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The C1(naphthyl)–H, C2(naphthyl)–H, C3(naphthyl)–H and C8(naphthyl)–H bonds of the naphthyl

group present in a group of naphthylazo–29–hydroxyarenes (H2L) have been activated by [Rh(PPh3)3Cl]

in a toluene medium. Here the cyclometallation is accompanied by metal centered oxidation

[Rh(I)ARh(III)]. All the resulting cyclometallates [Rh(PPh3)2(L)Cl] (2–5) have been isolated in a pure

form. The characterization of the cyclometallates [Rh(PPh3)2(L)Cl] have been done on the basis of

spectral (IR, UV–vis, and FAB mass) data. The structures of the representative cyclometallates 2a, 3a,

4a, 4b and 5b have been determined by X-ray diffraction. In all the cyclometallates, rhodium(III) is

coordinated to naphthylazo–29–hydroxyarenes via terdentate C(naphthyl), N(diazene), O(phenolato/

naphtholato) donor centers & one chloride ion in a plane along with two axial trans PPh3 molecules.

Intermolecular association in the solid state is observed due to C–H…p and p…p interactions.

Compounds show an oxidative response within 0.93 to 1.11 V (vs. SCE) and a reductive response at

y 21.0 V (vs. SCE). Both the responses are based on the coordinated diazene function and are

irreversible in nature, indicating limited stability of the oxidized and reduced species. The electronic

structures of selected cyclometallates have been calculated using a TD-DFT model and the simulated

spectra are consistent with the observed spectra of those cyclometallates.

Introduction

The activation of C–H bonds in organic compounds promoted by

transition metal complexes has experienced a rapid growth in view

of its diverse synthetic potential.1 In this regard, the cyclometalla-

tion reaction, probably the mildest route for activating the C–H

bond, has received increased attention.2 Cyclometalation reactions

have proven to be a powerful synthetic route, especially in the

activation of C–H bonds, which are otherwise difficult to access.3

In general, the metal centres, precoordinated to a Lewis basic

heteroatom group of the organic substrate, are brought in the

vicinity of C–H bonds to be activated, which ultimately leads to the

formation of a metal-carbon bond.2a The presence of more than one

potential C–H activation site in a molecule often poses an interesting

challenge regarding the selectivity of the process. The issue of regio-

selectivity can be addressed by attuning the hetroatom coordination

to direct the metal ion to a site proximal to the selected C–H bond.4

The present work stems from our interest in C–H bond activa-

tion by transition metal complexes.5 Herein, C(naphthyl)–H bond

activation of a group of napthylazo–29–hydroxyarenes (H2L, 1) by

rhodium has been reported. Wilkinson’s catalyst [Rh(PPh3)3Cl]

has been specifically chosen as the metal precursor for its known

ability to promote cyclometalation following an oxidative addition

pathway,6 thereby accommodating terdentate dianionic diazene

substrates (H2L, 1).7 The preferential C(naphthyl)–H bond activa-

tion by rhodium has been explored by varying the position of the

primary donor (diazene group) attached to the naphthyl group.

Furthermore, an additional or auxiliary donor has been incorpo-

rated in the substrate molecule to examine its influence on the

selectivity of the C(naphthyl)–H bond activation. The isolation,

properties and molecular structure of the resulting cyclometallates

have been described. The electronic structures of cyclometallates

have been calculated using time dependent-density functional

theory (TD-DFT).
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Results and discussions

C(Naphthyl)–H bond activation by rhodium

Napthylazo–29–hydroxyarenes (H2L1–H2L4) with diazene as the

directing group offer quasi-equivalent metalation sites. When the

primary donor (diazene) is attached to the C1of a naphthyl

group, it offers two potentials sites for metallation, at C2 (ortho)

and C8 (peri) leading to the formation of two isomeric cyclo-

metallates. On the other hand, C3 and C1 are the probable sites

of metalation when the directing diazene group is at C2 position.

Driven by the aim to examine the consequences of the

substrate modifications on C(naphthyl)–H bond activation,

reactions of the naphthylazoarenes (H2L1–H2L4) have been

carried out with [Rh(PPh3)3Cl] in refluxing toluene. The reaction

proceeded smoothly and afforded the cyclorhodates (2–5) in

decent yields. Elemental analysis and 1H NMR spectral data are

found to be consistent with the formation of rhodium(III) cyclo-

metallates via metal based two-electron oxidation. In the case

of 1–(29–hydroxy–59–methylphenylazo) naphthalene (H2L1),

the reaction was found to be regiospecific in nature, affording

a dark blue cyclometallate 2a as the sole product (Scheme 1).

Structure determination of 2a by X-ray crystallography (Fig. 1)

revealed that H2L1 is coordinated to rhodium(III) in a

dianionic terdentate fashion via C2(naphthyl), N(diazene) and

O(phenolato) donors. The C,N,O–coordinated ligand along with

a chloride ion constitute an equatorial plane around the metal

center, while the two PPh3 occupy the remaining two axial trans

positions. The Rh–C, Rh–N, Rh–O, Rh–P and Rh–Cl distances

are in agreement with reported values.7

Thus, the complex [Rh(PPh3)3Cl] regiospecifically activates

the C2–H bond of the naphthyl group of H2L1 where the

primary donor (–NLN–) is at C1 of the naphthyl ring and the

auxiliary donor is the phenolic functional groups. To examine

the effect of naphthol as an auxiliary donor on the activation

of the C(naphthyl)–H bond by rhodium(I), 1–(29–hydroxy-

naphthylazo)naphthalene (H2L2) was chosen as substrate.

Interestingly, the reaction of H2L2 with [Rh(PPh3)3Cl] afforded

a mixture of blue (3a) and pink (3b) compounds as products

(Scheme 2). On the basis of elemental analysis and mass spectral

data it is established that compounds (3a & 3b) are isomeric. The

molecular structure of the blue cyclometallate (3a) has been

shown in Fig. 2. The compound 3a shows a rhodium(III) center

bonded to C2 of the naphthyl ring, N2 of the diazene

functionality, O1 of the naphtholato fragment of the terdentate

donor system and Cl1, along with two mutually trans

triphenylphosphines in a distorted octahedral geometry.

Single crystals, suitable for X-ray crystallographic analysis of

the peri-isomer 3b could not be grown. The presence of the

naphthol group as an auxiliary donor, thus, ensures activation of

both the C2(naphthyl)–H & C8(naphthyl)–H bonds by rhodium,

whereas rhodium regiospecifically activates the C2(naphthyl)–H

bond when the phenolic group is an auxiliary donor. The

formation of isomeric cyclorhodates, 3a & 3b, can be rationa-

lized considering the well known azo-hydrazo tautomerism

displayed by naphthylazonaphthols in solution. The tautomeric

behaviour of naphthylazonaphthol is well known8 and it seems

to play an important role in the selectivity of C–H bond

activation. The azo-enol form of naphthylazonaphthol initially

binds the metal center in the complex [Rh(PPh3)3Cl] via oxidative

insertion of rhodium into the O–H bond with concomitant

dissociation of one triphenylphosphine, generating a reactive

intermediate which activates the C2(naphthyl)–H bond only with

simultaneous elimination of H2 to afford the cyclometallate 3a.

On the other hand, the hydrazo-keto form of H2L2 binds the

metal center in the complex [Rh(PPh3)3Cl] via oxidative insertion

of rhodium into N–H bond with simultaneous dissociation of

one triphenylphosphine and produces a reactive intermediate,

Scheme 1 Formation of the cyclorhodate 2a.

Fig. 1 ORTEP diagram of 2a. Selected bond distances (Å): Rh1–C2,

1.904(6); Rh1–N2, 1.984(5); Rh1–O1, 2.288(5); Rh1–Cl1, 2.3673(10);

Rh1–P1, 2.3835(6), N1–N2, 1.270(5). Selected angles (u): C2–Rh1–N2,

80.3(2); N2–Rh1–O1, 77.20(19); O1–Rh1–Cl1, 87.22(12); C2–Rh1–P1,

91.50(14); N2–Rh1–P1, 89.52(12); O1–Rh1–P1, 88.56(11); Cl1–Rh1–P1,

90.086(12).

Scheme 2 Formation of the cyclorhodates 3a and 3b.
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which activates the C8(naphthyl)–H bond and undergoes cyclo-

metallation via elimination of H2 resulting in the cyclometallate

3b with a five-membered metallocarbocycle. The exclusive

formation of the orthometallate 2a occurs only in case of

H2L1, which exists in azo-enolic form predominantly in solution.

The effect of the directing diazene group at the C2 position on the

activation of C(naphthyl)–H bonds by rhodium(I) has also been

examined. The reactions of [Rh(PPh3)3Cl] with 2–(29–hydroxy–

59–methylphenylazo)naphthalene (H2L3) and 2–(29–hydroxy-

napthylazo)naphthalene (H2L4) under identical conditions affords

mixtures of cyclorhodates, 4a & 4b, and 5a & 5b, respectively. X-ray

crystallographic analysis of the cyclorhodates 4a, 4b and 5b have

confirmed the regioselective activation of C1(naphthyl)–H and

C3(naphthyl)–H bonds in the these complexes. The molecular

structures of 4a, 4b and 5b are shown in Fig. 3–5.

The probable steps behind the formation of the cyclometal-

lates 4a & 4b are envisaged as follows. The azo-enol form of

H2L3 binds [Rh(PPh3)3Cl] via the oxidative insertion of rhodium

into the O–H bond with the concomitant dissociation of one

triphenylphosphine, generating a reactive intermediate, which

has an equal chance to activate either the C1(naphthyl)–H or

the C3(naphthyl)–H bond and undergoes cyclometallation via

elimination of H2 to afford a five membered metallocarbocycle,

resulting in the formation of 4a and 4b. Similarly, the azo-enol

form of H2L4 follows the same route, resulting in cyclometallates

5a and 5b. The hydrazo-keto form of H2L3 and H2L4 fails to

provide any stable five-membered metallocarbocycles.

All the rhodium(III) cyclometallates uniformly display strong

bands near 520, 690 and 750 cm21 which are attributed to

vibrations arising from the trans-Rh(PPh3)2 moiety. It is known

that the trans-M(PPh3)2 fragments display such vibrations.9 All

the rhodium(III) cyclometallates exhibit various non-covalent

Fig. 2 ORTEP diagram of 3a drawn at 50% probability. The solvent

molecule has been omitted for clarity. Selected bond distances (Å): Rh1–

C2, 2.002(5); Rh1–N2, 1.987(4); Rh1–O1, 2.189(3); Rh1–Cl1, 2.3895(13);

Rh1–P1, 2.3719(14), Rh1–P2, 2.3874(13), N1–N2, 1.291(5). Selected

angles (u): C2–Rh1–N2, 80.3(2); N2–Rh1–O1, 78.73 (14); N2–Rh1–P1,

92.93(11); C2–Rh1–P1, 89.91(14); O1–Rh1–P1, 88.83(9); N2–Rh1–P2,

91.78(11); C2–Rh1–P2, 90.33(14); O1–Rh1–P2, 92.65(9); C2–Rh1–P1,

89.91(14); P1–Rh1–P2, 175.25(5).

Fig. 3 ORTEP diagram of 4a drawn at 50% probability. Selected

bond distances (Å): Rh1–C1, 2.040(4); Rh1–N2, 1.938(3); Rh1–Cl1,

2.3755(12); Rh1–O1, 2.184(3); N1–N2, 1.283(3). Selected angles (u):
C1–Rh1–N2, 78.82(16); N2–Rh1–O1, 80.19(13); P1–Rh1–Cl1, 87.93(4);

O1–Rh1–Cl1, 93.91(8); O1–Rh1–P2, 93.41(7); C1–Rh1–P1, 90.44(10);

N2–Rh1–P2, 93.16(9); P1–Rh1–P2, 174.11(4).

Fig. 4 ORTEP diagram of 4b drawn at 50% probability. Selected

bond distances (Å): Rh1–C3, 1.960(5); Rh1–N2, 1.961(4); Rh1–Cl1,

2.3824(11); Rh1–O1, 2.196(3); N1–N2, 1.280(4). Selected angles (u):
C3–Rh1–N2, 79.9(2); N2–Rh1–O1, 80.51(17); P1–Rh1–Cl1, 88.74(4);

O1–Rh1–Cl1, 98.80(9); O1–Rh1–P2, 94.16(8); C3–Rh1–Cl1, 100.76(16);

C3–Rh1–P1, 88.94(12); N2–Rh1–P2, 92.24(10); P1–Rh1–P2, 174.81(5).

This journal is � The Royal Society of Chemistry 2011 RSC Adv., 2011, 1, 1279–1286 | 1281
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interactions in the solid state. C–H…p, p…p and p stacking

interactions between the aromatic rings have all been observed.

Geometric parameters of all the interactions are compiled in the

ESI.{ Descriptions of the crystal packing have also been

provided in the supporting information.

Electrochemistry

The electron transfer properties of the [Rh(PPh3)2(L)Cl] com-

plexes have been studied in an acetonitrile : dichloromethane

(9 : 1) solution with the supporting electrolyte, NBu4ClO4

(0.1M), by cyclic voltammetry. All the complexes show an

oxidative response to more positive potentials with respect to the

SCE and a reductive response to negative ones. A representative

voltammogram is shown in Fig. 6 and the voltammetric data is

presented in Table S4, ESI.{ Both responses are believed to be

centered on the coordinated azo ligand.7 The oxidative response,

observed within 0.93 to 1.11 V vs. SCE, is irreversible in nature,

as evidenced by the fact that the cathodic peak current (ipc) is less

than the anodic peak current (ipa). The one-electron nature of

this oxidation has been verified by comparing its current height

(ipa) with that of the standard ferrocene–ferrocenium couple

under identical experimental conditions. The reductive response,

displayed at around 20.9 V vs. SCE, is also irreversible in

nature. The cyclic voltammetric studies thus show that these

rhodium(III) organometallics are quite stable, while the oxidized

and reduced species undergo rapid decomposition.

TD-DFT study

The rhodium(III) cyclometallates (2a–5b) are soluble in common

organic solvents. The electronic spectra of the cyclometallates,

recorded in dichloromethane show several intense absorptions

in the visible and ultraviolet regions. Electronic spectra of the

rhodium(III) cyclometallates are shown in Fig. 7. Spectral data

are presented in the Experimental Section. The absorption bands

observed in the visible and ultraviolet region with a high molar

extinction coefficient have been reported as metal–to–ligand

charge-transfer transitions (MLCT) and intraligand charge-

transfer transitions respectively.7 The absorptions in the ultra-

violet region were attributed to the usual nAp* and pAp*

transitions occurring within the ligand orbitals.

The time-dependent DFT (TD-DFT) calculations of the

representative rhodium(III) cyclometallates (4a & 4b) has been

done to gain further insight into the nature of the absorptions.

Only the singlet excited states have been calculated. Excitation

energies and oscillator strengths for the various absorption

bands have been reported together with the composition of the

solution vectors in terms of most relevant transitions (Table 1).

It is revealed that the HOMO is delocalized over the naphthyl-

azophenolato fragment (Fig. 8 and Tables S5 and S6, ESI,{)

for both 4a & 4b. The HOMO21 has significant contributions

from the rhodium d orbitals in 4a & 4b (41.75 and 44.69%

respectively). The lowest unoccupied molecular orbitals

Fig. 5 ORTEP diagram of 5b drawn at 50% probability. Selected

bond distances (Å): Rh1–C3, 1.993(6); Rh1–N2, 1.968(5); Rh1–Cl1,

2.3731(18); Rh1–O1, 2.161 (5); N1–N2, 1.298(7). Selected angles (u):
C3–Rh1–N2, 80.6(3); N2–Rh1–O1, 80.20(2); P1–Rh1–Cl1, 89.51(7);

O1–Rh1–Cl1, 97.82(15); O1–Rh1–P2, 92.49(15); C3–Rh1–Cl1, 101.4(2);

C3–Rh1–P1, 88.5(2); N2–Rh1–P2, 91.5(17); P1–Rh1–P2, 174.86(7).

Fig. 6 Cyclic voltammogram of [Rh(PPh3)2(L1)Cl], 4a in an aceto-

nitrile : dichloromethane (9 : 1, v/v) solution (0.1M NBu4ClO4) at scan

rate 50 mV s21.

Fig. 7 Electronic spectra of the cyclorhodates 4a (orange), 4b (blue), 5a

(green) and 5b (pink) in dichloromethane.

1282 | RSC Adv., 2011, 1, 1279–1286 This journal is � The Royal Society of Chemistry 2011
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(LUMO) are almost entirely localized over the ligand moiety.

The isomers have been found to differ in the energy of the

HOMO, with a lower energy in the case of 4b than that for 4a.

The HOMO–LUMO gaps have been computed to be 1.44 and

1.56 eV respectively. The calculated lowest energy transition

wavelengths of 4a & 4b are 686 nm and 656 nm respectively. The

results for these absorptions agree with those determined

experimentally by UV–vis spectroscopy (Table 1). In 4a, the

lowest energy transition is HOMOALUMO (93.5%), which

corresponds to an intraligand charge transfer transition (LLCT).

In 4b, the main transitions in the lowest energy region are

HOMOALUMO (61.7%) and HOMO22ALUMO (27.1%).

The HOMO–LUMO gap is computed to be 1.44 eV. The most

intense transition is observed in 4a in the UV region (ca. 325 nm)

and involves excitation from HOMO and HOMO23 to

LUMO+1 and LUMO+3 respectively, with predominantly

intraligand p–p* character and a small admixture of MLCT.

Similarly, in the case of 4b, the same absorption band appears at

340 nm and involves excitation from HOMO, HOMO25 and

HOMO217 to LUMO+14, LUMO+1 and LUMO respectively,

with predominantly intraligand p–p* character and a small

admixture of MLCT.

Conclusions

The activation of different C(naphthyl)–H bonds viz. C1–H,

C2–H, C3–H and C8–H bonds in naphthylazo–29–hydroxy-

arenes (H2L, 1) have been achieved by rhodium(I) following an

oxidative addition pathway affording rhodium(III) complexes.

The different positions of the directing primary donor (the

diazene functional group) and the incorporation of suitable

auxiliary donors govern the selectivity of the C–H bond

activation. The azo-hydrazo tautomerism of naphthylazo–29–

hydroxyarenes also plays an important role in the observed

selectivity. Regiospecific C2(naphthyl)–H activation has been

achieved by rhodium(I) when the primary donor (diazene) is at

C1 and the auxiliary donor is phenol, whereas the presence of

naphthol as the auxiliary donor leads to the regioselective activa-

tion of C2(naphthyl)–H & C8(naphthyl)–H bonds. Regioselective

activation of C1(naphthyl)–H & C3(naphthyl)–H bonds have

been achieved by rhodium(I), where the primary donor (diazene) is

at C2 and the auxiliary donor is phenol or naphthol. The origin of

the electronic transitions in the cyclorhodates has been investigated

by TD-DFT. The calculations corroborate the experimental

results. Based on the TD-DFT calculations, the lowest energy

transitions in cyclorhodates have been shown to be intra-ligand

charge transfer transitions occurring in the terdentate dianionic

naphthylazo–29–hydroxyarenes ligands.

Experimental Section

Materials

RhCl3.nH2O was obtained from Arora-Matthey, Kolkata.

Complex [Rh(PPh3)3Cl] was prepared following a reported

method.10 Solvents and chemicals used for the syntheses

were of analytical grade. Tetrabutylammonium perchlorate

Table 1 Selected TD-DFT calculations of excitation energies, wavelengths (l), oscillator strengths ( f ) and compositions of the low-lying singlet states
in dichloromethane solution for the cyclometallates 4a and 4b

Code State Energy (eV) lcal (nm) lexp (nm) Oscillator strength (f) Composition Character

4a S1 1.8090 686 627 0.075 HOMOALUMO (93.5%) ILCT+LLCT
S14 3.0267 410 – 0.072 HOMO25ALUMO (55.5%) LLCT+MLCT

HOMOALUMO+7 (12.4%)
HOMO24ALUMO (12.2%)

S44 3.5650 348 340 0.194 HOMO25ALUMO+1 (33.8%) LLCT+LMCT
HOMO24ALUMO+1 (33.5%)

S59 3.8183 325 292 0.068 HOMO26ALUMO+1 (51.9%) LLCT+MLCT
HOMO23ALUMO+4 (27.5%)

4b S1 1.8920 656 668 0.027 HOMOALUMO (61.7%) ILCT+LLCT
HOMO22ALUMO (27.1%)

S3 2.2337 556 – 0.088 HOMO22ALUMO (61.1%) LLCT+ILCT
HOMOALUMO (22.5%)

S5 2.5167 493 – 0.041 HOMO23ALUMO (78.7%) LLCT+MLCT
HOMO24ALUMO (10.4%)

S12 3.0187 411 – 0.072 HOMO25ALUMO (44.2%) LLCT+ILCT+MLCT
HOMOALUMO+5 (21.1%)
HOMO24ALUMO (10.6%)

S49 3.6229 343 340 0.125 HOMOALUMO+14 (24.8%) LLCT
HOMO25ALUMO+1 (23.0%)
HOMO217ALUMO (20.7%)

Fig. 8 Partial molecular orbital diagram of the cyclorhodates 4a and 4b.
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for the electrochemical work was synthesized following a

reported method.11

Physical measurements

Elemental microanalyses (C, H and N) were performed by

either a Perkin-Elmer (Model 240C) or a Heraeus Carlo Erba

1108 elemental analyzer. The IR and Electronic spectra were

recorded on a Jasco 5300 FT-IR spectrophotometer and a

JASCO V-500 spectrophotometer respectively. NMR spectra

were obtained by a Bruker DPX 300 NMR Spectrometer.

Electrochemical measurements were performed by a computer

controlled PAR model (VERSASTAT II) electrochemical

instrument. A platinum disc working electrode, a platinum wire

auxiliary electrode and an aqueous saturated calomel reference

electrode (SCE) were used in the cyclic voltammetry experi-

ments. All electrochemical experiments were performed under

a dinitrogen atmosphere at 298 K in 1 : 9 dichloromethane/

acetonitrile using [nBu4N][ClO4] (TBAP) as the supporting

electrolyte. The reported potentials are uncorrected for the

junction potential.

Synthesis of the ligands

Compounds (H2L1–H2L4) were synthesized by published

procedures.12,5c

Isolation of rhodium(III) cyclometallates

Isolation of [Rh(L1)(PPh3)2Cl] (2a). The compound 1–(29–

hydroxy–59–methylphenylazo)naphthalene (H2L1) (0.026 g,

0.1 mmol) was dissolved in 50 cm3 toluene and the solution

was purged with dinitrogen for 15 min. Then [Rh(PPh3)3Cl]

(0.1 g, 0.1 mmol) was added slowly to solution and the whole

mixture was refluxed under a dinitrogen atmosphere for six

hours. The solvent was evaporated under reduced pressure and

the crude green solid was dissolved in dichloromethane and was

subjected to purification by thin layer chromatography on a

silica plate. With a mixture of petroleum benzene/ethyl acetate

(20 : 1,v/v) as eluant a bluish green band was isolated and

extracted with acetonitrile. Evaporation of the solvent afforded the

titled compound. Yield: 55%. Anal. Calc. for C53H42N2OClP2Rh:

C, 68.95; H, 4.59; N, 3.03. Found: C, 68.80; H, 4.82; N, 2.92%.
1H NMR (CDCl3):d: 1.76 (s,3H, aryl CH3); aromatic protons: 5.89

(s, 1H), 6.19 (d, 1H, J = 6.6 Hz), 6.45 (dd, 1H, J = 6.6 Hz), 6.87

(d, 1H, J = 6.6 Hz), 7.06 (m, 11H), 7.18 (m, 9H), 7.24 (m, 1H), 7.32

(t, 1H), 7.45 (m, 12H), 8.27 (d, 1H, J = 6 Hz). IR (KBr):

n 1402 cm21 (–NLN–). UV–vis (dichloromethane), lmax/nm

(e/M21 cm21): 676 (11,950), 627 (9,600), 290(40,300). MS: m/z:

923 [M]+, 398 [M–2PPh3]+.

Isolation of [Rh(L2)(PPh3)2Cl] (3a & 3b). Isolation of the

isomeric cyclometallates 3a and 3b were achieved following the

same procedure as above, using H2L2 instead of H2L1. Here a

mixture of petroleum benzene and ethyl acetate (10 : 1 v/v) has

been used as eluent . A blue fraction and a pink–violet fraction

were obtained. The bands were separated and extracted with

acetonitrile.

3a. Yield 28%. Anal. Calc. for C56H42N2OClP2Rh: C, 70.12;

H, 4.41; N, 2.92. Found: C, 69.79; H, 4.60; N, 2.86%.1H NMR

(CDCl3):d: 6.48 (d,1H), 6.99 (m,7H), 7.26 (m, 12H), 7.45 (m,

9H), 7.67 (m, 10H), 7.95 (d, 1H), 8.10 (d, 1H, J = 6 Hz), 8.21

(d, 1H, J = 6 Hz). IR (KBr): n 1405 cm21 (–NLN–). UV–vis

(dichloromethane), lmax/nm (e/M21 cm21): 289 (63,400), 378

(17,200), 404 (13,600), 604 (19,100), 655 (25,600). MS: m/z

958 [M]+.

3b. Yield 45%. C56H42N2OClP2Rh: C, 70.12; H, 4.41; N, 2.92.

Found: C, 70.09; H, 4.56; N, 3.02%. 1H NMR (CDCl3):d: 6.42

(d, 1H, J = 6.3 Hz), 7.02 (m, 12H), 7.21 (m, 12H), 7.37 (m, 13H),

7.55 (m, 2H), 7.81 (d, 1H, J = 6 Hz), 8.12 (d, 1H, J = 7.8 Hz).

IR (KBr): n 1395 cm21 (–NLN–). UV–vis (dichloromethane),

lmax/nm (e/M21 cm21): 278 (80,300), 560 (28,200), 602 (32,400).

MS: m/z 958 [M]+, 661[M2(PPh3+Cl)]+.

Isolation of [Rh(L3)(PPh3)2Cl] (4a & 4b). Isolation of the

isomeric cyclometallates 4a and 4b were achieved following the

same procedure as above, using H2L3 instead of H2L1. In this

case purification of the reaction mixture by thin layer chromato-

graphy (silica, petroleum benzene/ethyl acetate, 10 : 1 v/v)

afforded a sky blue (4a) fraction and a greenish blue (4b) frac-

tion. The bands were separated and extracted with acetonitrile.

4a. Yield 20%. Anal. Calc. for C53H42N2OClP2Rh: C, 68.95;

H, 4.59; N, 3.03. Found: C, 68.76; H, 4.62; N, 3.02%.1H NMR

(CDCl3):d: 1.78 (s,3H, aryl CH3), 5.93 (s,1H), 6.25 (d, 1H, J =

6.3 Hz), 6.56 (dd, 1H), 6.94 (t, 5H) 7.05–7.15 (m, 5H), 7.14–7.21

(m, 15H), 7.39–7.43 (m, 10H), 8.4 (d, 1H, J = 8.1 Hz). IR (KBr):

n 1402 cm21 (–NLN–). UV–vis (dichloromethane), lmax/nm

(e/M21 cm21): 292 (47,500), 340 (22,300), 584 (12,000), 627

(9,600). MS: m/z 922 [M]+.

4b. Yield 35%. Anal. Calc. for C53H42N2OClP2Rh: C, 68.95;

H, 4.59; N, 3.03. Found: C, 69.10; H, 4.69; N, 2.88%.1H NMR

(CDCl3): d: 1.78 (s,3H, aryl CH3), 5.52 (d, 1H), 6.04 (m, 3H),

6.93–7.03 (m, 15H), 7.28–7.67 (m, 20H). IR (KBr): n (–NLN–)

1408 cm21. UV–vis (dichloromethane), lmax/nm (e/M21 cm21):

292 (15,500), 340 (9,500), 624 (3,600), 668 (5,100). MS: m/z 922

[M]+, 660 [M–PPh3]+, 626 [M–(PPh3+Cl)]+.

Isolation of [Rh(L4)(PPh3)2Cl] (5a & 5b). Isolation of the

isomeric cyclometallates 5a and 5b were achieved following the

same procedure as above, using H2L4 instead of H2L1. In this

case purification of the reaction mixture by thin layer chromato-

graphy (silica, petroleum benzene/ethyl acetate, 20 : 1 v/v)

afforded a blue (5a) fraction and a purple (5b) fraction. The

bands were separated and extracted with acetonitrile.

5a. Yield: 20%. Anal. Calc. for C56H42N2OClP2Rh: C, 70.12;

H, 4.41; N, 2.92. Found: C, 70.31; H, 4.45; N, 3.10%.1H NMR

(CDCl3):d: 6.56 (d, 1H, J = 6.0 Hz), 7.12–7.18 (m, 11H), 7.20–

7.39 (m, 15H), 7.40 (m, 5H), 7.45–7.54 (m, 8H), 7.64 (s, 1H), 8.54

(d, 1H, J = 6.6 Hz). IR (KBr): n 1405 cm21 (–NLN–). UV-vis

(dichloromethane), lmax/nm (e/M21 cm21): 261 (59,600), 293

(80,500), 391 (18,500), 413 (23,600), 589 (5,800). MS: m/z

958 [M]+.

5b. Yield: 72%. Anal. Calc. for C56H42N2OClP2Rh: C, 70.12;

H, 4.41; N, 3.70. Found: C, 70.31; H, 4.45; N, 3.61%. 1H NMR

(CDCl3):d: 6.42 (d, 1H, J = 6.6 Hz), 7.10 (s, 1H), 7.20–7.31 (m,

15H), 7.34–7.51 (m, 18H), 7.71 (m, 6H, J = 8.1 Hz), 8.62 (d, 1H,

J = 6.3 Hz). IR (KBr): n 1395 cm21 (–NLN–). UV–vis (dichloro-

methane), lmax/nm (e/M21 cm21): 292 (25,200), 348sh (9,400),

384 (5,400), 550 (8,400), 592 (11,600). MS: m/z 958 [M]+.
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Crystallography

Single crystals of complexes 2a and 3a were obtained by the slow

diffusion of a dichloromethane solution of the complexes into

n-hexane, whereas the single crystals of the cyclometallates 4a,4b

and 5b were obtained by slow evaporation from the acetonitrile

extract of the compounds. Crystallographic and refinement data

for the reported structures{ are presented in Table 2. Data on the

crystals was collected on a Bruker SMART 1000 CCD area-

detector diffractometer using graphite monochromated Mo-Ka

(l = 0.71073 Å) radiation by v scan. The structure was solved by

direct methods using SHELXS-9713 and difference Fourier

syntheses and refined with SHELXL97 package incorporated

in WinGX 1.64 crystallographic collective package.14 All the

hydrogen positions for the compound were initially located in

the difference Fourier map, and for the final refinement, the

hydrogen atoms were placed geometrically and held in the riding

mode. The last cycles of refinement included atomic positions for

all the atoms, anisotropic thermal parameters for all non-

hydrogen atoms and isotropic thermal parameters for all the

hydrogen atoms. Full-matrix-least-squares structure refinement

against |F2| molecular geometry calculations were performed

with PLATON,15 and molecular graphics were prepared using

ORTEP-3.16

Method and Computational Details

The calculations have been performed within the TDDFT

formalism as implemented in ADF2007.17 Two approximations

are generally made: one for the XC potential, and one for the XC

kernel, which is the functional derivative of the time-dependent

XC potential with respect to density. We used LDA (local

density approximation) including the VWN parametrization18

in the SCF step and Becke19 and Perdew–Wang20 gradient

corrections to the exchange and correlation respectively and

Adiabatic local Density Approximation (ALDA) for the XC

kernel, in the post-SCF step. TD-DFT calculations have been

performed with the uncontracted triple-STO basis set with a

polarization function for all atoms. In the calculation of the

optical spectra, 70 lowest spin-allowed singlet–singlet transitions

have been taken into account. Transition energies and oscillator

strengths have been interpolated by a Gaussian convolution

with a s of 0.2 eV. Solvent effects were modelled by the

‘‘Conductor-like Screening Model’’ (COSMO)21 of solvation as

implemented in ADF.
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