
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Spring 2014

Energy efficient security and privacy management in sensor Energy efficient security and privacy management in sensor

clouds clouds

Vimal Kumar

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Kumar, Vimal, "Energy efficient security and privacy management in sensor clouds" (2014). Doctoral
Dissertations. 2167.
https://scholarsmine.mst.edu/doctoral_dissertations/2167

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2167?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ENERGY EFFICIENT SECURITY AND PRIVACY MANAGEMENT IN SENSOR

CLOUDS

by

VIMAL KUMAR

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2014

Dr. Sanjay Madria, Advisor
Dr. Sriram Chellappan

Dr. Wei Jiang
Dr. Fikret Ercal

Dr. Jagannathan Sarangapani

Copyright 2014

Vimal Kumar

All Rights Reserved

iii

PUBLICATION DISSERTATION OPTION

This dissertation consists of four articles prepared in the style required by the journals

or conference proceedings in which they were published:

Pages 21 to 43, “Secure Hierarchical Data Aggregation in Wireless Sensor Networks:

Performance Evaluation and Analysis”, was published in 2012 13th IEEE International

Conference on Mobile Data Management (MDM 2012), Bengaluru, India.

An earlier version, “A Test-bed for Secure Hierarchical Data Aggregation in Wireless

Sensor Networks”, was published in 2010 7th IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS 2010), San Fransico, California.

Pages 44 to 78, “PIP: Privacy and Integrity Preserving Data Aggregation in Wireless

Sensor Networks”, was published in 2013 32nd IEEE International Symposium on Reliable

Distributed Systems (SRDS 2013), Braga, Portugal.

Pages 79 to 114, “Distributed Attribute Based Access Control of Aggregated Data in

Sensor Clouds”, was submitted to 2014 IEEE International Conference on Sensing, Com-

munication, and Networking (SECON 2014), Singapore.

Pages 115 to 151, “Efficient and Secure Code Dissemination in Sensor Clouds”,

was submitted to 2014 15th IEEE International Conference on Mobile Data Management

(MDM 2014), Brisbane, Australia.

A part of the literature review appeared as a book chapter, “Secure Data Aggregation

in Wireless Sensor Networks”, in Wireless Sensor Network Technologies for the Informa-

tion Explosion Era, (Springer 2012).

iv

ABSTRACT

Sensor Cloud is a new model of computing for Wireless Sensor Networks, which

facilitates resource sharing and enables large scale sensor networks. A multi-user dis-

tributed system, however, where resources are shared, has inherent challenges in security

and privacy. The data being generated by the wireless sensors in a sensor cloud need to

be protected against adversaries, which may be outsiders as well as insiders. Similarly the

code which is disseminated to the sensors by the sensor cloud needs to be protected against

inside and outside adversaries. Moreover, since the wireless sensors cannot support com-

plex, energy intensive measures, the security and privacy of the data and the code have to

be attained by way of lightweight algorithms.

In this work, we first present two data aggregation algorithms, one based on an Ellip-

tic Curve Cryptosystem (ECC) and the other based on symmetric key system, which pro-

vide confidentiality and integrity of data against an outside adversary and privacy against

an in network adversary. A fine grained access control scheme which works on the securely

aggregated data is presented next. This scheme uses Attribute Based Encryption (ABE) to

achieve this objective. Finally, to securely and efficiently disseminate code in the sensor

cloud, we present a code dissemination algorithm which first reduces the amount of code

to be transmitted from the base station. It then uses Symmetric Proxy Re-encryption along

with Bloom filters and HMACs to protect the code against eavesdropping and false code

injection attacks.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude towards my advisor

Dr. Sanjay Madria for his continuous support of my Ph.D. study and research. I have

greatly benefitted from his, knowledge, advice and guidance, which was instrumental in

the completion of this dissertation.

Special thanks go to Dr. Sriram Chellappan for the engaging discussions we had and

his invaluable encouragement and practical advice. I would also like to thank the members

of my dissertation committee, Dr. Wei Jiang, Dr. Jagannathan Sarangapani and Dr. Fikret

Ercal, for their constructive comments and feedback.

I would like to acknowledge the contributions of the current and former members

of the research group especially, Brijesh Kashyap Chejerla, Dylan McDonald, Dr. Nayot

Poolsappasit and Dr. Roy Cabaniss, with whom I spent countless hours in the lab and en-

gaged in numerous fruitful discussions. I am thankful to my friends especially Abhinav

Saxena, Shashank Kumar, Sachin Sharma and Bhanu Pratap Singh Kanwar who provided

the much needed humor in otherwise challenging times and made my stay in Rolla enjoy-

able.

I owe a very important debt to my father Ram Narayan Baghel, my mother Sushma

and my brother Prashant for their patience and support at all stages of my life. I would

particularly like to thank Monica, who has been a constant source of motivation and a

beacon of light when there was none.

Finally I would like to dedicate this work to my late brother Ashish Kumar, who left

us too soon. I hope this would make you proud.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii

ABSTRACT . iv

ACKNOWLEDGEMENTS . v

LIST OF ILLUSTRATIONS. xi

LIST OF ALGORITHMS. xiii

LIST OF TABLES. xiv

SECTION

1. INTRODUCTION . 1

2. LITERATURE REVIEW .. 5

2.1. PRELIMINARIES . 5

2.1.1. Elliptic Curve Cryptography . 5

2.1.2. Homomorphic Encryption. 6

2.1.3. Additive Digital Signatures . 6

2.1.4. Secret Sharing. 7

2.1.5. Key Policy Attribute Based Encryption . 8

2.1.6. Proxy Re-Encryption . 9

2.2. SECURE AND PRIVACY PRESERVING DATA AGGREGATION 9

2.3. USER ACCESS CONTROL . 12

2.4. SECURE CODE DISSEMINATION . 14

3. BIBLIOGRAPHY . 17

vii

PAPER

I. SECURE HIERARCHICAL DATA AGGREGATION IN WIRELESS SENSOR
NETWORKS: PERFORMANCE EVALUATION AND ANALYSIS 21

1. INTRODUCTION . 22

2. RELATED WORK AND BACKGROUND. 24

3. SECURE HIERARCHICAL DATA AGGREGATION ALGORITHM 27

3.1. MODIFIED ECDSA SIGNATURE ALGORITHM .. 27

3.2. EC ELGAMAL ENCRYPTION . 29

4. PERFORMANCE ANALYSIS . 31

4.1. IMPLEMENTATION. 31

4.2. SIMULATION . 35

5. CONCLUSIONS . 41

6. BIBLIOGRAPHY . 42

II. PIP: PRIVACY AND INTEGRITY PRESERVING DATA AGGREGATION IN
WIRELESS SENSOR NETWORKS . 44

1. INTRODUCTION . 45

2. PROBLEM STATEMENT . 47

3. RELATED WORK . 49

4. SYSTEM AND ADVERSARY MODELS. 52

5. PRELIMINARIES. 53

5.1. SECRET SHARING . 53

5.2. RECURSIVE SECRET SHARING . 53

6. PROPOSED ALGORITHM .. 55

6.1. BASIC PIP ALGORITHM .. 56

viii

6.2. NUMERICAL EXAMPLE. 58

6.3. SECURITY ANALYSIS . 60

6.3.1. Confidentiality . 60

6.3.2. Integrity . 61

6.4. DISCUSSION ON PRIVACY AND INTEGRITY IN BASIC PIP 62

7. EXTENSIONS TO BASIC PIP ALGORITHM .. 64

7.1. ENHANCED PIP FOR CORRUPT AGGREGATOR DETECTION 64

7.1.1. Corrupt Aggregator Detection . 65

7.1.2. Attack Scenarios . 67

7.2. MULTIDIMENSIONAL PIP . 68

8. PERFORMANCE ANALYSIS . 70

9. CONCLUSION . 76

10. BIBLIOGRAPHY . 77

III. ATTRIBUTE BASED ACCESS CONTROL OF AGGREGATED DATA IN
SENSOR CLOUDS . 79

1. INTRODUCTION . 80

2. RELATED WORK . 82

3. MODELS . 84

3.1. SYSTEM MODEL . 84

3.2. ADVERSARY MODEL. 84

4. PRELIMINARIES. 86

4.1. BILINEAR MAPS. 86

4.2. KEY POLICY ATTRIBUTE BASED ENCRYPTION . 86

4.3. PAILLIER ENCRYPTION. 87

ix

4.4. PIP ALGORITHM FOR DATA AGGREGATION . 88

5. ACCESS CONTROL POLICY . 89

6. OVERVIEW OF THE SCHEME . 93

7. ACCESS CONTROL SCHEME. 94

7.1. SYSTEM SETUP. 94

7.2. ACCESS CONTROL SECRET KEY GENERATION . 94

7.3. DATA AGGREGATION KEY GENERATION . 95

7.4. DATA AGGREGATION KEY ESTABLISHMENT . 96

7.5. DATA AGGREGATION . 98

8. DISCUSSION . 99

9. REVOCATION OF USERS . 101

10. MODIFYING ACCESS AT RUNTIME . 103

10.1. ENCRYPTION SCHEME FOR MODIFYING ACCESS AT RUNTIME. . 103

10.2. PROTOCOL FOR MODIFYING ACCESS AT RUNTIME 105

11. SECURITY ANALYSIS . 107

12. PERFORMANCE ANALYSIS . 109

13. CONCLUSION AND FUTURE WORK . 112

14. BIBLIOGRAPHY . 113

IV. EFFICIENT AND SECURE CODE DISSEMINATION IN SENSOR CLOUDS. . 115

1. INTRODUCTION . 116

2. RELATED WORK . 118

3. SYSTEM MODEL AND ASSUMPTIONS. 121

4. PROPOSED APPROACH . 123

x

5. PRELIMINARIES. 125

5.1. PROXY RE-ENCRYPTION . 125

5.2. BLOOM FILTER . 126

6. DETECTING COMMON FUNCTIONS . 128

7. PROPOSED ALGORITHM .. 131

7.1. PRE-DEPLOYMENT PHASE. 131

7.2. PRE-DISSEMINATION . 132

7.3. CODE DISSEMINATION . 133

7.4. ACTIVITY ON THE NODES . 136

8. A DISCUSSION ON SECURITY. 140

8.1. CONFIDENTIALITY OF CODE . 140

8.1.1. New Code . 140

8.1.2. Common Code . 140

8.2. INTEGRITY OF CODE. 141

8.2.1. New Code . 141

8.2.2. Common Code . 141

9. PERFORMANCE ANALYSIS . 142

10. CONCLUSION . 149

11. BIBLIOGRAPHY . 150

SECTION

4. CONCLUSION . 152

VITA . 154

xi

LIST OF ILLUSTRATIONS

Figure Page

SECTION

2.1 Proxy Re-encryption . 9

PAPER I

4.1 Execution times on Mica2 for 128, 160 and 192 bit keys . 32

4.2 Execution times on TelosB for 128, 160 and 192 bit keys 33

4.3 Energy consumption on Mica2 for 128, 160 and 192 bit keys 33

4.4 Energy consumption on TelosB for 128, 160 and 192 bit keys 34

4.5 Throughput for a network of 25 nodes . 36

4.6 Throughput for a network of 50 nodes . 37

4.7 Throughput vs number of nodes. 38

4.8 Connectivity in case of node capture. 39

4.9 Throughput vs wait time at the aggregators vs end to end delay 40

PAPER II

6.1 Data aggregation using Basic PIP . 60

7.1 Attack scenarios . 67

8.1 Execution time of Basic PIP on TelosB motes . 71

8.2 Energy consumption Basic PIP on TelosB motes . 71

8.3 Execution time of enhanced PIP on TelosB motes . 72

8.4 Memory required for basic and enhanced PIP on TelosB . 73

8.5 Bandwidth consumption per node for varying share size . 75

8.6 Energy consumed as a function of nodes involved in aggregation 75

xii

PAPER III

3.1 System Model . 85

5.1 Example access tree. 89

5.2 Unacceptable access tree . 90

5.3 Acceptable access tree . 92

7.1 Access tree augmented with ID . 95

11.1 Relationship between number of elements chosen (k) and stored (n) 108

PAPER IV

3.1 System Model . 122

6.1 Rearranging application code . 130

7.1 Rearranging application code for a new application . 132

7.2 Content disseminated by the base station . 135

7.3 Vertical and Horizontal hash trees. 136

9.1 Relationship between k and n for p f = 0.01 . 143

9.2 Execution times of proxy re-encryption operations . 144

9.3 Energy consumption of proxy re-encryption operations . 145

9.4 Tradeoff between privacy lost and communication overhead 145

9.5 Percentage reduction in overall code size . 146

9.6 Bandwidth consumption . 146

9.7 Energy overhead compared to Seluge . 148

xiii

LIST OF ALGORITHMS

Algorithm Page

PAPER I

1 Tree construction algorithm . 28

2 HELP procedure . 28

3 Elliptic Curve Elgamal . 30

PAPER II

4 Share Generation Algorithm . 57

5 Data Regeneration and Integrity Check . 58

6 Data Aggregation using enhanced PIP . 65

7 Corrupt aggregator detection . 66

PAPER III

8 Access Tree Conversion . 91

PAPER IV

9 EC-BBS Algorithm . 126

10 Rearrange Application Code (RAC) . 129

11 Pre-Deployment . 132

12 Pre-Dissemination . 133

13 Code Dissemination . 136

14 Image build . 139

xiv

LIST OF TABLES

Table Page

SECTION

2.1 Energy cost of digital signature and key exchange [mJ] . 6

2.2 A comparison of secure data aggregation schemes. 12

PAPER I

2.1 Number of transmissions in the integrity verification phase 26

4.1 Specifications of Mica2 and TelosB. 31

4.2 Energy consumed during reception and transmission of packets 35

PAPER II

8.1 Energy efficiency of PIP compared to SDA[2] . 70

PAPER III

12.1 Execution time and energy consumption on Mica2 motes 110

12.2 Comparison of computation complexity . 111

12.3 Comparison of communication complexity . 111

PAPER IV

5.1 Symbols used in the algorithm . 127

1. INTRODUCTION

While the use of wireless sensors is growing, they continue to be tightly connected

with the internal IT system or the network owner. In this traditional notion of Wireless

Sensor Networks (WSN), a user needs to own a wireless sensor network, deploy it and

maintain it, in order to use it. This model of computing in the WSN domain has been a re-

strictive force against its widespread adoption. A new model has recently been introduced,

based on the successful Cloud Computing model for IT resources, which provides sensing

as a service and decouples the user and the network owner.

Sensor Cloud Computing is a heterogeneous computing environment, which brings

together multiple WSNs, each of which may contain many wireless sensors owned by dif-

ferent entities. In this computing paradigm, the users do not need to own the sensor network

before using it. They can simply buy the sensing services from the sensor cloud. Since the

amount of investment goes down, usage of large scale sensor networks becomes affordable.

Similar to cloud computing, resources in sensor clouds can be dynamically provisioned

and de provisioned on demand, providing greater flexibility of operations. However, unlike

cloud computing, the resources in the sensor cloud i.e. wireless sensors may be owned

by different entities. These entities perform the duties of deploying and maintaining their

WSNs and lease them out to the sensor cloud.

The benefits of using a sensor cloud though, come with their own set of security

issues. A multi-user, distributed system always poses challenges in security, and in the

wireless sensor network domain, these challenges need to be handled in an energy efficient

manner. The primary use of a WSN is in collecting sensory data from wireless sensors.

This data is aggregated in-network, to reduce energy and bandwidth consumption. The

wireless sensors though, typically work unattended and are prone to eavesdropping and

false data injection attacks. When the data is routed through multiple WSNs in the sensor

2

cloud, it also becomes important to protect the privacy of the data and the nodes from

each other. In a multi-user scenario, like a sensor cloud, the users can query the network

directly. The network then responds with relevant data which is aggregated in-network on

the nodes. It is necessary in such a setting, to have an appropriate mechanism in place

which provides access control according to the privilege granted to each user. Finally,

since wireless sensors in a sensor cloud are dynamically provisioned for users; we also

require a secure code dissemination algorithm, which is also efficient in terms of energy

consumption.

We first discuss the issue of collecting data securely from a wireless sensor network

in Section I. Wireless sensors are severely constrained in terms of bandwidth, energy re-

sources and computational power, which calls for energy efficient and lightweight algo-

rithms. The simplest method of data collection is by having each node’s data forwarded

by other nodes to the base station. This simple method however, incurs huge amount of

wireless transmission which is expensive in terms of energy. To reduce the wireless trans-

missions and hence the energy consumption, we perform the aggregation of data at in-

termediate nodes. When data is aggregated, it becomes easier for an adversary to inject

false data stealthily. To prevent that from happening we use Additive Digital Signatures

in the form of a modified version of Elliptic Curve Digital Signature Algorithm (ECDSA).

We also use Elliptic Curve El Gamal (ECEG) homomorphic encryption for confidentiality.

Homomorphic encryption and additive digital signatures allow us to replace energy in-

tensive decryption and verification operations with a few lightweight addition operations,

thereby helping in conserving energy. Additive digital signatures further reduce the energy

consumption by providing integrity verification without the requirement of a separate ver-

ification phase. Further in the section we discuss the implementation of our algorithm on

Mica2 and TelosB sensor platforms and the experiments to analyze the performance.

In Section II we discuss the PIP algorithm which along with confidentiality and data

integrity, also takes into account privacy of data and further reduces the energy consump-

3

tion. PIP is based upon the recursive secret sharing scheme in [1]. Recursive secret sharing

scheme [1] allows us to store additional data in shares of a secret. We use this additional

space to store a linear combination of the data and the integrity key, in the shares of the

data. A scrambling key is then used to scramble the shares in a manner which preserves the

homomorphic property of the shares. We then enhance the algorithm to be able to localize

a rogue sensor to a certain extent. Further in the section, we provide the proof of secu-

rity of our construction and analyze its performance by implementing it on TelosB sensor

platform.

In Section III, we focus on controlling the access to the aggregated data in sensor

clouds. Traditionally access control schemes for wireless sensors have been proposed,

keeping communication with a single sensor (acting as a data repository) in mind. The

network topology is assumed to be fixed and the access control is only enforced at the data

repository. The network topology in sensor cloud however, is not fixed and a new query tree

is formed dynamically for each user query. Moreover, there are multiple parties in a sensor

cloud; the user, sensor cloud administrator and network owners. While the sensor cloud

administrator imposes access control, the network owners may also want control over, who

is able to access data from their sensors. We use Key Policy Attribute Based Encryption

(KP-ABE) to provide attribute based encryption for access control. Paillier Encryption is

used to support aggregation of access control keys. To provide the network owners the

flexibility to control the access, we introduce authorizations, by way of a one way key

chain.

In Section IV, we turn our attention to secure code dissemination in sensor clouds.

In a sensor cloud, wireless sensors are frequently de-provisioned and provisioned for new

users. The sensor cloud needs to disseminate code to these newly provisioned sensors.

Since the provisioning of sensors happens very often, an efficient way of disseminating

code is required to reduce the expenditure of energy on code forwarding. It also needs to

be secure since, the code will likely be forwarded through many sensor networks on the

4

way to its destination. Our approach here is to reduce the amount of code needed to be

transmitted by discovering the common fragments of code, in various application codes.

The common fragments of code are distributed on the sensors during deployment, so that

they can be picked up whenever a new application is to be deployed. The confidentiality of

the code is provided using the symmetric proxy re-encryption scheme discussed in [2] and

the false code injection is checked using a combination of Bloom Filter and HMAC.

5

2. LITERATURE REVIEW

Sensor cloud computing is a recent phenomenon, but a great deal can be learnt from

prior research in the field of Wireless Sensor Networks. A large body of work exists for

security and privacy in wireless sensor networks in general. Our focus here is on the ag-

gregation of sensory data in secure and privacy preserving manner and in securely dissem-

inating application code in sensor clouds. We thus divide this review in three parts namely,

(i) Preliminaries, (ii) Secure and privacy preserving data aggregation, and (iii) Secure code

dissemination. In Preliminaries, we discuss some security concepts which are useful in the

context of wireless sensor networks. In the latter two parts we review the related work on

secure and privacy preserving data aggregation and secure code dissemination in sensor

cloud respectively.

2.1. PRELIMINARIES

2.1.1. Elliptic Curve Cryptography. Public key cryptography, also known as

asymmetric cryptography is widely used in distributed environments. However, public key

algorithms generally are power hungry and clearly not suitable for wireless sensors. Over

the last few years Elliptic Curve Cryptography (ECC) has emerged as an attractive and

viable public key system for constrained environments. ECC offers considerably greater

security for a given key size, compared to the first generation public key systems. The

smaller key size also makes possible more compact implementations, for a given level

of security. ECC offers the equivalent security of a public key system for much lesser

key size and also solves the problem of key distribution over insecure channel found in

symmetric key cryptography. A small key size is not the only advantage of ECC, it is

computationally inexpensive too. In [3] authors compared the energy cost of RSA and

ECC on an 8-bit microcontroller and found ECC to have significant advantage over RSA in

6

terms of energy required to complete the operations. The authors compared RSA signature

scheme with ECDSA and RSA key exchange with ECDH key exchange scheme. Their

results are compactly presented in Table 2.1. It is evident that ECC operations require

much less energy overall than corresponding RSA operations. The comparatively high cost

of verification is not an issue as mostly the verification is done at the base station.

Table 2.1. Energy cost of digital signature and key exchange [mJ]
Signature Key Exchange

Algorithm Sign Verify Client Server
RSA-1024 304 11.9 15.4 304

ECDSA-160 22.83 45.09 22.3 22.3
RSA-2048 2302.7 53.7 57.2 2302.7

ECDSA-224 61.54 121.98 60.4 60.4

2.1.2. Homomorphic Encryption. An encryption algorithm is said to be homo-

morphic if it allows for the following property to hold.

enc(a)⊕ enc(b) = enc(a⊕b)

The above equation implies that in a homomorphic encryption scheme an opera-

tion performed on the encrypted data produces the same result as when the encryption is

done after the operation has been performed on the plaintext first. There are two types

of homomorphic encryption schemes, additive homomorphic schemes where we have

enc(a+ b) = enc(a) + enc(b) and multiplicative homomorphic schemes where we have

enc(a∗b) = enc(a)∗ enc(b).

2.1.3. Additive Digital Signatures. Given n signatures on n distinct messages by

n distinct users, it is possible to aggregate all these signatures into a single signature. This

single signature will convince the verifier that the n users signed the n original messages

7

[4]. In a wireless sensor network, this single signature can replace the individual signatures

of the sensors and thus help us save the overhead of sending all the signatures along with

the aggregated data. Each sensor in the network generates a digital signature on the data it

produces and forwards both the data and the signature to its parent. The parent aggregates

the data as well as the digital signatures and passes it to its parent. This process continues

till the base station obtains the final aggregated data and the aggregate signature. Aggre-

gated digital signature techniques [4] are of two kinds, one where each sensor shares it

signing key with the base station so that the base station is able to verify the digital signa-

ture. The other is where along with the data and the signature the keys are also aggregated,

so that at the end we get an aggregate key which can be used to verify the aggregate data

using the aggregate signature.

2.1.4. Secret Sharing. Secret sharing is a technique which enables us to divide

a secret in n parts such that any k parts can be used to regenerate the secret. It was first

described by Shamir [5] and Blakley [6] independently in 1979. Blakley’s secret sharing

scheme [6] is based upon the properties of hyper-planes. The secret is chosen as a point in

a k-dimensional space. The shares of this secret are constructed as n, k− 1 degree hyper-

planes, which intersect at the secret. Any k chosen hyper-planes out of the n, can then

be used to regenerate the secret. Shamir’s secret sharing scheme [5], on the other hand is

based on the properties of polynomials. Any k− 1 degree polynomial can be generated

using k points. Thus, in Shamir’s secret sharing scheme, a random k−1 degree polynomial

is generated such that the secret is the 0−th degree coefficient. n points are then generated

on this polynomial, which act as the shares. Any k of the n shares can then be used to

regenerate the polynomial and the secret. Recursive secret sharing [1] is a space efficient

secret sharing technique based on Shamir’s [5]. Recursive secret sharing (RSS) scheme

can carry up-to k−2 secrets in k shares. In the RSS scheme, the secrets are taken as fixed

points in the space and a polynomial is then created to fit the points. The randomness in the

scheme is introduced by choosing only one random point. This is in contrast with Shamir’s

8

secret sharing scheme where the polynomial is generated by taking only one fixed point,

while the rest of the points are random.

2.1.5. Key Policy Attribute Based Encryption. Attribute based encryption was

first proposed by Sahai and Waters in [7]. The attributes within the context of a sensor cloud

can be sensor type, region of interest, sensor owner, etc. In attribute based encryption either

the ciphertext or the secret key are generated so that they are dependent upon the attributes

of the user. Each attribute is associated with a private and a public key component such

that, only the user holding those attribute will be able to decrypt the data encrypted under

those attributes.

In key policy attribute based encryption (KP-ABE) [8], each ciphertext is associated

with a set of attributes. The access policy is defined by an access tree and the private de-

cryption key is generated based on this access tree, hence the name key policy. A ciphertext

can be decrypted with a key only if the attributes associated with the ciphertext satisfy the

key’s access tree. The KP-ABE [8] is composed of four algorithms, Setup, Encryption, Key

Generation, and Decryption.

• Setup: The Setup algorithm defines the attributes in the system and outputs a public

key PK and a master key MK. The public key PK is used for encryption while the

master key MK along with PK is used to generate user keys.

• Encryption: The encryption algorithm takes as input a message m, a set of attributes

γ and the public key PK and produces the cipher-text E

• Key Generation: The key generation algorithm takes as input an access tree T , the

master key MK and the public key PK to produce a secret key SK, such that SK can

decrypt E iff T matches γ.

• Decryption: The decryption algorithm takes as input the ciphertext E, the decryption

key SK and the public key PK and decrypts the ciphertext iff T matches γ, otherwise

it produces ⊥.

9

2.1.6. Proxy Re-Encryption. Proxy re-encryption is a cryptographic primitive that

enables us to re-encrypt a given ciphertext, without decrypting it. As illustrated in Figure

2.1, proxy re-encryption involves four parties; an encryptor, a proxy, and two receivers.

A re-encryption key is generated, usually by using the secret keys of the receivers and

given to the proxy. When the encryptor, encrypts a plaintext for one of the recievers, the

proxy can use the re-encryption key on the ciphertext, to re-encrypt the ciphertext for the

other receiver. This re-encrypted ciphertext can be decrypted by the other receiver using

it’s secret key.Proxy re-encryption is generally used for delegating decryption rights of

sensitive information. In this work, however, it has been used for secure dissemination of

code in wireless sensor networks.

Encryptor Receiver A Receiver BProxy

Figure 2.1. Proxy Re-encryption

2.2. SECURE AND PRIVACY PRESERVING DATA AGGREGATION

Early secure data aggregation schemes were hop by hop schemes. In hop by hop

schemes, data is decrypted and verified at each hop. These schemes such as the one by Hu

and Evans [9] mostly dealt with either the issue of data confidentiality or integrity in the

face of a single compromised node. Hu and Evans scheme employs the idea of delayed

aggregation. A compromised node could either corrupt the MACs or the data but not both.

Thus a single compromised node could always be identified; however the algorithm fails

in the event when multiple nodes are compromised. Schemes tackling the issue of multiple

compromised nodes were introduced later, for example the scheme by Chan et. al. [10].

This algorithm is resilient to any number of malicious nodes but deals only with attacks on

data integrity. Chan et. al. [10] intended to reduce the congestion around nodes high up in

10

the hierarchy during the integrity verification phase. Their integrity verification algorithm

is distributed through the network which reduces the communication load on certain nodes

and increases the time to first node failure. Schemes such as SecureDAV [11] and SDAP

[12] also provided for data integrity by making use of threshold cryptography and Merkle

hash trees respectively. In [13] the authors proposed two hop by hop secure data aggrega-

tion algorithms; CPDA and SMART to provide confidentiality of data. These algorithms

could also provide the privacy of a single node’s data to some extent but not data integrity.

In CPDA, nodes hide their data in a random polynomial of order k−1, where k is the num-

ber of nodes in a cluster and send it to all the nodes in the cluster securely using pair wise

keys. These k polynomials are then added up and sent to the cluster head, along with a se-

cret which was used to generate the polynomials. The authors then discuss another privacy

preserving data aggregation scheme SMART which is less communication intensive than

CPDA. In SMART each node in an aggregation tree slices its data into a fixed number of

parts say k, and sends k−1 parts to k−1 neighboring sensors, keeping one for itself. Sen-

sors add all of the slices together and send them to the aggregator along the path of the tree.

In CPDA, the aggregate is revealed to the cluster head while, in SMART, because positive

slices of data are distributed, some amount of information about the data is always leaked.

[14] and [15], were proposed by the same authors as improvements upon this scheme, to

additionally provide integrity of data. [14] uses the concept of disjoint aggregation trees,

where the data is simultaneously aggregated in two disjoint trees. The scheme however

is ineffective if the adversary is able to compromise just two nodes, one each in the two

aggregation trees. The algorithm in [15] uses peer monitoring, to provide data integrity.

This algorithm however, suffers from high bandwidth and energy requirements.

Hop by hop schemes though leave the data exposed to aggregators. A malicious ag-

gregator can compromise the security of the scheme. Consequently end to end secure data

aggregation schemes were proposed. CDA [16] is an end to end scheme which uses ho-

momorphic encryption in the form of Domingo Ferrer privacy homomorphism (DFPH). It

11

also uses aggregate signatures to provide data integrity. The scheme however is, not secure

against chosen plaintext attacks. Moreover, the solution provided in [16] is not scalable.

The algorithm in [17] uses ECC for homomorphic encryption but does not provide data

integrity. Castelluccia et al.’s algorithm (EDA) in [18] uses modular addition as the ho-

momorphic encryption algorithm. Modular addition is a straightforward operation which

has the advantage of simplicity over other homomorphic encryption algorithms. However,

the algorithm requires the keys be pre-distributed and there is no provision for key updates

which is a serious security flaw. A similar scheme was presented in [19], which utilizes

secret perturbation to address the issue of data confidentiality and privacy. The authors in

[19] propose four different variations of their perturbation scheme to minimize bandwidth

requirement. This scheme is lightweight, end to end and prevents the aggregator from

knowing the aggregate, however, provides no data integrity. The algorithm presented in

[21] uses additive digital signatures to provide end to end confidentiality, privacy and data

integrity. [16] presented a similar algorithm, while fundamental flaws limit its applicability

in wireless sensor networks, we improve upon and increase the efficiency of the algorithm

presented in [21]. The energy efficiency however, can be further improved, by using ho-

momorphic constructs which are based on symmetric key encryption such as in [18]. The

scheme in [22] uses random perturbations to accomplish this. In this scheme secrets are

deployed in the network tree hierarchy. These secrets are used to perturb data, which is

in the form of histograms. The scheme achieves its objectives, however, it is restrictive in

the sense that, only an approximation of the data can be provided. Table 2.2 provides a

comparison of the various secure data aggregation scheme, discussed in this subsection.

12

Table 2.2. A comparison of secure data aggregation schemes

Scheme HBH ETE Sym.
key

Pub.
Key Confidentiality Integrity Privacy

Hu et.al. X X X
Chan et.al. X X X
SecureDAV X X X

SDAP X X X
CPDA X X X

SMART X X X
IPDA X X X X

ICPDA X X X X
CDA X X X X X

Bahi et.al. X X X
EDA X X X X

Feng et.al. X X X X
Wang et.al. X X X X
Albath et.al. X X X X X

2.3. USER ACCESS CONTROL

Schemes such as broadcast authentication and symmetric key as well as public key

encryption have been used for access control since a long time. One of the first works,

however, purely discussing access control and authentication of users in wireless sensors

was by Benenson et. al [23]. In the proposed authenticated querying protocol in this

paper, each user is authenticated by multiple nearby sensor nodes. This authentication

is accomplished by using public key cryptosystem. To forward this query to a remote

node, all the nodes which authenticated the user send additional information such as a

MAC to the node. If the remote node receives the information from more than a fixed

number of nodes, the user is authenticated. Wang and Li in [24] use a similar scheme

which first authenticates the user on local sensors and uses the local sensor’s commitment

for authentication by remote sensors. Both the schemes use Elliptic Curve Cryptography

13

for authentication on local nodes. However, while [23] uses SHA-1 for authentication

by remote nodes, [24] uses t-degree bivariate polynomials to establish symmetric keys

between the nodes for securely communicating authentication and access information. In

[25], a symmetric key based approach to user access control is presented. In this approach

the user approaches the trusted authority with its credentials. Based on the credentials, the

trusted authority determines the constraints for the particular user. A key is then generated

using the constraint, the user’s identity and the symmetric key of the sensor node the user

wants to access. When the user wants to access data from the sensor it can contact the

sensor node with its identity and the credentials. The sensor node generates a symmetric

key using this information. The communication between the sensor node and the user

is done using this symmetric key. The paper further also explores delegation of access

rights. In [26] also, a combination of symmetric key cryptography and MAC has been

used to provide role based access control. In this paper however, the problem is viewed

from a service oriented architecture point of view, where each node provides a service and

the access is dependent upon the role of the user in the system. All of these approaches

however suffer from the problem that access control is all-or-none. A user either has the

access to all the data being generated by a node or none of the data being generated by a

node.

A more fine grained access control of sensor data was presented in [27]. The scheme

proposed in this paper used the key policy attribute based scheme (KP-ABE). In [27] each

node and the nodes data was associated with a set of attributes. The attributes themselves

are associated with public key components. An access tree based on the attributes of re-

quired data is created for a given user. The access tree is then used to generate the private

key which is provided to the user. The user then provides the access tree to the sensor and

the sensor provides data to the user according to the access tree. The data is encrypted such

that it can only be decrypted with a private key generated based on that access tree. This

scheme was further enhanced in [28], which included multiple base stations. This paper

14

also introduced a revocation scheme which was energy efficient on the sensor node while

consuming more energy on the user side. The system model in [29] looks at the same prob-

lem from a different point of view. In this scheme the device itself, which is generating

the data, controls the access by encrypting it according to the access policies. The scheme

uses CP-ABE [30] for access control of data, where the access policy is embedded in the

ciphertext itself. This scheme however, is computationally inefficient and consumes a lot

of energy on resource constrained wireless sensors.

None of the schemes, in the reviewed literature however work with data which is

aggregated in network. In a sensor cloud, the sensor networks can be large and data aggre-

gation is preferred when collecting data to save energy and bandwidth on the nodes. Thus

we require a scheme which can work with multiple sensor nodes which are aggregating

data in-network. In section III, we present and discuss such a scheme.

2.4. SECURE CODE DISSEMINATION

It has long been understood, that the best way to reprogram a wireless sensor network

is through wireless reprogramming. The XNP protocol [31] was one of the first algorithms

designed for this purpose. The XNP protocol however, could only reprogram the nodes

within a single hop from the base station. Each node thus, needed to be within the base sta-

tion’s communication range to receive the code image. Deluge [32] provided one of the first

fully functional, efficient way of programming wireless sensors remotely. Deluge [32] im-

plemented an Advertise-Request-Receive model, where nodes advertise if they have a new

code image. Nodes which are running the older versions of the code image request new im-

age upon receiving the advertisement and then receive the packets for the code image. This

algorithm however, did not take into account, the similarities in application code to reduce

energy consumption. The algorithm in [33] by Reijers et. al. discussed a difference-based

code dissemination scheme. This algorithm attempted to reduce the amount of transmitted

code by sending only the difference between the new and the old code image. The paper

15

introduced commands such as insert, copy, repair, repair dbl and patch list to generate an

edit script. Instead of wirelessly sending the complete new code, the base station would

only transmit the edit script. The wireless sensors would then transform their code image

according to the edit script to generate the new version of the code. The edit script however

made the algorithm, platform dependent. A platform independent scheme was introduced

in [34]. In this algorithm the code image was divided into small fixed size blocks and

hashes of each block were calculated. This was done for each new version of the code

image too. A difference script consisting of copy and download commands was created

using the difference in hashes. Algorithms [33] and [34] however, only work for small code

changes, recently the QDiff algorithm [35] was proposed which could handle much greater

code changes than previous algorithms. The QDiff algorithm [35] works on the ELF file

level and hence is platform independent. It uses slop regions to maintain similarity between

two versions of the code. If no slop region exists the new code is moved to the end of the

file. A high level of similarity between the codes at the ELF file level ensures a small patch

size. Moreover, the patch can be directly applied in the RAM, which eliminates the need

of a reboot, thus saving a large amount of energy.

The above schemes, tackled the problem of reducing the energy consumption in code

dissemination, they however, did not touch upon security. In a sensor cloud, security of

the transmitted code is also equally important, since the code and along with it, all the

keying material is disseminated via multiple networks. One of the early schemes, which

combined security with code dissemination was Seluge [36]. It attempted to tackle the

code image integrity and various DoS attacks on Deluge [32]. For each code image, it

hashes the code packets of the last page and concatenates the hashes with the packets of the

previous page. This process is performed recursively till all the packets of the first page are

hashed. The hashes from the first page are then used to create a hash tree, the root of which

is signed by the base stations private key. A page 0 is then constructed which consists

of the information to verify the root hash. In the end a signature packet is constructed

16

which consists of the root hash, the meta data about the code and the signature over the

root hash. Seluge [36] however, did not offer confidentiality of code. The algorithm in

[37] discussed confidentiality in code dissemination. This scheme handles the code image

differently than [36]. All packets are considered to be in a sequence rather than as pages.

The hash of a packet is generated in much the same way as [36], except that the last packet

is concatenated with an L-byte nonce. The first L-bytes of the hash of a packet are also

used as the key for encrypting the packet. The whole sequence of packets is thus encrypted

and the hash of the first packet is then used to construct a cipher puzzle and is signed by the

base station. These solutions protect the code against an outside adversary. In sensor cloud,

on the other hand the adversary is taken as inside the network and hence these scheme fail

to adapt adequately. In section IV we discuss a code dissemination scheme which is both

efficient and well suited to sensor clouds.

17

3. BIBLIOGRAPHY

[1] A. Parakh and S. Kak, Recursive secret sharing for distributed storage and information
hiding. In Proceedings of the 3rd international conference on Advanced networks
and telecommunication systems, ANTS’09, pages 88–90, Piscataway, NJ, USA, 2009.
IEEE Press.

[2] A. Syalim, T. Nishide, and K. Sakurai, Realizing proxy re-encryption in the symmetric
world In Informatics Engineering and Information Science, ser. Communications in
Computer and Information Science, A. Abd Manaf, A. Zeki, M. Zamani, S. Chuprat,
and E. El-Qawasmeh, Eds., 2011, vol. 251, pp. 259–274.

[3] A.S. Wander, N. Gura, H. Eberle, V. Gupta, and S.C. Shantz. Energy analysis of
public-key cryptography for wireless sensor networks. In Pervasive Computing and
Communications, 2005. PerCom 2005. Third IEEE International Conference on, pages
324–328, 2005.

[4] D. Boneh, C. Gentry, B. lynn, and H. Shacham. A Survey of Two Signature Aggrega-
tion Techniques. In Cryptobytes, 2003, 2003.

[5] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

[6] G. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS
National Computer Conference, volume 48, pages 313–317, June 1979.

[7] A. Sahai and B. Waters. “Fuzzy identity-based encryption,” in Advances in Cryptology
EUROCRYPT 2005, ser. Lecture Notes in Computer Science, R. Cramer, Ed. Springer
Berlin Heidelberg, 2005, vol. 3494, pp. 457–473.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security, ser. CCS ’06. New York, NY, USA:
ACM, 2006, pp. 89–98.

[9] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in Workshop on Se-
curity and Assurance in Ad hoc Networks. IEEE Computer Society, 2003.

[10] H. Chan, A. Perrig, and D. X. Song, “Secure hierarchical in-network aggregation in
sensor networks,” in Computer and Communications Security, ser. CCS ’06, 2006, pp.
278–287.

18

[11] A. Mahimkar and T. S. Rappaport, “SecureDAV: A secure data aggregation and veri-
fication protocol for sensor networks,” in Proceedings of the IEEE Global Telecommu-
nications Conference, 2004, pp. 2175–2179.

[12] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: a secure hop-by-hop data aggregation
protocol for sensor networks,” in Proceedings of the 7th ACM international symposium
on Mobile ad hoc networking and computing, ser. MobiHoc ’06. ACM, 2006, pp.
356–367.

[13] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher. Pda: Privacy-preserving
data aggregation for information collection. ACM Trans. Sen. Netw., 8(1):6:1–6:22,
August 2011.

[14] W. He, H. Nguyen, X. Liuy, K. Nahrstedt, and T. Abdelzaher. ipda: An integrity-
protecting private data aggregation scheme for wireless sensor networks. In Military
Communications Conference, 2008. MILCOM 2008. IEEE, pages 1 –7, nov. 2008.

[15] W. He, X. Liu, H. Nguyen, and K. Nahrstedt. A cluster-based protocol to enforce
integrity and preserve privacy in data aggregation. In Distributed Computing Sys-
tems Workshops, 2009. ICDCS Workshops ’09. 29th IEEE International Conference
on, pages 14 –19, june 2009.

[16] H.-M. Sun, Y.-C. Hsiao, Y.-H. Lin, and C.-M. Chen, “An efficient and verifiable con-
cealed data aggregation scheme in wireless sensor networks,” in Proceedings of the
2008 International Conference on Embedded Software and Systems. IEEE Computer
Society, 2008, pp. 19–26.

[17] J. Bahi, C. Guyeux, and A. Makhoul, “Efficient and robust secure aggregation of en-
crypted data in sensor networks,” in Fourth International Conference on Sensor Tech-
nologies and Applications, ser. SENSORCOMM ’10, July 2010, pp. 472–477.

[18] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted data
in wireless sensor networks,” in Proceedings of the The Second Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services, ser. Mobiq-
uitous ’05. IEEE Computer Society, 2005, pp. 109–117.

[19] T. Feng, C. Wang, W. Zhang, and L. Ruan. Confidentiality protection for distributed
sensor data aggregation. In INFOCOM 2008. The 27th Conference on Computer Com-
munications. IEEE, pages 56–60, 2008.

19

[20] C. Castelluccia, A. C-F. Chan, E. Mykletun, and G. Tsudik. Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen.
Netw., 5(3):20:1–20:36, June 2009.

[21] J. Albath and S. Madria, “Secure hierarchical data aggregation in wireless sensor
networks,” in WCNC. IEEE, 2009, pp. 2420–2425.

[22] C. Wang, G. Wang, W. Zhang, and T. Feng. Reconciling privacy preservation and in-
trusion detection in sensory data aggregation. In INFOCOM, 2011 Proceedings IEEE,
pages 336 –340, april 2011.

[23] Z. Benenson, N. Gedicke, and O. Raivio, “Realizing robust user authentication in
sensor networks” Real-World Wireless Sensor Networks (REALWSN), vol. 14, 2005.

[24] H. Wang and Q. Li, “Achieving distributed user access control in sensor networks,”
Ad Hoc Networks, vol. 10, no. 3, pp. 272 – 283, 2012.

[25] D. Liu, “Efficient and distributed access control for sensor networks,” in Distributed
Computing in Sensor Systems, ser. Lecture Notes in Computer Science, J. Aspnes,
C. Scheideler, A. Arora, and S. Madden, Eds. Springer Berlin Heidelberg, 2007, vol.
4549, pp. 21–35.

[26] J. Maerien, S. Michiels, C. Huygens, D. Hughes, and W. Joosen, “Access control in
multi-party wireless sensor networks,” in Wireless Sensor Networks, ser. Lecture Notes
in Computer Science, P. Demeester, I. Moerman, and A. Terzis, Eds. Springer Berlin
Heidelberg, 2013, vol. 7772, pp. 34–49.

[27] S. Yu, K. Ren, and W. Lou, “Fdac: Toward fine-grained distributed data access control
in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 4, pp. 673–686, 2011.

[28] S. Ruj, A. Nayak, and I. Stojmenovic, “Distributed fine-grained access control in
wireless sensor networks,” in Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, 2011, pp. 352–362.

[29] G. Bianchi, A. T. Capossele, C. Petrioli, and D. Spenza, “Agree: exploiting en-
ergy harvesting to support data-centric access control in {WSNs},” Ad Hoc Networks,
vol. 11, no. 8, pp. 2625 – 2636, 2013.

[30] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-
tion,” in Security and Privacy, 2007. SP ’07. IEEE Symposium on, 2007, pp. 321–334.

[31] J. Jeong, S. Kim, and A. Broad, “Network Reprogramming,” University of California
at Berkeley, 2003.

20

[32] J. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for
network programming at scale,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems. ACM, 2004, pp. 81–94.

[33] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor net-
works,” in Proceedings of the 2nd ACM international conference on Wireless sensor
networks and applications, ser. WSNA ’03. New York, NY, USA: ACM, 2003, pp.
60–67.

[34] J. Jeong and D. Culler, “Incremental network programming for wireless sensors,” in
Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004
First Annual IEEE Communications Society Conference on, oct. 2004, pp. 25 – 33.

[35] N. Bin Shafi, K. Ali, and H. Hassanein, “No-reboot and zero-flash over-the-air pro-
gramming for wireless sensor networks,” in Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2012 9th Annual IEEE Communications Society Conference
on, june 2012, pp. 371 –379.

[36] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and dos-resistant code dissemi-
nation in wireless sensor networks,” in Proceedings of the 7th international conference
on Information processing in sensor networks. IEEE Computer Society, 2008, pp.
445–456.

[37] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and dos-resistant multi-hop code
dissemination protocol for wireless sensor networks,” Computers & Security, vol. 32,
no. 0, pp. 36 – 55, 2013.

21

PAPER

I. SECURE HIERARCHICAL DATA AGGREGATION IN WIRELESS SENSOR
NETWORKS: PERFORMANCE EVALUATION AND ANALYSIS

Vimal Kumar∗, Sanjay K Madria∗

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

Secure data aggregation in wireless sensor networks has two contrasting objectives,

i) Efficiently collecting and aggregating data and ii) Aggregating the data securely. Many

schemes do not take into account the possibility of corrupt aggregators and allow the aggre-

gator to decrypt data in hop by hop algorithms. On the other hand using public key cryp-

tography for providing end to end security is not energy efficient. In this paper we present

and analyze the performance of the secure hierarchical data aggregation algorithm which

uses an efficient public key cryptosystem (elliptic curve cryptography) to achieve end to

end security. Unlike many other secure data aggregation algorithms which require separate

phases for secure aggregation and integrity verification, the secure hierarchical data aggre-

gation algorithm does not require an additional phase for verification. This saves energy

by avoiding additional transmissions and computational overhead on the sensor nodes. We

present and implement the secure data aggregation algorithm on Mica2 and TelosB sen-

sor network platforms and measure the execution time and energy consumption of various

cryptographic functions. We have also simulated our algorithms to analyze how an end

to end scheme increases the network life time. We experimentally analyze our algorithms

based on parameters like throughput, end to end delay and resilience to node failures.

22

1. INTRODUCTION

The small size of wireless sensors allows them to be easily deployed in hostile en-

vironment in large numbers without being noticed however it presents a few constraints

namely limited memory, available processing power and the size of battery. The presence

of these constraints calls for judicious use of the available power to maximize sensor life-

time and in turn network lifetime.

A sensor expends most of its energy in communicating with other sensors. Our ob-

jective therefore is to minimize the amount of communication by using data aggregation.

However, data aggregation introduces new issues with respect to data security. When data

is aggregated, it loses its inherent identification information. As a result of this, if proper

mechanisms are not in place, an intermediate node can corrupt the data surreptitiously. We

discuss this issue of corrupt aggregator along with the issues of confidentiality and data

integrity in detail in this paper.

Two different types of secure data aggregation schemes have been proposed by re-

searchers, hop by hop and end to end secure data aggregation schemes. End to end schemes

provide better security and require lesser amount of computation which helps in reducing

energy consumption. However, most previous secure data aggregation algorithms were two

phase algorithms; first phase for secure data aggregation and second phase for verification.

Secure hierarchical data aggregation in wireless sensor networks [1] provides an overview

of the possibility of a single phase end to end scheme for both aggregation and verifica-

tion. Though our paper carries forward the preliminary ideas proposed by us in [1], we

have modified those as follows. We replace Elliptic Curve Integrated Encryption Scheme

(ECIES) algorithm used in [1] with Elliptic Curve El Gamal (ECEG) to make it truly ho-

momorphic and also provide a secure and robust tree construction algorithm for reliable

passage of data. We demonstrate that our algorithm saves energy and increases network

23

life time in two ways. First, it replaces energy intensive decryption and verification op-

erations by light weight ciphertext, digital signatures and public key addition operations

on the aggregators. Second, it does not require a separate integrity verification phase. We

make use of aggregate digital signature to relieve the network of the extra communication

cost. In addition, we have modified these algorithms further for efficient execution and im-

plementation on sensor network test-bed consisting of Mica2 and TelosB motes to evaluate

their performance. We report in-depth experimental results of the algorithm using sen-

sor test-bed to measure energy, execution time and throughput under various conditions of

failures and attacks. To the best of our knowledge this is the first paper which provides de-

sign, implementation, performance and analysis of a single phase secure data aggregation

algorithm on two different sensor motes platform.

24

2. RELATED WORK AND BACKGROUND

The biggest challenge while working with wireless sensors is the limited available

battery power. Radio communication consumes a large amount of energy on a sensor [11].

Minimizing communication between nodes therefore is vital in wireless sensor networks,

owing to which, data aggregation has been a topic of interest to researchers in this field.

Early secure data aggregation schemes were hop by hop schemes. Schemes like [2] mostly

deal with the issue of data confidentiality in the face of a single compromised node. In

this scheme, while a parent aggregates the MACs sent by its children, it doesnt aggregate

the data. Aggregation of data is done by the grandparent. A compromised node can ei-

ther corrupt the MACs or the data but not both. Thus a single compromised node will

always be identified; however the algorithm fails when both the parent and the grandpar-

ent are compromised. Often when an adversary strikes, he captures a handful of nodes

in the attacked region and not just a single node. Schemes tackling the issue of multi-

ple compromised nodes were introduced later, for example the scheme by Chan et al [3].

This algorithm is resilient to any number of malicious nodes but deals only with attacks

on data integrity. The integrity verification algorithm here is distributed through the net-

work which reduces the communication load on certain nodes and increases the time to

first node failure. Schemes like SecureDAV [4] and SDAP [5] also provided for data in-

tegrity by making use of threshold cryptography and Merkle hash trees. SecureDAV [4]

like [3] does not have confidentiality protection. It uses threshold cryptography for proving

authenticity of the messages and Merkle hash trees for integrity. Similar to [3], SDAP[5]

also aims to reduce the congestion around the nodes which are placed high up in the hier-

archy. To accomplish this, the algorithm logically partitions the aggregation tree into sub

trees of similar sizes called groups. Data integrity is provided by using a commit and attest

technique. Hop by hop schemes though leave the data exposed to aggregators. A malicious

25

aggregator can compromise the security of the scheme. Consequently end to end secure

data aggregation schemes were proposed, some of which are discussed in [1], [6], [7] and

[8]. These algorithms use the concept of homomorphic encryption for adding encrypted

data. An encryption algorithm is said to be homomorphic if it allows for the following

property to hold.

Enc(a)⊕Enc(b) = Enc(a⊕b)

Similar to homomorphic encryption an aggregate digital signature algorithm provides

the functionality to aggregate n signatures on n distinct messages by n distinct users, into

a single signature. The algorithm in [6] uses Elliptic Curve Cryptography (ECC) for ho-

momorphic encryption but does not provide data integrity. Castelluccia et al.s algorithm

in [7] uses modular addition as the homomorphic encryption algorithm. Modular addition

is a straightforward operation which has the advantage of simplicity over other homomor-

phic encryption algorithms. However, the algorithm requires the keys be pre-distributed

and there is no provision for key updates which is a serious security flaw. While [6] and

[7] do not provide data integrity, both [1] and [8] use aggregate signature protocols for the

same. The algorithm in [8] is closest to our algorithm which uses Elliptic Curve Digital

Signature Algorithm (ECDSA) since it tries to provide both end to end confidentiality and

data integrity. However, fundamental flaws limit its usability. The algorithm encodes the

data in a special form before aggregation. While encoding enables the algorithm to retrieve

individual sensors data at the base station, it limits the scalability of the scheme. The size

of data increases with number of nodes which makes the algorithm unsuitable for large

networks. Algorithm in [9] provides confidentiality but forgoes data integrity. A detailed

comparison of the related work can be found in [10]. There exists no prior work which has

evaluated the performance of a secure data aggregation scheme by implementing it on real

motes. This paper comprehensively discusses the implementation, simulation and perfor-

mance analysis of the secure hierarchical data aggregation algorithm. Table 2.1 presents

26

a comparison of the number of transmissions required in the verification phase of various

secure data aggregation algorithms. Our scheme uses aggregate digital signatures which

eliminate the need of a data verification phase. This is advantageous as a separate data

verification phase means a number of extra wireless transmissions which consumes energy

as shown in the table. In the table n is number of nodes in the tree, d is degree of the tree h

is the height of the tree in hops.

Table 2.1. Number of transmissions in the integrity verification phase
Scheme Number of messages
SDAP h/2+∑

h/2
i=1(h/2+ i)2.

SecureDAV h
Secure aggregation for wireless sensors h/2
Secure hierarchical in network aggregation (2h−1−1)∑

h
i=2 2i−1

27

3. SECURE HIERARCHICAL DATA AGGREGATION ALGORITHM

The secure hierarchical data aggregation algorithm employs homomorphic encryp-

tion and aggregate digital signatures for end to end confidentiality and data integrity. The

original algorithm [1] specifies the use of ECIES for encryption and a modified version

of ECDSA for signing. ECIES however is not suitable for homomorphic encryption and

hence we replaced it with ECEG in our work. We designed a tree construction algorithm

shown in Algorithm 1 which is secure and favors strong bidirectional links and organizes

the nodes in a tree hierarchy. The tree construction algorithm consists of a reconfiguration

procedure shown in Algorithm 2 for nodes which get disconnected from the tree for any

reason. This procedure helps in increasing the connectivity of the network when under a

node capture or denial of service attack. After the nodes have been organized in a tree, each

node generates a reading x. The reading is signed using the aggregate signature algorithm

and SIG(x) is generated. The reading is then encrypted using the homomorphic encryption

algorithm and the ciphertext ENC(x) is produced. The leaf nodes then send the encrypted

data, signature and the public key corresponding to the private key used for generating sig-

nature to their parent. After a node has received data from all its children, it sums up all

the encrypted readings, which is possible because homomorphic encryption is being used.

It sums up the signature using the aggregate signature algorithm and all the public keys.

SUM-ENC, SUM-SIG and SUM-PK are then sent to the nodes parent. This process is re-

peated at every node until the data reaches the base station. In the remainder of this section

we discuss the signature and encryption algorithms in more detail.

3.1. MODIFIED ECDSA SIGNATURE ALGORITHM

The signature algorithm in [1] assumes the sensors are preloaded with the appropriate

elliptic curve parameters, the base station’s public key and a network wide random integer.

28

Algorithm 1 Tree construction algorithm
Require: Parameters MAX CHILDREN, NUM NODES, Secret key k deployed on each

node
1: The base station starts by broadcasting a HELLO message, which consists of a random

number r.
2: If a sensor which has not yet elected its parent receives a HELLO message, it calculates

HMACk(r) and sends it in a PARENT REQUEST to the originator of the HELLO
message.

3: if a PARENT REQUEST is received then
4: Calculate HMACk(r) and check whether it matches the HMAC in the packet.
5: Check whether RSSI value of the request packet is greater than a minimum thresh-

old.
6: Check that the number of children is less than the MAX CHILDREN limit.
7: The number of requests from a particular node is less than the allowed limit.
8: If the above four checks are satisfied, send an ACCEPTED message otherwise send

REJECTED.
9: end if

10: Upon receiving an ACCEPTED message a node elects the sender of the ACCEPTED
message as its parent and broadcasts a HELLO message.

11: If a sensor has not been able to elect a parent after a certain period of time it invokes
the HELP procedure.

12: In case of a disconnection the HELP procedure is invoked by the affected nodes.

Algorithm 2 HELP procedure
1: The sensor invoking the help procedure broadcasts a HELP request with a random

number r1.
2: Nearby sensors who are higher in the hierarchy than the HELP invoking sensor and

can accept more children reply to the HELP request with HMACk(r1) and a random
number r2.

3: The sensor calculates HMACk(r1), compares it with the HMACk(r1) in the incoming
packets and chooses one of the replying nodes as its parent. It then sends HMACk(r2)
to the parent.

4: The parent verifies HMACk(r2) and upon verification accepts the sensor as a child.

The random integer is used to compute a new k for each round. At the start of each new

round, sensors choose their private key z and generate a corresponding public key Q = zT

where T is the base point. In the ECDSA algorithm a signature is a tuple (r,s) such that

29

r = (r(x) mod p), where (r(x),r(y)) = kT and s = k−1(h(m)+ z∗ r(x)) mod p. Here h is a

secure hash function and p is a prime. When two signatures d1 = (r1,s1) and d2 = (r2,s2)

on two messages m1 and m2 are added, r1 and r2 are equal while s1 and s2 can be written

as s1 = k−1(h(m1)+ z∗ r(x)) and s2 = k−1(h(m2)+ z∗ r(x)). ECDSA is not an aggregate

signature scheme because when these two signatures are added h(m1) and h(m2) need to be

added. Hashing is not homomorphic so h(m1)+ h(m2) 6= h(m1 +m2) hence an aggregate

signature will not be the same as the signature on the sum of messages. On the other hand

if we replace the hash of the message by the message itself in the formula the signature

becomes additive since we are summing up integers. The signature (r,s) in the modified

signature scheme is r = (r(x) mod p) and s = k−1(m+ z∗ r(x)) mod p. Not using hashing

can make ECDSA vulnerable to existential forgery attack, where the attacker can substitute

a suitable message/signature pair in place of the original message and signature. We tackle

this by only allowing the sensors to send a part of the signature. The sensors send the s

component while the r component is generated at the base station. The attacker will not

be able to modify the complete signature and hence will not be able to launch a successful

existential forgery attack. This is discussed in detail in Section 4.1.

3.2. EC ELGAMAL ENCRYPTION

We use the additive homomorphic elliptic curve elgamal encryption (ECEG) encryp-

tion scheme for confidentiality. Before we encrypt a message using ECEG we first need

to map the plaintext data to a point on the elliptic curve. We use a simple homomorphic

mapping technique where we multiply the plaintext message m by the base point T , to get

the elliptic curve point mT . Each message mi maps to a point Mi on the elliptic curve. The

Mis are added, and the addition of the elliptic curve points is equivalent to the addition of

the plaintext data. The plaintext can be found by reverse mapping the final result. This

process can be seen in Algorithm 3.

30

Algorithm 3 Elliptic Curve Elgamal
Require: Elliptic curve parameters D = (q,FR,a,b,T, p,h), sensor reading mi, base sta-

tion’s private key ze and base station public key Qe = zeT
Encryption

1: Map the message m to an elliptic curve point M using a mapping function.
2: Generate a random integer ai.
3: Calculate C1 = aiT and C2 = M+aiQe.
4: (C1,C2) = (aiT,M+aiQe) is the ciphertext.

Decryption
5: Calculate (−ze ∗C1) and add it to C2.
6: The decrypted message M is the addition (−ze ∗C1)+C2.

M1 +M2 + ...+Mn = map(m1)+ ...+map(mn)

= m1T +m2T + ...+mnT

= (m1 +m2 + ...+mn)T

= (∑mi)T

The inverse of this mapping function is a brute force attack on the elliptic curve point mT

given point T. In our algorithm decryption is only done at the base station. Since we assume

the base station to be a powerful machine, reverse mapping the point using a brute force

method aided by knowledge of the range of sensed data should not be an issue.

31

4. PERFORMANCE ANALYSIS

4.1. IMPLEMENTATION

We implemented our secure data aggregation scheme on two different mote plat-

forms, Mica2 and TelosB. The specifications of these platforms are shown in Table 4.1.

The coding was done using the TinyOS platform. We made use of the TinyECC library

[12] for cryptographic operations. TinyECC [12] is implemented over the prime field Fp

where p is a large prime number. The library consists of routines for large natural number

operations and ECC operations. For simulation of our testbed we used 160 bit ECC keys

which provide security equivalent to 1024 bit RSA keys. We measured the time taken and

the corresponding energy consumption of our crypto functions on both Mica2 and TelosB

platforms for 128, 160 and 192 bit keys. We calculate the energy consumption for crypto-

graphic operations as follows. The time taken t to complete an operation is multiplied by

the voltage supplied V and the current drawn I during active mode. The energy consumed

is thus calculated as E =V x I x t.

Table 4.1. Specifications of Mica2 and TelosB
Specification Mica2 TelosB

Processor MPR400CB 8 bit Microcontroller TI MSP430 16 bit Microcontroller
Program flash 128kB 48kB

RAM 4kB 10kB
Clock Speed 7.3827 MHz 8MHz
Baud Rate 38.4Kbaud 250Kbaud

The execution times of various operations for Mica2 and TelosB motes is shown in

Figure 4.1 and Figure 4.2 respectively. The corresponding energy consumption is shown in

32

Figure 4.3 and Figure 4.4 respectively. The decryption and verification functions are only

performed at the powerful base station and are replaced by ciphertext addition, signature

addition and key addition on the sensor motes. As can be seen, these three operations are

very lightweight and incur very little energy, thus reducing end to end delay and increasing

the network life time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

128 160 192

E
xe

cu
tio

n
T

im
e

(m
s)

Key Size (bit)

Encryption
Signature

Ciphertext Add.
Signature Add.

Key Add.

Figure 4.1. Execution times on Mica2 for 128, 160 and 192 bit keys

In TinyOS 1.x the maximum packet size on TOSSIM is 119 bytes whereas on a Mica2

mote the maximum packet size is 241 bytes. In our algorithm each sensor needs to transmit

the ciphertext, the digital signature and its public keys. The ciphertext consists of two

components (C1,C2) which are points on the elliptic curve, the digital signature consists

of two components (r, s). The size of these packets however can be optimized. We start

by noting that the requirement for the modified version of ECDSA to be additive is that

the random number k chosen by all the sensors should be same. In our algorithm a new

k is generated in each round of data sensing such that all the sensors and the base station

generate the same k. The digital signature in ECDSA is a tuple (r, s) such that r is the

33

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

128 160 192

E
xe

cu
tio

n
T

im
e

(m
s)

Key Size (bit)

Encryption
Signature

Ciphertext Add.
Signature Add.

Key Add.

Figure 4.2. Execution times on TelosB for 128, 160 and 192 bit keys

 0

 20

 40

 60

 80

 100

 120

 140

 160

128 160 192

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Key Size (bit)

Encryption
Signature

Ciphertext Add.
Signature Add.

Key Add.

Figure 4.3. Energy consumption on Mica2 for 128, 160 and 192 bit keys

x-component of the product of k and the base point T , i.e r = r(x) where, (r(x),r(y)) = kT

and s = k−1(m+zr). Since we are using the same k at all sensors in any particular iteration,

the r component of the signature will also be same at all the sensors. This implies that we

34

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

128 160 192

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Key Size (bit)

Encryption
Signature

Ciphertext Add.
Signature Add.

Key Add.

Figure 4.4. Energy consumption on TelosB for 128, 160 and 192 bit keys

can generate the r component at the base station if we know k, and thus it does not need to

be transmitted. As discussed before, this also helps in avoiding existential forgery attacks

To optimize the size of the ciphertext to be sent we note that the ciphertext in Elgamal

encryption consists of two components C1 and C2. C1 = ai ∗T and C2 = M + aiQe where

ai is a random integer. However if we take ai to be a pseudo random integer, generated

using a seed shared with the base station, we will not need to transmit the C1 component of

the ciphertext. Since the base station knows the seed and can generate the pseudo random

integer ai, it can calculate C1 easily and use it to decrypt the ciphertext. Thus, we were able

to eliminate the r-component of the digital signature and the C1 component of the ciphertext

from the packet thus reducing the total to 105 bytes. We use a one byte field to indicate the

total number of nodes involved in the aggregation and 1 byte for indicating the position of

sender in the aggregation tree. Thus the total size of the packet is 107 bytes which is now

well within the limit of 119 bytes for TOSSIM. The energy consumed in transmission and

reception of this packet on Mica2 and TelosB mote platforms is shown in Table 4.2.

35

Table 4.2. Energy consumed during reception and transmission of packets
Energy Consumed (mJ)

Mode Power
(dBm)

Current
Drawn
(mA)

Mica2 TelosB

Rx 7.0 0.498 0.077
Tx -20 3.7 0.247 0.040
Tx -19 5.2 0.349 0.057
Tx -15 5.4 0.361 0.059
Tx -8 6.5 0.434 0.071
Tx -5 7.1 0.473 0.078
Tx 0 8.5 0.569 0.093
Tx 4 11.6 0.774 0.127
Tx 6 13.8 0.920 0.151
Tx 8 17.4 1.160 0.190
Tx 10 21.5 1.434 0.235

4.2. SIMULATION

For further performance analysis we simulated a network of sensor nodes in

TOSSIM. The nodes are organized in a grid and are placed at 5 feet from each other. We

used the TinyOS lossy radio model to simulate a noisy environment. For each link between

any two nodes, the model generates a bit error probability which represents the probability

of a bit being flipped during the transmission. Packet error probability depends on the size

of the packet and can be derived using the bit error probability. The key size for security

operations is 160 bit as stated before.

Figures 4.5 and 4.6 show the throughput of the algorithm for a network of 25 and

50 nodes respectively. We define throughput as the ratio of number of packets received

by the aggregators to the number of packets sent by the aggregators. Figure 4.5 shows the

throughput of a network of 25 nodes for 4 different cases and packet sizes. As expected

the no security case provides the best throughput. Tinysec [13], which is a link layer

36

symmetric encryption scheme has a throughput of 97.75%. Tinysec [13] uses symmetric

ciphers RC5 and Skipjack with a 64 bit key. However, it uses a network wide key, which

although good for in network processing, cannot protect against node capture attacks. If

the adversary is able to compromise one node, he will be able to eavesdrop on all the

communication in the system. When only confidentiality protection is used in our algorithm

the throughput reduces to 95.62%. The reduction in throughput is due to increased packet

size which in this case is 86 bytes. As the size of the packet increases, the probability of

packet collision and CRC corruption also increases which amounts to packet loss and thus

reduces the throughput. The last case is when both confidentiality protection and integrity

verification are used. The packet size in this case increases to 107 bytes and the throughput

decreases to 92.7%. A similar trend can be seen with a network of 50 nodes in Figure 4.6.

The throughput in all the cases is lower than in the previous case due to larger number of

nodes, however the general trend remains the same. Secure hierarchical data aggregation

algorithm provides greater security at the cost of a very nominal drop in throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

No Security Tinysec Only
Encryption

Signature And
 Encryption

T
hr

ou
gh

pu
t (

%
)

99.00 97.75 95.62 92.3

Figure 4.5. Throughput for a network of 25 nodes

37

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

No Security Tinysec Only
Encryption

Signature And
 Encryption

T
hr

ou
gh

pu
t (

%
)

98.2 95.43 93 90.86

Figure 4.6. Throughput for a network of 50 nodes

Figure 4.7 shows throughput when the number of nodes in the network is varied.

Probability of packet collision increases with number of nodes, which reduces the through-

put. Figure 4.8 shows the connectivity of the network under a node capture or a denial of

service attack. The network consists of 50 nodes placed in a 10 x 5 grid 5 feet apart from

each other. We assume that under such attacks a node gets completely disconnected from

the network. Since the network is organized in a tree hierarchy, if an aggregator under

attack is disconnected, all nodes in the subtree under the aggregator get disconnected. This

can be clearly seen in the figure. For 5, 10, 15 and 20 % of nodes under attack the corre-

sponding percentage of nodes disconnected is 12.87, 26.05, 40.4, and 53.94. The reconfig-

uration mechanism of our algorithm alleviates this issue which directly affects availability.

Aggregator nodes when connected to the tree periodically send a beacon message. When

child nodes stop receiving these messages from their parent they initiate the reconfigura-

tion procedure and find an alternate parent. Figure 4.8 shows how reconfiguration helps

in increasing the connectivity of the network. Even after reconfiguration some nodes are

not recovered. This happens for two reasons. First, in the reconfiguration procedure, only

38

those nodes whose position is higher in the tree than the disconnected node can become

its parent. This condition has to be satisfied to avoid cycles in the tree, where the whole

cycle is disconnected but the nodes in the cycle think they are connected. If there are no

higher level nodes in the communication range of a disconnected node, it can never make it

to the tree in the reconfiguration phase. Second, if all the higher level nodes in the commu-

nication range of a disconnected node already have maximum number of allowed children

connected to them, they will not accept new nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

25 50 100

T
hr

ou
gh

pu
t (

%
)

Number of nodes

92.3 90.86
84.56

Figure 4.7. Throughput vs number of nodes

In an aggregation tree, a parent node needs to wait for all of its children to send data

to it before starting aggregation. How long a parent waits for its children directly impacts

the end to end delay and the throughput of the network. Intuitively, if a parent waits for a

long duration of time the throughput will be high but the corresponding end to end delay

would also be very high. On the other hand if the waiting time is too small the throughput

will suffer since a lot of packets would be dropped but the end to end delay would also be

very small. Figure 4.9 shows this tradeoff between throughput and end to end delay of the

39

network. The figure shows the throughput of the network and the end to end delay when

wait time at the aggregators is varied. The time axis shows the simulation time in seconds.

When the wait time at the aggregator is 0.5 seconds, most of the packets are dropped since

the timer expires even before the children can send their packets as a result of which the

throughput is very low. The corresponding end to end delay is also very low in this case. At

1 second, the throughput jumps to 80.15 % this is because most of the packets can make it

to the aggregator within this time. However there is only a slight, almost linear increase in

end to end delay. Thus between the 0.5 and 1 second mark, a large gain in the throughput is

achieved at the expense of a very small increase in the end to end delay. After the 1 second

mark the gain in throughput slows down becoming almost constant after the 4 seconds

mark. The end to end delay on the other hand keeps increasing in an almost linear fashion.

Between the 1 and 4 seconds marks, there is a small gain in throughput at the expense of

high end to end delay. Increasing the wait time beyond 4 seconds increases the end to end

delay with no substantial gain in throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5 10 15 20

P
er

ce
nt

ag
e

of
 c

on
ne

ct
ed

 n
od

es

Percentage of compromised nodes

Before reconfiguration

87.13

73.95

59.6

46.06

After reconfiguration
4.44

12.32

20.66

24.14

Figure 4.8. Connectivity in case of node capture

40

 0

 20

 40

 60

 80

 100

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

T
hr

ou
gh

pu
t(

%
)

E
nd

 to
 e

nd
 d

el
ay

 (
se

c)

Wait time at the aggregator (sec)

Throughput
End to end delay

Figure 4.9. Throughput vs wait time at the aggregators vs end to end delay

41

5. CONCLUSIONS

This paper presents in-depth performance evaluation, analysis and simulation of se-

cure hierarchical data aggregation algorithm. We demonstrated that our algorithm saves

energy and increases network life time in two ways. First, it replaces energy intensive

cryptographic operations by the light weight addition operations on the aggregators. Sec-

ond, it does not require a separate integrity verification phase. Our implementation shows

that this algorithm reduces the aggregator’s work load which results in an increase in the

aggregator’s and overall network’s lifetime. Additionally we performed the performance

analysis of the algorithms by simulations and saw that it is capable of handling denial of

service attacks and also node failure situations. From the throughput experiment we also

established that the algorithm does well even under a noisy environment.

42

6. BIBLIOGRAPHY

[1] J. Albath and S. Madria, “Secure hierarchical data aggregation in wireless sensor net-
works,” in WCNC. IEEE, 2009, pp. 2420–2425.

[2] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in Workshop on Se-
curity and Assurance in Ad hoc Networks. IEEE Computer Society, 2003.

[3] H. Chan, A. Perrig, and D. X. Song, “Secure hierarchical in-network aggregation in
sensor networks,” in Computer and Communications Security, ser. CCS ’06, 2006, pp.
278–287.

[4] A. Mahimkar and T. S. Rappaport, “SecureDAV: A secure data aggregation and verifi-
cation protocol for sensor networks,” in Proceedings of the IEEE Global Telecommu-
nications Conference, 2004, pp. 2175–2179.

[5] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: a secure hop-by-hop data aggregation
protocol for sensor networks,” in Proceedings of the 7th ACM international symposium
on Mobile ad hoc networking and computing, ser. MobiHoc ’06. ACM, 2006, pp.
356–367.

[6] J. Bahi, C. Guyeux, and A. Makhoul, “Efficient and robust secure aggregation of en-
crypted data in sensor networks,” in Fourth International Conference on Sensor Tech-
nologies and Applications, ser. SENSORCOMM ’10, July 2010, pp. 472–477.

[7] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted data
in wireless sensor networks,” in Proceedings of the The Second Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services, ser. Mobiq-
uitous ’05. IEEE Computer Society, 2005, pp. 109–117.

[8] H.-M. Sun, Y.-C. Hsiao, Y.-H. Lin, and C.-M. Chen, “An efficient and verifiable con-
cealed data aggregation scheme in wireless sensor networks,” in Proceedings of the
2008 International Conference on Embedded Software and Systems. IEEE Computer
Society, 2008, pp. 19–26.

[9] M. Groat, W. He, and S. Forrest, “KIPDA: k-indistinguishable privacypreserving data
aggregation in wireless sensor networks,” in INFOCOM’11. 2011, pp. 2024–2032.

[10] V. Kumar, and S. Madria, “Secure data aggregation in wireless sensor networks,” in
Wireless Sensor Network Technologies for the Information Explosion Era. Springer,
2010.

43

[11] S. Peter, K. Piotrowski, “On concealed data aggregation for wireless sensor net-
works,” in Proceedings of the 4th IEEE Consumer Communications and Networking
Conference, ser. CCNC ’07. IEEE, January 2007.

[12] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks,” in Proceedings of the 7th international conference on
Information processing in sensor networks, ser. IPSN ’08. IEEE Computer Society,
2008, pp. 245–256.

[13] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture
for wireless sensor networks,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems, ser. SenSys ’04. ACM, 2004, pp. 162–175.

44

II. PIP: PRIVACY AND INTEGRITY PRESERVING DATA AGGREGATION IN
WIRELESS SENSOR NETWORKS

Vimal Kumar∗, Sanjay K Madria∗

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

With the exponential rise of pervasive computing applications, data privacy has be-

come much more of an important issue than before. When data is aggregated at each hop in

a sensor network, it becomes harder to protect its privacy. A number of privacy preserving

data aggregation algorithms have recently appeared for wireless sensor networks (WSNs),

very few of them however also address the issue of data integrity along with privacy. Data

privacy and integrity are two contrasting objectives to achieve in general. In a privacy pre-

served data aggregation, it becomes easier for an attacker to inject false data hence, we

suggest that both privacy and integrity of data should be treated together. In this paper, we

present an energy efficient, privacy preserving data aggregation algorithm which also pre-

serves data integrity in WSNs. We analyze the security of the algorithm and provide proofs

for confidentiality and integrity. We enhance this algorithm further to localize, to a certain

degree, the corrupt aggregator. We provide the results of our implementation of the algo-

rithm on TelosB motes, illustrating that both the computational overhead and the energy

consumption are very low. Finally, we compare our algorithm with other schemes having

similar objectives demonstrating that our algorithm performs better in terms of bandwith

usage and energy consumption in a WSN environment.

45

1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number of small, low cost,

battery operated, wireless sensors. WSNs have a multitude of applications such as envi-

ronmental sensing, health-care monitoring, traffic monitoring, law enforcement, and mili-

tary, among others. In-network processing techniques such as sensor data aggregation are

used to reduce communication overhead in WSNs. Data aggregation refers to using an

aggregation function f such as SUM, AVG, MIN/MAX, MULT, etc. on n data items, at

intermediate nodes, to produce one aggregate value v = f (x1,x2, ...,xn). Aggregating data

on intermediate nodes not only reduces the energy consumption, but also minimizes end to

end delay and bandwidth usage as well as increase the throughput of the network.

Increasing proliferation of wireless sensors in our daily lives has given rise to the

need of privacy preserving and secure data aggregation. An excellent motivating example

of the application of privacy preserving data aggregation was provided in [1] which we

reproduce with a modification for the need of integrity. A utility company may want to

monitor the aggregate electricity and water consumption of a neighborhood by placing

wireless sensors in the houses. This aggregate information may be helpful for the company

and the community however individuals run the risk of their privacy being exposed as the

data is communicated via multiple hops to the base station. This private information may

reveal a lot about day to day activities of a household and could be used maliciously; hence

individuals may only be willing to participate if the privacy of their data is guaranteed [1].

In addition to this, malicious insider nodes may also inject false data in the aggregate for

personal benefits and hence it is also required that integrity of data be preserved.

In this paper, we address the issues of privacy and integrity in data aggregation in

wireless sensor networks. By privacy we essentially mean data privacy and thus it pertains

to hiding the details of a node’s data from other nodes in the network. Integrity refers to

46

preventing the modification of data by corrupt aggregators. Privacy is typically obtained by

techniques (e.g., encryption) that produce output resembling random bits. On the contrary,

integrity is usually obtained by peer monitoring, which does not work with randomized

data. Our work differs from the work of many others in that we provide a scheme that

combines these two seemingly contrasting objectives of privacy and integrity.

47

2. PROBLEM STATEMENT

We consider a WSN with n nodes, organized in a tree hierarchy, and rooted at the

base station (B.S). Each sensor Si generates a reading δi, the aggregate of k such readings

is ∑
k
i=1 δi. Our definition of privacy is based on the well-known concept of semantic secu-

rity, that the adversary cannot determine any information about the plaintext from a given

ciphertext in polynomial time. We define the set of nodes which have access to the sensor

reading δi as the privacy set Πi. A sensor reading is private i f f its privacy set consists

of the node generating the reading itself and the base station. Similarly, an aggregate is

private i f f its privacy set consists of only the base station. Thus, we define the following

conditions for privacy preserved data aggregation.

• For δi to be private, Πi = {Si,B.S}

• For ∑
k
i=1 δi to be private, Π1...k = {B.S}

If k out of n nodes participate in data collection and each node Si contributes a reading

δi, the aggregate is ∑
k
i=1 δi. A data integrity violation occurs if the aggregate received by

the base station ∑
k
i=1 δ′i 6= ∑

k
i=1 δi.

Most works on privacy preserving data aggregation focus solely on privacy while

completely ignoring the data integrity aspect. Privacy preserving data aggregation enables

an aggregator to aggregate k data items without knowing what they are. This leaves the

aggregation operation prone to false data injection attacks by corrupt aggregators. This can

be overcome by using aggregate signatures such as in [2]. Signing and verification however,

have a high energy cost and our requirement is of an algorithm which can provide integrity

of the private data while also being energy efficient. Based on the above discussion, we

define our objectives as below:

• To present a scheme for energy efficient privacy preserving data aggregation

48

• To provide energy efficient mechanism for the integrity of data aggregated privately.

• Simulation and implementation of the algorithm on real motes to verify its perfor-

mance and energy usage.

49

3. RELATED WORK

A number of privacy preserving algorithms for data aggregation in WSNs have been

proposed. Some of them, such as [2] and [3] make use of asymmetric homomorphic en-

cryption to provide privacy of aggregate data. Asymmetric homomorphic cryptography

provides the required privacy but also consumes a great deal of energy as shown in the

comparison provided later in section 8. This approach may not always be viable on energy

constrained wireless sensors and thus, there is a need for more efficient solutions.

Two privacy preserving algorithms, CPDA and SMART are proposed in [1]. In

CPDA, nodes hide their data in a random polynomial and send it to all other nodes in

the cluster using pair wise keys. These polynomials are added up and sent to the cluster

head, along with a secret. The authors then discuss SMART which is less communication

intensive than CPDA. In SMART each node in an aggregation tree slices its data into a fixed

number of parts and sends each part to a neighboring node, keeping one for itself. Nodes

add all of the received slices together and send them to the aggregator along the path of

the tree. In CPDA, the aggregate is revealed to the cluster head while, in SMART, because

positive slices of data are distributed, some amount of information about the data is always

leaked. Moreover the privacy of data depends on key pre-distribution. If an adversary is

able to capture a sufficient number of nodes, the privacy in both schemes suffers heavily.

The scheme in [4] utilizes secret perturbation to address the issue of privacy. This scheme

prevents the aggregator from knowing the aggregate, and no privacy is lost when a few

nodes are compromised. In PASKOS and PASKIS algorithms proposed in [5] each node is

assigned a subset of keys from a key ring. In PASKOS, nodes use all of their keys to create

hashes, and randomly either add or subtract them from the data. This randomized data

and a list indicating whether the hashes were added or subtracted is sent to the aggregator.

The authors further improve the algorithm such that even the base station is oblivious to

50

the aggregate in the PASKIS protocol. These protocols protect the aggregate, even from

the intermediate nodes. As in [1] however, the privacy depends on key pre-distribution.

Moreover, because a list, whose size is the size of the key ring, must be sent by every node,

the bandwidth consumption of the protocols is also very high. In [6] each node establishes

a twin key with at least one other node in a cluster. The twin key is used to either add or

remove data from the aggregate. Each node, prior to sending data to the next node, creates

a shadow value, encrypts it with the twin key, and adds it to the aggregate. Twin key has the

property that if used again it will cancel out the effect of the first use. Thus, when a shadow

is added to the aggregate, a node sharing that twin key will remove the shadow when the

aggregate comes to it during aggregation. This scheme again suffers from the problem that

a sufficient number of captured nodes can reveal the privacy of a number of other nodes.

[7] proposed a novel solution for multi-dimensional data aggregation using a bilinear pair-

ing based public key encryption. This scheme saves bandwidth when n-dimensional data

has to be aggregated. The downside, however, of this scheme is that it is not very energy

efficient.

Schemes in [1] [4] [5] [6] [7] address the issue of privacy of data. They do not how-

ever, provide the integrity of data. In many cases, the goal of the adversary is to have the

base station accept false readings which these schemes fail to protect against. Schemes

in [8] [9] [10] were proposed to handle an adversary that tries to inject false data in the

system. iPDA [9] handles data integrity along with the privacy of data. It uses the SMART

[1] algorithm and preserves the integrity of data by using two parallel but disjoint aggrega-

tion trees rooted at the base station. The algorithm assumes that it will be difficult for an

attacker to inject data and affect both the aggregation trees equally. An adversary however,

which has captured at least two nodes, one in each tree, can easily subvert this scheme.

iCPDA[10] uses peer monitoring to protect integrity of data. In this scheme, the privacy of

individual sensor data is protected, while the privacy of partial aggregates is not. Moreover,

an adversary can simply eavesdrop on the cleartext communication of nodes and obtain the

51

aggregate. The aggregators are assumed to be trustworthy and aggregates are revealed to

them. If a node determines an aggregator is misbehaving, it sends a report to the base

station. The base station, however, faces the dilemma of whether or not to trust the re-

porting node. The scheme proposed in [8] also provides both integrity and privacy. In

this scheme, secrets are pre-deployed on intermediate nodes to assess the integrity of the

data. The scheme is based on random perturbation and therefore is very energy efficient.

Though, it can only provide an approximation of the data as it is based on histogram of

the sensor data. Unlike [8] our scheme provides accurate data aggregation. Our goals are

similar to the goals in [9] and [10], i.e. the privacy and integrity of data. Additionally, our

algorithm does not reveal partial aggregates to intermediate nodes. Due to the similarity of

goals we will compare our privacy and integrity preserving algorithm PIP to iPDA[9] and

iCPDA[10].

52

4. SYSTEM AND ADVERSARY MODELS

Our network consists of n wireless sensors deployed in the field and a base station.

Wireless sensors have limited energy and communicate in a small radius and therefore,

resort to hop-by-hop communication. The base station has unlimited energy and is secure.

Each sensor Si generates a reading δi the aggregate, of which needs to be sent to the base

station. Aggregator nodes perform data aggregation, and the base station receives ∑δi. We

assume that the adversary only tries to corrupt the aggregators and not the leaf nodes, as a

corrupt aggregator will have a larger impact on the aggregated value. We limit ourselves to

the SUM aggregation function in this paper.

Our goal is to provide privacy and integrity preserving aggregation of data. Our

algorithm defends against an adversary who will attempt to.

• Compromise the data privacy of the aggregators in the network.

In this case, for a sensor reading δi of a node Si, the privacy set Πi =

{Si,B.S,Si, ...,Si+p} or for an aggregate ∑
k
i=1 δi, Π1...k = {B.S,Si, ...,Si+p}, where

the data is accessible to nodes Si, ...,Si+p.

• Inject false data into the network.

In this case the aggregate data received by the base station, ∑
k
i=1 δ′i and the actual

aggregate data ∑
k
i=1 δi do not match i.e ∑

k
i=1 δ′i 6= ∑

k
i=1 δi.

53

5. PRELIMINARIES

5.1. SECRET SHARING

In secret sharing, a data item δ is divided into n parts such that any k parts can be used

to reconstruct the data and the knowledge of k−1 parts does not provide any information.

To create shares of a data item δ using Shamir’s [11] scheme, a prime number p

is chosen such that p > max(δ,n). A random k− 1 degree polynomial is then created,

where the coefficients a1, ...,ak−1 are chosen randomly from a uniform distribution over

the integers in [0, p] and a0 = δ. This polynomial ω(x) = a0x0 + a1x1 + ...+ ak−1xk−1 is

then sampled at points x = 1, ...,n to create shares ω(1), ...,ω(n).

Any k out of the n shares created above can be used to create a k−1 degree polyno-

mial ω′(x) using polynomial interpolation. To reconstruct the original data ω′(x) is evalu-

ated at x = 0.

5.2. RECURSIVE SECRET SHARING

Parakh and Kak [12] proposed a recursive secret sharing scheme based on Shamir’s

secret sharing [11]. Recursive secret sharing is proposed for efficient storage, where the

shares of the data item δ are used to store k− 2 additional pieces of information. A node

with all the shares can easily reconstruct δ and the k−2 pieces of hidden information.

We denote recursive secret sharing by RSS and Shamir’s secret sharing by SSS, re-

spectively. In RSS Parakh and Kak, modify SSS such that the shares are generated using

polynomial interpolation rather than by generating random polynomial and sampling it.

For example, suppose secrets δ1, ...,δk−1 are to be stored in the shares. A random number

y11 is chosen and using (0,δ1) and (1,y11), a 1-degree polynomial ω1(x) is interpolated.

This polynomial ω1(x) is then sampled at x = 2 and x = 3 to obtain ω1(2), ω1(3). Next,

54

(0,δ2) and the points (1,ω1(2)) and(2,ω1(3)) are used to interpolate a 2-degree polyno-

mial ω2(x). The polynomial ω2(x) is sampled at x = 3,4 and 5 to obtain ω2(3),ω2(4) and

ω2(5). These three points are used as y coordinates for x = 1,2,3 along with the point

(0,δ3) to interpolate the 3-degree polynomial ω3(x). This process is repeated until the

last secret δk−1 is used to create a k−1 degree polynomial ωk−1(x). This polynomial can

then be sampled at n points to creates n shares, any k of which can be used to regenerate

δk−1. In the reconstruction phase, δk−1 is regenerated using the original method discussed

in the previous subsection by constructing ωk−1(x) using the k shares. This polynomial

ωk−1(x) is then sampled at x = 1, ...,k− 1 to obtain ωk−1(1), ...,ωk−1(k− 1). The points

(k−1,ωk−1(1)),...,(2(k−1),ωk−1(k−1)) are then used to interpolate a k−2 degree poly-

nomial ωk−2(x). δk−2 is recovered by evaluating ωk−2(x) at x = 0. This process is repeated

for all δi until secret δ1 is recovered.

55

6. PROPOSED ALGORITHM

In this section, we present PIP: Privacy and Integrity Preserving Data Aggregation

Algorithm, which fulfills the objectives stated in section 2. We begin by addressing the

energy efficient privacy and integrity preservation objectives. We base our algorithm on the

recursive secret sharing algorithm described in section 5.2. The authors in [12] proposed

the scheme for efficient storage, where the shares of the data δ are used to store k− 2

additional pieces of information. A node with at least k shares can easily reconstruct all

of the k− 1 pieces of hidden information. We provide a construction in which we can

prevent a node which has all the shares from reconstructing and retrieving the hidden data.

Our construction preserves the homomorphic property of SSS and RSS which is used to

aggregate data in a privacy preserving manner.

The basic methodology is to create shares for a given sensor reading using RSS.

Each node then sends all of the shares to its parent. Because RSS is based on SSS, it

is additively homomorphic and so the parent node will be able to aggregate the shares to

aggregate the data. However, because each node is sending all the shares to its parent,

it is straightforward for a curious aggregator to regenerate the data and thus subvert its

privacy. To prevent this, each node scrambles the shares by subtracting modulo prime,

a scrambling key shared between each node and the base station from the shares. This

scrambling procedure is very light weight and preserves the homomorphic property of RSS.

We could also use homomorphic encryption here. Scrambling however, is preferred since it

consumes negligible energy when compared to encryption while still being secure, as will

be seen in the security proof later. Finally, because we also want to preserve the integrity of

the data, the intuition is to have some additional information, along with the shares which

will help the base station to detect any changes in the data. We use an integrity key, which

each node shares with the base station and embed this key in the generated shares using

56

RSS. It should be noted that Verifiable Secret Sharing (VSS) could also be used to ensure

data integrity. VSS schemes however, typically require energy intensive cryptographic

constructs and are not efficient communication wise. Our scheme as we show in section 8

is both computationally light weight and efficient in terms of communication overhead.

6.1. BASIC PIP ALGORITHM

Basic PIP consists of two algorithms, one for generating the shares from the data and

the keys and the other for regenerating data and checking its integrity. We assume that the

sensor nodes are randomly deployed in a field and they self organize into a tree hierarchy

using the tree construction algorithm given in [2]. The base station preloads each sensor

with a pseudo random function (PRF) f (.), a network wide nonce n, three distinct random

seeds r1, r2, r3, a network-wide random seed r4 and the network-wide prime number p.

Before every iteration, a sensor node uses the PRF f (.) on the nonce n, using the random

seeds r1, r2, r3, r4 as keys, to generate the perturbation key η, a scrambling key Ψ and

an integrity key I = {I′, I′′} as shown in Algorithm 4. The newly generated keys will

be used as random seeds for the next iteration. All the operations are performed mod

p. In the basic PIP algorithm, a sensor Sk uses the perturbation key ηk, and the sensor

reading δk to generate perturbed data δηk. Recursive secret sharing is then used and a

linear combination of the integrity key I
′
k + I

′′
k δηk and data, δηk are encoded to create the

shares ω2
k(3),ω

2
k(4), and ω2

k(5). If these shares are sent to the aggregator, then a malicious

aggregator would be able to easily replace the data in the shares with corrupt data, keeping

the integrity key intact. We use the scrambling key Ψk to scramble the shares and prevent

this from happening. The scrambled shares λ1
k ,λ

2
k , and λ3

k are generated as shown in the

algorithm. Each leaf node sends the scrambled shares λ1
k ,λ

2
k , and λ3

k to its parent, which

aggregates the shares received from all of its children. The aggregate shares λ1
agg,λ

2
agg, and

λ3
agg are calculated as λ1

agg = ∑λ1,λ2
agg = ∑λ2,λ3

agg = ∑λ3, where the summation is over

all children. The base station then uses the sum of the scrambling keys ∑Ψ to unscramble

57

the aggregate shares to obtain ω2
agg(3),ω

2
agg(4) and ω2

agg(5). These shares are then used to

decode received perturbed data ω1
agg(0) and the linear combination of integrity keys and

the perturbed data ω2
agg(0). If the equation ω2

agg(0)−ω1
agg(0)I

′′
k = ∑

n
k=1 I

′
k holds, data has

not been tampered with and is recovered after removing the perturbation. Otherwise, the

data has been tampered with and the base station would need to take appropriate steps.

Algorithmic details of the share verification and data regeneration process can be seen in

Algorithm 5.

Algorithm 4 Share Generation Algorithm
Require: Sensor reading δk, PRF f (.), nonce n, random seeds r1, r2, r3, r4.

1: Generate Perturbation key as ηk = fr1(n), Scrambling key Ψk = fr2(n), Integrity key
Ik = {I

′
k, I
′′
k}= { fr3(n), fr4(n)} .

2: Update r1 = ηk, r2 = Ψk, r3 = I
′
k, r4 = I

′′
k .

3: Generate perturbed data δηk = δk +ηk.
4: Choose a random number y uniformly from Zp.
5: Interpolate (0,δηk) and (1,y) to obtain a degree 1 polynomial ω1

k .
6: Sample the polynomial ω1

k at x = 2,3 and interpolate (0, I
′
k +

I
′′
k δηk),(1,ω1

k(2)),(2,ω
1
k(3)) to obtain a degree 2 polynomial ω2

k .
7: Sample ω1

k at x = 3,4,5 to obtain (3,ω2
k(3)),(4,ω

2
k(4)),(5,ω

2
k(5)).

8: ω2
k(3),ω

2
k(4),ω

2
k(5) are the shares which consist of the sensor reading δk and the in-

tegrity key Ik of the sensor k.
9: These shares are then scrambled using the scrambling key Ψk as follows.

λ1
k = Ψk−ω2

k(3)

λ2
k = ω2

k(3)−ω2
k(4)

λ3
k = ω2

k(4)−ω2
k(5)

10: Final shares are the scrambled shares λ1
k ,λ

2
k ,λ

3
k .

58

Algorithm 5 Data Regeneration and Integrity Check
Require: PRF f (.), nonce n, random seeds r1, r2, r3, r4.

1: B.S generates the scrambling, perturbation and the integrity keys for all the sensors and
computes ∑

n
k=1 Ψk, ∑

n
k=1 ηk and ∑

n
k=1 I

′
k .

2: Root node unscrambles the shares using ∑
n
k=1 Ψk as follows.

ω2
agg(3) = ∑

n
k=1 Ψk−λ1

agg

ω2
agg(4) = ω2

agg(3)−λ2
agg

ω2
agg(5) = ω2

agg(4)−λ3
agg

3: Interpolate (3,ω2
agg(3)),(4,ω

2
agg(4)) and (5,ω2

agg(5)) to obtain a degree 2 polynomial
ω2

agg.
4: Sample ω2

agg at x = 1,2.
5: Interpolate (2,ω2

agg(1)),(3,ω
2
agg(2)) to obtain a degree 1 polynomial ω1

agg.
6: Calculate ω1

agg(0) and ω2
agg(0)

7: if ω2
agg(0)−ω1

agg(0)I
′′
k == ∑

n
k=1 I

′
k then

Accept the aggregate as ω1
agg(0)−∑

n
k=1 ηk.

8: else
Aggregate is corrupt.

9: end if

6.2. NUMERICAL EXAMPLE

We provide a working example of the basic PIP algorithm below. Let us consider

a small aggregation tree consisting of 3 nodes, as shown in Figure 6.1. Node A aggre-

gates the data from nodes B, C and itself and sends the aggregate to the base station. Each

node generates the scrambling key Ψ, the integrity key I = {I′, I′′} and the perturbation

key η. Using these keys, the nodes sense data, perturb it and generate scrambled shares.

To illustrate the share generation process, let us take node B as an example, which has the

scrambling key ΨB = 40, the integrity key IB = 49,4 and the perturbation key ηB = 2. All

calculations are done mod 131, which is a network parameter. Node B has data δB = 22,

to which it adds the perturbation key ηB = 2 and generates perturbed data δηB = 24. It

59

chooses a random number y = 7 and interpolates (0,24) and (1,7) to generate the polyno-

mial ω1
B(x) = 114x+ 24 . This polynomial is sampled at x = 2 and 3 to obtain the points

(2,121),(3,104). Next we compute I
′
B + I

′′
BδηB = 14 and interpolate (0,14),(1,121) and

(2,104) to generate the polynomial ω2
B(x) = 69x2 +38x+14. We sample this polynomial

at x = 3,4,5 to generate the recursive shares 94,91, and 95. We then use the scrambling

key ΨB = 40 to obtain the final scrambled shares λ1
B = 77,λ2

B = 3 and λ3
B = 127. Node

B sends it’s scrambled shares to node A, as does node C. Node A, being the aggrega-

tor, aggregates its own shares with the shares it receives to obtain the aggregate shares

∑λ1
agg = 28,∑λ2

agg = 78,∑λ3
agg = 9. The aggregate shares are then sent to the base station.

Because the keying material of all the nodes is shared with the base station, the base station

can calculate ∑Ψ, ∑ I′, I′′ and ∑η which, in this case, are 88, 39, 4 and 6 respectively. The

base station then unscrambles the aggregate shares using ∑Ψ. The original shares after

unscrambling come out to be 60, 113, and 104. These shares are interpolated to obtain

the polynomial ω2
agg(x) = 100x2 +8x+53. The polynomial ω2

agg(x) = 100x2 +8x+53 is

then sampled at x = 1,2 to obtain points (1,30) and (2,76) respectively. Points (2,30) and

(3,76) are then interpolated, and the polynomial ω1
agg(x) = 46x+69 is obtained. The base

station then checks whether the equation ω2
agg(0)−ω1

agg(0)I
′′
k = ∑

n
k=1 I

′
k holds. Since we

can see that the equation is satisfied in the example, ω1
agg(0) = 69 is taken as the sum of the

perturbed data ∑δη from which ∑δ can be derived as ∑δ = ω1
agg(0)−∑η.

60

C

ΨC = 101, I’C = 79, I”C = 4, δC = 11, ηC = 9
λ1 = 69, λ2 = 29, λ3 = 66

B

ΨB = 40, I’B = 49, I”B = 4, δB = 22, ηB = 2
λ1 = 77, λ2 = 3, λ3 = 127

A

ΨA = 78, I’A = 42, I”A = 4, δA = 30, ηA = 126
λ1 = 13, λ2 = 46, λ3 = 78

AGGREGATE SHARES
Σ λ1 = 28, Σ λ2 = 78, Σ λ3 = 9

Base Station

Σ Ψ = 88, Σ I’ = 39, I” = 4 Σ η = 6
ω1 = 60, ω2 = 113, ω3 = 104
Σ (δ+η) = 69, ω2(0) - Σ (δ+η)*I” = Σ I’, Σ δ = 63

Figure 6.1. Data aggregation using Basic PIP

6.3. SECURITY ANALYSIS

6.3.1. Confidentiality. The basic PIP algorithm can be reduced to the CMT scheme

described in [13], which is proven to be semantically secure. The CMT scheme is based

on pseudo random functions (PRFs). Given a nonce r, a data point δ ∈ [0, M-1], where M

is an integer, a PRF f(.), an encryption key k and a length matching function h(.), the CMT

scheme encrypts the data point δ as below.

Enck(δ) = (δ+h(fk(r)))mod M (1)

The basic PIP scheme can be stated formally as below. Given an input of a nonce r, a data

point δ ∈ [0, p-1], where p is a large prime , the scrambling key Ψ and the perturbation key

61

η, the scheme first generates perturbed data.

δη = (δ+η)mod p (2)

The scheme then uses the RSS(.) function to create the shares. This can be represented as

RSS(δη, fk(r)) = λ1,λ2,λ3 (3)

Using fk(r) gives the shares a non-deterministic character. Using a PRF with a nonce and

a sensor specific key is the practical way of generating the random number y in step 2 of

Algorithm 4. We see from Algorithm 5 that if the first share is correctly recovered, we can

recover the other shares easily. Thus the security of the scheme hinges on the security of

the first share. We define a function g(.), such that

g(λ1) =−λ1 (4)

then, using equations (2), (3) and (4), the basic PIP scheme can be written as

PIPk(δ) = (Ψ+g(λ1))mod p (5)

Equation (5) is in the same form as (equation 1), where the randomness generated by

fk(r) in equation (1) is generated by g(λ1) in equation (5). By this reduction, we can say

that the basic PIP scheme is at least as secure as the CMT scheme in [13].

6.3.2. Integrity. We say that a scheme protects the integrity of a message if the

probability of an adversary performing existential forgery is negligible. The integrity of the

basic PIP scheme is based upon its confidentiality, since the integrity key is wrapped in the

shares along with the perturbed data. An adversary that is able to break the confidentiality

of the scheme will also be able to break the integrity of the scheme. Thus, we say that, for

62

every adversary A attacking the basic PIP scheme for integrity, ∃ an adversary B, attacking

its confidentiality. For an adversary that possesses messages δ0 and δ1 and is given Λb,

where b ∈ 0,1(From here on, for the sake of convenience we denote the scrambled shares

of node k by Λk), we define a PPT distinguisher D(Λ0,Λ1,δ0,δ1) which outputs 1 if it is

able to distinguish between the two Λs. The advantage of the adversary can then be written

as

AdvPIPC [B] = Pr[D(Λ0,Λ1,δ0,δ1) = 1] (6)

Using (6) the advantage of an adversary attacking integrity of the scheme can be written as

AdvPIPI [A]≤ AdvPIPC [B]+ (1/2|Ψ| ∗1/2|η|) (7)

In (7), the first term corresponds to the adversary attacking the confidentiality of the

scheme. The second term corresponds to an attacker randomly guessing the keys Ψ and

η, where |Ψ| and |η| are the respective key sizes. We showed earlier that the scheme is

semantically secure. The term AdvPIPC [B] is therefore negligible.

AdvPIPI [A]≤ 1/2|Ψ| ∗1/2|η| (8)

AdvPIPI [A]≤ 1/22b (9)

where b is the size of the shares and b = |Ψ| = |η|. We can determine from (9) that the

advantage of the adversary attacking the integrity is negligible and the scheme protects the

integrity of the data as long as b (the share size) is sufficiently large.

6.4. DISCUSSION ON PRIVACY AND INTEGRITY IN BASIC PIP

In semantic security, an adversary in possession of Λ1 and Λ2 will be unable to differ-

entiate between the two. Thus, with shares of size b, there are 2b equally likely possibilities

63

and no information is leaked to the aggregator regarding either the original shares or data.

Thus, in basic PIP, for sensor Si, which has data δi, the privacy set consists only of Si, how-

ever in the following section on enhanced PIP, we will see that a node may have to reveal

its shares to the base station for verification, thus Πi = {Si,B.S}. The same reasoning can

be applied to aggregate data of k nodes. An aggregator receives private data from k− 1

nodes, and aggregates the scrambled shares. Again, there are 2b equally likely possible

original aggregate shares. Each node however, only knows its own Ψ and so the knowl-

edge of aggregate scrambled shares would not be enough to gain any information regarding

the aggregate data. In this case Πi∈Agg = {B.S}, where Agg is the set of nodes which took

part in data aggregation.

In recursive secret sharing, if k shares are known, original aggregate ∑δη can be

replaced by false data ∑δ̂η in the shares without altering the integrity key. However, we

established above that a node not in possession of the scrambling key Ψ cannot obtain the

original shares. This means that, to inject false data into the system, a node will have to

change the scrambled shares. Changing the scrambled shares, amounts to changing all the

embedded data in the shares. In this case the embedded data is the aggregate data ∑δη and

∑ I′+ I′′∑δη . Thus we conclude that in recursive shares ∆∑δ∼= ∆I. This means that if the

B.S discovers that ∑ I′ 6= ∑ Î′, where ∑ Î′ is the sum of the integrity keys Î′ derived from the

received shares, it is equivalent to ∑δη 6= ∑δ̂η.

64

7. EXTENSIONS TO BASIC PIP ALGORITHM

7.1. ENHANCED PIP FOR CORRUPT AGGREGATOR DETECTION

The basic PIP algorithm allows us to determine whether or not the aggregate data is

corrupt. It, however, does not enable us to detect which malicious aggregators injected false

data. To identify such malicious aggregators we perform a two fold check in the enhanced

PIP algorithm. To begin with, we make an additional assumption that the base station can

reach all the nodes in the network using a secure channel. As before, we assume that each

sensor node is preloaded with a pseudo random function (PRF) f (.), a network wide nonce

n, three distinct random seeds r1, r2, r3 and a network-wide random seed r4 which are used

to generate the scrambling, integrity and the perturbation keys along with the network-wide

prime number p. This time however, the nodes are provided with another random seed r5

to generate an additional scrambling key such that the nodes have two scrambling keys Ψ1

and Ψ2. The network hierarchy is known to the base station and hence it can calculate

∑Ψ2 for any aggregator in the network. Additionally, each parent child pair (Sp, Sk) shares

a commitment key γpk. Leaf nodes begin the data collection by generating the scrambled

shares through the process shown in Algorithm 4, using the scrambling key Ψ1. The leaf

nodes then recursively encode the commitment key γpk, (shared with their parent node) into

the scrambled shares. These shares are then scrambled once again using the scrambling key

Ψ2 before being sent to the parent. The parent node receives Λ from all of its children and

computes Λagg = ∑Λ. It then computes ∑γpc, the sum of the commitment keys it shares

with the children that sent their Λs. It also calculates its own scrambled shares Λp using

both the scrambling keys Ψ1 and Ψ2 and γgp−∑γpc as the commitment key. γgp is the

commitment key shared between the parent and the grandparent. Λagg and Λp are then sent

to the grandparent node. The grandparent adds Λagg and Λp. This addition results in the

65

subtraction of ∑γpc from the shares leaving only γgp. The process is shown in Algorithm

6.

Algorithm 6 Data Aggregation using enhanced PIP
Require: Sensor reading δk, PRF f (.), nonce n, random seeds r1, r2, r3, r4, r5, commit-

ment keys γkc and γpk shared with the child and parent nodes respectively.
1: Generate Perturbation key ηk = fr1(n), Scrambling keys Ψ1

k = fr2(n), Ψ2
k = fr2(n),

Integrity key Ik = {I
′
k, I
′′
k}= { fr3(n), fr4(n)} .

2: Update r1 = ηk, r2 = Ψ1
k , r3 = I

′
k, r4 = I

′′
k , r5 = Ψ2

k .
3: Generate scrambled shares λ1

k ,λ
2
k ,λ

3
k using Algorithm 4 with Ψ1

k as the scrambling key.

4: Leaf nodes interpolate (0,γpk),(1,λ1
k),(2,λ

2
k),(3,λ

3
k) to generate the polynomial ω3

k(x)
and then sample it to obtain shares ω3

k(4),ω
3
k(5),ω

3
k(6),ω

3
k(7), which are then scram-

bled using Ψ2
k to obtain final scrambled shares Λk.

5: Parent nodes aggregate the shares sent by their children and compute ∑Λagg.
6: Parent nodes compute ∑

j
i=0 γkci , s.t. j is the number of children and γkci is the key

shared with child i .
7: Parent nodes use γpk−∑

j
i=0 γkci as the commitment key and generate their scrambled

shares Λk. ∑Λagg and Λk are then sent to the grand parent node.

7.1.1. Corrupt Aggregator Detection. We assume that the attacker can capture a

certain percentage of aggregators in the network and all the captured nodes inject false data

in the network. With this assumption, various scenarios are possible, under a false data

injection attack (See Figure 7.1).

The base station detects corrupt data by following the approach in Algorithm 7. When

corrupt data is received from a node, the base station queries this node for its shares Λ,

the shares Λc received from its child nodes, and the commitment keys it shares with the

children. As discussed in section 6.4, an intermediate node can change the aggregate and

the data encoded in the shares in two ways. If the scrambling key is known, the intermediate

node can make changes to the data without making any change to the integrity key. If the

scrambling key is not known, both the aggregate and other encoded data, can be changed

66

Algorithm 7 Corrupt aggregator detection

Require: Corrupt shares ∑
j
k=1 Λk, Ψ2 for all sensor nodes.

1: Set R = {φ}
2: Base station queries the node Sca from which corrupt aggregate was received for its

commitment keys shared with the children and Λ, Λc received from the children, where
c ∈C and C is the set of the child nodes.

3: repeat
4: Base station chooses a previously unselected child node Si, computes appropriate

∑Ψ2, and decodes the commitment key γ′kci
5: if γ′kci

6= γkci then
Perform step 1 for child i.

6: if Λ 6= Λi then
R = {Sca,Si}.

7: else
Commitment keys are checked for all children of the child node.

8: if All keys match then
R = {Sca}.

9: else
Go to step 5.

10: end if
11: end if
12: end if
13: until All child nodes in C are selected.
14: Output R as the set of corrupt nodes.

by making random changes in the shares. Since a node does not share Ψ2 with any other

node, corrupt nodes do not know ∑Ψ2. Thus, they will have to make random changes in

the shares. Any random change, however, would cause unpredictable changes in all the

enoded data in the shares. When an aggregator receives a query from the base station, it

responds with, its own final shares and the shares received from its children, as well as the

commitment keys it shares with each of its children. The base station then uses appropriate

∑Ψ2 to extract the commitment key from the shares, verifying it against the one sent by the

queried node. If the commitment check fails, the children of this node are queried further

for their shares and their children’s shares. If the shares sent by the queried node and the

ones sent by a child node fail to match, both the nodes are removed from the system, since

67

either the child or the parent is trying to frame the other. If the shares do match and the

shares sent by the child node pass the commitment check, the queried node is removed

from the network. If the shares sent by the child node fail further, the network is probed

further in a similar fashion until a corrupt node is detected.

Security Analysis: An analysis similar to the one performed for basic PIP can be

performed for enhanced PIP with same results.

Note: While it may seem that the enhanced PIP algorithm is expensive in terms

of communication, we argue that because the detection of corrupt nodes in a network is

vital such message complexity can be tolerated. Moreover, the detection phase takes place

infrequently and is only needed once corrupt data is detected.

Node is corrupt
Node is not

corrupt

Child node
is corrupt

Child node is
not corrupt

Collusion
No

collusion

Child node is
not corrupt

Child node is
corrupt

Child frames
the parent

Child doesn t
frame the

parent

Parent frames
the childParent doesn t

frame the child

1 2 3 4 5 6

7

Figure 7.1. Attack scenarios

7.1.2. Attack Scenarios. In a network where multiple nodes are captured by an

adversary, captured nodes may try to affect the network in six different ways, as illustrated

in Figure 7.1. Enhanced PIP algorithm can handle all the six scenarios. In some cases,

68

however, it is impossible to differentiate between a corrupt node and a good one. In such

cases, the good node along with the corrupt ones must be removed from the network. In

this section we discuss all the six scenarios and how enhanced PIP deals with these cases.

• Case 1. Corrupt nodes only injects false shares

This case consists of scenarios 2, 3, and 6 in Figure 7.1. A standalone corrupt node

which only injects false shares will be detected in step 6 of Algorithm 7.

• Case 2. Corrupt child frames a good parent node

This case is seen in scenario 5. A child node may inject false shares into the system,

but when queried for the shares, it submits the original shares, thus framing the parent

node. Our algorithm detects this change. It, however, is not possible to determine

which node indeed is lying and hence the child node and its parent both will be

removed from the network.

• Case 3. Parent node frames the child node

This case is seen in scenario 4. The parent node changes the shares received from a

child node before aggregation, and presents these altered shares when queried. The

child node, when queried presents the original shares. Since, for the base station, this

case is indistinguishable from Case 2, both the nodes are removed from the system.

• Case 4. Corrupt nodes collude

This is scenario 1 in Figure 7.1. In our algorithm unlike [6], [1],[5], node collusion

does not result in any privacy loss. A node can only affect one other node at a time

like in cases 1 & 2. Even when the nodes collude there is no more damage than when

they are not colluding.

7.2. MULTIDIMENSIONAL PIP

Most motes these days have multiple sensors and in many cases, we need these motes

69

to use more than one of them. This gives rise to multidimensional data. The challenge with

multidimensional data is to ensure its privacy and integrity and be energy and bandwidth

efficient. A naive solution is to protect the privacy and integrity of each dimension of the

data individually. However, because the provenance of all of these dimensions is same

more efficient solutions can be achieved. Multidimensional privacy preserving data aggre-

gation was treated in [7]. The authors in [7] did not consider data integrity, we, however,

observe that integrity can be built into their solution, in the same manner as ours. Their

scheme assumes a heterogeneous network, where the aggregators nodes are few and are

more powerful than the rest. This limits the flexibility of their solution as every node must

be within the vicinity of a powerful aggregator failing which, it cannot be a part of the data

aggregation process.

Both the basic and enhanced versions of PIP can be extended easily to accommodate

multidimensional data. Unlike the solution in [7], our solution works in a homogenous

environment without the assumption of any powerful aggregator node. We begin with the

basic PIP, taking the first dimension as data, adding other dimensions just like the integrity

key was added in the basic PIP algorithm. Integrity key is added similarly at the end. For

each dimension, this solution adds one share. Thus, the bandwidth usage after the first

dimension increases by one share per dimension, compared to the naive solution in which

each dimension would require 3 shares.

70

8. PERFORMANCE ANALYSIS

We implemented the algorithms on the TelosB mote platform using TinyOS 2.x. The

TelosB mote platform has a TI MSP430 16 bit microcontroller, with 10 kB of RAM and

a clock speed of 8MHz. We measured the execution time of the share generation algo-

rithm and the data regeneration and integrity check algorithm for different data/share sizes

and the results are shown in Figure 8.1. Figure 8.2 illustrates the corresponding energy

consumption for varying data/share sizes. To measure energy consumption we used the

formula E = V ∗ I ∗ t, where V is the voltage supplied, I is the current drawn, and t is the

time taken for the operation. From Figures 8.1 and 8.2, we can deduce that PIP introduces

very little delay in the network and consumes very little energy while providing privacy and

integrity of the data. As discussed previously, asymmetric homomorphic encryption and

signatures such as in [2] have been used to provide privacy and integrity. Table 8.1 shows

a comparison between the homomorphic SDA algorithm and PIP scheme for two different

key sizes. SDA uses Elliptic Curve Cryptography (ECC). According to the 2011 ECRYPT

report, a 128-bit ECC key has security equivalent to a 64-bit symmetric key, while the 192-

bit ECC key is equivalent to a 96-bit symmetric key. As previously discussed, a b bit share

size in PIP has security equivalent to 2b bit symmetric key, by virtue of using two b bit

keys, the scrambling key and the perturbation key. Therefore, we compare the 128-bit ECC

in SDA with 32-bit PIP and 192-bit ECC with 48-bit PIP. It can be seen that, PIP consumes

far less energy for equivalent security than SDA. The difference is approximately an order

of 4.

Table 8.1. Energy efficiency of PIP compared to SDA[2]
Scheme 32/128 bit 48/192 bit
SDA 79.77 mJ 115.7 mJ
PIP 0.047 mJ 0.068 mJ

71

 5

 10

 15

 20

 25

 30

 35

 40

 45

32 48 64 80 96 112 128

E
xe

cu
tio

n
tim

e
 in

 m
ill

is
ec

on
ds

Data/share size in bits

share generation
data regeneration and integrity check

Figure 8.1. Execution time of Basic PIP on TelosB motes

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

32 48 64 80 96 112 128

E
ne

rg
y

co
ns

um
pt

io
n

 i

n
µJ

ou
le

s

Data/share size in bits

share generation
data regeneration and integrity check

Figure 8.2. Energy consumption Basic PIP on TelosB motes

We have also implemented enhanced PIP on TelosB motes. Because the calculation

of higher degree polynomials is a time-consuming process, we pre-computed several re-

peatedly used coefficients and placed them in the init function. The execution time for

72

varying data/share sizes in enhanced PIP is shown in Figure 8.3. Even after pre-computing

the repeatedly used coefficients, we can see that the time required to generate shares in

enhanced PIP is much higher than in basic PIP. The energy consumed in enhanced PIP,

although not shown, will also be proportionally higher. The memory requirements of basic

and enhanced PIP algorithms are shown in Figure 8.4. We see that the RAM required by

the algorithms is modest, ranging from under 1kB for both basic and enhanced versions

for 32-bit share size to a maximum of 1.54 kB for enhanced PIP with a 128-bit share size.

Thus both versions of PIP are easy to load on most low memory wireless sensors.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

32 48 64 80 96 112 128

E
xe

cu
tio

n
tim

e
 in

 m
ill

is
ec

on
ds

Data/share size in bits

share generation
data regeneration and integrity check

Figure 8.3. Execution time of enhanced PIP on TelosB motes

We compare our algorithm with iPDA and iCPDA in terms of bandwidth consump-

tion per node. We consider the header size of the network packet to be 18 bytes, which is

the case for TelosB on TinyOS 2.x. For iPDA, to ensure a fair comparison, we assume that

the parameter J, which dictates the number of slices of the data item is 3. In iPDA, each

node slices its data into J parts and sends out 2J−1 packets to other nodes in the network.

For iCPDA, we take the average size of the cluster k = 3. The parameter pc, which is the

73

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

32 48 64 80 96 112 128

R
A

M
 r

eq
ui

re
d

(b
yt

es
)

Data/share size in bits

basic PIP
enhanced PIP

Figure 8.4. Memory required for basic and enhanced PIP on TelosB

number of cluster heads is 1/k. Thus 1/3 of the nodes in the network are cluster heads. We

also assume that the cluster tree of iCPDA has degree 2. In this case then, each node on

average sends (k2 + k+1)/2 packets and receives on average (3k2−1)/k packets. In con-

trast, in our algorithm, regardless of the number of children each aggregator had, each node

sends out 3 shares in a single packet and each aggregator receives d such packets, where d

is the degree of the tree taken to be 3 here. The comparison of the bandwidth required per

node is illustrated in Figure 8.5. Figure 8.6 shows the comparison of energy consumption

of the three algorithms. Energy on a node is mainly consumed in the encryption (share

generation) operation and in the wireless transmission and reception of the data. For this

comparison we vary the number of nodes whose data has to be aggregated. In iPDA, this

parameter is J, which governs the number of slices in which a data has to be divided. A

node sends the slices to 2J−1 other nodes. Each slice of the data is encrypted with a shared

symmetric key between the pair of nodes. Thus, every node in the network, on average,

both sends and receives 2J−1 encrypted slices of data. This amounts to 2J−1 encryptions

and decryptions on every node. In iCPDA, this parameter is the cluster size k. Here, each

74

node sends out k−1 encrypted messages to k−1 other nodes in the cluster. All other com-

munication in the cluster is in cleartext. In our algorithm, this parameter may be chosen as

the degree of the tree. Our algorithm, however, is agnostic to this metric and hence has a

constant computational overhead. The aggregator node however, receives a varying num-

ber of packets from its child nodes depending on its degree. This consumes an amount of

energy which varies with the number of child nodes each aggregator has. This energy spent

in transmission and reception of packets however, is small when compared with iPDA and

iCPDA due to lesser amount of wireless communication as shown in Figure 8.5. In the ex-

periment, we chose AES-256 encryption for iPDA and iCPDA. In our implementation on

TelosB motes, each AES-256 encryption consumes .01 millijoule and decryption consumes

.016 millijoule of energy. We assume that the computational overhead in slicing and adding

the data in iPDA and iCPDA, and addition of aggregates in PIP is negligible. In both iPDA

and iCPDA, the privacy of the algorithm depends on the number of nodes taking part in

aggregation. The computational overhead, however, increases linearly with the number of

nodes and hence a tradeoff must be made between privacy and computational overhead. In

our case though, the number of nodes in aggregation does not affect the privacy preserving

capability of the algorithm and hence, no such tradeoff is required. As discussed previ-

ously, the security of a b bit share in PIP is equivalent a 2b bit symmetric key. We thus,

choose to compare the two algorithms with the 128 bit version of PIP. In Figure 8.6, we

can see that PIP performs better in terms of energy consumption when aggregating data for

3 or more nodes in case of iPDA and at all times in case of iCPDA.

75

 200

 400

 600

 800

 1000

 1200

 1400

 30 40 50 60 70 80 90 100 110 120 130

B
an

dw
id

th
 c

on
su

m
pt

io
n

 i

n
bi

ts
/n

od
e

Data/share size in bits

iPDA
iCPDA

PIP

Figure 8.5. Bandwidth consumption per node for varying share size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25

E
ne

rg
y

co
ns

um
ed

 in

 m
ill

ijo
ul

es

Number of nodes in a single aggregation

iPDA
iCPDA

PIP

Figure 8.6. Energy consumed as a function of nodes involved in aggregation

76

9. CONCLUSION

In this paper, we first presented the basic PIP algorithm, to perform privacy and in-

tegrity preserved data aggregation in wireless sensor networks. We then provided the en-

hanced PIP algorithm which can detect corrupt aggregators that inject false data into the

system. We implemented both algorithms on TelosB motes and measured the execution

time and energy consumption. The results establish that the algorithms are lightweight in

terms of energy and introduce very little delay in the network. We also compared the basic

PIP algorithm’s bandwidth requirement with two other existing algorithms with similar ob-

jectives and found that basic PIP performs better than both. Finally, we noted that while the

privacy in other algorithms depended on the number of nodes taking part in aggregation, in

our algorithms it is not so and this also helps us save energy at the aggregators.

77

10. BIBLIOGRAPHY

[1] W. He, X. Liu, H. V. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda: Privacy-
preserving data aggregation for information collection,” ACM Trans. Sen. Netw., vol. 8,
no. 1, pp. 6:1–6:22, Aug. 2011.

[2] V. Kumar and S. K. Madria, “Secure hierarchical data aggregation in wireless sen-
sor networks: Performance evaluation and analysis,” Mobile Data Management, IEEE
International Conference on, vol. 0, pp. 196–201, 2012.

[3] J. Girao, D. Westhoff, and M. Schneider, “Cda: concealed data aggregation for reverse
multicast traffic in wireless sensor networks,” in Communications, IEEE International
Conference on, vol. 5, May 2005, pp. 3044 – 3049 Vol. 5.

[4] T. Feng, C. Wang, W. Zhang, and L. Ruan, “Confidentiality protection for distributed
sensor data aggregation,” in INFOCOM 2008. The 27th Conference on Computer Com-
munications. IEEE, 2008, pp. 56–60.

[5] L. Zhang, H. Zhang, M. Conti, R. Pietro, S. Jajodia, and L. Mancini, “Preserving pri-
vacy against external and internal threats in wsn data aggregation,” Telecommunication
Systems, pp. 1–14, 2011.

[6] M. Conti, L. Zhang, S. Roy, R. Di Pietro, S. Jajodia, and L. V. Mancini, “Privacy-
preserving robust data aggregation in wireless sensor networks,” Security and Commu-
nication Networks, vol. 2, no. 2, pp. 195–213, 2009.

[7] X. Lin, R. Lu, and X. S. Shen, “Mdpa: multidimensional privacy-preserving aggre-
gation scheme for wireless sensor networks,” Wirel. Commun. Mob. Comput., vol. 10,
no. 6, pp. 843–856, Jun. 2010.

[8] C. Wang, G. Wang, W. Zhang, and T. Feng, “Reconciling privacy preservation and in-
trusion detection in sensory data aggregation,” in INFOCOM, 2011 Proceedings IEEE,
2011.

[9] W. He, H. Nguyen, X. Liu, K. Nahrstedt, and T. Abdelzaher, “ipda: An integrity-
protecting private data aggregation scheme for wireless sensor networks,” in MILCOM
2008. IEEE, nov. 2008, pp. 1 –7.

[10] W. He, X. Liu, H. Nguyen, and K. Nahrstedt, “A cluster-based protocol to enforce
integrity and preserve privacy in data aggregation,” in Distributed Computing Systems
Workshops, 2009. ICDCS Workshops ’09. 29th IEEE International Conference on, June
2009, pp. 14 –19.

78

[11] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613,
Nov. 1979.

[12] A. Parakh and S. Kak, “Recursive secret sharing for distributed storage and informa-
tion hiding,” ser. ANTS’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 88–90.

[13] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik, “Efficient and provably
secure aggregation of encrypted data in wireless sensor networks,” ACM Trans. Sen.
Netw., vol. 5, no. 3, pp. 20:1–20:36, Jun. 2009.

79

III. ATTRIBUTE BASED ACCESS CONTROL OF AGGREGATED DATA IN
SENSOR CLOUDS

Vimal Kumar∗, Sanjay K Madria∗,

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

Sensor clouds are large scale wireless sensor networks (WSNs), built by connecting a

number of smaller WSNs together. Each of these smaller individual WSNs may be owned

by different owners. Sensor clouds are dynamic in nature, where wireless sensors can

be provisioned and de-provisioned for the users on demand. In such a multi-user, multi-

owner system, user access control is a significant problem. Previous user access control

schemes have been designed for standalone sensors or smaller networks and do not take

large networks into consideration.

In large networks, data is generally aggregated in-network during data collection. In

this paper, we present our user access control scheme, which works on aggregated data

in a sensor network. Our scheme, which is based on attribute based encryption is able

to differentiate between users which require data with the same set of attributes. This is

necessary in a commercial sensor cloud system for billing and management purposes. Our

scheme gives the flexibility to sensor network owners, to control user access of data from

their sensors. Finally, we compare our scheme to related schemes, in terms of computation

and communication overhead to show its effectiveness.

80

1. INTRODUCTION

Sensor Cloud [1], [2] is an emerging paradigm of computing for Wireless Sensor

Networks, which facilitates resource sharing and enables large scale sensor network de-

ployment. It brings together multiple WSNs owned by different entities, each of which

may contain many wireless sensors. Sensor clouds are characterized by dynamic provi-

sioning and de-provisioning of wireless sensors for the users based on demand.

Sensor clouds share some of the same security issues as WSNs and introduce some

new ones owing to multiple users and multiple WSN owners [3]. The security issue we

consider in this paper is access control of sensor data. Sensor clouds are distributed sys-

tems which generate data in real time and on demand. The data generally is aggregated

in network which requires that the access control mechanism should support secure data

aggregation in the event of nodes being captured. To aggravate the issue, in sensor clouds,

the network topology is not known in advance since the nodes are provisioned and de-

provisioned on demand for each user. Moreover, a sensor cloud composed of multiple

WSNs may be owned by different users each of which may place certain restrictions on

who can and cannot access the data being generated by their sensors. This possibility is

unique to sensor clouds and has not been sufficiently explored before. Thus, what is re-

quired is an access control scheme for sensor clouds, where only authorized users are able

to access data from the sensors. The access control scheme should be able to work in an

environment where the data is aggregated in network and the topology of sensor nodes

can vary for each user and each query. This access control scheme should also be able to

integrate the WSN owner permissions on who can access data from their sensor nodes.

A solution which has been proposed in [4] and [5] is to encrypt data such that only the

authorized users are able to decrypt it. The solutions in [4] and [5] though have considered

only a partially distributed system. The system model in these works does not consider an

81

in-network data aggregation scenario.

Keeping the above requirements of sensor cloud in mind as well as shortcomings of

some of the related work, in this paper, we propose an attribute based user access control

scheme, which takes into account that data is usually aggregated in wireless sensor net-

works to save energy and bandwidth. We also consider that each WSN in the sensor cloud

may impose authorization restriction on the data usage. In our scheme, data instead of be-

ing stored on a node is collected in response to the user’s query and is aggregated during the

process. We also provide a scheme where the network owner or the sensor network itself

can change the authorization level of the data during run time under special conditions. In

our scheme, the sensors are able to differentiate between different users who might have

the same query, attributes and authorization level. This is of particular help in a commercial

system which needs to bill the users according to their usage and so needs to differentiate

between users running the same query. We also discuss a method to increase the flexibility

in the kind of queries that can be run on the sensor cloud by manipulating the access tree.

Formally, our contributions in this paper are as follows.

• A fully distributed, fine grained access control scheme for aggregated data in sensor

clouds.

• A scheme which considers runtime modification of authorizations.

• Integration of the access control scheme with a secure data aggregation scheme.

82

2. RELATED WORK

User access control in wireless sensors has received considerable attention in recent

years. Using Access Control Lists (ACLs) in wireless sensors where each sensor verifies

the access allowed for each user by validating them against its ACL is not a scalable and

suitable in WSN environment where users can leave and new users can join. In [6], a

user receives a symmetric key Ki for each sensor node SNi it wants to access. This key is

generated by a trusted authority and is based on the user’s credentials. The drawback of this

scheme is that the user needs to know the identities of all the sensor nodes it wants to access.

The scheme also does not support data aggregation, which implies that to access data from

multiple nodes, the user will need to individually communicate and get authenticated with

each node. A similar approach was presented in the context of service oriented architecture

in [7]. This approach has the same drawbacks as that in [6]. Moreover, the access is not fine

grained; users are grouped by roles and all users in a particular role have the same access.

In [8], an Elliptic Curve Cryptography based approach, the trusted authority issues

an ACL to the user, based on its credentials and issues a public private key pair along with

a certificate. This certificate is needed to be verified by a local sensor node before granting

access rights. To access data from a remote node, the user needs to get endorsements from

k local nodes. These endorsements are verified by the remote nodes before granting access.

In this approach, the user need not know the identities of the nodes in advance but like the

previous scheme, this scheme too does not support data aggregation.

A more fine grained access control approach has been presented in [9], [4] and [5].

These solutions are based on the attribute based encryption (ABE) methods. The system

model in [9] is different from the conventional system models used for WSNs. In this

paper, the access is controlled by the wireless device itself rather than being co-ordinated

by a trusted authority. The scheme uses CP-ABE [10] for access control of data, where

83

the access policy is embedded in the ciphertext itself. However, it is computationally very

expensive, compared to other ABE methods. In [4], each attribute of the data is associated

with a public key component. An access tree based on the attributes of required data is

created for a given user. The access tree is then used to generate the private key which is

provided to the user. The user then provides the access tree to the sensor and the sensor

provides data to the user according to the access tree. The data is encrypted such that it

can only be decrypted with a private key generated based on that access tree. This scheme

was further enhanced in [5] to include multiple base station each of which controls a set of

attributes.

The concept of ABE was first introduced in [11]. Goyal et. al. then proposed key

policy based ABE in [12]. The ABE schemes were proposed for wired systems, where

the data is stored at a server and the access is provided according to the attributes held

by various users. The schemes in [4] and [5] are direct adaptations of KP-ABE in wireless

sensor networks and do not take the distributed nature of WSNs into account. In the system

model presented in [4] and [5], users access data either directly from sensor nodes or from

a storage node which collects data from other sensors. While this is a feasible model, the

heterogeneity limits the flexibility of the network. We, in this paper, propose a dynamic

attribute based access control mechanism for wireless sensor networks which works under

the general assumption of a homogenous network.

84

3. MODELS

3.1. SYSTEM MODEL

The sensor cloud system as illustrated in Figure 3.1 consists of three parties, the Users

(U), the Sensor Cloud Administrator (SCA) and the Sensor nodes (SN). The sensor nodes

are in the form of individual WSNs which are maintained by the WSN owners. To access

data from the sensors, a user first contacts the sensor cloud administrator (SCA) with a

query over the attributes of the data it wants to access. It then receives a secret key over

these attributes from the SCA. This secret key is then used to access data from the wireless

sensors, which has been encrypted based on the said attributes.

3.2. ADVERSARY MODEL

We assume that the adversary is capable of capturing a certain percentage of sensor

nodes. The adversary has the following goals:

• To try to get access to the data, for which it does not have the secret key.

• To try to access data for which the user does not have authorization.

• To tamper with the keys and data meant for other users, so as to disrupt the protocol.

85

User

Wireless sensors

Sensor Cloud
Administrator

Figure 3.1. System Model

86

4. PRELIMINARIES

4.1. BILINEAR MAPS

Let G1 and GT be cyclic groups of the prime order q. Typically, G1 is an elliptic

curve group and GT is a finite field. We, therefore, denote G1 using additive notation and

GT using multiplicative notation. Let P and Q be two generators of G1. A bilinear map

then is an injunctive function e : G1×G1→ GT , which has the following properties.

• Bilinearity: ∀P,Q ∈ G1,∀a,b ∈ Z∗q, such that we have e(aP,bQ) = e(P,Q)ab

• Non-degeneracy: If P 6= 0, then e(P,P) 6= 1

• Computability: There exists an efficient algorithm for computing e(P,Q),∀P,Q ∈G1

4.2. KEY POLICY ATTRIBUTE BASED ENCRYPTION

In key policy attribute based encryption (KP-ABE) [12], each ciphertext is associated

with a set of attributes. The access policy is defined by an access tree and the private key

is generated based on this access tree, hence the name key policy. A cipher-text can only

be decrypted with a key, if the attributes associated with the ciphertext satisfy the key’s

access tree. The KP-ABE [12] is composed of four algorithms, Setup, Encryption, Key

Generation, and Decryption.

• Setup: The Setup algorithm defines the attributes in the system and outputs a public

key PK and a master key MK. The public key PK is used for encryption while the

master key MK along with PK is used to generate user keys.

• Encryption: The encryption algorithm takes as input a message m, a set of attributes

γ and the public key PK and produces the cipher-text E

87

• Key Generation: The key generation algorithm takes as input an access tree T , the

master key MK and the public key PK to produce a secret key SK, such that SK can

decrypt E iff T matches γ.

• Decryption: The decryption algorithm takes as input the ciphertext E, the decryption

key SK and the public key PK and decrypts the ciphertext iff T matches γ, otherwise

it produces ⊥.

4.3. PAILLIER ENCRYPTION

The Paillier cryptosystem [13] is a public key encryption scheme based on the Deci-

sional Composite Residuosity Assumption (DCRA). The DCRA states that given a com-

posite n = n1×n2, for primes n1 and n2, and an integer z, it is hard to find out whether there

exists a y such that z≡ yn mod n. A message M ∈ Zn in Paillier encryption is encrypted as,

C = gM.rn mod n2

Where g ∈ Z∗n2 is a public element, while r ∈ Z∗n is chosen randomly by the encryptor. The

ciphertext C can be decrypted as.

M = L(Cλ mod n2).µ mod n

Where λ = lcm(n1−1,n2−1), µ = (L(gλ mod n2))−1 mod n and L(x) = (x−1)/n

The property of Paillier encryption we are most interested in is its additive homomor-

phism. Given Cm1 and Cm2 , paillier ciphertexts for m1 and m2. The ciphertext for m1 +m2

can be generated by multiplying Cm1 and Cm2 .

Cm1+m2 =Cm1.Cm2

88

Cm1+m2 can then be decrypted by the private key to retrieve m1 +m2.

4.4. PIP ALGORITHM FOR DATA AGGREGATION

PIP [14] is a privacy and integrity preserving data aggregation algorithm for wireless

sensors. PIP uses three different keys, perturbation key η, integrity key (I′, I′′) and scram-

bling key Ψ. While η, I′, and Ψ are generated pseudo-randomly and independently by each

sensor node, I′′ is common across the network. In the scheme, first the perturbation key is

used to perturb the data. The perturbed data is then used to generate random shares. The

scheme then uses recursive secret sharing to embed the augmented integrity key into the

shares of the perturbed data. The resulting shares are then scrambled using the scrambling

key. The scheme is homomorphic, so the scrambled shares can be added together. The data

regeneration protocol then uses the summation of the keys to regenerate the data.

We use PIP as the representative secure data aggregation protocol in our scheme.

However, any secure data aggregation protocol which uses a summation of individual sen-

sor keys at the base station and provides confidentiality and integrity can be used.

89

5. ACCESS CONTROL POLICY

To obtain fine grained access control of data, a tree based access structure was pro-

posed in [12]. The basic idea behind such an access control structure is that each data item

can be described by certain attributes attached to it. In the case of sensor clouds, the data

being generated by the sensors has certain descriptive attributes such as the type of sensor

which generated the data, type of mote on which the sensor is mounted, sensor’s location,

sensor’s owner etc. When users require data from the sensor cloud, they can formulate

complex queries based on these attributes to exactly specify the kind of data they want. An

example of such a query can be a user requesting data which is either of sensor type T1 or

T2, from sensors which belong to any two of the three sensor owners O1, O2 and O3 and

which are deployed in region, R1 . Such a query can be represented by a tree, called an

access tree T as shown in Figure 5.1. In the access tree T , leaf nodes are associated with

the attributes while each non-leaf node represents a threshold gate. The logic gate AND

can be represented by a 2− o f − 2 threshold gate, while an OR can be represented by a

1−o f −n threshold gate.

Such an access tree is very expressive and can be used to define a number of queries.

AND

OR

T1 T2

R1
2 of

3

O1 O2 O3

Figure 5.1. Example access tree

90

AND

ANDOR

T1 T2 R1 R2

2 of
3

O1 O2 O3

Figure 5.2. Unacceptable access tree

In a distributed environment however, there are certain types of queries which cannot be

expressed by this access tree. For example if in the previous query, the user requests data

from both regions R1 and R2, then an access tree as shown in Figure 5.2 would be formed.

This access tree may work in the centralized models of [4] and [5], since the data has

already been collected and stored on a single node. In a distributed model though, no node

would satisfy the criteria of being in regions R1 and R2 simultaneously and thus, no data

would be returned.

We propose a modification which improves the access tree in order to satisfy such

kind of queries. Our modification also allows partial satisfaction of access trees. First, we

classify the attributes into two types.

• Type A attributes are those attributes whose multiple instances can be satisfied by a

single sensor, e. g. sensor type attribute with instances humidity and temperature can

be satisfied by a node which has both humidity and temperature sensors mounted on

it.

• Type B attributes are the attributes which can only be satisfied one instance at a time,

e.g region attribute. A sensor can only be in one region at a given point of time.

We modify the access tree of Figure 5.2 in such a manner that each top level sub-

tree can be satisfied individually by a sensor. To convert the access tree of Figure 5.2 to

91

an acceptable and partially satisfiable form we present a procedure shown in Algorithm 8.

The partially satisfiable form of the access tree is shown in Figure 5.3. Figure 5.3 has two

top level subtrees, each of which can be individually satisfied by a sensor which is either in

region R1 or R2.

Algorithm 8 Access Tree Conversion
Require: Access Tree T , Tree arrays X, B

1: Remove all the Type B attribute subtrees from T
2: for each subtree ∈ T do
3: if subtree is a Type B subtree then
4: Remove the subtree from T
5: Add the subtree to B
6: end if
7: end for
8: Add T to X
9: for each subtree ∈ B do

10: Create as many copies of the access trees in X as there are attributes in the subtree
11: Concatenate one attribute to each copy
12: Store the concatenated access tree back in X
13: end for
14: Connect all the new trees through an AND gate

92

AND

AND AND

OROR

T1 T2 T1 T2

2 of
3

O1 O3O2

2 of
3

O1 O3O2

R1 R2

Figure 5.3. Acceptable access tree

93

6. OVERVIEW OF THE SCHEME

As discussed before, the system consists of a set of users U, sensor cloud administra-

tor SCA and the senor nodes SN. In the setup phase, the SCA generates the public and the

master keys. The public key is assumed to be known by the users as well as the sensors.

When a user U j wants to access data from the sensor cloud, it approaches SCA, with its

query on the data attributes. SCA uses the query to create an access tree T j and a secret key

SK j over T j and U j’s temporary identity. T j, SK j and the public and private components

of the user’s temporary identity are then given to the user.

A user may contact any of the sensor nodes for data. We designate the node which

receives the user request as the Gateway Node (GN j). After receiving the query, in the

form of the access tree T j, GN j floods the network with this query, creating a query tree

Q j. Each node in, Q j, which satisfies the access tree T j, then generates a random session

key and encrypts this key using the key policy attribute based encryption. The encrypted

random session keys of the query tree Q j, are aggregated and sent to the user via GN j. The

user then decrypts the aggregated session key, since it has the secret key SK j. Once the user

is able to compute the aggregated session key, it derives the symmetric keys to be used in

data aggregation and proceeds with data collection.

94

7. ACCESS CONTROL SCHEME

7.1. SYSTEM SETUP

The Sensor Cloud Administrator (SCA), defines the set of all attributes A . For each

attribute i ∈ A , a number ti is chosen uniformly at random from Z∗q. A number y is also

chosen randomly from Z∗q. SCA then generates a Paillier public-private key pair (Kpub,Kpr)

and creates the public key as,

PK = (G1,P,T1 = t1P,T2 = t2P, ...,T|A | = t|A |P,Kpub,Y = e(P,P)y)

The master secret key is,

MK = (t1, t2, ..., t|A |,y)

Each sensor is then loaded with, the public key PK, a PRF f (.) and a nonce x.

7.2. ACCESS CONTROL SECRET KEY GENERATION

As illustrated in Figure 3.1, when a user U j wants to collect data from the sensor

cloud, it first contacts the SCA for access. Along with it’s request, U j also provides a query

based on the attributes of the data it wants to access. The SCA then creates an access tree

T j, based on the user’s query and the attributes, such as the one in Figure 5.1. The access

tree is then augmented by ANDing a new node, “ID” to the root node as shown in Figure

7.1. This makes sure that the secret key is always bound to an ID. This would help in

easy revocation at a later time. To create a unique identity attribute for the user, the SCA

then randomly generates a previously unused number t j from Z∗q and its public component

t jP. Once the access tree T j is created, SCA proceeds to generate the secret key SK j as

follows. Starting from the root node, SCA constructs a random polynomial ux of degree

95

AND

AND AND

OROR

T1 T2 T1 T2

2 of
3

O1 O3O2

2 of
3

O1 O3O2

R1 R2

ID ID

Figure 7.1. Access tree augmented with ID

dx + 1 for each node x in T j, where dx is the degree of that node. For the root node r

it sets ur(0) = y and chooses the rest of the points randomly. For all other nodes it sets

ux(0) = uparent(x)(index(x)), where parent(x) denotes the parent of node x and index(x)

returns an enumeration on the children of the parent of node x. All other points are chosen

randomly. The secret key SK is then defined as,

SK j = (Dk =
uk(0)

tk
P,k ∈ γ)

Where, γ is the set of leaf nodes in T j including the node ID and Dk is calculated for all the

leaf nodes k in T j. SCA then gives the secret key SK j, the access tree T j, nonce b and Tj to

the user U j.

7.3. DATA AGGREGATION KEY GENERATION

When a user U j contacts GN j for data, it provides the query as the tuple <

U j,T j,Tj,r >, where T j is the access tree for the query, Tj is the public component of

96

the user’s identity and r is a user generated pseudorandom number. GN j floods this query

in the sensor cloud which results in a query tree Q j. Each node i whose attributes satisfy

the access tree T j, uses the PRF f (.) on the nonce b with r as the key to generate a value

si = fr(b) ∈ Zq. Each node then generates a partial session key pi ∈ GT . which is then

encrypted using Paillier encryption to obtain Cpi . This encrypted partial session key Cpi is

then again encrypted as,

E = (E ′ =CpiY
si,{Ek = siTk},k ∈ γ) (1)

Leaf nodes then send the encrypted partial session key to their parent, where it is

aggregated as,

E = (E ′ = ∏CpiY
si,{Ek = ∑siTk},k ∈ γ)

which is equal to,

E = (E ′ = ∏CpiY
∑si,{Ek = Tk ∑si},k ∈ γ)

The final aggregate ciphertext of the query tree Q j at the gateway node is,

EQ j = (E ′ =CY s,{Ek = sTk},k ∈ γ) (2)

where, s = ∑
i∈Q j

si and C = ∏
i∈Q j

Cpi is the Paillier encrypted aggregate session key.

7.4. DATA AGGREGATION KEY ESTABLISHMENT

The ciphertext in equation 2 which consists of the encrypted session key is given to

the user, who proceeds to decrypt the ciphertext. The decryption process works in a bottom

up manner, starting from the leaf nodes of the access tree Q j. For each leaf node k the value

Fk is calculated using the below formula.

97

Fk =

e(Dk,Ek) = e(P,P)suk(0) i f ,k ∈ γ j

⊥ otherwise

For each non leaf node z, if z is a d out of n gate and if more than n−d children return ⊥

then Fz is ⊥ otherwise Fz is calculated as,

Fz = ∏
i∈Sz

Fδi(0)
i

= ∏
i∈Sz

e(P,P)sui(0)δi(0)

= e(P,P)suz(0)

where Sz denotes the set of node z′s children and δi(0) denotes the Lagrange coefficient.

The user U j then computes Fz for the root node, which returns e(P,P)ys = Y s, if the op-

eration is successful. Since E ′ in the received ciphertext in eq. 2 is CY s, the user simply

divides E ′ by Y s to obtain C, which is the aggregate Paillier cipertext of the partial session

keys. C can be decrypted to obtain the aggregate of the session keys, S (We would call

it the session key). Once the user U j obtains the session key S, it is used to derive keys

for the secure data aggregation algorithm. The secure data aggregation algorithm in PIP

[14] previously discussed, uses three keys; perturbation key η, integrity key (I′, I′′) and

scrambling key Ψ. The keys η, I′ and Ψ can be easily derived once S is known while I′′

is assumed to be public knowledge. One way to derive the keys can be by using simple

modular functions as shown in equations, 3, 4, 5. k1,k2,k3 here, are assumed to be known

to the user as well as the sensors.

98

η = S mod k1, (3)

I′ = S mod k2, (4)

Ψ = S mod k3, (5)

7.5. DATA AGGREGATION

The sensors, use the same formulae in equations, 3, 4, 5, on their individual partial

session keys to derive their individual data aggregation keys. The user will have the sum

of the perturbation, integrity and scrambling keys of the nodes in the query tree Q j. Nodes

then encrypt data using the PIP scheme and send the ciphertext to their parent. The en-

crypted data gets routed along the edges of Q j, being aggregated at each intermediate node.

Finally, the encrypted aggregated data is communicated to the user by the gateway node.

The user can then use its data aggregation keys to retrieve the data.

99

8. DISCUSSION

In a sensor cloud, there can be multiple users who request the same attribute based

data. In previous approaches, no distinction was made between various users if their query

was same. In a sensor cloud though, it is essential to keep track of each user’s usage so that

they can be billed accordingly. We, therefore, augment the tree with an identity element

which makes each tree unique even though the attribute based query may be the same. In

the access control secret key generation phase, the secret key is generated using the private

key component of this identity element along with the other attributes in the access tree.

Since the sensors would need the public component of this identity to be able to encrypt

data for it, the SCA gives the public component of the identity Tj to the user, which is

passed on to the sensors along with the query. The sensors use Tj as the unique identifier

for the user’s query for billing purposes.

In the data aggregation key generation phase, the sensors generate a partial session

key and encrypt it using KP-ABE [12]. We encrypt the partial session key with Paillier

encryption [13] to make use of its homomorphic property. In equation 1, we see that for

two sensors SN1 and SN2, E ′1 = p1Y s1 and E ′2 = p2Y s2 respectively. We need to aggregate

both the random numbers s1 and s2 and the partial session keys p1 and p2. Since pi is a

Paillier encrypted ciphertext of the partial session key, we can simply multiply E ′1 and E ′2 to

obtain E ′ = p1 p2Y s1+s2 . This adds the random numbers s1 and s2 as the exponents of Y and

multiplies the Paillier ciphertexts p1 and p2. From the homomorphic property of Paillier

encryption, we know that when the ciphertexts are multiplied, the plaintext is added up.

Thus, we are able to aggregate both the random numbers and the partial session keys.

It needs to be noted that we are not using Paillier encryption for security. The security

is provided by the Decisional Bilinear Diffie-Hellman (DBDH) Assumption, we have used

Paillier encryption for its ability to sum the plaintexts when ciphertexts are multiplied. This

100

introduces the overhead of an extra Paillier encryption during key establishment. In section

12, we discuss how to reduce this overhead.

101

9. REVOCATION OF USERS

In FDAC [4], a user revocation is handled by updating the master key secret y em-

bedded in the user secret key SK. To accomplish this, the authority SCA includes an addi-

tional updatable component in the user secret key SK and a corresponding component in

the public key PK. To revoke a user, a new master secret y′ and the corresponding public

component Y ′ = e(P,P)y′ is generated. The new public component Y ′ is broadcasted to the

sensor nodes, while the differential between the new secret components is broadcasted to

all users except the one whose access is to be revoked. The selective broadcasting is done

by using ciphertext based attribute based encryption (CP-ABE) [10].

Our scheme also uses an additional secret key and corresponding public key compo-

nent for user revocation. In section 7.2, it was explained how the access tree is augmented

with an ID node and a unique secret key component t j and public key component Tj is com-

puted for each user U j. The public component Tj is used by the sensors when encrypting

data for the user U j. Each sensor generates siTj for the user U j during the data aggrega-

tion key generation. siTj is then used in key establishment. This added component hence

serves two purposes. First it binds the key to the user. The data aggregation key would be

established only if the user possesses the corresponding secret key component t j. This can

be used to keep track of individual data usage of the users and is important in commercial

systems like sensor clouds. Second, it helps in easy revocation of users. To revoke a user,

the SCA has to simply broadcast U j in the sensor cloud. Once the sensor nodes receive U j,

they simply stop sending siTj in further data aggregation key generations. This makes sure

that the revoked user U j would not be able to generate data aggregation keys required to

decrypt sensor data.

Our user revocation scheme only incurs one broadcast in the sensor network and the

maintenance of a list of revoked users. On the other hand the revocation scheme in FDAC

102

[4] requires one broadcast in the sensor network and one selective broadcast to the users.

The selective broadcast is done using CP-ABE [10] which requires computational overhead

at the SCA and for each user U j for every revocation. Moreover, the users may be mobile

and they may be online as well as offline. If the selective broadcast fails to reach a user,

that user will not be able to receive data from the sensor network in the future.

103

10. MODIFYING ACCESS AT RUNTIME

Data generated by a sensor network may hold different degrees of importance at

different times. Sensor data which under normal circumstances is allowed to be accessed

by everyone, may become more important under special circumstances and may require

special privileges to be accessed. Two examples below illustrate the point.

Example 1: A network owner has deployed A WSN in a building which keeps track

of the number of people coming in and out of the building. This information is public and

may be accessed by anyone. In case of an event however, the network owner may escalate

the authorization level of this information so that only authorized personnel may access the

information about the event.

Example 2: A network owner has deployed seismic sensors in a wide field. This data

is public and may be accessed to study the seismic activity of the area. In case the sensors

sense a sudden short high intensity shock wave, it may by an indication of an explosion

or an earth quake. The sensors themselves escalate the authorization level in this case, to

avoid panic in public.

10.1. ENCRYPTION SCHEME FOR MODIFYING ACCESS AT RUNTIME

We build the network owner’s or sensor’s control on the access of data by introducing

authorization in the key establishment phase. We specify authorization by authorization

levels which are assumed to be hierarchical in nature. In our scheme authorization level l is

higher than authorization level l+1, such that AL0 > AL1 > ... > ALn−1. A user which has

an authorization level of ALl can access data which belongs to any authorization level ALm,

where m≥ l but cannot access data which belongs to authorization levels, where m < l. We

model the hierarchical authorization levels by a one way key chain.

K0→ K1→ K2→ ...→ Kn−1, where Kl = h(Kl−1)

104

In the key chain, K0 is the root key and all other keys can be derived by repeated

application of the hash function h(.) on the root key. A key can derive other keys in the

direction of the hash chain but not the opposite direction. The key chain is such, that data

meant for an authorization level ALl can only be decrypted if the user has a corresponding

key Km, where m ≤ l. The root key K0, corresponds to the absolute authorization over all

data.

To allow run time modification of access the scheme is modified as follows. Addi-

tional public key components hl = Y Kl are created for each of the authorization keys Kl ,

such that the public key becomes,

PK = (G1,P,T1,T2, ...,T|A |,Y,hl for every key Kl)

The secret key for each authorization level are the key Kis which are only given to

authorized people for that authorization level. To encrypt a message for a certain autho-

rization level l, the public key component of the authorization level is raised to the random

number si and multiplied with the partial session key. The ciphertext generated by each

node in equation 1 then becomes.

E = (E ′ =Cpih
si
l ,{Ek = siTk},k ∈ γ) (6)

The aggregate ciphertext at the gateway node would be

EQ j = (E ′ =CY sKl ,{Ek = sTk},k ∈ γ) (7)

As discussed before, the user U j can use it’s secret key SK j on EQ j to obtain Fz for the root

node, which is Y s. If the user has the correct authorization key, it can calculate (Y s)Ki =

Y sKi , which can be used to retrieve C from 7. Once C is obtained, the user can proceed to

105

generate the data aggregation keys.

10.2. PROTOCOL FOR MODIFYING ACCESS AT RUNTIME

Once the symmetric keys for data aggregation have been established using the session

key, the data collection becomes operational. To modify access to the data, after the data

collection is operational, nodes follow the below protocol.

We assume nodes SN1, ...,SNN are collecting data and encrypting it securely using

keys derived from partial session keys p1, ..., pN . The authorization level is ALl and the ag-

gregate session key is P. We assume that some event E occurs and in response to E , nodes

SNk, ...,SNk+k′ escalate their authorization level to ALl′, l′ < l. The nodes SNk, ...,SNk+k′

now generate new partial session keys p′, which will be encrypted with the escalated au-

thorization level key hl′ as in equation 6. This ciphertext is sent to the user along the query

tree Q . To however, enable the user to keep decrypting the data it receives from the rest of

the nodes, the sensor nodes also send their previous partial key p, encrypted with the old

authorization level. Both the new and the old partial keys of the nodes Nk, ...,Nk+k′ which

have escalated their authorization level are aggregated and sent to the user. The user de-

crypts the old aggregate partial keys ∑ p and generates the new session key as P−∑ p. This

new session key is then used to derive the new scrambling, integrity and perturbation keys

for continuing to receive aggregate data from the rest of the nodes at the old authorization

level. ∑ p′ can only be decrypted by the user if it has the key for the escalated authorization

level. Thus, if the user does not have the required authorization to decrypt data from a set of

nodes, it continues to only receive data from the rest of the nodes. If the user has the private

key for the new authorization level, then it can decrypt ∑ p′ and generate new scrambling,

integrity and the perturbation keys. The nodes after escalating the access level, now encrypt

their data with the new partial keys. A tag tg is attached to this encrypted data to indicate

the new authorization level. Encrypted data which has the same tag is aggregated. Thus the

user now receives two aggregates of data, one encrypted with keys derived from the new

106

session key and one with keys derived from the old session key. The user can decrypt one

or both the aggregates depending upon the authorization it has.

107

11. SECURITY ANALYSIS

As discussed in our adversary model, the adversary (which is also a malicious user)

has the following three goals.

• To try to get access to the data, for which it does not have the secret key.

• To try to access data for which the user does not have authorization.

• To tamper with the keys and data meant for other users, so as to disrupt the protocol.

To achieve these goals, the adversary can collude with other users and compromise

some sensor nodes. We show in this section that our scheme prevents the adversary from

accomplishing these goals in the presence of user collusion and node compromise.

Each node in our scheme encrypts a randomly generated partial session key using

KP-ABE. KP-ABE is secure under the Decisional Bilinear Diffie-Hellman (DBDH) As-

sumption (The security proof can be found in [12]). With KP-ABE, even though the users

collude, they cannot decrypt data which has not been encrypted for their individual se-

cret keys. In equation 7, the session key is encrypted as Ce(P,P)sKl . Assuming, the user

has the correct authorization key Kl , in order to recover C, the user will have to calculate

e(P,P)s, which it cannot calculate unless it has the correct secret key. The adversary may

also compromise sensor nodes. Because each sensor node generates an encrypted partial

session key Cpi individually, compromising sensor nodes, does not give the the adversary

any advantage too.

Authorization in our scheme is provided in the form of private keys Kl , for autho-

rization level ALl . Since the authorization keys are in the form of a one way hash chain,

a lower authorization level’s key can be derived from a higher authorization key but not

vice versa. That is, if the underlying hash function is secure. For a particular authorization

level ALl , the sensor nodes encrypt the session key as Ce(P,P)sKl . Nodes with the required

108

 10

 100

 1000

 10000

 100000

 10 15 20 25 30 35

T
ot

al
 n

um
be

r
of

 s
to

re
d

 e
le

m
en

ts
 (

n)

Number of elements chosen at random (k)

80-bit
128-bit

Figure 11.1. Relationship between number of elements chosen (k) and stored (n)

authorization level can calculate e(P,P)s and then (e(P,P)s)Kl to compute C and hence the

session key S. User who does not have the correct authorization will not be able to compute

(e(P,P)s)Kl and hence cannot derive the correct session key to access data.

An adversary can compromise sensor nodes, which can corrupt the ciphertext,

Ce(P,P)sKl to disrupt the key establishment process. If the user receives corrupted cipher-

text, the key generation process will still go through and the user will generate incorrect

data aggregation keys. This is where PIP algorithm’s integrity preserving nature comes in.

Since the user has derived incorrect data aggregation keys, PIP will raise an alarm when

the user tries to decrypt sensor data using the incorrect keys. When this happens the user

can inform the SCA, which will take appropriate steps.

109

12. PERFORMANCE ANALYSIS

We have implemented our scheme on Mica2 mote platform using TnyOS2.x. The

Mica2 mote platform is based on the Atmel ATmega 128L 8-bit microcontroller, which

has 4 kB of RAM and a clock speed of 8MHz. The external flash storage is 512KB. To

implement bilinear pairing, we have used the TinyPairing library of [15]. TinyPairing is an

efficient and lightweight pairing based library, which uses elliptic curves to implement the

pairing. The underlying finite field is F397 , which results in fast multiplication and cubing

in the extension field. A 160-bit elliptic curve (EC) is chosen for the implementation. Point

compression algorithms are used to compress the EC representation to 20 bytes per point.

The extension field size is 156 bytes.

We begin this section by discussing an optimization to the implementation of our

scheme which was presented in section 7. During the data aggregation key generation

phase, each sensor node generates a random partial session key and encrypts it using Paillier

encryption before multiplying it with e(P,P)si . This process involves one Paillier encryp-

tion operation which is expensive in terms of energy. To reduce the energy consumption on

the sensor nodes, we take the following approach.

During the system setup phase the SCA generates n Paillier encrypted elements in GT

and pre-deploys the elements on the sensors. In the data aggregation key generation phase,

the sensors then randomly choose k ≤ n elements from the stored elements and multiply

them together to generate one random Paillier encrypted partial key. The number of unique

keys which can be generated with this method are dependent on the values of n and k and

are given by,

Number of unique keys =
n!

k!(n− k)!

The relationship between n and k for 80 and 128 bit symmetric key security is shown in

Figure 11.1. A smaller value of k implies less number of extension field multiplications,

110

Table 12.1. Execution time and energy consumption on Mica2 motes
Operations Exec. Time (ms) Energy Con. (mJ)
Scalar Multiplication 2551 61.224
Ext. Field Multiplication 89 2.136
Ext. Field Cubing 3 0.072
Ext. Field Exponentiation 689 16.536
Paillier Key Generation 453 10.872
Point Addition 116 2.784
Optimised Scalar Mult. 857 20.568

however as can be seen in the figure, the total number of stored elements n needs to be

very large. For larger k values, the space complexity decreases. Thus, there is a tradeoff

between computation and space complexities. The system designer can choose appropriate

parameters depending upon which motes are available. In our implementation we have

chosen k = 15 and n = 266 for 80-bit symmetric key security level. We further make use of

the efficient extension field cubing and multiplication algorithms of [15] to implement the

generation of random Paillier encrypted partial key, the execution time of which comes out

to be 453 ms. We have also implemented the time consuming scalar multiplication opera-

tion on EC points in a similar way and have traded space complexity for time complexity.

Our implementation of the optimized scalar multiplication takes 857 ms compared to 2551

ms if no optimization is used. The execution times and energy consumption of various

operations needed for the scheme on Mica2 motes is shown in the Table 12.1. To measure

energy consumption we used the formula E =V ∗ I ∗ t, where V is the supplied voltage, I is

the current drawn in active mode and t is the execution time of the operation. Using a low

power mote such as Mica2 results in higher execution times but the energy consumption on

these motes is considerably lower than high-end motes such as the iMote2.

A comparison of the computation involved in our scheme and the schemes in [4]

and [5] is given in Table 12.2. Our scheme requires an additional Paillier key generation

operation. The overhead of this operation, however, compared to |A j|+1 scalar operations,

111

Table 12.2. Comparison of computation complexity
Scheme Scalar Mul. Extension

Field Mul.
Extension
Field Exp.

Paillier Key-
Gen

Yu et. al |A j|+1 1 1 0
Ruj et. al |A j|+1 1 1 0
Ours |A j|+1 1 1 1

Table 12.3. Comparison of communication complexity
Scheme Access Control User Revocation
Yu et. al (|A j|+1)G1 +1GT 1GT +1G1
Ruj et. al (|A j|)G1 +1G2 +1GT |A j|G1
Ours (|A j|+1)G1 +1GT 1|identi f ier|

where |A j|+1 is the number of attributes in the user access tree (including the ID attribute),

is considerably low. A comparison of the communication overhead of the three schemes

is shown in Table 12.3. The overhead for establishing the access control is the same in all

three of the schemes. In the user revocation process, Yu et. al’s scheme in [4] requires

two broadcasts; a broadcast of one extension field element in the sensor network and a

broadcast of one EC point to the users. Ruj et. al’s scheme in [5] the broadcast of |A j|

EC points (one for each attribute), while our scheme only needs to broadcast an identifier

element to the sensors.

112

13. CONCLUSION AND FUTURE WORK

In this paper, we have presented a user access control scheme for sensor clouds. Our

access control scheme considers large sensor networks where sensor nodes collaborate and

aggregate data in the network to save energy and bandwidth. The scheme also provides the

opportunity to the network owners to modify the access control policies at run time and

provides an efficient revocation strategy. Finally, our scheme is able to distinguish between

different users with the same query, important for sensor cloud applications. We show

that the computation complexity of our scheme is marginally higher than other approaches,

while the communication complexity remains the same. Improving the computation com-

plexity further is left as a future work. We conclude with the observation that although the

scheme is designed for sensor networks, it can also be adopted in other settings such as

wired and mobile networks, where the goal is to provide access control in a collaborative

and data aggregation scenario.

113

14. BIBLIOGRAPHY

[1] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual sensors,” IEEE
Software, March 2014, to appear.

[2] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure-physical sensor manage-
ment with virtualized sensors on cloud computing,” in Network-Based Information
Systems (NBiS), 2010 13th International Conference on. IEEE, 2010, pp. 1–8.

[3] N. Poolsappasit, V. Kumar, S. Madria, and S. Chellappan, “Challenges in secure
sensor-cloud computing,” Secure Data Management, pp. 70–84, 2011.

[4] S. Yu, K. Ren, and W. Lou, “Fdac: Toward fine-grained distributed data access control
in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 4, pp. 673–686, 2011.

[5] S. Ruj, A. Nayak, and I. Stojmenovic, “Distributed fine-grained access control in wire-
less sensor networks,” in Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International, 2011, pp. 352–362.

[6] D. Liu, “Efficient and distributed access control for sensor networks,” in Distributed
Computing in Sensor Systems, ser. Lecture Notes in Computer Science, J. Aspnes,
C. Scheideler, A. Arora, and S. Madden, Eds. Springer Berlin Heidelberg, 2007, vol.
4549, pp. 21–35.

[7] J. Maerien, S. Michiels, C. Huygens, D. Hughes, and W. Joosen, “Access control in
multi-party wireless sensor networks,” in Wireless Sensor Networks, ser. Lecture Notes
in Computer Science, P. Demeester, I. Moerman, and A. Terzis, Eds. Springer Berlin
Heidelberg, 2013, vol. 7772, pp. 34–49.

[8] H. Wang and Q. Li, “Achieving distributed user access control in sensor networks,” Ad
Hoc Networks, vol. 10, no. 3, pp. 272 – 283, 2012.

[9] G. Bianchi, A. T. Capossele, C. Petrioli, and D. Spenza, “Agree: exploiting energy har-
vesting to support data-centric access control in {WSNs},” Ad Hoc Networks, vol. 11,
no. 8, pp. 2625 – 2636, 2013.

[10] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-
tion,” in Security and Privacy, 2007. SP ’07. IEEE Symposium on, 2007, pp. 321–334.

[11] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptol-
ogy EUROCRYPT 2005, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, vol. 3494, pp. 457–473.

114

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security, ser. CCS ’06. ACM, 2006, pp. 89–98.

[13] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in Advances in Cryptology EUROCRYPT 99, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1999, vol. 1592, pp. 223–238.

[14] V. Kumar and S. Madria, “Pip: Privacy and integrity preserving data aggregation in
wireless sensor networks,” in Reliable Distributed Systems (SRDS), 2013 IEEE 32nd
International Symposium on, 2013, pp. 10–19.

[15] X. Xiong, D. S. Wong, and X. Deng, “Tinypairing: A fast and lightweight pairing-
based cryptographic library for wireless sensor networks,” in Wireless Communications
and Networking Conference (WCNC), 2010 IEEE, 2010, pp. 1–6.

115

IV. EFFICIENT AND SECURE CODE DISSEMINATION IN SENSOR CLOUDS

Vimal Kumar∗, Sanjay K Madria∗,

∗ Department of Computer Science,

Missouri University of Science and Technology, Rolla, Missouri 65401

In this paper, we present an efficient and secure code dissemination technique aimed

at sensor clouds. Previous code dissemination techniques were geared toward traditional

wireless sensor networks. They did not take into account, the dynamic nature of a sensor

cloud, where the applications running on the motes may not just be updated but changed

completely in successive code disseminations. The technique presented in this paper is

based upon the observation that a large amount of code is common between applications

in wireless sensor networks. Our technique first discovers the code common across various

wireless sensor applications. It then distributes this code in the form of functions a priori

into the network. During code dissemination, these common functions are picked up by

the sensors from the network. Only a part of the code needs to be transmitted from the

base station. This reduces the overall transmitted code and hence the energy consumption.

Since, security is important in sensor clouds, we further present a security scheme based

on proxy re-encryption to provide confidentiality and integrity of the code. We have im-

plemented our scheme using two different proxy re-encryption algorithms, on Mica2 and

TelosB mote platforms to measure its energy consumption. We have also evaluated our

scheme in terms of disseminated code size and bandwidth usage to illustrate its efficiency

compared to a popular secure code dissemination technique, Seluge.

116

1. INTRODUCTION

The code running on the sensors may need to be either updated or changed com-

pletely several times throughout a Wireless Sensor Network’s (WSN’s) lifetime. WSNs

are typically very large in size, which makes manual updates to each sensor node impracti-

cal. A more feasible alternative involves disseminating the code wirelessly in the network.

Sensor nodes receive the code packet-by-packet and then rebuild the code image, once all

of the code has been received. In wireless code dissemination, code images are commu-

nicated via the wireless channel which is inherently in-secure and prone to attacks from

adversaries. A secure code dissemination technique enables the code dissemination to be

confidential and also protected against malicious code injection attacks.

A large amount of work has been done to reduce the amount of code to be trans-

mitted from the base station to different sensor nodes [1], [2], [3], [4],[5]. These efforts,

however, have been focused on traditional WSNs, that support only one application. In

such networks, the code updates happen infrequently. Most often, these updates are minor

so most of the code remains unchanged. Several schemes, such as [1],[3] and [5] created

a difference script between the old and the updated code. The base station disseminates

the script rather than the entire code. Doing so not only reduces the number of packets

but also saves energy along the forwarding nodes. In a sensor cloud, however, clusters of

nodes are provisioned dynamically to the user to support several applications on demand,

[6], [7]. Dynamic provisioning implies that the code on the wireless sensors is changed

entirely as a new application is installed. The difference script mechanism cannot be ap-

plied in this scenario because the script itself would be the size of the code. Thus, there

exists a need for an efficient code dissemination scheme that is well-suited for a sensor

cloud scenario. Efficiency of code dissemination is an especially important issue in sen-

sor clouds because the frequency of code change is high to support different applications.

117

High frequency of code change implies that the sensors spend a good deal of their energy

on forwarding and installing new code. Any reduction in the amount of total code trans-

ferred therefore gets multiplied by high frequency resulting in great reduction in energy

consumption. Moreover, clusters of sensors in a sensor cloud are dynamically provisioned

to users, which means that at any given point in time, various clusters can be working

for various users. In such a scenario, the security of the code (in terms of confidentiality

and integrity) also becomes very important. Code disseminated from the base station will

inevitably be forwarded by many sensors on its way to its destination cluster. Code con-

fidentiality is thus a critical pre-requisite since the code may be carrying keying material

which must be protected against eavesdropping. Another pre-requisite is the integrity of

code, which will make sure that an adversary has not injected malicious code packets dur-

ing the code dissemination process. To summarize, there is a need for an efficient code

dissemination scheme, which is well suited to a dynamically provisioned sensor cloud sce-

nario. The scheme needs to minimize the number of code packets transmitted and should

provide confidentiality and protect the integrity of the disseminated code. In this paper,

we describe our efficient and secure code dissemination scheme which addresses the above

concerns. Our contributions in this paper are as follows:

• A code dissemination algorithm which reduces the total number of packets sent from

the base station to a cluster of sensors in a sensor cloud scenario.

• A security mechanism which provides confidentiality and integrity of code packets

while they are disseminated in a sensor cloud.

118

2. RELATED WORK

Deluge [8] provided an efficient way to reprogram motes wirelessly. It divides the

code image into fixed size pages and then divides each page into packets with a size that

is network dependent. Because Deluge [8] was created for traditional WSNs, it advertises

new code images using an epidemic protocol. Nodes can then request for individual pages

and new code images by listening to the advertisement packets. Although Deluge [8] tried

to reduce the wireless traffic, it did not take into account the similarities between various

code updates.

Reijers et al. [5] proposed an approach that addressed incremental code updates.

This approach took a UNIX diff like approach for determining the difference between two

versions of the same code. They introduced commands such as insert, copy, repair, repair

dbl and patch list to generate an edit script. Instead of wirelessly sending the complete new

code, the base station would only transmit the edit script. The wireless sensors would then

transform their code image according to the edit script to generate the new version of the

code. The authors, however, only discussed the encoding mechanism of the code image

without any code distribution algorithm. Moreover, the edit script was platform dependent.

A platform independent incremental code update algorithm was described in [3]. This

algorithm divided a program image into small, fixed-size blocks and calculated the hash of

each block. The same was done for the new code image and a difference script was created

by comparing the hashes of the code images. The difference script consisted of copy and

download commands where copy meant the wireless sensor could just copy the block from

the old code image and download meant the block contained changes and thus had to be

downloaded from the base station.

Approaches in [3] and [5], however, work particularly for small code changes. Any

code change that produces an address shift results in an extremely inefficient script. To

119

overcome this, [4] introduced slop regions around functions. Functions are allowed to

grow into the slop regions. Thus, small changes in code do not produce address shifts. If

the function grows bigger than the allowed slop region, it is moved to an area with a bigger

slop region and linked to its previous location. This approach however, wastes a large

amount of space on the sensors. Additionally, the efficiency of code dissemination depends

on the amount of memory available to be sacrificed. QDiff [1] presented an optimized patch

creation technique. The size of the patch created in QDiff [1] is small compared to other

schemes. The algorithm works on the ELF file level and hence, is platform independent.

QDiff [1] uses slop region to maintain similarity between two versions of the code. If no

slop region exists, the new code is moved to the end of the file. A high level of similarity

between the codes at the ELF file level ensures a small patch size. Moreover, the patch

can be directly applied in the RAM, eliminating the need for a reboot, thus saving a large

amount of energy.

All of these approaches targeted the traditional wireless sensor network model in

which the changes between successive versions of the application code are small. On

the contrary, in a sensor cloud, a code update implies that the entire application must be

changed. As a result, the application code needs to be completely updated. Code dissem-

ination in a sensor cloud like scenario was first discussed in [9]. The authors discussed a

code dissemination algorithm for multi-application WSNs, where various groups of sen-

sors support different WSN applications. This algorithm is based on the idea that WSN

applications share a lot of common code. This common code can be disseminated from

other sensors in the network instead of disseminating everything from the base station. The

authors presented the idea and demonstrated the effectiveness through simulations. They

did not, however, offer implementation specific details, such as the handling of code shifts

and the introduction of new global variables. Instead, the focus was on adaptive buffer

management for such a code dissemination algorithm. Our algorithm exploits this same

idea. Many applications in WSNs may share a good chunk of code. Unlike [9] however,

120

we provide a scheme of how this idea can be implemented in a secure fashion in the context

of a sensor cloud.

Another important issue in a sensor cloud scenario is security. Seluge [10] was one

of the early attempts to build a secure code dissemination algorithm. Seluge [10] aimed

to tackle the code image integrity and various DoS attacks on Deluge [8]. For each code

image, it hashes the code packets of the last page and concatenates the hashes with the

packets from the previous page. This process is performed recursively until all of the

packets from the first page are hashed. The hashes from the first page are then used to

create a hash tree, the root of which is signed by the base station’s private key. Page 0

is then constructed which consists of the information needed to verify the root hash. In

the end, a signature packet is constructed which consists of the root hash, the meta data

about the code, and the signature over the root hash. Secure Deluge [11] also applies

similar techniques for secure code dissemination. Neither [10] nor [11], however, offer

confidentiality of code. Confidentiality of code has been discussed in [12]. In [12] all

packets are considered to be in a sequence. The hash of a packet is generated in the same

way as in [10]. The last packet, however, is concatenated with an L-byte nonce. The first

L-bytes from the hash of a packet are also used as the key for encrypting the packet. The

whole sequence of packets is thus encrypted. The hash of the first packet is then used to

construct a cipher puzzle signed by the base station. The eavesdropper in [12] is an outsider.

The confidentiality of the code is protected against such an adversary, while the nodes in

the network are easily able to decrypt the encrypted code. In a sensor cloud scenario, on

the other hand, the adversary is inside the network since different clusters of sensors may

belong to different users. The confidentiality of the code must be protected against such

sensors belonging to other users. This problem is exacerbated by the fact that we also want

to store commonly used code on the sensors in the sensor cloud. We propose to use proxy

re-encryption [13], [14] to solve this problem. Proxy re-encryption is discussed in section

5.1 and we present our algorithm in section 7.3.

121

3. SYSTEM MODEL AND ASSUMPTIONS

The sensor cloud consists of a large number of wireless sensors. We consider that

a clustering algorithm such as [15] has been run and the sensors have been grouped into

clusters. These sensors are provisioned to the users in terms of clusters. At any given

point in time, the sensor cloud may have many users, each holding one or more clusters of

sensors. Such a model has been discussed in [6][7] and is visualized in Figure 3.1. Sensors

in a cluster provisioned to a particular user collect data for that user. They may, however, act

as forwarding nodes for other clusters, for transferring data and code. In previous models

[1], [2], [3], [4],[5], the code updation ocurred on the scale of the WSN. In our model, on

the other hand, the code change occurs at the cluster scale. The code is updated when either

individual users install new applications in their sensor clusters or a cluster is provisioned

to a new user and a new application is installed. We assume that a routing structure is in

place, using which the base station can route the code to any particular cluster. Each cluster

has a cluster key (CK), known to the cluster members and the base station. The adversary

in our model lies inside the network. The sensors in the clusters, provisioned to other users

are assumed to be curious and may want to eavesdrop on the code being transferred. The

sensors storing common code, may want to inject malicious code by modifying the code

they store and making other sensors accept this modified code.

122

Sensor clusters

User A

User B

A

B

C

A A

A
A

A

A

B

B B

B
B

C

C

C

C C

C

Middleware

Figure 3.1. System Model

123

4. PROPOSED APPROACH

Our approach is based on the observation that the executable code which runs on the

wireless sensors consists entirely of subroutines and objects. These subroutines and objects

have a one-to-one correspondence with the functions and global variables in a high level

language such as nesC in TinyOS. Many of these functions and global variables are com-

mon across a number of wireless sensor applications. In a sensor cloud environment which

has a number of WSN applications running simultaneously in various clusters of sensors,

many applications may share parts of the same code. Some applications may have the same

security code, while others may share the same routing subroutines. Still others may share

the sensing code, and so on. All applications also share the same operating system code.

The basic idea, therefore, is to first identify the commonly used functions and global vari-

ables across all of the given applications. These functions and global variables are then

distributed throughout the network so that every sensor node probabilistically stores a few

of them. When the code on a cluster of sensors needs to be changed, the base station

first determines which of the functions and objects can the sensors request from the other

sensors in the network. Only the part of code not already present in the network is sent

from the base station. The remaining code is requested from nearby sensors. Moreover,

since the provisioning of sensors in a sensor clouds is always in the form of clusters, the

security related tasks such as decryption, authentication and verification can be distributed

among the sensors to reduce energy consumption. The security challenges in the scheme

are enumerated as follows.

• Because the functions are stored on sensors, a request for a specific function will leak

information about the code. To avoid such information leaks, the functions must be

stored encrypted on the sensors. Encryption, however, presents a problem because

the encryption keys will need to be revealed to the requesting sensors. Once the

124

requesting sensors know the encryption keys, they can send spurious requests and

retrieve all of the encrypted code.

• When sensors reply to function requests with encrypted functions, they need to make

sure that the functions have not been tampered with. This authentication needs to be

done as soon as the functions are received to thwart energy draining attacks.

125

5. PRELIMINARIES

In this section we discuss the concepts of Proxy re-encryption and Bloom filter and

provide a list of the symbols used throughout the paper in Table 5.1.

5.1. PROXY RE-ENCRYPTION

Proxy re-encryption allows third parties called proxies to re-encrypt a ciphertext gen-

erated using a secret key so that it can be decrypted using a different public key. Proxy

re-encryption (PRE) was first presented in [14]. This scheme known as the BBS scheme

is a very simple PRE scheme based on Elgamal encryption. We present the elliptic curve

version of the BBS scheme in Algorithm 9.

The concept of symmetric key proxy re-encryption (SRE) has been explored by

Syalim et. al in [13]. The symmetric proxy re-encryption scheme of [13] makes use of

an All Or Nothing Transform (AONT) along with a symmetric cipher. AONT has the

properties that it’s output is pseudo-random, and the transformation of output back to in-

put requires all the output blocks be in their correct positions. These properties are used

along with a weak permutation cipher to develop a secure symmetric proxy re-encryption

scheme. For algorithmic details, reader can refer to [13].

The EC-BBS and the SRE [13] schemes presented here have the often undesired

property of bi-directionality, where it is relatively easy to derive RK j→i from RKi→ j. As we

will see, however, in our algorithm, the knowledge of RK j→i is not useful for an attacker in

gaining any information about the encrypted code. While any PRE scheme can be used in

our algorithm, we consider EC-BBS and SRE because of their energy efficiency. We use

EC-BBS to present the algorithm in section 7. To use SRE, a single symmetric key can be

used to replace the secret and the public keys in the algorithm.

126

Algorithm 9 EC-BBS Algorithm
Require: Elliptic curve parameters, base point T , message m.

KeyGen
1: Generate a random integer a. The secret and public key pair then is (a,a∗T).

Encryption
2: Map the message m to an elliptic curve point M using a mapping function.
3: Generate a random integer r.
4: Calculate C1 = M+ r ∗T and C2 = a∗ r ∗T .
5: (C1,C2) = (M+ r ∗T,a∗ r ∗T) is the ciphertext.

Decryption
6: Calculate M′ =C1− (a−1 ∗C2).
7: Reverse map point M′ to message m′.

Re-encryption KeyGen
8: For nodes A and B, with the secret and public key pair (a,a ∗ T) and (b,b ∗ T), the

re-encryption key RKA→B can be generated as b/a
Re-encryption

9: Node A’s ciphertext: Ca = (M+ r ∗T,a∗ r ∗T).
10: Calculate Cb = (M+ r ∗T,a∗ r ∗T ∗RKA→B).
11: Node B’s ciphertext: Cb = (M+ r ∗T,b∗ r ∗T).

5.2. BLOOM FILTER

Bloom filter is a versatile space efficient probabilistic data structure used primarily to

verify set membership [16]. The Bloom Filter consists of an array of bits, initialized to 0

and k different hash functions. To add an element to the Bloom Filter, the k hash functions

are used to hash the element to obtain k array positions. These array positions are then set

to 1. To verify an element’s membership, it is hashed using the k hash functions and each

resulting array position is checked. If any of the bits at these positions are found to be 0,

the element is not a member. If all the bits are set to 1, it is a member. In this work we use

the Bloom Filter as a means of verification. The usage of Bloom Filter in our algorithm is

discussed in section 7.3.

127

Table 5.1. Symbols used in the algorithm
Symbol Description
FID Unique identifier for each fuction
CFL List of common functions
Ai Authentication key
h() Hash function
g() A pseudo random function (PRF)
f () A function in the code (Not a mathematical function)
f j() Function with identifier j
Qi EC-BBS public key
Ki EC-BBS secret key corresponding to Qi
EQ0(f j()) Function f j(), with FID j encrypted using key Q0
RKi→ j Re-encryption key to re-encrypt a ciphertext encrypted with key Qi to one

encrypted with key Q j
RKi Re-encryption key to re-encrypt a ciphertext encrypted with key Q0 to one

encrypted with key Qi
CK A cluster’s group key
n Nonce
Sn Sesion key to encrypt code packets for a session created using the nonce n
P Number of pages of code
N Number of packets in each page
SN Denotes the sensor network
SNi i−th node in the sensor network

128

6. DETECTING COMMON FUNCTIONS

We assume that the base station has a tentative list of sample applications that may

be used in the sensor cloud in future. It must be noted that not all the applications are

needed to be known beforehand. Rather a small sample size would be sufficient to detect

the common functions across the applications. We follow a procedure similar to Qdiff

[1] to detect common functions in the applications. The ELF files were dumped using

the msp430-objdump utility for TelosB and the avr-objdump utility for Mica2 platforms.

Bauhaus-toolkit [17] was then used to compare the C files generated from the nesC code of

the various applications. Bauhaus-toolkit [17] has a clone detection utility that can detect

Type I and Type II clones in different applications, at the source code level. Type I clones

are fragments of code which are exactly identical while Type II clones are copies which are

structurally identical but may have the identifiers changed. At this point of time, we only

consider Type I clones. In future, we will develop techniques to take Type II clones into

account as well. The Type I clones found in the C code by the clone detection utility of the

Bauhaus toolkit [17], can be further divided into two different types at the ELF file level.

Definition 1. We define Type 1a clones as the true Type 1 clones, where the two codes are

exactly the same and they may or may not have been shifted in memory.

Definition 2. Some Type 1 clones may also contain calls to functions and global variables

which have shifted in memory. We define such clones, which have calls to functions and

refer global variables, which have shifted in memory as Type 1b clones.

Once the common functions are detected the base station rearranges the application

code in the ELF file in a way which facilitates further use of common functions. The

reordering of the functions is done so that the placement of the common functions is con-

sistent across all the applications. Beginning with the Type 1a functions, the base station

places the common functions at the end of the .text section. This is in contrast to QDiff [1],

129

which places the new code at the end of the .text section. The code will now grow towards

the beginning of the file. After all the Type 1a functions are moved, Type 1b functions are

moved in the same manner. This results in the reordering of other functions and changes in

function references. The base station then fixes the changes in function references through-

out the code. We place the common functions at the end of the .text section and not at

the beginning to avoid situations in which the base station receives applications with large

.data and .bss sections. This will move the beginning of the .text section further down. In

such a case, the common functions placed in the beginning of the .text section of a smaller

sample application cannot be used. Therefore, it is necessary to ensure that there are no

common functions present at the beginning of the .text section. This process of detecting

common functions and rearranging them in the application code is illustrated in Algorithm

10 and Figure 6.1.

Algorithm 10 Rearrange Application Code (RAC)
1: Create a List L of Type I clones in the application codes
2: Mark the elements of L as Ta or T b, depending on whether they are Type 1a or Type

1b
3: for each i in L do
4: if Ta then
5: Move to the last possible location
6: end if
7: end for
8: for each i in L do
9: if T b then

10: Move to the last possible location
11: end if
12: end for
13: Reorder the remaining functions
14: Fix the function calls

130

fA

fB

fC

fD

fE

fF

fG

fH

fI

fJ

fK

fA

fD

fH

fL

fG

fF

fE

fC

fB

fG

fD

fH

fA

fL

fK

fJ

fI

fG

fD

fH

fA

APP 1 APP 2 APP 1 APP 2

.text

Type 1a function Type 1b function

Figure 6.1. Rearranging application code

131

7. PROPOSED ALGORITHM

7.1. PRE-DEPLOYMENT PHASE

The pre-deployment phase consists of two parts; code processing and crypto pre-

processing. The common function detection as explained in the previous section happens

in the code processing part. The base station begins by going through all the sample appli-

cations, assigning a unique identifier known as the FID to each new function it encounters.

The FIDs and the corresponding functions are stored in a table called the function table.

Once all the functions and the common functions are identified, the base station uses Al-

gorithm 10 to rearrange the code for each application. In the crypto pre-processing phase,

the base station creates a one-way hash chain, A0,A1, ..,At which we call the authentication

hash chain. t is taken to be sufficiently large so as to cover the entire lifetime of the network

operations. The hash chain has the following rules:

1. Ai = h(Ai+1)

2. A0 is the root of the chain, which is obtained by applying the hash function h(), t

times on At .

For each sensor, some FIDs are randomly selected. The base station then generates a

random secret key K0 and the corresponding elliptic curve public key Q0 = K0 ∗ T . The

functions are encrypted with this key Q0 using the proxy re-encryption scheme EC-BBS.

Pairs of FID and the associated encrypted function (j, EQ0(f j())), authentication key A0,

hash function h() and a pseudo random function g() are pre-deployed on the sensors. This

process is shown in Algorithm 11.

132

Algorithm 11 Pre-Deployment
1: Associate each function with a unique FID and build the function table
2: Call Alg RAC to create L and rearrange application codes
3: for each i in SN do
4: Randomly select k FIDs from L
5: for each j in k do
6: Encrypt f j() using Q0
7: Store tuple (j, EQ0(f j())) on SNi
8: end for
9: end for

fG

fJ

fK

fM

fD

fH

fL

fN

fL

fJ

fK

fM

fG

fD

fH

fN

APP 3 APP 3

.text

Type 1a function Type 1b function

Figure 7.1. Rearranging application code for a new application

7.2. PRE-DISSEMINATION

When the base station has to disseminate a new application code in the network, it

first identifies those functions of the new application which can be found in the network,

133

Algorithm 12 Pre-Dissemination
1: Create CFL
2: For the i-th iteration calculate the re-encryption key RKi from keys Ki and Ki−1
3: Compute h(CFL) and HMACAi(h(RKi)||(h(CFL)))
4: Disseminate HMACAi(h(Ki)||(h(CFL))) in the network before the the code is dissem-

inated

stored on the nodes. It then rearranges the functions of the new application code such

that the common functions reside in the same memory location as the code which was

distributed in the network. Rest of the code is then placed around these functions. This

can be seen in Figure 7.1. The global variables of this new application are also arranged

according to the common functions’ need in the .data and .bss sections. The base station

then creates a list called the common functions list (CFL) which is in the form of FIDs

along with the size of the functions and their memory location in the compiled code.

Before disseminating the code, the base station generates a random secret key

Ki and the corresponding elliptic curve public key Qi = Ki ∗ T for the i−th iteration of

code change. It then computes the re-encryption key RKi from K0 and Ki as Ki/K0.

A pre-dissemination packet is constructed which consists of an HMAC of hash of the

re-encryption key concatenated with hash of the CFL, i.e HMACAi(h(RKi)||h(CFL)). The

key Ai used to generate the HMAC is the next key in the authentication key chain. The

HMAC is then disseminated in the network just prior to the code. This is a broadcast

packet and all the nodes in the network save the contents of this packet to authenticate the

CFL and the re-encryption key at a later stage. This process is illustrated in Algorithm 12.

7.3. CODE DISSEMINATION

The base station (BS) prepares for code dissemination by creating a Bloom Filter

(BF) of an appropriate length. It uses a hash function to hash the common functions on

134

the CFL one-by-one to populate the BF. It then combines the CFL, the BF, the new code,

the next re-encryption key (RKi) and the next decryption key (Ki) together. The BS also

creates an index on the code dissemination content to help the nodes recover everything; it

appends this index to the contents.

Once the total code dissemination content as shown in Figure 7.2 is known, it is

divided into pages. These pages are further divided into packets. The BS then uses a nonce

(n) and the clusters group key (CK) with a pseudo random function g() to generate a session

key, Sn = gn(CK). This key is used to encrypt the packets and provide confidentiality. Each

packet is encrypted individually with the same key. To provide code integrity, we used a

process similar to that used by Seluge [10]. For the sake of continuation, we use the same

nomenclature as that used by Seluge [10]. We assume there are P pages and that each

page has N packets. The pages are denoted as Page 1 to Page P, while the packets for

Page i are denoted as Pkti,1 to Pkti,N . Packets in Page P are hashed and the hash of packet

i is appended to packet i in page P− 1. The packets in Page P− 1 then consist of the

concatenation of the hashes of the corresponding Page P packet and the original packets

of Page P− 1. This process is continued until all of the packets of Page 1 are hashed. A

Merkle Hash Tree is created over the packets in Page 1 as shown in Figure 7.3, we call this

the Vertical Hash Tree (VHT). Seluge [10] created a digital signature over the root of the

Merkle Hash Tree. Verification of a signature is a public key cryptography operation and

consumes a large amount of energy. Our implementation of Elliptic Curve Digital Signature

Algorithm (ECDSA) signatures over TelosB motes shows that verification of one signature

needs 28.771 mJ of energy [18]. On the other hand one AES-256 bit encryption costs

.01mJ of energy. In a traditional wireless sensor network, the digital signature is necessary

because the entire network needs to be updated. In a sensor cloud, because only one cluster

needs to be updated at a time, symmetric key cryptography can be used in place of public

key cryptography. Instead of signing the root of the hash with the it’s private key, the BS

uses the session key (Sn) as a signature key. A signature packet (which includes the VHT

135

root hash and the nonce n) is created and the signature is produced by encrypting (VHT

root hash || n). The nodes in the cluster can derive the session key (Sn) from the cluster key

and the nonce and verify the root hash.

Index CFL BF New Code RKi Ki

Figure 7.2. Content disseminated by the base station

We observe that since code updation in a sensor cloud happens in a cluster with the

sensors are physically close together, energy intensive tasks such as decryption of pack-

ets can be done in a distributed manner. Thus, instead of every sensor decrypting all the

code, each sensor can decrypt a few packets, and thus conserve a large amount of energy.

This process, however, makes it necessary that nodes within a cluster are protected against

malicious code injection from each other. To accomplish this, the base station creates an-

other hash tree on the same dissemination contents, which we call the Horizontal Hash

Tree (HHT). For this hash tree, each page of the code is hashed and the hashes of the pages

h(Page) are used as leaf nodes. The root hash of HHT is encrypted using the session key

(Sn) and included in the signature packet. The code dissemination algorithm is given in

Algorithm 13. The Vertical and the Horizontal Hash Trees are illustrated in Figure 7.3.

Just before beginning the code dissemination, BS broadcasts the next authentication key

(Ai), which was used to create the HMAC in the pre-dissemination phase.

136

Algorithm 13 Code Dissemination
1: Populate BF by hashing the functions in CFL
2: Create Index on CFL||BF ||NewCode||RKi||Ki
3: Create session key Sn = gn(CK)
4: Encrypt packets of Index||CFL||BF ||NewCode||RKi||Ki using Si
5: Hash the encrypted packets and create VHT with Page 0
6: Hash the pages and create HHT
7: Create the signature packet
8: Broadcast Authentication Key Ai
9: Disseminate Code

Enc(Pkt1,1 ||h(P1)k1) Enc(Pkt1,2 ||h(P1)k2)

Enc(Pkt2,1 ||h(P2)k1) Enc(Pkt2,2 ||h(P2)k2)

Enc(Pktp-1,1 ||h(Pp-1)k1) Enc(Pktp-1,2 ||h(Pp-1)k2)

Enc(Pktp,1 ||h(Pp)k1) Enc(Pktp,2 ||h(Pp)k2)

Enc(Pkt1,N-1 ||h(P1)k(N-1)) Enc(Pkt1,N ||h(P1)kN)

Enc(Pkt2,N-1 ||h(P2)k(N-1)) Enc(Pkt2,N ||h(P2)kN)

Enc(Pktp-1,N-1 ||h(Pp-1)k(N-1) Enc(Pktp-1,N ||h(Pp-1)kN)

Enc(Pktp,N-1 ||h(Pp)k(N-1)) Enc(Pktp,N ||h(Pp)kNPage p:

Page p-1:

Page 2:

Root Hash

Root Hash

Figure 7.3. Vertical and Horizontal hash trees

7.4. ACTIVITY ON THE NODES

After receiving the next authentication key (Ai), the nodes verify this key by deter-

mining or not whether h(Ai) = Ai−1. The one way property of the hash chain ensures that

any malicious node, which has obtained previous authentication keys, Ai−1,Ai−2,..., etc.

cannot predict the key Ai, with non-negligible probability. This implies that an adversary

that makes any changes to the contents of the pre-dissemination packet, will be caught with

a very high probability, which ensures the delivery of both the un-tampered h(RKi) and

137

h(CFL). The h(RKi) and h(CFL) would be used to verify the re-encryption key and the

CFL, which would be explained later in this subsection.

After the pre-dissemination phase is complete, the cluster for which the code dissem-

ination was intended receives the encrypted contents. The contents are authenticated using

the Vertical Hash Tree, in a manner similar to that used by Seluge [10]. The session key

(Sn) is derived by using the PRF g() on the cluster key CK, with nonce n received in the

signature packet. To enable distributed decryption and authentication of the contents, the

cluster head in each cluster creates virtual ids ranging from 1 to N and gives each sensor

one of the virtual ids, where N is the number of packets in a page. The sensors, instead

of dealing with all the packets only store the packets which are multiples of their virtual

id. Thus, a node with virtual id 1, decrypts pkt1 in all the pages. Likewise, the node with

virtual id 2, decrypts pkt2 in all the pages and so on. When the number of nodes in the

cluster is less than N, nodes can be given additional virtual ids. Each node can decrypt

and authenticate the packet in page i from the hash in the packet in page i+ 1 and finally

packets in page 1 can be authenticated from the VHT. After all of the packets have been

received and authenticated, the nodes encrypt their decrypted packets again and broadcast

for other nodes to receive. The encryption is done in large blocks, reducing the number of

encryption and decryption operations a node must perform and thus conserving energy on

nodes.

Once the nodes receive all the packets from the code dissemination, they first verify

that the cluster members have not tampered with the code. This is done by hashing each

page and verifying the root of the Horizontal Hash Tree. Since, nodes are only allowed to

decrypt a part of each page, any change in the code by a malicious node will always be

identified. After the verification phase is complete, the nodes use the index to extract the

CFL, the Bloom filter, the new code, the re-encryption key RKi and the encryption key Ki.

The cluster head then broadcasts RKi and CFL in clear.

138

When a node receives this broadcast packet, it checks if it has one or more of the

requested functions in the CFL by comparing the FIDs. If the node finds that it has some of

the requested functions, it verifies the validity of the CFL and RKi by creating an HMAC

over h(CFL) and h(RKi) using the authentication key Ai. This HMAC is compared with

the HMAC received in the pre-dissemination phase. If both of the HMACs match, CFL and

the RKi are valid. The requested functions are then re-encrypted with RKi and sent back to

the requesting nodes. The encryption key (Ki) received by the cluster nodes in the code dis-

semination is used to decrypt the received encrypted functions. The received functions are

then verified using the Bloom Filter. The functions are hashed and the resulting positions in

the filter are checked against the already existing entries in the Bloom Filter. If the hashes

of a received function result in positions which are unset in the Bloom Filter, the function

is rejected, otherwise it is accepted. Once all functions pass through the Bloom Filter, the

nodes are ready to build the code image from its various parts. To build the code image,

the nodes use the CFL to plug the common functions into their appropriate position in the

code. The code image is stored and built in the flash memory. Once the build is complete,

the bootloader can boot the node up using this image. The entire process is illustrated in

Algorithm 14.

139

Algorithm 14 Image build
1: Cluster head assigns virtual ids to sensors
2: Nodes in the cluster store dissemination packets corresponding to their virtual ids
3: Encrypted packets are verified using hashes and then decrypted
4: Decrypted packets with hashes are combined in large blocks and securely broadcasted

in the cluster.
5: All nodes receive all the transmitted code
6: VHT and HHT are verified
7: Base station broadcasts the CFL
8: Nodes receive encrypted common functions from other nodes
9: Functions are decrypted and verified through BF

10: if functions are verified then
11: Build code image
12: if All functions are verified then
13: Reboot with new code
14: end if
15: end if

140

8. A DISCUSSION ON SECURITY

Our algorithm divides an application’s code into two parts, new code and the common

code. Different mechanisms are used for the security of both these categories, which are

discussed in the following subsections.

8.1. CONFIDENTIALITY OF CODE

8.1.1. New Code. Confidentiality of the new code is provided by encrypting the

dissemination content with the session key (Sn). This key is created uniquely for each

session by using the cluster’s key CK and a randomly generated nonce (n). This nonce

is sent in the signature packet with the VHT root hash, and the signature over (VHT root

hash||n). The signature guarantees the correct reception of both the VHT root hash and the

nonce n.

8.1.2. Common Code. Confidentiality of the common code is provided by proxy re-

encryption. The following discussion is based on the EC-BBS proxy re-encryption scheme,

although a similar argument can also be made using SRE [13].In the pre-deployment phase,

the base station encrypts randomly chosen functions with the encryption key Q0 using EC-

BBS and stores them on the nodes. Neither this key Q0 nor the corresponding secret key K0

are revealed to any node. This provides the confidentiality of the common functions from

the nodes on which the functions are stored. Prior to disseminating any application code,

the base station first broadcasts HMACAi(h(RKi)||h(CFL)) to all nodes. The first packet in

the code dissemination is the packet that contains the authentication key Ai. The validity of

the authentication key can be verified by determining whether or not h(Ai) = Ai−1. After

code dissemination, when node j requests a function from node k, j needs to send the

CFL and the re-encryption key RKi to node k. Node k checks the validity of the request

by generating an HMAC on the received CFL and RKi, and comparing it with the HMAC

141

received in the pre-dissemination phase. It then re-encrypts the requested function using

the received RKi. This process allows node j to receive re-encrypted functions without

revealing them to node k or any other unauthorized node.

8.2. INTEGRITY OF CODE

8.2.1. New Code. For integrity of the new code we use two hash trees, the Vertical

Hash Tree (VHT) and the Horizontal Hash Tree (HHT). The hashes of packets in Page 1 are

used as leaf nodes and the resulting tree is taken as the VHT. The VHT is used in the same

manner as that described by Seluge [10]. For the HHT each page is hashed and the hashes

of pages are taken as the leaf nodes and a tree is built. When the nodes in a cluster perform

distributed decryption of the disseminated code, corrupt nodes can inject malicious code

into the code image. The HHT, however, makes sure that such a code injection will always

be detected.

8.2.2. Common Code. When node j requests a function from node k, a corrupt k

can return corrupt or malicious code back to j. Node j verifies all the received functions

against the Bloom Filter it received during code dissemination to thwart such attacks.

142

9. PERFORMANCE ANALYSIS

We implemented our algorithm on the Mica2 and TelosB mote platforms with the

TinyOS operating system and simulated it using the TOSSIM simulator. The TinyECC

[19] library was used for elliptic curve implementation, and AES-256 was used as the

symmetric key encryption algorithm. The S4 [20] routing algorithm was used to route

code through the clusters.

The Bloom Filter used to verify the integrity of the received common function has a

definite false positive probability p f , defined as,

p f = (1− e−km/n)k (1)

where k is the number of hash functions used, m is the size of the Bloom Filter and n is the

number of functions hashed. For a given p f and k, the number of functions n that can be

supported are calculated as,

n =
−m

k
ln(1− p1/k

f) (2)

In our experiments, we have taken p f to be 0.01 and m as 256. Figure 9.1 illustrates the

relationship between n and k for the given values of p f and m. It can be seen from the

figure that the maximum number of functions that can hashed in the Bloom Filter, for a

maximum false positive probability of 0.01 is 27 at k = 7. We have therefore taken k as 7

in our experiments.

We implemented both the EC-BBS proxy re-encryption scheme and the SRE scheme

[13] on Mica2 and TelosB motes to test their energy efficiency. In Algorithm 9, we can see

that decryption requires one point addition (subtraction) and one point multiplication. The

results of our implementation can be seen in Figure 9.2 and 9.3 which show the execution

143

time and the energy consumption resepectively of various operations on the motes. The

block size was taken to be 128 bits. The operations shown in the figure are encryption,

decryption, re-encryption, re-encryption key generation and key generation. While the

encryption, key generation and re-encryption key generation operations are performed on

the base station, the nodes perform re-encryption and decryption operations. We can see

that all of the SRE operations are very lightweight consuming less than 1.2 mJ of energy on

Mica2 mote and less than 0.33 mJ of energy on a more optimized TelosB mote. In the case

of EC-BBS, as expected the execution times and the corresponding energy consumption is

slightly higher than that seen for SRE. The motes, however, only perform the decryption

and the re-encryption operations, which consume 6.1 mJ and 3.12 mJ, respectively, on

Mica2 and 1.86 mJ and 0.95 mJ on TelosB.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

N
um

be
r

of
 fu

nc
tio

ns
 h

as
he

d
(n

)

Number of hash functions used (k)

Figure 9.1. Relationship between k and n for p f = 0.01

In the pre-deployment phase, the base station chooses some FIDs randomly and stores

the corresponding encrypted functions on the sensors. The more functions the base station

could store on the nodes the more energy efficient the scheme would be, however, there

144

is a trade off with privacy. Malicious nodes can decrypt their stored functions with the

combination of the re-encryption key RKi and the decryption key Ki, during an iteration of

code dissemination. We define privacy lost ρ as the fraction of code stored on compromised

nodes which is common with the next iteration of code dissemination. The tradeoff between

storage capacity and privacy for varying percentages of compromised nodes can be seen in

Figure 9.4. For the rest of our experiments, we have taken the storage capacity to be 512

bytes.

ρ =

(Code stored on compromised nodes in a cluster
Total number of application

)
Average amount of code per application

 1

 10

 100

 1000

 10000

Encryption Decryption KeyGenRe-encKeyGen Re-enc

E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

ds
)

SRE:Mica2
ECBBS:Mica2

SRE:TelosB
ECBBS:TelosB

Figure 9.2. Execution times of proxy re-encryption operations

Figure 9.5 shows the reduction in the size of disseminated code for various appli-

cations when compared to Seluge [10]. For this experiment, we chose five applications;

the standard TinyOS apps, Blink, Sense, Oscilloscope, RadioSenseToLeds(RSTL)

145

 0.01

 0.1

 1

 10

 100

Encryption Decryption KeyGen Re-encKeyGen Re-enc

E
ne

rg
y

co
ns

um
pt

io
n

(m
ill

i J
ou

le
s) SRE:Mica2

ECBBS:Mica2
SRE:TelosB

ECBBS:TelosB

Figure 9.3. Energy consumption of proxy re-encryption operations

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 200 300 400 500 600 700 800 900 1000 1100
 3600

 3700

 3800

 3900

 4000

 4100

 4200

 4300

 4400

 4500

 4600

P
riv

ac
y

lo
st

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (
by

te
s)

Storage Capacity(bytes)

5% nodes comp.
10% nodes comp.
15% nodes comp.
20% nodes comp.

comm. overhead

Figure 9.4. Tradeoff between privacy lost and communication overhead

and an application Tree, which is a tree construction application. The common functions

between these applications were discovered and distributed in a simulated network. The

network was taken to be a 30x30 grid of 900 nodes placed 2 meters apart from each other.

146

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Blink Sense Oscilloscope RSTL Tree

D
is

se
m

in
at

io
n

co
de

 s
iz

e
(b

yt
es

) Seluge
ESCD

Figure 9.5. Percentage reduction in overall code size

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 5 10 15 20 25

B
an

dw
id

th
 (

ho
p

X
 b

yt
es

)

Hop distance from base station

Seluge-Osc
ESCD-Osc

Seluge-Blink
ESCD-Blink

Figure 9.6. Bandwidth consumption

The dissemination code for our algorithm consisted of the new code along with the

overhead of the index, the CFL, Bloom Filer, re-encryption key and the decryption key.

The amount of reduction in disseminated code for each application is illustrated in Figure

147

9.5. Our algorithm is denoted by ESCD. The reduction is highest in the Blink application.

Here the algorithm disseminated 19.06% less code than Seluge [10]. The code reduction in

Sense was 6.9%, while in Oscilloscope, RadioSenseToLeds and Tree it was approxi-

mately 10.5%.

Figure 9.6 illustrates this difference in terms of bandwidth for the Oscilloscope and

Blink applications. We define the product of the size of code and the distance it travels

in hops as the metric of bandwidth. In ESCD, once the reduced code reaches a cluster

head, the CFL is broadcasted and the nodes reply back with the functions in the CFL. We

designed a controlled flooding method, where each node which receives the broadcast, re-

broadcasts it further with the probability of 1− (0.5+ 0.1 ∗ hop). Doing so ensures that

flooding of the CFL in the network, stops on average after the third hop. Figure 9.6 con-

siders both, the bandwidth consumed in this controlled flooding as well as the bandwidth

consumed in sending the requested functions to the requesting cluster head. The flash mem-

ory available to store common functions was assumed to be 512 bytes. As can be seen, our

algorithm reduces the total number of wireless transmissions in the network and hence the

total bandwidth consumed. The reduction is more prominent when the cluster to be up-

dated lies far away from the base station in terms of hop distance. Figure 9.7 illustrates the

energy overhead of our algorithm as compared to Seluge [10], for each of the applications.

This energy overhead is due to the decryption of code packets, the verification of HHT and

the verification of common functions through Bloom Filter. When SRE was used on the

Mica2 motes, the overhead varied between 1.224 mJ for Blink and 2.304 mJ for Tree,

with EC-BBS the overhead increased to 61.72 mJ for Blink and 63.5 mJ for Tree. In the

case of TelosB motes, the overhead was reduced to between 0.462 mJ for Blink and 0.774

mJ for Tree for SRE, and between 18.862 mJ for Blink and 19.174 mJ for Tree for EC-

BBS. A large portion of this overhead is the cost of confidentiality of code packets, which

is not provided by Seluge [10].

148

 0.1

 1

 10

 100

Blink Sense Oscilloscope RSTL Tree

E
ne

rg
y

ov
er

he
ad

 (
m

ill
iJ

ou
le

s)

SRE:Mica2
ECBBS:Mica2

SRE:TelosB
ECBBS:TelosB

Figure 9.7. Energy overhead compared to Seluge

149

10. CONCLUSION

Sensor clouds are an emerging paradigm for sensor networks. These are very dy-

namic in nature with nodes being constantly provisioned and de-provisioned for users. In

such a scenario, an efficient code dissemination algorithm that is also secure becomes nec-

essary. In this paper, we have presented a novel code dissemination algorithm that is both

efficient and secure. Our code dissemination algorithm considers the similarities that ex-

ist between codes across applications. The basic idea, therefore, is to communicate only

the new code to the sensors while the common code can be picked up from the sensors

in the network. This process reduces the amount of code that needs to be communicated.

Reduced amount of code results in energy efficient code dissemination. Our security frame-

work is based around proxy re-encryption, hash trees and Bloom Filters, which combine

to provide confidentiality and integrity to the code dissemination algorithm. We have de-

signed and implemented our algorithm on TelosB motes and from the experiments, it can be

concluded that this algorithm reduces the amount of communication and energy required,

while also providing confidentiality and integrity of code. In this paper we have focussed

only on Type 1 clones in the application code. In future, we intend to include Type 2 clones

as well, which will greatly increase the efficiency of the algorithm.

150

11. BIBLIOGRAPHY

[1] N. Bin Shafi, K. Ali, and H. Hassanein, “No-reboot and zero-flash over-the-air pro-
gramming for wireless sensor networks,” in Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2012 9th Annual IEEE Communications Society Conference
on, june 2012, pp. 371 –379.

[2] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao, “R2: Incremental reprogram-
ming using relocatable code in networked embedded systems,” IEEE Transactions on
Computers, vol. 99, no. PrePrints, 2012.

[3] J. Jeong and D. Culler, “Incremental network programming for wireless sensors,” in
Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004
First Annual IEEE Communications Society Conference on, oct. 2004, pp. 25 – 33.

[4] J. Koshy and R. Pandey, “Remote incremental linking for energy-efficient reprogram-
ming of sensor networks,” in Wireless Sensor Networks, 2005. Proceeedings of the
Second European Workshop on, jan.-2 feb. 2005, pp. 354 – 365.

[5] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor net-
works,” in Proceedings of the 2nd ACM international conference on Wireless sensor
networks and applications, ser. WSNA ’03. New York, NY, USA: ACM, 2003, pp.
60–67.

[6] N. Poolsappasit, V. Kumar, S. Madria, and S. Chellappan, “Challenges in secure
sensor-cloud computing,” Secure Data Management, pp. 70–84, 2011.

[7] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure-physical sensor manage-
ment with virtualized sensors on cloud computing,” in Network-Based Information
Systems (NBiS), 2010 13th International Conference on. IEEE, 2010, pp. 1–8.

[8] J. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for net-
work programming at scale,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems. ACM, 2004, pp. 81–94.

[9] W. Li, Y. Du, Y. Zhang, B. R. Childers, P. Zhou, and J. Yang, “Adaptive buffer manage-
ment for efficient code dissemination in multi-application wireless sensor networks,” in
IEEE/IPIP International Conference on Embedded and Ubiquitous Computing, 2008,
pp. 295–301.

151

[10] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and dos-resistant code dissemi-
nation in wireless sensor networks,” in Proceedings of the 7th international conference
on Information processing in sensor networks. IEEE Computer Society, 2008, pp.
445–456.

[11] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the deluge network pro-
gramming system,” in Proceedings of the 5th international conference on Information
processing in sensor networks, ser. IPSN ’06. New York, NY, USA: ACM, 2006, pp.
326–333.

[12] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and dos-resistant multi-hop code
dissemination protocol for wireless sensor networks,” Computer Security, vol. 32,
no. 0, pp. 36 – 55, 2013.

[13] A. Syalim, T. Nishide, and K. Sakurai, “Realizing proxy re-encryption in the symmet-
ric world,” in Informatics Engineering and Information Science, ser. Communications
in Computer and Information Science, A. Abd Manaf, A. Zeki, M. Zamani, S. Chuprat,
and E. El-Qawasmeh, Eds., 2011, vol. 251, pp. 259–274.

[14] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic proxy cryp-
tography,” in EUROCRYPT, 1998, pp. 127–144.

[15] J. Albath, M. Thakur, and S. Madria, “Energy constrained dominating set for clus-
tering in wireless sensor networks,” 2013 IEEE 27th International Conference on Ad-
vanced Information Networking and Applications (AINA), pp. 812–819, 2010.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun.
ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[17] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding program comprehension by static
and dynamic feature analysis,” in Software Maintenance, 2001. Proceedings. IEEE
International Conference on, 2001, pp. 602 –611.

[18] V. Kumar and S. K. Madria, “Secure hierarchical data aggregation in wireless sen-
sor networks: Performance evaluation and analysis,” Mobile Data Management, IEEE
International Conference on, vol. 0, pp. 196–201, 2012.

[19] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve cryptography in
wireless sensor networks,” in Information Processing in Sensor Networks, 2008. IPSN
’08. International Conference on, 2008, pp. 245–256.

[20] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith, “S4: Small state and small stretch
compact routing protocol for large static wireless networks,” Networking, IEEE/ACM
Transactions on, vol. 18, no. 3, pp. 761–774, 2010.

152

SECTION

4. CONCLUSION

This document first presents algorithms to perform secure and privacy preserving data

aggregation in sensor clouds. Further an algorithm for controlling user access while using

such data aggregation algorithm is also provided. Finally, it also presents an algorithm for

secure dissemination of code in sensor clouds.

The scheme proposed in Section I performs energy efficient and secure data aggre-

gation on wireless sensor networks. It makes use of the Elliptic Curve El Gamal (ECEG)

encryption scheme to achieve data confidentiality and a modified version of Elliptic Curve

Digital Signature Algorithm (ECDSA) to achieve integrity of aggregated data. The homo-

morphic property of ECEG and the additive property of our version of ECDSA allows us

to simply add ciphertext and digital signatures, which saves energy on aggregators. Unlike

previous approaches our algorithm does not need a separate integrity verification phase,

which also helps to save energy on the nodes. Additionally our robust tree construction

algorithm handles denial of service attacks and node failure events.

The proposed approach in Section II presents a more efficient way of performing se-

cure and privacy preserving data aggregation using recursive secret sharing and symmetric

key homomorphic encryption constructs. Recursive secret sharing is used to store data and

a linear combination of data and a key, which is used for verifying the integrity of data. The

shares are perturbed and scrambled using a simple symmetric key encryption scheme which

supports homomorphism. An enhanced version of the scheme is also presented which can

be used to detect malicious nodes in the network, which inject false data.

In Section III a distributed attribute based access control scheme was presented which

can work on aggregated data. To accomplish this key policy attribute based encryption is

153

used to provide access control and paillier encryption to provide homomorphism for ag-

gregating keys and data. The access tree used in attribute based encryption was modified

to support a wider range of queries. Additionally this scheme provides the flexibility to

a network owner to modify the authorization required to access data at run time. It was

shown that this approach has a marginally high computational complexity, while keeping

the communication complexity same as previous schemes. Further the scheme also pro-

vides an efficient method to revoke user access.

In Section IV an efficient and secure method of disseminating code to wireless sen-

sors in a sensor cloud is presented. This approach has two parts, in the first part, the total

amount of code transmitted from the base station to the wireless sensors is reduced. This

reduction in code is based on the fact that, applications written for wireless sensor share

fragments of code. These common fragments of code are deployed a priori in the network,

so that any code transmission from the base station in future can be done without these

fragments. In the second part of the approach, security, in terms of confidentiality of code

and protection against malicious code injection attacks is discussed. The approach uses

Symmetric Re-Encryption, Bloom Filters and HMACs to accomplish these objectives.

154

VITA

Vimal Kumar was born in New Delhi, India in 1984. His initial schooling took place

in seven different schools, spread across five states in India. He earned his bachelors degree

in Computer Science & Engineering from Guru Gobind Singh Indraprastha University at

New Delhi in 2006. After his graduation, he worked as a software engineer at the GTS

division of Computer Sciences Corporation at the Hyderabad and Noida offices.

Vimal came to the Missouri University of Science and Technology in 2008, where he

earned his Doctorate of Philosophy in Computer Science, in May, 2014. While there, he

worked as a research assistant with Dr. Sanjay Madria, focusing on security and privacy

aspects of data aggregation in Wireless Sensor Networks and Sensor Clouds. Vimal also

served as a teaching assistant for the Cloud Computing course and mentored undergraduate

students on topics of localization and wireless sensor network security.

	Energy efficient security and privacy management in sensor clouds
	Recommended Citation

	Publication Dissertation Option
	Abstract
	Acknowledgements
	LIST OF ILLUSTRATIONS
	LIST OF ALGORITHMS
	LIST OF TABLES
	Introduction
	Literature Review
	Preliminaries
	Elliptic Curve Cryptography
	Homomorphic Encryption
	Additive Digital Signatures
	Secret Sharing
	Key Policy Attribute Based Encryption
	Proxy Re-Encryption

	Secure and Privacy preserving data aggregation
	User Access Control
	Secure code dissemination

	Bibliography

	-2exSECURE HIERARCHICAL DATA AGGREGATION IN WIRELESS SENSOR NETWORKS: PERFORMANCE EVALUATION AND ANALYSIS
	Introduction
	Related work and Background
	Secure Hierarchical Data Aggregation Algorithm
	modified ECDSA signature algorithm
	EC Elgamal encryption

	Performance Analysis
	Implementation
	Simulation

	Conclusions
	Bibliography

	-2exPIP: PRIVACY AND INTEGRITY PRESERVING DATA AGGREGATION IN WIRELESS SENSOR NETWORKS
	Introduction
	Problem Statement
	Related Work
	System and Adversary Models
	Preliminaries
	Secret Sharing
	Recursive Secret Sharing

	Proposed Algorithm
	Basic PIP Algorithm
	Numerical example
	Security Analysis
	Confidentiality
	Integrity

	Discussion on Privacy and Integrity in Basic PIP

	Extensions to Basic PIP algorithm
	Enhanced PIP for Corrupt Aggregator Detection
	Corrupt Aggregator Detection
	Attack Scenarios

	Multidimensional PIP

	Performance Analysis
	Conclusion
	Bibliography

	-2exATTRIBUTE BASED ACCESS CONTROL OF AGGREGATED DATA IN SENSOR CLOUDS
	Introduction
	Related Work
	Models
	System Model
	Adversary Model

	Preliminaries
	Bilinear maps
	Key Policy Attribute Based Encryption
	Paillier Encryption
	PIP Algorithm for data aggregation

	Access Control Policy
	Overview of the scheme
	Access Control Scheme
	System Setup
	Access Control Secret Key Generation
	Data Aggregation Key Generation
	Data Aggregation Key Establishment
	Data Aggregation

	Discussion
	Revocation of Users
	Modifying Access at Runtime
	Encryption Scheme for Modifying Access at Runtime
	Protocol for Modifying Access at Runtime

	Security Analysis
	Performance Analysis
	Conclusion and Future Work
	Bibliography

	EFFICIENT AND SECURE CODE DISSEMINATION IN SENSOR CLOUDS
	Introduction
	Related Work
	System Model and Assumptions
	Proposed Approach
	Preliminaries
	Proxy Re-Encryption
	Bloom Filter

	Detecting Common Functions
	Proposed Algorithm
	Pre-deployment Phase
	Pre-Dissemination
	Code Dissemination
	Activity on the nodes

	A Discussion on Security
	Confidentiality of code
	New Code
	Common Code

	Integrity of code
	New Code
	Common Code

	Performance Analysis
	Conclusion
	Bibliography
	4. CONCLUSION

	Vita

