
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2008

Energy efficient clustering and secure data aggregation in Energy efficient clustering and secure data aggregation in

wireless sensor networks wireless sensor networks

Julia Albath

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Albath, Julia, "Energy efficient clustering and secure data aggregation in wireless sensor networks"
(2008). Doctoral Dissertations. 2166.
https://scholarsmine.mst.edu/doctoral_dissertations/2166

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2166?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ENERGY EFFICIENT CLUSTERING AND SECURE DATA AGGREGATION IN

WIRELESS SENSOR NETWORKS

by

JULIA GERDA MARIA ALBATH

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2008

Approved by:

Dr. Sanjay Madria, Advisor
Dr. Jennifer Leopold

Dr. Fikret Ercal
Dr. Sriram Chellappan

Dr. Jaganathan Sarangapani

iii

PUBLICATION THESIS OPTION

This thesis consists of the following four articles that have been published or

submitted for publication as follows:

Pages 13-36 have been submitted to the 7th Annual IEEE International

conference on Pervasive Computing and Communications.

Pages 37-65 are intended for submission to IEEE Transactions on Mobile

Computing.

Pages 66-87 have been published in the 6th International Workshop on Data

Engineering for Wireless and Mobile Access.

Pages 88-103 have been submitted for publication to the IEEE Wireless

Communications & Networking Conference 2009.

iv

ABSTRACT

Communication consumes the majority of a wireless sensor network’s limited

energy. There are several ways to reduce the communication cost. Two approaches

used in this work are clustering and in-network aggregation. The choice of a cluster

head within each cluster is important because cluster heads use additional energy for

their responsibilities and that burden needs to be carefully distributed. We introduce

the energy constrained minimum dominating set (ECDS) to model the problem of

optimally choosing cluster heads in the presence of energy constraints. We show its

applicability to sensor networks and give an approximation algorithm of O(log n) for

solving the ECDS problem. We propose a distributed algorithm for the constrained

dominating set which runs in O(log n log ∆) rounds with high probability. We show

experimentally that the distributed algorithm performs well in terms of energy usage,

node lifetime, and clustering time and thus is very suitable for wireless sensor

networks. Using aggregation in wireless sensor networks is another way to reduce

the overall communication cost. However, changes in security are necessary when in-

network aggregation is applied. Traditional end-to-end security is not suitable for use

with in-network aggregation. A corrupted sensor has access to the intermediate data

and can falsify results. Additively homomorphic encryption allows for aggregation of

encrypted values, with the result being the same as the result as if unencrypted data

were aggregated. Using public key cryptography, digital signatures can be used to

achieve integrity. We propose a new algorithm using homomorphic encryption and

additive digital signatures to achieve confidentiality, integrity and availability for in-

network aggregation in wireless sensor networks. We prove that our digital signature

algorithm which is based on Elliptic Curve Digital Signature Algorithm (ECDSA)

is at least as secure as ECDSA. Even without in-network aggregation, security is a

challenge in wireless sensor networks. In wireless sensor networks, not all messages

need to be secured with the same level of encryption. We propose a new algorithm

which provides adequate levels of security while providing much higher availablility

than other security protocols. Our approach uses similar amounts of energy as a

network without security.

v

ACKNOWLEDGMENT

I am grateful and thankful to my Ph.D. advisor Dr. Sanjay Madria who has

given me the necessary guidance to finish this dissertation. His understanding,

support and advice have been crucial factors in my successful completion of this

Ph.D. I enjoyed the room to think and grow and felt inspired to be my best. It

has been a great experience to work under Dr. Madria and I greatly expanded my

knowledge.

I want to thank Dr. Leopold who has mentored me from the beginning. Her

guidance has helped me chart a course during my time in Rolla and for my future. I

thank Dr. Sarangapani for his assistance, especially during the early years. I thank

Dr. Ercal for his invaluable feedback and support as part of my committee. I thank

Dr. Chellappan for his feedback and assistance which helped improve my research.

I express my deep appreciation and gratitude to Ryan Underwood. I am grateful

for all my friends who made my time in Rolla enjoyable.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION .. iii

ABSTRACT .. iv

ACKNOWLEDGMENT .. v

LIST OF ILLUSTRATIONS . viii

SECTION

1. INTRODUCTION.. 1

2. REVIEW OF LITERATURE .. 4

2.1. CLUSTERING .. 4

2.2. IN-NETWORK AGGREGATION .. 7

PAPER

I. ENERGY CONSTRAINED CLUSTERING FOR WIRELESS SENSOR
NETWORKS . 13

I. INTRODUCTION.. 13

II. DEFINITIONS AND NOTATIONS. 17

III. RELATED WORK .. 18

IV. CENTRALIZED ALGORITHM .. 19

V. DISTRIBUTED ALGORITHM .. 21

VI. ANALYSIS OF THE DISTRIBUTED ALGORITHM WLRG.. 25

VII. EXPERIMENTS . 29

VIII. CONCLUSION AND OPEN PROBLEMS . 33

II. ENERGY CONSTRAINED CLUSTERING ALGORITHMS FOR WIRE-
LESS SENSOR NETWORKS . 37

1. INTRODUCTION . 37

2. SYSTEM MODEL . 40

3. PROBLEM STATEMENT . 41

4. ENERGY CONSTRAINED CLUSTERING PROTOCOLS 43

5. RELATED WORK . 53

vii

6. EXPERIMENTAL EVALUATION . 56

7. CONCLUSION AND OPEN PROBLEMS . 61

III. PRACTICAL ALGORITHM FOR DATA SECURITY (PADS) IN WIRE-
LESS SENSOR NETWORKS . 66

1. INTRODUCTION.. 66

2. RELATED WORK .. 68

3. SYSTEM MODEL AND ARCHITECTURE.. 70

4. ALGORITHMS .. 72

5. SECURITY ANALYSIS . 76

6. ANALYTICAL ANALYSIS . 77

7. SIMULATION .. 79

8. CONCLUSION AND FUTURE WORK .. 84

9. REFERENCES . 85

IV. SECURE HIERARCHICAL DATA AGGREGATION IN WIRELESS
SENSOR NETWORKS . 88

I. INTRODUCTION.. 88

II. BACKGROUND.. 91

III. APPROACH .. 94

IV. ALGORITHMIC DETAILS . 95

V. SECURITY ANALYSIS . 98

VI. RELATED WORK .. 99

VII. CONCLUSION AND FUTURE WORK .. 101

BIBLIOGRAPHY .. 104

VITA . 108

viii

LIST OF ILLUSTRATIONS

1.1 Motivating Example. 2

2.2 A sample hierarchical sensor network . 11

1 Energy Constrained Clustering Example . 15

2 (a) Rounds to Cluster (b) Time to Cluster (c) Expected vs. Actual
Number of Cluster Heads . 31

3 (a) Dominating Set Size (b) Cluster Size (c) Average Number of Single
Node Clusters. 31

4 (a) First Death (b) Last Death (c) Average Energy (d) Average Energy
Per Message. 32

1 Energy Constrained Clustering Example . 39

2 Rounds and Time to Cluster . 57

3 Dominating Set and Cluster Size. 58

4 Cluster Size, Average Number of Single Node Clusters, and First Death . . 60

5 Last Death and Average Energy Consumption . 61

6 Average Energy and Average Communication Energy per Message 62

7 Average Communication Energy, Maximum and Minimum Energy 63

3.1 Network Architecture . 71

4.1 Multihop packet structure. The fields shaded gray are protected by the
MAC calculation. 74

7.1 Messages of 23 Bytes for Various Protocols . 81

7.2 Messages of 23 Bytes for Various Protocols . 82

7.3 Messages with 2 Byte Payload for Various Protocols . 83

I.1 Motivating Example. 89

III.1 Homomorphic Encryption Example . 95

1. INTRODUCTION

Wireless sensor motes are small, battery powered computing devices. For

example, the Crossbow MICAz motes consist of a CPU, an on-board radio and a

sensor-board. The CPU runs from a 128kB flash memory and has 512kB memory for

sensor readings. The radio is an IEEE 802.15.4 radio and offers high speed (250 kbps)

communication [?]. A wide variety of sensor-boards are available for the motes. The

sensor-boards include, but are not limited to, seismic activity, temperature, humidity

and light. This enables the motes to monitor their environment in a variety of ways.

Wireless sensor networks (WSN) are self-organizing networks of motes. They

are used to monitor the environment for events such as forest fires or enemy troop

movements. A large number of motes are spread over the area to be monitored. Upon

activation, the motes self-organize into a network, which connects to the users via a

powerful base station in order to achieve a common goal [?]. As each mote surveys

the area within its sensing range, the data is sent towards the base station along a

multi-hop path. A WSN is able to remotely cover a large sensing area since these

low-cost motes organize into a multi-hop network without human assistance.

The lifetime of a WSN is limited. Each MICAz mote is powered by two AA

batteries. The motes can operate under various settings, including active listening

mode, sleep mode and idle mode. The average lifespan of a mote which has a random

activity pattern is nine months [1]. Under normal circumstances, it will not be feasible

to replace used batteries in motes. In order to extend the lifetime of the WSN, energy

saving techniques must be applied.

Communication via the on-board radio is the most expensive operation for the

sensor nodes [2]. Protocols such as LEACH [3], TOPDISC [4] and HEED [?] reduce

energy consumption and increase the lifetime of the network. The basic idea in these

protocols is to cluster sensors into groups, so that sensors communicate only to their

cluster head. The cluster heads then communicate the aggregated information to the

processing center. Clustering has been shown to greatly reduce power consumption,

is easily scalable, and is robust in case of node failures [3]. A good clustering scheme

is one that takes into account one or more of the following: communication range,

2

Figure 1.1. Motivating Example

number and type of sensors, geographical location and remaining energy. Clustering

and proper cluster head selection in order to maximize the lifetime of the network

is an important consideration when designing protocols and algorithms for sensor

networks.

In-network aggregation in WSN is another approach that allows for a large

savings of energy. In in-network aggregation, intermediate results are calculated along

the multi-hop path whenever two or more messages are routed along the same path.

Depending on the routing structure, energy savings may be by as much as eight

times [3]. Consider the network depicted in Figure 1.1. Without aggregation, a total

of 9+12+13 = 34 messages are sent; with aggregation, only 9+3+1 = 13 messages are

sent. Through the sample network in Figure 1.1 it is clear that in-network aggregation

greatly reduces the number of messages sent in a WSN, which leads to large energy

savings. In-network aggregation and clustering algorithms can be used in conjunction;

many aggregation algorithms naturally build upon the clustered network. Clustering

and aggregation algorithms combine the necessary energy savings that will ensure a

long network lifetime.

Most wireless sensor network applications are deployed in environments which

can affect the motes. The effects of wind, rain, heat or sand on the motes is

unpredictable. Sensor networks may be used in hostile environments and be subject

to attacks by enemies. An attacker may be able to gain physical access to a

sensor node and introduce nodes into the network or simply inject messages into the

3

communication channel. Due to such manipulation by an attacker, a sensor network

may generate incorrect readings or aggregates. Corrupted or spurious sensors may fail

to participate in the common tasks of a sensor network. In secure situations sensors

may be corrupted due to the physical effects of wind, rain, or heat. Water could

penetrate the physical housing and cause the CPU to generate incorrect readings or

calculate an aggregate incorrectly.

Security in WSNs includes confidentiality, integrity and availability. Confiden-

tiality in sensor networks is accomplished by preventing outsiders from eavesdropping

on transmissions. Integrity implies that any aggregate result is made up of only

legitimate data without faulty inclusions or additions, and also that internal,

corrupted sensors cannot interfere with operations. Availability in sensor networks

is of great concern to the user of the network. Any useful sensor protocol needs to

ensure that the generated data reaches the user in a timely manner. Unfortunately,

many existing security primitives cannot be used in sensor networks, either because

the computing power of the sensors is too limited or the additional work created by

the protocols causes excessive network traffic [?].

Security is even more of a challenge in WSNs when in-network aggregation

is utilized. A corrupted sensor may appear to participate in the mission of the

network but falsify sensor readings, improperly apply an aggregation function, exclude

legitimate messages from the aggregate result or create a fictitious result. A sensor

corrupted by an attacker may behave in this way in order to get the base station to

accept an incorrect result that is favorable to the attacker. Hence in order to secure

data aggregation in a sensor network, we must not only provide protection against

eavesdroppers, but we should also prevent intermediate sensors from having access to

the data.

This dissertation is organized as follows. First, a thorough review of the current

literature on clustering and secure data aggregation. Next we introduce the “Energy

Constrained Clustering” in Paper 1. We expand on clustering with Paper 2, which

gives several extensions to the original ECDS algorithm. In Paper 3 we present a

practical algorithm for data security (PADS) in wireless sensor networks. The last

paper, Paper 4 introduces a novel way of proving aggregate digital signatures in

wireless sensor networks.

4

2. REVIEW OF LITERATURE

2.1. CLUSTERING

Existing work on clustering algorithms can be classified into several categories:

k-hop-cluster formation, where each node is at most k hops from its cluster head,

connected dominating set (CDS) and weakly connected dominating set (WCDS)

based algorithms, and general clustering algorithms.

2.1.1. DOMINATING SET

A connected dominating set based clustering algorithm enables the cluster

heads to communicate directly with each other. This allows for a virtual back-bone

formation in the network. In applications in which the cluster heads need to be able

to work together to complete a task, connected dominating sets offer an advantage.

The weakly connected dominating set slightly relaxes the requirement of connected

cluster heads and allows them to be, at most, k-hops away from the next cluster head.

The work presented in [5, 6, 7, ?, 8] are examples of connected and weakly connected

dominating set algorithms.

The algorithm HEED presented in [?] selects cluster heads according to residual

energy and node proximity to neighbors or node degree. HEED uses several fixed level

of transmission power levels. One level is used to communicate with intra-cluster

nodes and another is used by cluster heads to communicate with other cluster heads.

A cluster head aggregates the data and sends it via other cluster heads to the base

station. Messages are send toward the base station and can be forwarded by any

node, not just the cluster heads.

In [5], a series of approximation algorithms for finding a small, weakly-connected

dominating set (WCDS) in a given graph is presented for use in clustering mobile

ad hoc networks. The main contribution of the work is a completely distributed

algorithm for finding small WCDS. The performance of the algorithm is shown to be

very close to that of the centralized approach.

5

In [6], the authors provide three approximation algorithms for the minimum

connected dominating set (MCDS) in mobile ad hoc networks. The algorithms provide

approximation guarantees of 2H(∆) + 1 and 2H(∆), where H(∆) =
∑∆

i=1 1/i ≤
ln ∆ + 1. The guarantee of c+ 1, applies to graphs where the maximum degree is ∆

and c is some constants such that ∆ ≤ c.

The connected minimum dominating set is considered in [7]. The authors

provide two approximation algorithms which achieve approximation factors of

2H(∆) + 2 and H(∆) + 2, where ∆ is the maximum degree in the graph and H

is the harmonic function. The authors also consider the traveling tourist problem

and the Steiner CDS and provide the corresponding approximation algorithms.

Several distributed poly-logarithmic time algorithms are presented in [8]. The

algorithms compute connected and weakly connected dominating sets with an

approximation factor of O(log ∆), where ∆ is the maximum degree of the graph.

The authors also show distributed algorithms to construct low-stretch dominating

sets. A low-stretch dominating set is one in which every pair of nodes has dominators

of no more then O(log n).

2.1.2. GENERAL CLUSTERING

In [9], cluster heads are chosen so that the energy consumption over the entire

network is even, ensuring that the network lives as long as possible. A fixed number

of cluster head candidates are selected and the cluster heads with the most residual

energy are chosen from that set. A node will chose a cluster head to ensure the overall

energy consumption in the entire network is even.

In [10], a new, fully distributed approximation algorithm based on LP relaxation

techniques is presented. For an arbitrary parameter k and maximum degree ∆, the

algorithm computes a dominating set of expected size O(k∆2/k log ∆ |DSOPT |) in

O(k2) rounds where each node has to send O(k2∆) messages of size O(log ∆). This

is the first algorithm that achieved a non-trivial approximation ratio in a constant

number of rounds.

The work described in [11] is a primal-dual based distributed algorithm for the

weighted, capacitated vertex cover problem. In [11] the each vertex is assigned a

6

weight, as well as a capacity, and the goal is to minimize the sum of the weights

without exceeding the capacity of any vertex. The authors provide a (2 + ε)OPT

approximation algorithm. Additionally the running time of the algorithm is shown

to be O (log (nW) /ε), where n is the number of nodes and W = wtmax/wtmin is the

ratio of the largest weight to the smallest weight.

A randomized distributed algorithm is presented in [12]. The algorithm runs

in O(log n log ∆ + 1) rounds and the size of the dominating set obtained has a high

probability of being within O(log n) of the optimal. Each round has a constant

number of messages that are exchanged among neighbors. The authors also cover a

generalization to the weighted dominating set and as well as the case in which each

node is required to be covered by multiple nodes.

2.1.3. K-HOP CLUSTERING

The work in [13, 14, 15] features k-cluster algorithms. After the algorithm is

executed, each node is either a cluster head or at most k-hops from its cluster head.

In [13], an identity-based heuristic to form k-clusters in wireless ad-hoc networks

is presented in which d is a parameter. When the heuristic terminates, a node is either

a cluster head or, at most, k hops away from its cluster head. This heuristic extends

its former ones which restricted themselves to 1-hop clusters, thus helping to reduce

the number of cluster heads.

A fast, distributed algorithm is presented in [15]. It is used to compute a small

k-dominating set D (for any fixed k) and its induced graph partition (which breaks the

graph into radius k clusters centered around the vertices of D). The time complexity

of the algorithm is O(k log∗ n) where log∗ is the inverse Ackermann function.

For the special family of graphs that represent ad hoc wireless networks modeled

as unit disk graphs, [14] introduces a two phase distributed polynomial time and

message complexity k-clustering approximation solution with O(k) worst case ratio

over the optimal solution.

7

2.2. IN-NETWORK AGGREGATION

Once the sensor network is properly clustered, the sensor nodes can work on

achieving their goal of securely transmitting data to the base station. Existing work

on data security in wireless sensor networks can be classified based on the number

of aggregators that are supported. Some algorithms support only one aggregator,

the base station. In this case data are securely transmitted to the base station,

which applies the aggregation function. By using end-to-end security, in which each

packet is secured by the sender and can only be deciphered by the base station, total

security is provided. However, this security is provided at a high communication cost

of O(N logN) at best and O(N2) at worst depending on the topology of the network.

Other algorithms provide for multiple aggregators, a subset of the sensor nodes

in the network. Additionally, it is possible to distinguish between multiple aggregators

on the same level of the hierarchy and multiple aggregators on multiple levels of

the hierarchy. In order to accomplish data aggregation, the data are no longer

encrypted end-to-end, but rather hop-by-hop. Data confidentiality now needs to

include assurance to the base station and the sending nodes that the data were

included in the aggregate result. Data integrity must now mean that the data were

included as-is, an assurance that the aggregate was calculated from exactly the inputs,

nothing more, and nothing less, without modification to the inputs.

Clustering algorithms, where the cluster head aggregates the information in its

cluster prior to sending the aggregate information to the base station, are an example

of a multiple aggregator, single level algorithm. Depending on the number of hops

the cluster head is away from the base station, a clustered aggregation algorithm can

provide for large savings in the communication costs over base station aggregation.

A tree hierarchy in which each node combines its own reading with those of its

descendants is an example of a multiple aggregator, multiple level algorithm. Multiple

aggregators at multiple levels of the structure lead to the largest energy savings. Each

node may receive multiple transmissions but will only send one message to its parents.

However, multiple aggregators at multiple levels also have the highest security risk

because each aggregator may malfunction and corrupt the aggregate result.

8

2.2.1. SINGLE AGGREGATOR

The development of TinySec was an important first step toward providing

security in wireless sensor networks [16]. TinySec showed that while sensors have

limited processing abilities, they are capable of applying adequate levels of security.

TinySec implemented public key cryptography using SkipJack or RC5 and link-layer

security. TinySec uses an 8-byte key and can be used either as hop-by-hop or end-

to-end security. If hop-by-hop security is used, then no guarantees can be made

regarding compromised aggregators. If end-to-end security is used, then aggregation

is only possible at the receiving point. However, TinySec is important because

many of the approaches that have followed it rely on encryption/decryption within

their algorithms. The simulations performed with networks of 36 nodes during

the development of TinySec showed that TinySec adds a 10% overhead in energy

consumption, latency and bandwidth utilization.

Single aggregator models provide total security for confidentiality, integrity,

and availability by employing end-to-end security. This gives the base station the

knowledge that every sensed value received has been included in the calculation

because intermediate nodes cannot modify the values in transit. However, availability

may suffer because each node contributes its own reading and forwards any messages

received, depending on the layout of the network, nodes at higher levels of the

hierarchy will expend large amounts of energy to forward messages. In the worst

case, the sensors are in a straight line, each with one parent and at most one child.

Each node will transmit one more message than it received, and the last node will

transmit N messages, where N is the number of nodes in the network. The total

number of messages transmitted will be bound by O(N2). At best, each sensor will

be able to transmit directly to the base station, incurring a communication cost of

O(N) at most. The edge complexity can be as high as O(N) or as low as O(1) for

either of the extremes, with a typical sensor network somewhere in between. Edge

complexity refers to the maximum messages sent along a single edge.

9

2.2.2. MULTIPLE AGGREGATORS

A single-level multi-aggregator algorithm allows for multiple aggregators. Each

aggregator sends its aggregate result to the base station. A clustered topology is an

example of such a setup. The cluster head calculates the aggregate for its cluster

and then communicates that result to the base station. The base station takes that

information from all the cluster heads and calculates the total aggregate for the

entire network. Such a setup is also useful in sensor networks with reactive sensing

capabilities. Instead of generating a steady stream of data, reactive sensor networks

send data only in response to an event; often only a few regions of the network are

active at any given time. Clustered topologies allow for aggregates to be calculated

in the affected regions and the result communicated to the base station.

The authors in [17] proposed the use of interactive proofs to force the aggregator

to show that the calculated aggregate is a good approximation of the true value.

Three phases are involved in the aggregate-commit-prove (ACP) protocol. During

the first phase, the aggregator collects the data and computes the aggregate result.

The aggregator is able to verify the authenticity of each message because a shared

key exists between the aggregator and each other node. During the second phase, the

aggregator calculates a commitment, which is used during the third phase to prove

that the aggregate is valid. The base station checks to see if the aggregator is cheating

by observing whether the result received from the aggregator is close to the correct

result aggregated from the committed data. This approach has an overall message

complexity of O(3N) and an edge complexity of O(1/2N), depending on how many

nodes the base station queries to verify the commitment.

In SecureDAV, the authors proposed a secure data Aggregation and Verification

Protocol using elliptic curve cryptography (ECC) and a threshold digital signature

scheme (EC-DSA) [18, ?]. SecureDAV is a two-part protocol. During the initial phase,

each cluster generates a secret cluster key using verifiable secret sharing (VSS). At

the end of the protocol, each sensor in a cluster will have a share of the secret cluster

key. Because each node has only a share of the cluster key, the cluster key cannot be

determined by an attacker. The secret cluster key is used to digitally sign messages

to the base station, which can verify the signature using the corresponding public key.

In a threshold signature scheme, the signatures generated by each holder of a share

10

are combined into a full signature, which is equivalent to a signature with the full key

by a single signer. In the second part of the protocol, each sensor sends its reading

to the cluster head. The cluster head calculates the average and then broadcasts the

average to all nodes in the cluster. Each node checks to see if the average is within

a small threshold of its own reading. If the test passes, then the sensor signs the

average with its share of the signature and sends the partial signature to the cluster

head. The cluster head combines the signatures into a full signature and sends the

average along with the signature to the base station. The base station can verify the

signature using the public key, and thus it is assured that the average is acceptable

to the sensor nodes in the cluster. To provide data integrity, a Merkle Hash Tree is

generated by the cluster head from the encrypted readings of the sensors, the base

station uses the Merkle Hash Tree and repeated queries to the cluster head to verify

integrity. The major limitation of SecureDAV is that it is designed to work only with

the calculation of the average. Calculating any other function, such as the SUM is

impossible using this protocol, because a node will be unable to tell if its reading has

been added to the sum. This algorithm has an overall message complexity of O(3N)

and an edge complexity of O(1/2N), again, depending on how many messages are

necessary for the base station to verify the integrity of the result.

2.2.3. HIERARCHICAL AGGREGATION

Multiple aggregators at multiple levels of the hierarchy will lead to the biggest

savings over aggregation at the base station. Consider Figure 2.2, in which no

aggregation will result in a total of 42 messages sent in the entire network, 14 of

which will be the edge complexity cost on the link to the base station. Opportunistic

aggregation will result in 14 messages sent, one from each node. The edge

complexity cost in the entire network is 1. Clearly, hierarchical aggregation results in

overwhelming communication costs savings and also has very good edge complexity

costs. However, the security in hierarchical aggregation is very much a challenge.

The base station now needs to be assured that each and every aggregator correctly

computed the aggregate. Each sensor needs to know that its reading was properly

carried through all levels of aggregation. Additionally, in corruption due to attacks,

11

Figure 2.2. A sample hierarchical sensor network

several aggregators may decide to collude together to overcome the restrictions of the

algorithms.

In [19], the authors presented a secure aggregation algorithm, which is secure

against injected nodes and compromised nodes. The algorithm delays aggregation by

one level in the hierarchy. A node sends its data secured with a message authentication

code (MAC) to its parent at level i-1. The parent computes the aggregate result and

sends it, plus the data received from the children, to its parent at level i-2. It retains

a copy of the original data along with the MAC. The nodes at level i-2 can now also

calculate the same aggregate as the nodes at level i-1, thus ensuring that the nodes

at level i-1 correctly computed the result. This process of sending the calculated

result along with the data that went into the calculation continues until the data

reach the base station. The algorithm also employs delayed authentication using

µTESLA [20], which means that the base station reveals the appropriate keys after

a delay. The nodes can then use these keys to verify the authenticity of the MACs

received from their descendants. However this algorithm does not provide any security

against colluding nodes at different levels of the hierarchy. If a node at level i-1 and

a node at level i-2 collude to falsify an aggregate result, then this algorithm does not

12

provide protection. However, it does provide for multiple levels of aggregation, and

no limitations exist on the types of aggregates that can be computed. The overall

message complexity for this approach is O(N) with an edge complexity of O(1);

however, colluding nodes can defeat this algorithm.

Chan et al. first defined a direct data injection attack, in which an attacker

controls any number of sensors and causes them to submit a value that is different

from the sensed value to the in-network aggregation process [21]. They introduced an

algorithm that is secure against aggregator misbehavior in the sense that an attacker

cannot deviate the resulting aggregate any more than would be possible with a direct

data injection attack. This means that an adversary cannot gain an advantage by

controlling an aggregating node over controlling nodes that only input their data.

This algorithm will work with any arbitrary tree topology and is able to cope with

any number of malicious nodes. The algorithm is explained in detail for a SUM

aggregation, but it is also shown how a similar approach would work with MEDIAN,

COUNT, and AVERAGE aggregation. The message complexity for this approach

is O(log2N), while the edge complexity is bounded by O(log2N). The algorithm

works by building a commitment structure on the aggregate and by decoupling

the physical communication network from a logical aggregation network. Instead

of relying solely on the base station for result checking as in [17], the result checking

is fully distributed and becomes part of the responsibilities of each sensor node. The

base station distributes the final commitment to the network. After receiving the

partial commitments from off-path nodes, a node is able to verify that its inputs

were correctly applied. The node then informs the base station whether it agrees

with the aggregate. The major disadvantage of this approach is that while the edge

complexity is only O(log2N), the overall communication complexity of this approach

is O(N log2N). Additionally, this approach will only work on certain aggregate

functions.

13

I. ENERGY CONSTRAINED CLUSTERING FOR WIRELESS

SENSOR NETWORKS

Julia Albath and Sanjay Madria Mayur Thakur

Missouri University of Science and Technolgy Google Inc.

Department of Computer Science Mountain View, CA

julia.albath@acm.org, madrias@mst.edu maythakur@google.com

Abstract— Using partitioning in wireless sensor networks to create clusters

for routing, data management, and other protocols has been proven as a way to

ensure scalability and to deal with sensor network shortcomings such as limited

communication ranges and energy. Choosing a cluster head within each cluster is

important because cluster heads use additional energy for their responsibilities and

that burden needs to be carefully passed around. Many existing protocols either

choose cluster heads randomly or use nodes with the highest remaining energy. We

introduce the energy constrained minimum dominating set (ECDS) to model the

problem of optimally choosing cluster heads with energy constraints. We show its

applicability to sensor networks and give an approximation algorithm of O(log n) for

solving the ECDS problem. We propose a distributed algorithm for the constrained

dominating set which runs in O(log n log ∆) rounds with high probability. We

experimentally show that the distributed algorithm performs well in terms of energy

usage, node lifetime, and clustering time and, thus, is very suitable for wireless sensor

networks.

I. INTRODUCTION

A wireless network consists of a large number of small sensors with low-power

transceivers. These sensors are an effective tool for gathering data for a variety of

purposes, such as border protection, surveillance of forests for fire, and tracking of animal

movements. The data collected by each sensor is communicated via a multi-hop path in the

14

network to a single processing center, the base station. The base station uses all reported

data to determine the characteristics of the environment or detect an event.

Communication via the on-board radio is the most expensive operation of the sensor

nodes [1]. In radio communications, the signal strength decreases proportional to the square

of the propagation distance [2]. In other words, to have the same signal strength reach twice

the distance, four times the amount of energy is required. Protocols such as LEACH [3],

and those described in [4] and [5] reduce energy consumption and increase the lifetime

of the network. The basic idea in these protocols is to cluster sensors into groups and to

choose a cluster head such that sensors communicate only to their cluster head. The cluster

heads then communicate the aggregated information to the processing center. Clustering

has been shown to greatly reduce power consumption, is easily scalable, and is robust in the

face of node failures [3]. A good clustering scheme takes into account one or more of the

following: communication range, number and type of sensors, geographical location, and

remaining energy [6]. Clustering and proper cluster head selection in order to maximize

the lifetime of the network are important considerations when designing protocols and

algorithms for sensor networks [7].

A sensor network can be expressed as a graphG = (V,E), where each of the vertices

represents a sensor node and there is an edge between two vertices if their corresponding

sensor nodes are within each other’s communication range. A dominating set of a graph

G = (V,E) is a subset V ′ ⊆ V such that each x ∈ V − V ′ has a neighbor in V ′. The

assignment of nodes to cluster heads is often modeled as a dominating set (DS) problem [8].

The minimum dominating set problem is NP-complete for general graphs [9] and remains

NP-complete for planar graphs, unit disk graphs, bi-partite graphs, and chordal graphs, but

it does admit a Polynomial Time Approximation Scheme (PTAS) for planar graphs and unit

disk graphs [10]. The dominating set problem models the optimization problem of finding

a small number of cluster heads.

Clustering in sensor networks and in Mobile Ad-Hoc Networks (MANET) benefits

from using a dominating set approach. The dominating set approach leads to better

clustering because dominating set based clustering can be executed in a constant number

of rounds [11]. A DS based approach works because every node in the network is

either a dominating node or is only one hop from a dominating node [12]. Single-hop

15

B S

7

7

7 7

7

77

B S

0

6 6

6

6 6

6

B S

4

4 4

6

66

6

B S

55

5 5

1 1

1

Fig. 1. Energy Constrained Clustering Example: (a) Original Network (b) Without
Constraints After One Round (c) With Constraints After One Round (d) With Constraints
After Two Rounds

communications within clusters is appropriate because most nodes will be close to their

cluster head and their links are of good quality [13].

Cluster heads spend additional energy on message transmission, so a small set of

cluster heads might not be optimal from a network survivability standpoint. For instance,

using a dominating set as the set q of cluster heads comes with the disadvantage that the

network might lose a few cluster heads and become fragmented fairly soon. Consider the

graph shown in Figure 1. Let’s assume that one unit is used for each receive or send and

the nodes in the dominating set combine all received data into one outgoing message. Each

node has the same amount of energy (7 units) (Figure 1(a)) at the beginning. The optimal

dominating set is one node (Figure 1(b)), however the network will become disconnected

after only one time step. On the other hand a slightly non-optimal dominating set using

the heuristic “Don’t give a cluster head more than three nodes” results in a network that

survives two time steps as shown in Figures 1(c) and 1(d) (the shaded nodes represent the

cluster heads).

A wireless sensor has many constraints, energy being one of the important ones.

Other constraints include bandwidth, storage and computational abilities. A wireless sensor

networks needs to consider these and other constraints when choosing cluster heads and

assigning nodes to clusters. For example, each node sends one packet per round to its

cluster head. The length of a round is limited; this limits the number of nodes a cluster

head can support. Additionally, a cluster head has to store received messages until they

16

are combined at the end of each round; this also limits how many nodes a cluster head can

support. For this work, we have chosen to concentrate on the limited energy available to

each sensor and the natural limitations on the size of each cluster that follow.

Motivated by the above examples, we introduce the energy constrained minimum

dominating set of a graph in order to achieve these objectives. The contributions of this

paper are summarized as follows:

• We introduce and define the Energy Constrained Dominating Set (ECDS) Problem

in Section II.

• We describe the problem of developing clusters so that the energy consumption

during each round of processing is minimized without exhausting the available

resources of any given node. In the energy constrained DS problem, we are given

integer constraints on each node that denote the maximum number of relay links a

node can handle if it is chosen as a cluster head. The objective is to minimize the size

of the cluster head set subject to the constraint that no node has more work then it

can handle and that every node is either in the constrained DS or one hop from such

a node. We give a centralized algorithm in Section IV.

• Since the clustering algorithm typically runs repeatedly (for example, when nodes

move or a cluster heads dies, a distributed algorithm is much more practical than a

centralized algorithm. We give a practical distributed algorithm in Section V.

• We prove that the distributed algorithm runs in O(log n log ∆) rounds with high

probability, where ∆ is the maximum degree of a node in the graph. We provide

the proof in Section VI.

• We support our theoretical analysis with extensive simulations using TOSSIM.

We compare the performance of the distributed ECDS algorithm to the HEED

algorithm [14]. HEED selects cluster heads according to residual energy and with

node proximity to neighbors or node degree. Our protocol uses local information

about the connectivity of each node and the connectivity of its neighbors in addition

to the residual energy to decide which node should become a cluster head. ECDS

takes less time and fewer rounds to cluster the network, allowing more messages to

17

reach the base station. For the scenarios in our study, ECDS clustering takes 3.5

rounds or less, compared to 4.5 rounds or less for HEED. The number of cluster

heads is as expected and the number of nodes in each cluster remains steady. Our

algorithm results in very few single node clusters. The number of cluster heads, the

size of the clusters and the number of clusters which contain only the cluster head are

much better in ECDS then in HEED. The lifetime of the sensor network, measured

in terms of time of first node death and time of last node death, is better in ECDS

then in HEED. While the overall energy consumption is slightly higher for ECDS,

when considering that ECDS produces more useful data, the energy consumption per

message is much lower. The results of said simulation are available in Section VII.

II. DEFINITIONS AND NOTATIONS

This section describes the notations used in the rest of the paper and defines the

dominating set, network clustering, and energy constrained connected dominating set.

Definition 2.1: For a graphG and a subset S of the vertex set V (G), denote byNG[S]

the set of vertices in G which are in S or adjacent to a vertex in S. If NG[S] = V (G), then

S is said to be a dominating set of G.

Definition 2.2: Given an undirected graph G = (V,E), and, for each vi ∈ V (G), a

constraint r(vi) ∈ N, the energy-constrained dominating set (ECDS) of G is a pair (S,C),

where C is an assignment from x ∈ S to Vx ⊆ V such that (a) {Vx|x ∈ S} is a partition of

V , (b) for each x ∈ S, x ∈ Vx ⊆ NG[{x}], and (c) for each x ∈ S, ‖Vx‖ ≤ r(x) + 1.

In the definition of ECDS, we assume that when a node is selected as a cluster head, it

includes itself in the cluster. (See part (b) of the definition.) Also note from the “+1” in

condition (c) that we allow a node to cover itself for free. That is, the constraint r(x) for x

denotes the maximum number of nodes that x can cover in addition to itself.

ECDS is also related to, but different from, the Network Clustering problem [15].

ECDS has a constraint parameter that is not present in Network Clustering. Also, the

clusters must form a partition in ECDS, whereas they may overlap in the Network

Clustering problem. The general dominating set can be described as a constrained

dominating set where each constraint is equal to n, the number of nodes in the graph.

It trivially follows that the constrained minimum dominating set is NP-complete. The

18

minimum dominating set in the general form has approximation algorithms of within

1 + log ‖V ‖. Since the constrained dominating set problem is a special case of the general

dominating set problem, no improvement on these bounds will be possible.

In Wireless Sensor Networks (WSN) coverage generally means ensuring that the

entire area has proper sensor distribution to ensure even sensing. In this work, we define

coverage as one node’s ability to handle the relaying of messages to and from other nodes

in its cluster.

III. RELATED WORK

In [16], cluster heads are chosen so that the energy consumption over the entire

network is even, ensuring that the network lives as long as possible. A node will chose

a cluster head to ensure the overall energy consumption in the entire network is even.

Our algorithm, on the other hand, requires only local information about the topology and

residual energy.

In [17] each vertex is assigned a weight, as well as a capacity, and the goal is to

minimize the sum of the weights without exceeding the capacity of any vertex. The authors

provide a (2 + ε)OPT approximation algorithm.

A randomized distributed algorithm that runs inO(log n log ∆ + 1) rounds and where

the size of the dominating set obtained is, with high probability, within O(log n) of the

optimal, is presented in [18]. Our distributed algorithm is based on this algorithm and

extends its ideas to vertices with constraints and applies it to wireless sensor networks.

A fast, distributed algorithm is presented in [19]. It is used to compute a small k-

dominating set D (for any fixed k) and its induced graph partition. The time complexity of

the algorithm is O(k log∗ n), where log∗ is the inverse Ackermann function.

In [20], a series of approximation algorithms for finding a small, weakly-connected

dominating set (WCDS) in a given graph is presented for use in clustering mobile ad hoc

networks. The main contribution of the work is a completely distributed algorithm for

finding small WCDS. Our work focuses on wireless sensor networks and creates connected

dominating sets.

19

The connected minimum dominating set is considered in [21]. The authors provide

two approximation algorithms which achieve approximation factors of 2H(∆) + 2 and

H(∆) + 2 where ∆ is the maximum degree in the graph and H is the harmonic function.

IV. CENTRALIZED ALGORITHM

We now describe a centralized algorithm for the constraint dominating set problem.

A general overview of Algorithm 1 follows. The input is an undirected graph G = (V,E)

and constraints r(v) for each v ∈ V . V ′ ⊆ V , the set of vertices dominating the graph, is

initially empty.

Many applications of sensor networks occur in heterogeneous networks, where the

sensor have the support of several powerful computers in addition to the base station. The

centralized version of the algorithm corresponds to a sensor network in those settings.

Each vertex x has a capacity r(xi). Since sensor networks are resource constrained,

we chose to use the energy as a representative for the constraint. A function that maps the

available resource to the constraint is required.

In each iteration, the greedy algorithm makes two choices. First, it chooses a node

v from the set V − V ′ and adds it to V ′. Second, given the updated set V ′ it chooses

which vertices this set will cover. In fact, v is chosen as the node x ∈ V − V ′ such

that the maximum number of nodes covered (subject to constraints and over all possible

assignments of nodes to dominators) by V ′ ∪ {x} is maximized. Thus, in each iteration,

we first compute the maximum coverage of V ′ ∪ {x} (denoted Nx), for each x ∈ V − V ′,
and then add to V ′ the node v such that Nv is maximum.

The maximum coverage Nx for each vertex x ∈ V − V ′ is calculated using the max-

flow algorithm. Let S = V ′ ∪ {x} and let T = V − S. Define a directed graph G′ as

follows: An artificial source s is connected in turn to each vertex y ∈ S with a capacity

equal to r(y), the constraint of y. Next, each vertex y ∈ S is connected to its neighbors in

T with a capacity of one and each node in T is connected to an artificial sink t, also with

capacity one. We compute the max-flow from s to t in G′. Since the incoming capacity

to each node y ∈ S is equal to the constraint, no node y ∈ S will be able to provide flow

to more nodes than its constraint. Since all the capacities are integral, we can efficiently

find a max-flow that has integral flow on all edges [22]. Because the capacity of each edge

20

coming into T is one and the outgoing capacity of the edge from any node in T to t is one,

it follows that each node z ∈ T will satisfy exactly one of the following: (A) z has exactly

one incoming edge with flow = 1 (and the rest with 0 flows) or (B) all edges incoming to

z have 0 flow. We will say that a node z ∈ T is covered if it is of type (A) and we will say

that y is covered by the (unique) node w such that the flow on (w, z) is 1. Let C be this

partial assignment (partial clustering) of nodes in T to nodes in S.

Claim 4.1: Assignment C obeys all constraints r(). Further, the number of nodes in

T that are covered in assignment C is is the maximum number of nodes that can be covered

(subject to constraints r()) by nodes in S.

Proof: The capacity from s to a node w ∈ S is equal to the constraint r(w), and the

flows are integral, w dominates at most r(w) nodes in T . Thus, the constraints are obeyed.

Let k be the number of T nodes that are covered in the assignment C. By our

construction, k is the max flow of G′. To prove that C is an optimal assignment, consider

an assignment C ′ of T nodes to S nodes such that the number of nodes covered (subject to

constraints r()) is greater than k. Since this assignment can be converted into a valid flow

by giving a flow of 1 to each edge (w, v) such that w ∈ S and v ∈ T and w dominated

v (equivalently, v is assigned to w) in C ′. The flow achieved is greater than k, which

contradicts the assumption that the max flow in G′ is k.

In each iteration, the algorithm tests each x ∈ V − V ′, and includes the node that has

the largest max-flow. Note that the partial clustering is recomputed at every stage. Thus, a

node a that is assigned to clusterhead c at stage i might not be assigned to c at step i + 1.

In fact, a might not even be covered at step i+ 1.

Theorem 4.2: There is a O(log n) approximation algorithm for ECDS.

Proof: The proof is a simple modification of the standard set cover proof. LetG be the

input graph and r(v) be the constraint on node v. Let X be an optimal energy-constrained

dominating set of size OPT . Note that there is an assignment (clustering) C of nodes in

V − X to nodes in X such that all constraints are obeyed. Let Y be the output of our

algorithm.

Order the nodes in V by the step in which they are covered. (For nodes that are

covered in the same step, order them arbitrarily.) Consider the jth node. At the beginning

of the step k in which j was covered, there were at least n − j uncovered nodes. Let

21

Algorithm 1 Constraint Minimum Dominating Set Algorithm
Require: Graph G = (V,E), V = {v1, v2, . . . , vn}, constraint t(vi) on vertices
Ensure: V ′ ⊆ V , set of currently chosen vertices

1: Connect V to sink with capacity = 1
2: V ′ = ∅
3: Covered = ∅
4: while Covered 6= V − V ′ do
5: for each vertex x ∈ V − V ′ do
6: Connect xi to source with capacity = t(xi)
7: Connect xi to each y ∈ N(xi) with capacity 1
8: Connect y ∈ N(xi) to the terminal with capacity 1
9: Calculate Nxi

= maximum coverage of V ′ ∪ {xi}
10: end for
11: Pick xi such that Nxi

is maximum
12: V ′ = V ′ ∪ xi

13: Update Covered with y ∈ V such that there was flow from x to sink
14: end while
15: Output V ′

the partial dominating set at the beginning of step k be S. Then S ∪ X will cover all

the nodes since X by itself covers all the nodes. Let x be the node selected at step k.

Then, node x covers at least cx = n−j
OPT

nodes. Associate a weight of 1/cx with each node

that x covers. Then, the total weight associated with all nodes that x covers is at least

1. Also, the jth node gets a weight of at most OPT
n−j

. There is an upper bound of the size

of Y in our algorithm, achieved by adding the weights of all nodes. This upper bound is∑n−1
j=0

OPT
n−j

= OPT [1
n

+ 1
n−1

+ . . .+ 1
1
]. Thus, the size of Y is O(log n) ∗OPT .

V. DISTRIBUTED ALGORITHM

This algorithm is a modification of the local randomized greedy (LRG) algorithm

from [18]. The LRG algorithm is a modification of the distributed version of the greedy

algorithm of [23]. To enable comparison, we first informally describe the LRG algorithm

and then describe our modification to the algorithm.

The LRG algorithm proceeds in rounds. At the start of a round, each node that is

not already in the dominating set decides whether it wants to be a candidate dominator in

that round. Candidacy is determined by letting only nodes that can cover a large number of

22

nodes be candidates. These nodes must have a large number of neighbors remaining. Note

that a node can be covered by multiple candidates. A node defines its support as the number

of candidates that cover it. Each node is selected for the dominating set with a probability

that is the inverse of the median of supports of all nodes that it covers. Once a node is

selected, its neighbors are considered “covered”. The round has ended; if uncovered nodes

remain, another round starts.

The reason for using the median of supports follows: If we pick all the candidates,

then we might pick too many nodes for the dominating set. If we pick only one candidate,

then we may require too many rounds.

We will now describe our modification of the LRG algorithm and show an effective

(O(log n log ∆)) randomized distributed algorithm for ECDS. In this version, the algorithm

is required to obey the constraints in expectation. In particular, for each node u, E[# nodes

covered by u | u is selected as a cluster head] ≤ r(u). In fact, our algorithm obeys the

constraint in expectation in an even stricter sense. Note that in the above formulation, it

is possible for certain sets of cluster heads to grossly violate the constraints. For example,

the above constraint allows an algorithm to have the following behavior: Whenever the

algorithm outputs the set {v1} as the cluster head, all the constraints are violated grossly.

Our algorithm does not have this undesirable behavior. In fact, our algorithm obeys the

following: Let u be an arbitrary node and let U ⊆ V − {u}. Then, E[# nodes covered by

u|U
⋃
{u} is selected as a cluster head] ≤ r(u). This basically says that the nodes obey the

constraints in expectation independent of one another.

The following issues must be handled:

1. What is the support of a node?

2. Given that we select a node x to be a dominator, how do we select which nodes to

cover/dominate from among the neighbors of x?

To address issue 1, we say that the constrained span c(x) of a node x at a given step

in our algorithm is the smaller of the following two quantities: the number of uncovered

neighbors of x and the constraint of x. (The set of neighbors of a node x includes x

and all nodes with which x shares a high quality communication link/edge). Let x be a

candidate and let y be a node that is adjacent to x. The out-support sout(x) of x is the

ratio of the constrained span c(x) to the number of uncovered neighbors of x. For example,

23

if a candidate x has 5 uncovered neighbors and the constraint of x is 3, then c(x) = 3,

sout(x) = 3/5. The out-support of x is the fractional support a node gives to each of its

neighbors. The in-support sin(y) of y is the sum of the out-supports of each neighbor of

y. Thus, the in-support of a node is the total support a node will get if all its neighbors are

dominators and each gives fractional support to all the neighbors. Roughly speaking, the

larger a node’s in-support, the larger the probability that it will be covered in a randomly

chosen dominating set.

How should we decide which nodes to select as dominators? Certainly, selecting

all nodes would be overkill. Consider a node x whose neighbors y1, y2, . . ., yk have in-

supports (in increasing order) sin(1) ≤ sin(2) ≤ . . . ≤ sin(k). Clearly, yk needs node x

as a dominator at most as much as yk−1 needs x because sin(k − 1) ≤ sin(k). Similarly,

yk−1 needs x at most as much as yk−2 needs x, and so on. Thus, to decide whether we

want to select x as a dominator (as in issu 2 above), we use the inverse of the median of

sin(i)’s. More specifically, we select a candidate x with probability equal to the inverse of

the median of the in-supports of the neighbors of x.

The complete algorithm—the weighted local randomized greedy (WLRG) algorithm—

is described in Algorithm 2.

Explanatory notes on the algorithm: Let D = C = ∅. D will denote the set of nodes

selected to be in the dominating set. C will denote the set of nodes already covered by the

dominators. Also, the set of neighbors of x with which x shares a good communication

link are determined using the received signal strength indicator (RSSI). RSSI is inversely

proportional to the signal strength. This allows nodes to communicate only with other

nodes to which there is a strong connection. Fewer retransmissions will be required to

achieve a successful transmission over such links. While there is only a weak correlation

between RSSI and node distance, the link quality does impact the amount of energy

required for communications.

• An intuitive way to think about sin(y) is the following: Suppose all candidate

nodes were made dominators. Suppose also that each dominator x selected c(x)

neighbors—the maximum number of nodes that x can dominate—at random from

its neighbors. Then, sin(x) is the expected number of dominators that cover the

uncovered node x.

24

Algorithm 2 Weighted Local Randomized Greedy Algorithm
Require: Graph G = (V,E), constraint r(vi) on vertices
Ensure: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by computing the minimum of
the constraint and the number of uncovered neighbors of x.

2: Candidate selection: Compute whether ĉ(x) is at least as much as the constrained
span of each node within a distance of 2 from x. If so, x is a candidate.

3: Constrained out-support calculation: If x is a candidate, compute the constrained
out-support of x as follows: If c(x) = 0, let sout(x) = 0. Else,

sout(x) =
c(x)

||N(x)− C||
.

Note that ||N(x)− C|| is the number of uncovered neighbors of x.
4: Constrained in-support calculation: If x is an uncovered node, let A(x) be the set of

neighbors of x that are candidates. Compute the constrained in-support sin(x) of x as

sin(x) =
∑

y∈A(x)

sout(y).

5: Dominator selection: If x is a candidate, find the medianm of {sin(y)|y ∈ N(x)−C}.
Let p = 1/m. With probability p, add x to D.

6: Neighbor selection: If x is selected, add x to D, and for each neighbor y ∈ N(x)−C,
select y with probability sout(x) and add it to Vx. Set C =

⋃
x∈D Vx.

7: Go to the next round.

• A candidate whose uncovered neighbors all have large sin’s intuitively need not be

selected as a dominator, because its neighbors will likely get covered by other nodes.

On the other hand, if we only select very few dominators, then the algorithm will

run for many rounds. This is the principle for selecting a dominator with probability

equal to the median of the inverse of sin’s.

We can show the algorithm described above (with a slight modification) returns a

dominating set that obeys the constraints with high probability (whp). The number of

rounds is O(log n log ∆) (∆ is the maximum constrained degree) whp.

25

VI. ANALYSIS OF THE DISTRIBUTED ALGORITHM WLRG

WLRG (Weighted Local Randomized Greedy) is described in Section V. We now

show that WLRG terminates in O(log n log ∆) rounds with high probability.

Theorem 6.1: WLRG on a graph G = (V,E) terminates in O(log n log ∆) where n

is the number of nodes and ∆ is max{min(t(v), d(v))|v ∈ V }, where t(v) is the constraint

on v and d(v) is the degree of v.

We will now give the proof of this result. The structure of this proof closely follows

the analysis of LRG [18]. In fact, since ECDS is a generalization of the dominating set

problem, WLRG is a generalization of LRG. The key difference between our analysis and

the analysis of LRG is that (a) we need a notion of partial coverage and (b) we need to

incorporate in our analysis the neighbor selection step, a step that is not present in the LRG

algorithm.

Let G = (V,E) be the sensor node graph. In the proof, we will focus on a round

(say the ith round) of WLRG. Let C be the set of nodes covered in an earlier round. Let

H = (V ′, E ′) be the subgraph of G such that V ′ is the union of all candidate nodes X

(as defined by the candidate selection step) and all uncovered nodes Y adjacent to some

x ∈ X , and E ′ consists of edges (u, v) ∈ E where u is a candidate and v is an uncovered

node.

Lemma 6.2: (Equivalent to Lemma 3.1 of [18].) All candidates in a connected

component of H must have the same constrained span.

Proof: Let v1 and v2 be two candidates in a connected component of H . Consider a

path p from v1 to v2 in H . Then there cannot be two consecutive nodes in p such that both

are non-candidates. (This is because at least one end-point of each edge in H is a candidate

node.) Since any two candidates within a distance of 2 must have the same constrained

span, we have that all candidates that lie on p must have the same constrained span. And it

follows that all candidates in a connected component of H have the same constrained span.

We will now show using a potential function argument that WLRG terminates in

O(log n log ∆) rounds with high probability. We define the potential at the start of a round

as follows: Let m be the maximum constrained span of any node at the start of a round.

26

Define Φ as

Φ =
∑

v:ĉ(v)=m

c(v).

Lemma 6.3: (Equivalent to Lemma 3.2 of [18].) Let Φi and Φ′i be the potentials at

the beginning and end of round i. There is a d > 0 such that E[Φ′i] ≤ dΦi.

Note that the potential at the start of round i+1 might not be the same as the potential

at the end of round i because the underlying graph changes due to some nodes being

covered in round i.

Proof: Recall thatX is the set of candidates. For each candidate v, let U(v) denote the

set of uncovered neighbors of v. Sort the elements of U(v) in nonincreasing order of their

in-supports sin()’s. Let T (v) (respectively, B(v)) denote the set of the first d||U(v)||/2e
(last d||U(v)||/2e) elements of U(v). For a candidate v and a node u ∈ U(v), we say that v

is a top dominator for u if u ∈ T (v). The probability that a top dominator v of u is selected

is 1/m, where m is the median of {sin(y)|y ∈ U(v)}. Since u ∈ T (v), 1/m ≥ 1/sin(u).

For an uncovered node u in H , we say that u is a top heavy node if at least sin(u)/4

of its in-support comes from candidates that are top dominators for u. An uncovered node

is bottom heavy if it is not top heavy.

Lemma 6.4: If u is top heavy, then the probability that u is covered in this round by

a top dominator of u is at least 1− e−1/4.

Proof: Let Pc(u) be the probability that u is covered in this round by a top dominator.

Then, the probability that u is not covered in this round by a top dominator is 1 − Pc(u).

Since u is not covered if none of the top dominators adjacent to u cover u, we can write

this probability as:

Πv∈X:u∈T (v)P [u is not covered by v].

We will determine an upper bound this term.

Let Pd(v) be the probability that v is picked to be a dominator in this round. If u is

not covered by v, then exactly one of the following events happen:

• v is not picked to be a dominator (with probability 1− Pd(v)); or

27

• v is picked to be a dominator (with probability Pd(v)) and yet v does not cover u

(with probability 1− sout(v)).

Thus,

P [u is not covered by v] = (1− Pd(v)) + Pd(v)(1− sout(v)),

which simplifies to 1−Pd(v)sout(v). As shown above, if u ∈ T (v), then Pd(v) ≥ 1/sin(u).

Thus,

Πv∈X:u∈T (v)(1− Pd(v)sout(v)) ≤ Πv∈X:u∈T (v)(1−
sout(v)

sin(u)
).

Define xv = sout(v)
sin(u)

.

Note that since u is top heavy, it follows from definition, that

Σv∈X:u∈T (v)sout(v) ≥ sin(u)

4
.

Thus,

Σv∈X:u∈T (v)xv ≥
1

4
.

Let there be n elements in the set {v ∈ X|u ∈ T (v)}.

Πv∈X:u∈T (v)(1− xv) ≤ (1− 1

4n
)n ≤ e1/4.

Since 1− Pc(u) ≤ e1/4, it follows that Pc(u) ≥ 1− e1/4.

Consider an arbitrary edge (v, u) ∈ E ′. (Recall that E ′ is the set of edges (v, u) in H

such that v is a candidate and u is an uncovered node.) This edge can be one of four types:

1. v is a top dominator for u and u is top heavy (call this set of edges Ett),

2. v is a top dominator for u and u is bottom heavy (call this set of edges Etb),

3. v is a bottom dominator for u and u is top heavy (call this set of edges Ebt), or

4. v is a bottom dominator for u and u is bottom heavy (call this set of edges Ebb).

28

Let Stt =
∑

(v,u)∈Ett
sout(v). Similarly, define Stb, Sbt, and Sbb. Let S be the sum over all

edges (v, u) such that v is a candidate and u is an uncovered node in H , of sout(v).

Note that Ett ∩ Ebt or Ebt ∩ Ebb might not be empty because a node v can be both a

top and a bottom dominator for a node u. Certainly, though, Ett ∩ Etb = Ebt ∩ Ebb = ∅.

Lemma 6.5: (equivalent to Lemma 3.4 of [18].) Let Stt and S be as defined above.

Then,

Stt ≥ (1/3)S.

Proof: Consider a bottom heavy node u.

∑
v∈X:u∈B(v)

sout(v) <
sin(u)

4
.

Thus,

∑
v∈X:u∈B(v)

sout(v) ≥ 3sin(u)

4
.

Thus,

∑
v∈X:u∈B(v)

sout(v) > 3
∑

v∈X:u∈T (v)

sout(v).

If we sum both sides of the above inequality over all bottom heavy nodes, we have that

Sbb ≥ 3Stb. We also know that Sbb ≤ (1/2)S. Thus, Stb ≤ (1/6)S. Now,

Stt + Stb ≥ (1/2)S.

Thus, Stt ≥ (1/2− 1/6)S = (1/3)S.

We can now use these results to prove Lemma 6.3 and also Theorem 6.1 in exactly

the same manner as [18]. The only difference between the two proofs is that in our proof

∆ is max{min(t(v), d(v))|v ∈ V }, a global upper bound on the constrained span for any

node in any round, while in [18] ∆ is the maximum degree of the graph, also a global upper

bound on the span of a node in the graph.

29

VII. EXPERIMENTS

In order to test the distributed clustering algorithm, we implemented the algorithm

in TinyOS and ran simulations in TOSSIM [24]. We compared the ECDS algorithm

against the HEED algorithm [7] and used a random topology for each simulation. We

ran a simulated 15 minutes for network sizes of 30, 45, 60, and 75 nodes. Our algorithm

is independent of the routing protocol used, but for our experiments we use the Surge

multi-hop application that is part of TinyOS. HEED also uses the Surge multi-hop routing

protocol. Each node generates a reading every 20 seconds. The cluster heads aggregate the

readings. Surge uses a link estimation and parent selection (LEPS) mechanism to determine

multi-hop routes. All traffic received at each node is monitored and used to update the

internal neighbor table. The neighbor table tracks all neighbors and selects the next hop

based on shortest path semantics. The default destination is the base station. We use a

credit-point system for updating the mote energy budget as used with iHEED [25]. ECDS

and HEED use energy for tasks such as sending and receiving and points are deducted

propotional to the actual amount of energy used. Each node starts with the same amount

of points and for each send/receive an amount proportional to the size of the message is

deducted. In our implementation, a cluster head receives many more messages from nodes

in its cluster than it sends. All messages are sent with the same power level, therefore

we do not consider the distance when determining the cost of each send/receive [26]. For

ECDS, the initial energy allows a constraint of 20. Whenever the network re-clusters, the

constraint is updated and is based on the energy available at each node. For each network

size, the experiments were repeated 30 times. We measured the size of the dominating set

and compared it to the expected size of the dominating set for each round, which allowed

us to show that the algorithm performs as expected. We measured the number of rounds

the algorithm executed until the entire network was clustered. We compared the time of

the first node’s death to the last node’s death. Having all nodes die at approximately the

same time provides the most useful WSN. Additionally, we measured the time it took for

the entire network to cluster. A fast clustering algorithm ensures a useful WSN.

30

A. Cluster Generation

In a distributed environment it is important to evaluate how long it takes for a

clustering protocol to finish. There are two measurements for WSN: time and the number of

rounds of execution. Figure 2(a) shows the average number of rounds to cluster the network

for various sizes. An ideal distributed clustering algorithm will cluster in a constant number

of rounds. Both the ECDS and the HEED algorithm execute in a constant number of

rounds, but the ECDS algorithm finished in fewer rounds. The algorithm depends on

the routing information obtained from the (independent) routing protocol. This routing

information may not be complete, especially in the earlier rounds. Incomplete routing

information will exclude some nodes from joining a cluster at each round. Similar behavior

can be seen in Figure 2(b), which shows the average time it took for the networks to

cluster. Clearly, the number of rounds and the time are related and both are important

measurements. An algorithm that runs over several short rounds may still outperform an

algorithm that runs in a constant number of long rounds. Again, it is important that an

algorithm takes a constant amount of time, no matter the size of the network. Both the

ECDS and the HEED algorithm take a constant amount of time, but the ECDS algorithm is

faster.

B. Cluster Goodness

Our algorithm uses a randomized, probabilistic approach. At each round, the sum of

the probabilities is equal to the number of expected cluster heads. Figure 2(c) shows the

average expected number of cluster heads versus the average actual number of cluster heads

for each network size. For all networks, the average number of expected cluster heads is

close to the average actual number of cluster heads, indicating that our algorithm performs

as expected. Figure 3(a) shows the average size of the dominating set. The dominating set

is the number of cluster heads selected for each simulation run. Each node starts with the

same amount of energy, an amount that can support up to 20 nodes in a cluster. Another

important consideration is the number of nodes assigned to each cluster. Scalability is

improved when clusters are of similar size regardless of network size. Figure 3(b) shows

the average number of nodes in each cluster. In ECDS the number of nodes assigned to

a cluster remains relatively constant, while the size decreases asymptotically for HEED.

Not only the number of nodes in each cluster and the number of clusters matter, but also

31

0

0.5

1

1.5

2

2.5

3

3.5

4

30 45 60 75

N
um

be
r

of
 R

ou
nd

s
to

 C
lu

st
er

Number of Nodes in Network

ECDS
HEED

0

100

200

300

400

500

600

30 45 60 75

T
im

e
to

 C
lu

st
er

Number of Nodes in Network

ECDS
HEED

0

1

2

3

4

5

30 45 60 75

N
um

be
r

of
 C

an
di

da
te

s

Number of Nodes in Network

Expected
Actual

Fig. 2. (a) Rounds to Cluster (b) Time to Cluster (c) Expected vs. Actual Number of Cluster
Heads

0

5

10

15

20

30 45 60 75

A
ve

ra
ge

 N
um

be
r

of
 C

lu
st

er
 H

ea
ds

Number of Nodes in Network

ECDS
HEED

0

2

4

6

8

10

12

14

16

30 45 60 75

A
ve

ra
ge

 S
iz

e
of

 C
lu

st
er

Number of Nodes in Network

ECDS
HEED

0

0.5

1

1.5

2

30 45 60 75

N
um

be
r

of
 S

in
gl

e
N

od
e

C
lu

st
er

s

Number of Nodes in Network

ECDS
HEED

Fig. 3. (a) Dominating Set Size (b) Cluster Size (c) Average Number of Single Node
Clusters

how many of those clusters are single-node clusters (clusters in which the cluster head is

the only node). A single node cluster does not improve performance, but it is generally

unavoidable. A good algorithm will minimize the number of such clusters. Figure 3(c)

shows the average number of single node clusters for ECDS and HEED. For ECDS the

number of single node clusters decreases as the size of the network grows. ECDS choses

only neighbors which are “near” as cluster heads, some nodes will not be near a cluster

head and thus create single node clusters. As the network grows, each node has more

opportunities to find a near cluster head, hence the decrease. On the other hand, HEED’s

single node clusters increase in number as the network grows.

C. Lifetime of Sensor Nodes

In a wireless sensor network, the early death of some nodes can disconnect other

nodes from the base station. This situation can lead to a reduced usefulness of the network

because some data cannot reach the base station. We measure lifetime in two ways: (1)

32

0

100

200

300

400

500

600

700

800

30 45 60 75

T
im

e
(S

ec
on

ds
)

Number of Nodes in Network

ECDS
HEED

0

100

200

300

400

500

600

700

800

30 45 60 75

T
im

e
(S

ec
on

ds
)

Number of Nodes in Network

ECDS
HEED

0

5000

10000

15000

20000

25000

30000

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

0

10

20

30

40

50

60

70

80

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

Fig. 4. (a) First Death (b) Last Death (c) Average Energy (d) Average Energy Per Message

the time at which the first node dies and (2) the time at which the last node dies. The time

at which the first node dies is important because it can lead to a disconnection of part of

the network. The time at which the last node dies shows how long nodes are able to run

the protocol. Figure 4(a) shows the time at which the first node died for the ECDS and

the HEED algorithm. The time of the first death asymptotically decreases in ECDS and is

constant for HEED. Figure 4(b) shows the time of death for the last node in the network.

It is equally important that all nodes die around the same time. A single node that outlives

others by a large margin is of little use. It can be estimated that the lifetimes will be similar

for ECDS and HEED in large networks. For both ECDS and HEED the first and last deaths

are within 200 seconds of each other, indicating an even energy consumption across the

network.

D. Energy Consumption

The amount of energy used during the execution of a protocol is very important in

sensor networks. Figure 4(c) shows the average energy consumption for the two protocols.

The energy consumption of the HEED algorithm is linear, while the energy consumption

of the ECDS algorithm is asymptotically decreasing. As the networks grow larger, the

energy consumption for ECDS and HEED will be similar. In sensor networks, the energy

consumption for each message sent should be considered in addition to the overall energy

consumption. A sensor network that uses very little energy is not useful if it does not

produce an adequate amount of data. Figure 4(d) shows the average energy consumption

for each message sent. Since ECDS clusters faster, it generates more messages.

33

VIII. CONCLUSION AND OPEN PROBLEMS

In this paper, two different algorithms are presented to address the problem of energy

constrained clustering for wireless sensor networks. For the greedy algorithm we provide

an O(log n) approximation guarantee. The second algorithm presented is a distributed

algorithm for the energy constrained dominating set. We proved that this algorithm runs

in O(log n log ∆) rounds whp. This algorithm performs well on the random graphs in our

simulations. Our simulations showed that our algorithm performs very well in terms of

time to cluster, cluster size, and energy consumption. We compared our algorithm with

the HEED algorithm. It outperformed HEED in terms of cluster size, time to cluster, and

energy consumption per message sent. Future work will include extending the algorithm to

consider node proximity when selecting cluster heads and deciding which nodes to add

to the cluster. Considering node proximity will produce tighter clusters and minimize

the overall energy consumption within each cluster. Secondly, we plan on extending the

algorithm to allow for multi-hop clusters. Currently every node is one hop from its cluster

head. We will extend the algorithm to allow nodes to be k-hops from their cluster heads.

Additionally, we plan on extending the algorithm to allow each node to have multiple

cluster heads which will ensure that each node has access to at least one cluster head at

all times. Ensuring multiple coverings for each node will allow for the use of multi-path

routing in clustered networks.

REFERENCES

[1] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information

dissemination in wireless sensor networks,” in MobiCom ’99: Proceedings of the 5th

annual ACM/IEEE international conference on Mobile computing and networking.

ACM Press, 1999, pp. 174–185.

[2] S. Lee, C. Kim, and S. Kim, “Constructing energy efficient wireless sensor

networks by variable transmission energy level control,” in Computer and Information

Technology, 2006. CIT ’06. The Sixth IEEE International Conference on, 2006, pp.

225–225.

34

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communi-

cation protocol for wireless microsensor networks,” in HICSS ’00: Proceedings of the

33rd Hawaii International Conference on System Sciences-Volume 8. Washington,

DC, USA: IEEE Computer Society, 2000, p. 8020.

[4] D. Wei and A. H. Chan, “Clustering algorithm to balance and to reduce power

consumptions for homogeneous sensor networks,” in Wireless Communications,

Networking and Mobile Computing, 2007. WiCom 2007. International Conference

on, 2007, pp. 2723–2726.

[5] R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-organizing

wireless sensor networks,” Ad Hoc Networks, vol. 4, no. 1, pp. 36–59, January 2006.

[6] C. Duan and H. Fan, “A distributed energy balance clustering protocol for

heterogeneous wireless sensor networks,” in Wireless Communications, Networking

and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp.

2469–2473.

[7] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering

approach for ad hoc sensor networks,” Mobile Computing, IEEE Transactions on,

vol. 3, no. 4, pp. 366–379, 2004.

[8] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set approxima-

tion,” in In Proc. of the 22nd ACM Symposium on the Principles of Distributed

Computing, 2003.

[9] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer

Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[10] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Unit disk graph approximation,” in

DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of

mobile computing. ACM Press, 2004, pp. 17–23.

35

[11] J. Wu and H. Li, “Domination and its applications in ad hoc wireless networks

with unidirectional links,” in ICPP ’00: Proceedings of the Proceedings of the 2000

International Conference on Parallel Processing. Washington, DC, USA: IEEE

Computer Society, 2000, p. 189.

[12] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan, “Fast

distributed algorithms for (weakly) connected dominating sets and linear-size

skeletons,” in SODA ’03: Proceedings of the fourteenth annual ACM-SIAM

symposium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics, 2003, pp. 717–724.

[13] V. Mhatre and C. Rosenberg, “Design guidelines for wireless sensor networks:

communication, clustering and aggregation,” Ad Hoc Networks, vol. 2, no. 1, pp. 45–

63, 2004.

[14] M. Younis, M. Youssef, and K. Arisha, “Energy-aware routing in cluster-based sensor

networks,” in MASCOTS ’02: Proceedings of the 10th IEEE International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems

(MASCOTS’02). Washington, DC, USA: IEEE Computer Society, 2002, p. 129.

[15] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical control in multi-hop

wireless networks,” in IEEE INFOCOM, April 2001, pp. 1028–1037.

[16] M. Chen and J. Wu, “EECS: an energy efficient clustering scheme in wireless sensor

networks,” Performance, Computing, and Communications Conference, 2005. IPCCC

2005. 24th IEEE International, pp. 535–540, 2005.

[17] F. Grandoni, J. Knemann, A. Panconesi, and M. Sozio, “Primal-dual based distributed

algorithms for vertex cover with semi-hard capacities,” in PODC ’05: Proceedings

of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on Principles of

distributed computing. New York, NY, USA: ACM Press, 2005, pp. 118–125.

[18] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for constructing

small dominating sets,” Distrib. Comput., vol. 15, no. 4, pp. 193–205, 2002.

36

[19] S. Kutten and D. Peleg, “Fast distributed construction of k-dominating sets and

applications,” in PODC ’95: Proceedings of the fourteenth annual ACM symposium

on Principles of distributed computing. ACM Press, 1995, pp. 238–251.

[20] Y. Chen and A. Liestman, “Approximating minimum size weakly-connected

dominating sets for clustering mobile ad hoc networks,” in MobiHoc ’02: Proceedings

of the 3rd ACM international symposium on Mobile ad hoc networking & computing.

New York, NY, USA: ACM Press, 2002, pp. 165–172.

[21] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,”

in ESA ’96: Proceedings of the Fourth Annual European Symposium on Algorithms.

London, UK: Springer-Verlag, 1996, pp. 179–193.

[22] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms.

Cambridge, MA, USA: MIT Press, 1990.

[23] B. Liang and Z. Haas, “Virtual backbone generation and maintenance in ad hoc

network mobility management,” in INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE, vol. 3, 2000, pp. 1293–1302 vol.3.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation

of entire tinyos applications,” in SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems. New York, NY, USA: ACM

Press, 2003, pp. 126–137.

[25] O. Younis and S. Fahmy, “An experimental study of routing and data aggregation

in sensor networks,” Mobile Adhoc and Sensor Systems Conference, 2005. IEEE

International Conference on, pp. 8 pp.–, Nov. 2005.

[26] A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-preserving scheme

for wireless sensor networks based on local information exchange,” Computer

Communications, vol. 30, no. 14-15, pp. 2708–2720, October 2007.

37

II. ENERGY CONSTRAINED CLUSTERING ALGORITHMS FOR WIRELESS

SENSOR NETWORKS

Julia Albath, Student Member, IEEE, Mayur Thakur, Member, IEEE, and Sanjay

Madria, Senior Member, IEEE

Abstract— Using partitioning in sensor networks to create clusters for routing,

data management, and other protocols has been proven as a way to ensure scalability

and to deal with sensor network shortcomings such as limited communication ranges and

energy. Choosing a cluster head within each cluster is important because cluster heads

use additional energy for their responsibilities and that burden needs to be carefully passed

around. Many existing protocols either choose cluster heads randomly or use nodes with the

highest remaining energy. We introduce the energy constrained minimum dominating set

(ECDS) to model the problem of optimally choosing cluster heads with energy constraints.

We show its applicability to sensor networks and give an approximation algorithm for

solving the ECDS problem. We propose a distributed algorithm for the constrained

dominating set. We experimentally show that the distributed algorithm performs well in

terms of energy usage, node lifetime, and clustering time and, thus, is very suitable for

wireless sensor networks.

1 INTRODUCTION

As sensor networks mature and are used in many situations, the necessity arises for new and

improved protocol and algorithms. Each sensor has a limited amount of energy available.

Combined with other limited resources such as processing power, radio bandwidth and

memory, new protocols and algorithms need to be developed. Routing protocols need to

work within this limited environment while achieving their goals.

The limited resources are important and need to be considered because they affect the

lifetime of the network. In most applications of wireless sensor networks, it is impossible to

replace batteries in order to extend the lifetime of the network. Adding additional sensors

38

may be a possibility in some situations, but not in cases such as battlefield deployment.

This illustrates the need for protocols which extend the lifetime of the network and hence

extend the usefulness of the network.

Routing protocols and algorithms which organize the network into clusters have been

shown to greatly improve network lifetime [1]. Clustering has been shown to greatly reduce

power consumption, is easily scalable, and is robust in face of node failures [2]. A good

clustering scheme takes into account one or more of the following: communication range,

number and type of sensors, geographical location, and remaining energy [3]. Clustering

protocols need to make two important decisions, one is cluster head selection and the other

is which nodes to assign to which cluster head.

Cluster head selection is important because cluster heads spend more energy

aggregating, forwarding messages, doing general routing maintenance and similar actions.

A small set of cluster heads may not be optimal in terms of network lifetime. A cluster head

uses additional energy and could be depleted much sooner then other nodes. More cluster

heads may mean that each cluster head has less work to do and each cluster head may

survive a longer amount of time. Consider the graph shown in Figure 1. Each node starts

with the same amount of energy (7 units) (Figure 1(a)) and one unit is used for each receive

or send. The cluster head aggregates the received messages into one outgoing message. The

optimal dominating set is one node (Figure 1(b)), but the network becomes disconnected

after only one time step. On the other hand a slightly non-optimal dominating set using

the heuristic “Don’t give a cluster head more than three nodes” results in a network that

survives two time steps as shown in Figures 1(c) and 1(d) (the shaded nodes represent the

cluster heads).

Cluster head selection in wireless sensor networks and in Mobile Ad-Hoc Networks

(MANET) benefits from using a dominating set approach. Dominating set clustering can

be executed in a constant number of rounds which leads to better clustering [4]. In a

dominating set approach each node is either a cluster head or one hop from a cluster

head [5]. This can be extended to allow each node to be at most k-hops from its cluster head.

Allowing for k-hops within a cluster improves scalability in very large networks. Very

large networks, even when clustered will exhibit problems similar to unclustered, smaller

networks [6]. The Energy Constrained Dominating Set (ECDS) was introduced. Each

node in a wireless sensor network is constrained by its limited resources, especially energy.

39

B S

7

7

7 7

7

77

1(a) Original
Network

B S

0

6 6

6

6 6

6

1(b) Without
Constraints After
One Round

B S

4

4 4

6

66

6

1(c) With
Constraints
After One
Round

B S

55

5 5

1 1

1

1(d) With
Constraints
After Two
Rounds

Fig. 1. Energy Constrained Clustering Example

Other constraints include, but are not limited to, bandwidth, storage and computational

abilities. ECDS models the problem of optimally choosing cluster heads with energy

constraints. The distributed ECDS algorithm runs in O(log n log ∆) rounds whp (with

high probability). Experimental evaluations showed the distributed algorithm to be very

well suited for wireless sensor networks. Motivated by the above examples, we improve

the Weighted Local Randomized Greedy Algorithm. The contributions of this paper are

summarized as follows:

• We introduce an improved ECDS (iECDS) algorithm. iECDS improves the perfor-

mance of ECDS by considering the connection quality to neighbors when making

decisions. This reduces the power required to successfully send messages and it

extends the lifetime of the network. We improved ECDS by modifying the candidate

selection. In iECDS candidate selection is based on the rounded constrained span

unlike ECDS which uses the constrained span. The rounded constrained span is the

smallest power of 2 that is at least as much as the constrained span. This increases

the number of candidates elected at each round and leads to faster network clustering.

The iECDS algorithm is described in Section 4.2.

• We introduce a k-hop cluster ECDS (kECDS) algorithm. In kECDS a node can be

up to k hops from its cluster head. kECDS, like iECDS and ECDS, uses multi-hop

from the cluster heads to the base station. Allowing for k-hops within a cluster leads

40

to larger clusters and fewer small clusters. Section 4.3 provides the details of the

kECDS algorithm.

• We provide extensive simulations using TOSSIM in Section 6. We compared the

performance of the iECDS and kECDS algorithms to ECDS and HEED[7]. HEED

selects cluster heads according to residual energy and node proximity to neighbors or

node degree. ECDS uses local information about the connectivity of each node and

the connectivity of its neighbors in addition to the residual energy to decide which

node should become a cluster head.

2 SYSTEM MODEL

In this paper we make assumptions regarding the environment in which the network will

operate. The network consists of a number of nodes randomly placed in the area to be

monitored. Each sensor has the same abilities and the network includes one base station,

such as a laptop, which has additional processing powers. Other assumptions are detailed

here.

• The sensor nodes are stationary, that is, nodes cannot move from one location

to another on their own accord. Nodes can be moved by external forces, such

as animals, attackers or strong winds. Any node movement will be taken into

account whenever the network reclusters. After moving, a node may no longer be

in communication range of its cluster head. From the time when a node moves until

the network is reclustered, the node will not be able to contribute data. When the

network is reclustered, the node choses a new cluster head and contributes data.

• Communication links are symmetric. If node u can hear node v, then node v can hear

node u. The algorithms use the local neighborhood connectivity and layout in order

to elect cluster heads, so it is important that all nodes in the neighborhood are aware

of the connections. A node needs to know that its neighbors can hear it. If node u is

a candidate cluster head and knows node v is in its neighborhood, it is important that

v can hear u.

41

• Nodes are not location aware. The nodes are not equipped with GPS receivers

and do not know their location within the covered area. Nodes do not know in

which direction other nodes are located, nor do they know what other nodes can

communicate with each other. Nodes do not know the physical distance to the base

station. Nodes do know how many hops they are from the base station.

• Each sensor knows its local neighborhood. Nodes communicate with each other

using wireless communication to construct a connected network. Each node knows

which nodes it is able to communicate with and it knows the quality of this

connection. Messages are exchanged using some underlying multi-hop routing

protocol. The algorithms are independent of the routing protocol used.

• The nodes and the network will be left unattended after deployment. Some messages

may be sent from the base station to the network. These messages will not contain

global network information. Algorithms need to be able to take the local information

and make global decisions.

• Some nodes are able to communicate with the base station, but the majority are not in

direct communication range of the base station. Those nodes will use the underlying

multi-hop routing protocol to send their messages to the base station. The ECDS

algorithms are independent of the routing protocol. Any multi-hop routing protocol

can be used with the ECDS algorithms.

• The nodes are loosely time-synchronized. Time-synchronization is necessary in

order to make sure that all nodes participate in the ECDS algorithms within the

same interval. This time-synchronization can be handled by existing hardware on

most nodes. The ECDS algorithms do not require special time-synchronization

algorithms.

3 PROBLEM STATEMENT

In a typical wireless sensor network, n nodes are distributed randomly over the coverage

area. Our goal is to ensure that the area is properly covered to ensure even sensing. In this

work, coverage also refers to one node’s ability to handle the relaying of messages to and

42

from other nodes in its cluster. We want to organize the network into clusters such that each

cluster has one cluster head. All other nodes send their messages to the cluster head. The

cluster head will aggregate the data received from the cluster and send the aggregate to the

base station.

A sensor network can be expressed as a graphG = (V,E), where each of the vertices

represents a sensor node and there is an edge between two vertices if their corresponding

sensor nodes are within each other’s communication range. A dominating set of a graph

G = (V,E) is a subset V ′ ⊆ V such that each x ∈ V − V ′ has a neighbor in V ′. The

assignment of nodes to cluster heads is often modeled as a dominating set (DS) problem [8].

The minimum dominating set problem is NP-complete for general graphs[9] and remains

NP-complete for planar graphs, unit disk graphs, bi-partite graphs, and chordal graphs, but

it does admit a Polynomial Time Approximation Scheme (PTAS) for planar graphs and

unit disk graphs [10], [11]. The dominating set problem models the optimization problem

of finding a small number of cluster heads.

We will now describe the notations using in the rest of the paper and define

dominating set and energy constrained dominating set.

Definition 3.1: The dominating set for a graph G and a subset S of the vertex set

V (G), denote by NG[S] the set of vertices in G which are in S or adjacent to a vertex in S.

If NG[S] = V (G), then S is said to be a dominating set of G.

Definition 3.2: Given an undirected graph G = (V,E), and, for each vi ∈ V (G), a

constraint r(vi) ∈ N , the energy-constrained dominating set (ECDS) of G is a pair (S,C),

where C is an assignment from x ∈ S to Vx ⊆ V such that (a) Vx|x ∈ S is a partition of V ,

(b) for each x ∈ S, x ∈ Vx ⊆ NG[x], G so that the following condition is met, and (c) for

each x ∈ S, ||Vx|| ≤ r(x) + 1.

In the definition of ECDS we assume that when a node is selected as cluster head, it

includes itself in the cluster. (See part (b) of the definition). Also note from the “+1” in

condition (c) that we allow a node to cover itself for free. That is, the constraint r(x) for x

denotes the maximum number of nodes that x can cover in addition to itself.

ECDS is also related to, but different from, the Network Clustering problem [12].

ECDS has a constraint parameter that is not present in Network Clustering. Also, the

clusters must form a partition in ECDS, whereas they may overlap in the Network

Clustering problem. The general dominating set can be described as a constrained

43

dominating set where each constraint is equal to n, the number of nodes in the graph.

It trivially follows, that the constrained minimum dominating set is NP-complete. The

minimum dominating set in the general form has approximation algorithms of 1+log ||V ||.
Since the constrained dominating set problem is a special case of the general dominating

set problem, no improvement on these bounds will be possible.

4 ENERGY CONSTRAINED CLUSTERING PROTOCOLS

First we present the original ECDS protocol followed by the improved ECDS (iECDS)

and kECDS, which is a version of ECDS that allows for k-hop communication within the

cluster.

4.1. Energy Constrained Dominating Set

In this section we describe the ECDS protocol. First, we give the algorithm and discuss

the parameters used in the clustering process. Second, we will show the theoretical

performance bounds of the ECDS algorithms. This enables us to compare the iECDS and

kECDS algorithms to the original ECDS algorithm.

4.1.1. ECDS Algorithm

We will explain and define several terms used in order to facilitate the understanding of

the algorithm. The constrained span c(x) of a node x in the ECDS algorithm is defined

as the smaller of: the number of uncovered neighbors of x and the constraint of x. The

neighbors of x are defined as x and all nodes with which x shares a communication

link of high quality. We use the received signal strength indicator (RSSI) to determine

link quality. RSSI is inversely proportional to the signal strength. This allows us to

communicate only with nodes to which we have a strong connection and therefore require

fewer retransmissions to achieve our goal. This improves the cluster’s ability to achieve

its goal. While there is a weak correlation between RSSI and node distance, the link

quality does impact the amount of power required for communications. Adjusting a nodes’

neighborhood based on link quality allows us to use the lowest possible power setting for

transmissions in order to communicate with the nodes in the cluster. This leads to additional

energy savings. Let x be a candidate cluster head and y be a neighbor of x. Then the out-

44

support sout(x) of x is the ratio of the constrained span c(x) to the number of uncovered

neighbors of x. Assume that node x is a candidate and has 6 neighbors therefore c(x) = 4

and sout(x) = 4/6. In other words, the out-support of a candidate is the fractional support

a node can offer to each neighbor. The in-support sin(y) of y is the sum of the out-support

of each neighbor of y. Thus, the in-support of a node is the total support a node will get

if all its neighboring dominators gives fractional support to each of its neighbors. The

larger a node’s in-support, the larger the probability that it will be covered by at least one

dominator. We can say that sin(x) is the expected number of dominators that can cover x.

Intuitively, we do not need to make dominators who have uncovered neighbors that all have

large sin’s. Those neighbors have a high probability of being covered by other nodes. This

is the intuition for selecting a dominator with probability equal to the median of the inverse

of sin’s.

This raises the question of how should we decide which nodes to select as domina-

tors? On one hand, selecting all nodes would be overkill. On the other hand, if we only

select very few dominators, then the algorithm will run for many rounds. Let node x whose

neighbors y1, y2, . . ., yk have in-supports (in increasing order) sin(1) ≤ sin(2) ≤ . . . ≤
sin(k). Clearly, yk needs node x as a dominator at most as much as yk−1 needs x because

sin(k − 1) ≤ sin(k). Similarly, yk−1 needs x at most as much as yk−2 needs x, and so

on. Thus, to decide whether we want to select x as a dominator, we use the inverse of the

median of sin(i)’s.

The completed weighted local randomized greedy (WLRG) algorithm is described

in Algorithm 1. Each node x executes the algorithm in each round until the node and its

neighbors are covered. Initially let D = C = ∅. D will denote the set of nodes selected to

be in the dominating set. C will denote the set of nodes already covered by the dominators.

Additionally, N(x) denotes the set of neighbors of x, this includes x. Also note that by

definition of c(y), c(y) ≤ ||N(y) − C||. Thus, if ||N(y) − C|| = 0, then c(y) = 0, and so

sout(y) = 0.

4.1.2. Complexity Analysis

We now show that WLRG terminates in O(log n log ∆) rounds with high probability.

45

Algorithm 1 Weighted Local Randomized Greedy Algorithm
Require: Graph G = (V,E), constraint r(vi) on vertices
Ensure: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by computing the minimum of
the constraint and the number of uncovered neighbors of x.

2: Candidate selection: Compute whether c(x) is at least as much as the constrained
span of each node within a distance of 2 from x. If so, x is a candidate.

3: Constrained out-support calculation: If x is a candidate, compute the constrained
out-support of x as follows: If c(x) = 0, let sout(x) = 0. Else,

sout(x) =
c(x)

||N(x)− C||
.

Note that ||N(x)− C|| is the number of uncovered neighbors of x.
4: Constrained in-support calculation: If x is an uncovered node, let A(x) be the set of

neighbors of x that are candidates. Compute the constrained in-support sin(x) of x as

sin(x) =
∑

y∈A(x)

sout(y).

5: Dominator selection: If x is a candidate, find the median m of {sin(y) | y ∈ N(x)−
C}. Let p = 1/m. With probability p, add x to D.

6: Neighbor selection: If x is selected, add x to D, and for each neighbor y ∈ N(x)−C,
select y with probability sout(x) and add it to Vx. Set C =

⋃
x∈D Vx.

7: Go to the next round.

Theorem 4.1: WLRG on a graph G = (V,E) terminates in O(log n log ∆) where n

is the number of nodes and ∆ is max{min(t(v), d(v)) |v ∈ V }, where t(v) is the constraint

on v and d(v) is the degree of v.

We will now give the proof of this result. The structure of this proof closely follows

the analysis of LRG [13]. Let G = (V,E) be the sensor node graph. In the proof, we

will focus on a round (say the ith round) of WLRG. Let C be the set of nodes covered in

an earlier round. Let H = (V ′, E ′) be the subgraph of G such that V ′ is the union of all

candidate nodes X (as defined by the candidate selection step) and all uncovered nodes Y

adjacent to some x ∈ X , and E ′ consists of edges (u, v) ∈ E where u is a candidate and v

is an uncovered node.

Lemma 4.2: (Equivalent to Lemma 3.1 of [13].) All candidates in a connected

component of H have the same span.

46

Proof: Let v1 and v2 be two candidates in a connected component of H . Consider a

path p from v1 to v2 in H . Then there cannot be two consecutive nodes in p such that both

are non-candidates. (This is because at least one end-point of each edge in H is a candidate

node.) Since any two candidates within a distance of 2 must have the same span, we have

that all candidates that lie on p must have the same span. And it follows that all candidates

in a connected component of H must have the same span.

We will now show using a potential function argument that WLRG terminates in

O(log n log ∆) rounds with high probability. We define the potential at the start of a round

as follows. Let o be the maximum span of any node at the start of a round. Define Φ as

Φ =
∑

v:c(v)=o

c(v).

Lemma 4.3: (Equivalent to Lemma 3.2 of [13].) Let Φi and Φ′i be the potentials at

the beginning and end of round i. There is a d > 0 such that E[Φ′i] ≤ dΦi.

Note that the potential at the start of round i+1 might not be the same as the potential

at the end of round i because the underlying graph changes due to some nodes being

covered in round i.

Proof: Recall thatX is the set of candidates. For each candidate v, let U(v) denote the

set of uncovered neighbors of v. Sort the elements of U(v) in non-increasing order of their

in-supports sin()’s. Let T (v) (respectively, B(v)) denote the set of the first d||U(v)||/2e
(last d||U(v)||/2e) elements of U(v). For a candidate v and a node u ∈ U(v), we say that v

is a top dominator for u if u ∈ T (v). The probability that a top dominator v of u is selected

is 1/m, where m is the median of {sin(y) | y ∈ U(v)}. Since u ∈ T (v), 1/m ≥ 1/sin(u).

For an uncovered node u in H , we say that u is a top heavy node if at least sin(u)/4

of its in-support comes from candidates that are top dominators for u. An uncovered node

is bottom heavy if it is not top heavy.

Lemma 4.4: If u is top heavy, then the probability that u is covered in this round by

a top dominator of u is at least 1− e−1/4.

Proof: Let Pc(u) be the probability that u is covered in this round by a top dominator.

Then, the probability that u is not covered in this round by a top dominator is 1 − Pc(u).

47

Since u is not covered if none of the top dominators adjacent to u cover u, we can write

this probability as:

Πv∈X:u∈T (v)P [u is not covered by v].

We will determine an upper bound on this item.

Let Pd(v) be the probability that v is picked to be a dominator in this round. If u is

not covered by v, then exactly one of the following events happen:

• v is not picked to be a dominator (with probability 1− Pd(v) or

• v is picked to be a dominator (with probability Pd(v)) and yet v does not cover u

(with probability 1− sout(v))

Thus,

P [u is not covered by v] = (1− Pd(v)) + Pd(v)(1− sout(v)),

which simplifies to 1−Pd(v)sout(v). As shown above, if u ∈ T (v), then Pd(v) ≥ 1/sin(u).

Thus,

Πv∈X:u∈T (v)(1− Pd(v)sout(v)) ≤ Πv∈X:u∈T (v)(1−
sout(v)

sin(u)
).

Define xv = sout(v)
sin(u)

.

Note that since u is top heavy, it follows from definition, that

Σv∈X:u∈T (v)sout(v) ≥ sin(u)

4
.

Thus,

Σv∈X:u∈T (v)xv ≥
1

4
.

Let there be n elements in the set {v ∈ X | u ∈ T (v)}.

Πv∈X:u∈T (v)(1− xv) ≤ (1− 1

4n
)n ≤ e1/4

48

Since 1− Pc(u) ≤ e1/4, it follows that Pc(u) ≥ 1− e1/4.

Consider an arbitrary edge (v, u) ∈ E ′. (Recall that E ′ is the set of edges (v, u) in H

such that v is a candidate and u is an uncovered node.) This edge can be one of four types:

1. v is a top dominator for u and u is top heavy (call this set of edges Ett),

2. v is a top dominator for u and u is bottom heavy (call this set of edges Etb),

3. v is a bottom dominator for u and u is top heavy (call this set of edges Ebt), or

4. v is a bottom dominator for u and u is bottom heavy (call this set of edges Ebb).

Let Stt =
∑

(v,u)∈Ett
sout(v). Similarly, define Stb, Sbt, and Sbb. Let S be the sum,

over all edges (v, u) such that v is a candidate and u is an uncovered node in H , of sout(v).

Note that Ett ∩ Ebt or Ebt ∩ Ebb might not be empty because a node v can be both a

top and a bottom dominator for a node u. Certainly, though, Ett ∩ Etb = Ebt ∩ Ebb = ∅.

Lemma 4.5: (equivalent to Lemma 3.4 of [13].) Let Stt and S be as defined above.

Then,

Stt ≥ (1/3)S.

Proof: Consider a bottom heavy node u.

∑
v∈X:u∈B(v)

sout(v) <
sin(u)

4
.

Thus,

∑
v∈X:u∈B(v)

sout(v) ≥ 3sin(u)

4
.

Thus,

∑
v∈X:u∈B(v)

sout(v) > 3
∑

v∈X:u∈T (v)

sout(v).

49

If we sum both sides of the above inequality over all bottom heavy nodes, we have that

Sbb ≥ 3Stb. We also know that Sbb ≤ (1/2)S. Thus, Stb ≤ (1/6)S. Now,

Stt + Stb ≥ (1/2)S.

Thus, Stt ≥ (1/2− 1/6)S = (1/3)S.

We can now use these results to prove Lemma 4.3 and also Theorem 4.1 in exactly

the same manner as [13]. The only difference between the two proofs is that in our proof

∆ is max{min(t(v), d(v)) | v ∈ V }, a global upper bound on the constrained span for any

node in any round, while in [13] ∆ is the maximum degree of the graph, also a global upper

bound on the span of a node in the graph.

4.2. Improved ECDS (iECDS)

We will now describe the iECDS protocol. iECDS improves upon ECDS by using a

rounded constrained span ĉ(x). The rounded constrained span ĉ(x) is the smallest power

of 2 that is at least as much as c(x). Using the rounded span generates larger connected

components and thus will lead to a clustered network in fewer rounds. By using the rounded

constrained span more nodes will become candidates in the early rounds and therefore

more cluster heads will be elected. This means that the entire network is clustered in fewer

rounds.

4.2.1. iECDS Algorithm

We provide the entire iECDS algorithm in Algorithm 2.

4.2.2. Complexity Analysis

The proof for iECDS follows the proof for ECDS almost exactly. The only change that it

requires is for Lemma 4.2, substituting ”rounded span” for ”span”.

Lemma 4.6: All candidates in a connected component of H must have the same

rounded span.

Proof: Let v1 and v2 be two candidates in a connected component of H . Consider a

path p from v1 to v2 in H . Then there cannot be two consecutive nodes in p such that both

are non-candidates. (This is because at least one end-point of each edge in H is a candidate

50

Algorithm 2 Improved ECDS Algorithm
Require: Graph G = (V,E), constraint r(vi) on vertices
Ensure: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by computing the minimum of
the constraint and the number of uncovered neighbors of x. Also, compute ĉ(x), the
rounded constrained span as the smallest power of 2 that is at least as much as c(x).

2: Candidate selection: Compute whether ĉ(x) is at least as much as the constrained
span of each node within a distance of 2 from x. If so, x is a candidate.

3: Constrained out-support calculation: If x is a candidate, compute the constrained
out-support of x as follows: If c(x) = 0, let sout(x) = 0. Else,

sout(x) =
c(x)

||N(x)− C||
.

Note that ||N(x)− C|| is the number of uncovered neighbors of x.
4: Constrained in-support calculation: If x is an uncovered node, let A(x) be the set of

neighbors of x that are candidates. Compute the constrained in-support sin(x) of x as

sin(x) =
∑

y∈A(x)

sout(y).

5: Dominator selection: If x is a candidate, find the median m of {sin(y) | y ∈ N(x)−
C}. Let p = 1/m. With probability p, add x to D.

6: Neighbor selection: If x is selected, add x to D, and for each neighbor y ∈ N(x)−C,
select y with probability sout(x) and add it to Vx. Set C =

⋃
x∈D Vx.

7: Go to the next round.

node.) Since any two candidates within a distance of 2 must have the same rounded span,

we have that all candidates that lie on p must have the same rounded span. And it follows

that all candidates in a connected component of H must have the same rounded span.

This change does not improve the theoretical bound, but our simulations show an

improvement in the clustering algorithm, as can be seen in Section 6.

4.3. ECDS for k-hop Clusters (kECDS)

Our next improvement to ECDS allows the creation of clusters where a node can be up

to k-hops from the cluster head. ECDS and iECDS required that each node can reach its

cluster head within one hop. k-hop clusters will improve scalability, especially in very

large networks. In very large networks, single hop clustering requires a large number of

51

cluster heads and could lead to the same kind of problems as can be found in unclustered

networks [6]. Cluster heads use additional energy, thus it is desirable to minimize the

number of cluster heads. Allowing k-hops within a cluster will reduce the number of

cluster heads. From the definition of dominating set, each node is either a cluster head

or a neighbor of a cluster head. In k-hop clustering that definition is relaxed. A node is

either a cluster head or at most k-hops from a cluster head. This allows clusters to be more

spread out and requires fewer cluster heads to cover the same number of nodes. It also

reduces the frequency of single node clusters, because a node has more clusters to join.

4.3.1. kECDS Algorithm

For kECDS we change the definition of neighborhood of x. N(x) denotes the set of

neighbors of xwithin k hops of x and includes x itself. The details for the kECDS algorithm

are given in 3.

4.3.2. Complexity Analysis

The proof for kECDS follows the proof for iECDS almost exactly. The only change that it

requires is for Lemma 4.6, substituting k + 1 for 2.

Lemma 4.7: All candidates in a connected component of H have the same rounded

span.

Proof: Let v1 and v2 be two candidates in a connected component of H . Consider a

path p from v1 to v2 in H . Then there cannot be two consecutive nodes in p such that both

are non-candidates. (This is because at least one end-point of each edge in H is a candidate

node.) Since any two candidates within a distance of k + 1 must have the same rounded

span, we have that all candidates that lie on p must have the same rounded span. And it

follows that all candidates in a connected component of H must have the same rounded

span.

This change does not improve the theoretical bound, but our simulations show an

improvement in the clustering algorithm, as can be seen in Section 6.

4.4. Multi-Path ECDS (mECDS)

Our next improvement to the ECDS algorithm allows the use of multipath routing intra

and inter cluster. Multipath routing is an energy efficient, load-balanced, fault-tolerant and

52

Algorithm 3 k-Hop ECDS Algorithm
Require: Graph G = (V,E), constraint r(vi) on vertices
Ensure: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by computing the minimum of
the constraint and the number of uncovered neighbors of x. Also, compute ĉ(x), the
rounded constrained span as the smallest power of 2 that is at least as much as c(x).

2: Candidate selection: Compute whether ĉ(x) is at least as much as the constrained
span of each node within a distance of k + 1 from x. If so, x is a candidate.

3: Constrained out-support calculation: If x is a candidate, compute the constrained
out-support of x as follows: If c(x) = 0, let sout(x) = 0. Else,

sout(x) =
c(x)

||N(x)− C||
.

Note that ||N(x)− C|| is the number of uncovered neighbors of x.
4: Constrained in-support calculation: If x is an uncovered node, let A(x) be the set of

neighbors of x that are candidates. Compute the constrained in-support sin(x) of x as

sin(x) =
∑

y∈A(x)

sout(y).

5: Dominator selection: If x is a candidate, find the median m of {sin(y) | y ∈ N(x)−
C}. Let p = 1/m. With probability p, add x to D.

6: Neighbor selection: If x is selected, add x to D, and for each neighbor y ∈ N(x)−C,
select y with probability sout(x) and add it to Vx. Set C =

⋃
x∈D Vx.

7: Go to the next round.

reliable routing approach [14]. Multipath routing can be applied to routing from cluster

heads to the base station to improve reliability and provide energy efficiency and fault-

tolerance. Additionally, a multipath approach can also be used from each node to its

cluster head. Using multiple cluster heads ensures that a node has another cluster head

available when one fails even when single path routing is used. However, we have to make

the assumption that the link between a node and its cluster head is no more reliable then

any other link in the network. By using multipath routing, these type of problems can be

mitigated. Most clustering protocols could be extended to work with multipath routing.

Our extension of ECDS will lead to better performance and more energy savings.

53

4.4.1. mECDS Algorithm

In mECDS, each node has a coverage requirement. The coverage requirement is an

indicator of the number of cluster heads a node desires. This coverage requirement may

be the same throughout the network or it is decided by each node depending on the link

quality to its neighbors. A cluster head will chose to cover a node with larger coverage

requirements first. This will result in energy efficient clustering, while ensuring that all

nodes have have the maximum coverage possible which will allow for largest energy

savings while using multipath routing. The details can be found in Algorithm 4. Each

round has several steps. During the first step, each node calculates its constrained span. A

node is considered uncovered until it has the number of cluster heads it requires or all its

neighbors are cluster heads. With every additional cluster head a node acquires, it becomes

more “covered”. A node without a cluster head is completely uncovered. A node with one

cluster head is 1/k covered, with two cluster head 2/k covered and so on, where k is the

coverage requirement. A node that has a constrained span at least as large as any node in its

2 hop neighborhood elects itself as a candidate. Each candidate calculates its out-support, a

measure of its ability to cover other nodes. Each node calculates its in-support, an indicator

of the neighborhood’s ability to cover the node. A candidate becomes a cluster head with

probability 1/m, where m is the median in-support of all nodes in its neighborhood. A

node joins a cluster with probability 1/in− support.

5 RELATED WORK

In [15], cluster heads are chosen so that the energy consumption over the entire network is

even, ensuring that the network lives as long as possible. A fixed number of cluster head

candidates are selected and the cluster heads with the most residual energy are chosen from

that set. A node will choose a cluster head to ensure the overall energy consumption in the

entire network is even. Our algorithm, on the other hand, requires only local information

about the topology and residual energy.

In [8], a new, fully distributed approximation algorithm based on LP relaxation

techniques is presented. For an arbitrary parameter k and maximum degree ∆, the

algorithm computes a dominating set of expected size O(k∆2/k)(log ∆ |DSOPT |)in O(k2)

54

Algorithm 4 Distributed Multi-Path Randomized Greedy Algorithm
Require: Graph G = (V,E), constraint t(vi) on vertices, the coverage requirement k for

a node, the number of current cluster heads ki of a node
Ensure: Subset D ⊆ V , set of currently chosen vertices

1: Span calculation: Compute the constrained span c(x) by computing the minimum of
the constraint and the sum of “coverdness” (ki/k) of the neighbors.

2: Candidate selection: Compute whether c(x) is at least as much as the constrained
span of each node within a distance of 2 from x . If so, x is a candidate.

3: Constrained support calculation: Let A(x) be the set of neighbors of x that are
candidates. Each y ∈ A(x) computes its constrained out-support:

sout(x) =
c(y)∑

(k − ki/k)
.

Every node x computes its constrained in-support s(x) as

sin(x) =
∑

y∈A(x)

sout(y).

Note that
∑

(k − ki/k) is the sum of coverage needs that lie in the neighborhood of y.
4: Dominator selection: If x is a candidate, find the median m of {sin(y) | y ∈∑

(k − ki/k)}. Let p = 1/m. With probability p, add x to D.
5: Neighbor selection: If x is selected as cluster head, for each neighbor y ∈∑

(k − ki/k), select y with probability 1/sin(x) such that y isn’t already covered by
x.

6: Go to the next round.

rounds where each node has to send O(k2∆) messages of size O(log∆). This is the first

algorithm that achieved a non-trivial approximation ratio in a constant number of rounds.

The work described in [16] is a primal-dual based distributed algorithm for the

weighted, capacitated vertex cover problem. In [16] each vertex is assigned a weight, as

well as a capacity, and the goal is to minimize the sum of the weights without exceeding

the capacity of any vertex. The authors provide a (2 + ε)OPT approximation algorithm.

Additionally the running time of the algorithm is shown to be O (log (nW) /ε) where n

is the number of nodes and W = wtmax/wtmin is the ratio of the largest weight to the

smallest weight.

A randomized distributed algorithm that runs inO(log n log ∆ + 1) rounds and where

the size of the dominating set obtained is, with high probability, within O(log n) of the

55

optimal, is presented in [13]. Our distributed algorithm is based on this algorithm and

extends its ideas to constrained vertices and applies it to wireless sensor networks.

In [17], an identity-based heuristic to form d-clusters in wireless ad-hoc networks

is presented in which d is a parameter. When the heuristic terminates, a node is either a

cluster head or at most d hops away from its cluster head.

A fast, distributed algorithm is presented in [18]. It is used to compute a small

k-dominating set D (for any fixed k) and its induced graph partition (which breaks the

graph into radius k clusters centered around the vertices of D). The time complexity of the

algorithm is O(k log∗ n), where log∗ is the inverse Ackermann function.

For the special family of graphs that represent ad hoc wireless networks modeled

as unit disk graphs, [19] introduces a two phase distributed polynomial time and message

complexity k-clustering approximation solution withO(k) worst case ratio over the optimal

solution.

In [20], a series of approximation algorithms for finding a small, weakly-connected

dominating set (WCDS) in a given graph is presented for use in clustering mobile ad hoc

networks. The main contribution of the work is a completely distributed algorithm for

finding small WCDS. Our work focuses on wireless sensor networks, whose challenges

differ from those of ad-hoc networks.

In [21], the authors provide three approximation algorithms for the minimum

connected dominating set (MCDS) in mobile ad hoc networks. The algorithms provide

approximation guarantees of 2H(∆)+1 and 2H(∆), whereH(∆) =
∑∆

i=1 1/i ≤ ln ∆+1.

The guarantee of c + 1, applies to graphs where the maximum degree is ∆ and c is some

constant such that ∆ ≤ c. Our algorithm also considers dominating sets and provides

algorithms suited for wireless sensor networks.

The connected minimum dominating set is considered in [22]. The authors provide

two approximation algorithms which achieve approximation factors of 2H(∆) + 2 and

H(∆) + 2, where ∆ is the maximum degree of the graph and H is the harmonic function.

Several distributed poly-logarithmic time algorithms are presented in [5]. The algo-

rithms compute connected and weakly connected dominating sets with an approximation

factor of O(log ∆), where ∆ is the maximum degree of the graph.

56

6 EXPERIMENTAL EVALUATION

In order to test the clustering algorithms, we implemented them in TinyOS and ran

simulations in TOSSIM [23]. We compared the iECDS and kECDS algorithms against the

ECDS and HEED algorithms [24]. A random topology was used for each simulation. We

ran a simulated 15 minutes for network sizes of 30, 45, 60, and 75 nodes. Our algorithms

are independent of the routing protocol used, but for these experiments we use the Surge

multi-hop application that is part of TinyOS. HEED and the ECDS algorithms also use

the Surge multi-hop routing protocol. Each node generates a reading every 20 seconds.

The cluster heads aggregate the readings and forward a single message. Surge uses a link

estimation and parent selection (LEPS) mechanism to determine multi-hop routes. All

traffic received at each node is monitored and used to update the internal neighbor table.

The neighbor table tracks all neighbors and selects the next hop based on shortest path

semantics. The default destination is the base station. We use a credit-point system for

updating the node energy budget as used with iHEED [7]. Energy is used for tasks such as

sending and receiving and points are deducted proportional to the actual amount of energy

used. Each nodes starts with the same amount of points and for each send/receive an

amount proportional to the size of the message is deducted. In our implementation, cluster

heads receive many more messages from nodes in their cluster than it sends messages to

nodes in its cluster. All messages are sent with the same power level, therefore we do not

consider the transmission distance when determining the cost of each send/receive [25].

For ECDS type algorithms, the initial energy allows for a constraint of about 20. Whenever

the network re-clusters, the constraint is updated and is based on the energy available at

each node. All kECDS algorithms run with k = 2, that is, a node can be up to two hops

from its cluster head. For each network size, the experiments were repeated 30 times.

We measured the number of rounds the algorithm executed until the entire network was

clustered. We compared the time of the first node’s deaths to the last node’s death. Having

all nodes die at approximately the same time provides the most useful WSN. Additionally,

we measured the time it took for the entire network to cluster. A fast clustering algorithm

ensures a useful WSN. We consider the energy used during the simulation and we look at

the energy usage per useful message received at the base station.

57

0

0.5

1

1.5

2

2.5

3

3.5

4

30 45 60 75

N
um

be
r

of
 R

ou
nd

s
to

 C
lu

st
er

Number of Nodes in Network

 ECDS
HEED

kECDS
iECDS

2(a) Rounds to Cluster

0

100

200

300

400

500

600

30 45 60 75

T
im

e
(S

ec
on

ds
)

Number of Nodes in Network

 ECDS
HEED

kECDS
iECDS

2(b) Time to Cluster

Fig. 2. Rounds and Time to Cluster

6.1. Cluster Generation

In a distributed environment it is important to evaluate how long it takes for a clustering

protocol to finish. There are two measurements for WSN: time and the number of rounds

of execution. Figure 2(a) shows the average number of rounds to cluster the network for

various sizes. An ideal distributed clustering algorithm will cluster in a constant number of

rounds. Both the ECDS and the HEED algorithms execute in a constant number of rounds,

but the ECDS algorithms finished in fewer rounds. The algorithm depends on the routing

information obtained from the (independent) routing protocol. This routing information

may not be complete, especially in the earlier rounds. Incomplete routing information will

exclude some nodes from joining a cluster. Hence, additional rounds may be required.

kECDS finishes in the fewest number of rounds as nodes can join cluster heads up to k-

hops away. Similar behavior can be seen in Figure 2(b), which shows the average time it

took for the networks to cluster. Clearly, the number of rounds and the time are related and

both are important measurements. An algorithm that runs over several short rounds may

still outperform an algorithm that runs in a constant number of long rounds. Again, it is

important that an algorithm takes a constant amount of time, independent of the size of the

network. Both the ECDS and the HEED algorithm take a constant amount of time, but the

ECDS algorithms are faster.

58

0

5

10

15

20

30 45 60 75

A
ve

ra
ge

 N
um

be
r

of
 C

lu
st

er
 H

ea
ds

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

3(a) Dominating Set Size

0

5

10

15

20

25

30

35

30 45 60 75

A
ve

ra
ge

 S
iz

e
of

 C
lu

st
er

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

3(b) Cluster Size

Fig. 3. Dominating Set and Cluster Size

6.2. Cluster Goodness

Figure 3(a) shows the average size of the dominating set. The dominating set is the number

of cluster heads selected for each simulation run. Each node starts with the same amount

of energy, an amount that can support about 20 nodes in a cluster. The number of cluster

heads for kECDS grows slowly which means that the size of each cluster grows slowly

as the network gets larger. Knowing that a (near) constant number of cluster heads are

required can be used to support a few nodes with additional power, allowing them to act as

cluster heads for longer periods of time. iECDS and HEED increase the number of cluster

heads as the network grows; this indicates that the cluster size remains relatively constant

independent of the size of the network. Scalability is improved when clusters are of similar

size regardless of network size. iECDS uses the rounded constraint span, which allows

more candidates at each round, thus more cluster heads are selected. Figure 3(b) shows

the average number of nodes in each cluster. In kECDS the number of nodes assigned

to a cluster grows slowly, as predicted. The size decreases asymptotically for HEED and

seems to lead to very small clusters in large networks. As discussed, the cluster size remains

constant for iECDS. Not only the number of nodes in each cluster and the number of cluster

heads matter, but also how many of those clusters are single-node clusters (clusters in

which the cluster head is the only node). Single node clusters do not improve performance,

but they are generally unavoidable. A good algorithm will minimize the number of such

clusters. Figure 4(a) shows the average number of single node clusters. For ECDS the

59

number of single node clusters decreases as the size of the network grows. ECDS choses

only neighbors which are “near” as cluster heads; some nodes will not be near a cluster

head and thus create single node clusters. As the network grows, each node has more

opportunities to find a near cluster head, hence the decrease. On the other hand, HEED’s

single node clusters increase in number as the network grows. kECDS has very few or no

single node clusters. In kECDS a node can join a cluster even if it is not “near” the cluster

head, as long as it within k-hops from the cluster head. This allows most nodes the option

of joining some cluster, reducing the number of single node clusters. iECDS, on the other

hand, has an increase in single node clusters. In iECDS more candidates and thus (more)

cluster heads are elected at each round. This can lead to a situation where a node finds itself

surrounded by cluster heads, without the ability to join any one of them. Such a node will

elect itself as cluster head as well.

6.3. Lifetime of Sensor Nodes

In a wireless sensor network, the early death of some nodes can disconnect other nodes

from the base station. This situation can lead to a reduced usefulness of the network because

some data cannot reach the base station. We measure lifetime in two ways: (1) the time

at which the first node dies and (2) the time at which the last node dies. The time at

which the first node dies is important because it can lead to a disconnection of part of the

network. The time at which the last node dies shows how long nodes are able to run the

protocol. Figure 4(b) shows the time at which the first node died. The time of the first death

asymptotically decreases in ECDS and is constant for HEED. kECDS and iECDS have no

death during the simulation. iECDS has more cluster heads with smaller cluster sizes,

leading to improved work distribution and energy usage. kECDS clusters faster, which

reduces the need for, and the number of, clustering and other “routing” messages. This

reduces the overall energy consumption giving the network a longer lifetime. Figure 5(a)

shows the time of death for the last node in the network. It is equally important that all

nodes die around the same time. A single node that outlives others by a large margin is of

little use. It can be estimated that the lifetimes will be similar for the ECDS and HEED

algorithms in large networks. For both ECDS and HEED the first and last deaths are within

200 seconds of each other, indicating an even energy consumption across the network.

60

0

0.5

1

1.5

2

30 45 60 75

N
um

be
r

of
 S

in
gl

e
N

od
e

C
lu

st
er

s

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

4(a) Average Number of Single Node Clusters

0

100

200

300

400

500

600

700

800

30 45 60 75

T
im

e
(S

ec
on

ds
)

Number of Nodes in Network

 ECDS
HEED

kECDS
iECDS

4(b) First Death

Fig. 4. Cluster Size, Average Number of Single Node Clusters, and First Death

6.4. Energy Consumption

The amount of energy used during the execution of a protocol is very important in sensor

networks. Figure 5(b) shows the average energy consumption for the four protocols. The

energy consumption of the HEED algorithm is linear, while the energy consumption of the

ECDS algorithm is asymptotically decreasing. Both the kECDS and the iECDS algorithm

have linear consumption. As the networks grow larger, the energy consumption for ECDS

and HEED will be similar while kECDS and iECDS will remain about the same.

In sensor networks, the energy consumption for each message received should be

considered in addition to the overall energy consumption. A sensor network that uses very

little energy is not useful if it does not produce an adequate amount of data. Figure 6(a)

shows the average energy consumption for each message sent. Since the ECDS algorithms

cluster faster, they generate more usable data. All ECDS type algorithms outperform HEED

when the energy consumption is viewed in respect to the amount of data received.

Figure 6(b) we show the average energy used for communication per message sent.

Because communication is the most expensive operation in sensor networks, it is important

to measure its cost. This measurement must be considered in terms of the amount of data

generated in the network. A network with high communication energy consumption that

generates little data indicates that the protocols used requires too much communication

energy. Figure 7(a) and Figure 7(b) show the respective maximum and minimum energy

used by any node for each network size.

61

0

100

200

300

400

500

600

700

800

900

30 45 60 75

T
im

e
(S

ec
on

ds
)

Number of Nodes in Network

 ECDS
 HEED
 kECDS
 iECDS

5(a) Last Death

0

5000

10000

15000

20000

25000

30000

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

 ECDS
 HEED
 kECDS
 iECDS

5(b) Average Energy Consumption

Fig. 5. Last Death and Average Energy Consumption

It is important to have even energy consumption across the network. For all the ECDS

type algorithms, the maximum and minimum amount of energy consumed is close, while

HEED consumes at twice the rate of other algorithms. This is a strong indicator that the

energy consumption in the ECDS type algorithms is very even across the network, while

HEED has “hotspots” which use energy at twice the speed then other nodes. In HEED this

is a contributing factor to the early death of some nodes and the overall reduced lifetime of

the network.

7 CONCLUSION AND OPEN PROBLEMS

In this paper, three improvements to the ECDS algorithm are presented to address

the problem of energy constrained clustering for wireless sensor networks. The first

improvement extends the ECDS algorithm to clusters where a node can be up to k hops

from its cluster head. This version is named kECDS. The second algorithm improves

ECDS by introducing the rounded span which allows a larger cluster head selection during

each round of the algorithm. This algorithm is called iECDS. The last algorithm extends

ECDS to be used with a multi-path routing protocol. This version of the algorithm allows

a node to choose up to m cluster heads, which provides robustness by enabling multi-path

routing. With mECDS, multi-path routing can be used not only from the cluster head to

the base station, but also from the node to one or more cluster heads. We proved that the

62

0

10

20

30

40

50

60

70

80

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

6(a) Average Energy Consumption per Message

0

5

10

15

20

25

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

6(b) Average Communication Energy Consumption
per Message

Fig. 6. Average Energy and Average Communication Energy per Message

kECDS and iECDS algorithms run in O(log n log ∆) rounds whp. The kECDS and iECDS

algorithms perform well on the random graphs in our simulations. Our simulations showed

that our algorithms perform very well in terms of time to cluster, cluster size, and energy

consumption. We compared our algorithms with the HEED algorithm. They outperformed

HEED in terms of cluster size, time to cluster, and energy consumption per message sent.

Future work will include extending the ECDS algorithm to work in a secure environment.

Currently, each node decides whether or not to become a cluster head. Each node has to

trust the information received from other nodes, which it uses to determine is cluster head

status. A node could avoid becoming a cluster head by misrepresenting its information, or

it may choose to be cluster head and use its status as message router to drop messages and

disable the network. We plan on extending the ECDS algorithms so that the cluster can be

formed securely, with a guarantee that all messages are received by the base station.

REFERENCES

[1] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific

protocol architecture for wireless microsensor networks,” Wireless Communications,

IEEE Transactions on, vol. 1, no. 4, pp. 660–670, 2002.

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient

communication protocol for wireless microsensor networks,” 2000, pp. 10 pp. vol.2+.

63

0

20

40

60

80

100

120

140

160

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

7(a) Maximum Energy Consumption per Message

0

10

20

30

40

50

60

70

80

30 45 60 75

E
ne

rg
y

U
se

d

Number of Nodes in Network

ECDS
HEED

kECDS
iECDS

7(b) Minimum Energy Consumption per Message

Fig. 7. Average Communication Energy, Maximum and Minimum Energy

[3] C. Duan and H. Fan, “A distributed energy balance clustering protocol for

heterogeneous wireless sensor networks,” in Wireless Communications, Networking

and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp.

2469–2473.

[4] J. Wu and H. Li, “Domination and its applications in ad hoc wireless networks with

unidirectional links,” in Parallel Processing, 2000. Proceedings. 2000 International

Conference on, 2000, pp. 189–197.

[5] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan, “Fast

distributed algorithms for (weakly) connected dominating sets and linear-size

skeletons,” J. Comput. Syst. Sci., vol. 71, no. 4, pp. 467–479, November 2005.

[6] A. Youssef, M. Younis, M. Youssef, and A. Agrawala, “Wsn16-5: Distributed

formation of overlapping multi-hop clusters in wireless sensor networks,” in Global

Telecommunications Conference, 2006. GLOBECOM ’06. IEEE, 2006, pp. 1–6.

[7] O. Younis and S. Fahmy, “An experimental study of routing and data aggregation in

sensor networks,” 2005, pp. 8 pp.+.

[8] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set approxima-

tion,” Distrib. Comput., vol. 17, no. 4, pp. 303–310, May 2005.

64

[9] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, 1972,

pp. 85–103.

[10] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Unit disk graph approximation,” in

DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of

mobile computing. New York, NY, USA: ACM, 2004, pp. 17–23.

[11] Harry, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E.

Stearns, “Nc-approximation schemes for np- and pspace-hard problems for geometric

graphs,” J. Algorithms, vol. 26, no. 2, pp. 238–274, February 1998.

[12] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical control in multi-

hop wireless networks,” in INFOCOM 2001. Twentieth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2, 2001,

pp. 1028–1037 vol.2.

[13] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for constructing

small dominating sets,” Distrib. Comput., vol. 15, no. 4, pp. 193–205, December 2002.

[14] W. Cheng, K. Xing, X. Cheng, X. Lu, Z. Lu, J. Su, B. Wang, and Y. Liu, “Route

recovery in vertex-disjoint multipath routing for many-to-one sensor networks,” in

MobiHoc ’08: Proceedings of the 9th ACM international symposium on Mobile ad

hoc networking and computing. New York, NY, USA: ACM, 2008, pp. 209–220.

[15] M. Ye, C. Li, G. Chen, and J. Wu, “Eecs: an energy efficient clustering scheme

in wireless sensor networks,” in Performance, Computing, and Communications

Conference, 2005. IPCCC 2005. 24th IEEE International, 2005, pp. 535–540.

[16] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio, “Primal-dual based

distributed algorithms for vertex cover with semi-hard capacities,” in PODC ’05:

Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed

computing. New York, NY, USA: ACM, 2005, pp. 118–125.

[17] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-min d-cluster

formation in wireless ad hoc networks,” vol. 1, 2000, pp. 32–41 vol.1.

65

[18] S. Kutten and D. Peleg, “Fast distributed construction of ¡italic¿k¡/italic¿-dominating

sets and applications,” in PODC ’95: Proceedings of the fourteenth annual ACM

symposium on Principles of distributed computing. New York, NY, USA: ACM,

1995, pp. 238–251.

[19] Y. Fernandess and D. Malkhi, “K-clustering in wireless ad hoc networks,” in POMC

’02: Proceedings of the second ACM international workshop on Principles of mobile

computing. New York, NY, USA: ACM, 2002, pp. 31–37.

[20] Y. P. Chen and A. L. Liestman, “Approximating minimum size weakly-connected

dominating sets for clustering mobile ad hoc networks,” in MobiHoc ’02: Proceedings

of the 3rd ACM international symposium on Mobile ad hoc networking & computing.

New York, NY, USA: ACM, 2002, pp. 165–172.

[21] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected

dominating sets,” in Communications, 1997. ICC 97 Montreal, ’Towards the

Knowledge Millennium’. 1997 IEEE International Conference on, vol. 1, 1997, pp.

376–380 vol.1.

[22] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,”

Algorithmica, vol. 20, no. 4, pp. 374–387, April 1998.

[23] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation

of entire tinyos applications,” in SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems. New York, NY, USA: ACM

Press, 2003, pp. 126–137.

[24] O. Younis and S. Fahmy, “Heed: a hybrid, energy-efficient, distributed clustering

approach for ad hoc sensor networks,” Mobile Computing, IEEE Transactions on,

vol. 3, no. 4, pp. 366–379, 2004.

[25] A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-preserving scheme

for wireless sensor networks based on local information exchange,” Computer

Communications, vol. 30, no. 14-15, pp. 2708–2720, October 2007.

66

III. PRACTICAL ALGORITHM FOR DATA SECURITY (PADS) IN WIRELESS

SENSOR NETWORKS

Julia Albath Sanjay Madria

University of Missouri-Rolla University of Missouri-Rolla

Department of Computer Science Department of Computer Science

jgadkc@umr.edu madrias@umr.edu

ABSTRACT

When data are generated in sensor networks, highspeed data streams travel through the

network. Traditional security approaches are often unable to keep up with the rates of the

streams or they introduce overhead, which shortens the life of the network. The approach

proposed in this paper is one that solves the problems posed above. By embedding a

one-time pad, the actual value is distorted enough to make any information gleaned from

eavesdropping useless to an attacker. The use of the one-time pad ensures that the data were

indeed received from a particular sensor, and it gives adequate protection against injected

messages. The simulation shows this approach provides security with negligible overhead

while the throughput is similar to the same network without security.

1. INTRODUCTION

There are many possible applications of sensor networks from environmental moni-

toring to applications in military and homeland security [2]. Because radio communication

is the most expensive operation in terms of energy usage, research has focused on finding

ways to conserve energy [5]. Until recently, data security has received little consideration.

In order for ubiquitous computing to become a reality, system security and privacy

protection need to be assured. Securing data streams in sensor networks is important

because traditional encryption and authentication protocols such as TinySec are often

unable to keep up with high stream rates, and they deplete the network of energy too

quickly [8].

67

The challenge in applying security to wireless sensor networks lies in the need to

balance data integrity, confidentiality, and availability as well as preserving constrained

energy resources. In sensor networks where radios are used for communication, an attacker

can easily acquire data by eavesdropping anywhere the signal is transmitted. New security

devices, methods, and approaches that safeguard sensitive data are needed. Among the

current research directions are efficient routing protocols [1], security schemes [8], and

data management tools such as aggregation and data fusion.

Previous works in data security include implementing link layer security for sensor

networks and public key cryptography using elliptic curves [8, 13]. These existing security

protocols must be adapted to work in sensor networks because sensor networks have

constraints on energy, communication and computation. Many other security protocols

cannot be adapted for sensor networks and thus we require new ways of providing

security. In [17], the authors consider the case of resilient rights protection of data

streams through watermarks. The protocol provides a way to identify the original owner

of a data stream. Given that the stream is available, this technique can be used to

determine whether the integrity of the data has been compromised; however no protection

against eavesdropping is provided. TinySec provides security through traditional link layer

encryption and authentication schemes using the RC5 or SkipJack ciphers [8]. As with any

cryptographic security scheme, TinySec increases the payload size of the packet, which

results in increased energy consumption. In [14], the authors introduce SPINS, a three-part

approach that provides authenticated streaming broadcast, data confidentiality, two-party

data authentication, and data freshness as well as an authenticated routing protocol. The

SNEP protocol of the SPINS suite of protocols provides data confidentiality. SNEP has

low communication overhead by only adding 8 bytes to the packet. The rates at which data

are produced may be much faster than the rates at which a security scheme can process

and secure the data. While there is a need to tightly encrypt some type of messages, in

which case a reduction in availability is often acceptable, other types of data may only

require a light security scheme but demand high availability. Many security schemes have

considered different approaches for messages in different levels in the network, but have not

considered different levels of security depending on the message type. This paper presents

a method to provide protection against passive eavesdropping by employing confidential

transmissions of data messages. For each transmission, a one-time pad (OTP) is created.

68

A secret key and the MAC calculated over the data are used to create the OTP. When

the OTP is combined with the data, data encryption and data integrity are achieved at the

same time. The complete algorithmic details are given in Section 4. The PADS protocol

only adds 4 bytes, making it even more efficient than SNEP. Just as with SNEP, PADS

also provides data confidentiality and semantic security. Semantic security implies that

eavesdroppers cannot infer the data even if they see the same data encrypted several times.

The PADS protocol has dynamic key sizes and the ability to change the number of bytes

to be encrypted. By using one-to-one routing and pair-wise shared keys, data integrity is

guaranteed.

At the worst, the algorithms run in linear time on the size of the reading, regardless

of the size of the network. The correctness of the algorithms was proven and the theoretical

analysis of the energy usage shows that the application is appropriate for sensor networks.

Simulations have shown this protocol to be suitable for sensor networks. Refer to Section

6 where the simulation results are provided. The simulation shows that the overhead due to

the algorithm is negligible, and the performance of a network with the protocol is similar

to a network without additional security. Compared with a network using encryption and

authentication using TinySec, the performance of a network using this study’s protocol is

much better in terms of throughput, delay and energy consumption per message received

at the base station.

2. RELATED WORK

Researchers have investigated securing data in wireless sensor networks in order to

ensure that the base station can trust the answers it receives. The authors in [15] propose the

use of interactive proofs to force the aggregator to show that the answer previously provided

is a good approximation of the true value. An aggregator is a node that applies an aggregate

function such as a sum or average to all the data received from its child nodes. All types

of stealthy attacks by the aggregator are considered. A stealthy attack is an attack where

the aggregator wants the base station to accept results that are different from the true value,

while at the same time evading detection. The aggregate-commit-prove (ACP) protocol

works as follows. The aggregator collects the data and locally computes the aggregation

69

results. Next, the aggregator calculates a commitment, which during the proving phase will

show that the aggregator used the values provided by the sensor to calculate the aggregation

value. Whenever the home server requests, the aggregator proves to the home server that

the result is valid. The home server checks to see if the aggregator is cheating, in the

sense that the aggregation result is or is not close to the correct result aggregated from the

committed data. In contrast, our work concentrates on securing the data on the routing

path. PADS provides security against an eavesdropper and would work well in conjunction

with ACP to provide confidentiality and integrity in wireless sensor networks.

The work in [17] is a novel idea to provide copyright protection to data stream owners

and authorized users. Consider the case where a stream is generated and safely transmitted

from the sensors to the base station. A watermark is applied to the stream at the base station.

The data are then transmitted to an authorized user. The owner and authorized users need

a way to show that the data were generated by them and they want to prove that the stream

was illegally obtained by the attacker. One commonly accepted way to prove ownership

is the use of embedded watermarks. This technique works by embedding a watermark bit

into major extremes, which are extremes that will survive any uniform sampling. Because

the watermark bits are embedded in the major extremes, they can then be extracted and

used to show copyright and ownership can be established. Extremes are chosen because

even after alteration and aggregation, most extremes will be recoverable and able to ensure

an overlap when rebuilding the watermark. During detection, all extremes, not just the

major ones, are identified, and the same selection criteria as during embedding are used to

identify the potential watermark recipients. For each selected extreme, its corresponding 1-

bit watermark is extracted and the global watermark is gradually reconstructed. Similarly,

PADS could be considered a watermark, which is embedded in the data, the difference

being that a new watermark is generated for each data item.

An example of stream security is [19]. The author explores message authentication

in sensor networks. He compares several authentication possibilities: end-to-end, hop-by-

hop, and physical and virtual multipath authentication. While end-to-end authentication

provides the greatest level of security, hop-by-hop authentication can be implemented with

relatively little overhead, but it provides security only against a very restricted attacker.

The author shows that physical multicast authentication provides a good intermediate level

70

of security, and that virtual multicast authentication retains similar properties as physical

multicast authentication but also has reduced energy demands.

In contrast to our work on securing messages, Zhu et al. introduce a protocol that

provides protection against messages injected by an attacker with the goal to deceive the

base station or to shorten the lifetime of the network by depleting the resources of the

sensors in the network [21]. The authors present an interleaved hop-by-hop authentication

scheme, which guarantees that the base station will detect injected messages as long as

fewer than t nodes are compromised. When nodes are compromised, false messages are

created and injected in the network.

3. SYSTEM MODEL AND ARCHITECTURE

Sensor networks can be modeled as graphs. Let G = (V,E) be an undirected graph

with a set of n nodes V ⊂ R2 in the Euclidean plane and a set of m edges E ⊂ V 2 [16].

The vertices in this model represent the nodes in the sensor network and the edges represent

communication links between the nodes. While the network could be modeled as a directed

graph, only an undirected graph is considered and so only bi-directional links are modeled.

This study defines a round as a time interval in which each node is to send its gathered data

to the base station. In some cases, a sensor will continuously generate, process, and send

data as it monitors its environment.

A data stream is defined as an infinite set of values generated by a sensor.

Furthermore, each sensor node generates one data packet each round. While in many

cases the timestamp will be preserved, the notion of time is only introduced to show the

sequential nature of such data streams. The timestamp information may or may not be

routed with the data. In many cases the timestamps lose their meaning and as such, should

not be considered as important.

A sensor network most often generates numeric data, but at times may produce data

from other domains. However, this study consider all data only at the level of a string. All

data, whether numeric or not, are just a sequence of ones and zeros, and thus this research

technique will work equivalently on numeric or other data.

71

Base Station

Sensor Nodes

Routing Links

Shared Secret

Fig. 3.1. Network Architecture

The following assumptions are made. Each node shares a secret key with the

base station. This key is used to generate a new key for every transmission using a

key derivation function. This approach provides protection against an attacker who can

overhear transmissions and who can also inject false messages and nodes. The sensor

nodes can communicate with a powerful base station via relay nodes. A simple multi-hop

routing protocol is used [12] as shown in Figure 3.1. This study assumes that the base

station and the sensors are time synchronized, which can be handled as described in [3].

Here sensor nodes synchronize with their parent nodes in a hierarchical structure until a

synchronization chain has been built up to the root or base station. In cases where the

sensors send data at periodic intervals, an explicit synchronization exists given that each

packet has a sequential packet number. In aperiodic sensing of events the protocol in [3]

can be used to keep the network synchronized.

Definition 3.1: A message authentication code (MAC) is the result of applying a

public function to the input using a secret key. The MAC is of fixed length, is attached

to the input and serves to prove integrity and authenticity of the input. A MAC is also

known as a cryptographic checksum [18].

Definition 3.2: A MAC function is a function used to generate a MAC. A MAC

function has three properties. It is a one-way function, that is, given a MAC it is

computationally infeasible to find the original input. It offers weak collision restistance,

that is, it is computationally difficult to find a second input (6= the first input) which

72

produces the same MAC. It offers strong collision resistance, that is, it is computationally

difficult to find two inputs which produce the same MAC[18].

Definition 3.3: A CBCMAC function is a function which uses a block cipher in

cipher block chaining (CBC) mode to generate MAC codes. A CBCMAC is created by

encrypting the input into a chain of blocks, such that each block is dependent on the

previous block [18].

Definition 3.4: A one-time pad is a sequence of bits that is XOR to the reading in

order to provide protection against eavesdropping.

Definition 3.5: ki is the secret master key shared between node i and the base station.

The value of ki can be updated similar to updating keys in [22] and [14].

Definition 3.6: kij is the jthsecret key shared between node i and the base station.

The key is periodically updated to guarantee freshness.

Definition 3.7: xij is the data value x generated at time j by node i. xi is the current

value of x generated by node i and p(xij) is the packet generated by node i at time j, which

contains the sensor value x.

Definition 3.8: b(x) is the bit size of the value x. b(MAC) is the bit size of the

Message Authentication Code (MAC).

Definition 3.9: α determines the length of the subsequence of the MAC. β

determines the starting location of the aforementioned subsequence of theMAC. α, β ∈ Z.

4. ALGORITHMS

The one-time pad is constructed by the nodes using only information contained within

the data packet and the secret key shared between the sender and the base station. First,

the MAC (message authentication code) is calculated based on the sensor reading. Next,

a one-time pad is constructed from the MAC and the key shared with the receiver. The

MAC is attached to the sensor reading. The variables α and β are calculated based on the

MAC, and a subsequence of the MAC is extracted and used to secure the sensor reading.

The receiving node uses the attached MAC, removes the encryption, and calculates its

own MAC. To show that the message has not been tampered with, the two MACs are

compared for equality.

73

4.1. Embedding Of A One-Time Pad

Algorithm 1 Basic Embedding Algorithm: embed
Require: kij , packet p(xi) of sensor value xi

Ensure: p(xi) XOR with the one-time pad
1: calculate MAC over p(xi) (excluding routing information, see Figure 4.1) and save in
p(xi)

2: ktime = kij modified and time synced
3: α = ktime mod b(MAC) + 1
4: β = ktime mod (b(MAC)− α + 1)
5: temp pad = substring of MAC starting at α for β bits
6: p̃ad = Append temp pad to p̃ad until p̃ad is of the same length as the data
7: x̃i = xi XOR p̃ad
8: Replace xi with x̃i in p(xi) and send

Refer to Algorithm 1 for details on the embedding algorithm. This algorithm

calculates a MAC over the static part of the packet. Multi-hop routing needs to change

the packet header to properly route the packet, so only the part of the packet that does not

change is used, as shown in Figure 4.1. The calculated MAC is appended to the data and

the secret key shared between the sender and the receiver is used to create a time synced

key. For example, at time t, every tth bit of the key is dropped. This ensures that an

attacker has to be time synced with the network in order to break the encryption. Time

synchronization is handled similarly to [20]. It is important to note that our algorithm

will work without time synchronization, but time synchronization provides for dynamic

adjustment to the keys, thus providing added security. The next step is to calculate the

length of the substring and the starting position of the substring. This study calculates α

by taking the secret key modulo the length of the MAC in bits. β is calculated by taking

the key modulo the length of the MAC minus α plus 1; this ensures that the substring

will exist. The substring is of length α bits, so the last α bits for the source string cannot

be the starting point of the substring. The final steps involve generating the one-time pad

by repeatedly concatenating the substring to a target string until the target string is of the

same length as the static portion of the packet to be secured. In most cases that will be the

payload plus some portion of the packet header as shown in Figure 4.1. The study then

74

Address
(2) Bytes

Msg Type
(1) Byte

Group ID
(1) Byte

Data Length
(1) Byte

Source Address
(2) Bytes

Original Address
(2) Bytes

Sequence Number
(2) Bytes

Hop Count
(1) Byte

MAC
(4) Bytes

CRC
(2) Bytes

Type
(1) Byte

Reading
(2) Bytes

Parent Address
(2) Bytes

Fig. 4.1. Multihop packet structure. The fields shaded gray are protected by the MAC
calculation.

encrypts the data that are transmitted by XORing the generated one-time pad to the value

xi and then transmits the packet.

4.2. Detection Of A One-Time Pad

The detection process works very similarly to the embedding process. This is

necessary in order to find the embedded pad, remove it, and return to the original sensor

value. The detection and removal of the one-time pad is done by the base station, because

only the base station shares the secret key with the embedding sensor node.

Because sensor networks communicate via wireless mediums, there exists a natural

probability of collisions, dropped packets, or corrupted packets. Any of these problems

will be detected by this protocol. If the MAC or the payload of a packet is corrupted, then

the MAC calculated by the receiver will not match the one from the sender.

In order to retrieve the original data, the detection process described in Algorithm 2

is used. This study uses the MAC calculated by the sender and stored in the packet to

calculate the p̃ad and remove it from the packet. Then the MAC is calculated just like

the sender, and the two MACs are compared. If they match, then processing the packet

continues.

4.3. Example

The following is an example of Algorithm 1 executed at node X and Algorithm 2

executed at the base station, along with the intermediate steps. X senses an event, does

the embedding, and transmits the data to the base station. Then the base station does the

detection.

Step 1: Embedding at Node X. X senses an event and generates the value xX =

00011110 10011011. X calculates the MAC with the secret key kij using SkipJack in the

CBCMAC mode, as implemented by [8] over xX .

75

Algorithm 2 Basic Detection Algorithm: wm detect
Require: kij packet p(x̃i) of sensor value
Ensure: p((xi) the original packet with the original sensor value xi

1: Take the MAC calculated by the sender
2: ktime = kij modified and time synced
3: α = ktime mod b(MAC) + 1
4: β = ktime mod (b(MAC)− α + 1)
5: temp pad = substring of MAC starting at β for α bits
6: p̃ad = repeatedly concatenate temp pad to p̃ad until p̃ad is of the same length as the

static portion of the packet.
7: xi = x̃i XOR p̃ad
8: calculate MAC over p(xi) and compare to MAC received with packet
9: if The two MAC’s match then

10: Packet was not altered
11: else
12: Packet was altered
13: end if

MACxX ,kij
= 01100000 01111100 11011111 11001010.

Algorithm1:Line3 α = ktime mod 32 + 1 = 00101001

Algorithm1:Line4 β = ktime mod (32 - α + 1) = 2

Algorithm1:Line5 temp pad = subsequence of MAC starting at 29 for 2 = 11

Algorithm1:Line6 p̃ad = 11111111 11111111

Algorithm1:Line7 xi(old) = 00011110 10011011 xi(new) = 11100001 01100100

Step 2: Detection at the base station. BS receives the value of xi = 11100001

01100100 from node X with the stored MAC = 01100000 01111100 11011111 11001010.

Algorithm2:Line3 α = ktime mod 32 + 1 = 00101001

Algorithm2:Line4 β = ktime mod (32 - α + 1) = 2

Algorithm2:Line5 temp pad = subsequence of MAC starting at 29 for 2 = 11

Algorithm2:Line6 p̃ad = 11111111 11111111

Algorithm2:Line7 xi(old) = 11100001 01100100 xi(new) = 00011110 10011011

Algorithm2:Line8 BS calculates the MAC over xi(new) = 01100000 01111100

11011111 11001010.

Algorithm2:Line9 MAC’s match, data was not altered.

76

5. SECURITY ANALYSIS

In order to analyse the security of our proposed algorithm, we look at the message

authenticy and message integrity as well as the confidentiality provided by the OTP.

5.1. Message Integrity And Authenticity

The message integrity of the one-time pad protocol is based on the security of the

MAC. The MAC used in the simulations is a CBC-MAC implemented by TinySec. It uses

a MAC of 4 bytes. Using a 4 byte MAC, there is a 1 in 232 chance that an attacker is able

to create a MAC and have it be an exact match. Overall, after about 231 such attempts an

attacker should have made a match. The assumption is that the MAC can only be verified

by sending it to an authorized receiver. The attacker notes if the message is validated by

the receiver. The attacker would have to send 231 messages, on average. In traditional

networks such a number is not much, however in sensor networks it will provide a level

of security that is sufficient. Most radios channels in sensor networks operate at 19.2kb/s

and it would take an attacker about 8 months to send 231 messages of 23 bytes each. This

exceeds the lifetime of most sensor networks. Additionally, our protocol uses a new key for

each transmission, therefore an attacker cannot learn anything about future transmissions

from the past.

5.2. Confidentiality

The security of the OTP depends on the security of the key ktime. Since a new key

is generated at each transmission the security of the protocol depends on the security of

the key derivation function (KDF) as described in the IEEE Standard Specifications for

Public-Key Cryptography [6]. Under the assumption that the KDF is secure the problem

reduces to the ability of an attacker to randomly create a one-time pad and have it match.

The size of the one-time pad is equal to the size of the data to be protected, we assume 5

bytes throughout this work. That is equal to a 1 in 264 chance of randomly having the right

string or an average of 232 tries until a correct one is found. At almost 16 months that is

well over the lifetime of the typical sensor network.

77

6. ANALYTICAL ANALYSIS

To analyze the suitability of the algorithms for sensor networks, we consider cost of

running the algorithm in terms of computational complexity and in terms of energy. We

also show the correctness of the algorithms.

6.1. Cost Analysis

The embedding and the detection algorithms are very similar. The calculation of the

MAC using an appropriate algorithm takes O(b(xi)) time, where b(xi) is the bit size of the

input, not the size of the network. This study uses the SkipJack algorithm in the analysis.

All other lines have complexity O(1). Thus, the running time of the complete embedding

and detection algorithms is O(b(xi)).

While the program space is of concern in sensor programming, this research is

primarily concerned with the size of the memory necessary to perform the computation

depending on the input size b(xi). The algorithm neither increases nor decreases the size

of the measured value. The memory requirements for any of the variables used in the

algorithm is rather small; however, the requirements of the SkipJack algorithm are large in

comparison. The memory requirements of the SkipJack algorithm are independent of the

size of the input, but because it has been implemented for TinyOS as part of the TinySec

project, it is known that the size is small enough to work [8].

6.2. Correctness

Claim 6.1: The embedding algorithm 1 correctly embeds a one-time pad in the

sensed value.

proof A sensor value xi of b(xi) = 1 is given. The calculation of the MAC in line 1 of

Algorithm 1 results in a MAC of 4 bytes. The calculation of α and β on lines 3 and 4 of

algorithm 1 are as follows. The calculation of α will result in a value of [1, b(MAC)). The

calculation of β will result in a value of [0, b(MAC) − α + 1). Because α is subtracted

from the bitsize of the MAC, it is confirmed that the substring temp pad will in fact exist.

Then temp pad is repeated until b(temp pad) = b(xi). Thus, the one-time pad p̃ad is the

same length as the data, and by XOR p̃ad with the reading, the data are securely encrypted.

78

It is hypothesized that for all l less then m, such that |xi| = l it implies that the one-

time pad used to secure the reading is of the same length as the reading. In other words,

∀l, l ≤ m, |xi| = l⇒ successful embedding of the one-time pad.

Now, it will be shown that |xi| = m has proper embedding⇒ |xi| = m+1 has proper

embedding. By adding an additional bit to xi, the MAC calculated will be different, but

the values of α and β still result in a value of [1, b(MAC)) and [0, b(MAC) − α + 1),

respectively. The calculation of temp pad on line 5 of algorithm 1 will still result in a

proper substring of the MAC and thus a proper one-time pad, and hence the embedding is

done properly.

Claim 6.2: The detection algorithm 2 detects the embedded one-time pad in a

received value and restores the sensed value.

proof Again, the smallest permissible length of the values of xi is one. A sensor value

xi with |xi| = 1 is given. The calculations of α and β on lines 3 and 4 of Algorithm 2

using the MAC received as part of the packet result in the values of [1, b(MAC)) and

0, b(MAC)−α+1), respectively. If theMAC was not modified during transmission, then

this guarantees that the same α and β will be calculated. Naturally, it also implies that the

same temp pad will be extracted. Because the size of the reading is fixed in the network,

the same p̃ad will be generated and thus can successfully be removed from the packet. The

calculation of theMAC is over the same data as at the embedding location, and it will only

result in a successful outcome if the data were not modified during transmission.

It is hypothesized that for all l less then m, such that |xi| = l it implies that the

embedding can be found during detection and the original value can be restored. In other

words, ∀l, l ≤ m, |xi| = l⇒ successful detection and removal of the one-time pad.

Next it will be shown that |xi| = m has proper detection⇒ |xi| = m+ 1 has proper

detection. By adding an additional bit to xi, the MAC calculated will be different, but the

values of α and β will still result in a value of [1, b(MAC)) and [0, b(MAC) − α + 1),

respectively. The calculation of temp pad on line 5 of Algorithm 1 will still result in a

proper substring of the MAC and thus a proper one-time pad. Thus, the detection is done

properly.

6.3. Energy Use Analysis

Law, Doumen, and Hartel showed that while there are some difference in the number

79

of clock cycles an instruction will take, the differences are not statistically significant [9].

Therefore, the computational complexity of an algorithm can be directly translated to

energy consumption, assuming that the energy per CPU cycle is fixed. In [4] the authors

showed that the SkipJack cipher uses 15925 cycles. The algorithms in the current research

add an additional 20 instructions per algorithm. Because the average instruction takes 400

cycles, these algorithms add an additional 8000 cycles for a total of 23925 cycles for the

application [11]. The MICA2 motes use 4 nJ per cycle [7]. Thus, the expected energy

consumption for the embedding and detection algorithms is 95700 nJ. The average AA

battery contains 1000 Joules. Because the MICA2 motes operates on two AA batteries,

the energy consumption of both the embedding and detection algorithms is appropriate for

sensor networks.

7. SIMULATION

PADS was simulated using the TinyOS operating system and its simulator TOSSIM [10].

It was compared to other protocols using a fixed topology for each simulation. In

all simulations, every node in the network generates and sends a packet about every

five seconds. The comparison included routing with non-secure AODV, with the PADS

technique, and with TinySec [8]. Each simulation ran for a simulated 10 minutes, and

for each network size the simulation was repeated five times. The average of the five

simulations was used for the evaluation. For each set of simulations, five sizes of networks

were compared: 15 nodes, 30 nodes, 45 nodes, 60 node and 75 nodes. Three different sets

of simulations were performed. The first set compared same sized messages; all messages

had a size of 23 bytes no matter the protocol. We ran simulations using the same size

message to study the performance, as communication costs mainly depend on the size of

the message. Since larger messages would require more energy to transmit any difference

in performance can be attributed to sources other then message size. This allowed us to

remove any doubt regarding what contribution the message size has on the performance. In

order to achieve this, messages in non-secure AODV had payloads of seven bytes, PADS

had payloads of three bytes and TinySec used payloads of two bytes. In the second set

of simulations we are using the three protocols using messages with a two byte payload

80

resulting in messages of 18 bytes, 22 bytes and 23 bytes for non-secure AODV, PADS

and TinySec, respectively. The latency (average time it takes a packet to reach the base

station), the throughput of bits per second (bps), and the average energy used per node

were evaluated. We calculated the standard error for each measure. Two measures are

considered to be statistically different if their error bars do not overlap.

7.1. Comparison Of Protocols With Total Message Size Of 23 Bytes

In order to see the impact the protocol has on network performance, we simulated us-

ing the three algorithms (PADS, TinySec and non-secure AODV) while limiting messages

to 23 bytes. In this set of experiment each message has 23 bytes, resulting in payloads of 2

bytes for TinySec, 3 bytes for PADS and 7 bytes for non-secure AODV. Any differences in

performance can be attributed to the protocols as the size of the messages is the same.

7.1.1. Latency

It is important to know what delay creating and applying the one-time pad adds. Each

packet was timestamped when sent in the application layer at the sending node and again

when received in the application layer at node 0. The time it took for a packet to travel from

the application layer in the sending node to the receiving point in the application layer was

measured. The difference is the travel time of a packet.

Figure 7.1a) shows the average latency per packet for various network sizes. It is

easy to see that the latencies for non-secure AODV and the PADS protocol are similar.

The only statistically significant difference between PADS and non-secure AODV is at 30

nodes. One of the simulations for the non-secure network had congestion, resulting in

several hundred messages with latencies well above 1 second, while the average for the

rest of the simulations was closer to 0.14 seconds. This caused the average latency to be so

high. However, it seems that TinySec has an average latency that is much better then either

of the two other protocols. A closer look at the data revealed that TinySec, on average

sends 16 times as many messages as are being received. Figure 7.2a) shows the ratio of

Sent Message to Received Messages, the failure rate, for the three protocols. It is worthy to

note, that the ratio is similar for PADS and for networks with non-secure AODV. TinySec,

on the other hand quickly reaches ratios of more then five messages send for each message

81

received. The reason is that TinySec, due to the lengthy encryption/decryption processes,

at each node drops messages, especially at nodes which are utilized as relay nodes.

Fig. 7.1. Messages of 23 Bytes for Various Protocols

Another important metric is the average latency per total number of hops traveled.

It is expected that the latency increases as a message has to travel multiple hops. Figure

7.2b) shows the average latency per hop. Note how the slop of the increase is similar for

PADS and networks with non-secure AODV. At 4 and 6 hops, respectively, the simulations

for non-secure AODV resulted in a lower number of received messages, which inflates the

average latency for those hop counts. At 11 the network with non-secure AODV had very

little congestion resulting in about 15% of the messages having average latencies below 0.1

seconds. This reduced the overall average latency for messages with that hop count. At

14 hops, PADS had a particularly congested network, resulting in a higher then expected

average latency. TinySec seems to have an average per hop latency much better then either

of the other protocols. Considering the low success rate of received messages as well as the

fact that despite using a fixed topology in each simulation, there are no simulations using

TinySec with hop counts greater than 9 hops, the overall performance of TinySec is much

worse then PADS.

7.1.2. Throughput

Another important consideration in a sensor network is the throughput. Because the

usefulness of sensor networks lies in independently sensing and sending large amounts of

data, any technique must be able to sustain high data rates. Again, PADS is compared to

82

Fig. 7.2. Messages of 23 Bytes for Various Protocols

no security and TinySec encryption and authentication. As is evident from Figure 7.1b),

the throughput of PADS is close to that of a network with non-secure AODV. The only

noteworthy difference is for networks of 75 nodes. Of the 5 simulations, 2 had very high

failure rates, resulting in only a few hundred received messages when almost 9000 were

sent. This causes a lower than expected throughput. On the other hand, TinySec encryption

and authentication results in greatly reduced throughput.

7.1.3. Energy Cost

The amount of energy available in sensor networks is very limited. Any sensor

network protocol needs to be energy aware. Since the energy available to sensor networks

is limited, the energy consumption of any application is critically important. PADS

is compared to non-secure AODV and to TinySec using encryption and authentication.

During simulation each network sends different amounts of messages. In order to have

an accurate picture of the energy usage in a network and what the true cost of sending

a data message is, we calculate the average amount of energy used per data message

received. Figure 7.1c) shows the average amount of energy used per node per message

sent for various network sizes. The difference for networks with 45 nodes is because the

networks with non-secure AODV had high failure rates on average resulting in a high

energy consumption per message received. It is important to note, that TinySec always

uses significantly more energy then the other protocols no matter the network sizes. The

reason for the much higher energy consumption per message for TinySec is that we are

83

measuring the energy used per message received at the base station and the failure rate for

TinySec is much higher than the other networks.

7.2. Comparison Of Protocols With 2 Byte Payload

In most applications of sensor networks, the payload remains stable and depending

on other protocols used, such as AODV for multi-hop routing and TinySec for security,

the total message size may vary. In this set of experiments, each message generated has

a payload of 2 bytes, resulting in message sizes of 18 bytes for networks with non-secure

AODV, 22 bytes for PADS and 23 bytes for TinySec.

7.2.1. Latency

The average latency for the three protocols is shown in Figure 7.3a). The average

latency increases at a similar pace for the PADS protocol as well as for non-secure AODV.

On average the PADS networks with 30 nodes experienced more congestion which lead

to a higher latency. Again TinySec seems to outperform both the network with non-secure

AODV as well as the proposed PADS protocol. However, when considering the low success

rate for TinySec, performance is no longer adequate.

Fig. 7.3. Messages with 2 Byte Payload for Various Protocols

7.2.2. Throughput

Figure 7.3b) shows the comparison of the throughput in bps. As expected, the

PADS protocol and non-secure AODV behave in a similar fashion. The only statistically

84

significant difference between PADS and non-secure AODV is at 60 nodes. This is

because two simulations produced less then 800 messages while the three other simulations

produced more then 1800 messages. Hence the congestion decreased the average bps for

PADS networks with 60 nodes. The performance of TinySec is much worse then either

of the other two protocols since TinySec received many fewer messages then either of the

other two protocols.

7.2.3. Energy Cost

The average energy consumption per message sent was measured and compared for

different size networks for each of the three protocols where each message had a 2 byte

payload. Figure 7.3c) shows the result of this simulation. TinySec’s energy consumption

per message is much higher then the other two protocols, this stems from the fact that

in TinySec much fewer messages are received. There are no statistically significant

differences between the PADS protocol and non-secure AODV.

8. CONCLUSION AND FUTURE WORK

This paper has shown that data in sensor networks can be securely routed through

the network. By embedding a one-time pad to encrypt the payload of a message, the

actual value transmitted is distorted so that any eavesdropper will not be able to use

the information. Additionally, it is possible to ensure that the data were generated by

a trusted source because the construction of the one-time pad will fail if any messages

have been corrupted or were injected. The correctness of the two algorithms presented has

been proven and an analysis of the time and space complexity required by the algorithms

has been given. The simulations have shown that the additional work required by these

algorithms is negligible and the performance rivals that of a network without security. The

one-time pad protocol outperforms a network with encryption and authentication using

TinySec. The throughput of this approach is as good as one without security and better

then with Tinysec. Future work will include applying the one-time pad protocol to data

aggregation and data fusion.

85

9. REFERENCES

[1] B. Deb, S. Bhatnagar, and B.i Nath. A topology discovery algorithm for sensor

networks with applications to network management. DCS Technical Report DCS-

TR-441, Rutgers University, May 2001.

[2] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:

Scalable coordination in sensor networks. In Mobile Computing and Networking,

pages 263–270, 1999.

[3] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor

networks. In SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems, pages 138–149, New York, NY, USA, 2003.

ACM Press.

[4] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner. Evaluation of security mechanisms

in wireless sensor networks. icw, 00:428–433, 2005.

[5] W. Rabiner Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols

for information dissemination in wireless sensor networks. In MobiCom ’99:

Proceedings of the 5th annual ACM/IEEE international conference on Mobile

computing and networking, pages 174–185. ACM Press, 1999.

[6] IEEE. IEEE standard 1363–2000. Standard Specifications for Public Key

Cryptography, August 2000.

[7] Crossbow Technology Inc. MPR400/410/420 MICA2 Mote. Datasheet 2005.

[8] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer security architecture

for wireless sensor networks. In Second ACM Conference on Embedded Networked

Sensor Systems (SensSys 2004), November 2004.

[9] Y. Law, J. Doumen, and P. Hartel. Benchmarking block ciphers for wireless sensor

networks (extended abstract). In 1st Int. Conf. on Mobile Ad-hoc and Sensor Systems,

page electronic edition, Fort Lauderdale, Florida, Oct 2004. IEEE Computer Society

Press, Los Alamitos, California.

86

[10] P. Levis. Tossim: A simulator for tinyos networks.

[11] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proceedings of the 2nd

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’05),

Boston, MA, USA, May 2005.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation

of entire tinyos applications. In SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems, pages 126–137, New York, NY,

USA, 2003. ACM Press.

[13] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key distribution

in tinyos based on elliptic curve cryptography, 2004.

[14] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar. SPINS: Security protocols for

sensor networks. In Seventh Annual International Conference on Mobile Computing

and Networks (MobiCOM 2001), Rome, Italy, July 2001.

[15] B. Przydatek, D. Song, and A. Perrig. Sia: secure information aggregation in

sensor networks. In SenSys ’03: Proceedings of the 1st international conference on

Embedded networked sensor systems, pages 255–265. ACM Press, 2003.

[16] P. Von Rickenbach and R. Wattenhofer. Gathering correlated data in sensor networks.

In DIALM-POMC, pages 60–66, October 2004.

[17] R. Sion, M. Atallah, and S Prabhakar. Resilient rights protection for sensor streams.

In VLDB, pages 732–743, 2004.

[18] W. Stallings. Cryptography and network security: principles and practice. Pearson

Education, third edition, 2002.

[19] H. Vogt. Exploring message authentication in sensor networks. In Proceedings of

ESAS 2004 (1st European Workshop on Security in Ad Hoc and Sensor Networks),

LNCS, Heidelberg, Germany, August 2004. Springer-Verlag.

[20] H. Xu, L. Huang, Y. Wan, and B. Xu. Accurate time synchronization for wireless

sensor networks. In Xiaohua Jia, Jie Wu, and Yanxiang He, editors, MSN, volume

3794 of Lecture Notes in Computer Science, pages 153–163. Springer, 2005.

87

[21] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication

scheme for filtering of injected false data in sensor networks. In IEEE Symposium on

Security and Privacy, pages 259–271. IEEE Computer Society, 2004.

[22] S. Zhu, S. Setia, and S.l Jajodia. Leap: efficient security mechanisms for large-scale

distributed sensor networks. In CCS ’03: Proceedings of the 10th ACM conference on

Computer and communications security, pages 62–72. ACM Press, 2003.

88

IV. SECURE HIERARCHICAL DATA AGGREGATION IN WIRELESS SENSOR

NETWORKS

Julia Albath and Sanjay Madria

Missouri University of Science and Technolgy

Department of Computer Science

julia.albath@acm.org, madrias@mst.edu

Abstract—Communication in wireless sensor networks uses the majority of a

sensor’s limited energy. Using aggregation in wireless sensor network reduces the

overall communication cost. Security in wireless sensor networks entails many

different challenges. Traditional end-to-end security is not suitable for use with in-

network aggregation. A corrupted sensor has access to the data and can falsify

results. Additively homomorphic encryption allows for aggregation of encrypted

values, with the result being the same as the result when unencrypted data was

aggregated. Using public key cryptography, digital signatures can be used to

achieve integrity. We propose a new algorithm using homomorphic encryption and

additive digital signatures to achieve confidentiality, integrity and availability for in-

network aggregation in wireless sensor networks. We prove that our digital signature

algorithm which is based on the Elliptic Curve Digital Signature Algorithm (ECDSA)

is as secure as ECDSA.

I. INTRODUCTION

Wireless sensor networks (WSN) are self-organizing networks of small, battery

powered sensors used to monitor the environment for events such as forest fires, pollutant

levels or enemy troop movements. A large number of small, battery powered computing

devices with built-in radios are spread over the area to be monitored. Upon activation, these

sensors self-organize into a multi-hop network, which connects to the users via a powerful

base station in order to achieve a common goal [1]. As each sensor surveys the area within

its sensing range, the data is sent towards the base station along a multi-hop path. A WSN

89

Fig. I.1. Motivating Example

is able to remotely cover a large sensing area since these low-cost sensors organize into a

multi-hop network without human assistance.

Since sensors are typically battery powered and a WSN contains thousands of

sensors, replacing the batteries is not a possibility. In terms of energy usage, com-

munication is much more expensive than any internal computations [2]. In in-network

aggregation, intermediate results are calculated along the multi-hop path whenever two or

more messages are routed along the same path. Depending on the routing structure, energy

savings may be by as much as eight times [3]. Consider the network depicted in Figure I.1.

Without aggregation, a total of 9 + 12 + 13 = 34 messages are sent; with aggregation, only

9 + 3 + 1 = 13 messages are sent. Through the sample network in Figure I.1 it is clear

that in-network aggregation greatly reduces the number of messages sent in a WSN, which

leads to large energy savings.

Security in WSNs includes confidentiality, integrity and availability. Confidentiality

in sensor networks is accomplished by preventing outsiders from eavesdropping on

90

transmissions. This is generally achieved by encrypting the relevant parts of a packet.

Integrity in general means that the receiver is assured that the packet was not tampered

with or the message altered in some way. By ensuring availability we mean that the

data is available in a timely fashion so that it is useful to the user. Availability in sensor

networks is of great concern to the user of the network. Unfortunately, many existing

security primitives cannot be used in sensor networks, either because the computing power

of the sensors is too limited or the additional work created by the protocols causes excessive

network traffic [4].

Sensors in the network can become corrupted due to the environment such as water,

wind or sand acting on the sensor. In hostile environments, a sensor may deliberately be

corrupted by an attacker. A corrupted sensor may appear to participate in the mission

of the network but falsify sensor readings, improperly apply an aggregation function,

exclude legitimate messages from the aggregate result or create a fictitious result. A sensor

corrupted by an attacker may behave in this way in order to get the base station to accept

an incorrect result that is favorable to the attacker. Hence in order to securely aggregate

data in a sensor network, we must not only provide protection against eavesdroppers, but

we should also prevent intermediate sensors from having access to the data.

Homomorphic encryption schemes are one possibility of ensuring secure aggrega-

tion, as they allow data aggregation to be performed on encrypted data. Encryption and

decryption operations are computationally very expensive and time consuming. In link-

layer cryptography [5], the data is encrypted by the sender, decrypted at intermediate nodes,

the aggregation function is applied and the result is encrypted again before being sent to

the next hop; this can lead to overflowing queues. In homomorphic encryption certain

aggregation functions such as sum and average can be calculated on the encrypted data,

reducing the workload of the sensors in the network significantly. The data is encrypted and

sent toward the base station, while sensors along the path apply the aggregation function on

the encrypted data. The base station receives the encrypted aggregate result and decrypts it.

In section II we describe the scheme of homomorphic encryption in detail. Homomorphic

encryption schemes provide security against eavesdroppers and protect the aggregate result

from being known by intermediate, possibly corrupted sensors.

Integrity of the aggregate result can easily be achieved on a hop-by-hop basis

in wireless sensor networks. Achieving end-to-end integrity while allowing for data

91

aggregation provides us with new challenges. We need to clarify the meaning of integrity

when data aggregation is applied. In aggregation integrity implies that any aggregate result

is made up of only legitimate data without inclusions or additions, and that corrupted

sensors cannot interfere with operations of the aggregation. We want to be able to assure

the base station that the aggregate result it receives is a fair representation of the network

state.

In this paper we introduce a novel way to provide confidential and integrity preserving

aggregation in wireless sensor networks. In section III we propose the use of homomorphic

encryption in WSN in order to achieve:

• A solution for confidentially calculating the SUM and AVERAGE in a wireless

sensor network. Our algorithm is present in Section IV.

• A solution for integrity preserving data aggregation in wireless sensor networks.

We are using an additively digital signature algorithm based on ECDSA to achieve

integrity of the aggregate result. We provide security analysis of the algorithm in

Section V.

II. BACKGROUND

In sensor networks, data aggregation provides energy savings. The lifetime of most

networks is limited and it is important for protocols to be energy-efficient. Combining

multiple payloads into one message or combining data by allowing for in-network

calculation of aggregates leads to these energy savings [6].

In many proposed applications of wireless sensor networks, the networks generate

large amounts of data in a continuous stream, making it difficult for a user to sift useful

information from these masses of data [7]. Sensors may generate a reading of their

environment every three seconds until the mission is completed; for a 100 sensor network,

this would generate 300 messages every three seconds, or 6000 messages every minute.

In-network aggregation can take this amount of data and combine it into one or more

aggregated results every minute.

Calculating aggregate results such as SUM or AVERAGE is of special interest to

sensor networks. Wireless sensor networks are designed to provide large amounts of data,

92

which is a snapshot of the environment at one point in time. Combining several readings

by calculating the AVERAGE or the SUM increases the accuracy of these readings [8].

Security in sensor networks requires new approaches due to the limitations of

sensors and their limited computing power. Since a sensor network uses radio as the

communication medium, all communications are inherently insecure. Anybody tuned

to the same channel is able to eavesdrop on the transmissions. Many sensor network

applications demand secure communications. Encryption is the preferred way to provide

for a secure communication channel. Encryption ensures that only the sender and the

intended receiver can read the message contents [9]. Traditional link-layer cryptography is

an important part of an overall security strategy for sensor networks.

TinySec [5], an implementation of link-layer cryptography for TinyOS, has two

operational modes: hop-by-hop (HBH) and end-to-end (ETE). ETE provides total security,

as only the sender and the receiving base station are able to know the content of the

message. Unfortunately, this also means that aggregation is not possible, because the

intermediate nodes cannot access the payload. TinySec uses the SkipJack cipher, which

does not allow for calculating of aggregate functions such as SUM or AVERAGE on

encrypted data. When TinySec is used in HBH mode instead, the message is decrypted

at each hop, and aggregation is possible. Due to the amount of time required for the

encryption and decryption operations, the queues in a WSN can overflow, leading to

dropped packets. Other drawbacks are that TinySec is based on private key cryptography,

which leads to problems such as key distribution, key management, and that digital

signatures are not possible [10].

In private key cryptography, both parties use the same key. Deciding when and how

two sensors agree on which key to use is a big challenge. A private key cryptography

approach also means that a sensor needs to store one key for every other sensor it wishes

to communicate with. In WSN, the topology of the network can change, and protocols

need to be flexible enough to allow for two previously unassociated sensors to begin

communicating securely. One possible solution is a network-wide key, but the obvious

problem with this approach is that only one corrupted sensor is required to compromise

communications in the entire network.

Since all parties in private key cryptography use the same key, digital signatures are

not feasible. In order to achieve integrity Message Authentication Codes (MACs) are used.

93

MACs are used to prove that the message has not been tampered with. Since sender and

receiver share the same key, it cannot be proven who sent the message. A public key

cryptography approach addresses many of these problems [11]. Public key cryptography

allows for the application of digital signatures. Digital signatures provide integrity and

repudiation. Only the party in possession of the private key can create a particular signature.

When a message with a signature is received, the corresponding public key is used to verify

the signature. Once the signature is verified, the receiver can be certain that the integrity

of the message has not been breached. The receiver is also certain that only the sender in

possession of the private key could have created that signature.

Homomorphic encryption is a cryptographic technique which allows calculations to

be performed on aggregate data. Specifically, a homomorphic encryption scheme allows

the following property to hold:

enc(a⊕ b) = enc(a)⊕ enc(b).

This means that in order to calculate the SUM of two values, we can apply some

function to their encrypted counterparts and then decrypt the result of the SUM operation.

Clearly, considering the cost of encryption and decryption, homomorphic encryption is

useful in wireless sensor networks, because homomorphic encryption would allow for the

calculation of SUM and AVERAGE on encrypted data. The data would be encrypted at the

sensor node, the SUM or AVERAGE would be calculated as the aggregate result follows

a path to the base station, and the final result would be decrypted at the base station. Any

eavesdropper would be unable to gather information from the transmissions. Any corrupted

sensor could not know the aggregate result. An example of an homomorphic cryptography

scheme is the elliptic curve ElGamal system [12]. The EC ElGamal system is additively

homomorphic because the following property holds:

enc(a+ b) = enc(a) + enc(b).

Elliptic curve cryptography (ECC) employs the points on an elliptic curve over a finite

field K. The required algorithms for elliptic curve cryptography can easily be implemented,

even on small devices such as sensors [13]. Elliptic curve cryptography uses the analog of

94

the discrete logarithm problem (DLP), also known as the elliptic curve discrete logarithm

problem (EC-DLP). The DLP over elliptic curves is believed to computationally much

more difficult then DLP over finite fields of the same size [10].

Homomorphic encryption does not provide integrity. Since we are using public key

elliptic curve cryptography we will use digital signatures to provide integrity. Digital

signature schemes are not homomorphic. That is two signatures generated on two different

messages cannot be combined to verify the sum of the messages. We propose the use

of an encryption scheme which will allow for homomorphic signature generation and

verification.

III. APPROACH

We propose to use the EC-ElGamal system for homomorphic encryption in wireless

sensor networks. In [11] the authors evaluated several public key homomorphic encryption

schemes for use on sensors. The authors in [14] use an implementation of the EC-ElGamal

algorithms for homomorphic encryption and storage in sensor networks. The EC-ElGamal

system is thus clearly suitable for wireless sensor networks. Instead of applying EC-EG

(EC-ElGamal) for persistent data storage, we propose to use it for homomorphic data

encryption during transmission. The work in [11] provides for data confidentiality only.

We propose the use of elliptic curve digital signatures to provide message integrity and

integrity of the aggregate in addition to data confidentiality.

We will now provide an explanation of the example in Figure III.1. Each node

generates a reading. The reading is signed with the aggregate signature protocol using

the node’s private key; this is shown as Sig(x). Each node homomorphically encrypts

the reading with the base stations’ public key; this is shown as Enc(x) in Figure III.1.

The node sends the secured reading, the signature and its public key to its parent. After

receiving messages from all its children, the parent combines the messages into one. The

parent sums the secured readings, the signatures and the public keys. If the parent also

contributes a reading, that reading is treated like any other reading. These are shown as

SUM − ENC, SUM − SIG and SUM − KEY in Figure III.1. This is process is

repeated by each parent along the path to the base station.

95

S U M - E N C = E N C (2 2 3)
S U M - S I G (2 2 3)
S U M - P K (4 2 , 4 2)

B

E n c (2 3) , S i g (2 3) , P K (5 , 2)

E n c (5) , S i g (5) , P K (8 , 1 0)

S U M - E N C = E N C (6 2)
S U M - S I G (6 2)
S U M - P K (1 8 , 1 0)

E n c (1 6) , S i g (1 6) , P K (6 , 1 2)

E n c (1 8) , S i g (1 8) , P K (1 3 , 1 0)

B a s e
S t a t i o n

D e c (E n c (2 2 3) = 2 2 3
S I G (D e c (E n c (2 2 3)) = S U M - S I G (2 2 3)

E n c (1 2) , S i g (1 2) , P K (6 , 6)

E n c (2 2) , S i g (2 2) , P K (1 0 , 1 9)

E n c (2) , S i g (2) , P K (5 , 1 3)

E n c (3) , S i g (3) , P K (1 0 , 1 2)

E n c (3 1) , S i g (3 1) , P K (1 5 , 2 0)

S U M - E N C = E N C (7 0)
S U M - S I G (7 0)
S U M - P K (1 2 , 2 5)

A

E n c (9) , S i g (9) , P K (1 9 , 1 0)

E n c (4) , S i g (4) , P K (4 , 1)

E n c (4 3) , S i g (4 3) , P K (2 2 , 2 8)

E n c (3 5) , S i g (3 5) , P K (5 , 1 9)

C
S U M - E N C = E N C (9 1)
S U M - S I G (9 1)
S U M - P K (5 1 , 4 2)

Fig. III.1. Homomorphic Encryption Example

The base station decrypts the received message. The sum of the readings was

homomorphically encrypted with the base stations public key. This allows the base station

to decrypt the readings. Only the base station which is in possession of the matching private

key is able to decrypt the readings. This is shown as Dec(Enc(x)) in the figure. Each node

signed its messages, and these signatures were combined along the way. The base station

can now verify the sum of the signatures given the sum of the public keys. The aggregate

signature protocol ensures that only readings from legitimate sensors are included in the

aggregate.

IV. ALGORITHMIC DETAILS

We first describe the details for the algorithm executed at the sensors. Each sensor is

pre-loaded with the appropriate elliptic curve parameters, the base stations’ public key and

a network wide random integer. The integer is used to generate a new k at set intervals.

This ensures that the signatures are additive and secure against attacks. At the start of

each round, each sensor choses a private key and computes the appropriate public key.

Choosing a private key is straightforward and requires the sensor to pick an integer in the

field of the elliptic curve. The public key is generated by multiplying the base point T

with the private key; the result is another point on the curve. A new public/private key pair

96

is necessary during each round of processing because it would only take two signatures

for a malicious node to determine another node’s private key. If a sensor signs the same

reading with the same key, another sensor would be able to determine the private key. In

most sensor applications, it’s likely that a sensor would generate the same message several

times. Each sensor computesR, which is the base point T multiplied by the current random

integer k. Additionally, each sensor computes the multiplicative inverse of k mod p. Each

sensor can now generate its unique signature si. After the signature has been generated,

the sensor proceeds to homomorphically encrypt its reading xi. The sensor first maps its

reading onto the elliptic curve. After the mapping the reading is encrypted using the EC-

IES algorithm [15].

If the sensor receives messages from other nodes for forwarding, it combines them

according to the algorithm. The signature scheme is designed such that all signatures can

be combined via simple arithmetic. This makes the amount of work required from a parent

very small and thus well suited for wireless sensor networks.

Algorithm 1 Sensor Algorithm
Require: Elliptic Curve Parameters D = (q, FR, a, b, T, p , h), sensor reading mi, private

key zi, base station public key Q, a network wide random integer k
1: Each sensor computes zi ∗ T = (x, y), its public key.
2: Each sensor computes R = (r(x), r(y)) = k ∗ T .
3: Each sensor computes k−1 mod p.
4: Each sensor computes si = k−1(mi + zi ∗ r(x)) mod p.
5: Each sensor’s signature for the message mi is si.
6: Each sensor maps its reading mi onto the elliptic curve D.
7: Each sensor generates ciphertext mi = enc(mi)
8: if Sensor is a parent then
9: The sensor combines the signatures into s =

∑
si)

10: The sensor combines all ciphertexts into one ciphertext
∑
mi

11: end if

We will now describe the base station’s algorithm. The base station receives the

sum of the signatures, the sum of the appropriate public keys and the homomorphically

encrypted aggregate result. The base station can now verify that the same sensors that

97

contributed to the aggregate also signed their inputs and that signature is included in the

combined signature. The base station first decrypts the aggregate result using its private

key. Additionally, the base station needs to reverse the mapping from the point on the

elliptic curve to the aggregate result. To verify the signature, the base station calculates

a point on the curve using the received signature, the decrypted aggregate result and the

integer k. If the x-coordinate of the point calculated is the same as r(x), the signature is

verified. The base station is now assured that no data not generated by a legitimate sensor

was included in the aggregate.

Algorithm 2 Base Station Algorithm
Require: Elliptic Curve Parameters D = (q, FR, a, b, T, p , h), sum of encrypted sensor

readings m =
∑
mi, sum of the signatures s =

∑
si, base station private key qi, sum

of public keys Z, a network wide random integer k
1: Decrypt ciphertext

∑
mi =

∑
mi

2: Map reading m from the elliptic curve D into plaintext.
3: Compute R = (r(x), r(y)) = k ∗ T .
4: Compute w = s−1 mod p.
5: Compute u1 = mw mod p.
6: Compute u2 = r(x)w mod p.
7: Compute X = u1T + u2Z.
8: Compute v = X(x) mod p.
9: if v == r then

10: The signature verified
11: end if

The algorithm described securely calculates the SUM of the readings in a wireless

sensor network. In order to securely calculate the AVERAGE in a wireless sensor network,

the base station needs a count of the number of points included in the SUM. With the

knowledge of how many sensors contributed to the aggregate, the AVERAGE can be

calculated.

98

V. SECURITY ANALYSIS

Our signature algorithm is an extension of the ECDSA. ECDSA is assumed to be

secure. ECDSA has been shown to be secure under the assumption that the underlying

group is generic and that a collision resistant hash function has been used.

Theorem 5.1: 1 The signature produced by summing the individual signatures will

only verify if the contributing individual signatures were produced by a valid node and the

appropriate public key was included in the sum of public keys.

We will now prove that the combined signature will only verify if the individual signatures

contributed are signatures generated by valid nodes and are valid signatures. The value k

is a randomized, synchronized integer used by all nodes in the network. We do not need to

send r(x) with each signature, as the base station is able to compute r(x). Therefore the

unique part of each node’s signature is si.

Lemma 5.2: The sum of the public keys equals the public key generated from the

sum of the private keys.

Proof: We have the sum of the public keys, Z = ZA + ZB + Let’s say that the

sum of the private keys, z = zA + zB + Since ZA = zA ∗ T, ZB = zB ∗ T, . . . we know

that

Z = zA ∗ T + zB ∗ T + . . .

≡ (zA + zB + . . .) ∗ T.

Therefore Z = zT . In other words, the sum of the public keys equals the public key

generated from the sum of the private keys.

Lemma 5.3: The sum of signatures produced creates a valid signature equivalent to

a signature produced using the sum of the private keys on the sum of the messages.

99

Proof: We know that m = mA +mB + . . . and s = sA + sB + . . ., as per Algorithm 1.

Then

s = k−1(mA + zAr(x)) + k−1(mB + zBr(x)) + . . .

≡ k−1((mA + zAr(x)) + (mB + zBr(x)) + . . .)

≡ k−1((mA +mB + . . .) + (zA + zB + . . .)r(x))

≡ k−1(m+ (zA + zB + . . .)r(x)).

Using Lemma 5.2, it follows that s = k−1(m+ zr(x)).

We can now prove Theorem 5.1, that the signature verification of v == r will only

work if each signer contributed the signature and the matching public key to the aggregate.

Proof: From Lemma 5.3, we know that s = k−1(m+ zr(x)). Rearranging we get

k ≡ s−1(m+ zr(x))

≡ s−1m+ s−1r(x)z

≡ wm+ wr(x)z

≡ u1 + u2d mod p.

We also know that X = u1T + u2Z and that Z = zT ; it follows that

X = u1T + u2Z

≡ u1T + u2(zT)

≡ (u1 + u2z)T

Thus (u1 + u2z)T ≡ kT and r == v as required for the signature verification.

VI. RELATED WORK

Secure data aggregation schemes have been of interest to researchers. The earliest

approaches focused on confidentiality of the data against a single aggregators. Algorithms

100

which prevented or detected multiple aggregators colluding to deceive the base station were

also introduced.

A new protocol for provably secure data aggregation in wireless sensor networks was

proposed in [16]. The algorithm guarantees the detection of aggregate modification by the

aggregator, except for those cases where the aggregator injects data into the aggregate. The

algorithm supports any arbitrary tree structure and is resilient to any number of malicious

nodes. The algorithm focuses on the use of the SUM operator, but would also work

with MEDIAN, COUNT and AVERAGE. The algorithm forces a commitment from the

adversary at intermediate nodes. Each sensor also verifies that its data was properly

added to the aggregate. Our algorithm works with any single-path routing protocol, and

will securely calculate the SUM and AVERAGE. Compared to the algorithm in [16], our

proposed algorithm provides for a greater reduction in energy savings due to a reduced

number of messages sent.

The algorithms introduced in [17] achieve concealed data aggregation. Concealment

means that the data and the aggregates are not readable for anyone who is not in possession

of the proper key. The algorithm uses privacy homomorphism to achieve data hiding while

still allowing for data aggregation. The algorithm provides for data confidentiality only; the

authors refer to other papers regarding solutions that provide data integrity and authenticity.

The algorithm uses symmetric keys, while our work uses a private/public key approach.

The protocol introduced in [14] is not meant to provide data authentication and

message integrity during transmission. Rather it is meant to provide persistent, secure data

storage in sensor networks. It provides for secure data replication to ensure data availability

in case of node failure. It also introduces secure data aggregation due to restricted storage

space. Our work uses a similar public/private key homomorphic encryption protocol to

ensure secure data aggregation during transmission.

The work in [11] provides a survey of possible homomorphic public key encryption

schemes suitable for wireless sensor networks. The authors provide a list of desirable

properties of a homomorphic public key encryption scheme for wireless sensor networks

and evaluate the various candidates based on that list. The authors conclude that EC-OU

(Elliptic Curve Okamoto-Uchiyama) and EC-EG (Elliptic Curve ElGamal) are the two

algorithms most suitable for use as homomorphic public key encryption schemes. For

our implementation we have chosen EC-IES, a variant of EC-EG.

101

For the work in [18], the authors propose a new additively homomorphic stream

cipher suitable for wireless sensor networks. The proposed algorithms use a symmetric

key stream. In addition to the issues related to symmetric key use, the base station needs

to know exactly which sensor did or did not contribute data to the aggregate. Without this

information the base station will be unable to decrypt the result. Only data confidentiality is

provided with this algorithm. Our algorithm provides both data confidentiality and message

integrity without the limitations of symmetric key cryptography.

As far as we can determine, this is the first work which used additively digital

signatures in wireless sensor networks.

VII. CONCLUSION AND FUTURE WORK

In this paper a novel algorithm is presented to address the problem of secure data

aggregation in wireless sensor networks. We apply a homomorphic encryption algorithm

to the messages to achieve data confidentiality while allowing in-network aggregation. An

additively digital signature algorithm based on ECDSA is used to achieve integrity of the

aggregate. We showed that the signature algorithm is as secure as ECDSA. Future work

will include implementing this algorithm in TinyOS/TOSSIM [19].

REFERENCES

[1] L. Clare, G. Pottie, and J. R. Agre, “Self-organizing distributed sensor networks,”

SPIE-The International Society for Optical Engineering, pp. 229–237, 1999.

[2] R. W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information

dissemination in wireless sensor networks,” in MobiCom ’99: Proceedings of the 5th

annual ACM/IEEE international conference on Mobile computing and networking.

ACM Press, 1999, pp. 174–185.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communi-

cation protocol for wireless microsensor networks,” in HICSS ’00: Proceedings of the

33rd Hawaii International Conference on System Sciences-Volume 8. Washington,

DC, USA: IEEE Computer Society, 2000, p. 8020.

102

[4] J. Albath and S. Madria, “Practical algorithm for data security (pads) in wireless

sensor networks,” in MobiDE ’07: Proceedings of the 6th ACM international

workshop on Data engineering for wireless and mobile access. New York, NY,

USA: ACM Press, 2007, pp. 9–16.

[5] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security architecture

for wireless sensor networks,” in Second ACM Conference on Embedded Networked

Sensor Systems (SensSys 2004), November 2004.

[6] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggregation in

wireless sensor networks,” in ICDCSW ’02: Proceedings of the 22nd International

Conference on Distributed Computing Systems. Washington, DC, USA: IEEE

Computer Society, 2002, pp. 575–578.

[7] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Efficient algorithms for maximum

lifetime data gathering and aggregation in wireless sensor networks,” Comput.

Networks, vol. 42, no. 6, pp. 697–716, 2003.

[8] C. Y. Chong, S. P. Kumar, and B. A. Hamilton, “Sensor networks: evolution,

opportunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–

1256, 2003.

[9] M. Anand, Z. Ives, and I. Lee, “Quantifying eavesdropping vulnerability in sensor

networks,” in DMSN ’05: Proceedings of the 2nd international workshop on Data

management for sensor networks. New York, NY, USA: ACM Press, 2005, pp. 3–9.

[10] A. J. Menezes, Elliptic Curve Public Key Cryptosystems. Norwell, MA, USA:

Kluwer Academic Publishers, 1994.

[11] E. Mykletun, J. Girao, and D. Westhoff, “Public Key Based Cryptoschemes for

Data Concealment in Wireless Sensor Networks,” IEEE International Conference on

Communications ICC, 2006.

[12] J. M. Adler, W. Dai, R. L. Green, and C. A. Neff, “Computational Details of the

VoteHere Homomorphic Election System,” 2000.

103

[13] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure for key

distribution in TinyOS based on elliptic curve cryptography,” Sensor and Ad Hoc

Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE

Communications Society Conference on, pp. 71–80, 2004.

[14] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “Tinypeds: Tiny persistent

encrypted data storage in asynchronous wireless sensor networks,” Ad Hoc Networks,

vol. 5, no. 7, pp. 1073–1089, September 2007.

[15] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve cryptography in

wireless sensor networks,” in 7th International Conference on Information Processing

in Sensor Networks (IPSN 2008), April 2008, pp. 245–256.

[16] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggregation in

sensor networks,” in CCS ’06: Proceedings of the 13th ACM conference on Computer

and communications security. New York, NY, USA: ACM Press, 2006, pp. 278–287.

[17] D. Westhoff, J. Girao, and M. Acharya, “Concealed data aggregation for reverse

multicast traffic in sensor networks: Encryption, key distribution, and routing

adaptation,” IEEE Transactions on Mobile Computing, vol. 5, no. 10, pp. 1417–1431,

2006.

[18] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted

data in wireless sensor networks,” in The Second Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Services, July 2005, pp. 109–117.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation

of entire tinyos applications,” in SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems. New York, NY, USA: ACM

Press, 2003, pp. 126–137.

104

BIBLIOGRAPHY

[1] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless
sensor networks for habitat monitoring,” in WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications. New York,
NY, USA: ACM Press, 2002, pp. 88–97.

[2] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information
dissemination in wireless sensor networks,” in MobiCom ’99: Proceedings of the 5th
annual ACM/IEEE international conference on Mobile computing and networking.
ACM Press, 1999, pp. 174–185.

[3] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient communi-
cation protocol for wireless microsensor networks,” in HICSS ’00: Proceedings of the
33rd Hawaii International Conference on System Sciences-Volume 8. Washington,
DC, USA: IEEE Computer Society, 2000, p. 8020.

[4] B. Deb, S. Bhatnagar, and B. Nath, “A topology discovery algorithm for sensor
networks with applications to network management,” in In IEEE CAS workshop,
September 2002, 2002.

[5] Y. Chen and A. Liestman, “Approximating minimum size weakly-connected
dominating sets for clustering mobile ad hoc networks,” in MobiHoc ’02: Proceedings
of the 3rd ACM international symposium on Mobile ad hoc networking & computing.
New York, NY, USA: ACM Press, 2002, pp. 165–172.

[6] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected
dominating sets,” in ICC (1), 1997, pp. 376–380.

[7] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,”
in ESA ’96: Proceedings of the Fourth Annual European Symposium on Algorithms.
London, UK: Springer-Verlag, 1996, pp. 179–193.

[8] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan, “Fast
distributed algorithms for (weakly) connected dominating sets and linear-size
skeletons,” in SODA ’03: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2003, pp. 717–724.

[9] M. Chen and J. Wu, “EECS: an energy efficient clustering scheme in wireless sensor
networks,” Performance, Computing, and Communications Conference, 2005. IPCCC
2005. 24th IEEE International, pp. 535–540, 2005.

[10] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set approxima-
tion,” in In Proc. of the 22nd ACM Symposium on the Principles of Distributed
Computing, 2003.

105

[11] F. Grandoni, J. Knemann, A. Panconesi, and M. Sozio, “Primal-dual based distributed
algorithms for vertex cover with semi-hard capacities,” in PODC ’05: Proceedings
of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on Principles of
distributed computing. New York, NY, USA: ACM Press, 2005, pp. 118–125.

[12] L. Jia, R. Rajaraman, and T. Suel, “An efficient distributed algorithm for constructing
small dominating sets,” Distrib. Comput., vol. 15, no. 4, pp. 193–205, 2002.

[13] A. Amis, R. Prakash, T. Vuong, and D. Huynh, “Max-min d-cluster formation in
wireless ad hoc networks,” in INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1,
2000, pp. 32–41 vol.1.

[14] Y. Fernandess and D. Malkhi, “K-clustering in wireless ad hoc networks,” in In
Proceedings of the second ACM international workshop on Principles of mobile
computing, 2002, pp. 31–37.

[15] S. Kutten and D. Peleg, “Fast distributed construction of k-dominating sets and
applications,” in PODC ’95: Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing. ACM Press, 1995, pp. 238–251.

[16] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security architecture
for wireless sensor networks,” in Second ACM Conference on Embedded Networked
Sensor Systems (SensSys 2004), November 2004.

[17] B. Przydatek, D. Song, and A. Perrig, “Sia: secure information aggregation in
sensor networks,” in SenSys ’03: Proceedings of the 1st international conference on
Embedded networked sensor systems. ACM Press, 2003, pp. 255–265.

[18] A. Mahimkar and T. Rappaport, “Securedav: a secure data aggregation and
verification protocol for sensor networks,” in Global Telecommunications Conference,
2004. GLOBECOM ’04. IEEE, vol. 4, 2004, pp. 2175–2179 Vol.4.

[19] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in SAINT-W ’03:
Proceedings of the 2003 Symposium on Applications and the Internet Workshops
(SAINT’03 Workshops). Washington, DC, USA: IEEE Computer Society, 2003,
p. 384.

[20] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, “SPINS: Security
protocols for sensor networks,” in Seventh Annual International Conference on
Mobile Computing and Networks (MobiCOM 2001), Rome, Italy, July 2001.

[21] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggregation in
sensor networks,” in CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security. New York, NY, USA: ACM Press, 2006, pp. 278–287.

106

[22] S. Lee, C. Kim, and S. Kim, “Constructing energy efficient wireless sensor
networks by variable transmission energy level control,” in Computer and Information
Technology, 2006. CIT ’06. The Sixth IEEE International Conference on, 2006, pp.
225–225.

[23] D. Wei and A. H. Chan, “Clustering algorithm to balance and to reduce power
consumptions for homogeneous sensor networks,” in Wireless Communications,
Networking and Mobile Computing, 2007. WiCom 2007. International Conference
on, 2007, pp. 2723–2726.

[24] R. Krishnan and D. Starobinski, “Efficient clustering algorithms for self-organizing
wireless sensor networks,” Ad Hoc Networks, vol. 4, no. 1, pp. 36–59, January 2006.

[25] C. Duan and H. Fan, “A distributed energy balance clustering protocol for
heterogeneous wireless sensor networks,” in Wireless Communications, Networking
and Mobile Computing, 2007. WiCom 2007. International Conference on, 2007, pp.
2469–2473.

[26] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering
approach for ad hoc sensor networks,” Mobile Computing, IEEE Transactions on,
vol. 3, no. 4, pp. 366–379, 2004.

[27] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[28] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Unit disk graph approximation,” in
DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of
mobile computing. ACM Press, 2004, pp. 17–23.

[29] J. Wu and H. Li, “Domination and its applications in ad hoc wireless networks
with unidirectional links,” in ICPP ’00: Proceedings of the Proceedings of the 2000
International Conference on Parallel Processing. Washington, DC, USA: IEEE
Computer Society, 2000, p. 189.

[30] V. Mhatre and C. Rosenberg, “Design guidelines for wireless sensor networks:
communication, clustering and aggregation,” Ad Hoc Networks, vol. 2, no. 1, pp. 45–
63, 2004.

[31] M. Younis, M. Youssef, and K. Arisha, “Energy-aware routing in cluster-based sensor
networks,” in MASCOTS ’02: Proceedings of the 10th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS’02). Washington, DC, USA: IEEE Computer Society, 2002, p. 129.

[32] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical control in multi-hop
wireless networks,” in IEEE INFOCOM, April 2001, pp. 1028–1037.

[33] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms.
Cambridge, MA, USA: MIT Press, 1990.

107

[34] B. Liang and Z. Haas, “Virtual backbone generation and maintenance in ad hoc
network mobility management,” in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3, 2000, pp. 1293–1302 vol.3.

[35] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simulation
of entire tinyos applications,” in SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems. New York, NY, USA: ACM
Press, 2003, pp. 126–137.

[36] O. Younis and S. Fahmy, “An experimental study of routing and data aggregation
in sensor networks,” Mobile Adhoc and Sensor Systems Conference, 2005. IEEE
International Conference on, pp. 8 pp.–, Nov. 2005.

[37] A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-preserving scheme
for wireless sensor networks based on local information exchange,” Computer
Communications, vol. 30, no. 14-15, pp. 2708–2720, October 2007.

[38] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner, “Evaluation of security mechanisms
in wireless sensor networks,” icw, vol. 00, pp. 428–433, 2005.

[39] C. T. Inc., mPR400/410/420 MICA2 Mote. Datasheet 2005.

[40] B. Krishnamachari, D. Estrin, and S. B. Wicker, “The impact of data aggregation in
wireless sensor networks,” in ICDCSW ’02: Proceedings of the 22nd International
Conference on Distributed Computing Systems. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 575–578.

[41] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted
data in wireless sensor networks,” in The Second Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services, July 2005, pp. 109–117.

108

VITA

Julia G. M. Albath was born in Bochum, Germany. In May 2003, she received her

B.S. in Mathematics from Illinois State University, Normal, Illinois, USA. She worked for

State Farm Insurance Cos. for four years starting in 1999. In 2003 she left and started her

graduate studies at the Missouri University of Science and Technology, Rolla, Missouri,

USA. In December 2008 she received her Ph.D. in Computer Science from the Missouri

University of Science and Technology, Rolla, Missouri, USA.

She has published conference papers, some of which are listed with the references of

this research.

Julia G. M. Albath has been a member of the Institute of Electrical and Electronics

Engineers (IEEE) since 2003. She has been a member of the Association for Computing

Machinery since 2003.

	Energy efficient clustering and secure data aggregation in wireless sensor networks
	Recommended Citation

	Energy efficient clustering and secure data aggregation in wireless sensor networks Energy constrained clustering for wireless sensor networks. Energy constrained clustering algorithms for wireless sensor networks. Practical algorithm for data security (P

