rl leads to a considerable saving in time.

Table 9

Expected Duration, Ez(t), Relative to b2
with € = 1.4

N | € 1.0 1.2 1.4 1.6 1.8 2.0
10 4.44 3.44 2.86 2.50 2.25 2.08
15 4.95 3.77 3.10 2.69 2.40 2.20
20 5.32 4.00 3.27 2.81 2.50 2.28
25 5.61 4.18 3.41 2.91 2.60 2.32
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. Exampnle

As an example consider the following samples of size
30 from Weibull distributions with common shape parameter
equal to 2.0 and scale parameters equal to 50 and 60,
respectively.

Sample 1: 18.02, 18.03, 19.84, 19.86, 21.31, 25.95, 29.10
29.21, 31.34, 32.99, 34.22, 35.02, 36.70, 38.62, 41.28,
41.32, 42.05, 43.79, 44.72, 45.02, 45.71, 48.08, 58.18,
61.27, 64.90, 71.35, 72.78, 76.52, 90.91, 91.40.

Sample 2: 13.54, 14.47, 19.83, 20.17, 33.15, 34.40, 36.69
39.42, 40.29, 40.81, 43.94, 45.78, 50.49, 52.59, 54.29,
54.92, 55.76, 58.88, 63.15, 63.93, 65.48, 68.34, 75.46,
81.11, 87.35, 86.27, 88.93, 92.04, 99.48, 105.58.

Using the routine given in Appendix B we find that

” ~

bl=50.22, b2

A and 2.33, respectively, and the maximum likelihood estimates

=63.44, the unbiased estimates of c are 2.23

of the reliability for t=30 are .741 and .851.

The acceptance region for testing at the .10 level the
hypothesis C1=C, against the alternative clylc2 based on
61/62 is, from section III.B and Table A6, (.710, 1.409).
Thus, based on the above samples, the null hypothesis would

not have been rejected. R

cl+c2 " .
The critical region for z=v—~—§——{ln(b1) - ln(bz)] for

testing bl=b2 against the alternative b1< b2 is (-«, -.366)

from section III.C and Table A7. The value of z based on the

above samples is -.550 and thus the hypothesis is rejected.
Also, process 1 is correctly picked as the process with

the larger average life time. From Table A8, the probability

of correct selection for n=30 and (as)c=1.4 is .891.
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IV. DISCUSSION OF NUMERICAL METHODS AND ACCURACY OF RESULTS

The maximum likelihood estimates of ¢ were obtained from
equation (3) by the Newton-Raphson iterative procedure [17].
When this method is applied to equation (3) we obtain the °
following relation between ;(k)' the kth approximatiocn to é,

and c(k+l)' the (k+1)st approximation:

(k)
S W
. n . (k)
c D ¢ 52
(k+1) (k) (k) .~ (k) (k), 2
S S (s )
1 + 2 4 3
) (k),2
(k) (8,777)
where “ -
c
- (k) _, .S(x) (k) _ (k)
slmz 1n X: 4 52 =X X, ' 53 =% (ln Xi)xi , and
| c
Sék)=z (1n xi)2 xi(k). The convergence of the iterates is,

in general, very fast. If, for example, Menon's estimate is
used as the initial approximation of é, then the average
number of iterations required to obtain four place accuracy
when sampling from a standard exponential is about 3.5. As
further evidence of the speed of convergence and the capacity
of modern computers it was noted that the time required for
the IBM 360, model 40, to generate-IOO samples of size 20
and solve equation (3)and (4) for all samples was 35 seconds.
The distributions of the pivotal functions discussed in
the preceding sections were based on the results of 20,000
"random" samples of size 5, 10,000 samples of size 6, 8, 10,

' 12, 15, 20, 30, 40, 50 and 75, and 6,000 samples of size 100



which were generated from an exponential distribution. The
empirical distributions of the generated values of the pivo-
tal functions was tabulated and the percentage points, yY(n),
were obtained for each sample size and various percentages.
Interpolation on the sample size was accomplished by fitting,
according to the criteria of least squares, the quadratic
yY(n) = aj + a;x + a2x2 where x = 1/(n-d)P. The work in
sections II.B-3, II.D, II.E, III.C, and III.D required inter-
polation on K in the tabulated distributions, Gy and Hy. For
this purpose the model yy,n(K) = bo + blx + b2x2 where
x = In(dK + e) was used for each value of y and n.

As an aid in evaluating the accuracy of the results,
the distribution of the means of the samples generated during
the process was obtained and smoothed in the same manner as
above and the resulting points Were compared with the known
values. Except for the .98 percentage points, the procedure
led to percentage points that were within .005 of the true
values. The difference attained a value of .010 for a few
of the .98 percentage pcints but the maximum relative error
was only .006. Most of the errarsoccurred for the values of
n from 5 to 15. The average absolute error in this range of
n was .0023 and the average relative error was .0015. The
first four sample moments of the generated exponential
random variables were also in close agreement with the
population moments.

It is difficult to make exact statements concerning the

accuracy of the Monte Carlo results but in view of the
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studies made it is felt that the accuracy exhibited by the
empirical distribution of the sample mean is typical of the

accuracy in the tables given in Appendix A.
V. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS

As noted in section II.C, up to this point progress on
providing solutions to the problems of making inferences in
the Weibull distribution has primarily been limited to the
advancing of simple estimators of the parameters. Little
has been known even about the properties of these estimators
except in the asymptotic sense. Except for the significant
results by Johns and Lieberman, [6], giving exact confidence
limits on the reliability, contributions toc this area have
had to resort to asymptotic theory to obtain, for example,
approximate solutions to the problems of interval estimation
and hypothesis testing.

In this paper the superiority of the maximum likelihood
estimators has been established and their small and moderate
sample size properties have been studiedf But the most sig-
nificant results have been the solution, through the discov-
ery of certain pivotal functions, of the standard problems
of estimation and hypothesis testing in the Weibull distri-
bution.

Areas which warrant further investigations include a

search for good approximations to the distributions of the
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pivotal functions for moderate samples. The conservative-
ness of the procedure in section III.C-2 for testing bl=b2
could be investigated and a study made into how the tests
on ¢, and c, in section III.B could be used to determine
the appropriateness of the assumption of c17C, in sections
ITII.C~1 and III.D and Cy < Cy in section III.C-2.

Another area of consideration arises immediately from
the fact that the pivotal functions remain pivotal even for
type II censored sampling. The results in this paper can
readily be extended to this case although the necessity of
considering various points of censoring greatly enlarges the
amount of simulation required to generate the distributions.

In addition, the results can be applied to the important
three parameter Weibull given by equation (1). If c¢ is known
it can be observed through the change of variables, y=ex,
and a reparametrization that B/b, (é - G)/b and (é - G)/ﬁ
have distributions that are independent of the parameters.

The generation of these distributions would yield inferences

concerning b and G with ¢ known.
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Table Al

Percentage Points, ZY' such that P[c/c < zyl=y

Y .02 .05 .10 .25 .40 .50 .60
604,  .683 .766 ,951 1,116 1.238 1.378
623 697 .778  .937 1,080 1.188 1.304
.639  ,709 .785 ,930 1.059 1.155 1.256
653 .720 .792  .926 1,045 1.131 1,223
665 ,729  ,797  .925 1.035 1.114 1,198
676,738,802 .924, 1,028 1.101 1.179
686 745 .807  .924 1.022 1.090 1.163
695  .752 .811 .924, 1.017 1,082 1.151
.703  .759  .815 .92, 1.014 1.075 1.140
710 .764  .819 .925 1,011 1,069 1.132
716,770 .823  .,925 1,008 1.064 1.124
723,775 .&26  .926 1,006 1.059 @ 1.117
728 .779 .829  .927 1,004 1.056 1.111
734 .784 .832 927 1,003 1.052 1.106
.739  .788  .835 ,028 1,001 1.049 1.101
L7030 .791 .838  ,929 1.000 1.047  1.097
752,798 L8L3 .930 0,998 1,042 1.090
.759  ,805  .848  .932 0.997 1.038 1.08L
766,810  .852 .933 0.995 1.035 1.079
772 .815  .856  .93L 0,995, 1.033 1.074
778 .820 .,860  .935 0993 1.030 1.070
.783  .824L,  .863 .937 0,993 1,028 1.067
.788  .828  .866 .938 0.992 1.027 1.064
.793  .832 .869 .939 0,992 1.025 1.061
.797  .835  ,872 .94L0 0.991 1.024, 1.059
.801  .839 .875 .94,0 0.991 1.023 1.056
.804 842  .877 .941 0.990 1,022 1.054
.808 .84,5 .880 .942 0.990 1,021 1.052
.811  .847 .882  .943 0,990 1.020 1.051
.814,  .850  .88L 944 0,990 1.019 1.049
.817 .852  ,886  .944 0.989 1.018 1.048
820 .85, .888 ,945 0.989 1,017 1.046
822 .857  .8290 .,946 0,989 1.017 1.045
.825 .859  .891 .946 0.989 1.016 1.044
827  ,861 .893  ,947 0.989 1.015 1.043
.830  .863 .894  .948 0,989 1.015 1.041
.832 .86L .896  .948 0.969 1.0l4 1.040
834 . 366 .897 .99 0.98&9 1.014 1.040
.836 . 868 . 899 949 0.988 1.014 1.039
.838  .869 .900 .950 0.988 1,013 1.038
84,0 .871 .901 .$50 0.988 1.013 1.037
8,1 .872 .,903 .951L 0.988 1.012 1.036
8,3 .874 .90, .951 0,988 1.012 1.036
.8,5 .875 .905 .952 0.988 1.012 1.035
.8,8  .878 .907 .952 0.988 1,011 1.034
.852 .881 .910 .,953 0.988 1.011 1.032
.855  ,883 .912 .95, 0.988 1,010 1.031
. 861 .888 .916 .956 0.988  1.009 1 .039
871 .897 .923 .959 0.988 1.007 1.025
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Table Al (cont.)

Percentage Points, QY, such that P[c/c < zy]=y

y 41270 .75 .80 .85 .90 .95 .98
51 1.557 1.671 1.812 2.001 2.277 2.779 3.518
6| 1.453 1.54,3 1.662 1.812 2.030 2.436 3,067
71 1.386 1.,61 1,561 1.688 1.861 2.183 2,640
8| 1.338 1.404 1.491 1.602 1.747 2.015 2.377
9| 1.303 1.361 1.439 1.538 1.665 1.896 2.199

10| 1.275 1.328 1.399 1.489 1,602 1.807 2.070
11} 1.253 1.302 1.367 1.450 1.553 1.738 1.972
12] 1.234 1.281 1.341 1.418 1.513 1.682 1.894
13] 1.219 1.263 1.319 1.391 1.480 1.636 1.830
14| 1.206 1.248 1.300 1.369 1.452 1.597 1.777
15 1,195 1.234 1.284 1.349 1.427 1.564 1.732
16] 1.185 1.223 1.270 1.332 1.406 1.535 1.693
17| 1.176 1.213 1.258 1.317 1.388 1.510 1.660
18{ 1.168 1.204 1.247 1.303 1.371 1.487 1.630
19] 1.162 1.196 1.237 1.291 1.356 1.467 1.603
20 1.155 1,188 1,228 1.281 1.343 1.449 1.579
22| 1.144 1.176 1.213 1.262 1.320 1.418 1.538
24,1 1.135 1.165 1.200 1.246 1.301 1.392 1.504
26| 1.128 1.156 1.189 1.232 1.284 1.370 1.475
281 1.121 1.148 1.180 1.220 1.269 1.351 1.450
30| 1.115 1.141 1.171 1.210 1.257 1.334 1.429
32| 1.110 1.135 1.164 1.201 1.246 1.319 1.409
3,1 1.105 1.129 1.157 1.103 1.236 1.306 1,392
36| 1.101 1.125 1.151 1.186 1.227 1.29h 1.377
38| 1.097 1.120 1.146 1.179 1.219 1.283 1.363
40| 1.094 1.116 1.141 1.173 1.211 1.273 1.351
2| 1.061 1.112 1.137 1.167 1.204 1.265 1.339
L, 1.088 1.109 1.132 1.162 1.198 1.256 1.329
161 1.085 1.106 1.129 1.158 1.192 1.249 1.319
18] 1.083 1.103 1.125 1.153 1.187 1.242 1.310
50| 1.081 1.100 1.122 1,149 1.182 1.235 1.301
521 1.078 1.098 1.119 1.145 1.177 1.229 1.294
s, 1.076 1.095 1.116 1.142 1.173 1.224 1.286
561 1.075 1.093 1.113 1.139 1.169 1.218 1,280
58| 1.073 1.091 1.111 1.135 1.165 1.213 1.273
60} 1.071 1.089 1.108 1.133 1.162 1.208 1.267
62| 1.070 1.087 1.106 1.130 1.158 1.204 1.262
6, 1.068 1.086 1.104 1.127 1.155 1.200 1.256
661 1.067 1.084, 1.102 1.125 1.152 1.196 1.251
62! 1.066 1.083 1.100 1.122 1.149 1.192 1.246
70| 1.064 1.081 1.098 1.120 1.146 1.188 1,242
72| 1.063 1.080 1.097 1.118 1.l44 1.185 1.237
71,1 1.062 1.078 1.095 1.116 1.141 1.182 1.233
76| 1.061 1.077 1.093 1.114 1.139 1.179 1.229
go| 1.059 1.075 1.090 1.110 1.134 1.173 1,222
85| 1.057 1.072 1.087 1.106 1.129 1.166 1.213
90| 1.055 1.069 1.084 1.102 1.124 1.160 1,206
100] 1.051 1.065 1.079 1.096 1.116 1.150 1,192
120] 1.04L6 1.058 1.070 1.086 1,104 1.133 1.171
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Table A2a; Percentage Points for cA:[ln(lg/b) - In{K)] with K=.511, 8=e—K=.6O
N y .02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .90 .95 .98
7 -.312 -,090 .086 .379 .584 .723 .871 1.053 I1.158 1.284 1.438 1.657 2.009 2.505
8 -.228 -=,037 .125 .397 .588 .715 .850 1.015 1.110 1.224 1.357 1.550 1.8563 2.272

10 -.115 .042 .183 .424 .596¢ .705 .823 .963 1.044 1.140 1.249 1.408 1.669 1.983
12 -.040 .099 .224 .444 .601 .700 .805 .928 1.000 1.083 1.178 1.316 1.543 1.806
14 .015 .142 .256 .459 .605 .696 .793 .903 .968 1.042 1.128 1.250 1l.454 1.683

16 .058 <176 .282 .472 .609 .694 .783 .885 .944 1.011 1.090 1.201 1.386 1.592
18 .093 .204 .303 .482 .612 .692 .776 .869 .925 .987 1.059 1.162 1.332 1.521
20 122 .228 .321 .491 .614 .690 .769 .857 .909 .966 1.035 1.130 1.288 1l.464
22 . 147 .248 .337 .499 .617 .689 .764 .847 .896 .950 1.014 1.104 1.251 1l.416

24 .169 .266 .351 .506 .619 .688 .759 .838 .884 .935 .997 1.082 1.220 1.376
26 .188 .281 .363 .512 .620 .687 .755 .830 .875 .923 .982 1.062 1.193 1.341

28 .205 .295 .374 .518 .622 .686 .752 .824 .866 .912 .969 1.045 1.169 1.311
30 .220 .307 .383 .523 .623 .685 .749 .818 .858 .903 .957 1.030 1.148 1.284
32 « 234 .318 .392 .527 .624 .685 .746 .812 .852 .895 947 1.017 1.129 1.260
34 .246 .328 .4C00 .532 .626 .684 743 .808 .846 .887 .937 1.005 1.112 1.239
36 .258 .338 .,408 .535 .627 .683 .741 .804 .840 .880 .929 .994 1.097 1l.219
38 269 .346 .415 .539 .628 .683 .739 .800 .835 .874 .921 .984 1.083 1.202
40 =278 .354 .421 .542 .628 .683 737 .796 .830 .868 .914 .975 1.071 1.185
42 .288 .362 .427 .545 .620 .682 ,735 .793 .826 .863 .908 .967 1.059 1.171
44 .296 .368 .432 .548 .630 .682 .733 .790 .822 .859 .902 .959 1.048 1.157
46 .304 .375 .438 .551 .631 .682 .732 .787 .818 .854 .896 .952 1.038 1.144
48 .311 .381 .442 .553 632 .681 .730 .784 .815 .850 .891 .946 1.029 1.133
50 .318 .386 .447 .555 .632 .681 .729 .782 .812 .846 .886 .939 1.020 1.122
52 .325 .392 .451 .558 .633 .681 .728 .779 .809 .843 .882 .934 1.012 1.111
54 .331 .397 .455 .560 .633 680 .726 .777 906 .839 .877 .928 1.004 1.102
56 . 337 401 .459 .562 .634 .680 .725 .775 .803 .836 .873 .923 .997 1l.092

58 .343 .406 .463 .564 .635 .680 .724 773 .801 .833 .869 .918 .990 1.084
60 . 348 .410 .466 .565 .635 .680 .723 .771L .799 .830 .866 .914 .984 1.076
64 .358  .418 .479 .569 .636 .679 .721 .768 .794 .825 .859 .905 .972 1.061
58 . 367 .426 .479 .572 .637 .679 .719 .765 .790 .82i .853 .898 .961 1.047
72 .376 .432. .484 .575 .638 .679 .718 .762 .787 .817 .848 .891 .951 1.035
76 .383 .438 .489 .577 .638 .678 .716 .759 .783 .813 .843 .885. .943 1l.024
80 390 .444 ,494 .580 .639 .678 .715 .757 .780 .809 .838 .879 .934 1.013
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Table A2b: DPercentage Points for c[ln(b/b) - 1n(K)] with K=.693, a=e "=.50
Yy .02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .90 .95 .98
-.665 -.423 -.229 .058 .255 .276 .500 .656 .747 .854 .581 1.157 1.448 1.827
-.563 -,357 -.183 .081 .263 .,375 .487 .630 .712 .808 .920 1.080 1.336 1.657
-.430 -.263 =-.117 .115 .274 .373 .472 .594 .663 .745 .837 .975 1.186 1.441
-.343 -.199 =-,072 .138 .283 .372 .462 .570 .631 .402 .784 .904 1.088 1.305
-.281 =-.152 =.038 .156 .289 .372 .455 .553 .607 .671 .745 .852 1.017 1.2C¢
-.233 -.115 =-.010 .170 .295 .371 .449 .539 .589 .647 .715 .813 .963 1.137
-.195 -.085 .0l12 .182 .299 .371 .445 .528 .575 .628 .692 .781 .920 1.080
-.163 -.061 .031 .192 .303 .371 .441 .519 .S63 .613 .672 .755 .684 1.034
-.136 =-.040 .047 .200 .306 .371 .438 .511 .552 .600 .656 .734 .855 .996
-.113 -.021 .061 .207 .309 .370 .435 .5G64 .544 .588 .642 .715 .829 .963
-.093 -.006 .073 .214 .311 .370 .442 .499 .536 .579 .630 .699 .807 .935
-.076 .008 .084 .219 .313 .370 .430 .493 .529 .570 .619 .685 .788 .91d
-.060 .021  .094 .225 .315 .370 .427 .489 .523 .563 .610 .673 .771 .ess
-.046 .032 .103 .229 .317 .370 .425 .485 .518 .556 .602 .661 .755 .868
-.033  .042  .111 .233 .319 .370 .424 .481 .513 .550 .594 .651 .742 .851
-.022 .052 .119 .237 .320 .370 .422 .478 .509 .544 .537 .642 .729 .835
-.011 .050 .125 .241 .321 .370 .420 .475 .505 .539 .581 .634 .718 .82J
-.001 .0638 .132 .244 .323 .370 .419 .472 .501 .534 .575 .627 .707 .807
- .008  .075 .138 .247 .324 .370 .418 .469 .498 .530 .569 .620 .658 .794
.016  .082 .i43 .250 .325 .370 .416 .467 .494 .526 .564 .613 .689 .783
-.024 .088 .148 .253 .326 .370 .415 .464 .49 .523 .560 .607 .680 .773
.031  .094  .153 .255 .327 .370 .414 .462 .489 .519 .555 .602 .673 .763
.038  .10C  .157 .257 .328 .370 .413 .460 .486 .516 .551 .596 .665 .754
.045  .105  .162 .260 .328 .370 .412 .458 .434 .S513 .548 .592 .659 .74S
.05, .110 .166 .262 .329 .370 .sll1 .457 .481 .510 .544 .587 .652 .737
.056  .115  .169 .264 .330 .370 .410 .455 .479 .507 .541 .5d83 .646 .729
062 .119  .173 .265 .33%1 .370 .409 .453 .477 .505 .537 .579 .641 .722
067  .123  .3176 .267 .331 .370 .409 .452 .475 .502 .334 .575 .625 .7iS
.077  .131  .133 .270 .332 .370 .407 .449 .472 .498 .529 .568 .625 .703
.085 .138  .188 .273 .333 .369 .406 .4+7 .463 .494 .524 .561 .616 .691
.093  .145  .194 .276 .335 .3€9 .405 .444 .465 .490 .519 .555 .6C8 .681
.101 .151 .198 .279 .335 .369 .403 .442 .462 .487 .5i5 .550 .601 .672
.107 .156 .203 .28l .336 .369 .402 .440 .460 .484 .511 .545 .594 .663
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Table A2c: Percentage Points for cl[ln(b/b) - In(X)] with K=.80, B=e K=.449

N v .02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .90 .95 .98
7 -.856 -.582 -.381 -.101 .099 .214 .338 -.477 .554 .653 .769 .918 1.178 1.540
8 =-.731 -.518 -.334 -.072 .105 .216 .322 -.457 .532 .620 .727 .872 1.108 1.408
10 -.580 =-.417 ~-.265 -.039 .120 .218 .311 .427 .493 .567 .657 . .785 .982 1.217
12 -.478 -.,347 -.216 -.011 .131 22¥9 .805 .406 465 .529 .609 .721 .891 1.092
14 -.423 -.296 -.180 .010 .140 .220 .300 .391 .443 .502 .573 .673 .825 1.003
16 =-.375 -.256 ~-.151 .026 .1l46 221 .295 .379 427 .480 .545 .637 .773  ..936
18 -.335 =-=.,225 -.127 .039 .,152 .221 .292 .369 .413 .463 .523 .607 .733 .884
20 -.304 -.199 -.108 .050 .156 .222 .289 .361 4463 .449 .505 .583 .700 .841
22 -.277 -.177 -.091 .059 .160 .222 .286 .355 .393 .437 .490 .563 .672 . 806
24 -.253 -,159 -.077 .066 .163 .222 .283 .349 .,385 ,427 .477 .546 .649 .775
26 -.233 -.,143 -.064 .073 .165 .222 .281 .344 .379 .419 .466 .531 .629 .750
28 -.215 -.128 -.053 .079 .168 .223 .279 .339 .373 .411 .457 .518 .611 .727 .
30 -.199 -.1l6 ~-.043 .084 .170 .223 277 .335 .367 .404 .448 .507 .595 . 707
32 ~-.,185 -.105 ~-.034 .089 .172 .223 .275 .331 .362 .398 ,440 .497 .582 .689
34 -.142 -.094 -.026 .093 .174 .223 .274 .328 .358 .393 .433 .487 .569 .673
36 -.160 =~.085 -.018 .097 .175 .223 .272 .325 .354 .388 .427 .479 .558 .659
38 =-.149 =-.077 -.011 .100 .177 .223 .271 .322 .351 .383 .421 .471 .547 .646
40 -.138 -.069 -.005 .103 .178 .223 .270 .320 .347 .379 .416 .464 .538 .634
42 -.129 =-.062 ,001 .106 .179. .223 269 .318 .344 .375 .411 .458 .529 .623
44 -,120 -.055 .006 .109 -.180 '.223 267 .315 .341 .371 .406 .452 .521 .612
46 - .112 -.049 .011 .111 .181 .223 266 .313 .339 .368 .402 .446 .514 .603
48 -.104 -.043 .01l6 .114 .182 .223 265 .312 .336 .365 .398 .441 .507 .594
50 -.097 -~-.038 .020 .1l6 .183 .223 .265 .310 .334 .362 .394 .437 .500 . 586
52 -.091 -.033 .024 ~#.118 .184 .223 .264 .308 .332 .359 ,391 .432 .494 .578
54 -.084 -.028 .028 .120 .185 .223 .263 .307 .330 .357 .388 .428 .489 .571
56 -.078 -.024 .032 .122 .185 .223 .262 .305 .328 .354 .385 .424 .483 .564
58 =-.072 -.019 .036 .124 .186 .223 .261 .304 .326 .352 .382 .420 .478 .558
60 -.067 -.015 .039 .125 .187 .223 .261 .302 .324 .350 .379 .417 .474 .552
64 -.057 -.008 .045 .128 .188 .223 .259 .300 .321 .346 .374 .410 .465 .540
68 -.048 -.001 .051 .131 .189 .223 258 .298 .318 .342 .370 .404 .457 .530
72 -.039 -.005 .056 .134 .190 .224 .257 .296 .316 .339 .365 .399 . 450 .521
76 =-.032 ~.011 .06l .136 .191 .224 .256 .294 .313 .336 .362 .394 . 443 .513
80 -.025 -.016 .065 .138 .192 ~.224 255 .2%92 .311 .358 .389 .437 .505

.333
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N
7
8

10:

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
64
68
72
76
80

Table A2d: DPercentage Points for c[ln(b/b) - 1n(K)] with K=.90, g=e ‘=.407
y .02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .90 .95 .98
=1.070 =.736 =-.516 =.226 —.031 .078 .195 .327 .404 .500 .607 .752 .996 I.317
-.964. -.652 -.457 =-.195 -.018 .08l .189 .309 .379 .465 .560 .695 .911 1.183
-.809 -.541 =-.379 =-.153 -.001 .086 .181 .285 .344 .416 .497 .615 .794 1.011
-.701 -.468 =-.328 =-.125 .010 .090 .175 .269 .321 .384 .456 .560 .717 .902
-.621 =-.415 =-.291 =-.105 .018 .092 .171 .256 .303 .360 .426 .520 .660 .824
-.559 =-.375 =-.262 -.089 .025 .094 .168 .247 .290 .342 .403 .489 .616 .766
-.509 -.343 =-.239 -.077 .030 .096 .165 .239 .279 .328 .384 .464 .58l .720
-.467 -.317 =-.220 -.066 .025 .097 .162 .232 .270 .316 .369 .443 .552 .683
-.433 -.295 =-.204 =-.057 .039 .098 .160 .226 .262 .305 .356 .426 .527 .651
-.403 =-.276 ~-.190 =-.050 .042 .099 .158 .221 .256 .297 .345 .410 .506 .624
-.377 =-.259 =-.178 =-.043 .045 .100 .156 .217 .250 .289 .335 .397 .488 .60l
-.355 -.245 -.167 -.038 .048 .100 .155 .213 .245 .282 .326 .386 .472 .581
-.335 -.232 =-.157 =-.032 .050 .101 .153 .209- .240 .276 .319 .375 .458 .562
-.317 -.220 -.148 -.028 .052 .101 .152 .206 .236 .271 .312 .366 .445 .546
-.301 -.210 -.140 =-.024 .054 .102 .151 .203 .232 .266 .306 .357 .433 .532
-,287 -.200 -.133 -.020 .056 .102 .150 .201 .229 .261 .300 .350 .423 .518
-.274 -.191 -.126 -.016 .057 .102 .149 .198 .225 .257 .295 .353 .413 .506
- 262 -.183 =-.120 -.013 .059 .103 .148 .196 .222 .253 .290 .336 .405 .495
-'251 -.176 -.114 -.010 .060 .103 .147 .194 .220 .250 .286 .330 .396 .485
-,240 -.169 -.109 -.007 .062 .103 .1l46 .192 .217 .247 .282 .325 .389 .475
-231 -.163 -.104 -.005 .063 .103 .145 .190 .215 .244 .278 .319 .382 .467
-.222 -.157 -.099 -.002 .064 .104 .144 .188 .213 .241 .275 .315 .375 .458
-214 -.171 -.095 .000 .065 .104 .144 .187 .210 .238 .271 .310 .369 .451
-.206 =-.146 ~-.091 .002 .066 .1l04 .143 .185 .208 .236 .268 .306 .363 .443
-.199 =-.141 -.087 .004 .067 .104 .142 .184 .207 .233 .265 .302 .358 .437
-'192 -.136 -.083 .006 .068 .104 .142 .182 .205 .231 .262 .298 .353 .430
- 186 -.1i32 -.080 .008 .068 .104 .141 .18l .203 .229 .259 .295 .348 .424
- 180 -.127 -.076  .009 .069 .105 .141 .180 .202 .2227 .257 .291 .343 .418
-.169 -.120 =-.070 .012 .071 .105 .140 .177 .199 .223 .254 .285 .335 .408
~'159 -.113 -.065 .015 .072 .105 .139 .175 .196 .220 .252 .279 .327 .398
-.150 -.106 -.060 .018 .073 .105 .138 .173 .193 .217 .248 .274 .320 .389
~'142 -.100 =-.055 .020 .074 .105 .137 .171. .191 .214 .244 .269 .314 .381
- 095 -.050 .022 .075 .105 .136 .170 .189 .211 .240 .265 .308 .374

-.135
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Table A2e

Percentage Points, zY, such that P[ ¢ ln(l;/b) < L 1=y
y

y .02 .05 .10 .25 . 40 .50 .60
-1,631 -1.247 =-.888 ~.h4L =.24,1 -,056 @ ,085
-1.396 -1.007 =-,740 =~.385 =.194 =,045 .079
-1.196 -0.874 =-.652 =-.34L -.168 -,038 .07k
-1.056 =0.7°4 =-,591 -,313 -,150 =-.,032 ,070
-0.954 =0.717 =-.544 =.289 =-.137 -.029 .067
-0.876 -0,665 -.507 -.269 -,126 ~-.,026 .065
-0.813 -0.622 =-,477 -.253 =-.118 -,023  ,062
-0.762 -0,587 =-.451 =-,239 =-,111 -,021 ,061
~-0.719 -0,557 =.429 -,228 -,106 -.019  ,059
-0.683 -0.532 -,410 =-,217 =-,100 -.018 .057
-0.651 -0,509 -,393 -,208 -.096 -.016 .056
-0.624 -0,489 -.379 =-,200 -.092 -,015 ,054
-0.599 -0.471 =-.,365 =-,193 -.089 -.0l14 .053
-0.578 -0.455 -.353 -,187 -.,085 =-.,013  .052
-0.558 -0.L41 -.34,2 -,181 -,083 =-,013 ,051
-0.5,0 -0.428 =-.332 -.,175 =-.080 -.012 .050Q
~-0.509 -0,404 =-.314 =-,166 =-.075 =-,011  .OAL3
-0.483 -0.384 =-,299 -,158 -.071 -.009  .OLY
~0.L60 -0.367 ~-.286 =-.150 -.068 -.,009  .OL6
0. 441 ~0.352 ~.274 =.l4, =-,065 =-,008  .OLL
-0.423 -0,328 -,264 =-,139 -.062 ~-.C07  .OL3
-0.408 -0.326 =-.254 =-.,134 =-.,059 =-.0C6  .O42
-0.394 =0.315 -.246 =-.129 =-.057 -.006 .04l
~0.322 -0,305 =-.238 -.125 =-,055 =-.005 .,04O
-0.370 -0,296 =-.231 =-,121 -.053 -.,005 .O4LO
-0.360 -0,288 -.224 =-.118 -.052 -.004 .G39
-0.350 -0.280 =-,218 -.115 =-.,050 -.004k .038
-0.341 -0,273 =-,213 =-,112 -,048 -.004 .037
-0.333 -0.266 -.208 =-.109 -.047 =-.003  ,037
-0.325 -0.,260 -.203 =-.106 =-.046 -.003  .036
-0,318 -0.254 -.198 =-.104 =-.045 =-.003 .036
-0.312 -0.249 =-.194 -.102 -.043 =-.003  .035
-0.305 =-0.244 =-.190 =-.100 -.,042 ~-.002 .035
~0.299 -0.239 =-.196 =.098 -.0Lr -.002 .03k
~0.20, -0.234 -~.183 =-.006 -.04L0 -.002  .O34
-0.289 -0,230 =-,179 =-.094 -.039 =-.002  .033
~0.28, =-0.226 ~.176 =-.092 -,039 =-.002  .033
-0.279 -0.222 =-,173 -,091 -.038 -.,001 .032
.0.27, -0,218 =-,170 -,089 -.,037 -.,001 .032
-0,270 -0.215 -,167 =.088 -.036 =~-.001L  .032
~0.266 =-0.211 -,165 =-,086 =~-.035 =-.,001 .03l
~0.262 =-0,208 =-,162 -.,085 =-.035 -.00L .03l
-0.259 -0,205 =-.160 =-.08, -.034 -.00L .03l
-0.255 -0,202 =-.158 =-.083 -.033 -.,001  .030
-0.,2,8 -0.197 -.153 =-.,080 =-.032 -,000 .030
-0.241 =-0,160 =-,14L8 =-.078 -.031 =-.000  .029
-0.234 =~0.184 =-.lh4 -.075 =-.030 .000  .028
-0.221 =-0.174 =-.136 =-,070 =-.027 .000  .027
-0.202 -0.,158 =~.123 =-.064 =-.024 .001  .025



Table A2c (cont.)

Percentage Points, RY, such that P[ c ln(ﬁ/b) < 2Y]=y

v .70 .75 . 80 .85 .90 .95 .98
5 02514' 03&9 -1&52 0587 0772 10107 10582
6| .221 .302 .LOL  .516  .666 0.939 1.201
7 . 200 .R72 .362 465 .568 0,820 1,120
8| .185 .251  .331 .427 .547 0.751 1,003
9f 174 .235 .307 .397 .507 0.691 0.917

10| .165 .222 .288  .372 475 0.64L4 0.851

11| .157 .21  .,273 .351 .448 0,605 0,797

121 .150 .202  .260  .33L4  .425 0,572 0.752

13| 145  .194 .2L9  .319 406  O.544  O.714

14| .140  .187 .239 ,306 .389 0.520 0.681

15/ .135 .,180 .230 .294  .374 0.499 0.653

16| .131 .175 .223 .28, .360 0.,80 0,627

17! .128 .170  .216  .274 .348 O.463  0.605

18! .124 .165 .209  .266  .338 O.447 0.584

19! .121 .161  .20L .258 .228 0.433 0.566

20/ .118 .157 .199 .251 .,318 0.421 O.549

22 .113 .150 .189 .239 .302 0.398 0.519

2nl  .109 J14hk  .181 .228  ,288 0.379 0.49%4

261 .105 .138 .17, .219 .,276 0.362 0,472

281  .102  .134  .168  .210  .265 0.347 0.453

30{ .098 .129 .163  .203  .256 0.334h 0.435

32| .095 .125 .158  .197 .247 0,323 0.L20

35 .093  .122  .153  .161  .239 0.312 0.4L06

36| .090 .118 .149 .185 .232 0.302 C.393

38| .088 .115 .45 .180 .226 0,293 0,282

Lol .08  .113  .142 .175 .220 0,285 0,371

,2| .o, .110 .139 .171  .214 0.278 0.361

Li| .082 .108 .136 .,167 .209 0.271 0.352

161 .08  .105  .133  .164  .204  0.264  O.34L

nel .o79 .103  .130 .160 .199 0.258 0.336

so| .o77 .10l .,128 .157 .155 0.253 0.228

52| .076 .099  .126  .154 .191 0.247 0.321

5, .o7, .097 .123 .151 .187 0.243  0.315

56| .073 .096 .121 .48 .184 0.238  0.309

s¢| .072 .094  .119  .146 .18 0.233  0.303
60| .o71  .092  .117 143 177 0.229  0.297

62 .o70 .091 .116  .141  .17h 0O.225 0.292

6, .o068 .089 .11k .139 .171  0.221 0.287

66| .o67 .0o88 .ilz  .137 .169 0.218 O 282

&gl .o066 .087 .111  .135 .166  0.214 0.278

20| .065 .085 .109 .133 .164 0.211 0.27h

72| .,6L .08, .,108 .131 .16l 0.208 0.269

74| .06, .083 .107 .129 .159 0.205 0.266

76| .063 .082 ,105 .128 .157 0.202 0.262

gol 061 .o020 .103 .125 .153 0.197 0.255

gs| .os9 .077 .100 .121 .148 0.190 0.246

90| ‘o057 .075 097 .118 .143 0.185 0.239

100/ .o54 .071 .093 .112 .136 0.175 0.226
1200 .oL9 .064 .085 .103 .123 0.159 0.205
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Table A2f: Percentage Points for é[ln(lg/b) - 1In(K)] with K=1.,05, 8=e'K=,350

N Y

.02 .05 .10

.25 .40 .50

.60 .70 .75 .80 .85 .90 .95 .98
7 “=I.280 =.940 =.700 =.400 =.204 =.090 .019 .14l .203 .292 .388 .517 725 I.025
8§ -1.123 -.854 -.655 -=.371 -.191 -.086 .0l6 .131 .195 .271 .364 .482 .677 .926
10 -.930 -.729 -.G68 -.325 -.170 -.079 .0l12 .113 .170 .235 .316 .416 .583 .782
12 -.814:~.646 -.508 -.293 -.156 -.674 .008 .099 .150 .207 .279 .367 .513 .685
14 -.734 -.587 -.464 -.269 ~.145 -.070 .005 .088 .135 .186 .251 .330 .461 .615
16 =-.675 -.542 =.430 5.251 -.136 -=.067 .003 .079 .122 .170 .229 .302 .420 .562
18 -.929 -.506 -.403 -.237 -.130 -.065 .001 .072 .1l12 .157 .212 .279 .388 .529
20 -.592 -.478 -.381 -.225 -.124 -.063 -.001 .066 .104 .146 .197 .260 .361 .486
22 -.561 -.454 -.363 -.215 -.119 -.06L -.002 .061 .097 .137 .185 .244 .339 .457

24 -.535 -,433 -.347 -.207 -.116 -.060 -.004 .057 .091 .129 .174 .231 .320 .432
26 =-.512 -.416 -.334--.200 -.112 -.059 -.005 .053 .085 .122 .165 .219 .303 .411
28 -.492 -.400 -.322 -.194 -.109 -.058 -.006 .049 .080 .115 .157 .209 .289 .392
30 -.475 -.387 -.311 -.188 -.107 -.057 '=.007 .046 .076 .110 .149 .199 .276 .376
32 -.459 -.375 -.302 -.183 -.104 -.056 -.008 .043 .072 .105 .143 .191 .264 .361
34 -.445 -.364 -.293 -.179 -.102 -.055 -.009 .040 .069 .100 .137 .184 .254 .348
35 -.432 -.354 -.286 -.175 -.100 -.055 -.010 .038 .066 .096 .132 .177 .244 .336
38 -.420 -.345 -.279 -.171 -.098 -.054 -.011 .036 .063 .093 .127 .170 .236 .325
40 -.409 -.337 -.272 -.167 -.097 -.054 -.011 .034 .060 .089 .122 .165 .228 .315
42 -.400 -.329 -.266 -.164 -.095 -.053 -.012 .032 .057 .086 .118 .159 .221 .306
44 -.390 -.322 -.261 -.161 -.094 -.053 -.013 .030 .055 .083 .114 .155 .214 .297
46 -.382 -.315 -.256 —-.159 -.093 -.053 -.013 .029 .053 .080 .111 .150 .208 .289
48 -.374 -.309 -.251 -.156 -.092 -.052 -.014 .027 .051 .077 .107 .146 .202 .282
50 -.366 -.304 -.247 -.154 -.091 -.052 -.015 .026 .049 .075 .104 .142 .197 .275
52 -.359 -.298 -.243 -.152 -.090 -.052 -.015 .024 .047 .073 .101 .138 .191 .268
54 -.353 -.293 -.239 -.150 -.089 -.052 -.016 .023 .045 .07l .098 .135 .187 .262
56 -.347 -.289 -.235 -.148 -.088 -.051 -.016 .022 .044 .069 .096 .131 .182 .256
58 -.341 -.284 -.232 -.146 -.087 -.051 -.016 .021 .042 .067 .093 .128 .178 .251
60 -.335 -.280 -.228 —-.144 -.086 -.051 -.017 .020 .04l .065 .091 .125 .174 .245
64 -.325 -.273 -.222 -.141 -.085 -.051 -.018 .018 .038 .061 .087 .120 .166 .236
68 -.316 -.265 -.217 -.138 -.084 -.050 -.018 .016 .036 .058 .083 .115 .160 .227
72 -.307 -.259 =.212 -.136 -.082 -.050 -.019 .014 .034 .055 .079 .110 .153 .219
76 =-.300 -.253 -.207 -.133 -.081 -.050 -.020 .012 .031 .053 .076 .106 .148 .212
80 =-.292 -.248 -.203 -.131 -.080 -.050 -.020 .01l .020 .050 .073 .102 .143

. 205
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N
.
8

10
12
14
16
18
20
22
24
26
28
30
32

34

36
38
40
42
a4
46
48
50
52
54
56
58
60
64
68
72
76
80

Table A2g: Percentage Points for cfin(b/b) - 1In(X)] with K=1.10, B=e K=.333

vy .02 .05 .10 .25 .40 .50 .60 .70 .75 . 80 .85 .90 .95 .98

-1.362 -1.013 -,771 -.454 -.258 -.192 -.034 .086 .152 .232 .327 .451 .645 .936

-1.195 -.916 -.708 -.421 -.243 ~.181 -.036 .076 .138 .212 .303 .415 .598 .838
-.994 -,785 -.619 -.374 -.220 -.164 -.039 .069 .115 .179 .259 .355 .514 .,704
~-.873 ~-.706C -.559 -.342 -.205 -.153 ~.042 .046 .097 .153 .225 .310 .450 .614
-.790 -.640 -.515 -.318 -.194 -,145 -.044 .036 .083 .134 .199 .276 .402 .54%
-.729 -,594 -.481 -.300 -.185 -,139 -.046 .028 .072 .119 ..178 .249 .364 .499
-.681 ~-.557 -.454 -,285 -,178 -.134 -.048 .022 .062 .106 .161 .227 .333 .459
-.643 -,528 -.431 -.274 -.173 -.130 -.050 .016 .054 .096 .147 .209 .307 .426
-.611 ~-.503 -.412 -.264 -.168 -.127 -.051 .0l11 .047 .086 .135 .193 .285 .398
-.584 -.482 -.396 -.255 -.,164 -.124 -.052 .007 .041 .079 .124 .180 .267 375
-.561 -.464 -.382 -.248 -.160 -.121 -.054 .003 .036 .072 .1l15 .168 ..250 .355
-.541 -.448 -.370 -.241 -.157 -.119 -.055 .000 .031 .066 .107 .157 .236 .337
-.523 ~-.435 -.359 -.235 -.154 ~-,117 ~-.056 ~-.003 .027 .C60 .100 .148 .223 .321
-.507 -.422 -.350 -.230 -.152 -.116 -.057 -.006 .023 .055 .093 .140 .212 .307
-.493 -.411 -.341 -.226 -.150 -.114 -.058 -.008 .020 .051 .087 .132 .201 .294
-.480 -.401 -.333 -.221 ~-.,148 -.113 -.059 -.011 .017 .047 .082 .125 .192 .282
-.469 -.392 -.326 ~-.218 -.146 -.112 ~-.059 -.013 .014 .043 .077 .119 .183 .272
-.458 -.383 ~-.319 -.214 -.144 -.111 -.060 -.015 .011 .039 .072 .,.113 .175 .262
-.448 -.376 -.313 -,211 -.142 -.110 -.060 -.016 .008 .036 .068 .108 .168 ..253
-.439 =-.369 -.308 -.208 -.141 -.109 -.061 -.018 .006 .033 .064 .103 .1l61 .245
-.431 =-.,362 -.303 -.205 -.140 -.108 -.061 -.020 .004 .030 .060 .099 .155. .237
-.423 -.356 -.298 -.203 -.139 -.107 -.062 -.021 .002 .028 .057 .093 .149 .230
-.415 -.350 -.293 -.200 -.137 -.106 -.062 -0022 -.000 .025 .053 .089 .143 .223
-.409 -.345 -.289 -,198 -.136 -.106 -.063 -.024 -.002 .023 .050 .085 .1l38 .217
-.402 -.340 -.285 -.196 -.135 -.105 -.063 -.025 -.004 .021 .048 .082 .133 .211
-.396 =-.335 -,281 -.194 -.134 -.105 -.063 =.026 -.005 .019 .045 .078 .128 .205
-.391 -.331 -.278 -.192 -.133 -.104 -.063 -.027 -.007 .017 .042 .075 .124 .200
-.385 =.326 -.274 -.190 ~.133 -.103 -.0564 -.028 -.008 .015 .040 .072 ".120 .195
-.375 ~,319 -.268 -.187 -.131 -.103 -.065 -.030 -.011 .011 .035 .066 .1l12 .186
-.366 -.312 -.263 -.184 -.130 -.102 ~-.065 -.032 -.014 .008 .031 .061 .105 .177
-.358 -.305 -.258 -.181 -.128 -.101 -.066 -.034 -.0l6 .005 .028 .056 .099 .170
-.350 +.299 -.253 -.179 -.127 -.100 -.066 -.035 -.018 .003 .024 .052 .093 .163
~.344 -.294 -.249 -.177 -.126 -.100 -.067 —-.037 -.020 .000 .021 .048 .088 .156
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Table A2h: Percentage Points for ciln(b/b) - In(K)1 with K=1.15, g=e F=.317
N .02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .90 .95 .98
7 'T1.435 —-1.081 -.828 =.504 =.305 =.193 -.083 034 .100 .176 .268 .387 .586 .857
8 -1.264 -.979 -.767 -.472 -.293 -.186 -.084 .025 .086 .160 .246 .358 .540 .766
10 -1.053 =-.840 =.673 —-.423 -.269 ~.177 =.087 .00% .064 .128 .203 .300 .454 .637
12 -.927 =-.751 -.608 -.389 -.252 -.171 -.090 .003 .047 .104 .170 .256 .391 .550
14 -.841 -.688 -.562 =-.364 -.240 —-.166 -.092 .012 .033 .084 .144 .222 .343 .487
16 -.779 -.641 -.527 -.345 -.231 -.163 —.094 .020 .022 .069 .124 .196 .307 .439
18 =-.730 =-.604 -.499 -.330 -.223 -.160 =-.095 .026 .013 .057 .108 .175 .277 .401
26 -.691 -.574 -.476 -.318 -.217 —-.158 -.097 .031 .006 .047 .095 .157 .252 . 369
22 -.659 -.549 -.457 -.308 -.212 -.156 -.098 .036 .00l .038 .083 .142 .232 . 343
24 -.632 =-.528 -.441 -.300 -.208 -.154 -.099 .040 .006 .030 .073 .129 .214 .320
26 -.608 =-.509 -.427 —.292 -.205 -.153 -.100 .044 .01l .024 .065 .118 .199 .300
28 -.588 =-.493 -.415 -.286 —.201 -.152 -.101 .047 .016 .018 .057 .108 .185 .283
30 -.570 -.479 -.404 -.280 =.199 =.151 -.102 .050 5020 .013 .050 .099 .173 .268
32 -.554 ~-.467 -.394 -.275 -.196 -.150 -.103 .052 .024 .008 .044 .091 .163 .254
34 -.540 =-.456-. 386 =.270 =.194 -.146 -.103 .055 .027 .004 .039 .084 .153 .241
36 -.527 =-.445 -.378 —.266 —.192 -.128 -.104 .057 .030 .000 .034 .078 .144 .230
38 -.515 =-.436 -.371 =.262 —-.190 -.147 -.105 .059 .033 .004 .029 .072 .136 .220
40 -.504 <-.428 -.364-.259 -.189 -.147 -.105 .061 .035 .007 .025 .066 .129 .210
42  -.294 -.420 -.358 —.256 —.187 -.146 -.106 .063 .038 .010 .02l .061 .122 .202
44 -.485 =-.413 -.353 —-.253 -.186 ~.146 -.106 .064 .040 .013 .017 .057 .116 .193
456  -.476 -.406 -.347 =.250 -.184 -.145 -.107 .066 ,042 .016 .014 .052 .110 .186
48 -.468 =-.400 -.343 =.247 -.183 -.145 —-.107 .067 .044 .018 .01l .048 .104 .179
50 -.46li -.394 -.338 -.245 -.182 -.144 -.108 .068 .046 .020 .008 .044 .099 .172
52  -.453 =-.389 -.334 -.243 -.181 -.144 -.108 .070 .048 .023 .005 .04l .094 .166
54 -.447 -.384 =.330 -.241 -.180 -.144 —-.108 .07l .049 .025 .003 .038 .090 .160
56 ~.441 =.379 —.326 -.239 -.179 -.143 -.109 .072 .051 .027 .000 .034 .086 .155
58 -.435 =.374 -.323 -.237 -.178 -.143 -.109 .073 .052 .028 .002 .031 .082 .150
60 -.429 ~=.370 =-.320 =.235 -.178 -.143 -.109 .074 .054 .030 .004 .029 .078 .145
64 -.419 =-.362 =-.313 =.232 -.176 -.142 -.110 .076 .056 .033 .009 .023 .07l .136
68 -.410 =-.355 +=.308 =.229 -.175 —-.142 -.111 .078 .059 .036 .012 .018 .064 .127
22 -.40%1 -.348 =-.303 -.226 -.174 -.141 -.111 .079 .061 .039 .016 .014 .059 .120
76  -.393 =.342 =.298- .224 -.173 -.141 -.112 .081 .063 .04l .019 .010 .053 .113
80 -.386 ~.221 =.172 -.140 -.112 .082 .065 .044 .022 .006 .048 .106

-.337 =.294
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N
7
3

10
12
14
16

18

20
22
24
26
28
30
32
24
26
28
40
42
44
46
48
50
52
54
56
58
60
64
68
72
76
80

Y

Table A2i: Percentage Points for cl[in(b/b) - 1n(X)] with K=2.0, g=e X=.135

.02 .05 .10 .25 .40 .50 .60 .70 .75 .80 .85 .%0 .95 .98
=2.509 -1.979 -1.626 -1.177 -.936 -.813 <.704 -.588 -.531 -.470 -.400 =.309 ~-.163 =.000
-2.235 -1.806 -1.510 -1.129 -.910 -.796 -.697 -.589 -.535 -.480 -.412 ~.324 ~,192 =-.037
-1.903 -1.590 -1.361 -1.055 ~-.873 =-.774 -.687 -.553 -.544 -.495 -.434 -.356 —.242--.106
-1.709 -1.459 -1.268 ~1.005 ~.848 -.760 — 31 -.596 -,.552 -.507 -.452 -.381 ~.279 -.158
~1.580 -1.370 -1.204 -0.970 -.229 ~,7/30 — 678 -.600 -.559 -.517 -.466 -.402 -.308 ~.198
-1.487 -1.304 -1.156 -.943 -.815 -.743 -.¢75 -.603 -.565 -.525 —-.478 ~.418 =.331 -.230
-1.417-1.253 -1.119 =-.923 -.804 -.737 -.673 -.606 -.571 -.532 -.488 —-.432 -.350 =-.256
-1.361 -1.212 -1.089 =.906 -.795 =.733 =.672 -.609 -.575 -.538 —.496 —.444 -.366 -.277
-1.316 -1.179 -1.064 -.893 -.788 -.729 -.671 -.611 -.579 —-.544 —-.504 —-.454 —-.380 —.296
-1.278 -1.151 -1.043 -.881 -.782 -.726 -.671 -.614 -.583 —.549 -.510 —-.463 -.392 -.312
-1.246 -1.126 -1.025 =-.871 =.776 =.724 -=.670 —.616 —.586 —=.553 =.516 -.470 ~.402 -.326
~1.219 -1.105 -1.009 ~-.863 =.772 -.721 -.670 -.617 -.589 =.557 —-.521 =.477 =-.412 -.338
-1.195 -1.087 =-.996 =~.855 -=.768 -.719 ~-.670 -.619 -.592 —-.561 —-.526 -.484 -.420 =-.349
-1.174 -1.071 -.983 =-.848 -.764-.717 -.670 -.621 -.594 -.564 —-.530 —-.489 -.428 -.359
-1.155 -1.056 =-.973 =-.842 -.761 -.716 -.670 -.622 ~.597 =.567 =.534 =.495 -.435 -.368
-1.138 -1.043 =-.963 =-.837 -.758 -.714 ~.670 -.623 =.599 —-.570 =.538 =.499 —.441 -.377
-1.122 -1.031 =~.954 =-.832 =.756 -.713 -.670 —-.625 -.601 —.573 ~.541 -.504 —-.447 —-.384
-1.108 -1.020 -.946 =-.828 =.753 -.712 -.670 =-.626 —.603 =.575 =.544 -.508 —.453 -.392
-1.096 -1.010 =-.938 =-.824 -.751 -.711 -.670 -.627 ~.604 =.577 =-.547 =.512 —-.458 ~.398
-1.084 -1.001 =-.931 =-.820 -.749 -.710 -.670 -.628 —.606 —.580 =.550 ~.515 —.462 -.404
' -1.073 - .993 -.925 -.816 -.747 -.709 -.670 -.629 —.607 —-.582 =.552 -.518 —-.467 —.410
-1.063 - .985 =-.919 =-.813 -.746 -.708 -.671 -.630 -.609 —.584 - .555 —-.521 —-.471 -.415
~1.054 - .977 -.913 -.810 -.744 =.707 -.671 -.631 -.610 —-.586 =.557 —-.524 —.475 =.420
-1.045 - .971 -.908 -.807 -.743 -.707 -.671 -.632 -.612 -.587 =.559 -.527 -.479 -.425
-1.037 - .964 =-.903 -.805 -.741 -.706 ~.671 -.633 -.613 =.589 ~.561 =.530 —.482 —.430
-1.029 - .958 -.899 -.802 -.740 -.705 -.671 —-.633 -.614 —.591 -.563 —.532 -.485 -.434
-1.022 - .952 -.894 -,800 -.739 -.705 -.67L -.634 -.615 -.592 -.565 —.535 —-.488 -.438
-1.015 - .947 -.890 -.798 -.738 -.704 -.672 ~.635 - .616 -.594 =.567 =.537 =.491 -.442
-1 002 - .937 ~-.883 =.794 -.736 -.703 -.672 —-.636 -.618 =.596 ~,570 —.541 -.497 -.449
-~0.991 - .928 =-.876 =-.790 -.734 -.702 -.672 -.637 -.620 =.599 -.573 —.545 =.502 -.455
-0.981 - .920 =-.870 -.787 -.732 -.702 -.672 -.639 -.622 ~.601 -.576 -.548 -.507 -.461
-~0.972 - .913 ~-.864 -.784 -=731 -.701 -.673 -.640 -.623 =.603 -.578 =.552 =.511 ~.466
-0.963 - .906 -.859 =-.781 -.700 -.673 -.641 -. 625 -.605

-.729

-.581 -.555 —-.515 -.472
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Table A3a

=1n(B)

Percentage Points, &, such thatVGK(2)=.80 as a function of B where K
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Table A3b
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Percentage Points, &, such that GK(£)=.9O as a function cf B8 where X = -1ln(B)
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“Table A3c

Percentage Points, %, such that G, (2)

.95 as a function of B8 where K = =-1n{8)
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Table A3d

.98 as a function of B where XK = ~1n{3)

Percentage Points, 2%, such that GK(z)
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Table A5

75% Lower Confidence Limits for R{t)

n

R(t) 8 10 12 15 18 20 25 30 40 50 75 100

.50 .399 .411 .419 .428 .434 .438 .445 .449 .456 .461 .467 .472
.52 .417 .429 .437 .446 .453 .457 .465 .468 .475 .481 .487 .491
.54 .435 .446 .455 .464 .472 .476 .484 .487 .495 .500 .507 .51l
.56 .452 .465 .474 .483 .491 .495 ,503 .506 .515 .520 .526 .531
.58 471 .483 .492 .501 .510 .514 .522 .526 .534 .540 .546 .551
.60 .489 .501 .510 .520 .529 .533 .542 .546 .554 .560 .566 .571
.62 .507 .520 .529 .539 .549 .553 .,562 .565 .574 .579 .586 .591
.64 .526 .539 .548 .,559 .568 .572 .58l .585 .594 .600 .606 .61l
.66 .544 .558 .568 .578 .588 .592 .601 .605 .614 .620 .627 .63l
.68 .563 .577 .587 .598 .608 .612 .621 .625 .635 .640 .647 .651
.70 .583 .596 .607 .618 .628 .632 .641 .646 .655 .660 .667 .672
.72 .602 .616 .627 .638 .648 .653 .662 .666 .676 .68l .688 .692
.74 .622 .636 .648 .659 .668 .673 .682 .687 .697 .701 .708 .713
.76 .643 .657 .668 .680 .690 .694 .703 .708 .717 .722 .729 .734
.78 .663 .678 .690 .701 .711 .715 .725 .729 .738 .743 .750 .754
.80 .685 .699 ,712 .723 .732 .737 .746 .750 .760 .764 .771 .775
.82 .707 .721 .734 .745 .754 .759 .768 .772 .781 .785 .792 .796
. 84 .730 .744 .757 .767 .777 .78L .790 .794 .803 .807 .8l14 .818
. 86 .754 .768 .780 .791 .800 .804 .813 .817 .825 .829 .836 .839
.88 .779 .792 .805 .815 .823 .28 .836 .839 .848 .851 .857 .86l
.90 .804 .818 .830 .840 .848 .852 .859 .863 .870 .874 .880 .B883
.92 .833 .846 .856 .866 .873 .877 .884 .887 .894 .897 .902 .905
.94 .863 .875 .885 .894 .900 .903 .909 .912 .918 .921 .925 .927
.96 .897 .908 .916 .923 .928 .931 .936 .938 .943 .945 .948 .930
.98 J .937 .945 .950 .956 .960 .962 .965 .967 .970 .97l .973 .974
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Table A5 (cont.)

80% Lower Confidence Limits for R(t)

n

R(t) 8 10 12 15 18 20 25 30 40 50 75 100

.50 -377 391 .399 .410 .418 .423 ,432 .437 .446 .451 .459 .465
.52 393 .408 .417 .429 .437 .442 .451 .456 .465 .471 .479 .484
.54 -4l .425 .435 .447 .456 .461 .470 .475 .484 .491 .499 .504
.56 -428 .443 ,453 ,466 .475 .480 .490 .494 .504 .510 .518 .524
.58 -446  .461 .471 .485 .494 ,499 .509 .514 .524 .530 .538 .544
.60 -464 .479 .490 .503 .513 .518 .529 .534 .543 .550 .558 .564
.62 -481  .497 .508 .523 .,532 .537 .549 .553 .563 .570 .578 .584
.64 -499  .516 .527 .542 .552 ,557 ,568 .573 .583 .590 .599 .604
.66 -517 .534 .546 .562 .572 .577 .588 .593 .604 .610 .619 .625
.68 .537 .554 .566 .582 .,592 .597 .608 .613 .624 .630 .639 .645
.70 .556 .573 .586 .601 .612 .617 .629 .634 .644 .651 .660 .665
.72 .576 .593 .606 .622 .633 .,637 .649 .654 .665 .671 .681 .686
.74 -596  .613 .626 .642 .653 .658 .670 .675 .686 .692 .70l .707
.76 .617 .634 .648 .663 .674 .679 .691 .696 .707 .713 .722 .728
.78 -638 .656 .669 .684 .696 .701 .712 .717 .729 .735 .743 .749
.80 -659  .678 .691 .706 .717 .723 .734 .739 .750 .756 .764 .770
.82 .682 .700 .714 .729 .740 .,745 .756 .761 .772 .778 .786 .792
.84 -705 .723 .737 ,752 .763 .768 .778 .784 .794 .800 .807 .813
. 86 -729  .748 .762 .776 .787 .791 .801 .807 .817 .822 .829 .835
.88 -755 .774 .787 .801 .811 .8l16 .825 .830 .840 .844 .851 .856
.90 .783 .800 .814 .826 .837 .841 .850 .855 .863 .868 .874 .879
.92 .813 .829 .842 .854 .863 .867 .875 .880 .887 .892 .897 .901
.94 .845 .860 . .872 .883 .891 .894 .902 .906 .912 .916 .921 .924
.96 .881 .894 .905 .914 .921 .924 .930 .933 .939 .942 .945 .948
.98 -924 .936 .943 .949 .955 .957 .961 .963 .967 .969 .971 .973
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Table A5 (cont.)

85% Lower Confidence Limits for R(t)

n

R(t) | 8 10 12 15 18 20 25 30 40 50 75 100
.50 .350 .365 .376 .390 .399 .406 .416 .422 .433 .440 .450 .457
.52 .367 .382 .394 .408 .418 .425 .435 .441 .453 .460 .470 .477
.54 .383 .399 .411 .426 .437 .443 .454 .460 .472 .479 .490 .496
.56 <400 .417 .430 .445 .456 .462 .473 .480 .492 .499 .509 .51l6
.58 .417 .435 .448 .464 .475 .481 .492 .499 .511 .519 .529 .536
.60 .434 .453 .466 .483 .494 .500 .512 .519 .531 .539 .549 .556
.62 .451 .471 .484 .,502 .513 .519 .532 .538 .551 .559 .569 .576
.64 .469 .490 .503 .521 .532 .539 .552 .558 .571 .579 .590 .597
.66 .487 .509 .522 .540 .552 .559 .572 .578 .592 .599 .610 .617
.68 .505 .528 .54l .560 .572 .579 .592 .599 .6l2 .619 .630 .637
.70 .524 .547 .561 .580 .592 .599 .612 .619 .633 .640 .651 .658
.72 .544 .567 .581L .601 .613 .619 .633 .640 .653 .661 .671 .679
.74 .563 .587 .601 .621 .634 .640 .654 .661 .674 .682 .692 .700
.76 .584 .608 .623 .642 .655 .662 .675 .683 .696 .703 .713 .721
.78 .605 .629 .644 .664 .677 .683 .697 .704 .717 .724 .735 .742
.80 .627 .651 .567 .687 .699 .705 .719 .726 .739 .746 .756 .763
.82 .650 .674 .690 .710 .722 .728 .741 .749 .761 .768 .778 .785
.84 .674 .698 .714 .733 .745 .751 .764 .772 .784 .791 .800 .807
.86 .699 .723 .739 .758 .769 .775 .788 .795 .807 .813 .822 .829
.88 .725 .749 .765 .783 .794 .800 .812 .819 .831 .837 .845 .852
.90 .753 .778 .793 .810 .821 .826 .838 .844 .855 .860 .868 .874
.92 .785 .809 .822 .838 .848 .853 .864 .870 .880 .885 .892 .897
.94 .820 .842 .854 .869 .878 .883 .892 .898 .906 .910 .916 .921
.96 .860 .879 .890 .902 .911 .914 .922 .927 .934 .937 .942 .945
.98 .909 .924 .932 .942 .947 .950 .956 .959 .964 .966 .969 .971
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Table A5 (cont.)

90% Lower Confidence Limits for R(t)

‘ n
R(t) 8 10 12 15 18 20 25 30 40 50 75 100

.50 .316 .336 .348 .365 .378 .385 .396 .404 .418 .426 .438 .447
.52 .332 .352 .365 .382 .396 .403 .415 .423 .437 .445 .457 .467
.54 .348 .369 .382 .400 .414 .421 .433 .442 .456 .464 .477 .486
.56 .364 .385 .399 .418 .432 .439 .452 .461 .476 .484 .497 .506
.58 .380 .401 .417 .436 .450 .457 .471 .481 .495 .504 .517 .526
.60 .397 .419 .435 .455 .469 .477 .490 .500 .515 .524 .537 .546
.62 .414 .437 .453 .473 '.488 .496 .510 .520 .535 .544 .557 .567
.64 .432 ,455 .472 .492 .507 .516 .529 .540 .555. .564 .577 .587
.66 .450 .474 .491 .512 .526 .535 .549 .560 .575 .584 .598 .607
.68 .468 .493 .511 .532 .546 .555 .569 .580 .596 .605 .618 .628
.70 .486 .512 .530 .552 .566 .575 .589 .601 .616 .626 .639 .649
.72 .504 .532 .550 .573 .586 .596 .610 .622 .637 .646 .660 .670
.74 .524 .552 ,571 .593 .607 .617 .631 .643 .658 .668 .68l .691
.76 .544 ,573 .592 .615 .628 .638 .653 .665 .680 .690 .702 .712
.78 .566 .595 .613 .637 .651 .660 .675 .687 .702 .711 .724 .734
.80 .588 .618 .635 .660 .674 .683 .698 .709 .724 .733 .746 .755
.82 .611 .641 .659 .683 .697 .706 .721 .732 .746 .756 .768 .777

.84 .636 .666 .683 .707 .722 .,730 .745 .755 .769 .778 .790 .799
.86 .662 .692 .709 .732 .747 .755 .769 .780 .793 .802 .813 .82l
.88 .689 .719 .736 .759 .773 .781 .795 .805 .818 .825 .837 .844
.90 .719 .748 .765 .787 .80C .808 .821 .831 .843 .851 .861 .8€8
.92 .751 .780 .796 .817 .829 .837 .849 .859 .869 .876 .885 .892

.94 .787 .815 .831 .849 .861 .867 .879 .887 .897 .903 .91l .916
.96 .829 .855 .870 .887 .896 .901 .911 .918 .926 .931 .937 .942
.98 .885 .906 .917 .930 .937 .941 .948 .953 .959 .962 .966 .963
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Table A5 (cont.)

95% Lower Confidence Limits for R(t)

n

R(t) 8 10 12 15 18 20 25 30 40 50 75 100

.50 .308 .329 .343 .353 .3266 .379 .394 .404 .420 .432
.52 .308 .325 .346 .361 .371 .384 .398 .413 .423 .439 .452
.54 .300 .323 .341 .363 .378 .389 .402 .416 .432 .442 .459 .471
.56 .316 .33%9 .358 .381 .396 .407 .421 .435 .451 .461 .478 .491
.58 .331 .355 .376 .398 .414 .425 .440 .454 .471 .481 .498 .510
.60 .347 .372 .393 .416 .432 .443 .459 .473 .490 .500 .517 .530
.62 .363 .389 .411 .434 .450 .462 .478 .493 .510 .519 .537 .551
.64 .380 .406 .428 .452 .469 .480 .497 .512 .530 .539 .558 .571
.66 .396 .424 .445 .471 .488 .499 .517 .532 .550 .559 .579 .592
.68 .414 .443 .464 .490 .507 .519 .536 .552 .570 .580 .599 .6l2
.70 .432 .461 .483 .510 .527 .538 .557 .573 .591 .601 .620 .633
.72 .450 .481 .502 .530 .547 .559 .577 .594 .612 .622 .642 .654
.74 .469 .500 .523 .550 .568 .580 .598 .616 .633 .644 .663 .675
.76 .489 .520 .544 .572 .590 .602 .620 .638 .654 .666 .684 .697
.78 .509 .542 .567 .594 .612 .625 .643 .661 .676 .688 .707 .719
.80 .529 .564 .590 .617 .636 .648 .666 .683 .700 .711 .729 .741
.82 .552 .587 .614 .641 .660 .672 .689 .706 .724 .734 .752 .763
.84 .576 .611 .638 .667 .685 .697 .714 .730 .748 .,758 .775 .786
.86 .602 .638 .664 .693 .710 .723 .740 .755 .772 .783 .799 .809
.88 .629 .666 .692 .721 .737 .750 .767 .78l .798 .808 .823 .833
.90 .661 .696. .722 .751 .766 .780 .795 .809 .824 .834 .848 .357
.92 .695 .729 .755 .782 .798 .811 .825 .838 .853 .862 .874 .882
.94 .735 .767 .792 .817 .832 .845 .853 .869 .882 .890 .901 .908
.96 .782 .812 .835 .857 .872 .882 .893 .903 .915 .921 .930 .935
.98 .844 .869 .890 .907 .918 .926 .935 .943 .950 .955 .962 .965
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Table A5 (cont.)

98% Lower Confidence Limits for R(t)

n
R() ] 8 10 12 15 18 20 25 30 40 50 75 100
.50 .293 .305 .317 .331 .349 .366 .379 .401 .415
.52 .307 .322 .334 .348 .366 .384 .397 .420 .434
.54 .300 .323 .339 .351 .366 .384 .403 .417 .439 .453
.56 .309 .339 .356 .369 .384 .402 .422 .436 .458 .473
.58 .309 .324 .356 .373 .386 .402 .421 .441 .455 .478 .493
.60 .324 .340 .374 .391 .404 .420 .440 .461 .475 .498 .514
-62 1 .305 .340 .357 .391 .408 .423 .439 .460 .481 .494 .517 .534
.64 | .320 .356 .374 .409 .427 .442 .458 .480 .500 .514 .538 554
-66 | .335 .373 .392 .428 .446 .462 .478 .500 .519 .534 .558 .575
-68 | .350 .390 .410 .446 .465 .48l .499 .519 .540 .554 .578 595
.70 | .369 .408 .429 .466 .484 .501 .519 .540 .561 .574 .600 .616
+72 | .387 .426 .447 .485 .504 .521 .540 .561 .582 .595 .620 .637
-74 | .405 .445 .468 .505 524 .542 .562 .582 .604 .617 .642 .659
+76 | .425 .465 .489 .526 .546 .563 .584 .605 .625 .639 .664 .68l
.78 | .445 .487 510 .547 .568 ,585 .606 .628 .648 .662 .687 .702
.80 | .466 .509 .532 .569 .591 .609 .63l .651 .672 .685 .709 .725
-82 | .488 .532 .557 .593 .615 .633 .655 .676 .695 .709 .733 .748
-84 | .511 .557 .583 .618 .639 .658 .681 .70l .720 .733 .757 .771
.86 | .535 .583 .610 .645 .666 .686 .708 .727 .746 .759 .78l .795
.88 | .561 .61l .639 .675 .694 .715 .736 .755 .772 .786 .806 .820
.90 | .590 .642 .670 .706 .723 .745 .765 .784 .800 .813 .833 .845
.92 | .623 .677 .707 .740 .758 .778 .797 .8l4 .831 .842 .861 .871
.94 | .664 .716 .748 .778 .796 .814 .831 .847 .863 .873 .890 .899
.96 | .714 .763 .793 .823 .838 .855 .871 .884 .899 .906 .920 .928
.98 | .785 .828 .854 .880 .892 .906 .919 .928 .940 .945 .955 .960

£8
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Table A6

Percentage Points, zy, such that P[(cl/cl)/(cz/cz) < zyl = y

N Y .60 .70 .75 .80 .85 .90 .95 .98
5 1.158 1.351 1.478 1.636 1.848 2.152 2.725 3.550
6 1.135 1.318 1.418 1.573 1.727 1.987 2.465 3.146
7 1.127 1.283 1.370 1.502 1.638 1.869 2.246 2.755
8 1.119 1.256 1.338 1.450 1.573 1.780 2.093 2.509
9 1.111 11.236 1.311 1.410 1.534 1.711 1.982 2.339
10 1.104 1.220 1.290 1.380 1.486 1.655 1.897 2.213
11 1.098 1.206 1.273 1.355 1.454 1.609 1.829 2.115
12 1.093 1.195 1.258 1.334 1.428 1.571 1.774 2.036
13 1.088 1.186 1.245 1.317 1.406 1.538 1.727 1.972
14 1.048 1.177 1.233 1.301 1.386 1.509 1.688 1.917
15} -1.081 1.170 1.224 1.288 1.369 1.485 1.654 1.870
16 1.077 1.164 1.215 1.277 1.355 1.463 1.624 1.829
17 1.075 1.158 1.207 1.266 1.341 1.444 1.598 1.793
18 1.072 1.153 1.200 1.257 1.329 1.426 1.574 1.762
19 1.070 1.148 1.194 1.249 1.318 1.411 1.553 1.733
20 1.068 1.144 1.188 1.241 1.308 1.396 1.534 1.708
22 1.064 1.136 1.178 1.227 1.291 1.372 1.501 1.663
24 1.061 1.129 1.169 1.216 1.276 1.351 1.473 1.625
26 1.058 1.124 1.162 1.206 1.263 1.333 1.449 1.593
28 1.055 1.119 1.155 1.197 1.252 1.318 1.428 1.566
30 1.053 1.114 1.149 1.190 1.242 1.304 1.409 1.541
32 1.051 1.110 1.144 1.183 1.233 1.292 1.393 1.520
34 1.049 1.107 1.139 1.176 1.224 1.281 1.378 1.500
36 1.047 1.103 1.135 1.171 1.217 1.272 1.365 1.483
38 1.046 1.100 1.131 1.166 1.210 1.263 1.353 1.467
40 1.045 1.098 1.127 1.161 1.204 1.255 1.342 1.453
42 1.043 1.095 1.124 1.156 1.198 1.248 1.332 1.439
44 1.042 1.093 1.121 1.152 1.193 1.241 1.323 1.427
46 1.041 1.091 1.118 1.149 1.188 1.235 1.314 1.416
48 1.040 1.088 1.115 1.145 1.184 1.229 1.306 1.405
50 1.039 1.087 1.113 1.142 1.179 1.224 1.299 1.396
52 1.038 1.085 1.111 1.139 1.175 1.219 1l.292 1.387
54 1.037 1.083 1.108 1.136 1.172 1.215 1.285 1.378
56 1.036 1.081 1.106 1.133 1.168 1.210 1.279 1.370
58 1.036 1.080 1.104 1.131 1.165 1.206 1.274 1.363
60 1.035 1.078 1.102 1.128 1.162 1.203 1.268 1.355
62 1.034 1.077 1.101 1.126 1.159 1.199 1.263 1.349
64 1.034 1.076 1.099 1.124 1.156 1.196 1.258 1.342
66 1.033 1.075 1.097 1.122 1.153 1.192 1.253 1.336
68 1.032 1.073 1.096 1.120 1.151 1.189 1.249 1.331
70 1.032 1.072 1.094 1.118 1.148 1.186 1.245 1.325
72 1.031 1.071 1.093 1l.116 1.146 1.184 1.241 1.320
76 1.030 1.069 1.090 1.112 1.141 1.179 1.233 1.310
80 1.030 1.067 1.088 1.109 1.137 1.174 1.227 1.301
90 1.028 1.063 1.082 1.102 1.128 1.164 1.212 1.282
100 1.026 1.060 1.078 1.097 1l.121 1.155 1.199 1.266
120 1.023 1.054 1.071 1.087 1.109 1.142 1.180 1.240




Table A7

Percentage Points, ZY' such that Hl(z ) = vy
Y

85

N Y .60 .70 .75 . 80 .85 .90 .95 .98
5 .228 .476 .608 177 .960 1.226 1.670 2.242
6 .190 «397 .522 .642 .821 1.050 1.404 1.840
7 .164 «351 .461 .573 .726 «918 1.315 1,592
8 .148 .320 .415 #9921 .658 .825 1.086 1.421
9 .126 . 296 .383 .481 .605 « 757 .992 1.294

10 .127 . 277 .356 .449 .563 .704 .918 1.195

e .120 « 261 .336 .423 . 528 .661 .860 1.115

12 . 115 .248 .318 .401 .499 .625 .811 1.049

13 .110 «237 .303 .383 .474 .594 .770 «993

14 .106 . 227 .290 .366 .453 «567 .734 .945

15 .103 «218 «279 +« 352 .434 .544 .704 .904

16 .099 .210 .269 «339 .417 «523 .676 .867

17 .096 «203 .260 .328 .403 «205 .654 .834

18 .094 - 197 .251 .317 .389 .488 +631 . 805

19 .091 .101 .244 .308 .377 .473 611 7179

20 .089 .186 v 237 .299 .366 .349 «593 « 755

22 .085 .176 w229 .284 . 347 . 435 .561 712

24 .082 .168 «215 .271 «330 .414 .534 .677

26 +079 «161 . 206 . 259 .316 .396 .510 .646

28 .076 .154 .198 .249 «303 .380 .490 .619

30 .073 . 149 «191 . 240 o .366 .472 #9395

32 «071 . 144 - 8D 232 .282 .354 .455 .574

34 .069 +139 + 179 .225 .273 .342 .441 « 555

36 .067 .135 .174 .218 .265 .332 .427 « 537

38 .065 P .169 .212 .258 323 .415 + 5322

40 .064 Iy «165 .206 229 .314 .404 .507

42 .062 .124 .160 .202 .245 .306 .394 .494

44 .061 e 1> 41 1 o .196 .239 .298 .384 .482

46 .059 +»118 .153 . 192 .234 «292 .376 .470

48 .058 . e 8 .150 .188 +229 .285 .367 .460

50 .057 ok X3 .147 .184 .224 279 .360 .450

52 .056 .110 .144 . 180 + 220 .273 «353 . 440

54 .055 .108 .141 .176 .215 .268 .346 .432

56 .054 .106 +138 +173 +212 .263 . 340 .423

58 .053 .104 .136 .170 .208 .258 .334 .416

60 .052 .102 .134 . 167 .204 .254 e 1 .408

62 051 .100 L 3d .164 .201 . 250 ¢ 323 .402

64 .050 .099 sdad .162 .198 .246 .317 #3995

66 .049 .097 .127 .159 .195 . 242 « 313 .389

68 .049 .095 « 125 . 157 o192 .238 .308 .383

70 .0438 .094 123 .154 .190 «235 .304 » 314

72 .047 .092 s 122 .152 w07 .231 «299 w3l

76 .046 .090 .118 .148 «182 . 225 « 291 .361

80 .045 .087 «+ 115 .144 . .219 .284 «352

90 .042 .082 .109 .136 .168 .207 .268 « 332

100 . 040 .077 .103 .128 .160 .196 <253 .315
.036 .070 .094 + 117 .147 .179 .233 .287



8
10

12

14

16
18
20
22
24
26
28
30
.32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
72
76
80

Table A8: Probabilities of Correct

Selection
“gl.lo 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.70 1.80 1.90 2.C0
.570 .601 .631 .60 .687 .712 .732 .755 .774 .793 .800 .837 .860 .879 .911
.580 .614 .447 .681 .705 .736 .760 .783 .805 .820 .836 .867 .889 .908 .936
.589 .626 .662 .699 .722 .756 .782 .806 .825 .843 .859 .889 .909 .927 .953
.596 .637 .676 .714 .738 .774 .801 .824 .844 .862 .878 .906 .925 .942 .9&4
.602 .646 .689 .727 .754 .790 .818 .840 .860 .878 .894 .920 .938 .953 .973
.607 .654 .700 .738 .769 .804 .832 .854 .874 .892 .907 .932 .949 .962 .980
.612 .661 .710 .748 .783 .817 .844 .866 .886 .909 .918 .942 .958..970
.617 .668 .719 .757 .796 .828 .855 .871 .897 .914 .928 .950 .965 .977
.622 .675 .727 .766 .807 .838 .865 .887 .906 .921 .937 .956 .971
.627 .682 .743 .774 .8l7 .847 ,874 .896 .914 .931 .944 .951 .976
.632 .688 .741 .782 .826 .855 .883 .904 .921 .938 .950 .966 .980
.636 .694 .748 .790 .834 .863 .891 .911 .928 .944 .955 .971
.640 .700 .755 .798 .841 .870 .898 .918 .935 .949 .959 .976
.644 .706 .761 .806 .848 .877 .904 .924 .941 .953 .963 .980
.648 .712 .767 .8l4 .854 .883 .910 .930 .946 .957 .967
.652 ..717 .773 .821 .860 .887 .915 .935 .950 .966 .970
.656 .722 .779 .827 .865 .894 .920 .939 .953 .964 .973
.660 .727 .784 .832 .870 .899 .925 .943 .956 .967 .977
.664 .732 .789 .837 .875 .904 .929 .947 .959 .970 .980
.668 .736 .794 .842 .880 .908 .933 .950 .962 '.973
.672 .740 .799 .846 .885 .912 .937 .953 .965 .976
.676 .744 .804 .850 .889 .916 .941 .956 .968 .978
.679 .748 .809 .854 .893 .,920 .944 .959 .971 .980
.682 .752 .813 .858 .897 .924 .947 .961 .973
.685 .756 .817 .862 .90l .927 .950 .963 .975
.688 .760 .821 .866 .905 .930 .953 .965 .977
.691 .764 .825 .870 .905 .933 .955 .967 .979
.694 .768 .829 .874 .,912 .936 .957 .969 .980
.697 .771 .833 .878 .915 .939 .959 .971
.699 .774 .837 .882 .918 .842 .961 .973
.702  .777 .840 .885 .921 .945 .962 .975
.707 .783 .846 .891 .927 .950 .967 .978
.711 .789 .852 .897 .931 .954 .969
715 .795 .858 .902 .935 .958 .971

98
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APPENDIX B

Subroutine to Compute Estimates of b, ¢ and the Reliability

Name: SUBROUTINE WEIBL

Purpose: To find the maximum likelihood estimates of the
scale and shape parameters in the Weibull distribution

and the reliability at a given time, T.

Method: The Newton—-Raphson procedure is used to find the
maximum likelihood estimate of the shape parameter.
The program uses Menon's estimate of the shape para-

meter as the initial estimate.

Calling Sequence:

CALL WEIBL(X, N, T, SHAPE, SCALE, RELI)
where X = array consisting of the sample values
from the Weibull distribution

N = size of the sample
T = time -
SHAPE = maximum likelihood estimate of the

shape parameter
maximum likelihood estimate of the

il

SCALE
scale parameter
RELI = maximum likelihood estimate of the
reliab}lity at time T

Program:
SSLNX = 0.0
SINX = 0.0
DO 3 I=1, N
ALNX (I) = ALOG(X(I))
SILNX = SLNX + ALNX(TI)
W(I) = ALNX (I) *ALNX (I)

3 SSLNX = SSLNX + W(I)

AVLX = SLNX/N

]



306

10

499

12

BEST = .3183099*SQRT(6.* (SSLNX-SLNX*AVLX)/(N-1.)) .

SHAPE = 1./BEST

SHAPE = SHAPE - .005

SH = SHAPE

SLXB = 0.0

SXB = 0.0

SLX2 = 0.0

DO 10 K=1, N

WP = X(K)**SH

SLXB = SLXB + ALNX(K) *WP

SXB = SXB + WP
SLX2 = SLX2 + WP*W(K)

Y = 1./SH + AVLX - SLXB/SXB
YP = -1./SH**2 - (SXB*SLX2 - SLXB**2)/(SXB**2)
SHAPE = SH - Y/YP
IF (ABS (SHAPE - SH) - .00005) 499, 499, 306
SXB = 0.0
DO 12 K=1, N
WP = X(K) **SHAPE
SXB = SXB + WP
SCALE = (SXB/N)** (1./SHAPE)
RELI = EXP (- (T/SCALE)**SHAPE)

RETURN

88
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