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FIG. 3. Contour plots showing the ge-
ometry dependence of spin-orbit cou-
pling values in CH(D)I. It can be seen
that the coupling values (units of cm−1)
vary slightly with the RC–I coordinate in
addition to the bend, but negligibly with
the RC–H coordinate.

CH(D)X (X = Cl, Br, and I) which have (a) allowed many
new assignments to be made, (b) provided improved experi-
mental values for the singlet-triplet gaps for comparison with
theoretical predictions, and (c) yielded detailed information on
derived spin-orbit coupling constants. The latter are found to be
strongly correlated with the measured constants of the corre-
sponding halogen atoms and indicate significant quenching of
the spin-orbit interaction. The SO coupling and other constants
(e.g., singlet-triplet gap and anharmonic constants) from the
global fits using the model described by Eq. (1) (model 1) are

compared with those obtained using the full matrix elements
(model 2).

II. COMPUTATIONAL METHODS

There are many theoretical studies of the optimized geom-
etries, vibrational frequencies, singlet-triplet gaps, and spin
orbit coupling matrix elements in halocarbenes.35–60 Standard
DFT methods such as B3LYP have been used to reliably calcu-
late vibrational frequencies and equilibrium geometries, yet
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few DFT methods accurately predict the singlet-triplet gap,59,62

which, however, is well reproduced by high level single refer-
ence (e.g., coupled-cluster with singles, doubles and pertur-
bative triples [CCSD(T)]) and multi-reference methods such
as multi-reference configuration interaction (MRCI) with suit-
able basis sets.

Our high-level explicitly correlated F12 calculations were
done using the MOLPRO quantum chemistry program pack-
age.63 Geometries were optimized for the lowest singlet (S0)
and triplet (T1) surfaces of the halocarbene series CH(D)X
(X = Cl, Br, and I) using the CCSD(T)-F12 and MRCI-F12
methods,64,65 correlating the valence electrons using the VQZ-
F12 basis set.66 Peterson’s new pseudo-potential F12 bases
were used for iodine and bromine.67 Using those optimized
geometries, singlet-triplet gaps were predicted at the VnZ-
F12 and VnZ-PP-F12 levels (n = 2-4). Because we are inter-
ested in the vibrational overlaps, which in turn are sensitive
to the geometries and force fields, we performed calcula-
tions of the vibrational frequencies and mass-weighted normal
mode displacements (i.e., ℓ-matrices) with CCSD(T)-F12 and
MRCI-F12 methods using the VQZ-F12 basis set. These
modes were used to evaluate the full SO matrix elements used
in model 2 for one of the sets of global fits described below.

In addition, various DFT (B3LYP, M06, and M06-2X)
and other post-Hartree-Fock (e.g., MP2) methods were tested
for comparison. The differences in vibrational overlaps among
these methods were relatively small, and the majority of results
for model 1 defined by Eq. (1) were obtained with the B3LYP
functional in combination with an aug-cc-pVTZ or, in the case
of iodocarbene, aug-cc-pVTZ-pp basis set. These calculations
used the Gaussian 09 package on the Marquette University
Pere cluster.68

From these calculations, we extracted the structures, har-
monic frequencies, and normal mode displacements to calcu-
late the vibrational overlaps of the singlet and triplet state
levels, incorporating the full effects of Duschisnky mixing69

using a routine in the Pgopher program.70 The vibrational
term energies of the singlet and triplet states in the absence of
spin-orbit coupling were assumed to follow separate Dunham
expansion expressions of the form

G (v1, v2, v3) = ω0
1v1 + ω

0
2v2 + ω
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11v
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22v
2
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1,ω
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0
3 are harmonic frequencies for C–H stretch,

H–C–X bend, and C–X stretch, respectively, v1, v2, v3 are the
associated vibrational quantum numbers, and xi j are anhar-
monicity constants.

In model 1 approach, the calculated harmonic frequen-
cies were used as initial input with the calculated (product
approximation) spin-orbit coupling matrix elements into an
n × n Hamiltonian matrix, the diagonalization of which, car-
ried out either in Excel or Matlab, yielded the eigenvalues and
eigenvectors of the mixed singlet-triplet levels. All singlet and
triplet state levels up to a threshold energy determined by the
range of experimental data were included in this matrix. In
order to fit these to the observed experimental values, we used
as fit parameters H elec

so , the term energy of T1, the harmonic
vibrational frequencies of S0 and T1, and a limited set of an-

harmonicity constants. WhileH elec
so should not vary for the two

CH(D)X isotopomers, in this model, we fit it independently in
order to assess the reliability of the approach.

For the second approach (model 2) using full SO-matrix
elements, the SO couplings were computed at the MRCI-
F12 level using VTZ-F12 and VTZ-PP-F12 basis sets and fit
into surfaces which permit evaluation of SO-coupling matrix
elements for comparison with the simpler model. The SO-
couplings were all computed using the Breit-Pauli Hamiltonian
in Molpro. The singlet and triplet states are of A′ and A′′

symmetry, respectively, and are connected by the X , Y , and
Z components of the spin-orbit (LS) operator. All three SZ

components of the triplet state couple to the singlet state (but
not to each other). In Molpro, a symmetry adapted basis of the
fine-structure states is constructed such that two triplet compo-
nents couple to the singlet in a block of three components of
A′ symmetry. A second block of A′′ symmetry contains only
the other triplet component which is free of couplings. We
further simplify the coupled A′ block by constructing linear
combinations of the two triplet components such that only one
couples to the singlet, while the other does not. This results in
a single real value that is fit into surfaces. The full information
is contained in that single value since the eigenvalues in any of
these matrix representations are the same.

The fits were used along with the wavefunctions to
compute the SO coupling matrix elements as a part of a coupled
Hamiltonian matrix which is otherwise the same as that of the
first approach.

III. RESULTS AND DISCUSSION

Figure 4 shows the square of the calculated vibrational
overlaps (i.e., the Franck-Condon factors or FCFs) of various
S0 vibrational levels with the T1 origin in CHI, calculated at
the MRCI-F12/VTZ-PP-F12 level. The FCFs are dominated
by a single progression in the bending mode, (0,n,0), with a
second progression (1,n,0) also observed. All other progres-
sions, involving, for example, the pure stretching levels, have
very small overlaps. This trend is noted in all carbene species
studied.

FIG. 4. Calculated Franck-Condon factors describing the overlap of the T1
origin with various S0 levels in CHI at MRCI-F12/VQZ-F12 level. These
calculations included the effects of Duschisnky mixing. The FCFs are largest
for the pure bending levels, representing the single dominant progression.
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TABLE I. Assignments of the observed energy levels for CHI. Energies are in cm−1. Levels in italics are
associated with the triplet state.

Energy level Model 1 fit Model 2 fit Observed levels Model 1 F–Oa Model 2 F–Oa

(0,0,0) 0 0 0 0 0
(1,0,0) 589 585 591 −2 −6
(0,1,0) 955 954 948 7 6
(2,0,0) 1174 1182 1176 −2 6
(0,0,0) 1409 1400 1407 2 −7
(1,1,0) 1579 1587 1582 −3 5
(3,0,0) 1754 1758 1754 0 4
(0,2,0) 2069 2075 2070 −1 5
(1,0,0) 1971 1984 1975 −4 9
(2,1,0) 2215 2219 2218 −2 1
(4,0,0) 2329 2325 2326 4 −1
(2,0,0) 2583 2584 2584 −1 0
(1,2,0) 2705 2700 2704 1 4
(3,1,0) 2857 2843 2852 5 −9
(5,0,0) 2889 2891 2891 −3 0
(1,1,0) 3022 3021 3023 0 −1
(3,0,0) 3168 3174 3168 0 6
(0,3,0) 3270 3277 3275 −5 2
(2,2,0) 3335 3321 3330 5 −9
MADb 2.5 4.3

aF–O—fit-observed.
bMAD—mean average deviation.

In describing our results, we will show in detail the re-
sults for CHI, while detailed results for the other carbenes are
provided in the supplementary material.61 For CHI, a total of
19 levels derived from SVL emission data25,71 were included
in the fit. Most of these levels were previously assigned and
the present fit confirms the previous assignments that were
made. As shown in Table I, the fits to 19 levels using models 1
and 2 resulted in mean average deviations (MAD) of 2.5 cm−1

and 4.3 cm−1 for models 1 and 2, respectively, which are of
the order of the experimental uncertainty of 2–4 cm−1.71 The
two models differ in their flexibility. Model 1 is constrained
by the constant (geometry independent) approximation to the
SO-coupling, but at the same time, the magnitude of the SO-
constant is flexible. In contrast, model 2 includes the geom-
etry dependence in the SO-coupling, but the strength of the
coupling was held to the computed ab initio values, fit as sur-
faces. It is also possible that the optimization procedure might
exploit flexible parameters such as the anharmonic constants
by varying them in an unphysical way. With this in mind, for
model 1, as the spin-orbit matrix elements in this case are
much larger than the anharmonicities, only x11 was deemed
determinable. The fit returned a term energy for the triplet
origin state of 1392.0 cm−1, with H elec

so = 731.5 cm−1. The
value for H elec

so is within the range of values found on the
fitted surface used for model 2. The complete set of optimized
fit parameters are provided in Table S1.61 The derived har-
monic frequencies (Table II) are generally in good agreement
with the calculated values. All three methods (MRCI-F12,
CCSD(T)-F12b, and B3LYP) predict C-I stretch frequencies
on the singlet state close to the fitted values of the two models.
The MRCI-F12 value for the bend on the singlet state is lower
than the other calculations and fitted values. On the other hand,
the MRCI-F12 value for the C–H stretch on the singlet is closer

to the B3LYP value and the fitted results from the two models
than is the CCSD(T)-F12b value. For the triplet frequencies,
the B3LYP value for the C–I stretch (643 cm−1) differs most
significantly from the fitted value of corresponding model 1
(616 cm−1), while the other modes are in closer agreement.
The results for MRCI-F12 and CCSD(T)-F12b for the CHI
triplet frequencies agree closely with each other and the fitted
parameters of model 2.

It is remarkable how much the modal character of the
triplet state vibrations changes upon deuteration. The C–I
stretch and the bend frequencies become close to each other
in CDI, and the C–I stretch, which for the CHI isotopomer has
very pure stretching character, mixes strongly with the bend
mode. For the deuterated isotopomer, a total of 23 levels, again
derived from SVL emission data,25,71 were fit to a MAD of
4.3 cm−1 using model 1. Model 2 returns a similar MAD of
4.6 cm−1. A comparison of fit and observed levels is provided
in Table S2 of the supplementary material.61 Again, the derived
harmonic frequencies (Table II) are generally in excellent
agreement with the calculated unperturbed predictions. Here,
the fit returned a term energy for the origin of the triplet state
of 1386(4) cm−1, withH elec

so = 731.0 cm−1 for model 1 which
is within the range of values used by the fitted surface in
model 2. The complete sets of fit parameters for both models
are provided in Table S1.61 The good agreement between the
values of H elec

so derived from independent fits to the data for
the two isotopomers (731.5 cm−1 for CHI and 731.0 cm−1 for
CDI) gives us confidence in the approach.

An analysis of the eigenvectors returned from the fits
yields additional information on the strength and selectivity
in coupling of the singlet and triplet levels. For example, in
CHI, the eigenstate at 1754 cm−1 contains∼93.7% character of
S0 (3,0,0), indicating that this level is only weakly mixed with
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TABLE II. Calculated and fit CHI and CDI vibrational frequencies in cm−1.

Species Mode
Calculated

frequency 1a
Calculated

frequency 2b
Calculated

frequency 3c
Model 1 fit
frequencyd

Model 2 fit
frequencye

CHI
(S0)

C–H stretch 2891.6 2935.6 2896.5 2841.0 2856.3
Bend 955.76 1064.0 1050.0 1055.6 1045.9
C–I stretch 599.5 606.3 587.8 573.7 594.3

CHI
(T1)

C–H stretch 3192.9 3193.9 3131.8 3132.0 3192.9
Bend 836.2 829.7 799.0 804.6 860.0
C–I stretch 662.5 666.5 642.9 615.8 651.1

CDI
(S0)

C–D stretch 2125.8 2155.5 2121.0 2060.5 2048.7
Bend 701.8 785.6 775.0 793.2 798.8
C–I stretch 588.1 593.0 574.0 564.6 563.3

CDI
(T1)

C–D stretch 2350.0 2352.9 2314.8 2314.8 2324.6
Bend 680.7 684.1 576.0 562.0 668.0
C–I stretch 593.7 596.1 648.0 641.0 595.0

aVibrational frequencies calculated at MRCI-F12/VQZ-F12 level.
bVibrational frequencies calculated at CCSD(T)-F12b/VQZ-F12 level.
cVibrational frequencies calculated at B3LYP/Sadlej-pVTZ level.
dModel 1 fit frequencies.
eModel 2 fit frequencies.

background triplet levels. In contrast, the level at 1582 cm−1

contains ∼72% character of the triplet origin, indicating more
significant mixing. This is consistent with our expectation
(Figure 4) that levels containing bending excitation are the
most strongly perturbed, due to their larger vibrational overlap
with the triplet levels.

Turning to bromocarbene,24 our initial studies of CHBr
reported a fit of the observed singlet levels to a simple Dunham
expansion,24 which yielded a MAD of 16 cm−1, significantly
larger than our experimental uncertainty of 2–4 cm−1. This,
of course, reflects the influence of spin-orbit coupling. Here,
we fit a total of 38 CHBr levels observed by SVL emission
to a MAD of 3.4 cm−1 using model 1, much improved and
now on the order of our experimental uncertainty. Model 2
returns a MAD of 5.7 cm−1. A detailed line list is provided
in Table S3 of the supplementary material,61 while Table S4

lists the derived fit parameters. Due to the smaller spin-orbit
coupling, a larger (but still incomplete) set of anharmonicity
parameters was used. The derived harmonic frequencies for
CHBr and CDBr are shown in Table III for both the singlet and
triplet electronic states. The agreement between the MRCI-
F12 and CCSD(T)-F12b values and the results of model 2 are
particularly good for the triplet state. The MRCI-F12 method
also performs well on the singlet, while the CCSD(T)-F12
value for the C–H stretch is significantly higher than the fitted
value (model 2). The B3LYP values are in close agreement
with the corresponding fit for model 1 and also in rather close
agreement with the MRCI-F12 results. The derivedH elec

so was
354.3 cm−1, and triplet term energy is 2059.6 cm−1 using model
1, similar to that (2036.0) obtained using model 2. For CDBr,
a fit to 41 levels derived from SVL emission spectra20 resulted
in a 3.2 cm−1 MAD and gaveH elec

so = 350.9 cm−1 and a triplet

TABLE III. Calculated and fit CHBr and CDBr vibrational frequencies in cm−1.

Species Mode
Calculated

frequency 1a
Calculated

frequency 2b
Calculated

frequency 3c
Model 1 fit
frequencyd

Model 2 fit
frequencye

CHBr
(S0)

C–H stretch 2845.2 2934.5 2881.0 2795.5 2809.9
Bend 1090.7 1155.1 1147.0 1131.7 1135.0
C–Br stretch 681.8 688.4 686.0 678.2 679.6

CHBr
(T1)

C–H stretch 3198.4 3196.7 3147.0 3146.0 3184.3
Bend 920.3 916.5 916.0 880.5 920.0
C–Br stretch 748.3 751.9 747.0 755.0 740.5

CDBr
(S0)

C–D stretch 2092.3 2154.5 2154 2074.1 2075.0
Bend 802.7 856.5 853.7 844.2 840.0
C–Br stretch 671.2 675.7 640.9 664.8 665.0

CDBr
(T1)

C–D stretch 2354.3 2354.1 2336.0 2339.3 2345.0
Bend 767.1 770.8 641.0 621.2 759.1
C–Br stretch 658.2 659.4 732.5 716.9 650.0

aVibrational frequencies calculated at MRCI-F12/VQZ-F12 level.
bVibrational frequencies calculated at CCSD(T)-F12b/VQZ-F12 level.
cVibrational frequencies calculated at B3LYP/aug-cc-pVTZ level.
dModel 1 fit frequencies.
eModel 2 fit frequencies.
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FIG. 5. Energy level diagrams for
CHBr in the region 3700–4900 cm−1

above the ground state using model
1 and model 2. Four sets of levels
are shown: calculated S0 levels with-
out consideration of spin-orbit coupling
(black, far left), calculated levels of pri-
marily singlet character including the
effects of spin-orbit coupling (green,
middle left), observed levels (blue, mid-
dle right), and calculated levels of pri-
marily triplet character including the
effects of spin-orbit coupling (red, far
right).

term energy of 2078.4 cm−1 using model 1 and a MAD of
4.6 cm−1 and triplet term energy of 2063.4 cm−1 using model
2. Again, the consistency of the derived SO-coupling constants
for the two isotopomers gives us confidence in the procedure.

To help visualize the nature of the spin-orbit coupling in
this system, Figure 5 displays energy level diagrams for CHBr
in the region 3700–4900 cm−1 above the ground state. Four sets
of levels are shown: calculated S0 levels without consideration
of spin-orbit coupling (far left), calculated levels of primarily
singlet character including the effects of spin-orbit coupling
(middle left), observed levels (middle right), and calculated
levels of primarily triplet character including the effects of
spin-orbit coupling (far right). The shifts in level positions due
to spin-orbit coupling are quite obvious, and typically large, on
the order of tens of cm−1. This figure also shows that while all
singlet levels present in this region are in fact observed, only

a small fraction (here 2/6 = 33%) of the background triplet
levels are observed experimentally.

Turning now to CH35Cl, a (model 1) fit to 53 levels derived
from SVL emission23,26 and SEP33,72 measurements yielded
a MAD of 2.1 cm−1, which is a more than twofold improve-
ment over a simple Dunham expansion fit to the observed
singlet levels. A fit using model 2 does a similar job and
returns a MAD of 2.0 cm−1. The fit and observed energies
are provided in Table S6 (supplementary material61), while
Table S7 includes the fit parameters, which includes a nearly
complete set of anharmonicity constants using both models.
In this case, perturbations due to SO-coupling are of the same
order of magnitude as the anharmonicities. The derivedH elec

so
is 81.3 cm−1, and model 1 triplet term energy is 2167.8 cm−1,
which is very close to the value 2169.3 cm−1 obtained from
model 2. Our model 1 fit value of H elec

so is centered in the

TABLE IV. Calculated and fit CHCl and CDCl vibrational frequencies in cm−1.

Species Mode
Calculated

frequency 1a
Calculated

frequency 2b
Calculated

frequency 3c
Model 1 fit
frequencyd

Model 2 fit
frequencye

CHCl
(S0)

C–H stretch 2868.2 2929.1 2917.4 2873.2 2873.0
Bend 1218.3 1226.9 1228.2 1206.5 1205.7
C–Cl stretch 819.7 826.1 792.6 815.6 815.3

CHCl
(T1)

C–H stretch 3206.5 3201.8 3173.0 3076.4 3125.7
Bend 974.6 970.8 952.8 958.8 959.3
C–Cl stretch 891.9 897.45 874.8 883.5 886.1

CDCl
(S0)

C–D stretch 2107.5 2148.8 2144.0 2119.2 2113.1
Bend 904.9 914.2 908.9 896.7 897.3
C–Cl stretch 809.2 817.7 784.7 805.7 806.3

CDCl
(T1)

C–D stretch 2361.1 2359.8 2338.0 2333.7 2370.0
Bend 889.3 898.8 710.2 698.9 907.2
C–Cl stretch 724.1 725.6 869.4 884.7 710.0

aVibrational frequencies calculated at MRCI-F12/VQZ-F12 level.
bVibrational frequencies calculated at CCSD(T)-F12b/VQZ-F12 level.
cVibrational frequencies calculated at B3LYP/aug-cc-pVTZ level.
dModel 1 fit frequencies.
eModel 2 fit frequencies.
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range of fit values found on the surface used in model 2.
Note that a previously reported calculated value (120 cm−1)
of Worthington and Cramer,59 obtained at geometries near the
seam of intersection using multi-reference configuration inter-
action methods, is significantly larger. The derived H elec

so for
CD35Cl from a fit to 55 levels was nearly identical, 81.9 cm−1.
This underscores the strong correlation between the spin-orbit
coupling and anharmonicities in the fit, due to the similarity
of their magnitude. The least squares fitting of the calculated
levels to the observed 55 CD35Cl levels from SVL emission and
SEP measurements returned a MAD of 1.7 cm−1 for model 1
and 2.1 cm−1 for model 2. A complete line list is provided in
Table S8 of the supplementary material,61 while Table IV gives
the fit and calculated values of the harmonic constants. The
MRCI-F12 and CCSD-F12 methods agree closely with each
other and the fit in this case. Perhaps, the closer agreement
between MRCI-F12 and CCSD-F12 for the CHCl system is
due to the lack of effective core potential that was used to
treat the Br and I containing systems. Both methods perform
significantly better than B3LYP which produces some larger
discrepancies.

With the fits for CH(D)X (X = Cl, Br, and I) completed,
we are now in a position to examine periodic trends in the

data. Table V summarizes our findings on the singlet-triplet
energy gaps. With the exception of CHI and CDI, the derived
gaps are not substantially different from those previously
estimated.9 The new value for CHI corresponds to a gap
of 3.92 kcal/mol, or 16.42 kJ/mol using model 2, which
can be compared with a variety of theoretical predictions.
Toscano and co-workers predict a gap of 15.5 kJ/mol using
the linear combination of Gaussian-type orbital-local spin
density method.53 Nguyen and co-workers predict a value of
18.8 kJ/mol at the CCSD(T)/6-311++G(3df,2p) level,46 which
is of interest because the same level of theory underpredicts
the gap in CHBr by ∼5 kJ/mol. Other DFT calculations have
been reported for CHI, which generally overestimate the gap.59

Here, as listed in Table V, we obtain very similar values
for the MRCI-F12 and CCSD(T)-F12b methods (15.5 and
15.2 kJ/mol, respectively). Both values are close to the exper-
imental fit and the explicitly correlated CCSD(T)-F12b value
is much closer than the previous standard CCSD(T) value of
Nguyen. For CHBr and CHCl, comparing the experimental
fit values with the calculated values in Table V, it appears
that both explicitly correlated methods produce very accurate
and reliable predictions, with the MRCI-F12 method slightly
preferred.

TABLE V. Summary of the fit singlet-triplet energy gaps using model 1 and model 2 in cm−1 compared with
those calculated using MRCI and CCSD(T) experimental data fit to models. Note: Since core-correlating basis
was not available for Br and I, all electron calculations could not be performed on CHBr and CHI.

Halogen atom X
CHX singlet-triplet energy gap,

∆EST

CDX singlet-triplet energy gap,
∆EST Average ∆EST

I 1392.0 1394.8 1393.4
Br 2059.6 2078.4 2069.0
Cl 2167.8 2183.9 2175.9

Halogen atom X CHX singlet-triplet energy gap,
∆EST

CDX singlet-triplet energy gap,
∆EST

Average ∆EST

I 1372.5 1319.7 1346.1
Br 2036.0 2063.4 2049.7
Cl 2169.3 2175.7 2172.5

Calculated (CHI)

Method/basis VDZ-PP-F12 VTZ-PP-F12 VQZ-PP-F12

MRCI-F12 1244.9 1303.5 1294.7
CCSD-F12 1200.9 1272.1 1267.4

Calculated (CHBr)

Method/basis VDZ-PP-F12 VTZ-PP-F12 VQZ-PP-F12

MRCI-F12 1955.8 1991.2 1986.5
CCSD-F12 1931.7 1980.7 1987.4

Calculated (CHCl)

Method/basis VDZ-F12 VTZ-F12 VQZ-F12

MRCI-F12 2124.9 2175.9 2182.9
CCSD-F12 2078.6 2104.2 2111.7

Method/basis CVDZ-F12 CVTZ-F12 CVQZ-F12

(AE) MRCI-F12 2164.6 2233.2 2250.0
(AE) CCSD-F12 1939.1 1950.5 1959.6
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FIG. 6. Correlation of derived CH(D)X spin-orbit coupling constants
(model 1) with the experimental values of the corresponding halogen atoms.
A linear fit to the data is shown, which returns a slope of 0.144(2).

Figure 6 shows the correlation between the derived halo-
carbene spin orbit coupling constants and those of the cor-
responding halogen atom. A striking linear correlation is
observed, which when fit with a fixed intercept of 0 yields a
slope of 0.144(2). This indicates that in the halocarbenes, the
spin-orbit coupling is significantly quenched with respect to
the corresponding halogen atom. It also helps to explain why
spin-orbit perturbations were not observed in our studies of
fluorocarbene34—the predictedH elec

so in this case is ∼40 cm−1.

IV. CONCLUSIONS

In this work, a global analysis of spin-orbit coupling in
the monohalocarbenes CH(D)X (X = Cl, Br, and I) is reported.
Energies and anharmonic frequencies for the lowest singlet
(S0) and triplet (T1) surfaces of the halocarbene series H(D)CX
(X = Cl, Br, and I) have been computed at the MRCI-F12,
CCSD(T)-F12, and B3LYP levels with basis set as large as the
VQZ-F12 and VQZ-PP-F12. The magnitudes and geometry
dependences of the spin-orbit couplings were explored. The
couplings were computed and fit into surfaces which permit
evaluation of SO-coupling matrix elements. This permitted a
comparison between two models. First (model 1), within a dia-
batic treatment which separates the spin-orbit matrix elements
into a purely electronic contribution and a nuclear component
representing the vibrational overlap of the singlet and triplet
wavefunctions, we treated the former as a fit parameter, while
the latter was calculated using results from electronic struc-
ture theory. These were incorporated in a least squares fit to
experimental data from SVL emission and SEP experiments.
For model 2, the full spin-orbit matrix elements were evalu-
ated by integrating over the fitted surfaces. In all cases, for
both models, the mean average deviation was comparable to
the experimental uncertainty, and this work has resulted in a
number of new assignments, together with improved estimates
of the singlet-triplet gaps and the first global experimental
information on the spin-orbit coupling constants. The derived
H elec

so from model 1 show a good correlation with those of

bare halogen atoms, with the atomic spin-orbit coupling is
quenched to about 14% in the halocarbenes.
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