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ABSTRACT

Drones are poised to become a prominent focus of advances in the near future

as hardware platforms manufactured via mass production become accessible to con-

sumers in higher quantities at lower costs than ever before. As more ways to utilize

such devices become more popular, algorithms for directing the activities of mobile

sensors must expand in order to automate their work.

This work explores algorithms used to direct the behavior of networks of au-

tonomous mobile sensors, and in particular how such networks can operate to achieve

coverage of a field using mobility. We focus special attention to the way limited mo-

bility affects the performance (and other factors) of algorithms traditionally applied

to area coverage and event detection problems.

Strategies for maximizing event detection and minimizing detection delay as

mobile sensors with limited mobility are explored in the first part of this work. Next

we examine exploratory coverage, a new way of analyzing sensor coverage, concerned

more with covering each part of the coverage field once, while minimizing mobility

required to achieve this level of 1-coverage. This analysis is contained in the second

part of this work.

Extending the analysis of mobility, we next strive to explore the novel topic

of disabled mobility in mobile sensors, and how algorithms might react to increase

effectiveness given that some sensors have lost mobility while retaining other senses.

This work analyzes algorithm effectiveness in light of disabled mobility, demonstrates

how this particular failure mode impacts common coverage algorithms, and presents

ways to adjust algorithms to mitigate performance losses.
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1. INTRODUCTION

This work explores the rich field of study around the effects of limited mo-

bility with networks of mobile sensors, and how these constraints impact the effec-

tiveness of coverage algorithms. As the application of autonomous drones becomes

more approachable–platforms have recently become available via retail channels to

consumers–the algorithms to drive autonomous behavior of these platforms will be

ever more important.

1.1. PLATFORMS AND APPLICATIONS

Security applications (such as border monitoring), search and rescue, marine

habitat preservation, livestock management–the list of possible applications for au-

tonomous mobile sensor networks abounds.

A common theme in these applications is that a network of mobile sensors,

acting autonomously, can provide tremendous value if it can efficiently and effectively

cover a search area. The area of particular interest in this work is how limited mobility

affects the performance of mobile sensors.

A network of sensors can be used to monitor the environment, for example,

monitoring for forest fires, tsunamis, or other natural phenomenon. A network of

sensors can monitor a larger area with less human intervention and higher accuracy

because sensors are becoming more economical. Effective algorithms employed on

these platforms can extend the lifetime of networks of sensors, improve efficiency

and effectiveness of sensors at meeting Quality of Service (QoS) goals, and overcome

impediments that historically have made these platforms less than useful or even

impractical.
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Figure 1.1. The DraganFlyerTMX6 UAV

Research into advances for robotic platforms is occurring on many fronts [1].

UAV Platforms such as the DraganFlyerTMX6 [2] as seen in Figure 1.1 show great

promise as both an academic as well as practical model in real-world commercial

applications. Less recently, numerous efforts have focused on building self powered

miniature mobile robot sensor platforms as shown in Table 1.1. The Robomote (70mm

x 45mm x 35mm) [3], Khepera series of robots (70mm x 30mm) [4, 5], and the XYZ

platform [6] are prototypes of mobile sensors that are battery powered and motor

driven. In each of these platforms, sensors (to sense events) and communication

devices create mobile communicating sensors. A rather novel approach to mobility

in sensor platforms utilizes a fuel-powered hopping mechanism [7] used in Intelligent

Mobile Land Mine Units (IMLM) developed by DARPA.

The fact that these platforms are subject to such limitations validates the im-

portance of analysis of the algorithms governing their behavior. Recently, additional

platforms have emerged and continue to build in popularity as the cost declines. Still,

limits on the mobility of these platforms demands improved algorithmic support.
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Table 1.1. Practical Implementations of Mobile Sensors

Khepera III XYZ Robomote IMLM

Mobility DC brushed Miniature DC motors Fuel powered
Source motors geared motor ignition

Movement Continuous Continuous Continuous Hops, Flip-based
Type

Mobility 3600m 165m 360m 100 hops/10m
Distance

Manufac- K-Team Yale University USC DARPA
turer

Even the classic vacuuming robot, which several popular brands have made

common in modern households, is an example of an autonomous mobile sensor plat-

form attached to a household device (see Table 1.2). Features include scheduled ac-

tivation, independent algorithms for discovery and navigation of their environment,

and the ability to sustain extended operation by self-guidance back to the charging

base. These devices garner high customer satisfaction through successful utilization

of coverage algorithms, and have become a common, trusted, technology for everyday

usage. Likewise, as the affordability, practicality, and technical capabilities of mobile

sensors increases at the same time that the cost, utility, effective lifetime, and sus-

tainable operation becomes more mature, networks of mobile sensors will continue to

gain more and more popularity and significance in our society.

Application development is still one of the main hurdles to wide adoption of

autonomous mobile sensors [8]. Previously, algorithm developers could not rely on a
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Table 1.2. Vacuuming Robots

iRobot Roomba Neato Robotics XV-11

progression of abstraction layers between the application and the low level operating

system and concerns of hardware control. Even now, substantial knowledge of the

intricacies of hardware concerns is required to program algorithms for the simplest

of mobile sensor coverage algorithms.

1.2. PROBLEMS POSED BY LIMITED MOBILITY

Three important classifications of coverage algorithms include Blanket, Sweep,

and Barrier Coverage [9], as well as Exploratory Coverage, the focus of Paper 2.

Another way of categorizing coverage algorithms is whether the goal is Area Coverage

or Event Coverage. We describe Area Coverage as seeking to arrange sensors to cover

(or “sense”) every point in a search area, with several modalities. First, 1-coverage

has been narrowly referred to as an arrangement of sensors such that all points in

the search area are within sensor range of at least one mobile sensor. However, we

broadly refer to 1-coverage as sensors using a mobility strategy to pass over all points

in the search area after a period of time. The narrower definition is a special case

where the time period is 0. We will call this simultaneous 1-coverage. Simultaneous

n-coverage is described as covering all points at the same (or for a period of) time by
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n sensors. Next, we use the term polling to refer to sensors passing over all points

with a certain frequency during a period of time.

In these problems, as with other applications involving sensor mobility, a num-

ber of key coverage metrics are impacted when mobility restrictions are introduced

and so we say that limited mobility affects the performance of individual sensors and

networks of mobile sensors in a variety of ways.

With the number of sensors is sufficient and mobility is unlimited a group of

sensors can eventually achieve 1-coverage. Obviously, strategies can be designed that

will not achieve the goal, such as sitting in one place or moving in a circle forever.

However, even given an inefficient strategy such as moving in random directions

for random periods of time, the sensors will pass over all points in the search area

eventually. If there are m sensors and n tiles in a coverage area represented as a grid,

and sensors can travel to (and cover) 1 new tile each time cycle, then it will take

at least n/m cycles to fully cover the area once. If the total number of navigation

opportunities is less than n/m then we would say that 1-coverage cannot be achieved.

However, there are many scenarios where the navigation opportunities available are

greater than n/m, but 1-coverage still cannot be achieved. For example, in the above

scenario if the number of navigation opportunities is exactly n/m and any sensor

moves to a tile that was already covered by another sensor, then that move was

wasted and 1-coverage can no longer be achieved. Further, in some scenarios, an

algorithm may assure us that it can guarantee a solution that achieves 1-coverage,

but it may do so in a suboptimal fashion in which case we seek better algorithms

that can cover the same area using less time or less mobility.

The speed at which events in a search space can be detected is also subject to

the limitations on mobility. The time required to achieve 1-coverage from an initial

deployment affects event detection, but in a sparse deployment of sensors where 1-

coverage is achieved but not maintained, the time interval required for the network
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to re-achieve 1-coverage again (or to poll the region) is also a factor that is dependent

upon mobility limitations.

The lifetime of a network of mobile sensors is another area where mobility

plays a key part. Some algorithms are designed to allow sensors to spread as evenly as

possible over a region using virtual forces [10]. If a sensor were to fail, the network’s

ability to provide blanket coverage can be extended by the fact that sensors may

reposition themselves to cover the hole–the area of which no sensor is within range.

Sensors may continue to fail until the sum of area covered by sensors is exceeded by

the area of the region. In addition to the way sensor failure affects the lifetime of the

network, placing a constraint on the mobility of the sensors affects lifetime further,

in that once all mobility is expended in the activity, the sensors might no longer

be able to reposition themselves and the network would no longer meet the Quality

of Service (QoS) metric imposed by the problem–the ability to maintain blanket

coverage of the entire area–thus the network would fail prematurely. Once again, we

see that limitations on mobility affect a key factor in a problem that utilizes mobile

sensors.

1.3. IMPROVING PERFORMANCE GIVEN LIMITED MOBILITY

In Paper 1 we examine a surveillance problem wherein mobile sensors deployed

in a sparse configuration are expected to detect events of interest in a search field,

where the location and duration of each event in the network is unknown. A move-

ment algorithm based on efficient traversal of a countour (or tour) for the sensors in

the network is designed to meet two objectives. The first is maximizing event detec-

tion and the second is minimizing detection delay. The performance of our algorithm

is demonstrated from the perspective of event detection and delay with respect to

the number of sensors, movement velocity, and the number and duration of events.
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1.4. EXPLORATORY COVERAGE USING LIMITED MOBILITY SEN-
SORS

In Paper 2 we examine practical algorithms for employing mobile sensors de-

ployed as a network of unmanned, autonomous devices with limited mobility. Once

again, we focused on sparse deployment configurations and problem scenarios where

it is crucial that events are located and identified quickly using a new type of problem

called exploratory coverage. We also defined a taxonomy of the various subproblems

within this problem space as a tool to aid in further study of the problem. We

then demonstrated the performance of algorithms designed for exploratory coverage

to show that the effects of mobility constraints vary the level of coverage achieved

more in sparse deployments than when sensors are deployed in a more concentrated

fashion.

1.5. FAULT TOLERANCE IN AREA COVERAGE ALGORITHMS FOR
LIMITED MOBILITY SENSOR NETWORKS

In Paper 3 we study fault tolerance and the effects of disabled mobility on

coverage algorithms. In this context, we define the concept of disabled to mean that

failure mode has occurred in which a mobile sensor has experienced some condition

where it retains all functions except its ability to reposition itself. We introduce a

schedule function for the loss of mobility for deployed sensors so that gradually more

and more sensors become disabled over time. At any single point in time, the net-

work can be viewed as a hybrid sensor network in which some sensors are fixed in

their deployed position while others are mobile. Although this is analogous to the

problem of disabled mobility, the fact that sensors unexpectedly lose their mobility

at a random yet statistically predictable rate simulates a real world phenomenon and

we seek to study the effects of this dynamic on various algorithms. Given some basic

objective measurements for the performance of mobile sensors, we learn about the
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effects of disabled mobility on various algorithms for mobile sensor coverage in the

light of disabled mobility. Of interest are features of algorithms that may make them

particularly suited to address (either mitigate or prevent) the specific performance

limitations of the network under such disabilities. We also seek to discover adjust-

ments that can show resulting improvements on performance measurements when

faced with disabled mobility.

We observe that coverage algorithms that do a good job of quickly reaching

a desirable location from their initial deployment, cooperate to avoid gaps and re-

dundant coverage, and continue to leverage what mobility is available throughout

the sensor network, produce better results as sensors lose their mobility than algo-

rithms that rely on statically touring or other more methodical means of exploring

and covering their environment.

With extremely sparse deployments, sensors that are mobile come into contact

with disabled sensors less often. In these scenarios, we observe that algorithms such

as Random Direction Walk have less of an impact than algorithms that tour an

established territory, because in the latter case, once a sensor becomes disabled,

there is no sensor to cover that sensor’s territory. As the deployment becomes less

sparse, algorithms that try to avoid one another are more vulnerable to being misled

by disabled sensors that continue to broadcast their intentions to move, but never

do.



PAPER I. EVENT COVERAGE IN SPARSE MOBILE SENSOR
NETWORKS

1. ABSTRACT

Autonomous mobile sensors are employed with ever-increasing frequency, in

applications ranging from search and rescue, detection of forest fires, and battlefield

surveillance. In this paper, we consider a representative surveillance problem wherein

a sparse number of mobile sensors are expected to cover events of interest in a deploy-

ment field. Each event appears for a certain time and then disappears. Furthermore,

the location of each event and its duration is unknown. In this paper, we design a

sensor movement strategy based on efficient traversal in the network to fulfill two ob-

jectives: maximizing event detection, and minimizing detection delay. Analysis and

simulations demonstrate the performance of our algorithm from the perspective of

event detection and delay with respect to the number of sensors, movement velocity,

and the number and duration of events.

2. INTRODUCTION

Mobility in wireless sensor networks is a topic that has received significant

attention lately. A host of surveillance missions today can significantly benefit from

mobile sensors. Instances include battlefield missions like intruder tracking, military

missions like monitoring forest fires in a large scale area, homeland security missions

like anthrax/ poison/ explosive sensing. Traditionally, the mobile entities in such

missions have always involved human beings, where a critical issue becomes the safety

of the entities. In many instances, soldiers have been fatally shot in searching a

suspect hide-out; bomb squads face great risk when searching for explosives; fire
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personnel have been killed en masse in disaster recovery operations (e.g., 9/11). A

major motivation for the investment in mobile sensors is to replace the human element

in such missions with a view to minimize casualties.

In this paper, we consider the following scenario. A set of events occur in a

deployment field that must be covered (i.e., sensed). The events are dynamic in the

sense that each event initially appears and then fades away after a certain time. An

event is said to be live between the time the event has started to appear and the

time it fades away. An event is covered if it is within the sensing range of at least

one sensor while the event is still live. Events that are not covered while they are live

can never be subsequently sensed. Such events are considered lost. The number of

events, their locations, and their durations are all unknown a priori. In this scenario,

we address the following problem: Given a sparse deployment of mobile sensors in

the deployment field, we want to design a movement strategy for the sensors that

maximizes the number of events covered, while minimizing the detection delay.

Given the lack of specific information on distribution of event occurrence lo-

cations, the best strategy for the mobile sensors is to continuously traverse the entire

network area monitoring for events. In this paper, we propose a simple and yet highly

efficient movement strategy for sensors to traverse the network area. The efficiency

is gauged based on minimizing the overall movement distance traversed by sensors,

while still maximizing area covered. To this end, we first compute the correspond-

ing contour for the sensors to traverse. Then, we develop a strategy for traversing

this contour in the presence of multiple sensors. For this contour, we then derive

analytical bounds, and also perform extensive simulations to confirm the calculated

probability of event coverage and event detection delay with respect to the number

of sensors, movement velocity and the number and duration of events. Our analysis

reveals that our proposed movement algorithm can achieve a high probability of event

coverage while also reducing the associated event detection delay.
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3. RELATED WORK

The first major significance of sensor mobility was realized in disaster recovery

operations post 9/11, when Dr. Robin Murphy, and her colleagues at The Center

for Robot-Assisted Search and Rescue in Tampa, Florida flew to Ground Zero with

a swarm of self powered tiny mobile robotic camera sensors (as small as 17cm x 6cm

x 5cm) to explore the debris and search for potential survivors [11]. In fact, this was

the first known major operation using mobile sensors for urban search and rescue.

With the success of this mission, numerous activities both in the academia and the

industry have subsequently ensued due to the tremendous advantage mobile sensors

can offer today in a wide spectrum of missions. In the following, we present some

important related work in two areas: Practical mobile sensor implementations and

Theoretical research on algorithm design for sensor mobility assisted coverage.

3.1. Practical Implementations of Mobile Sensors. In the recent past,

numerous efforts have focused on building self-powered miniature mobile robot sen-

sor platforms as shown in Figure 1.1 on Page 3. The Robomote (70mm x 45mm

x 35mm) [3], Khepera (70mm x 30mm) [4], and the XYZ platform [6] are proto-

types of mobile sensors that are battery powered and motor driven. In each of these

prototypes, appropriate sensors (to sense events), and communication devices are

provisioned in order to realize mobile communicating sensors. Needless to say, the

realization of such types of sensor designs is primarily tuned towards elimination

of the human component and associated casualties in critical surveillance missions

where dangers are likely. The mobility algorithm we design in this paper is primarily

targeted at being executed by such sensors.

3.2. Mobility Assisted Coverage in Sensor Networks. In the recent

past, a host of research activities has focused on how to exploit sensor mobility for

coverage enhancement. Such work can be broadly classified into two: area coverage
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and event coverage. In the following, we present important related work on sensor

mobility algorithms design for enhancing each of the two classes of coverage.

Area Coverage. In this class of movement algorithms, the objective is to

move sensors starting from initial arbitrary positions to desired final positions such

that at those final positions (i.e., at the conclusion of sensor movements), the per-

centage of area covered by sensors is maximized. An important ancillary objective is

to minimize the number of sensor movements in achieving the coverage objective.

Wang, Cao and La Porta in [10] design a virtual force algorithm for improving

1-coverage in the network after an initial random deployment of sensors. We use the

term 1-coverage to means that all areas in the network need to be within the sensing

range of at least one sensor. In their algorithm, sensors exert virtual forces, where

closer sensors repel one other and farther sensor attract. In this manner, the sensors

spread themselves uniformly in the network after several iterations. Heuristics are

proposed to minimize unnecessary movements. In [12] the virtual force approach is

extended to consider coverage and secure connectivity, where weights are assigned to

forces depending on keys shared.

In [13], Liu, Brass, Dousse et. al., propose a model where each sensor inde-

pendently moves by choosing a random direction and speed, for a particular interval.

After each interval, a new direction and speed are randomly chosen, and the process

repeats for the duration of the mission. The authors analytically demonstrate that

while the fraction of area covered at any instant remains unchanged, the total area

covered during a time interval significantly improves in this mobility model. Our

algorithm improves on this idea by proposing event duration and modification that

produces an highly efficient coverage strategy.

In [14, 15, 16], the authors consider optimum area coverage with limited mo-

bility sensors. In [14, 15], centralized optimum algorithms are proposed for limited
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mobility sensors to achieve 1-coverage and k-coverage, respectively. In [16], dis-

tributed algorithms are proposed for k-coverage, along with bounds on number of

sensors needed for coverage.

Event Coverage. Butler and Rus in [17] design Voronoi diagram-based al-

gorithms, where sensors move towards events as and when they are generated. The

objective is to enhance event coverage without compromising existing coverage (i.e.,

create new coverage holes). In [18], Wang, Cao and La Porta consider a heterogeneous

sensor network, where the goal is to enable cooperation between mobile and static

sensors to enhance event coverage. In the algorithm, mobile sensors are treated as

servers to respond to events. Each mobile sensor has a certain base price for covering

an event in the sensing field. The price is related to the size of any new coverage hole

generated by its movement.

In [19], a hybrid sensor network consisting of static and mobile sensors is

considered, where static sensors are used to detect events, and mobile sensors move

closer to such events as and when they are detected. In the algorithm in [19], the

problem of moving mobile sensors to events is reduced to that of a maximum-matching

problem in a weighted bipartite graph.

In [20], a problem similar to the one in this paper has been addressed. A

set of events take place in a network and algorithms are designed for the sensors to

cover the events with low delay. However, the location of events and their arrival and

departure times are known. The problem we address here is a generalized version of

this problem, where we consider the case where the location and distribution times

of the events are not known.
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4. OUR PROPOSED METHODOLOGY

Consider a convex domain on the plane, with non-empty interior, which we

will refer to as the network area or workspace. A stochastic process generates events

over time, which are associated to points in Ω. The process generating events is

modeled as a spatio-temporal Poisson point process, with temporal intensity λ > 0,

and a spatial distribution described by the density function Φ :→ <+.

Given the lack of specific information on event occurrence locations, the best

strategy for the mobile sensors is to continuously traverse the entire network area

monitoring for events. In this paper, we propose an efficient, and yet simple strategy

for traversing the network area. The efficiency is based on minimizing the overall

movement distance traversed by sensors, while still maximizing area covered. To this

end, we first compute the corresponding contour for the sensors to traverse. Then,

we develop a strategy for traversing the path in presence of multiple sensors. We also

derive the analytical bounds for the probability of detecting the event occurrences.

4.1. Algorithm Description. First, we construct a contour C such that

any point P in the network is either on C or is within a distance of r from C. Thus,

this construction ensures that a continuous travel path of C guarantees eventual

surveillance of the entire network. Let v be the speed of the mobile sensors and let

|C| indicate the length of the contour C. Then, τ , the time required for a sensor to

tour C once is given by τ = |C|/v.

In the scenario where the events do not expire until detected and there is only

one mobile sensor, the worst case delay is τ and best case delay would be zero (when

the event occurs within range of the sensor at time zero). The average detection is

τ/2.

Consider the scenario where m mobile sensors are present, each moving (in

clockwise direction) around C with velocity v. The distance between two adjacent
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sensors is assumed to be the same and equal to |C|/m. The case where distance

between adjacent mobile sensors is less than 2r, i.e. C/m ≤ 2r, is trivial since

in this case, we can simply position the sensors and achieve 100% network coverage

monitored at any point of time. Thus, all the events would be detected with detection

delay= 0. Such cases, where achieving coverage and minimizing detection delay are

less interesting, are referred to as dense deployments. We will focus our attention on

sparse deployments where |C|/m > 2r, i.e. m < |C|/2r.

For such an algorithm to work, the sensors must either be initially deployed

using instructions from a central controller, or the sensors could utilize a protocol that

ensures initial placement. In general, however, a uniform random deployment where

each sensor begins by assuming it is at the center of its contour could accomplish the

same goal, albeit with the possibility of coverage holes or clustering of sensors if some

mechanism were not employed to prevent such cases.

4.2. Monitoring the Entire Network (Ideal Case). When number of

sensors is sufficient to cover the entire network, then we simply position them in

strategic locations so that the entire network is monitored all the times. We can

compute the strategic locations using the Covering Problem stated as follows: “What

is the minimum number of circles required to completely cover a given 2-dimensional

space?”

Figure 1 shows three examples. If we divide the coverage area into a grid,

where the width/height of each cell is less than r√
2

as shown on the right in the figure,

then a sensor placed anywhere within a cell can sense any event within that cell. Thus

placing at least one sensor in each cell is sufficient to cover the entire coverage area,

and a tour need only reach any point within each cell to ensure detection of all events.

We can eliminate some redundant coverage by increasing the size of the cells. If the

width/height of each cell is less than 2r√
2

as shown in the center in Figure 1 then a
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Figure 1. Patterns for overlapping circles for blanket coverage.

sensor located at the center of a cell is able to detect an event anywhere within that

cell.

Kershner [21] showed that no arrangement of circles could cover the plane

more efficiently than the hexagonal lattice arrangement shown on the left in Figure 1.

Initially, the whole space is covered with regular hexagons, whose each side is r and

then, circles are drawn to circumscribe them.

In the ideal case, we can have one sensor positioned at each hexagonal center

monitoring for events. In such a scenario, since the entire network is being monitored,

any event would be detected with probability 1.0 with the detection delay virtually

being zero. Thus, when area of the network is large compared to the area of one

circle, total number of hexagons n can be approximated as:

n =
2A

3
√

3r2
(1)

where A is the area of the entire network, and n is produced by dividing the total area

by the area of a single regular hexagon with side length equal to the sensor range.
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If the area covered by a sensor stays the same relative to the total area being

searched (which we will define as the density index, or Id, then the coverage per-

formance of the network stays the same. So the performance of the mobile sensor

network is really dependent on the number of sensors relative to Id. Consider the

three approaches to analysis of sensor coverage performance illustrated in Figure 1.

If the algorithms are to cover the same area using equivalent number of homoge-

neous sensors, we can compare the inefficiency of the algorithms in how they solve

for 1-coverage of the search area.

For an algorithm that defines coverage as having sensors cover a square cell

from the center of the cell as in Figure 1, far right, we need a cell size of 10x10 and

sensor range r = 10 ·
√

2/2 ≈ 7.071. The coverage area of a sensor is c = πr2 ≈ 157.

Therefore with 100 sensors we cover 15,700 units which amounts to 5700 units of

waste, or 157% of the coverage required for 1-coverage of the search area.

For sensors that can cover a square cell from anywhere in the cell, as in Fig-

ure 1, center, the waste gets even worse. We would need a cell size of 10x10 and sensor

range r = 10 ·
√

2 ≈ 14.142. The coverage area of a sensor is c = πr2 ≈ 628.319.

Therefore with 100 sensors we cover 62,832 units which amounts to 52,832 units of

waste, or a whopping 628% of the coverage required to achieve 1-coverage.

For sensors that can cover a hexagonal cell from the center, Figure 1, far left,

we would need regular hexagonal cells with side length (equal to the sensor range)

sufficient to divide the search area into 100 equal-sized hexagons.

Area = A = 10000

Area of Hexagon = AH =
3
√

3

2
r2

100 · AH = A (2)
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Next, we solve for r2. From Equation 2 above, we substitute for AH and A which

produces:

100 · 3
√

3

2
r2 = 10000

r ≈ 6.204

Thus for this approach, the coverage area of a sensor is c = πr2 ≈ 120.92. One

hundred such sensors produce only a mere 2092 units of waste for a very frugal 121%

of coverage required to achieve 1-coverage of the search area.

4.3. Construction of Contour for Efficient Monitoring (Practical

Case). This case corresponds to more realistic scenarios when the number of mobile

sensors is not sufficient to simultaneously cover the network entirely. Moreover they

might be able to cover only a small area at any time.

In this scenario, one can simply position the sensors such that the sensors’

covering areas would not overlap in the hope that events occur only in the part of

the network being monitored. Then, the probability of event detection and detection

delay are given by:

Plower =
πr2m

A
, Tlower = 0.

However, we can trade off some delay for improving the chances of detecting an

event. In other words, the sensors can keep moving around in the network to be able

to detect more events. This paper addresses the design of an efficient mobility plan

for the mobile sensors under the following constraints:

• Maximize the number of events detected by the sensors, before the event expires,

and

• Minimize the delay in detecting an event.
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We propose to construct the contour C in the following way: Cover the network

area with a hexagonal lattice, with the side of each regular hexagon being equal to

sensing range (i.e., unity). The contour C would be a simple closed curve constructed

as follows:

• Contour C consists of line segments, where each line segment connects some

pair of hexagonal centers, and

• Each hexagonal center appears once and only once on the contour C.

Figure 2 illustrates one such construction. The mobile sensors are placed

equidistant along the contour. In other words, the path distance between any two

immediate sensors is |C|/m, where m is the number of mobile sensors. The sensor

motion strategy would be continuous traversal of C in counter-clockwise direction (or

clockwise direction).

Figure 2. Illustration of construction of C.
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r <- 2 // number of concentric circles

n <- 0 // current circle

do while n < r

{

if n = 0 then

move(northwest) // enter next ring

else

move(north) // enter next ring

n <- n + 1

if n is even then

goclockwise(n, r)

else

gocounterclockwise(n, r)

for i <- 1 to r

move(south) // back to origin

}

goclockwise(a, b)

{

for i <- 1 to a - 1

move(southeast)

for d in {south, southwest, northwest,

north}

for i <- 1 to a

move(d)

for i <- 1 to a - 1

move(northeast)

if a = b then

move(northeast)

}

gocounterclockwise(a, b)

{

for i <- 1 to a - 1

move(southwest)

for d in {south, southeast, northeast,

north}

for i <- 1 to a

move(d)

for i <- 1 to a - 1

move(northwest)

if a = b then

move(northwest)

}

Figure 3. Algorithm for traversing contour.
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4.4. Algorithm for Construction of Contour. Figure 3 describes the

means by which a sensor traverses a contour such as that shown in Figure 2.

Note first that the directions specified need not be actual directions, but simply

a set of eight angles π/4 radians apart from one another. The algorithm can support

any number of concentric rings. Each ring is entered and then the ring is traversed

in the opposite direction from the previous ring, leaving a path northward from

the origin for the sensor to return to the origin after traversing the outermost ring,

completing the path. Supporting this basic algorithm are two functions goclockwise

and gocounterclockwise, also shown in Figure 3.

5. PERFORMANCE ANALYSIS

In this section we will define the length of the contour C then define the

performance of the traversal strategy detailed in Section 4.4.

5.1. Length of Contour. Part of the basis for determining the coverage

efficiency is determining the length of the contour between hexagons.

Lemma 5.1 (Length of contour). We note that the length of the contour constructed

in the above manner is |C| = 2
√

3rn, where r is the distance from the center to any

of the vertices (and the radius of the circle that circumscribes the hexagon), and n is

the number of hexagons required to cover the network.

Proof. Distance between the centers of two neighboring hexagons is 2
√

3r. Given

that there are n hexagons implies that C is a curve through n points (each point

being center of a hexagon). Since, there are n points, we need n segments to connect

all of them together, with each segment being a line joining two neighboring centers

and hence of length 2
√

3r. Thus, the total length |C| formed with n line segments,

each of length 2
√

3r is 2
√

3rn.
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From Lemma 5.1, the length of a contour C constructed using a hexagonal

lattice is 2
√

3rn. From Equation 1 and Lemma 5.1, and by setting r = 1, the

total area covered by a sensor traversing the contour C once completely can be

approximated to 4A/3, noting that A� π.

5.2. Calculating Coverage Efficiency from Movement Strategy. Cov-

erage efficiency is a metric we define in order to express the area being actually covered

by the sensors compared to the maximum area they must ideally cover cover. In other

words, coverage efficiency quantifies overlaps in the coverage during sensor movements

in our algorithm. Here we establish a milestone, then compare our strategy in those

terms.

Figure 4. Illustration of Möbius strip.

One sensor with range r traversing a Möbius strip (as shown in Figure 4) of

width r and length d at velocity v units per second will have probability of detecting

an event of duration u seconds as computed by:

P =
d · u
v
− πr2



23

It will take d/v seconds for the sensor to cover the entire area. Any event with

duration u ≥ d/v has P = 1.0. In addition, the coverage area is dr, and the sensor

covers 2πr2v per second.

Figure 5. Geometric description of overlapped sensor coverage area.

When a sensor with sensor range r is traveling straight ahead for distance d,

the coverage area is πr2 + 2rd. When the sensor travels for distance d, then makes

a turn and travels another distance d (as shown in Figure 5), then as long as the

distance between the start position and end position is greater than 2r, the total

coverage area can be computed by doubling the previous value, then subtracting the

area of overlap. Thus, the coverage area A is:

A = 2(πr2 + 2rd)− πr2 + t− l

Where t is the area of the triangle computed as bh and l is the area of the lens within

the triangle. The area of overlap O = πr2 − t + l. Note for the following formulae
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that θ = π − α.

b = r sinα

h =
b

tan θ
=
r sinα

tan θ
=

r sinα

tan(π − α)
=

r sinα

− tanα

t = bh = −r
2(sinα)2

tanα

l =
1

2
r2(α− sinα)

Using the formulae above, we can calculate the coverage area A as:

A = 2(πr2 + 2rd)− πr2 +
r2(sinα)2

tanα
+

1

2
r2(α− sinα)

If α = 3π/4, the sensor range r = 1, and the distance d = 2
√

3 the coverage area

would be:

A = 2(π + 4
√

3)− π +
(sin 3π/4)2

tan 3π/4
+

1

2
(3π/4− sin 3π/4)

If the number of rings n = 0 (a single hexagon) then the coverage area is πr2. If

n = 1, then there are 7 hexagon centers visited, four π/4-radian turns and three

3π/4-radian turns. If n > 1, then the number of hexagons h will be:

h = 1 +
n∑
i=1

6i

In such a configuration, the number of 3π/4-radian turns is n + 2, and the number

of π/4-radian turns is 6n− 4.

Thus for any number of rings in our network, we can determine the coverage

area, and from that the coverage efficiency.

Admittedly, the coverage distribution is not uniform when the sensing device

has coverage that is circular in shape. As the sensor moves straight ahead, events
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located along the center of the path will be detected with greater probability than

events near the edges of the coverage swath.

Lemma 5.2 (Probability of detection of an event). Consider an event i with lifetime

ti. The probability that the event is detected before it expires in a sensing field with

total area AT given m mobile sensors traversing at a velocity v is given by:

P(m,ti) = min(1,
m(π + dk)

AT
)

Proof. The distance traversed by a mobile sensor k in time duration of ti is dk = v∗ti.

If |A|/m ≤ (2r + dk), (r = 1), then before the event expires, the sensors are able to

collectively traverse the entire contour, thus sensing the entire network area. Thus,

the probability of detection is unity.

If |A|/m > (2r + dk) with (r = 1), then the total area sensed by the sensor k

can be computed as follows:

Ak =
π(1)2

2
+ 1 ∗ dk +

π(1)2

2
= π + dk

The collective area covered my m sensors is then m∗Ak. The event would be detected

if the event is located within this area monitored. Thus detection probability is

m ∗ Ak/AT .

Combining both the above cases,

P(m,ti) = min(1,
m(π + dk)

AT
)
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Lemma 5.3 (Maximum Detection Delay). Consider an event i with lifetime ti. Max-

imum detection delay D for the event is:

D = min(ti,
(|A|/m)− r

v
)

Proof. For D to be maximum, the event’s location has to be the farthest point from

current location of any sensor in the direction of path traversal and not in the sensing

coverage of any sensor. For instance, if C1 and C2 are the current locations of sensors,

then li is one such location: it is not being sensed by C2 and the sensor at C1 has

to traverse a distance of (d − r) before the event can be sensed, where d = |A|/m.

The corresponding detection delay is (d− r)/v, where v is the velocity of the sensors.

However, if ti < (d− r)/v, then the event expires before the sensor can traverse the

corresponding distance. In such scenarios, the maximum delay corresponds to events

that require sensor traversal of a distance of v ∗ ti. Putting the above two scenarios

together, the maximum detection delay is

D = min(ti,
(|A|/m)− r

v
)

6. PERFORMANCE EVALUATION

We developed a simulator that first constructs a hexagonal tiling for a given

network area and then computes a contour C for the traversal of sensors through

the centers of the hexagons. Once the contour is computed, the sensors are placed

equidistant on the contour. The sensors continuously traverse the contour for the

entire duration of simulation. Events are randomly generated over the network area.

We consider two kinds of events: never-expiring events and those whose lifetime
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Figure 6. Average Detection delay for varying sensor speeds for the scenario where
the events do not expire until detected.

follows a Poisson distribution with a given mean. We use never expiring events

to compute maximum and average detection delays for varying number of mobile

sensors. For events with limited lifetime, the probability of event detection is the

metric we study.

To minimize the edge effects of a network, we chose a hexagonal network area

with a side length of 60m. The sensing range is 10m. Thus, the hexagonal tiling

consists of 19 hexagons (we ignore small gaps near the network edges). Figure 6

shows the protocol performance for never expiring events for varying sensor speeds

and shows the effect of varying sensor velocities on the detection delay. As the velocity

of the mobile sensors increases, the delay decreases. Naturally, enough sensors could

be added so that the entire tour could be covered continuously.

Here we would like to note the difference between doubling the speed of the

sensors versus doubling the number of sensors: doubling the speed results in a greater

improvement in the detection delay. With velocity fixed at 1 m/s, the detection delay

with 5 sensors is 30.8955 compared to the case when the number of sensors is fixed

at 1, the detection delay at velocity 5 m/s is 36.7074 seconds. Increase in number of
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Figure 7. Timeout Frequency vs. Velocity with Duration=1.

sensors reduces the delay more than increasing the speed. To understand the reason

behind this, we remind the reader additional area coverage is computed as a function

of number of sensors and speed of the sensors. We note that any change in number

of sensors (m) impacts two terms, while the speed (v) impacts only one term.

In Figures 7, 8 and 9, we plot the percentage of events that are un-detected

in the network with respect to the sensor velocity for different event durations and

number of sensors. We find that as the velocity increases the percentage of undetected

events decreases. Furthermore, when the event duration and the number of sensors

increases, the percentage of undetected events also goes down dramatically.

7. FUTURE WORK

Additional exploration may include exploring the applicability of the ring

pattern contour to certain sensor field shapes. A contour where the sensor makes

π/2-radian turns could produce similar results and be more applicable to more

rectangular-shaped sensor fields, whereas the applicability of the hexagonal rings

is shown here to provide efficient coverage considering only circular sensor fields.
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Figure 8. Timeout Frequency vs. Velocity with Duration=5.

Figure 9. Timeout Frequency vs. Velocity with Duration=20.

Other variables besides velocity can also be considered, such as adjusting the

sensing frequency to conserve power, adjusting sensor range, etc.

8. CONCLUSIONS

In this paper, we considered a representative surveillance problem wherein a

sparse number of mobile sensors are expected to cover events of interest in a deploy-

ment field. The location and duration of each event in the network is unknown. To

address this problem, we designed a movement algorithm based on efficient contour
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traversal for the sensors in the network for two objectives: maximizing event detec-

tion, while minimizing detection delay. Using extensive analysis and simulations, we

demonstrated the performance of our algorithm from the perspective of event detec-

tion and delay with respect to the number of sensors, movement velocity, and the

number and duration of events.



PAPER II. EXPLORATORY COVERAGE IN LIMITED MOBILITY
SENSOR NETWORKS

1. ABSTRACT

The impact of limited mobility in mobile sensor platforms is a limiting factor in

the effectiveness of coverage algorithms. As the usage of autonomous drones increases

in applications ranging from search-and-rescue, detection of forest fires, and surveil-

lance, the ability for these platforms to employ distributed algorithms is increasingly

important. In this paper, we examine the problem of Exploratory Coverage, wherein

the objective is to move a number of mobile sensors to fully explore (and hence, sense

every point in) a target area in order to detect any critical event that has already

occurred in the area. Further, we present a taxonomy of coverage problems as identi-

fied by the relationships between sensor range, coverage area, number of sensors, and

mobility (range). We then design a purely localized and distributed approximation

algorithm for our problem, and provide simulation results for sparse and balanced

deployments to demonstrate the effects of limited mobility on Exploratory Coverage.

2. INTRODUCTION

In this paper, we study the problem of Exploratory Coverage. The notion of

Exploratory Coverage is different from traditional notions of coverage such as Blanket,

Sweep, or Barrier Coverage [9]. Blanket Coverage involves deploying sensors such that

every point in the coverage field (the area to be searched) is covered by one or more

sensors, as if waiting for future events to occur. We express Blanket Coverage as

∀(x, y) ∈ A, ∃s ∈ K : |(x, y), s| < r, where A is the search field, K is the set of mobile

sensors deployed within A, assuming that centered on the location of each mobile
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sensor is a uniform disc within which the probability of detection for any event within

distance r of that center is 1.0. Sweep Coverage has been described as a moving wave

of sensors and is sometimes solved by periodically polling points-of-interest that are

known a priori. And in the latter, Barrier Coverage, every crossing path between

the boundaries of the coverage field must be covered by one or more sensors, as if

sensors lie in wait for a mobile intruder to pass by. Mobility (and limited mobility)

has been studied in these types of coverage problems as well. These various notions

fall under the class of proactive coverage, wherein sensors are proactively deployed to

sense events of interest. Exploratory Coverage focuses on sparse deployment models,

wherein ensuring full blanket coverage of the field would require too many sensors to

be deployed. Thus, we leverage mobility (albeit limited) in sensors to enhance quality

of exploratory coverage with fewer sensors. In Exploratory Coverage, the strategy

is to move a number of mobile sensors from an initial deployment in an attempt to

eventually fully explore (and hence sense, or cover) every point in the coverage field

at least once in order to detect any critical event that has already occurred in the

area.

Our work utilizes limited mobility sensor platforms such as those mentioned

above by conducting an initial deployment, then employing an algorithm to direct

the mobility of the sensors in order to locate events in the coverage field. With a

solution to Exploratory Coverage, the mobile sensors can make the best use of their

limited mobility in order to reach as much of the coverage field as possible. We

study the key parameters: number of sensors, sensor range, and size of coverage field.

Together these parameters determine coverage density and partition the problem set

into subproblems. Together with the parameters of mobility range and deployment

concentration, we are able to study the effects of limited mobility on area coverage.

To determine the effectiveness of the solutions examined, we measure the area

that is covered by the sensors from their initial deployment until mobility stops, either



33

because mobility range has been reached by all sensors or the algorithm employed

fails to result in any sensors choosing to move. We also consider the amount of new

coverage over time (the rate of new coverage) and additional coverage added as return

on investment for additional mobility range.

There are numerous factors driving increased attention to usage of automated

drones. First, human safety factors are a primary motivator for interest in employing

robots for a variety of tasks where human presence is not preferred. Using drones

in battlefield scenarios remove humans from dangerous situations. Using drones for

search and rescue in situations where hazardous materials are involved reduces the

need to risk additional human exposure. Second, even in applications where human

safety is not an issue, using unmanned platforms often has a significant economic

advantage. Mobile sensor hardware platforms have seen many recent advances such

as higher computation power, relatively lower weight, and lower power requirements

that allow drones to carry much more computational capacity and payload or stay

deployed and functional for longer periods of time. More and more, these platforms

are readily available off the shelf, as the benefits of mass production of commercially

designed systems are realized.

Research into advances for robotic platforms is occurring on many fronts [1].

UAV Platforms such as the DraganFlyerTMX6 [2] as seen in Figure 1.1 show great

promise as both an academic as well as practical model in real-world commercial

applications. Less recently, numerous efforts have focused on building self powered

miniature mobile robot sensor platforms as shown in Figure 1.1 on Page 3. The Robo-

mote (70mm x 45mm x 35mm) [3], Khepera series of robots (70mm x 30mm) [4] [5],

and the XYZ platform [6] are prototypes of mobile sensors that are battery powered

and motor driven. In each of these platforms, sensors (to sense events) and commu-

nication devices create mobile communicating sensors. A rather novel approach to
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mobility in sensor platforms utilizes a fuel-powered hopping mechanism [7] used in

Intelligent Mobile Land Mine Units (IMLM) developed by DARPA.

We first review related work in this area, then formally define our problem

including a taxonomy of the problem space and the subset to which we will devote

our focus. Given the complexity of the problem, we analyze two centralized and one

distributed approximation algorithms. One of the centralized algorithms constrains

the number of mobility choices (“hops”) that a sensor can make, where the distance

traveled per choice is considered to be constant, and the other places the constraint

on the distance traveled by each sensor. The distributed algorithm takes the con-

strained choices approach, but each sensor uses a localized heuristic to make mobility

decisions. Finally, we analyze the performance of the distributed solution, fixing cer-

tain variables and varying others to understand their effects on coverage. Lastly, we

present our conclusions about the effects of mobility on this type of coverage problem.

3. RELATED WORK

Our problem has a number of close relatives in the class of Traveling Salesman

Problems (TSP) [22], where an agent, given a graph representing cities at the vertices,

and distances between cities as the edges, is tasked with visiting all the cities while

traveling the shortest distance.

A variant known as the Prize-Collecting Traveling Salesman Problem (PC-

TSP) [23], charges the agent a cost for traversing each edge, and pays the agent a

reward upon arrival to each city, while loosing the requirement that the agent visit all

cities. The goal is to maximize the overall reward, which is particularly relevant to

our problem since we are measuring algorithm effectiveness relative to mobile sensors

reaching new, as-yet-uncovered areas. Another variation of PC-TSP that includes

reducing rewards over time is known as the Discount-Reward TSP (DR-TSP) [24].
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Modeling an agent-controlled sensor as a salesman, the coverage field as a graph,

and assigning costs/rewards for touring the graph and visiting nodes, where rewards

diminish over time and by how many sensors have already visited a node makes these

techniques closely analogous.

In a similar fashion, we can say our problem is also closely related to k-TSP [25]

and Vehicle Routing Problem (VRP) [26]. In k-TSP, k agents can start at various

cities and must solve for k tours such that the total distance traveled between cities

is minimized. A key difference between this problem and ours is that in k-TSP, no

single agent has any bounds on its travel distance as long as the overall distance is

minimized, where our agents each have limited mobility, or a per-sensor budget, if

you will. Often k-TSP and VRP variations involve multiple agents originating at a

common (or set of common) point(s). However, we believe that our problem shows

promise for numerous real-world example applications where the initial distribution is

uncontrolled. Limited mobility is analogous to TSP subtour elimination constraints

in the k-TSP problem [27] and capacitation or time-window constraints in VRP [28].

One differentiating factor between the problems is the construction of the

coverage field. While analogous, TSP and VRP problems typically apply to problem

sets involving graphs representing roads, whereas our problem applies to a continuous

coverage field (conceding that we approach the problem with a discretized implemen-

tation by dividing the area into tiles that can be considered a graph where each node

is connected to nodes representing adjacent tiles). The characteristics of the graphs

could be seen to vary only in terms of degree of connectivity.

Another close relative is the problem of Orienteering [29]. In the Orien-

teering problem, the challenge is to find a walk between two nodes that maximizes

the total number of nodes visited within a travel budget. In our problem, in con-

trast, the goal is to maximize coverage, but there is no destination (referred to as the
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unrooted variant of the problem), simply that as much of the coverage field is visited

as possible before mobility limits are reached.

Blanket coverage has been approached using other methods, such as poten-

tial fields [30], where navigation is directed based on a model of repulsive forces and

friction to encourage equilibrium. Another approach used in dense deployment con-

figurations is to identify as many disjoint sets of sensors as possible that cover the

area completely and activate them successively [31]. Other approaches, such as ant

colony optimization technique, have also been employed [32].

Barrier and sweep coverage have been studied using a TSP approach [33] [34],

as well as by other techniques, including a technique where the coverage field is decom-

posed into subregions [35]. Other approaches, such as machine learning techniques,

have also been employed [36].

4. PROBLEM DEFINITION

We formally define the problem of Exploratory Coverage as follows. First, we

are given a planar area defined as the coverage field A. Next, we are given a set of

mobile sensors K each with sensor range r and mobility range d. For the distributed

algorithm, we further assume sensor capabilities to include a communication range

that provides awareness of neighboring sensors. Sensor range r specifies the radius

of a disc within which a sensor can detect an event, and mobility range d is the total

distance that a mobile sensor can travel. Mobility range is sometimes referred to as

the overall distance that can be traveled, and sometimes as the number of units of

distance traveled for each mobility choice, without loss of generality.

Further, we establish an initial deployment function f(K,A) that produces an

initial deployment location for each sensor in K. As we will see later, we focus on a
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function that uses a Gaussian distribution around a point for this function, such as

might occur when sensors are dropped from an aircraft.

We define a navigation to be a set of transitions (using mobility) of a sensor

from an initial deployment location to a final resting location, when either that sen-

sor’s mobility range would be exceeded by another move, or the sensor has decided to

stop navigating (say because A has been covered and additional mobility would only

waste resources). From a given initial deployment configuration, we must produce

a set of navigations (one each for sensors in a set) such that the execution of those

navigations results in maximal coverage of A. The number of all possible navigations

from all possible starting locations to all ending locations can be very large. The

subset that would actually result in complete coverage of A can also be large. On the

other hand, many potential navigations that would result in complete coverage could

be inviable if they require exceeding the mobility constraints of one or more sensors.

Next, we define a plan L to be a set of navigations. Consider the set of all

plans to be C = {L1, L2, ...), and D is the subset of plans that result in complete

coverage of A without exceeding mobility constraints for K. We seek to map an

initial deployment to a plan such that we maximize the area covered by the sensors

while minimizing the total distance traveled by that set of sensors. In other words,

we seek to select a set of mobility choices for sensors such that navigating according

to this plan results in maximizing event detection in A while minimizing the number

of moves.

The decision problem can be expressed as: given C, A, K, r, d, and f , is there

a plan L ∈ C that would result in covering all points in A? We note that there exist

instances of the problem for which there are no such plans, and so we also discuss

the problem of finding a plan that maximizes coverage of A while minimizing total

distance traveled by sensors.
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5. TAXONOMY OF SUB-PROBLEMS

There are numerous ways to attempt to produce an optimal number of sensors

to cover a region. In a deployment where the number of sensors relative to the size of

the search area is very small, the maximum coverage is the number of sensors times

the area of the coverage disc defined by the sensor’s range, or |K|·πr2. When we want

to know the minimum number of sensors required to achieve blanket coverage, then we

must acknowledge the overlap required to cover all points. In Figure 1 we see three

ways to define coverage commonly found in literature. We can arrange sensors so

that they circumscribe (inscribe) the circles about the hexagons of a regular hexagon

network, which has been shown to be optimal [37]. Another common way that sensor

coverage is analyzed is to divide the coverage field into a grid of squares such that

sensors at the center can sense all points in a tile. This creates a larger overlap than

using hexagons, but can be useful when the problem at hand involves touring the

centers of the squares. Defining a grid such that a sensor at any point within a tile

can sense every point in that tile creates more overlap still. For this discussion, we

will choose the optimal configuration using inscribed hexagons.

Coverage problem instances can be partitioned into a number of sub-problems,

where each sub-problem is identified by the relationship between the number of sen-

sors, the ratio of the sum of the potential coverage area of all sensors combined to the

size of the coverage field, and the mobility constraints of the sensors. We partition

these problems according to the definition of n ≈ 2A
3
√
3r2

using the pattern of inscribed

hexagons from Figure 1.

Partition 1: “Sparse”, i.e., |K| < n. There are problem instances for which

there is no solution whereby the mobility of the sensors will allow for even 1-coverage

to be achieved. In these cases, the best we can hope to achieve is a solution that

improves coverage from the initial deployment to covering as much of the coverage
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field as possible given the available mobility of the sensors. In this case, we consider

feasible solutions to be those that result in maximal coverage.

Partition 2: “Balanced”, i.e., |K| ≈ n. There are instances where a plan

exists (there exists at least one L ∈ D) where all of A can be covered within mobility

constraints.

Partition 3: “Dense”, i.e., |K| > n or r2

A
> 4|K|

√
3

3
, d = ε. There are instances

where the number of sensors is high enough, and settings for r and constant d provide

for the sensors to achieve n-coverage, where we are able to show that plans exist such

that multiple sensors can pass within r of every point in A (or even achieve blanket

coverage of A). Sometimes this is a beneficial problem space to explore, e.g., in cases

where the coverage field need be covered for a time that can exceed the lifetime of

the sensor. In this case, the goal is to provide redundant coverage so that as sensors

fail, 1-coverage can be achieved multiple times (or preserved for a maximal period of

time).

Partition 4: “Increasing mobility”, i.e., d→∞. There are instances where the

settings for r and d can provably be shown to allow most plans in C to feasibly cover

A, regardless of the initial deployment (D = C). We resist stating that all plans can

cover A since it is easy to construct plans that can’t, i.e., plans where sensors do not

try to move toward previously uncovered points in A.

A visualization of this simple taxonomy of coverage problem instances is shown

in Figure 1.

For this paper, we focus on partitions 1 and 2 which we categorize as Sparse

Coverage problems. In these problem instances, plans may exist to allow coverage of

A but are not guaranteed that such plans exist. Rather, we are dependent upon the

initial deployment and a thoughtful mobility strategy to achieve success.

In partition 3 where the number of agents or the sensor range of those agents

becomes such that much of the coverage field can be covered by multiple sensors
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Figure 1. Taxonomy of Coverage Problem Instances

simultaneously, then the problem shifts closer to the realm of other coverage problems

such as Blanket coverage, and interesting solutions to explore focus on n-coverage

rather than 1-coverage.

In Figure 1, a solution to partition 4 cases can be constructed in a straight-

forward manner. When the mobility budget is no longer an issue, then the problem

becomes k-TSP. First, we pick a set V of |K| points in A where each point in A is

within r of at least one of the points in V . Each sensor is assigned a point from V

and navigates from its origin to that point. Thus if not for time, mobility, nor other

factors such as hazards and detection, we would simply loosen mobility constraints

and wait until each sensor navigated to its assigned post. Since we are considering

cases where the budget for mobility is a real constraint, however, more care must be

taken in choosing the tour for each sensor to maximize coverage while minimizing

distance traveled.

6. APPROXIMATION ALGORITHMS

Approximation algorithms have been developed for many variations of the

problems discussed above. There is no known polynomial time solution for general
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TSP unless P = NP , however the (1+ε)-approximation for Euclidean-TSP in <2 and

ε > 0 is relevant to the discussion [38] and as well the 3/2-approximation algorithm

for TSP where the triangle inequality holds [39] are well known. However, these

algorithms are not practical for our problem as they rely on the location of events to

be known a priori. Bounds on approximation schemes for PC-TSP are explored in

[40]. For the problem of Orienteering, a 2-approximation algorithm exists when

the graph representing the coverage field is undirected [29].

Here we present three algorithms, two centralized and one distributed, for an

approximate solution to the Exploratory Coverage problem. For solutions involving

constrained hops, we refer to a “hop” as a mobility choice that results in a sensor

choosing to move a constant distance from its current location in a chosen direction

to a new location where it waits to make another mobility choice.

6.1. Centralized Algorithm - Constrained Hops. The centralized algo-

rithm assumes a centralized processor evaluates the initial deployment and selects a

plan for all sensors. First, we choose a target configurations from C such that the

points in Lx form a grid of squares of width/height 2−1/2r. This size is chosen so that

any mobile sensor located within this square can sense any point within and thereby

covers that square.

From this set of squares, we construct a graph G = (V,E) where V = v0, v1, ...

is a set of vertices created for each corner of a square, and E is a set of edges created

by connecting each vertex in vi ∈ V to adjacent vertices to the left, right, above, and

below vi. Each edge cost is thus 2−1/2r.

In this way, we have constructed a graph where sensors may navigate to cover

any portion of the graph by way of hopping from one vertex to another, traveling a

constant distance with each hop, and completing their route when they cannot make

another hop without exceeding its mobility budget. Thus, we have translated the



42

problem into one where the number of hops by each sensor is constrained to d/2−1/2r

hops.

6.2. Centralized Algorithm - Constrained Distance. For the constrained

distance problem, we can first solve the constrained hops problem and then solve

Orienteering to go from the constrained hops solution to the constrained distance

solution.

The Orienteering problem is the following: given a set of nodes and dis-

tances between each pair of nodes, and a budget K, find a tour with maximum

number of hops such that the total distance covered is at most K.

With the 2-approximation algorithm for undirected graphs in hand, and a

O(log2 n)-approximation for directed graphs, we can construct a possible solution for

the constrained distance problem:

1. Given a constrained distance problem instance Xd, let OPTd be value of the

optimal solution

2. Let Xh be the corresponding constrained hop problem and OPTh the optimal

solution of Xh

3. Solve Xh optimally using the Max Flow formalization

4. For each sensor i, let H(i) be the (optimal) set of hops found by the Max

Flow solution

5. For each i, define an Orienteering problem as follows: ORIENTi = Given

sensor node i’s original position and distances to hops in H(i), find a graph with

the vertices and distances equal to the shortest path distances. Now this is an

instance of the Orienteering problem where the goal is to cover as many

vertices as possible using at most distance h
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6. For each i, solve ORIENTi using the approximation algorithm [29]. For each

ORIENTi, the solution Ai is a path (of length at most h) over {i} ∪H(i) Let

OPTi be the optimal solution for ORIENTi

7. Output A1, A2, ..., An

To argue that this is indeed a good approximation, we need the following:

OPTd <= OPTh

<=
∑
i

OPTi

<=
∑
i

2 ∗ Ai

<= 2 ∗ valueofthesolution

All these inequalities hold, except the last one. The reason is that the Ai instances

could overlap (in terms of tiles they cover), so the value of the solution could be

significantly less than
∑

iAi.

6.3. Distributed Algorithm. We can use a Max Flow-like solution for

the distributed algorithm also. This would be considered distributed Max Flow

and examples of such a solution can be found in [41]. We can also use heuristic-based

distributed algorithms with synchronization. A number of reinforcement-learning

techniques such as EA or learning classifiers, and even ant colony optimization ap-

proaches would also work.

Another approach to solving the distributed approximation scheme is to em-

ploy a heuristic and a form of matching to direct the navigation of the mobile sensors:

1. Given a constrained hops problem instance Xd, let S0 be the initial state having

deployed the mobile sensors
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2. For each sensor si, use a heuristic to map sensors within si’s tile to moves that

are predicted to produce the highest reward

3. Employ a protocol for si and other sensors that occupy the same tile to decide

which sensor will perform which move

4. All sensors make a hop

5. Repeat until hop distance would exceed mobility constraint

Next, we discuss the heuristic that the sensors will use to direct their decision

making process. The heuristic produces tile colorings defined as:

• White = the tile appears to never have been occupied, and no sensor is in a

position where it could move there next turn

• Gray = the tile appears to never have been occupied, and one or more sensors

in adjacent tiles could occupy it next turn (we make a tally)

• Black, unoccupied = we remember the tile has been visited, but isn’t occupied

now

• Black, occupied = it has been visited, and in fact is occupied now (we make a

tally)

Additionally, each sensor is mobility-limited and has a remaining number of hops

counter.

Once all tiles within each sensor’s range is examined and colored, we decide

moves based on a simple algorithm.

The basic pseudocode for the distributed solution is shown in Figure 2, which

can be stated in two ways: first, how it is implemented, and second, from the per-

spective of an agent working in distributed fashion.
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1: A = {AllAgents}†
2: while |A| > 0 do
3: x = A[0] . select first agent
4: if |x.white| > 0 then
5: z = random(x.white)
6: else if |x.gray| > 0 then
7: z = random(x.gray)
8: else if |x.emptyBlack| > 0 then
9: z = random(x.emptyBlack)
10: else if |x.lessOccupied| > 0 then
11: z = random(x.lessOccupied)
12: end if
13: if z 6= ∅ then . move x
14: x.moveTo(z)
15: end if
16: for each agent y in x.nearbyAgents do
17: y.recalculateWGB
18: end for
19: A.remove(x)
20: end while

Figure 2. Distributed Solution to WGB †Agents in A sorted by num-white, num-gray,
num-empty-black, then by distance descending.

How it is implemented: A turn (or tick) is defined as an opportunity for each

agent to move, if it is able to and decides to move.

How it works from the sensor’s point-of-view: The main difference is that we

simply state that agents employ a protocol whereby they communicate in order to

decide who should move first in a neighborhood, and that once that sensor makes

a move, it notifies the others and now they recalculate what they know and decide

again amongst themselves whose turn it is. The logic is based around the premise

that the fewer choices a sensor has, the earlier it moves.
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7. PERFORMANCE EVALUATIONS

For a set of sensors to perform optimally, the sensors deployed to a coverage

field would navigate the least distance to cover maximal space in the minimum time

possible. Because sensor deployments can result in concentrations of sensors to the

same area, and with mobility being limited, achieving the specified goal could require

more sensors. Alternatively, more hops per sensor could be required in order to assure

the desired expected level of coverage. Parameter selection becomes key in producing

valuable simulation results. We choose a ratio of sensor quantity to coverage area

that produces scenarios characterized as sparse deployments, however we vary the

size of the coverage area to allow for observations about mobility decisions to become

apparent. We select a variety of values for number of hops and the value of σ in order

to evaluate the coverage achieved both following deployment and after the sensors

have exhausted their available mobility.

As a side note, in selecting a communication protocol between sensors, the

number of messages transmitted is also a factor we desire to minimize, as sending

messages costs energy and increases risk of detection (as well as betraying the sensors’

location to enemies). Also, although sensor technology options are increasing [42],

real-world sensors typically are subject to processing and memory limitations, and so

minimizing the utilization of these resources is also important to consider.

In order to gather data to support our hypotheses, we ran a significant number

of simulations using combinations of the parameter values shown in Table 1. Input

parameters included the width and height of the coverage field (as measured in tiles),

the count of sensors, the number of times that a sensor is allowed to hop (its mobility

constraint), and a value for σ that is used for the Gaussian around a point deployment

type to specify the density of the distribution of sensor distance from the central

deployment point.
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Table 1. Values selected for simulation runs

Parameter Value(s)

Hops 1, ..., 8

Concentration (σ) 1
2
, ..., 1

32

Area 10x10, ..., 800x800

Sensors 100, ..., 1000

We implemented several heuristics for comparison purposes. In the first heuris-

tic, each sensor stochastically chooses a neighboring tile to which to navigate. As ex-

pected, this performed poorly with respect to mobility conservation, given that each

sensor always chose to navigate to an adjacent tile. The second heuristic also allowed

sensors to navigate to a random adjacent tile, but only if that tile was not occupied

by another sensor. This also performed poorer than desired with respect to conserv-

ing mobility, but did rather well with respect to coverage. We used these heuristics

to measure the relative performance of our White-Gray-Black (WGB) heuristic, con-

structed according to the distributed algorithm described previously.

The program begins by assigning each sensor to a tile (its initial deployment).

We experimented with initial deployment methods, including stochastic and statisti-

cal distributions. Results from stochastically assigning sensors to tiles did not produce

interesting results, due to the fact that regardless whether we varied the size of the

coverage field, or the number of sensors, the only parameter that was changing sig-

nificantly was the density of the sensor deployment. We experimented with Gaussian

distribution of sensors around a point and Gaussian distribution along a line, with

satisfactory results. However, the results were similar enough between the two types

that we chose Gaussian around a point for the results presented here. Thus, given

a point (typically the center of the search area) and a specified value for σ, sensors

are more densely located nearer the point, and more sparsely as distance increases
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Figure 3. Visualization of Gaussian deployment

from the point. One standard deviation is defined as stddev = w ∗ σ/2 where w is

the width/height of the search area. Thus approximately 70% of sensors should be

located within stddev from the center point.

A visualization of a typical initial deployment, where the width/height of

the search area is 100, there are 1000 sensors deployed, and σ = 1/10, is shown in

Figure 3. As the simulation runs and the sensors begin exercising their option to hop,

they begin to spread out across the search area. A visualization of sensors utilizing

their mobility using the WGB heuristic is shown in Figure 4.

The tiles are constructed as a grid with no edges, where sensors that travel

North from the top wrap around to the South side, and vice-versa. Likewise, sensors

that travel West from the western edge wrap around to the East, and vice-versa.

The simulation begins, and for each trial, agents select navigation choices for

the sensors according to WGB until a turn occurs where no moves are made or all

sensors hit their mobility limits. Once this happens, the trial ends and this repeats

through the specified number of trials.



49

Figure 4. Visualization of simulation in progress

Average time to detection is an important goal, and an objective mechanism

by which to study an algorithm’s effectiveness. This is calculable from tiles visited

per hop, e.g., if coverage after initial deployment is 56%, then the average time to

detection is 0 for 56% of the tiles, and for 44% is determined by time for a sensor to

get to the tile.

The following data shows the coverage resulting from numerous simulations

using the WGB algorithm, varying the size of the coverage field and number of hops

per sensor, for a fixed number of sensors. We performed considerable experiments and

made comparisons between the WGB algorithm compared to sensors that randomly

pick an adjacent tile until they exceed mobility constraints, as well as an algorithm

where sensors randomly pick an adjacent unoccupied tile until mobility constraints

are exceeded, and WGB performs better (visits more tiles) than either of the random

algorithms for Gaussian deployment around a point.

7.1. Coverage for various sized coverage areas . Because sensor de-

ployments can result in concentrations of sensors, and with mobility being limited,
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it could require more sensors or more hops per sensor in order to assure complete

coverage. The data presented in Figure 5 shows the average level of coverage resulting

from numerous simulations using the WGB algorithm, varying the size of the cov-

erage field and number of hops per sensor, for a fixed number of 100 sensors. Note:

Hops0 indicates the initial coverage at deployment time using Gaussian distribution

around a point.

Figure 5. Average # Tiles Visited - Varying Coverage Area

As shown, as we increase the hops per sensor, the resulting coverage increases.

With a 20x20 grid (400 tiles) and 16 hops, these 100 sensors cover the field, but due

to the Gaussian concentration of sensors around a point, some sensors had to travel

a considerable distance to visit outlying tiles.

7.2. Coverage for various number of sensors . When we vary the num-

ber of sensors, we can also see a consistent improvement in the coverage. For the

next set of experiments, we fixed the size of the coverage field to a 30x30 grid, and

again used Gaussian deployment around a point to produce the results in Figure 6.

However, this time we vary the number of agents deployed and examine the resulting

coverage performance, both with agents that are allowed to hop once, and agents

allowed to hop twice.
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Figure 6. Average # Tiles Visited - Varying Number of Sensors

As shown in Figure 6, it took nearly 1000 sensors hopping twice each to

achieve an average of 90% coverage, thus attempting to overcome a fixed deployment

concentration using increased number of sensors could be less practical than varying

other parameters.

7.3. Coverage when the deployment concentration (σ) varies . Our

deployment implementation uses Gaussian sets of coordinate values that produces

numbers with a mean of 0, and a standard deviation of 1. That is normalized, scaled

using value w ∗ σ/2, where w is the width/height of tiles in the grid. The lower the

value for σ, the less concentrated the initial deployment. For this experiment, we

looked to see what happened when we vary the value of σ and analyze the resulting

coverage performance. Figure 7 shows coverage achieved for various values of σ and

number of hops. As shown, the less concentrated the initial deployment, the greater

the value from additional mobility, although at these less dense concentrations, there

is a diminishing return for additional mobility, while the tighter concentrations con-

tinue to crave additional mobility to improve coverage. In other words, additional

mobility is required when the deployment is more tightly concentrated to achieve the

same measure of success. Figure 8 shows coverage achieved with various density and

concentration values, fixing the number of hops at 4. With a value of σ = 0.5, we
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improve an initial value of approximately 33% coverage an increase in nearly 60% to

a coverage achieved with 4 hops of over 90% coverage.

Figure 7. Average # Tiles Visited - Varying Deployment Concentration

Figure 8. Average Coverage Varying Concentration and Density

7.4. Effects of mobility on coverage performance . Using the data from

the experiments above, we would now like to examine the effects of mobility on

coverage. We will do this using a metric e = H/% where H is the number of hops

taken by sensors, and e is the hops incurred per percentage increase in coverage. In

other words, how much mobility is expended to achieve additional levels of coverage

in a variety of scenarios. Figure 9 shows the data for this metric when varying the
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size of the coverage area. Continuing the point made in the previous section, for

less concentrated deployments, there is a diminishing return on additional mobility

as compared with a steadily growing improvement in coverage at tighter deployment

concentrations.

What we conclude is that the effects of allowing a measure of mobility on the

achieved coverage success are greater in more sparse deployments than in concentrated

deployments. The results illustrated in Figure 9 are intuitive considering that as

sensors become more concentrated, the initial coverage overlap increases, sensors

must travel further to find as yet untrodden ground, additional time is (therefore)

required to achieve the same coverage as less concentrated deployment scenarios, and

additional mobility is required for sensors to overcome the initial deployment.

Figure 9. Mobility Per % Coverage Increase - Varying σ

On the other hand, increasing mobility adds to the quality of coverage, but

with a diminishing return on investment. Results were consistent for scenarios where

the number of sensors and the values for σ were varied, which was likewise expected.

8. CONCLUSION

Practical algorithms for employing networks of unmanned, autonomous mobile

devices with limited mobility, in sparse regions where it is crucial that events are
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located, identified, and communicated is approaching ubiquity. As sensor technology

improves and becomes more mobile, computing power expands while requiring less

and less energy, and production of drones and robotic platforms become more robust,

algorithms for directing the behavior of these devices will only become more of a focus.

We have explored a variety of problems related to coverage of a coverage field.

Within this we have focused on the problem of Exploratory Coverage with sensors

that have limited mobility capabilities. We believe the taxonomy of the various

subproblems within Exploratory Coverage should prove helpful for further study to

allow focus on certain facets of the problem.

A range of prior work exists and has provided a wealth of conclusions from

which to inform our work in the area of the different approaches to the problem of

Exploratory Coverage, and we have shown several algorithms for finding approximate

solutions.

We then design a purely localized and distributed approximation algorithm

and provide simulation results. These simulations are conducted to demonstrate

the effects of limited mobility on area coverage. Here we show that the effects of

mobility constraints are more pronounced in sparse deployments than when sensors

are deployed in a more concentrated fashion.



PAPER III. FAULT TOLERANCE IN AREA COVERAGE
ALGORITHMS FOR LIMITED MOBILITY SENSOR NETWORKS

1. ABSTRACT

In sparse deployments of mobile sensors, the mobility of sensors is required

to search the coverage area in an attempt to achieve polling—complete, possibly

repeated, area coverage over time. Mobile sensor platforms are vulnerable to a variety

of hazards during normal operation. When sensors lose the ability to mobilize due to

mechanical failure, environmental factors, or simply exhausting their energy source,

coverage effectiveness can be seriously impacted. Ideally, algorithms should adjust

their behavior to compensate for failure modes in order to avoid areas statically

covered by disabled sensors as well as adjusting their behavior to cover the areas

assigned to sensors that are no longer able to mobilize. In this work we demonstrate

the effects of disabled mobility on area coverage algorithms due to their inability

to adjust behavior, and suggest mitigation strategies and the impact on improving

coverage in the face of disabled mobility.

2. INTRODUCTION

There are numerous factors driving increased attention to usage of automated

sensor drones that consist of a hardware platform with onboard command/control,

sensors, and effectors that provide for mobility. Human safety factors have long been

a primary motivator for interest in employing robots for a variety of tasks where

humans would prefer not to be. Also, mobile sensor hardware platforms have seen

many recently advances such as higher computation power, relatively lower weight,

and lower power requirements that allow drones to carry much more computational
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capacity and payload or stay deployed and functional for longer periods of time.

More and more, these platforms are more readily available, as the benefits of mass

production of commercially designed systems are realized.

Mobile sensors are physical devices that are subject to observable failure rates.

One of the most common problems for mobile sensors is that the effectors that provide

for the mobility function of the platform fail [43], or that terrain or other issues cause

the mobile sensor to become stuck while all other features of the platform continue

to function as normal.

It is intuitive that one requirement of an algorithm being analyzed is that

for the algorithm to function, sensors must be aware to some degree of the relative

position and mobility restrictions (failure modes) impacting other sensors, otherwise

there is no way they can (nor any reason for them to) alter their behavior. Mobile

sensors need not support full localization, however. Awareness of the failure modes of

other sensors allows the network to be fault-tolerant, self-healing, and to dynamically

change from initially homogeneous to heterogeneous with respect to mobility as agents

adopt different roles (whether by choice or as observed).

Further, we acknowledge that various subsystems of a wireless sensor exhibit

different energy requirements than others. Since our primary priority is to maintain a

given network quality of service, we are required to utilize the mobility feature of the

sensors. What we will establish is a schedule, whereby a certain number of sensors

lose their mobility but retain their other functions, and will analyze the extent to

which other sensors are able to compensate for this failure mode by altering their

movement strategy to preserve the required quality of service while avoiding the area

covered by the disabled sensors.

Given an objective measurement for lifetime and effectiveness of a sensor net-

work, we explore the effects of disabled mobility on these metrics. From this work,

we can see that as sensors lose their mobility, they become, in essence, static rather



57

than mobile sensors. When the deployment and/or the algorithm that governs their

behavior ensures that mobile sensors are spread sufficiently to adequately cover the

search area, then coverage impact can be minimal. Conversely, when the deployment

is concentrated or the algorithm fails to spread sensors prior to many of them fail-

ing, coverage effectiveness is vulnerable. Additionally, when mobility fails but other

functions such as communication continue to operate, a sensor can communicate mis-

leading intentions to other sensors. In essence, this can have outcomes similar to an

attack where blind spots are created. The disabled sensor cannot navigate to the in-

tended location to cover it, and other mobile sensors choose not to go there because

they believe it is already covered.

In this paper, we examine related work in the areas of limited mobility, relia-

bility analysis, and fault tolerance. After a brief survey of mobile sensor platforms,

their mobility limitations, and their vulnerabilities to device failure, we describe the

problem of assessing the impact of disabled mobility on coverage algorithms. We de-

fine the reliability model we will use, describe the simulation platform and parameters

selected for our analysis, several coverage algorithms that are used for comparison,

and then present findings, conclusions, and future work.

3. RELATED WORK

Fault tolerance in mobile sensor networks, the topic of algorithms that behave

in a way that tolerates failure modes while still cooperatively pursuing a goal, can

be found [44, 45, 46], but the specific topic of fault tolerance with respect to limited

mobility sensor networks and how failures affect coverage performance has not.

One area where limited mobility affects performance of a mobile sensor net-

work is when sensors are deployed for blanket coverage. The lifetime of such networks,

and algorithms for preserving/extending the lifetime, has been extensively studied.
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An example uses redundant sensors in a dense deployment so that as sensors fail other

sensors in the same region can wake up and take over for the missing sensor [47]. There

are formulae that can be used to objectively assess the expected lifetime of a network

of sensors [48]. Also, many works have explored the idea of optimized message rout-

ing for sensor networks in the event that some sensors fail, so that messages can be

routed through other paths [49]. However, there has been little work devoted to the

area of exploring what happens when a sensor continues to function even though it

is no longer able to navigate. This is a real concern given that in many real world

sensor platforms, energy requirements for mobility account for a large portion relative

to that required for sensing and communication. The closest analogy is the study

of hybrid sensor networks, where the term hybrid refers to the fact that sensors are

non-homogeneous: some are static, and others are mobile [16, 50]. However, no works

were found that examine the problem of sensors failing according to a predetermined

failure model, additionally that the failure is limited to the mobility feature of the

device, and relates this to the impact on coverage effectiveness.

As further background, a number of works examine sensor network lifetime

from a rather fatalistic point of view, expressing desire to describe and understand

an inevitable upper bound on the utility of a network of sensors [51].

It was shown that effectors–devices that perform actuation (including mobil-

ity), such as the motor, appendages, treads/wheels, and related connections—was

observed to account for 35% of mobile robot failure, the largest single reason for fail-

ures [43]. This makes consideration of the problem of maintaining coverage quality of

service (among other goals) using cooperating sensors in the network, an important

aspect of mobile sensor network research.

Various works explore fixed deployments (no mobility following the initial

deployment of the sensors), where mobility is not a concern toward energy constraints

on the lifetime of the network. In a dense sensor deployment scenario, more sensors
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are deployed than are required to cover an area, and when a sensor fails, other sensors

use a protocol to decide which sensor wakes up and takes the place of sensing the

missing area. In some cases, sensors have a limited ability to exercise mobility, and

can move closer to the hole in coverage in order to adjust for the missing sensor.

4. RELIABILITY IN SENSOR PLATFORMS

Numerous mobile sensor platforms have been in development in recent decades,

including ground-based, lift-based, buoyancy-based, and space-based. Ground-based

platforms (sometimes referred to as UGV’s [52]) can be tiny weighing only a few

centimeters/grams, using battery-powered micro circuitry, or as large as automobiles

weighing tons using internal-combustion engines. These platforms are subject to a

variety of mechanical failures, are vulnerable to obstacles found on the ground in the

environments in which they operate, as well as terrain variations and pitfalls. The

energy source (weight and conservation) is a major factor limiting the mobility of

these platforms.

Lift-based, or aerial, platforms are devices that employ the physics of lift in

order to remain in a state where controlled mobility is possible. The size of these

devices can range from small, hand-held devices, up to large military/commercial

aircraft. Identifying aircraft with a low Reynolds number provides a way to construct

devices that are useful for lab research [1]. The Reynolds number can be expressed

as shown in Equation 3, where ρ is the air density, L is airfoil length, υ is velocity,

and µ is the viscosity of the substance through which the device moves.

Re =
ρLυ

µ
=
ρυ2

µυ
L

=
inertia

viscosity
(3)

Utilizing Equation 3 allows researchers to create small, lightweight devices

that can move slowly and stay aloft for longer periods of time. A challenge faced by
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lift-based platforms, however, is that they must expend energy to maintain continual

lift. Mechanical failures are often fatal due to engineering the devices to use minimal

structural material to minimize fuel requirements and allow for more payload, which

in turn makes the devices more fragile than their ground-based cousins.

Buoyancy-based platforms solve many of the problems faced by ground-based

and lift-based platforms. Examples of this type of platform include blimps and boats.

These devices can be tiny to enormous commercial tanker ships. They are charac-

terized by the ability to maintain a stable navigational state for long periods of

time (indefinitely, barring other issues such as leaks), and the ability to support a

much larger payload over time than lift-based or even ground-based platforms. Vul-

nerabilities include currents in the substance (typically water or air) in which the

devices operate, weather, and obstacles. When we consider the relative densities of

substances, we can approximate the weight and buoyancy for devices utilizing these

substances as shown in Table 1. Thus the desired payload can be defined and the

device characteristics tailored to fit.

Space-based platforms have been in use for nearly six decades. These devices

must use some combination of lift, buoyancy, and thrust in order to place the device

in “space” where it is capable of remaining aloft in a state where its navigational

attributes are governed by inertia and orbital mechanics, and where the viscosity

becomes negligible. Such platforms are vulnerable to impacts with other objects

traveling at very high velocities, orbital decay causing atmospheric reentry, cosmic

rays and radiation, extreme heat and cold, in addition to standard mechanical failures

with rare opportunities for service/repair.

Reliability analysis studies the probability of devices performing the function

for which they were designed over a period of time within specified parameters. In

[53] we see analysis of failure rate models for devices. We describe time-to-failure as a

probability density function (PDF) or cumulative density function (CDF). This may
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Table 1. Approximate weight and buoyancy of various substances

Substance Weight Buoyancy
Air 1.2256Kg/m3 —

Hydrogen (H) 0.0857Kg/m3 1.1399Kg/m3 (H v. Air)
Helium (He) 0.1691Kg/m3 1.0565Kg/m3 (He v. Air)
Water (H2O) 988.2Kg/m3 @ 20 ◦C 0.24875Kg/m3 (Air v. Water)

be expressed mathematically as shown in Equation 4. The function f(x) represents

a distribution of failures over time, and the interval between t0 and t1 is the period

of time during which the devices are observed.

R(t) = Pr{T : t0 ≤ x < t1} =

∫ t1

t0

f(x)dx (4)

Failure rates for these various platforms are becoming more widely available as

technologists spend more time settling on one design and tracking its reliability [43,

46, 52, 54, 55, 56]. As these platforms become more common, we will be able to

develop more applicable and accurate failure rate models for each type of platform.

5. PROBLEM DETAILS

We define the coverage field as a region that is observed as a plane to sensors. A

set of mobile sensors is deployed using a deployment function. In this paper, we focus

on two deployment schemes. First, a purely stochastic means of evenly distributing

sensors throughout the field. Second, a stochastic method that produces a Gaussian

approximation of a Poisson distribution around a point, as if the sensors might have

been dropped from an aircraft and dispersed organically at various distances and

orientations relative to the drop point.

We focus on sparse deployments in which the number of sensors n is defined in

Equation 5, where n is the number of deployed sensors, A is the area of the coverage
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field and r is the sensing range. This relationship ensures that the number of sensors

being lower than required to make blanket coverage possible. This allows us to focus

on finding solutions to the problem of polling–minimizing detection time for any

events in the coverage field, while maximizing the number of times we can poll all

points in the coverage field over a given period of time.

n <
2A

3
√

3r2
(5)

In balanced deployments, the problems shift from finding solutions that min-

imize the time to achieve (and maintain) blanket coverage, whereas in dense deploy-

ments the problems shift from the challenge of providing polling to one of maintaining

blanket coverage or redundant blanket coverage. When a sensor becomes mobility-

disabled in balanced to dense deployments, the network’s ability to maintain blanket

coverage for a length of time can be shortened as sensors ultimately fail completely

and the inability of other sensors to take their place causes coverage holes.

The mobility of the sensors is considered to be limited, in that there is a

probability that at a certain time interval from the drop time that a given sensor

might suddenly lose the ability to move. This simulates the lifetime of the mobility

feature of the sensor. The sensor continues to be able to take measurements of its

environment from this location, however. The number of sensors that have failed over

time is controlled such that it follows a probability density function. As an example,

the number of sensors that have failed over time might look like one of the models

shown in Figure 1.

The “bathtub curve” model for failure rates has been described [53]. In this

model, numerous initial failures are observed, followed by a stable period where few

failures occur, and finally a period of time where devices succumb to the useful

lifetime of any of a number of their components causes a relatively higher failure
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Figure 1. Cumulative distribution function (top) illustrating how we will distribute
the disabling of mobility of sensors over time, plus Bathtub Curve (bottom) showing
another well known failure rate model

rate to account for a majority of the remaining devices. While this model describes

the failure rate of an entire population of devices over time, this model may not

be as useful for studying the effects of failures of a specific set of devices in use in

the field. This is due to the fact that initial testing and quality control measures

will identify defective products prior to deployment, and devices may be replaced

in the field long before they actually fail during use. For this reason, we focus on

the cumulative distribution function (CDF) model for our simulations that assumes

no failures initially, but a growing number of failures as the simulation progresses,

followed by a few sensors that fail later.

6. ALGORITHMS

In our simulations, we chose several algorithms to analyze and compare with

varying sensor count (sparsity), two deployment schemes (random and Gaussian

around a point), with and without applying the schedule of disabled mobility, and in
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some cases with and without modifications to the algorithm to mitigate the effects

of disabled mobility.

The Random Walk and Random Direction Walk [57] are used. The Random

Walk algorithm has sensors simply choose at each opportunity in time a random

direction to move, whereas the Random Direction Walk algorithm chooses a random

direction up front and continues that direction for the life of the simulation. Although

these algorithms include no cooperative features, nor do they attempt to avoid gaps

or redundant coverage in any way, they provide a good baseline for comparison to

other algorithms.

The Proxy [58] and WGB [59] algorithms were also used. The distributed

Proxy-based algorithm involves both static and mobile sensors which bid for new

locations in order to heal holes in coverage. The WGB algorithm, also a distributed

heuristic-based approach, uses an internal tile-coloring model to merge data about

what areas nearby are not covered (white), have sensors nearby that could cover

(gray), and areas that are already occupied (black), in order to identify the location

of highest need. We focus on WGB in order to eliminate the variable of static sensors

from disabled mobility sensors. Other algorithms such as Virtual Force (VF) [30, 60]

were also examined.

7. EFFECTS OF DISABLED MOBILITY

We anticipate a few challenges that will affect coverage efficiency in the face

of disabled mobility. First is the fact that a disabled sensor is sitting in one place

sensing the area around it and other sensors that pass through this area will duplicate

coverage resulting in a loss of efficiency. Second, the disabled sensor could have been

expected to have covered a portion of the field itself had it not become disabled,

thus other sensors may need to adjust their movement plan in order to cover the
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area excluded by the loss of the disabled sensor. Another factor of interest is the

probability of detection and the detection time delay behavior in the presence of the

disabled mobility schedule.

With some algorithms, disabled sensors may in fact mislead other sensors

about their intended mobility plan and affect coverage in ways that would not be

seen if the sensor were to completely fail.

Let us consider a scenario where we assume a random distribution of sensors

across the search area, where sensors have unlimited mobility (range). The sensing

distance is configured so that this is a sparse to balanced deployment (i.e., the ra-

tio of sensor range to number of sensors relative to search area precludes blanket

coverage). The goal is to maximize area coverage over time (or synonymously to

minimize detection delay). We examine two reference algorithms. First, the Random

Walk algorithm, where each mobile sensor starts exploring the area in random moves.

Second, we examine the Random Direction Walk algorithm, where each sensor be-

gins by picking an initial direction and continually moves straight in that direction

indefinitely.

Analyzing the results of a schedule of sensor mobility disability surfaced a

challenge with this scenario. Examining the initial deployment, we observe a random

distribution of mobile sensors throughout the search area. Also, at any time in the

future, a snapshot of the region also shows a distribution with no less random features

than the initial deployment. Despite the fact that the point at which a given sensor

becomes disabled is according to a pre-determined schedule, the location at which it

resides when it becomes disabled is again no less randomly distributed than the initial

deployment. Thus observing simulation of this scenario over time as seen in Figure 2

shows that although the performance isn’t great at any point in time throughout the

runs, disabling the mobility of the sensors doesn’t hurt the algorithm in an interesting

or unexpected way.
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Figure 2. Random walk coverage and polling frequency over time

Using the Random Direction Walk algorithm produces analogous results, and

both algorithms are consistent even when the number of sensors is varied. Figure 3

shows a consistent drop-off in polling frequency with random direction walk across

a variety of sensor counts. Polling frequency eventually flattens due to the sparse

deployment density and the fact that disabled sensors fail to iteratively cover the

area over time. This produces an equivalent increase in average detection delay as

more and more of the area must be polled by a decreasing population of sensors with

mobility.

Figure 3. Random direction walk polling frequency over time

When we examine the effects of disabled mobility on the WGB algorithm, we

see a consistent drop in coverage performance, and falling to as much as 20% loss of
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coverage as sensors begin to lose mobility. Figure 4 illustrates how many percentage

points coverage drops with the WGB algorithm in particular, simply by adding the

schedule of disabled mobility over time. This is actually quite good considering that

the algorithm pushes sensors from their initial deployment to a balanced coverage of

the area rather quickly.

Figure 4. Percentage points lost adding disabled mobility to WGB algorithm.

Given the size of the coverage field in these simulations relative to sensor range

and number of sensors, we can see the computed maximum coverage achievable for

various sensor counts in Table 2. These are upper bounds, and rely on none of the

sensors overlapping areas covered by other sensors. In practice, for our distributed

algorithms to consistently achieve polling, the number of sensors remains at 80 or

below.

We can also see from Figure 5 a representation of the performance of the

WGB algorithm in terms of the coverage percentage over time for a varying number

of sensors. In order to properly interpret the sparsity of the deployment given the

specified sensor counts, we refer once again to Equation 5 with a configuration of

coverage area and sensor range that results in a balanced deployment would require

a value of n ≈ 76.98.
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Figure 5. WGB algorithm, coverage area over time varying sensor count.

Regarding the problem of disabled mobility causing potentially misleading

information being broadcast to other sensors, we see that there is a clear impact to

coverage efficiency. Figure 6 shows that as more sensors become disabled, there is

a degradation to the coverage percentage over time that can reduce coverage by as

much as 15%.

By making a small adjustment to the WGB algorithm to detect this failure

mode, plus a behavior change when the failure mode occurs such that sensors refrain

from broadcasting an intention to move that will not occur, we see an improvement

in both Gaussian and Random deployment modes of a full percentage point. Figure 7

shows the improvement for one configuration. As shown, the improvement begins as

sensors start to fail. When a growing number of sensors are unable to move, the

ability for the WGB algorithm to continue to cooperatively explore the coverage field

without gaps or significant redundant coverage becomes apparent as compared to

Random Walk, Random Direction Walk, and other algorithms.
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Table 2. Max coverage % for various sensor counts.

Sensors Max %
25 39.26
30 47.12
35 54.97
40 62.83
50 78.53
80 125.66
100 157.07

8. CONCLUSIONS

One thing we can observe from these results is that coverage algorithms that

do a good job of quickly reaching a desirable location from their initial deployment,

cooperate to avoid gaps and redundant coverage, and continue to leverage what mo-

bility is available throughout the sensor network, produce better results as sensors

lose their mobility than algorithms that rely on statically touring or other more me-

thodical means of exploring and covering their environment. The WGB algorithm,

for example, saw only minimal degradation of coverage quality of service, and per-

formed well in sparse to balanced deployments in the face of a schedule for disabled

mobility.

With extremely sparse deployments, sensors that are mobile come into contact

with disabled sensors less often. In these scenarios, we observe through simulations

that algorithms such as random direction walk have less of an impact than algorithms

that tour an established territory, because in the latter case, once a sensor becomes

disabled, there is no sensor to cover that sensor’s territory. As the deployment be-

comes less sparse, algorithms that try to avoid one another are more vulnerable to



70

Figure 6. WGB algorithm with disabled mobility, coverage area over time varying
sensor count.

being misled by disabled sensors that continue to broadcast their intentions to move,

but never do.

The disabled mobility problem has particular significance because, because as

defined, the outcome can be demonstrated clearly as an extension of prior proven

simulation techniques. The proposed approach introduces a factor whereby sensors

become immobile at various rates over time. When the coverage algorithm is to pick

a random direction, then sensors will disregard the location and coverage provided

by disabled sensors and will proceed to duplicate coverage. When algorithms avoid

those areas, coverage effectiveness can be shown to increase. As more sensors become

disabled, coverage becomes degraded, as we have shown.
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Figure 7. Percentage improvement in coverage efficiency by detecting failure mode.

9. FUTURE WORK

Communication protocols have been extensively studied from a number of

perspectives. However, there is potential for augmenting these protocols to transmit

failure modes along with existing packets in order to allow distributed algorithms

to reactively modify their behavior to make the sensor network self-healing fault

tolerant.
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SECTION

2. SENSOR ANALYSIS SIMULATOR

For many of the simulated results referenced within this work, the Sensor

Analysis simulation tool was used. This program was developed by the author and

is described below. Source code for this project is available as a public repository

on the website GitHub (http://github.com), a code-hosting repository based on the

Git version control system [61]. Detailed information and updated software versions

can be found on a page devoted to the Sensor Analysis project (http://marksn-

ms.github.io/SensorAnalysis). This means of publishing the source code was done in

order to allow future work to continue on the project with hope that advances can

result due to the phenomenon of knowledge crowdsourcing [62].

2.1. ARCHITECTURE

The tool is written in the C# programming language using the Microsoft Vi-

sual Studio R© development environment and is designed to run on the WindowsTMoper-

ating system. The program WorldSim.exe presents a visual representation of the

search area, which can be represented as a grid of rectangle or hexagonal tiles. Spec-

ification of simulation parameters, as well as starting, stopping, and monitoring, are

performed through the client.

The core design of the application relies on classes and interfaces defined in

WorldSim.Interface.dll. Base classes/interfaces include Deployer, Incident, Inhabi-

tant, Marker, Message, SelectableObject, Tile, and Watcher. These objects and their

purpose are shown in Table 2.1.

The WorldSim.Interface.dll module (or “assembly” in .Net parlance) also con-

tains several common helper objects. One such object is an adaptation of the

ECRandom[63] class that provides a member function that returns values of data
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type Double in a Gaussian distribution between -1.0 and 1.0. This class provides the

mechanism used by the GaussianDeployer class (an implementation of the Deployer

interface) and the RouletteWheel class.

Table 2.1. Common interfaces found in WorldSim.Interface.dll and their purpose.

Class/Interface Purpose and description

Deployer Implementations of this interface are used
to deploy objects in the simulation to
desired locations.

Incident An object being sought by agents.

Inhabitant Represents a simulated agent.

Marker Useful as a reference point, such as may
be used by Ant Colony Optimization (ACO)
agent implementations.

Message An object that can be delivered to other
agents, towers, or base stations using
the messaging subsystem.

SelectableObject A key interface, this represents
required functionality for any class that
can be displayed, selected, deployed, etc.

Tile Represents a component of the search area.

Watcher Implementations of this interface sit by
and monitor from step to step what is
happening in the simulation and often record
and log results.

The RouletteWheel class provides a way to perform Monte Carlo selection[64],

a helpful technique in many scenarios where the likelihood that an item in a list

is chosen is relative to some weight factor. One simulated agent was developed,

for example, using Monte Carlo selection to slightly favor the current navigational
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heading over a new heading so that the agent tends to continue moving in the same

direction.

2.2. USER INTERFACE

Starting a simulation from the graphical user interface (GUI) is straightfor-

ward. The analyst first creates an environment using “File | New” in the menu (or

Ctrl-N on the keyboard), specifying the number of rows and columns of tiles, the

height and width of each tile, the shape of tile (currently rectangle and hexagon are

implemented), and clicking OK. An example of a simulation that has been created is

shown in Figure 2.1.

At any time, an object’s properties can be examined (and in some cases modi-

fied) through the user interface. Figure 2.2 shows a simulation that was created using

a grid of hexagon tiles where a number of objects have been deployed. As shown,

one of the objects in the simulation has been selected and its properties are displayed

in the pane on the right. Those properties shown in bold face text can be modified.

Tiles and objects derived from Inhabitant and Incident can be selected using the

mouse by clicking on the object in the simulated environment.

Next, sensors or other objects are added to the environment. This is done using

“Edit | Add objects” in the menu (or Ctrl-A on the keyboard), selecting the agent

type from the menu of available choices, the number of objects to add, and clicking

OK. Custom properties, if any, supported by an agent type can also be specified here,

and all objects added to the environment will reflect the desired property values.

By default, all objects are added at the same location, the center of the first

tile. In order to support a variety of deployment methods, the program was designed

to allow custom Deployer objects to be utilized. In order to invoke a Deployer, the

analyst uses the “Edit | Deploy” menu item (or Ctrl-D on the keyboard), selects the
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Figure 2.1. Basic deployment of sensors on square grid search field and showing
simulation setup sequence.

Figure 2.2. Basic deployment of sensors on hex grid search field and showing selected
object properties.
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type of deployer, and clicks OK. Standard derivations of the Deployer class that are

currently available include Random and Gaussian. The Random deployer will find

any object in the simulation whose class is derived from Inhabitant and move it to

a pseudo-random point that is evenly distributed across the simulated environment.

The Gaussian deployer (short for Gaussian-around-a-point) finds the center of the

simulated environment and moves all objects whose class is derived from Inhabitant

to points distributed in Gaussian fashion around that point.

Deployer objects can also be used to apply dynamic properties to certain

objects in the environment. For example, the Disabled deployer finds all objects

in the environment whose class is derived from DisabledMobilitySensor and sets a

time at which mobility for each object becomes disabled. This is used extensively in

Paper 3.

In order to monitor a simulation using methods common and useful to many

exercises but also to allow for extensibility, the Watcher class was created. Watcher

objects can be added to the simulation using the menu item “Edit | Add Watcher”

(or Ctrl-W on the keyboard). The World class fires events at significant points in the

simulation life cycle, such as before a simulation starts, after it ends, and prior to

ticks of the world clock. A Watcher derived class implements behaviors for events of

interest and is able to access information about what is happening in the simulation.

One example of this is the DisabledMobilityWatcher that writes a string to a log

file every 20 time units (ticks of the clock) that contains the coverage progress for

analysis following the conclusion of the simulation.

Figure 2.3 shows the life cycle of a test run. This can be initiated from the user

interface by selecting “Edit | Go” (or F5 on the keyboard), specifying the number

of experiments, the time units for each experiment, and clicking OK. The program

will run the test until completion and indicate headway using a progress bar as well

as status messages. At the point in the life cycle where the world is reset, a number
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Figure 2.3. Sequence diagram of test run life cycle.
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of operations occur. One such action is to recreate the search environment in the

dimensions specified either in the GUI or options file. Another action is to add

Inhabitant, Incident, Deployer, and Watcher objects in the quantity and order that

they were specified. In this way, each test run conducts experiments using the same

options.

Many of the simulations were run on a personal computer (PC) with an ASUS

P7P55D Pro motherboard, Intel Core i7-870 Processor running at 2.93GHz, 16GB

RAM, and SSD hard disk.

The program was written to support execution using command-line parame-

ters, making it ideal to run many tests in parallel and repeatably using a batch file.

An example of a typical command execution would look like this:

worldsim.exe /options "Parameters.txt" /go /exit

This specifies a parameter file is to be read that contains the simulation op-

tions, and also directs the program to begin the simulation upon startup and close

following completion of all experiments.

A typical file would contain options in XML format such as those shown in

the sample file in Figure 2.4.

Figure 2.4. Sample options file specifying parameters for a test run.
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As a benchmark, a test run using the parameters in Figure 2.4 runs on the

hardware listed above in about an hour. Many such test runs can be run simultane-

ously as allowed by available memory and CPU capacity.

2.3. EXTENSIBILITY

The tool was designed to be extensible by using a common core application and

rendering engine while allowing for standalone assembly modules to be implemented

and used for widely varying test scenarios with minimal code in a small amount

of time. In order to create an assembly, a researcher need only implement a small

number of interfaces (as described below) and add the assembly information to the

application’s configuration file which is loaded at runtime.

Provided are sample implementations of a sensor, a deployer, and a watcher.

In order to create an assembly and to perform simulations, these are the most common

objects that will be created. Figure 2.5 shows a minimal implementation of a sensor.

The sensor chooses to stay where it is initially deployed each turn. A more useful

implementation might examine the status of the area near where it is located and

make a decision about where it might want to move, messages to send, or update

internal values to which it can refer in the future.

Figure 2.6 shows a minimal implementation of a deployer that moves every

inhabitant to a new random location within the simulation environment. It does this

by making a list of inhabitants known to the World object as well as a list of the

tiles in the current environment. Then for each inhabitant it picks a random tile

and moves the inhabitant to a random point within the chosen tile. While a more

useful implementation relative to the sample sensor, this deployer provides a similar

function to the Random deployer that is already provided.
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Figure 2.5. Sample code for a sensor object.

Figure 2.6. Sample code for a deployer object.
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The source code shown in Figure 2.7 illustrates a minimal implementation of

a watcher class. This class subscribes to two of the events that can be thrown during

a simulation: the post tick event and the post experiment (step) event. Again, this

implementation isn’t very useful since it writes a single message to a collection after

each turn, and then clears the list after each experiment. However, it illustrates how

to subscribe to world events. A common extension would be to add code to save

the messages to a log file following each experiment or test run, and to include more

useful information in the log message, such as how many tiles contain at least one

inhabitant.

Figure 2.7. Sample code for a watcher object.
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Another class that can be extended is the Incident, which would allow custom

behavior to be added to the object that is designed to be the target of certain sensor

objects. For example, some implementations allow the incidents to move themselves,

or appear/disappear at random (or scheduled) times during the simulation.

Even the Tile object is extensible. Out of the box, rectangle and hexago-

nal tiles are supported, but other classes (such as triangle or other forms) can be

developed.
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3. CONCLUSIONS

As has been shown, mobility adds an interesting dimension to the ability of

mobile sensor networks to achieve and maintain the system goals. We can draw a

number of conclusions from the summation of the problems that have been explored.

First, the study of mobile sensor coverage is more complex in light of the constraints

imposed by area to be searched, number (density) of sensors, and limited mobility of

various forms. Second, although there are a wide array of approaches available when

solving problems using mobility, algorithm selection and algorithm design play key

roles. Choosing an algorithm carefully, we can successfully mitigate the effects of the

limited mobility constraint on coverage using a mobile sensor network. Third, there

is much left to explore in this rich field of study.

When considering such algorithms, such as the area traversal routing scheme

described in Paper 1 (and illustrated in Figure 2 on Page 19), we see that performance

(in terms of coverage of the area and event detection delay) is dependent upon the

number of sensors, sensor velocity, and the frequency and duration of events.

In Paper 2 (and illustrated in Figure 1 on Page 40) we showed a taxonomy

of coverage problem instances as defined by the relationship between coverage area,

number of sensors, and mobility of sensors. There are problem instances for which

there is no 1-coverage solutions possible, so we try to maximize coverage. Second,

there are instances where coverage is possible, but we attempt to assure it is achieved

or try to minimize other metrics, such as time. Finally, there are instances where

the number of sensors is ample to assure coverage, in which case we try to show

n-coverage, maximize network lifetime, or minimize other metrics such as energy

expended over time.
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In Paper 3 we showed that disabled mobility affects coverage algorithms in

interesting ways and degrades performance of those algorithms as sensors begin to

fail. Our results show that deployments that result in an initially well-distributed

configuration, and algorithms that spread sensors quickly within the coverage area,

are affected less by mobility becoming disabled. We showed a simple mitigation strat-

egy for one algorithm (WGB) that produced demonstrable improvement by altering

the heuristic to avoid having sensors send misleading intentions about their mobility

plans.
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