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I 

Introduction 

Ha.:fnium-f'ree zirconium has assumed great importance in commercial 
1 

use in recent years. When economical methods were developed in 1950 

to remove hafnium !'rom Zr, a metal was produced which not only exhibited 

good corrosion resistance and desirable physical properties, but also 

had a very low absorption cross section for thermal neutrons. Such a 

metal could obviously be utilized to advantage as a structural material 

for nuclear reactors. This application is the most important one for 

Zr at present. 

Good corrosion resistance to most mineral acids is one of the out-

standing non-nuclear properties of Zr. Hf-free Zr has good corrosion 
2 

resistance in all mineral acids with exception of hydrofluoric acid, 

concentrated sulfuric and phosphoric acids, and aqua regia. The re-

sistance of Zr to attack in concentrated nitric acid is excellent, with 

but negligible attack occurring in fuming nitric acid. The corrosion 
3 

of Zr in hydrochloric acid is particularly dependent on the purity of 

the metal. It has been shown that high carbon graphite melted Zr is 

severely embrittled in HCl because of selective attack of the carbides. 

In general, Hf-free Zr {containing less than 0.1% Hf) is more corrosion 

resistant than Zr containing the usual 2 . 5% Hf. Small percentages of 

1) Golden, L. B. in Lustma.n, B. and Kerze, F. Jr., "Metallurgy of 
Zirconium," McGraw-Hill, N. Yo (1955) 1 p. 4 

2) Miller, G. L., "Zirconium," Academic Press, N. Y. (1954), p. 203 

3) Golden, L. B., ref. 1, p. 651 

1 



other impurities in Zr such as carbon, nitrogen, and oxygen will also 

decrease corrosion resistance . 

It has been stated that Zr has poor corrosion resistance in HF . 

It was proposed that a quantitative investigation of the dissolution 

of Zr in HF be made to provide additional data to that already gathered 

on the corrosion of Zr in other mineral acids. Since the r ate of dis ­

solution of Zr in HF is greater than in any other mineral acid, a study 

of the rate and mechanism of the reaction and possible passivation 

effects might be a valuable addition to present knowledge. 

2 



II 

Review of the Literature 

The rate of dissolution of Zr in HF has been investigated both 

qualitatively and quantitatively, but only since 1946 has any great 

activity occurred. The availability of high purity Zr to researchers 

and the interest for nuclear applications are the basic reasons for 

the recent increased attention. 

A. Qualitative studies of ~dissolution of Zr in HF: 

The work of J. J. Berze li us with amorphous Zr and of L. Troost 

with crystalline Zr {contaminated with aluminum) is described by 
1 

Mellor • Their studies showed that the metal dissolves rapidly in 
2 

all concentrations of HF, either hot or cold. Studies carried out 

with ductile iodide Zr by the Foote Mineral Co. show that Zr when 

tested in all dilutions of HF at l00°C is rapidly attacked. Fontana 
3 

describes tests in which the corrosion rate of Zr in HF of all con-
4 

centrations at 75•c is very high. Miller has found crystal bar Zr 

to be subject to rapid attack in a 14 day test in HF at 20°C. Johnson 
5 

and Hill using Hf'-free Zr found that in 0.005N Jni' there is no weight 

loss observed in two days. At concentrations :from 0.02-0.o4 N HF an 

intermittent gray film was formed and slow formation of gas bubbles 

l} ~llor, J. w., "A Comprehensive Treatise on Inorganic and Theoretical 
Chemistry," Vol. VII, Longmans, Green & Co., N. Y. (1927} 1 p. 115 

2} Uhlig, H. H., "Corrosion Handbook;' Wiley, N. Y., (1948), p. 347 

3) Fontana, M. G., Ind. Eng. Chern., 44, {7), 71-A, (1952) 

4) Miller, G. L., p-1, ref. 2, p. 209 

5) Johnson, A. B. and Hill, G. R., Corrosion of Zr, I, Surface Area 
Determination and Sample Preparation Study, AECU-30001 Dec. 1, 1954, 
P• 3. 



was observed. From 0 . 05 - 1.0 N HF a black surface film was formed 

and gas evolution was readily observed. 

B. Quantitative Studies of the dissolution of Zr in HF: 

The first quantitative study of the dissolution of Zr in HF was 
6 

published by Baumrucker in 1950 . This investigation was an attempt to 

develop a method for dissolving Zr at a controlled, reproducible rate. 

In this work both pure crystal bar and magnesium-reduced Zr were 

dissolved in 5% by volume HF. Tests were made at 3 o and l8°C using 

both 100 ml . and 500 ml . solution volumes . Both weight loss and de-

crease in thickness were measured at intervals and plotted versus time. 

Increased attack at the edges necessitated making thickness measure-

ments at the centers of the specimens. 

It was found that the reaction rate decreased with increasing time 

even though fresh acid was constantly supplied and the solutions well 

stirred. It was suggested that the black smut formed on the Zr surface 

may have been instrumental in decreasing the rate. The gas evolved at 

the metal surface left flow lines on the surface smut after prolonged 

attack. 

In addition it was concluded that differences in metal structure 

could affect the reaction rate. Also a general slope for a particular 

reaction temperature and material could be predicted . It was found 

that the higher the temperature of the HF solution the greater was the 

rate of dissolution. 

6) Ba~ucker, J. E., Dissolution of Zr in HF, ANL-5020, March 31, 1950 

4 



7) 
S!!'.i th and Hi lJ_ hPve ccmpleted an extensive study o:f the rate of 

solution of !If' -free Zr in di2.:ute HF solutioDs. Hc.dioacti Ye zr95 was 

employed ::.tnd rl Gcintillor:le·ter '.:tned t o m.eas"Llre the build up o:f the 

:radioact:i.ve Zr ions in solution for rate det.erminations. The counting 

meter for t.he scintj_llometer \-ras connec·t.ed to cont~inuous recording 

equipment. 

A plot o::' !IF concent:rat::i.on versus rate was a straic;ht line over 

a ranc;e from 0.0005 - 0.5 noles/liter. Tests made in the presence o:f 

02 sho\-led that the !"ate was ~- ndependent err 0 2 concentra-tion. Hovrever, 

since but few tests were made these results were not considered final 

proof. Some work was done :Jn the effect of additions on rate. It was 

conclude d ·that the rate is :Lndependcnt of small addi ti.:Jns of N03, c1; 

Ic+, Cl04, F-, and BF; ions. 

From an Arrhenius plot the tempera ture coefficient of the reaction 

is sho\m to be small, and the activation energy was calculated to be 

4.0 kilocalories/mole. It was found that in an HF-HN0:3 solution the 

gaseous products of the reaction were 20% He, 10% 02 , and 7o% N2 0. In 

a n HF-HCl soluti on the pro<lucts were 20)~ II2 , 3-l~% 02 , c.nd the rest un-

known. rrhe source of the 0 2 from the HCJ. reaction was not determined. 

Two mechanis~s of dissolution were suggested as being probable: 

The :first was the adsorption of :free HF on the surface, while the second 

was the reaction of' HF vTi th an adsorbed sur:face substance containing ~· 

It can be seen that there haj "been very little quantitative in-

7) Smith, T. and Hill, G. R., Corrosion of Zr, II, A Reaction Rate 
Study of the Solution of Hafnium-Free Zr in HF Solutions, P£CU-3002, 
Nov. 30, 1954 



6 

vestigation of the dissolution of Zr ~-n HF. There has been even less 

study of the effect of acldi tions on the rate of reaction, espec:tally 

large additions. It ·was thcre:fore decj_ded to verify the ef:fect o:f HF 

concentration on the rat.e o:f dissolution o:f Zr in HF and study the 

e:f:fects of' larger additicns. 



III 

Experimental Equipment, Procedure, and Results 

A. The rate of dissolution of Zr in HF: 

l. M3.terials 

a . Analysis and physical condition of' Zr 

The low-Hf Zr used in this investigation was obtained from 

the u. s. Bureau of' Mines, Northwest Electrodevelopment Laboratory, 

Albany, Oregon. The analysis was given as: o2 - o.ll% 
N2 - O. 005ojo 
Fe - o.o4% 
Hf - o.o1% 

After rolling, the Zr had been given a stress relief and annealing 

treatment in vacuum for 30 minutes at 700°C. The Zr sheet was ap-

proximately 1/16 of an inch thick. 

b. Standardization of HF 

7 

The method used to standar~ze HF was developed from the princip­
l 

les given by Willard, Furman, and Bricker and is outlined as follows: 

Preparation of Standard NaOH 

1) Approximately 0.5 grams of primary standard oxalic acid were weighed. 

2) The oxalic acid was dissolved in C02 -free redistilled water {used 

throughout the standardization procedure) and two drops of phenolpthalei~ 

indicator added. 

3) A saturated solution of NaOH (obtained from the Chemistry Dept.) 

which did not contain C02 was used to make up a dilute, carbonate-free 

solution of NaOH. 

4) The NaOH solution was titrated into the oxalic acid solution until 

the first pink color. 

1) Willard, H. H., Furman, N. H., and Bricker, c. E., "Elements of 
Q.uantitative Ana~vsis," 4th ed •• Van Nostrand. N.Y •• (lg56). 



8 

5) The normality of the NaOH was calculated: N = 
NaOH 

gms. oxalic acid 

ml. NaOH (0.063035: 

0.063035 being the milli-equivalent weight of crystallized oxalic acid, 

Preparation of Standard HF 

1) Since 48% concentrated HF is approximately 28N an approximate 5N 

HF solution was made up by diluting with distilled water. 

2) Two drops of phenolpthalein indicator were added to 5 ml. HF in a 

polyethylene beaker. The HF was added from a polystyrene burette. 

3) The HF solution was titrated with standardized NaOH to the first 

pink color. 

4) The norma.li ty of the HF was calculated: NHF == ml. NaOH x N NaOH 
ml. HF 

All titrations were run several times to preclude experimental errors. 

2. Experimental Principles 

It was decided to measure the rate of dissolution of Zr by collect-

ing the M2 evolved in the reaction. It was then assumed that a constant 

ratio exists between the volume of H2 evolved and the weight of Zr 
2 

dissolved. According to Straumanis and Ballass the reaction of Zr 

in HF is 

Zr + 4HF ~ ZrF4 + 2H2 (1) 

So one gram atom of Zr will evolve two moles of H2· Then, since one 

gram molecular volume of a gas at standard conditions = 22, 414.6 

milliliters, the atomic weight of Zr = 91 . 22 grams should be equivalent 

to 2 x 22, 414.6 ml. of H2· One milligram of Zr should then correspond 

2) Straumanis, M. E. and Ballass, J. T., z. anorgan. allgem. Cbemie, 
278, 36, (1955) 



to o .491J+4 ml. ~ gas at standard conditions, or one ml. ~ gas is 

equivalent to 2.035 mg. of Zr. It was decided to check reaction (1) 

once more in order to be quite sure of its validity and to check the 

high purity of the Zr used. 

3. The dissolution reaction of Zr in HF 

a. Experimental Equipment 

The equipment used in this investigation is the same as that em-
3 

ployed by Straumanis and Ballass in their studies of the dissolution 

reaction of Zr in HF. The experimental arrangement is shown in Figure 

1. A wax lined 125 ml. reaction flask with a ground glass aperture in 

the side was made. The sample was held in a small platinum crucible 

{B) supported by a fixture (A) which fitted through the ground glass 

joint in the flask. Upon turning the fixture, the Pt crucible and Zr 

9 

could be dropped into the BF solution. A rubber stopper (F) hermetically 

sealed the reaction flask. A glass tube fitted with a stopcock served 

as an inlet valve {C) while another glass tube was connected to a gas 

burette {D) equipped with a leveling bulb. An outlet valve {E) was in-

serted between the reaction vessel and the gas burette. 

b. Procedure 

A sample of o.o4 - 0.075 grams of Zr chips and filings was weighed. 

About 50 ml. of 5.0N HF were poured into the reaction vessel. The weighe 

Zr sample, held in the Pt crucible, was placed on the supporting fixture 

3) Straumanis, Mo E. and Ballass, J. I., p-8, ref. 2, p. 34 
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A - f'ixt ure ror support or Zr sample 
B ··- Pt crucible holding Zr sample 
C - inlet valve 
D - gas burette 
E - out let valve 
F - rubber stopper 
G - wax lining 

Apparat us for determining the ratio between the Zr 
dissolved and H2 evolved in the Zr - HF reaction 

--n 
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and inserted into the flask. Then the water level in the gas burette 

was adjusted to zero . 

To prevent further oxidation of any intermediate oxidation states 

of Zr) tests were made in an H2 atmosphere . A cylinder of~ was 

connected to the inlet tube {C) and the system was :flushed with H2 for 

about 30 minutes. Both inlet and outlet valves were opened to allow 

flushing and both valves closed simultaneously at the end o:f flushing 

to prevent entry o:f air. When tests were made in the presence of air 

the two valves were simply closed and the~ flushing omitted . 

At this point the handle of the :fixture (A) was rotated to drop 

the sample into the HF solution. An electromagnetic stirring device 

was employed to agitate the HF solution and so ensure a complete reactioD 

The H2 evolved was collected in the gas burette and measured . A:fter 20 

minutes if no change in the H2 vol~ was noted a final reading was re -

corded. 

c. Results 

The H2 volume reading was reduced to standard conditions of tem-

perature, pressure, and also dryness, because the H2 was collected 

over water in the gas burette. It was therefore necessary to subtract 

the vapor pressure of ~0 from the barometric pressure. This cor-
4 

rection was obtained from Hodgman's table as was the thermal expansion 

correction :for mercury and the brass scale. There was no 

4) Hodgman, c. D., "Handbook o:f Chemistry and Physics," Chemical Rubber 
Publishing Co., Cleveland, (1954), pp. 2140, 2292 
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&) 
correction made for depressi on of the mercury capillary in the baro-

meter since the inside diameter of the barometer used was one centimeter. 

These barometric pressure corrections were made throughout all experi-

mental work involving hyQrogen collection. 

A sample calculation is as follows: 

Weight of Zr sample = 0. 0524- grams 

Temperature = 28.4°C = 30l.4°K 

Barowetric Pressure = 731.6 mm. Hg 

Correction for vapor pressure = 29.02 mm. Hg 

Correction due to thermal expansion of Hg and the brass scale = 3.33 mm. 

Corrected pressure: 731.6- 29.02- 3.33 = 699.25 mm. Hg 

Total volume of H2 gas collected = 31.10 ml. 

Volume of H2 gas reduced to standard conditions: (699.25)(273) 31.10 = 2~ 
(760)(301 .4) 

Volume of H2 calculated from reaction (1): {0.0524)(491.44) = 25.75 m1. 

Percent difference from theoretical volume: 25.92 - 25.75 x 1oo = o.6$% 
25.75 

The results of all determinations are compiled in Table 1 . The 

results obtai_ned show that the assumed reaction (l) is correct and that 

the Zr -HF reaction has no dependence on the presence of 0.2· 
~) 

This con-t) 
elusion agrees with the work of Straurnanis and also of Smith and Hill . 

5-) Miller, D. c., "Laboratory Physics," Ginn & Co., (1932), pp. 71-72 

6) Straumanis, :M. E . and Ballass, J. r., p-8, ref. 2 

~) Smith, T. and Hill, G. R., p-5, ref. 7 



Table 1 

Results of H2 Evolution from the Dissolution of Zr in the Z~-HF Reaction 

Atmosphere Experiment Weight of Zr Volume of HQCollected at Calculated Volume 
Sample (grams ) standard co~ditions (cm3) of H2( cm3) 

H2 l 0.0624 30.39 30.67 

l'i 0. 0~~ 10 20.1!8 20.15 c:. 

3 0.0735 36.)2 ) 6.12 

4 0.0639 31.65 31.90 

5 0.0524 25.92 25.75 

Air 6 o.o464 22.79 22 .80 

7 0.0436 21.40 21. 4o 

8 0.0493 24.85 24.20 

Note: No weight loss was observed for the Pt crucible 

Percent 
Difference 

o.67 

1.64 

0 c:;c:: . .,,~ 
-0.54 

-0.9J 

o.o4 

o.oo 

2.68 

~ 
'01 



When the reduced ~ volumes w·ere compared with the theoretical volumes 

all the percent differences were under 1% with two exceptions. No 

reason can be given for those differences over 1%. 

If a +3 intermediate oxidation state existed such as Straumanis 
8 

and Chen found in the Ti-HF reaction, a far larger percent difference 

should have been found for tests in a H2 atmosphere . Also there was 
9 

no evidence of the effect found by Straumanis and Cheng in the Ti-HF 

14 

reaction. In their findings the volume of ~ collected slowly increased 

over a period of time because of the reaction: 

2TiF3 + 2HF _, 2TiF4 + H2 (2) 

Thus another conclusion can be drawn that Zr is oxidized directly to 

the +4 oxidation state in the Zr-HF reaction. 

4. The rate of dissolution of Zr in varying concentrations of HF 

a. Experimental equipment 

The equipment with but minor changes was the same as that used by 
10 

Straumanis and Chen in their studies of the dissolution of titanium in 

HF. The equipment consisted of a reaction vessel which held the HF solu-

tion, a shaft which rotated the Zr sample through a mercury seal, a gas 

burette, and constant temperature water bath. The overall arrangement 

of the essential equipment is shown in Figure 2. 

The Zr sample (A) was mounted on an ebonite foot (I) which fitted 

on the end of' a rotating sha.f't. The foot was made so that the Zr was 

8) Straumanis, M. E., and Chen, P. c., Corrosion, 11 229, {1951) 

9) Straumanis, M. E., Cheng, C. H., and Schlechten, A. w. , J . Electro­
cbem. Soc., 103, 439, (1956) 

10) Straumanis, M. E. and Chen, P. c., p-14, ref' . 8 



A - Zr sample on ebonite foot 
B - pulley for the rotating shaft 
C - mercury seal 
D - wax-lined reaction flask 
E - funnel for additions 
F - gas outlet 
G - gas burette 
H - leveling bulb 
I - eboni te foot 
J - rubber cup 
K - constant temperature water bath 

Figure 2 

G-

Apparatus for determining the rate of dissolution of Zr 
in hydrofluoric acid 

H 



:t'~::~c d. a t ~1r. cJ.nt; l e :::;£' i!5° 2 0 it r c tated :?_n the HF s olut~_ cn. At tl1e 

1Jppcr end of the shaf+, ',;n s [tffixcd a r:. aJ_umj_num pull.c: · (B) over -v;hich 

2 dr5.ve belt -..,; c:.: ·ul tl fit. S:Lnce the shaf t rot<J-ted i . D 2 rJe~~c:-ury seal (c) 

lea.kat:c o f He: \·l~ts prcven0ed. The merc·ury a: s c; f.unct ione:d a z a lubricant 

j_n promoting free r o t e.tion. A ruhber cup ( J) \-Ias ::'i ttcd onto the sl:.a:ft 

to prevent any :foreign material such as eroded glass p o '.·ldcr oC' Hg :from 

fal:l.inc :intc~ the HF s o lution. 

The reaction vessel for the r 2~te measurement was a 325 m1. i·lax-

J.:i.ned :f~asl-c (D) :fitted with a gas outlet (F) and a valved :f1Jnncl inlet 

{E) to allow addition of liq_uj_d reagents. The flask had grcund glass 

._jotnts e. t its mouth and on tbe c;as outlet. With all connections in 

place and valves closed the vessel was air tight. 

The H2 :from the reaction vessel was collected in a 100 ml. gas 

burette (G). As H2 displaced \vater in the gas burette, a leveling 

bulb {H) was e1~loyed to keep the H2 at atmospheric pressure. 

A l/50 H. P. direct current motor with a matching electronic speed 

controller was used to rotate the Zr sample in the HF solution. The 

controller allowed any desired speed to be set and kept constant auto­

maticalJ_y with very li tt2.e deviation. 

The same motor drove a stirrer which circulated the water in the 

temperature control bath. The control circuit and equipment ~or the 

-\·rater bath is shOi . ..;n in Figure 4. The water bath (G) -\.o~as controlled by 

e_ b5.-metal thermoregulator (A) on a D. c. contro1 circuit. A relay in 

the A.C. circuit, energized by the D. C. circuit, controlled an incan­

descent bulb (c) which heated the water bath. Copper coils (F) served 

J (j 



Figure 3 

The arrangement ot the a pparatus tor deter.ming the rate ot 
41aaolut ion or Zr in BJ' 
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' A - bi-metal thermoregulator 
B - switch controlled by relay 
C - stirrer 
D - incandescent bulb ror heating 
& - thermometer 
F - cooling coils 
G - water bath 
H - 12 volt D.c. power source 
I - 110 volt A.c. power source 

Figure 4 

-E 

Circuit diagram used with the thermoregulator to 
control the temperature or the water bath 



to ccol ·the bath when room ternperatt1re was over 25°C a l though the water 

valves were manuall;'/ operated. A te~Jerature of 25°± o. l C was main­

tained in the bath throughout all tests a t any room tempe~ature. 

b. P:_t:'"oced.ure 

The Zr samples ',.;ere cut from sheet Zr and finished to a size of 

one square centimeter. rv1easurements were made --;,.;-i th a vernier caliper 

which had an accuracy of ± 0.01 em. The one square centimeter sa~les 

were mounted in bakelite \·lith ~:!. standa-rd metallographic mour.ting press. 

T1:1e circular bakelite m:)untine; 1-ras c·~1t down to conform with the square 

shape of the Zr sample. After mounting, each sample was given a 

standard metallographic polish using 0, 00, 000, and 0000 emery paper 

and stored. Immediately before a test the sample vms given a final 

polish on a canvas lap using 6oo grit siJ.icon carbide and subsequently 

a billiard cloth lap using levi~ated alumina. 

The Zr sample, after being degreased, was attached to the ebonite 

foot with wax. The stirring rod was lifted and held so that the Zr 

would clear the HF upon assembly of the equipment. The stirring rod 

had a ver tJ.cal displacement o:f 2. 5 em. without breakine; the mercury 

seal. 125 ml. of HF solution of the desired concentration were poured 

into the reaction flask a nd the e quipment asselilbled. 

The temperature control circuit for the water bath was activated 

and the bath stirrer turned on. The cooling coils or an immersion 

heater were used to help bring the temperature of the bath to 25°C 

quickly. Then the control circuit was used to keep the temperature 

constant until thermal equilibrium of the apparatus was attained. 
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The water leveJ.. in the gas burette was e.djusted to zero and the 

temperature and barometric pressure recc rdcd. Af'ter checkin~_; to see 

that all valves were positioned correctJ.y) the st,irring rod with the 

Zr sanple q:f:fixed to the end was lowered into the HF soJ.ution and the 

time reco~ded. T"~-le lc .. relin.:; bulb ·was adjusted so that -'c.he water levels 

in the gas burette and Je·v-elinc bulb were ec;.ualized) and the burette 

readin3 was recorded. 

rrhe drive belt was j_ r.nnediatel~- j_n.stc>J_2..eJ. over t.hc pulley and the 

controller set so that a constant stirring speed o:f 200 R.P.M. was 

Maintained. The R.P.r-1. 's were checl:ed wtth a tachometer. The stirrinG 

~.ction had P very important role in the rate measure1.1ents. Stirring 

not only brought a c onstant suppl:; c:f fresh acid to the sample surface 

and removed H2 , but also ac;itated the HF solution so that the temperature 

remained essentially constan-t t .hrou[;hout the reaction volurae. 

As the H.2 displaced the ;·Tater in the gas burette the leveling bulb 

was synchronously lowered so that the reaction co'.J_ld proceed at atmos-

pheric pressure. Af'ter at least 120 - 140 minutes the test was ended, 

and the temperature and barometric pressure again recorded. These 

:-eadings vrere a.veraced with :readings made at the becinning o:f the test 

and used t.o reduce the H2 vclume to standard conditions. Then 

A volume x 1000 eq_ualed the rate of' di ssoll1ticn of Zr in mrn3 / cm2 - min. 
time 

The factor of 1000 is necessary to convert from cubic centimeters in 

which the burette readings were taken to cubic millimeters. 

c. Results 

The rate of dissolution reached a maximum :from lO - 30 minutes 
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af·t.c r the stn.:t:·t o:f a r-un c-:.nd. then decreased st.eadily as sho"'i.:n in 
la) 

Fi c;ure 5. This res·ult agrees with the ·,.,ork of Baumrucker and of 
l~} 

Srai th and Hill A tenacious black :film was formed :Jn all specimens 

·wi·t:,h except.ion of the O.OJ.N samples on which an extremely thin, enter-

r.li.ttcnt, grR.y film was formed. These films were also reported in the 

literature. 

An qverage of the rates over A- range ·where the rates "'ivere highest 

was recorded as the averaGe maxi:num rate for a run. 'l'\o:o runs ·Here 

averaged for each c oncentration of HF. plotted in Figure 6. It can be 

seen that in the ran3e from 0 - o. 25N HF there is an essentiall;y straight 

l:Lr.e relationship bet\veen re.te and HF concentration. The equation for 

the straight line is 

R = 1980C 
where R = rate in mm3/cm2 - min. 
C = normal HF concentration 

However, at 0.50N HF the rate showed a significant positive deviation 

from the linear plot. If t.he curve is extrapolated through the o. 50N 

point as shown in Figure 6, it would appear that the rate increases 

exponentially at higher HF concentrations. 

:L~) Bau.mrucker, J. E., p-h, ref. 6 

12) Smith, T. and Hill, G . .!:{., p-5, ref. 7 
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FIG.; 6 

THE EFFECT OF HF Ca.1CENTRATICE ON THE AVERAGE MAXI MUM 
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B. The effects of additions on the rate of dissolution of Zr in HF: 

1. Qualitative tests 

a. HN0:3 additions 

The first addition to be tested was nitric acid. 
13 

Johnson and Hill 

found that a 3% HF - 30% HNOs solution did not react with Zr as violently 

as did solutions with higher HF concentrations. Concentrated HNQs has 
14 

caused passivation of iron by formation of an oxide film , so it was 

believed that a similar effect might be possible with Zr. 

It was difficult to observe changes in gas evolution from Zr after 

an addition of O.lN HN03 to a 0.5N HF solution. It was then decided to 

observe the effects of HN03 additions on the films formed on Zr in HF. 

Four Zr samples were placed in O.lN HF until they had acquired the black 

film previously reported. The samples w·ere removed from the HF solution, 

washed, and placed in 16, 8, 4, and 2N HNOs solutions respectively. 

No gas evolution was observed from samples in the pure HNOs solutions, 

so HF was added until the solutions were O.lN with respect to HF. Gas 

evolution then commenced With an accompanying breakdown of the black 

film. However, after a short time the rate of H2 evolution decreased 

in the four solutions with the decrease occurring first in the solution 

of greatest HN03 concentration. It was found that the smaller the HN03 

concentration the longer was the time required for passivation . 

Passivation was accompanied by the appearance of a very shiny surface 
15 

which has also been reported by Johnson and Hill 

13) Johnson, A. B., and Hill, G. R., p-3, ref. 5 

14) Evans, u. R., "Metallic Corrosion Passivity and Protection," Arnold 
London, {1946), p. 24 

15) Johnson, A. B., and Hill, G. R., p-3, ref. 5, p. 2 



The specimen which had become passivated in the l6N HN03 - O.lN HF 

solution was removed and placed in a pure O.lN HF solution. The shiny 

surface changed very quickly to a black film. Thus it can be seen that 

the shiny surface formed in HNO$ - HF solutions may be stable when in 

contact with a solution having a high HNQs/HF ratio. If additional 

HF is added so that the HNQs/HF ratio is reduced below a critical 

value, gas evolution will start and a black film is formed once again. 

It is difficult to reproduce these results and find the threshold value. 

Quantitative tests with the equipment described in Figure 2 were 

attempted using HNOs additions to 0.25N HF up to 4N HN03. Results 

showed the general effect that increased HNOs concentration decreased 

the rate of gas evolution when HF concentration was held constant. 

However, the rates were not reproducible. The shiny sample surface 

formed in HNOs was still attacked quickly. Further tests with additions 

up to 8N HN03 proved to be destructive to the wax and ebonite parts of 

the equipment and the bakelite sample mounting. These problems could 

not be overcome, so the tests were given up. 

b. Additions of fluorides 

After some discussion and study of the literature it was decided 
16 

to investigate fluoride additions. Blumenthal states that fluorides 

and fluozirconates are the only halogen salts that do not react with 

water. These salts can be crystallized from aqueous solutions in an-

hydrous form. If an insoluble fluoride or fluozirconate were formed 

during the dissolution reaction, the possibility exists that an in-

16) Blumenthal, w. B., Ind. Eng. Chern., 46, 530, (1954) 
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solub l e reaction product might adhere to the Zr surface and cause 

passivation. The same equipment (Fig. 2), used in studies of the rate 

of dissolution of Zr in pure HF, was used since H2 could be the only 

gaseous reaction product. 
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At first qualitative rate studies were made to ascertain the effect 

of ammonium fluoride additions on the rate of dissolution of Zr in O.lN 

HF. The rate of dissolution increased immediately after an initial 

addition of O.lM NE4F to the acid. Further additions of up to 4M NH4F 

were made, but the only significant result noted was a change in the 

appearance of the sample surface. Such a sample is shown in Figure 

lO-A where most of the black film (formed by initial reaction in HF) 

is dissolved. Flow lines appear on the black film. 

Since no passivation effect was noted at concentrations up to 

4M NH4F, tests were made at higher concentrations. Three samples al­

ready coated with the black film were placed in 2, 4, and 6M NH4F -

o.lN HF solutions. Initially there was little difference in the rate 

of H2 evolution among the three samples. However, after several hours 

the H2 evolution from Zr in the 6M NH4F - O.lN HF solution was sig­

nificantly less than from the other two samples. 

Quantitative tests involving additions of fluoride to O.lN HF 

solutions were then undertaken. This concentration of HF was used on 

the basis of results obtained from the rate studies in this acid. 

The rate of dissolution in o.lN HF was small enough so that a sample 

was not dissolved before the end of a run. Yet, the rate was high 

enough to show a marked deviation upon the introduction of ~luoride. 



2 . Quantitative studies of the effects of fluoride additions on the 

rate of dissolution of Zr in O.lN HF solutions 

a. Experimental equipment and procedure 

The same equipment as shown in Figure 2 was utilized for investi-

gation of the effects of fluoride additions. All operating conditions 

remained the same. 

Precisely the same steps were followed in procedure as in the rate 

studies in HF solutions. However, after the Zr sample had been reacted 

for 100 minutes in O.lN HF a fluoride addition was made. Initially 

liquid fluoride additions were made through the inlet funnel of the 

reaction vessel. These additions were calculated on the basis of an 

original reaction solution volume of 125 ml, so that the initial con-

centration of HF did not change. A sample calculation for a o.lN HF 

and O.lM NH4F solution is as follows: 

A 13.5M NH4F solution provided a source of NH4F so 

1}.5 x = o.l (125 + 2x) (l) 

x = Volume of l3.5M NH4F solution to be added so that the concentration 

becomes o.lM in NH4F 

The same volume of 0.2N HF must be added to NH4F to make the solution 

O.lN with respect to HF. 

Then solving (1) for x we obtain: 13.5 x - 0.2 x = 12.5 

x = 12 ·5 = 0.94 ml 13.5M NH4F to be added along with 0.94 ml of 0.2N HF. 
13.3 

The addition was poured into the funnel (E, Fig. 2) and the inlet 

valve opened. The outlet valve was then opened to allow the gas dis-

placed by the incoming solution to escape. Upon making additions of 

the larger volumes of NH4F, this method was demonstrated to be too 

cumbersome for practical operation. 

27 



The most efficient method proved to be a replacement of the entire 

reaction volume with a previously prepared solution. This premixed 

solution contained the proper concentration of fluoride and HF. A 

sample calculation for the replacement is as follows: 

Calculations were made for a total volume of 125 Ml to be 6M with 

respect to NH4F and O.lN in HF. 

As the gram molecular weight of NH4F = 37.o8 grams then 

X 

125 
= 6 (37-08) 

1000 

x = 27.78 grams Nl4F required to make 125 ml of' 6M solution. The 

solution was made up by adding 62.5 ml. of o.2N HF solution to the 

27.78 grams NH4F in a polyethylene beaker. Then the solution was di-

luted to 125 ml. with distilled water. The volume of 0.2N HF is thus 

diluted by half so that the total solution volume is O.lN in HF and 

6M in NJ4F. 

The replacement of the reaction solution was ef'fected by first 

stopping the stirrer and detaching the reaction flask (D, Fig. 2) at 

the gas outlet (F) and at the joint With mercury seal. The stirring 

rod (B) with the Zr sample affixed was lifted and held out of the solu-

tion. Then the O.lN HF solution was poured out and the premixed solu-

tion containing fluoride was poured into the flask. The apparatus was 

reassembled and the stirring rod was again lowered into the HF. A 

burette and a time reading were recorded. The complete replacement 

operation was accomplished in from two to three minutes, and there was 

no significant change in the results when the replacement method was 

used. All runs were continued for approximately 100 minutes a.:fter 

addition of the premixed solution. 

28 
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Additions were made of ammonium, potassium, and sodium fluorides. 

Since both NH4F and KF are deliquescent it was necessary to dry them 

before weighing. NH4F was dried at temperatures no higher than ll0°C 

to avoid loss of NH3 and formation of the bifluoride. KF could be 

heated to somewhat higher temperatures without fear of decomposition. 

b. Results 

The results of the additions of NH4F 1 KF, and NaF on the rate of 

dissolution of Zr in O.lN HF are shown in Figures 7 , 8, and 9 respectivel 

The rate plotted was an average over a range from about 60 minutes after 

the fluoride addition to the end of the run. All points on the plots 

are an average of at least two runs with the followlng exceptions which 

were single runs: NH4F - 5M, and 8M; KF - 0. 72M; NaF - O.l5M. The 

zero fluoride concentration point on all the plots was derived by 

averaging ten rates of dissolution in O.lN HF at 100 minutes. 

As shown in Figure 7 the rate of dissolution of Zr increased to a 

maximum With additions to 3M NH4F· However, from this point the rate 

decreased rapidly until at 6M NH4F the rate was but 37% of the maximum 

rate. Addition of KF (Fig . 8) also caused an initial increase in the 

rate of dissolution of Zr. However , with an addition to 0.5M KF or more 

the rate decreased very rapidly to approximately 1/10 the maximum rate. 

An NaF addition (Fig. 9) of O.l25M NaF caused complete passivation of 

Zr in a O.lN HF solution. 

It is evident from Figures 7, 8, and 9 that NaF, KF, and NH4F in 

that order of effectiveness will cause passivation of Zr in a O.lN HF 

solution. The minimum rates achieved by additions of NH4F, KF, and 

NaF were 8o, 20, and 0 nrm3/cm2 min. respectively. The minimum rates 

obtained by NH4F and KF additions were obtained llO minutes after the 



FIG. 7 

THE EFFECT CF NB4F ADDITICNS ON rrHE RAT.E CF DISSOLLTION 
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fluoride a ddition. However, an addition of O.l25M NaFcaused complete 

passivation after 50 minutes. In all three cases the rate increased 

after addition of the fluoride until a concentration was reached at 

which the rate curve leveled off. Higher concentrations of the 

fluoride caused the rate to decrease. In general reproducibility of 

the rates was quite good, however, time-rate curves were not repro-

ducible and so were not considered to have sufficient importance for 

discussion in this papero 

3. Studies of the films produced on Zr 

a . Visual studies 

The black film :formed on Zr in HF solution could be removed in a 

saturated NH4F solution. Evidently the tenacious black :film was under-

mined by a salt film and was loosened. In Figure 10 samples A, B, c, 

and D are shown which display the breakdown and replacement of the 

original black :film by a salt film. These samples are shown as they 

appeared upon removal from reaction solutions 110 minutes after addi-

tion of the fluorides. Samples A, B, C, and D are from the 3, 4, 6, 

and 8M ~ solutions respectively. Specimens A and B show flow lines 

in the black film. The flow lines originate :from the breakdown of 

the black film exposing an underlying shiny, metallic surface. On 

specimen B nearly all of the orig inal black film had been removed. 

However, on specimen C an iridescent salt film was observed with small 

amounts of black film remaining . On specimen D an even more complete 

salt film had developed With only minute remnants of black film visible. 

All of the films shown in Figure 10 were very tenacious. 

Few :flow lines were visible on specimens :from the KF solutions. 

upon passivation of the specimens at concentrations over o.5M KF a grey 



A B 

4M KF 

c D 

6M: KF SM KF 

Figure 10 

Zr spee~ens which have been reacted ror approx~ate1y 100 minutes 
in O.lN HF solutions containing varying concentrations or mi4F 

3 4 



salt film was formed . This fiLm possessed none of the iridescent 

qualities of the film formed in NH~, but did appear thicker and more 

crystalline under microscopic examination at 50X. 

The dark grey salt film formed on Zr in NaF solutions seemed to 

be either combined with or overlying the original black film. The 

thick, crystalline film was examined at 50X, and squares were observed 

which probably belonged to the cubic or tetragonal system. 

b. X-Ray examinations 

The black film formed in pure O.lN HF was removed by placing the 

coated Zr sample in a saturated NH4F solution. The film a:fter being 

washed and dried was crushed to a powder. A pyrex filament, coated 

with grease so the powder would adhere, was used to bold the sample 
17 

for the x-ray examination. Dr. James using an x-ray powder camera 

obtained diffraction patterns for the black powder. He reported the 

film to be zirconium hydride, Zr~. 

Studies of the passivating salt films were made while the salt 

films were still in place on the specimen surface. A Geiger-Muller 

x-ray spectrometer was used for these surface studies. No diffraction 

35 

pattern could be obtained from the specimen passivated in ~ solution. 

The film was probably too thin to produce intense diffraction and was 

too tenacious to be removed for use in other techniques. 

The diffraction pattern obtained from the specimen passivated in 
18 

KF was compared with the ASTM tables A diffraction pattern had pre-

1.7) James, w. J., Dept. of Chemistry, rob. School of Mines & Matallurgy, 
private communication, June 1956 

18) "Alphabetical and Grouped Numerical Index of X-Ray Diffraction Data,' 
American Society for Testing Materials, Philadelphia, (1950) 



viously been obtained from a polished Zr sample for use as a blank. 

Thus the Zr lines could be eliminated and the lines for the salt films 

could be isolated. Table II gives a comparison of the "d" values ob-

tained from the salt film with the standard "d" values obtained from 

the ASTM tables. It was concluded that the film consisted of potassium 

fluozirconate, K3ZrF7, and potassium fluoride dihydrate, KF . 2fl20 . 

Patterns were obtained from the salt film on the specimen passi -

vated in Na.F both by surface and powder camera techniques . However , 

when compared with the ASTM tables no similar compound could be found 

listed. The absence of a standard pattern for sodium fluozirconate is 

regrettable. The formation of this compound would be most probable if 

the passivation mechanism is similar to that in the KF solution. 

C. Potential measurements of Zr in HF: 

It was considered necessary to investigate the potential- time 

curves of Zr in HF solutions . The reasons for this further study are 
19 

summarized by Evans who states that "the main object of potential-

time curves is to ascertain whether the potential falls (indicating 

breakdown of a protective :film) or rises (indicating repair) . " 

1. Experimental equipment 

The overall experimental arrangement shown in Figure ll consisted 

of a cell Zr J acid, saturated KCl, lN KCl, ~Cl2 I Hg and of a potentio­

meter (F). The cell thus consisted of the Zr electrode in HF and of 

the calomel reference electrode. The potentiometer measured the 

potential difference of the whole cell. Then the potential of the Zr J 

acid electrode could be calculated from the potential difference of 

19) Evans, u. R. , p-24, ref. 14, p. 759 



Table II 

Data from an x-ray diffraction pattern of the passivating salt film formed on Zr in a KF solution 

Standard principal "d" values 
Zr KSZrF7 KF.2H20 I/!0 

1.36 15 

1.46 18 

1.61 18 

1.83 50 

1.88 18 

2.24 50 

2.44 100 

2.56 20 

2.58 75 

2.78 31 

;.ol 100 

3.18 100 

4.42 6; 

18 
"d" values from the experimental diffraction pattern 

Specimen Observed I/I0 {relative intensity) 

1.37 

1.46 

- * 
1.8; 

1.89 

2.24 

2.45 

2.6o 

Obscured by Zr line above 

- * 
2.96 

3.15 

4.43 

17 

100 

35 

93 

35 

17 

98 

100 

100 

53 

* The two missing Zr lines can be seen in patterns obtained from a polished Zr surface 
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A 
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E 
/ 

~------------------------------------------------~~+ 

flgw~ J.l 

A - Zirconium electrode insulated except for one cm2 area immersed in HF 
B - HF solution 
C-· - 1 normal calomel electrode 
D - saturated KCl solution 
E - stirrer 
F - potentiometer 

F 

The experimental arrangement for the potential measurement of Zr in HF solutions. 



the cell and the lN calomel cell potential. 

A stirrer (E) was used to agitate the HF solution (B) thus repro-

ducing to some extent conditions in the reaction vessel. Dissolution 

of solid fluoride additions was also aided by agitation. A saturated 

KCl solution (D) served as a salt bridge. Cotton was stuffed into the 

ends of the half cell connecting tubes to reduce mixing and thus pre-

vented contamination of the cells. 
20 

The lN standard calomel cell was made up according to Palmer's 

instructions. The accuracy of the calomel cell was compared with the 
21 

standard value of 0.280 volts at 25°C given by Evans A cell for 

comparison was made up following the arrangement shown in Figure 11. 

Pure cadmium replaced the Zr while lM CdS04 took the place of the HF 

solution. The calculation is as follows: 

39 

The potentiometer reading = 0.713 volts at 25°C was found to be the 

potential difference of the cell. Cd l 1M CdS04 , saturated KCl, lN KCl, 

Hg2Cl2(Hg, 

Then it followed that 

Ecd = Cell potential difference + potential of lN calomel cell at 25°C 

ECd = - 0.713 + 0.28o = - 0.433 volts 

E~d' the normal electrode potential of Cd, is then found 

E~d = Ecd + 2.3 RT log a Cd 
IiF a:-cu++ 

a Cd++ = activity of Cd++ in lM CdS04 

20) 

21) 

Palmer, w. G., "Experimental Physical Chemistry," Cambridge 
University Press, (1941), pp. 202-205, 214-215 

Evans, u. R., p-24, ref. 14, p. xxv 



a cd++ = :fc f = activity coe:rf·icient of Cd++ in 1M CdS04 
c = molar concentration of CdS04 

22 
f for Cd++ in LM CdS04 at 25°C = 0.041 

a Cd++ = o.o41 (l) So substituting 

Ecd = - o.433 + o.o6ol4 log 

2 

E~d = - 0.391 volts 
23 

1 

o.o4l 

Evans gives ECd = - 0.402 volts 

= - o.433 + o.o4l7 

4o 

so - o.4o2 - ( - 0.391) x 100 = 2.7% difference from the standard value. 
- o.4o2 

This small error will not affect the results to any significant degree. 

2. Procedure 

A Zr electrode was cut :from sheet Zr to a size of one centimeter 

in width and about four inches long. Before each potential-time measure-

ment, the area of the electrode to be immersed was polished With 0 and 

00 emery paper. Both wax and Pyseal were utilized to cover the entire 

electrode surface except for a one square centimeter area on one end for 

immersion and a place on the opposite end for electrical contact. The 

Zr - acid interface could then be entirely submerged in the solution. 

A polyethylene beaker was used to hold the acid solution. The tube 

connecting the salt bridge and the acid solution was filled with O.l4N 

HF. This concentration was the lowest that possessed sufficient con-

ductivity to provide adequate potentiometer sensitivity. Therefore 

o.~l4N HF was used in the connecting tube for all potential measurements. 

No difficulties were encountered from dilution or concentration of the 

22) Kortum, G., and Bockris, J. O'M., 11 Textbook of Electrochemistry," 
Vol. II, Elsevier, Houston, (1951) 1 p. 666 

23) Evans, u. R., p-24, ref. 14, p. xxiv 
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cell acid from the O. l 4N HF. 

The copper lead wire from the calomel cell was connected to the 

plus post on the potentiometer whi l e the wire from the Zr was connected 

to the minus post. After the potenti ometer bad been balanced the Zr 

electrode was pla ced in the HF solution so tha t the entire one square 

centimeter surface was well bel ow· the level of the acid solution. 

Potential-time measurements in varying concentrations of HF were carried 

on for 75 - 135 minutes. 

Before fluoride additions were made the Zr electrode was allowed 

to dissolve in a O.lN HF solution for 75 minutes. At this time either 

a sol id fluoride addition was made or the O.lN HF was replaced by a 

solution having the desired fluoride and HF concentration. Calculations 

for the additions were made in the same way as in the studies of the 

effect of fluoride additions on rate. Potential measurements after the 

addition of fluorides were continued for up to 24 hours or longer. 

3. Results 

A set of potential-time curves for varying concentrations of HF is 

shown in Figure 12. Initially the potential quickly became more positive, 

but later only a gradual increase in potential occurred. It can be seen 

that the higher the HF concentration the more negative is the potential 

of Zr at all points on the curves. At first the curve for O.OlN HF does 

not follow this pattern. However, the extremely low conductivity of the 

solution and the different type of film formed in O.OlN HF may cause an 

anomalous effect. The potential-time curves in HF appear hyperbolic with 

the potential of the Zr becoming more positive with increasing time. 

The effects of fluoride additions on the potential-time curves of Zr 

in HF are shown in Figures 13, 14, and 15. The concentrations of 
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~ luorides added were such that passivation of the Zr would be produced. 

It was therefore possible to observe through potential-time curves the 

breakdown of the black, Zr~ :film and the subsequent build up of the 

passivating salt film, as shown below. 

An addition of 6.5M NH4F (Fig. 12) caused a sharp decrease in 

potential indicating the start of a breakdown of the hydride film. 

Over an extended period of time the breakdown of the black film could 

be observed visually. Immediately after the fluoride addition an in­

crease in the rate of Hz evolution :from the Zr was noticed. The 

evolution of H2 steadily decreased so that at 515 minutes only localized 

gas evolution occurred at the edges. After the initial sharp decrease 

in potential to - 1 .112 volts there was a very quick increase in potential 

to - 1.076 volts. Apparently there is an almost immediate transition of 

the hydride film to a film that has passivating characteristics. After 

the reading at - 1.076 volts the potential gradually became more positive 

reaching a steady potential of - 1.015 volts at l34o minutes. 

An addition to 3M NH4F produced a potential-time curve similar to 

that of 6. 5M NH.4F. '!be steady potential of zr in 3M NH.4F became more 

positive than in the 6.5M solution and H2 evolution did not noticeably 

decrease even at 1080 minutes. This H2 evolution occurring at loBo 

minutes was far greater than was observed in the 6.5M NH4F solution 

after the same period of time. This result is in accordance with the 

rate measurements previously described. 

The potential-time curve of Zr in a o.7lM KF - O.lN HF solution 

(Fig . 14) is somewhat similar to the curve obtained in the NH4F solution. 

The potential dropped immediately to a minimum after the addition of KF, 

but very quickly became more positive again. However, ten to twenty 



minutes after the addition of the KF the potential again became more 

negative. This effect is unique among the potential-time curves studied 

here and is reproducible. In runs with additions of 1-37M KF this effect 

is even more intense. From this second minimum the curve steadily became 

more positive until a steady potential of - 1.030 volts was reached after 

420 minutes. Of the two minima, the second is smaller in magnitude. 

The potential-time curve of zr in a o.l5M NaF - o.lN HF solution 

(Fig. 15) is qUite similar to the NH4F curve. However, the minimum 

potential is less negative, only - 0.988 volts. The steady potential 

of - 0.528 volts is far more positive than the potential in either the 

KF or NH4F solutions. This more positive potential can account in part 

for the complete passivation of Zr by small additions of NaF. Seven 

minutes after addition of the NaF, H2 evolution from the sample had 

ceased. 

The reproducibility of the potential-time curve~al· shown in 

Figures 131 14, and l~ was very good. 



IV 

Discussion and Conclusions 

A. Comparison with previous quantitative studies o~ the dissolution 

o~ Zr in HF: 

This investigation is not entirely in agreement With the two pub-

lished quantitative studies o~ other authors . A tenacious black film 

was formed on Zr when dissolved in low concentrations o~ HF. However~ 

l 
Baumrucker , who used a much higher HF concentration (2.5N), described 

the f'ilm as a loose black smut. Evidently HF concentration will ~feet 

the adherence of the black film to Zr. The data collected showed 

(Fig . 5) that the rate of H2 evolution from Zr in HF decreased, (after 

an initial increase ) with increasing time. This result agrees with 

Baumrucker's weight loss versus time curves as described in Chapter II. 
2 

The work by Smith and Hill offers some very interesting points ~or 

48 

comparison. In their studies it was round, though not conclusively, that 

02 has no effect on the rate~~eaction. The effect o~ 02 on the reaction 

was therefore cbecked once again and was ~ound to cause no change in the 

amount of gas evolved in the Zr-HF reaction (Table I). Therefore it is 

probable that 0 2 bas no influence on the rate of reaction. 

The results obtained from the e~fect of HF concentration on rate are 

in partial agreement with the studies o~ Smith and Hill, who found a 

linear relationship from 0 - 0.5M HF. Our results show that the plot of 

HF concentration versus rate (Fig. 6) is linear from 0 - 0.25N HF. How-

ever, the rate at 0.5N HF increased slightly from the straight line plot. 

1) Baumrucker, J. E., p-4, ref. 6 

2) Smith, T., and Hill, G. R., p-5, ref. 1 
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It is possible that at concentrations greater than o.25N HF the rate 

may increase exponentially with increasing HF concentration. Further 

studies should be made to establish whether a linear relationship 

exists between rate and HF concentrations over 0.5N. Tbe quantitative 

rate measurements agree quite well Wi. th the data published by Smith and 

Hill. 

Smith and Hill also stated that~' F-, and NQs-, {among others) 

had no effect on the reaction rate. However, Figure 8 shows a definite 

effect of KF additions on the rate of dissolution of Zr in o.lN HF. 

Additions of over 0.5M KF caused passivation of Zr. ~ additions 

qualitatively appeared to reduce the rate of dissolution, although 

quantitative conclusions were difficult to make. Therefore, a valid 

comparison could not be made wi. th the work of Smith and Hill on the 

effect of No; on rate. 

B. Passivation mechanisms: 

Additions of NaF, KF, and NH4F caused Zr to become passivated in 

O.lN HF. In all three cases passivation was accompanied by formation of 

a salt film. The film covered the sample surface and replaced the hydride 

film. All potential-time curves became more negative immediately after 

addition of fluoride. This drop in potential indicated a breakdown of 

the initial hydride film. However, a subsequent, gradual increase in 

potential pointed to a build up of a passivating film. 

X-ray studies (Table II) of the salt film, deposited on Zr after 

additions of over 0.5M KF, established the film to be potassium bepta­

fluozirconate, K3ZrF7 • The KF.2H20 also found in the x-ray diffraction 

pattern of the film was probably entrapped during deposition of the KsZrF'i 

The KF.2H20 probably has no role in the passivation effect. 



3 
According to Hampson and Pauling crystals of K3ZrF7 were grown by 

dissolving ZrF4 in a hot solution containing a large excess of KF and 

then allowlng the solution to crystallize s l owly. The reaction would be: 

( 1 ) 

It is known that ZrF4 is produced in the dissolution reaction of Zr in 

HF by the folloWing reaction : 

Zr + 4HF --+ ZrF4 + 2~ (2) 

ZrF4 was not present in the premixed replacement solution, but was rapidly 

produced by reaction (2) which continued because of the HF present in the 

premixed addition. It is probable that with increasing KF concentration 
4 

a series of fluozirconates is formed. Mellor describes the crystalliza-

tion of KZrF5 and K2ZrF6 from solutions containing KF and ZrF4 • 

The passivating film formed on Zr after NH4F additions of 6M was not 

identified, but it will be assumed by analogy that the film is ammonium 
5 

heptafluozirconate, (NH4) 3 ZrF7. Von Hevesy, Christiansen, and Berglund 

stated that when ammonium fluozirconate was crystallized in the presence 

of excess NH4F, (NH4)3 ZrF7 was formed instead of (NH4)2 ZrF6• This effect 

would establish {Nl4 }3 ZrF7 to be the most probable film formed on Zr in 

solutions containing an excess of NH4F• 

The literature does not list the compound, NasZrF7. However, Mellor 

describes the crystallization of sodium fluozirconate, Na2ZrF61 from a 

3) Hampson, G. c., and Pauling, L., J. Am. Chem. Soc., ~' 2702, (1938) 

4) Mellor, J. w., p-3, ref. 1 , p . 140 

5) Hevesy, G. v., Christiansen, J. A., and Berglund, v., z. anorgan. 
allgem. Chemie, 144, 69, {1925) 

6) Mellor, J. w., p-3, refl 1, p. 139-140 

6 
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solution containing one to two parts of NaF and fourteen parts of ZrF4. 

Mellor also describes the work of De Marignac who prepared Na5Zr2 F9 by 

double decomposition of sodium chloride and ammonium fluozirconate. 

The effectiveness of Nfl4F, KF
1 

and NaF additions in passivation may 

be explained by the relative solubilities of the fluozirconates. (It 

has now been assumed that all the salt films are fluozirconates) Table 

III gives the data for solubilities of fluozirconates that are avail-

able in the literature. While this table is not complete it does pro-

vide a basis for qualitative interpretations. 

It can be seen from Table III that the normal fluozirconates of 

the general formula R2ZrF6 decrease in solubility in the order of NH!, 
I(+ and Na+. It can be assumed that hepta.f'luozirconates, RsZrF7, have 

the same order of decreasing solubilities. 
1 

Von Hevesy has published a plot of the solubility of (NH4)3 ZrF7 

versus NH4F concentration. This plot shows that the solubility of 

{NH4)sZrF7 decreases with increasing ~~ concentration. up to 4M 

NH4F the solubility of (NH4)3 ZrF7 decreased sharply and after that 

point remained constant even up to 10M NH4F• In reference to Figure 

7 it can be seen that the rate of dissolution of Zr began decreasing 

with additions of over 3M NH4F· However, since the solubility of the 

(NH4)3 ZrF7 film does not decrease further with increased NH4F concen­

tration, then passivation of the Zr may not be completed. The rates 

of dissolution of Zr with additions of 6M and 8M NH4F were nearly the 

same, indicating that film solubility is probably the critical factor 

in passivation of Zr in HF by fluoride additions. 

7) Hevesy, G. v., Christiansen, J. A., and Berglund, v., p-501 ref. 5 
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Table III 

The solubilities of fluozirconates at 20°C 

Fluozirconate 

(NI4)3ZrF7 

(NH.4)2ZrF6 

KsZrF7 

I\2ZrF6 

Solvent 

water 

water 

water 

O.l25N HF 

5.890N HF 

Solubility (moles/liter) 
7 

0.55 

1.05 

6 
0.053 

7 
0.0655 

0.1297 
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far less soluble than ~ZrF6 

8) M1ssenden, J., The Chemical News, 124, 327, (1922) 

8 



c. Discussion of the possibility of local currents: 

In referring to the l iterature concerning the dissolution of Ti 

in HF certain similarities to this work were noted. Straumanis and 
9 

53 

Gill found that NH4F caused passivation of T1 in H2 S04 and HF. Their 

passivation curve was quite similar to Figure 7• Straumanis and Gill 

also showed the effect of NH4F additions on the potential-time curve 

o:f Ti in HF. This curve is very similar to Figure 13. Strauma.nis and 
10 

Chen have proven the importance o:f local currents in the mechanism o:f 

dissolution of Ti in HF. Upon considering the similarity between the 

results of this investigation and the findings of Straumanis and Gill 

it appears quite possible that local currents may also play a part in 

the mechanism o:f dissolution of Zr in HF. 

If this is so then it is possible that, in addition to salt film 

:formation, the emf of the local elements is decreased by the increased 
ll 

overpotential o:f the local cathodes, as it was in the case o£ T1 In 

the light of this interpretation the local cathodes on Zr would be 

blocked much faster by a salt :film (with simultaneous increase of over-

potential) in the case of NaF than in the case of NH4F additions. 

D. Discussion of the potential-time curves: 

The potential-time curves of Zr in pure HF (Fig . 12) displayed a 

sharp initial rise in potential. This rise in potential, according to 

9) Strauma.nis, M. E ., and Gill, C. B., J. Electrocbem. Soc., 101, 10, 
( 1954) 

10) Straumanis, M. E., and Chen, P. c., p-14, ref. 8 

ll) Straumanis, M. E., and Gill, c. B.' ref. 9 



Evans, is due to the formation of a film. By visual observation a black, 

hydride film is observed to form (except in very low HF concentrations) 

on Zr thus causing a more positive potential. The initially film free 

metal had a very negative potential which quickly became more positive 

upon formation of the porous, hydride film. As the film grew in thick­

ness the pores became smaller in size with the potential slowly becoming 

even more positive. 

The film did not appear to grow in thickness continually, probably 

being soluble to some extent in the acid. Thus, the potential should 

not have continued to become more positive indefinitely. This prediction 

was substantiated by the steady potentials approached by the curves in 

Figure 12. 

The immediate effect of fluoride additions on the potential-time 

curves of Zr in HF (Figs. 13, 14 and 15) was to cause a sharp decrease 

in potential. A minimum value was reached from one to six minutes after 

the addition. According to Evans, this decrease in potential would in­

dicate a breakdown of the black, hydride film. While it was difficult to 

see a breakdown, the black film was later replaced by a grey salt film. 

From the minimum point the potential-time curves quickly became much 

more positive, but later increased only gradually until a steady potential 

was reached. This section of the curve shows that another film began to 

form immediately after the breakdown of the hydride film. At first the 

pores of the film (formed from deposition of fluozirconate) were quite 

large. As the film continued to grow in thickness, the pores decreased 

in size and the potential became more positive. The steady potential 

12) Evans, u. R., p-24, ref. 14~ pp. 757-759 
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reached after an extended period of time could be attributed to several 

factors. These factors might include film solubility and increased 

local current density among others. 



v 

Summary 

This investigation of the dissolution of hafnium-free zirconium in 

hydrofluoric acid was begun by studying the dissolution reaction. It 

was found by experiment that the reaction: 

Zr + 4HF ~ ZrF4 + 2~ 

as described in the literature was correct. 

The rate of dissolution of Zr in HF was measured by using the 

principle of hydrogen collection. The equipment was designed so that 

all variables were kept constant except acid concentration. A linear 
. 

relationship was found between rate of dissolution and HF concentration 

from 0 - 0.25N. At 0.5N HF the rate showed a slight increase from the 

linear plot. 

Fluoride additions, when present in sufficient concentration, 

caused passivation of Zr after 6o - 110 minutes. However, the immediate 

effect of the fluoride addition was to increase the rate. Also, if the 

fluoride concentration was not great enough to cause passivation, dis-

solution continued at a higher rate than in pure HF. NaF, KF 1 and NJ4F 

in order of decreasing effectiveness caused passivation of Zr in O.lN HF. 

From x-ray studies of the passivating salt films, it was concluded 

that the films were fluozirconates. Potassium heptafluozirconate, K3ZrF7 
was positively identified as the salt film which caused passivation of Zr 

in a KF solution. A study of the solubilities of the fluozirconates showe 

that they have very low solubility, even in HF solutions. In addition the 

solubilities are related to the effectiveness of the fluozirconate film ir 

causing passivation. Thus the sodium fluozirconate, which has the lowest 

solubility, is most effective in causing passivation. 
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Potential measurements of Zr in various concentrations of HF showed 

that the higher the HF concentration, the more negative was the potential . 

The potential-time curves were hyperbolic with the potential becoming more 

positive w1th increasing time . 

Fluoride additions caused the potential of Zr in HF to quickly become 

far more negative. The potential gradually became more positive until a 

steady potential was attained. The steady potential reached after NH4F 

and KF additions was far more negative than the potential resulting from 

an NaF addition . 



Appendix 

Preface 

This appendix includes tables containing all data for the rate 

and potential measurements. 

Data for rate measurements 

The hydrogen volumes listed are reduced to standard conditions of 

temperature, pressure, and dryness. The average maximum rate of dis­

solution of Zr in pure HF was taken over an arbitrary range which 

might vary depending upon the particular case. Each value (in the 

range over which the average was taken) was marked with #. 

Data :for potential measurements 

Ezr is the potential of Zr reduced to the hydrogen scale. 



Table IV 

The rate of dissolution of Zr in O.OlN HF 

Run No. 1 

Average corrected pressure: 709.3 mm Hg 

Average room temperature: 25.8°C 

Time Volume H2 LJ Volume 
(minutes) (cm3) (em?) 

0 0 0 
30 o.45 0.45 
45 0.75 0.30 
6o 0.90 0.15 
75 1.20 0 .. 30 
90 1.35 0.15 

105 1 . 70 0.35 
120 1.90 0.20 
170 2.30 o.4o 

# Average maximum rate for first run = 16 mm3jcm2min 

Run No. 2 

Average corrected pressure: 709· 5 mm Hg 

Average room temperature: 25.6°C 

Time Volume H2 .A Volume 
(minutes) (em?) {em?) 

0 0 0 
30 0.35 0.35 
6o 0.90 0.55 
90 1.30 o.4o 

120 2.05 0-75 
150 2.40 0.35 
180 2 .. 80 o.4o 
210 3.05 0.25 

?40 3-50 o.45 
300 4 .. 25 0-75 
330 4.50 0.25 
360 4.75 0.25 

Average maximum rate for second run = 17.1 mm3/cm2 min 

Average maximum rate for both runs = 16.55 mm.3 / cm2 min 

0 
15 
20 
10 
20 

# 
# 

$ 
10 # 
23.3 # 
13.3 # 
8 

Rate 
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(mm?!m2 min) 

0 
11.7 
18.3 # 
13.3 # 
25.0 # 
11.7 # 
13.3 
8.4 

15.0 
12.5 
8.3 
8.3 
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The rate of dissolution of 6r in C.04?N HF 

Run No. 1 

Average corrected !Jressure: ?00.2 rom Hg 

Avera{Se r eam temperc..t ure: 3 C . 0 °C 

Time Volume H2 Volume 
(minutes) ( cm3) (cm3) 

0 0 0 
15 0.?0 O.? C 
30 1 . 80 1.10 
45 2:.60 1.80 
60 5.00 1.40 
?5 6.35 1.35 
90 ? .60 1.25 

105 8.~0 1.30 
120 10.10 1.20 

# Average maximum. 3 2 
rate for first run: 94.2 mm /em min 

i!un No. 2 

Average corrected pressure: ?12.4 mm Hg 

Average room temperature: 25.o•c 

Time Vol~e Vo1~e 
(minutes) (em ) (em ) 

0 0 0 
20 1.65 1.65 
3 0 2.68 1.00 
45 3.95 1.30 
60 5.55 1.6(; 
8 0 ? .15 1.60 
95 8.40 1.25 

110 9.65 1.25 
125 10.90 1.25 

II Average maximtm1 r at e for second run: 3 91.2 mm /em 2 Llin 

Average maximum rate for both runs: 92.? rnm3 /cm2 min 

60 

Rate 
(mm3/cm2min) 

0 
46.? 
73.5 If 

120.0 tl 
93 .3 fl ' 
9o. o II 
8Z .4 
86.8 
80.0 

Rate 
(mm~/c.m2 min) 

0 
82.5 tl 

100.0 H-
86.? # 

106.8 ii 
80.0 If 
83.4 
83.4 
83.4 



Table VI 

The rate o~ dissolution o~ Zr in 0.0984N HF 

Run No. 1 

Average corrected pressure: 710.1 mm3 Hg 

Average room temperature : 26.2°C 

Time Volume~ Volume 
(minutes) (cm3) (cm3) 

0 0 0 
10 1.55 1.55 
20 3.4o 1 .85 
30 5.80 2.4o 
4o 7.85 2.05 
50 9.80 1.95 
6o 11.50 1.70 
72 13.55 2.05 
Bo 15.10 1.55 
92 17.05 1.95 

100 l8.4o 1.35 
110 20.10 1.70 
120 21.55 1.45 

# Average maximum rate ~or ~irst run: 196 mm3 / cnl2 min 

Run No. 2 

Average corrected pressure: 709.7 mm Hg 

Average room temperature: 26 . 6°C 

Tine Volume~ Vo~urre 
(minutes) (cm3) (em ) 

0 0 0 
10 1 .00 1. .00 
20 2.90 1.90 
30 4 . 25 1.35 
4o 6 .90 2 . 65 
50 8.60 1.70 
6o 10.30 1.70 
70 11. 90 1.6o 
8o 13.80 1 .90 
90 15.40 1..6o 

100 16. 85 1.45 

# Average maximum rate for second run: 185 mm3 / cm2 min 

Average maximum rate for both runs: 190.5 rmn3/crn'2 min 

{) i 

Rate 
( mrr13fom2 min) 

0 
155 
185 # 
240 # 
205 # 
195 # 
170 # 
170 # 
155 
163 
1.69 
170 
145 

Rate 
(mm~m2 min) 

0 
100 
190 # 
135 # 
265 # 
170 # 
170 # 
160 
190 
16o 
145 



Table VII 

The rate o~ dissolution o~ Zr in O.l4N HF 

Run No. l 

Average corrected pressure: 706.4 mm Hg 

Average room temperature: 25.6°C 

Time Volume~ A Volume Rate 
(minutes) (cm3) (cm3) ( rmn=im2 min) 

0 0 0 0 
10 2.80 2.80 280 # 
20 5·90 3.10 310 # 
30 8.90 3.00 300 # 
4o 11.90 3.00 300 # 
50 14.35 2.45 245 # 
6o 16o9Q 2.55 255 # 
70 19.60 2.70 270 # 
85 22.85 3-25 217 
90 24.05 1.20 240 

100 26.30 2.25 225 
120 31.35 5-05 252.5 
130 33.45 2.10 210.0 
140 35-75 2.30 230.0 

# Average maximum rate ~or first run: 280 mm3 / cm2min 
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Table VII (Continued) 

The rate of dissolution of Zr in O.l4N HF 

Run No . 2 

Average corrected pressure: 705.7 mm Hg 

Average room temperature: 26.4°C 

Time Volume H:2 ./l Volume Rate 
{minutes) (cm3) (cm3) { mm3fm2min) 

0 0 0 0 
10 2.30 2.30 230 # 
20 5-15 2.85 285 # 
30 8.55 3.40 340 # 
4o 11.45 2.90 290 # 
50 14.25 2.8o 280 # 
6o 16.75 2.50 250 # 
70 19-55 2.80 28o # 
8o 22.45 2.90 290 # 
90 24.8o 2.35 235 

100 27.40 2.6o 260 
110 29-90 2.50 250 
120 32.45 2.55 255 

# Average maximum rate for second run: 287;9 mm3/cm2mn 

Average maximum rate for both runs: 284 mm3 / cm2min 



Table VIII 

The rate of dissolution of Zr in 0. 25N HF 

Run No . l 

Average corrected pressure: 702 . 2 mm Hg 

Average room temperature: 28 . 2°C 

Time Vol~~ ~Volume Rate 
(minutes) (cm3) ( cm3) ( rnrqcm2mi n) 

0 0 0 0 
10 4. 6o 4.60 46o # 
20 9. 80 5. 20 520 # 
30 14 . 95 5-15 515 # 
4o 19. 90 4 . 95 495 # 
50 24 . 75 4. 85 485 # 
6o 29 . 45 4. 70 470 
70 34 . 05 4 . 6o 46o 
8o 38 . 75 4. 70 470 
90 43.35 4 . 60 46o 

100 47 . 70 4o35 435 
110 51 -95 4 . 25 425 
120 56 . 4o 4. 45 445 
130 6o . 65 4. 25 425 
140 64.70 4. 05 4o5 
160 68 . 70 4. oo 4oo 
170 72 . 90 4. 20 420 

# Average maximum rate for first run : 495 mzn3 / cm2m.n 
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Table VIII (Continued) 

The rate of dissolut ion o:f Zr in 0.25N HF 

Run No. 2 

Average corrected pressure: 702.9 mm Hg 

Average room temperature: 29.0°C 

Time Vol~ ~ ll Volume Rate 
{minutes) ( cm3) (cm3) ( mm"1:-m2mi n) 

0 0 0 0 
10 4.6o 4.6o 46o tt 
20 10.05 5-15 545 /i 
30 15.05 5-00 500 /t 
4o 20.10 5-05 5051f 
50 24.95 4.85 485 fi 
6o 29.80 4.85 485 tt 
70 34.4o 4.6o 46o 
Bo 38.8o 4.40 44o 
90 43.40 4.60 46o 

100 47.80 4.40 44o 
110 52.25 4.45 445 
120 56.55 4.30 430 
130 60.95 4.40 44o 
140 65.15 ~.20 420 

II Average maximum rate for second run: 493.7 mm3jcm2min 

Average maximum rate :for both runs: 494.2 mm3/cm2min 



Table IX 

The rate of dissolution of Zr in 0.50N HF 

Run No . 1 

Average corrected pressure: 702.3 mm Hg 

Average room temperature: 30 . 4 °C 

Time Volume H2 ll Volume Rate 
(minutes) (cm3) { cm3) ( mm"1cm2mi n) 

0 0 0 
10 10.40 10.40 
20 21.30 10.90 
30 31.90 10.60 
4o 42.45 10.55 
50 52.60 10.15 
6o 62 .60 10.00 
70 72.40 9.80 
8o 81.8o 9.4o 
85 86.10 4.30 

I Average maximum rate for :first run: 1061.3 mm3/cm2min 

Run No. 2 

Average corrected pressure: 705.6 mm Hg 

Average room temperature: 27 .8°C 

Time ~Volume 

0 
1040 # 
1090 # 
1060 # 
1055 # 
1015 
1000 

980 
940 
86o 

Rate Volume~ 

(minutes) (cm3) (cm3) (mm*m2min) 

0 0 0 
10 10.75 10.75 
20 22 .05 11.30 
30 32.55 10.50 
4o 4) . 10 10.55 
50 53 -35 10.25 
6o 63 .55 10. 20 
70 73 . 60 10.05 
8o 83 . 25 9 .65 
90 92 . 8o 9-55 

100 102 . 05 9 o25 
110 111.05 9 -00 
120 120. 05 9-00 
130 128.75 8 .70 

# Average maximum- rate for second run: 1077.5 mm3/ cm2min 

Average maximum rate for both runs: 1o69. 4 zmn3 / cm2min 

Tables IV-IX See Figure 6 

0 
1075 # 
1130 # 
1050 # 
1055 # 
1025 
1020 
1005 

965 
955 
925 
900 
900 
870 



Table X 

The e~~ect o~ an addition o~ O. lM ~ on the rate o~ dissolution 
o~ Zr in O. lN HF 

Run No . 1 

Average corrected pressure : 703 . 8 mm Hg 

Average room temperature: 29 . 2°C 

Time Volume ~ ll Volume Rate 
( minutes) ( cm3) ( cm3) (~m2 min) 

0 0 0 0 
10 0 . 90 0 . 90 90 
20 2 . 50 1 . 6o 160 
30 4 . 35 1 . 85 185 
66 10. 50 6 . 15 170-5 
75 12 . 10 1 . 60 178 
90 14 . 65 2 . 55 170 

100 16 . 20 1 .55 155 

Addition of O. lM NI4F 

0 16 . 20 1 . 55 155 
10 18.10 1 . 90 190 
20 20 . 65 2 . 55 255 
30 22 . 80 2 . 15 215 
4o 24 . 90 2 . 10 210 it 
50 27 . 15 2 . 15 215 if 
6o 29 . 25 2 . 10 210 if 

70 31.35 2 . 10 210 fl 

ff Average rate ~or first run : 211 mm3 / cm2 min 



Table X (Continued) 

The effect of an addition of o.LM NH4F on the rate of dissolution 
of Zr in O. lN HF 

Run No. 2 

Average corrected pressure: 

Average room temperature: 

Time Volume H2 A Volume 
(minutes) (cm3) (cm3) 

0 0 0 
10 0.70 0.70 
45 5-70 5-00 

75 11.20 5-50 
100 15.05 3.85 

Addition of o.lM NH.4F 

0 15.05 3-85 
6 16.25 1.20 

20 19-30 3-05 
30 21.45 2.15 
4o 23.80 2.35 
45 24.75 0.95 
55 26.85 2.10 

75 30.60 3.85 
85 32.50 1.90 

# Average rate for second run: 196 mm3 /cm2 min 

Average rate for both runs: 203.5 mm3/cm2 min 

Rate 
{ riJTJJ:f.m2 min) 

0 
70 

143 

183 
154 

154 
200 
218 
215 
235 
190 # 
210 # 
183 # 
190 # 



Table XI 

The e~fect of an addition of 0.5M NH4F on the rate of dissolution 
of Zr in O.lN HF 

Run No. 1 

Average corrected pressure: 700.8 mm Hg 

Average room temperature: 30.4°C 

Time Volume H2 ll Volume 
{ mm:t:~e min) (minutes) {cm3) {cm3) 

0 0 0 0 
10 o.85 o.85 85 
20 2.75 1.90 190 
30 5.00 2.25 225 
4o 6.90 1.90 190 
55 9-45 2.55 170 
6o 10.35 0.90 180 
70 12.30 1.95 195 
Bo 14.30 2.00 200 
90 16.20 1.90 190 

100 17-70 1.50 150 

Addition o~ 0.5M NH4F 

0 17.70 1.50 150 
10 20.00 2.30 256 
20 22.25 2.25 225 

50 29.25 7.00 233 
6o 30.90 1.65 165 # 
71 33.20 2.30 209 # 
8o 34.95 1.75 195 # 
90 37-30 2.35 235 # 
95 38.40 1.10 220 # 

# Average rate for first run: 214 rnm3jcm2 min 



Table XI (Continued) 

The effect of an addition of 0 . 5M NH4F on the rate of dissolution 
of Zr in O. lN HF 

Run No . 2 

Average corrected pressure: 699 . 7 mm Hg 

Average room temperature: 29 . 8°C 

Time 
( minutes) 

0 
16 
25 
50 
65 
76 
85 

100 

Addition of 

0 
10 
30 
41 
50 
6o 
70 
8o 
91 

100 

Volune H.2 
{cm3) 

0 
1 . 40 
2o85 
7.40 

lO oOO 
11. 85 
13 . 35 
15 . 85 

0 . 5M NH4F 

15 . 85 
18. 10 
22 . 75 
24 . 80 
27 . 20 
29 . 70 
31 . 90 
34. 10 
;6. 50 
38. 45 

~Volume 
( cm3) 

0 
1 . 40 
1 . 45 
4 o55 
2 . 60 
1 . 85 
1 . 50 
2 . 50 

2 . 50 
2 . 25 
4. 65 
2 . 05 
2 . 40 
2 . 50 
2 . 20 
2 . 20 
2 . 40 
1 - 95 

# Average rate for second run : 219 mm3/cm2 min 

Average rate for both runs: 216 . 5 mm3 / cm2 min 

Rate 
(mm~m2 min} 

0 
88 

162 
182 
174 
168 
167 
167 

167 
225 
233 
187 
267 
250 # 
220 # 
220 # 
218 # 
217 # 



Table XII 

The e~fect of an addition of l.OM NH4F on the rate of dissolution 
of Zr in 0. lN HF 

Run No. 1 

Average corrected pressure: 704.1 rr~ Hg 

Average room temperature: 2 9 . 0 ° C 

Time Volume lf.2 (l Volume Rate 
(minutes) {cm3) (cm3) ( mmlcrr?- min) 

0 0 0 0 
4o 6 .95 6.95 174 
50 7-75 o.8o 8o 
61 9-45 1.70 154 
70 10.60 1 .15 128 
8o 11.75 1 .15 128 
90 l3.6o 1 .85 185 

100 15.10 1.50 150 

Addition o~ 1.0M Nl4F 

0 15.10 1.50 150 
10 17.10 2.00 200 
20 19.45 2.35 225 
30 21.65 2.20 220 
4o 23.70 2.05 205 
50 25-75 2.05 205 
6o 27 ·90 2.15 215 # 
70 29.85 1.95 195 # 
8o 31.65 1.80 180 # 
95 34.55 2.90 193 # 

110 37 .10 2 .55 170 # 

# Average rate for first run: 184 mm3 / cm2 min 



Table XII (Continued) 

The effect of an addition of l.OM NH4F on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 700.8 mm Hg 

Average room temperature: 30.6°C 

Time Volume He L1 Volume Rate 
(minutes) (em?) (em:?) ( mmrcm2 min) 

0 0 0 0 
11 o.85 o.85 78 
30 4.15 :;.:;o 174 
45 6.80 2.65 177 
6o 9-45 2.65 177 
8o 12.95 :;.50 175 

100 16.25 3.30 165 

Addition of l.OM NH4F 

0 16.25 3.30 165 
7 17-70 1.45 207 

15 18.8o 1.10 138 
30 23.35 4.55 303 
57 29.90 6.55 243 
65 31.75 1.85 231 # 
8o 35.10 3-35 224 # 
90 37-25 2.15 215 # 

101 . 39· 55 2.30 210 # 

# Average rate for second run: 216 mm3/cm2 min 



Table XII (Continued) 

The effect of an addition of l . OM NH4F on the rate of dissolution 
of Zr in 0 . 1N HF 

Run No . 3 

Average corrected pressure: 701 . 4 mm Hg 

Average room temperature: 30 . 7 °C 

Time Rate 

7 3 

Vol~ H2 !l Volume 
(minutes) (em ) (cm3) ( mm3J:m2 min ) 

0 0 0 0 
12 0 . 90 0 . 90 58 
30 2 . 50 1 . 60 89 
45 4 . 40 1 . 90 127 
6o 6 . oo 1 . 6o 107 
75 8 . oo 2 . 00 134 
92 10. 55 2 . 55 150 

100 11 . 95 1 . 40 175 

Addition of l . OM NH4F 

0 11. 95 1 . 40 175 
5 12 . 95 1 . 00 200 

16 15 . 60 2 . 65 241 
30 J.8 . 9Q 3 -30 236 
50 23 . 05 4 . 15 2o8 
6o 25 . 15 2 . 10 210 # 
72 27 . 35 2 . 20 184 # 
85 30. 10 2 . 75 212 # 
96 32 . 50 2 . 40 218 # 

106 34 . 40 1 . 90 190 # 

#Average rate for third run: 201 rmn3 / cm2 min 

Average rate for three runs: 200 . 3 mm3/cm2 min 



Table XIII 

The effect of an addition of 1 . 5M NH4F on the rate of dissolution 
of Zr in O.lN HF 

Run No . 1 

Average corrected pressure: 704 . 8 mm Hg 

Average room temperature : 28 . 2°C 

Time Volume~ A Volume Rate 
( minutes) ( cm3) (cm3 ) ( mmrcm2 min) 

0 0 0 0 
8 0 . 75 0 . 75 94 

18 2 . 70 1 . 95 195 
33 5· 45 2 . 75 183 
48 8 . 10 2 . 65 177 
58 9 -70 1 . 60 160 
78 13 . 25 3 . 55 177 
88 14 . 90 1 . 65 165 

100 17 . 05 2 . 15 179 

Addition of l . 5M NH4F 

0 17 . 05 2.15 179 
2 0 20 . 75 3 -70 218 
31 23 . 25 2 . 50 237 
43 25 -90 2 . 65 221 
59 29 . 35 3 . 45 216 # 
78 33 . 35 4 . 00 211 # 
88 35 . 40 2 . 05 205 # 
98 37 · 35 1 . 95 195 # 

108 39 . 35 2 . 00 200 # 

# Average rate for :first run: 204 mm3jcm2 min 



Table XIII (Continued) 

The e~fect o~ an addition o~ l.5M ~ on the rate of dissolution 
o~ Zr in O.lN HF 

Run No. 2 

Average corrected pressure: ? 07.7 mm Hg 

Average room temperature: 2 6 . 6 ° C 

Time 
(minutes) 

0 
4 

34 
67 
91 

100 

Addition o~ 

0 
4 

14 
36 
46 
63 
69 
81 
98 

106 

Volume~ 
(cm3) 

0 
0.30 
5·70 

11.80 
15.15 
16.75 

1.5M NH4F 

16.75 
17.45 
19.70 
25.00 
27.35 
31.35 
32.65 
35 .• 60 
39-50 
4o.85 

A Vol11Il':e 
(cm3) 

0 
0.30 
5.4o 
6.10 
3-35 
1.6o 

1.60 
0.70 
2.25 
5.30 
2.35 
4.oo 
1.30 
2.95 
3.90 
1.35 

# Average rate :for second run: 221 rmn3 I cm2 min 

Average rate :for both runs: 212.5 mm3 I cm2 min 

Rate 
(mm"1cm2 min) 

0 
75 

180 
185 
140 
178 

178 
234 
225 
241 
235 
235 # 
217 # 
246 # 
230 # 
169 # 



Table XIV 

The effect of an addition of 2 . 0M NH4F on the rate of di s solution 
of Zr in 0.1N HF 

Run No . 1 

Average corrected pressure: 702 . 1 mm Hg 

Average room temperature: 29.8°C 

Time ll Volume Rate 

76 

Volume H2 
( minutes) (cm3) (cm3) ( mm=fom2 min) 

0 0 0 0 
15 1 . 60 1 . 6o 107 
30 4 . 15 2 . 55 170 
45 6 . 85 2 . 70 18o 
65 10. 85 4 . oo 200 
81 13 . 4o 2 . 55 160 
90 15 . 15 1 . 75 195 

100 16. 95 1 . 80 l8o 

Addition of 2 . 0 M NHJ 

0 16. 95 1 . 80 180 
20 19. 30 2 . 35 261 
30 21. 55 2 . 25 225 
4o 24 . 25 2 . 70 270 
56 28. 30 4 . 05 253 # 
70 31. 8o :; . 50 250 # 
8o 34. 15 2 . 35 235 # 
91 :;6 . 65 2 . 50 227 # 

100 :;8 . 75 2.10 233 # 
110 4o . 85 2.10 210 # 

# Average rate for first run: 232 mrn3 / cm2 min 



Table XIV (Continued) 

The effect of an addition of 2.0M NH4F on the rate of dissolution 
of Zr in O.lN HF 

Average corrected pressure: 697 mm Hg 

Average room temperature: 31.6°C 

Run No. 2 

Time Rate 

?.7 

Volume H2 /::lVolume 
(minutes) (cm3) {cm3) (mm3fcm2 min) 

0 
20 
30 
55 
70 
8o 
90 

100 

Addition of 

0 
1 

21 
4o 
56 
61 
90 

100 
110 
120 

2.0M NH4F 

0 
0.70 
2.30 
6.65 
9.30 

10.70 
12.30 
14.05 

14.05 
15.20 
18.50 
23.10 
26.85 
28.00 
:;4.45 
;6.55 
38.70 
40.95 

0 
0.70 
1.6o 
4.35 
2.65 
1 .4o 
1.6o 
1.75 

1.75 
1.15 
3.3o 
4.60 
3.75 
1.15 
6.45 
2.10 
2.15 
2.25 

#Average rate for second run: 219 nun3/cm2 min 

Average rate for both runs: 225. 5 mm3 / cm2 min 

0 
57 

160 
174 
177 
l4o 
16o 
175 

175 
230 
236 
242 
234 
230 # 
223 # 
210 # 
215 # 
225 # 
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Table XV 

The effect of an addition of 3M NH4F on the rate of dissolution in 
O.lN HF 

Run No. 1 

Average corrected pressure: 704.4 :rmn Hg 

Average room temperature: 28.2°C 

Time Volume ~ ~Volume Rate 
{minutes) (cm3) (cm3) { mrn~m2 min) 

0 0 0 0 
5 0.50 0.50 100 

28 4.6o 4.10 178 
4o 6.95 2.35 196 
65 11.10 4.15 166 
81 15.10 4.00 250 

100 18.50 3.40 179 

Addition o:f 3M Nl4F 

0 18.50 3.40 179 
7 19.60 1.10 275 

20 23.80 4.20 323 
32 27.40 3.6o 300 

. 52 33.10 5-70 285 
6o 35.10 2.00 250 # 
72 :;8.55 3.45 288 # 
8o 40.55 2.00 250 # 
91 43.45 2.90 264 # 

102 46.05 2.60 237 # 
105 46.80 0.75 250 # 

# Average rate :for first run: 260 mm3f cm2 min 



Table XV (Continued) 

..-... <) ( '-

The effect of an addition of 3M NH4F on the rate of dissolution in 
O. lN HF 

Run No . 2 

Average corrected pressure : 704 . 4 mm Hg 

Average room temperature : 28 . 2 °C 

Time Volume H2 £\ Vo~ume 
{minutes) (cm3) (em ) 

0 0 0 
30 4 . 20 4 . 20 
4o 6 . 20 2 . 00 
52 8 . 40 2 . 20 
65 10. 40 2 . 00 
85 13 . 80 3 . 40 

100 l6 . 4o 2 . 60 

Addition of 3M NH4F 

0 l6 . 4o 2 . 60 
3 16. 6o 0 . 20 

10 18. 75 2 . 15 
20 21. 55 2 . 8o 
30 24 . 95 3 . 40 
41 28 . 4o 3 . 45 
52 31. 45 3 -05 
66 35 . 65 !t . 20 
8o 39- 55 3 -90 
90 42 . 10 2 . 55 

105 44. 8o 2 . 70 
110 45 . 85 1 . 05 

# Average rate for second run: 232 mm3 I cm2 min 

Average rate for both runs : 246 mrn3 I cm2 min 

Rate 
( IIJirtfcm2 min ) 

0 
140 
200 
184 
154 
170 
173 

173 
200 
3o8 
28o 
262 
431 
381 
300 # 
279 # 
255 # 
180 # 
210 # 



Table XVI 

The e~fect of an addition of 4M NH4F on the rate of dissolution of 
Zr in O.lN HF 

Run No. 1 

Average corrected pressure: 701.4 mm Hg 

Average room temperature: 29.5°C 

Time Volume li2 A Volume Rate 
{minutes) {cm3) {cm3) ( mm.rcm2 mi. n) 

0 0 0 0 
10 1.15 1.15 115 
25 4.4o 3.25 217 
35 6.20 1.80 18o 
45 8.05 1.85 185 
6o 10.75 2.70 180 
75 13.20 2.45 164 
85 14.85 1.65 165 

100 16.90 2.05 137 

Addition of 4M NH4' 

0 16.90 2.05 137 
20 18.40 1.50 214 
35 21.15 2.75 183 
45 23.15 2.00 200 
55 25.25 2.10 210 # 
75 28.95 3.70 185 # 
85 30-75 1.80 180 # 
95 32.50 1.75 175 # 

105 34.25 1.75 175 # 

# Average rate ~or first run: 180 mm3 / cm2 min 



H1 

Table XVI {Continued) 

The effect of an addition of 4M ~ on the rate of dissolution of 
Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 700.9 mm Hg 

Average room temperature: 28.9°C 

Time Volume H2 Avo1ume Rate 
(minutes) (cm3) (cm3) (mmp2 min) 

0 0 0 0 
11 1.10 1.10 100 
31 5-65 4.55 227 
46 8.15 2.50 167 
6o 10.85 2.70 193 
82 14.90 4.05 184 

100 18.10 3.20 178 

Addition of 4M~ 

0 18.10 3.20 178 
11 20.10 2.00 250 
22 22.25 2.15 195 
39 25.80 3-55 209 
52 28.40 2.6o 200 
6o 31.05 1.65 206 # 
75 33.85 2.8o 187 # 
91 36.75 2.90 181 # 

102 38.8o 2.05 186 # 
111 4o.4o 1.6o 178 # 

# Average rate for second run: 184 mm3 / cm2 min 



Table XVII 

The e~fect of an addition of 5M NH4F on the rate of dissolution of 
Zr in O. lN HF 

Run No . l 

Average corrected pressure: 698 . 8 mm Hg 

Average room temperature: 29 . 7°C 

Time 
(minutes) 

0 
18 
66 
84 

100 

Addition of 5M NH4F 

0 
9 

19 
29 
49 
63 
74 
88 

100 
110 

VolUIOO fk2 
(cm3) 

0 
1.65 
9.85 

12. 85 
15.25 

15 . 25 
15.80 
17.10 
18.55 
21.60 
23.65 
25.25 
27.25 
28.95 
29.4o 

il Vol~ 
( cm3) 

0 
1. 65 
8.20 
3.00 
2.40 

2.40 
0.55 
1 . 30 
1. 45 
) . 05 
2. 05 
1.60 
2 .00 
1.70 
1.45 

Average rate for run: 144 mm3jcm?- min 

0 
92 

171 
167 
150 

150 
92 

130 
145 
153 
147 # 
146 # 
143 # 
142 # 
145 # 



Table XVIII 

The effect of an addition of 6M NH4F on the rate of dissolution of 
Zr in O.lN HF 

Run No. l 

Average corrected pressure: 707.1 rom Hg 

Average room temperature: 27.6°C 

Time Volume H2 ~Volume Ra~e 
(minutes) (cm3) (cm3) ( mm1cm min) 

0 0 0 0 
10 1 .10 1.10 110 
25 :;.65 2.55 171 
35 5-70 2.05 205 
57 9.40 3-70 168 
85 14.15 4.75 170 

100 16.10 1.95 130 

Addition of 6M NJ4F 

0 16.10 1.95 130 
15 l6.8o 0.70 58 
30 17.85 1.05 70 
50 19.05 1.20 6o # 
70 20.75 1.70 85 # 
88 21.95 1.20 67 # 
98 22.70 0-75 75 # 

105 23.40 0.70 100 # 

# Average rate for first run: 78.5 mm3/c~ min 



Table XVIII (Continued} 

The effect of an addition of 6M NH4F on the rate of dissolution of 
Zr in O. lN HF 

Run No . 2 

Average corrected pressure: 702 . 1 mm Hg 

Average room temperature: 29 . 7 °C 

Time Volume ~ llVolume Rate 
(minutes) (cm3) (cm3) ( mm* rrf- m1 n) 

0 0 0 0 
17 2.05 2 . 05 120 
30 4.8o 2 . 75 211 
50 8 .55 3 -75 187 
8o 14.25 5-70 190 

100 17 . 65 ; . 40 170 

Addition of 6M NH4F 

0 17.65 3 . 4o 170 
15 18.55 0.90 75 
31 21.10 2.55 160 
45 23.35 2.25 161 
6o 24.00 o . 65 43.5 
71 25.15 1.15 105 II 
8o 26.20 1 .05 ll7# 
98 28.05 1 .85 103 # 

lll 29.45 1.4o 1o8 II 

# Average rate for second run: 107.5 mm3jcm2 min 

Average rate for both runs: 93 mm3 / czn'2. min 



Table XIX 

The e~fect of an addition of 8M NH4F on the rate of dissolution of 
Zr in O.lN HF 

Run No . l 

Average corrected pressure: 705 mm Hg 

Average room temperature: 29. 5°C 

Time 
(minutes) 

0 
5 

38 
65 
8o 

100 

Addition of 

0 
11 
29 
46 
55 
68 
75 
90 

100 
112 

Vol~ li2 
(em ) 

0 
0.35 
3-50 
6.70 

8M N14F 

8.50 
11.40 

11.40 
11.40 
12.90 
14.6o 
15.35 
16.20 
16.80 
17-95 
18.75 
19-90 

A Volume 
(cm3) 

0 
0.35 
3.15 
3.20 
1.8o 
2.90 

2.90 
0 

1.50 
1.70 
0.75 
o.85 
o.6o 
1.15 
o.8o 
1.15 

#Average rate for run: 80 ~/cm2 min 

Tables X - XIX See Figure 7 

Rate 
( mmrcm2 min) 

0 
70 
96 

119 
120 
145 

145 
0 
84 

100 
84# 
66 # 
86 # 
11 # 
8o# 
96 # 



Table XX 

The e~fect of an addition of 0.073M KF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 1 

Average corrected pressure: 702.1 mm Hg 

Average room temperature: 29.0°C 

Time Vol~ H2 ~Volume Rate 
(minutes) (em ) (cm3) ( mmj'cm2 min) 

0 0 0 0 
35 5.25 5.25 153 
50 7-90 2.65 177 
73 11.85 3.95 172 

100 16.25 4.40 163 

Addition of 0.073M KF 

0 16.25 4.4o 163 
23 22.30 6.05 263 
35 25.65 3.35 279 
53 30.4o 4.75 264 
59 32.00 1.6o 267 # 
8o 37.35 5-35 255 # 

102 42.65 5-30 241 # 
110 44.55 1.90 238 # 

Average rate ~or first run: 246 mm3 / cm2 min 



Table XX (Continued) 

The effect of an addition or o.o73M KF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 696.0 rnm Hg 

Average room temperature: 3l.0°C 

Time volume li.2 fl Volume Rate 
(minutes) (cm3) (cm3) ( rnrn?{cm2 min) 

0 0 0 0 
7 o.4o o.4o 57 

72 12.75 12.35 l85 
100 16.95 4.20 150 

Addition of 0.073M KF 

0 16.95 4.20 150 
13 18.85 1.90 155 
42 26.90 8.05 278 
66 ;2.75 5-85 244 # 
90 ;8.90 6.15 256 # 

101 41.65 2.75 250 # 
111 44.20 2.55 255 # 
117 45.6o 1.4o 234 # 

# Average rate for second run: 252 ~/cm2 min 

Average rate ror botb runs: 249 mm3 / c~ min 



Table XXI 

The effect of an addition of O.l8M KF on the rate of dissolution 
of Zr in O. lN HF 

Run No . 1 

Average corrected pressure: 699.8 mm Hg 

Average room temperature : 30.0°C 

Time Vo 1 'l.liOO ~ ~ Volut:IX:! Rate 
(minutes) (cm3) {cm3) (mrn~ min) 

0 0 0 0 
8 0.30 0.30 37 

37 5.45 5-15 178 
91 14.85 9-4o 174 

100 16 . 15 1 .30 145 

Addition of o.l8M KF 

0 16.15 1.30 145 
5 16.65 0.50 100 

31 23.40 6.75 260 
47 27-50 4.10 256 
57 30.00 2.50 250 # 
71 33.35 3-35 239 # 
86 36.90 3-55 237 # 
97 39-55 2.65 241 # 

111 42.65 3.10 222 # 

# Average rate for first run: 234 mm3 / cm2 min 



Table XXI (Continued) 

The effect of an addition of O.l8M KF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 699.6 mm Hg 

Average room temperature: 3l.5°C 

Time 
(minutes) 

0 
74 

100 

Vol~ H2 
(em ) 

0 
10.8o 
15.10 

Addition of 0.18M KF 

0 
7 

32 
46 
64 
68 
81 
97 

105 
111 

15.10 
15.75 
20.85 
24.95 
29.15 
30.20 
33-50 
36.8o 
38.40 
39.85 

ll Volume 
{cm3) 

0 
10.80 
4.30 

4.30 
o.65 
5.10 
4.10 
4.20 
1.05 
3.30 
3.3o 
1.60 
1.45 

# Average rate for second run: 228 mm3 I cm2 min 

Average rate for both runs: 231 rmn3 I cm.2 min 

Ra~ 
( mm/f'fiiC min) 

0 
146 
164 

164 
90 

204 
293 
233 # 
263 # 
254 # 
206 # 
200 # 
242 # 



Table XXII 

The effect of an addition of 0.36M KF on the rate of dissolution 
of Zr in o.1N HF 

Run No. 1 

Average corrected pressure: 698.9 mm Hg 

Average room temperature: 30.7°C 

Time Volume~ 6 Vo~ume Rate 
{minutes) {cm3) (em ) ( mm~rr? min) 

0 0 0 0 
12 1.35 1.35 113 
30 5-30 3-95 219 
4o 7.45 2.15 215 
51 11.75 4.30 390 
78 15.40 3.65 215 

100 19.25 3.85 175 

Addition of 0.36M KF 

0 19.25 3.85 175 
5 19.40 0.15 75 

18 22.70 3.30 254 
45 30-70 8.00 296 
6o 34.75 4.05 270 # 
70 37.40 2.65 265 # 
Bo 39-95 2.55 255 # 
99 44.85 4.90 257 # 

105 46.10 2.25 375 # 

Average rate for first run: 275 mm3jcm2 min 



Table XXII (Continued) 

The effect of an addition of 0.36M KF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 696 . 2 mm Hg 

Average room temperature: 3l.7°C 

Time Volume H2 A Volume Ra~e 
(minutes) (cm3) (cm3) (~fom min) 

0 0 0 0 
10 o.4o o.4o 4o 
51 7-15 6.75 165 
73 10,85 3-70 168 
95 14.4o 3·55 162 

100 15.25 o.85 170 

Addition of 0.36M KF 

0 15.25 o.85 170 
15 16.90 1.65 137 
26 19.45 2.55 232 
36 21.00 1.55 155 
58 26.95 5-95 270# 
66 28.80 1.85 231 # 
77 31.40 2.6o 236 # 
93 35.05 3.65 228 # 

100 36.8o 1.75 250 # 

Average rate ror second run: 234.5 mm3fcm2 min 

Average rate for both runs: 250 rarn3jcm2 min 



Table XXIII 

The effect of an addition of o.43M KF on the rate of dissolution 
of Zr in O.lN HF 

Run No. l 

Average corrected pressure: 701.8 rnm Hg 

Average room temperature: 29.0°C 

Time Vol~~ ~Volume Rate 
(minutes) (cm3) (cm3) (mm~m2 min) 

0 0 0 0 
5 0.10 0.10 20 

38 5.70 5.6o 170 
81 13.05 7-35 171 

100 16.20 3-15 166 

Addition of' 0.43M KF 

0 16.20 3-15 166 
5 16.70 0.50 100 

36 24.35 7-65 247 
51 29-15 4.80 320 
65 31.85 2.70 193 # 
83 36.30 4.45 247 # 
94 39.00 2.70 245 # 

107 42.20 3.20 246 # 

# Average rate for :first run: 247 ~/cm2 min 



Table XXIII {Continued) 

The e~fect of an addition o~ o.43M KF on the rate o~ dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 696.6 mm Hg 

Average room temperature: 33.0°C 

Time Volume H2 .l1 Volume Rate 
(minutes) (cm3 ) {cm3) (mm3/cm2 min) 

0 0 0 0 
36 5·95 5-95 165 
55 9.30 3-35 176 
72 12.30 3.00 177 
89 14.95 2.65 156 

100 16 .95 2.00 182 

Addition o~ o.43M KF 

0 16.95 2.00 182 
8 18.35 1.40 175 

20 21.15 2.8o 233 
52 29.6o 8.45 264 
64 32.55 2.95 246 # 
79 36.50 3-95 263 $ 
91 39.25 2.75 229 

110 43.8o 4.55 239 # 

# Average rate for second run: 245 mm3/cm2 min 

Average rate ~or both runs: 246 mm3/cm2 min 



Table XXIV 

The effect of an addition of 0 . 49 M KF on the rate of dissolution 
of Zr in 0 .1 N KF 

Run No. 1 

Average corrected pressure: 702 . 8 mm Hg 

Average room temperature: 28 .7°C 

Time Vol~ H:2 .AVolUIOO ~ate 
(minutes) (cm3) (cm3) (mm zn2 min) 

0 0 0 0 
12 0.95 0-95 79 
64 10.45 9-50 183 

100 17.15 6.70 186 

Addition of 0.49M KF 

0 17.15 6.70 186 
8 19.30 2.15 267 

23 24.00 4.60 307 
41 29.15 5-15 286 
58 33-70 4.55 267 # 
82 39.85 6.15 256 # 

100 44.15 4.30 239 # 
108 45.95 1.8o 225# 

# Average rate for first run: 245 mrn3 / cm2 min 



Table XXIV (Continued) 

The effect of an addition o~ o.49M KF on the rate of dissolution 
of Zr in O. lN KF 

Run No . 2 

Average corrected pressure: 692.6 mm Hg 

Average room temperature: 33.4°C 

Time 
(minutes) 

0 
24 
38 
69 

100 

Volume ~ 
(cm3) 

0 
4 . 80 
7.70 

13 . 55 
19. 15 

Addition of o . 49M KF 

0 19. 15 
8 20 . 35 

21 23.90 
30 26 . 45 
41 29.25 
51 32.00 
61 34.50 
74 37 . 80 
95 42.90 

loB 45 -90 

~ Volume 
(cm3) 

0 
4 . 80 
2.90 
5 . 85 
5 . 6o 

5.60 
1.20 
3-55 
2 . 55 
2 . 8o 
2 . 75 
2 . 50 
3.30 
5.10 
3-00 

# Average rate for second run: 24 3 mm3 / crrl- min 

Average rate for both runs: 244 mm3/cm2 min 

Rate 
{ mm"Ycm2 min) 

0 
200 
207 
189 
18o 

180 
150 
273 
284 
255 
275 
250 # 
254 # 
243 # 
231 # 



Table XXV 

The effect of an addition of 0.54M KF on the rate of dissolution 
of Zr in 0 . 1N HF 

Run No . 1 

Average corrected pressure: 699.2 mm Hg 

Average room temperature: 30.6°C 

Time Volume If.2 
(minutes) (cm3) 

0 0 
7 0.35 

42 7-45 
78 15.00 

100 18.10 

Addition of 0.54M KF 

0 
9 

38 
50 
57 
72 

105 

18.10 
19.05 
22.95 
23.60 
23.95 
24.55 
25.85 

41 Volume 
{cm3) 

0 
0.35 
7-10 
7·55 
3.10 

3.10 
0-95 
3-90 
o.65 
0-35 
o.6o 
1 .30 

#Average rate for first run: 39.6 rnm3/cm2 min 

Average rate for both runs: 35.5 rmn3jcm2 min 

Run No. 2 

Average corrected pressure: 697.4 mm Hg 

Average room temperature: 3l.2°C 

Time Vol~ H2 Volume 
{minutes) {cm3 ) (cm3) 

0 0 0 
58 10.00 10.00 

100 18.20 8.20 

Addition of O. 54M KF 

0 18.20 8.20 
16 22.55 4 .35 
24 23.90 1.35 
36 24.75 o.85 
47 25.05 0.30 
6o 25.35 0.30 
97 26.45 1.10 

114 27.05 o.6o 

Rate 
{ rmn"1-m2 min) 

0 
50 

203 
209 
141 

141 
136 
135 

54 
50 # 
4o# 
4o# 

Rate 
{ mm?/cm2 min) 

0 
172 
195 

195 
272 
169 

71 
27 
23 # 
30 # 
35 # 



Table XXVI 

The effect of an addition of 0 . 72M KF on the rate of di s solution 
of Zr in O. lN HF 

Run No . 1 

Average corrected pressure : 702 . 8 mm Hg 

Average room temperature: 29 . 0°C 

Time Volume~ 

(minutes} {cm3) 

0 0 
34 5- 35 
47 7 -65 

100 l6 . 4o 

Addition of 0 . 72M KF 

0 
23 
37 
68 
86 
99 

109 

l6 . 4o 
l6 . 4o 
16.75 
17 . 45 
17-95 
18. 20 
18. 45 

A Volume 
(cm3) 

0 
5 · 35 
2 . 30 
8 . 75 

8 . 75 
o.o 
0 . 35 
0.70 
0 . 50 
0 . 25 
0 . 25 

Average rate for :first run: 24 nnn3 / cm2 min 

Table~ XX - XXVI See Figure 8 

Rate 
(mm~m2 min) 

0 
158 
177 
165 

165 
0 

25 
23 # 
28 # 
19 # 
26 # 



Table XXVII 

The effect of an addition of 0.025M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 1 

Average corrected pressure: 704 . 3 mm Hg 

Average room temperature : 27 . 4 ° C 

Time Volume H2 d Volume Rate 
( minutes) (cm3) (cm3) (nnn¥m2 min) 

0 0 0 0 
10 0 -95 0 -95 95 
25 3 -75 2 . 8o 186 
4o 6 . 20 2 . 45 175 
6o 9 . 40 3 . 20 16o 
75 11. 75 2 . 35 157 
90 13 . 70 1 . 95 130 

100 15.20 1 . 50 150 

Addition of 0 . 025M NaF 

0 15 . 20 1 . 50 150 
6 15 . 95 0-75 167 

10 16 . 90 0 . 95 2;8 
25 19. 40 2 . 50 167 
4o 22 . 70 3-30 220 
55 25 . 70 3 . 00 200 
65 27 . 60 1 . 90 190 # 
8o 30. 70 3 . 10 207 # 
95 33 . 65 2 . 95 197 # 

110 :;6.6o 2.95 197 # 
120 3S . ~o 1 . 90 190 # 

# Average rate for first run: 198 mm3/cm2 min 



Table XXVII (Continued) 

The effect of an addition of 0.025M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No . 2 

Average corrected pressure: 698 . 5 mm Hg 

Average room temperature: 30. 2°C 

Time Volume H2 
(minutes} (cm3) 

0 0 
5 0 

20 2.70 
35 5-70 
50 8.60 
65 10.90 
8o 13.8o 

100 17.10 

Addition of 0.025M NaF 

0 
5 

20 
35 
50 
65 
85 

100 
115 

17.10 
17o95 
20.60 
23.90 
26.8o 
29.35 
32.35 
35-00 
38.10 

.A Volume 
(cm3) 

0 
0 
2.70 
3.00 
2.90 
2.30 
2.90 
3-30 

3-30 
o.85 
2.65 
3.30 
2.90 
2.55 
3.00 
2.65 
3.10 

# Average rate for second run: 175 nnn3 / cm2 min 

Average rate for both runs: 186.5 mm3/cm2 min 

Ra~ 
(mni~m min) 

0 
0 

18o 
200 
193 
153 
193 
165 

165 
170 
177 
220 
193 
170 # 
150 # 
177 # 
207 # 



1 f)~) 

Table XXVIII 

The effect of an addition to 0 . 05M NaF on the rate of dissolution 
of Zr in 0 . 1N HF 

Run No . 1 

Average corrected pressure : 706 . 3 mm Hg 

Average room temperature: 26 . 8°C 

Time Volume H2 A Volume Rate 
( minutes) (cm3) (cm3) ( mm"1cm2 min) 

0 0 0 0 
10 1 . 90 1 . 90 190 
25 4 . 65 2 . 75 183 
4o 7 . 30 2 . 65 177 
55 10. 00 2 . 70 18o 
70 12 . 55 2 . 55 170 
85 14 . 75 2 . 20 147 

100 17 . 15 2 . 4o 160 

Addition of 0 . 05M NaF 

0 17 . 15 2 . 40 160 
5 18. 40 1 . 25 250 

15 21 . 10 2 . 70 270 
25 23 . 55 2 . 45 245 
35 26 . oo 2 . 45 245 
45 28 . 15 2 . 15 215 
55 30. 35 2 . 20 220 
65 32 . 50 2 . 15 215 # 
75 34 . 65 2 . 15 215 # 
85 36 . 65 2.00 200 # 
95 38 . 60 1 . 95 195 # 

105 4o . 45 1 . 85 185 # 
115 42 . 60 2.15 215 # 
120 43 . 65 1 . 05 210 # 

# Average rate for first run: 203 mm3fcm2 min 



Table~XVIII (Continued) 

The effect of an addition o~ 0.05M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No . 2 

Average corrected pressure: 705 . 4 mm Hg 

Average room temperature: 27.5°C 

Rate 

1 0 '! 

Time Volume H2 ll Volume 
(minutes} (cm3) (cm3) (mmj6~ min) 

0 0 0 0 
10 1 . 30 1 . 30 130 
20 3 -05 1 . 75 175 
30 4 . 65 1 . 60 160 
45 7 -25 2 . 6o 173 
6o 10. 15 2 . 90 193 
75 12.35 2 . 20 147 
95 15 . 20 2 . 85 143 

100 15 . 95 0 . 75 150 

Addition of 0 . 05M Na.F 

0 15 . 95 0 -75 150 
10 18. 40 2 . 45 245 
25 22 . 25 3 -85 257 
35 24 . 45 2 . 20 220 
45 26 . 70 2.25 225 
55 28 . 60 1 . 90 190 
65 30. 8o 2 . 20 220# 
76 33 . 25 2.45 223 # 
86 35 . 15 1 . 90 190 # 
95 36.75 1.60 178 I 

105 38.8o 2 . 05 205 # 
115 4o . 65 1.85 185 # 

# Average rate ~or second run: 197 mm3/cm2 min 

Average rate for both runs: 200 mm3 / cm2 min 



Table XXIX 

The effect of an addition of 0 .075M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 1 

Average corrected pressure: ?03 .2 mm Hg 

Average room temperature: 2 9 .1 ~c 

Time Volume ~Volume 

1_0 

(minutes) (cm3) 
~ 

(cm3) 
Ra~e 

(mm~m min) 

0 0 0 0 
5 0.15 0.15 30 

10 o.85 0.70 140 
35 5-25 4.40 176 
45 6.6o 1 .35 135 
70 1o.6o 4.oo 160 
85 12.70 2.10 14o 

100 15.05 2.35 157 

Addition o:f 0.075M NaF 

0 15.05 2 . 35 157 
5 15-90 o.85 170 

15 18.75 2.85 285 
25 21.40 2.65 265 
35 23.90 2.50 250 
50 27.65 3.75 250 
6o 30.00 2.35 235 # 
70 32.45 2.45 245 # 
8o 34.60 2.15 215 # 
95 37.80 3.20 214 # 

105 40.15 2.35 235 # 
115 42 . 15 2 .00 200 # 

# Average rate for first run: 221 mm3/cm2 min 



Table XXIX (Continued 

The effect of an addition of 0.075M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 703.2 mm Hg 

Average room temperature : 28.2 o C 

Time Volume H2 ll Volume Rate 
(minutes) (cm3) (cm3) ( mmrcm2 min) 

0 0 0 0 
5 o.6o o.6o 120 

20 2.70 2.10 14o 
35 4.80 2.10 14o 
50 7.20 2.40 160 
65 9.40 2.20 147 
8o 11.40 2.00 134 
95 13.15 1-75 117 

100 13.85 0.70 140 

Addition of 0.075M NaF 

0 13.85 0.70 14o 
5 14.85 1.00 200 

15 17.45 2.6o 260 
26 20.30 2.85 259 
35 22.20 1.90 211 
45 24.55 2.35 235 
55 26.65 2.10 210 
65 28.50 1.85 185 # 
76 30.95 2.45 223 # 
85 32.55 1.6o 178 # 
95 34.80 2.25 225 # 

105 36.50 1.70 170 # 
120 39.15 2.65 177 # 

# Average rate for second run: 194 mm3/cm2 min 

Average rate for both runs: 207.5 mrr15/ cm2 min 



Table XXX 

The effect of an addition of O. lM NaF on the rate of dissolution 
of Zr in O. lN HF 

Run No . 1 

Average corrected pressure: 692 . 7 mm Hg 

Average room temperature : 32 . 6°C 

Time Vol~ Ii2 A Volume Rate 
( minutes ) ( em ) (cm3) (~m2 min) 

0 0 0 0 
10 o .8o o. 8o 8o 
23 2. 80 2. 00 154 
42 6. 50 3. 70 195 
56 8 . 95 2. 45 175 
70 11 . 15 2. 20 157 
88 14. 00 2. 85 159 

100 16. 05 2. 05 171 

Addition of o. lM NaF 

0 16 . 05 2. 05 171 
ll 18. 25 2. 20 200 
18 20 . 05 1.8o 257 
36 24 . 10 4. 05 225 
42 25 . 75 1 . 65 275 
54 28 . 85 3. 10 255 # 
70 32 . 45 3. 6o 225# 
8o 34. 6o 2. 15 215 # 
90 37 -00 2. 40 240 # 

100 39. 15 2. 15 215 # 
110 41 . 00 1.85 185 # 
120 43 . 05 2. 05 205 # 

# Average rate for first run: 215 mm3 / cm'2 min 

~ {) -~ 



Table XXX (Continued) 

The effect of an addition of O. lM NaF on the rate of dissolution 
of Zr in O. lN HF 

Run No . 2 

Average corrected pressure: 706 . 7 mm Hg 

Average room temperature: 26 . o •c 

Time Volume 
(minutes) (cm3) 

0 0 
3 0 . 35 

15 2 . 55 
4o 5. 15 
55 8 . oo 
70 10. 60 
91 14. 35 

100 15 . 65 

Addition of O. lM NaF 

0 
10 
25 
40 
55 
65 
Bo 
95 

110 
115 

15 . 65 
19. 45 
24 . 20 
28 . 25 
32 . 50 
34.95 
38. 85 
42 . 30 
45 . 10 
46. 50 

~ Ll Vol~ 
(cm3) 

0 
0 -35 
2 . 20 
2 . 6o 
2 . 85 
2 . 60 
3 · 75 
1 . 30 

1 . 30 
3.8o 
4 . 75 
4 . 05 
4 . 25 
2 . 45 
3-90 
3.45 
2.8o 
1 . 40 

# Average rate for second run: 233 mm3/cm2 min 

Average rate :for both runs : 224 mm3jcm2 min 

Rate 
( mm?jcrr?- min) 

0 
116 
183 
lo4 
190 
174 
179 
145 

145 
38o 
317 
270 
283 # 
245 # 
26o # 
230 # 
187 # 
28o # 



Table XXXI 

The effect of an addition of O.ll25N NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 1 

Average corrected pressure: 700.1 mm Hg 

Average room temperature: 28.4 °C 

Time Volume H2 6Volume Rate 
(minutes) (cm3) (cm3) {mm~m2 min) 

0 0 0 0 
5 o.85 0.85 170 

20 3.85 3.00 200 
35 6.45 2.60 173 
50 9-00 2.55 170 
65 11.50 2.50 167 
8o 13.95 2.45 163 
95 16.20 2.25 150 

100 17.05 o.85 170 

Addition of O.ll25N NaF 

0 17.05 o.85 170 
5 17-70 o.65 130 

21 22.30 4.60 287 
35 25.75 3.45 247 
50 28.4o 2.65 177 
65 29.90 1.50 100 
8o 30.60 0.70 47 # 

100 30.60 o.o O# 
115 30.60 o.o O# 

Average rate for first run: 14 rmn3 / cm2 min 

~1 0 



Table XXXI (Continued) 

The effect of an addition of o.ll25N NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. 2 

Average corrected pressure: 700.5 mm Hg 

Average room temperature: 28.2°C 

Time Vol~ H2 A Volume 
{minutes) (cm3) (cm3) 

0 0 0 
10 0-95 0.95 
25 3-70 2.75 
4o 6.75 3.05 
55 9-8o 3.05 
70 12.60 2.8o 
85 15.20 2.6o 

100 17.95 2.75 

Addition of O.ll25N NaF 

0 17-95 2.75 
5 19.05 1.10 

20 23.15 4.10 

35 26.6o 3.45 
50 30.00 3.4o 
65 32.75 2.75 
8o 35.45 2.70 

100 37.50 2.05 
110 38.60 1.10 
120 39.10 0.50 

# Average rate for second run: 115 mm3 / cm2 min 

Average rate for both runs: 70 mm3 / cm2 min 

0 
95 

184 
203 
203 
187 
173 
184 

184 
220 
273 
230 
227 
184 # 
180 # 
102.5 # 
110 # 

50 # 



Table XXXII 

The effect of an addition of O.l25M NaF on the rate of dissolution 
of Zr in O.lN HF 

Run No. l 

Average corrected pressure: 695.7 mm Hg 

Average room temperature: :;o.6°C 

Time Volume~ fl Volume Ra~e 
{minutes) {cm3) (cm3) (~m min) 

0 0 0 0 
10 1.05 1.05 105 
20 2.70 1.65 165 
6o 10.20 7-50 187 
75 12.70 2.50 167 
90 15.10 2.40 160 

100 16.8o 1.70 170 

Addition of O.l25M NaF 

0 16.8o 1.70 170 
5 17.05 0.25 50 

15 19.10 2.05 205 
30 20.00 0.90 6o 
45 20.00 0 0 
6o 20.00 0 O# 
75 20.00 0 O# 
90 20.00 0 O# 

# Average rate for first run: 0 mm3jcm2 min 



Table XXXII (Continued) 

The effect of an addition of 0.125M NaF on the rate of dissolution 
o:f Zr in 0.1N HF 

Run No. 2 

Average corrected pressure: 705.8 zmn Hg 

Average room temperature: 27 .8°C 

Time Volume H2 ll Volume Rate 
(minutes) (cm3) (cm3) ( mm"Jcm2 min) 

0 0 0 0 
3 0.10 0.10 33 

20 3-15 3.05 18o 
35 6.15 3.00 200 
50 8.50 2.35 157 
70 10.85 2.35 117 
85 13.80 2.95 197 

1.00 16.25 2.45 163 

Addition of 0.125M NaF 

0 16.25 2.45 163 
5 17.15 0.90 180 

15 17.90 0.75 75 
25 18.25 0.35 35 
35 18.4o 0.15 15 
50 18.4o 0 O# 
65 18.4o 0 O# 
8o 18.40 0 O# 
85 18.40 0 O# 

# Average rate for second run: 0 mm3jcm2 min 

Average rate for both runs: 0 mm3 / cm2 min 



Table XXXIII 

The effect of an addition of O.l5M NaF on the rate of dissolution 
of Zr in O.lN HF 

Average corrected pressure: 703.2 mm Hg 

Average room temperature: 26.8°C 

Ti~ Volume~ /l Volume Rate 
(minutes) (cm3) (cm3) ( mm?fcm2 min) 

0 0 0 0 
10 1.4o 1 .40 140 
25 4.30 2.90 194 
4o 7.05 2.75 184 
55 9-85 2.8o 187 
10 12.55 2.70 18o 
85 14.80 2.25 150 

100 17.15 2.35 157 

Addition of 0.15M N~ 

0 17.15 2.35 157 
5 17.75 o.6o ll7 

20 18.45 0.70 47 
30 18.8o 0.35 35 
45 19.00 0.20 13 
6o 19.10 0.10 7 # 
75 19.25 0.15 10 # 
90 19.30 0.05 3# 

~05 19.35 0.05 3# 

# Average rate for run: 5.6 mm3 / cm2 min 



j , -1 
... :.l ..._ 

Table XXXIV 

1'he eff e ct of a n additio n o f 0. 21: NaF on the r ote of di sso l ution 
of Zr in O. lN HF 

Averag e c orrected pressure : 7 01.6 mm Hg 

Average r o om t empert.~ t ure : 27 .3
6

C 

'rime Vo1u~e Hn ll Vc~wne Rat~ 
(mint..tes ) 

0::.: 

(mm3 /em (em ) (em ) min) 

0 0 0 0 
5 0.75 0 .75 150 

20 3.95 3.20 213 
35 6.60 2.65 177 
50 9.65 3.05 203 
65 12.15 2.50 167 
80 14.80 2.65 177 
95 1? .oo 2.20 147 

100 1?.70 0.70 140 

Add itior. of 0.2M NaF 

0 l? .70 0.70 140 
5 18 .10 0 . 40 8 0 

20 19.15 1.05 70 

35 19. 25 0.10 7 

5 0 19.70 0.45 30 

65 19.70 o. oo oil 
80 19.?0 o.oo 0# 
95 19.70 o.oo 0# 

# Averag e rate fer run: 0 mm3 /crn2 min 

Tables A.XVII - XXXIV See Figure 9 
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Table XXXV 

Da ta for potential-time curves of Zr in varying concentrations of HF 

Time 
(minutes) 

0 
l 
2 
3 
4 
5 

10 
20 
30 
45 
55 
70 
85 
95 

120 

Time 
(minutes) 

0 
2 
4 

10 
22 
35 
47 
63 
75 

Time 
(minutes) 

0 
2 

10 
20 
35 
55 
75 

See Figure 12 

O.OlN HF 

-0-768 
-0.742 
-0.728 
-0.713 
-0.706 
-0-704 
-0.691 
-o.687 
-0.679 
-o.668 
-o.664 
-0.656 
-o.646 
-o.642 
-o.641 

0.05N HF 

Ezr 

-0.713 
-0.686 
-0.676 
-o.668 
-o.66o 
-o.668 
-0.671 
-0.670 
-0.670 

O.lON HF 

Ezr 

-0.754 
-0-726 
-0-715 
-0.712 
-0.709 
-0-705 
-0.700 



Table XXXV (Continued) 

Data for potential-time curves of Zr in varying concentrations of HF 

See Figure 12 

0. 14N HF 

Time Ezr 
{minutes) 

0 -0.774 
2 -0.745 
3 -0.737 
5 -0.732 

24 -0.728 
4o -0. 720 
71 -0.714 
90 -0.712 

115 -0 . 109 
125 -0. 7o8 

0.25N HF 

Time Ezr 
(minutes) 

0 -o.8l.O 
2 -0.768 
3 -0.748 
4 -0.744 
5 -0.744 

18 -0.741 
35 -0. 735 
50 -0.733 
70 -0.730 
90 -0.725 

105 -0.722 
135 -0.719 

0.50N HF 

Time Ezr 
{minutes) 

0 -0.900 
1 -0 . ~6 
2 -0.810 
4 -0. 812 
5 -o.8l2 

10 -o.8o6 
17 -0. 794 
27 -o.78o 
50 -0.762 
58 -0.757 
88 -0.747 

107 -0.740 



Table XXXVI 

The effect of an addition of 6.5M NH4F on the potential-time curve 
of Zr in O.lN HF 

Time 
(minutes) 

0 
l 
3 

19 
48 
62 
75 

Addition of 6.5M NH4F 

77 
78 
79 
80 
81 
88 

103 
120 
155 
335 
515 
575 
770 

134o 
1535 
1655 

-0.742 
-0.720 
-0.716 
-0.714 
-0.711 
-0.709 
-0.707 

-1.062 
-1.070 
-1.092 
-1.ll2 
-1.112 
-1.076 
-1.076 
-1.076 
-1.075 
-1.o64 
-1.052 
-1.050 
-l.o40 
-1.015 

.-1.015 
-1.015 

See Figure 13 

i tJ 



Table XXXVII 

The effect of an addition of 3.0M NH4F on the potential-time curve 
of Zr in O.lN HF 

Time 
(minutes} 

0 
1 
2 

10 
51 
70 
75 

Addition of 3.0M NH4F 

76 
77 
79 

103 
150 
220 
36o 
540 

lo8o 

Ezr 

-0.760 
-0.730 
-0.730 
-0.720 
-0.713 
-0.710 
-0.710 

-1.074 
- 1 .055 
-l.o43 
-l.o46 
-1.035 
-1.015 
-0.992 
-0.955 
-0.929 



Table XXXVIII 

The effect of an addition of 0.7lM KF on the potential-time curve 
of Zr in O.lN HF 

Time 
{minutes) 

Addition of 0.7lM KF 

0 
1 
2 

18 
35 
6o 
75 

78 
8o 
82 
83 
87 

100 
120 
140 
170 
420 

lo65 
1200 

See Figure 14 

-0.744 
-0.733 
-0.727 
-0.709 
-0.706 
-0.702 
-0.702 

-1.133 
-1.095 
-l.o64 
-1.057 
-1.075 
-1.077 
-1.o61 
-1.053 
-1.050 
-1.030 
-1.029 
-1.028 

l. () 



Table XXXIX 

The effect of an addition of 1.37M KF on the potential-time curve 
of Zr in o.lN HF 

Time 
(minutes) 

0 
2 

ll 
20 
30 
70 
75 

Addition of 1.37M KF 

76 
77 
79 
82 
95 

107 
1.18 
1.28 
180 
1.95 
270 
320 
390 
480 
630 

Ezr 

-0.742 
-0.726 
-0.714 
-0.711 
-0.710 
-0.702 
-0.702 

-1..1.36 
-l.lo8 
-0.958 
-0.94o 
-0.966 
-0.984 
-0.992 
-0.997 
-0.996 
-0.994 
-0.969 
-0.948 
-0.942 
-0-941 
-0.940 

A ·I ~,, 

.: A 



Table XL 

The effect of an addition of O.l5M NaF on the potential-time curve 
of Zr in O. lN HF 

Time 
(minutes) 

0 
2 

10 
20 
35 
55 
75 

Addition of 0.15M NaF 

76 
77 
79 
81 
85 

105 
l8o 
210 
240 
550 

1215 
138o 
14~ 
1515 
1530 

See Figure 15 

Ezr 

-0.754 
-0.726 
-0.715 
-0.712 
-0.709 
-0.705 
-0.700 

-0.988 
-0.972 
-0.974 
-0.959 
-0.917 
-0.728 
-o.642 
-0.626 
-0.616 
-o.6n 
-0.528 
-0.522 
-0.541 
-0.528 
-0.528 
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