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We study the collective excitations, i.e., the Goldstone (phase) mode and the Higgs (amplitude) mode,
near the superfluid–Mott glass quantum phase transition in a two-dimensional system of disordered bosons.
Using Monte Carlo simulations as well as an inhomogeneous quantum mean-field theory with Gaussian
fluctuations, we show that the Higgs mode is strongly localized for all energies, leading to a noncritical
scalar response. In contrast, the lowest-energy Goldstone mode undergoes a striking delocalization
transition as the system enters the superfluid phase. We discuss the generality of these findings and
experimental consequences, and we point out potential relations to many-body localization.
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Understanding the rich behavior that arises when many
quantum particles interact with each other remains one of
the major challenges of modern condensed matter physics.
Zero-temperature phase transitions between different quan-
tum ground states have emerged as a central ordering
principle in this field [1–6]. These quantum phase tran-
sitions (QPTs) control large regions of a material’s phase
diagram and lead to unconventional thermodynamic and
transport properties. Moreover, fluctuations associated with
these transitions can induce novel phases, increasing the
complexity of quantum matter.
Since impurities, defects, and other types of quenched

disorder are unavoidable in most condensed matter sys-
tems, the effects of randomness on QPTs have been studied
intensively over the last two decades, leading to the
discovery of exotic phenomena such as infinite-random-
ness critical points [7], smeared phase transitions [8], and
quantum Griffiths singularities [9]. Today, the thermody-
namics of many disordered QPTs is well understood, and
classification schemes [10,11] have been established based
on the scaling of the disorder strength under coarse graining
as well as on the importance of rare disorder fluctuations
(see, e.g., Ref. [12] and references therein).
Much less is known about the character and dynamics of

excitations at disordered QPTs even though excitations are
crucial for a host of experiments ranging from inelastic
neutron scattering in magnetic materials to various elec-
trical and thermal transport measurements. Of particular
interest are the collective excitations that emerge in systems
with spontaneously broken continuous symmetries. These
include one or more Goldstone modes that are related to
oscillations of the order parameter direction and an ampli-
tude (Higgs) mode that is related to oscillations of the order
parameter magnitude. Examples of such modes can be
found in superfluids, superconductors, incommensurate

charge density waves, as well as planar and Heisenberg
magnets (see, e.g., Refs. [13,14]).
In this Letter, we therefore investigate the excitations

close to a paradigmatic disordered QPT, the superfluid-
Mott glass transition of disordered bosons, by means of
Monte Carlo simulations and an inhomogeneous mean-
field theory with Gaussian fluctuations. Our results can be
summarized as follows. Even though the thermodynamic
critical behavior of the superfluid-Mott glass transition is of
conventional power-law type [15,16], the Higgs and
Goldstone modes feature unconventional dynamics that
violates naive scaling. Specifically, the Higgs mode is
strongly localized, resulting in a broad, noncritical spectral
density close to the QPT. In contrast, the incipient
Goldstone mode features a striking delocalization transition
as the system enters the superfluid phase, irrespective of the
disorder strength.
In the remainder of this Letter, we first introduce our

model and then discuss the Monte Carlo simulations. To
explain the unusual, noncritical response observed in these
simulations, we study Gaussian fluctuations about an
inhomogeneous quantum mean-field theory. We also dis-
cuss possible experiments, and consider relations to many-
body localization.
We start from a square-lattice Bose-Hubbard

Hamiltonian

H ¼ 1

2

X

i

Uiðni − n̄Þ2 −
X

hiji
Jijða†i aj þ H:c:Þ ð1Þ

with large integer filling n̄. Here, a†i and a are the boson
creation and annihilation operators at site i, and ni ¼ a†i ai
is the number operator. If the interactions Ui and the
nearest-neighbor hopping terms Jij are spatially uniform,
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the system undergoes a QPT between a superfluid ground
state (for J ≫ U) and a gapped, incompressible Mott
insulator (for J ≪ U). In the presence of quenched dis-
order, these two bulk phases are separated by the Mott glass
phase, a gapless but incompressible insulator [17,18]. In the
following, we introduce the disorder via site dilution, i.e.,
we randomly remove a nonzero fraction p of lattice sites
while the Ui and Jij of the remaining sites stay uniform.
To study the collective modes across the superfluid-Mott

glass transition, we map the Bose-Hubbard model (1) onto
a (2þ 1)-dimensional XY model [19] with columnar
defects. We then perform large-scale Monte Carlo simu-
lations for lattices with linear sizes of up to L ¼ 256 and
Lτ ¼ 512 in the space and imaginary time directions. The
phase diagram and the thermodynamic critical behavior
(which is of conventional power-law type) are known
accurately from earlier studies [16,20]. For details of the
simulations and the data analysis see the Supplemental
Material [21].
To analyze the Higgs mode, we compute the (disorder-

averaged) imaginary-time scalar susceptibility,

χρρðx; τÞ ¼ hρðx; τÞρð0; 0Þi − hρðx; τÞihρð0; 0Þi ð2Þ

and its Fourier transform χ̃ρρðq; iωmÞ. Here, ρðx; τÞ is the
local order parameter amplitude, obtained as the average of
the XY variables over a small (five-site) cluster. The
dynamic susceptibility is given by the analytic continuation
from imaginary Matsubara frequencies iωm to real frequen-
cies ω,

χρρðq;ωÞ ¼ χ̃ρρðq; iωm → ωþ i0þÞ: ð3Þ

Unfortunately, the analytic continuation is an ill-posed
problem and sensitive to Monte Carlo noise. To
overcome this problem, we employ a maximum-entropy
(MaxEnt) method [34]. Its technical details and robustness
are discussed in the Supplemental Material [21].
Generalizing scaling arguments of Podolsky and
Sachdev [35] to the disordered case suggests that the
singular part of the scalar susceptibility in d space dimen-
sions has the form

χρρðq;ωÞ ¼ ω½ðdþzÞν−2�=ðνzÞXðqr−ν;ωr−νzÞ; ð4Þ

where r is the distance from criticality, ν is the correlation
length exponent, z is the dynamical exponent, and X is a
universal scaling function [21].
We now turn to the results of the Monte Carlo simu-

lations. Figure 1 shows the spectral function χ00ρρðq;ωÞ at
q ¼ 0 on superfluid side of the QPT, contrasting the clean
case (p ¼ 0) with a diluted case (p ¼ 1=3). The clean
spectral function features a pronounced low-energy Higgs
peak that softens as the transition is approached. The low-
energy part of χ00ρρ fulfills the scaling form (4) in good

approximation, using the exponents ν ¼ 0.671 and z ¼ 1
of the clean 3D XY universality class [36] (see Fig. S1 in
the Supplemental Material [21]). These findings agree with
previous simulations of the Higgs mode at the clean
superfluid-Mott insulator transition [37,38].
The spectral function of the diluted system behaves very

differently. Instead of a narrow low-energy peak, it features
a broad maximum at higher energies. Importantly, the
position of this maximum is only weakly dependent on the
distance r from criticality; it does not vanish for r → 0. This
behavior violates the scaling form (4), implying that the
scalar susceptibility is dominated by a noncritical
contribution.
We also study the dispersion ωHðqÞ of the peak position

as a function of the wave vector q; the results are presented
in Fig. 2. In the clean case, the data show the behavior
expected for a z ¼ 1 quantum critical point. The low-
energy dispersion is linear, ωH ∼ jqj, at criticality. As r
increases, it crosses over to the quadratic form
ωH ¼ mH þ cq2. In contrast, the dispersion of the diluted
system does not change much with the distance from
criticality, and the peak energy ωH is almost independent of
q for small wave vectors.
What causes the broad, uncritical scalar response near

the superfluid-Mott glass transition? Potential reasons
include increased damping and localization effects. To
gain further insight and to disentangle these possibilities,
we complement the Monte Carlo simulations by an
inhomogeneous mean-field theory with Gaussian fluctua-
tions. Our approach generalizes the theories of
Refs. [39,40] to the disordered case. It is also related to
the bond-operator method for disordered magnets [41].

FIG. 1. Spectral function χ00ρρðq ¼ 0;ωÞ for different distances r
from criticality on the superfluid side of the transition. Main
panel: dilution p ¼ 1=3, results averaged over 10 000 samples of
sizes L ¼ 100, Lτ ¼ 452. Inset: clean case (p ¼ 0),
L ¼ Lτ ¼ 128. Statistical errors are small, about one symbol
size; variations of the MaxEnt parameters can shift the peak
positions systematically by up to about 10% [21]. T is the
Monte Carlo temperature, not the physical temperature of the
Bose-Hubbard Hamiltonian.
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Close to the Mott phase, particle number fluctuations are
small. We thus truncate the local Hilbert space at site j to
three basis states, j−ji; j0ji, and jþji, corresponding to the
boson numbers nj ¼ n̄ − 1; n̄, and n̄þ 1, respectively. The
mean-field theory derives from the variational ground state
wave function jΦ0i ¼

Q
j jϕ0ji with

jϕ0ji ¼ cosðθj=2Þj0ji
þ sinðθj=2Þðeiηj jþji þ e−iηj j−jiÞ=

ffiffiffi
2

p
: ð5Þ

It captures both the Mott state, θj ¼ 0, and the superfluid
state, θj > 0, with the local superfluid order param-
eter ha†ji ∝ ψ j ¼ sin θje−iηj.
The variational ground state energy E0 ¼ hΦ0jHjΦ0i

is minimized by uniform phases ηj ¼ η ¼ const (which
we set to zero in the following) and mixing angles θi that
fulfill the mean-field equations

Ui sin θi − 4n̄ cos θi
X

j

Jij sin θj ¼ 0: ð6Þ

To describe excitations on top of the mean-field ground
state, we rotate the basis in the three-state local Hilbert
space of site j to jϕ0ji; jϕHji; jϕGji where

jϕHji ¼ sinðθj=2Þj0ji − cosðθj=2Þðjþji þ j−jiÞ=
ffiffiffi
2

p
;

jϕGji ¼ iðjþji − j−jiÞ=
ffiffiffi
2

p
ð7Þ

are related to changes of order parameter magnitude and
phase, respectively, compared to jϕ0ji. The boson operators
b†0j; b

†
Hj, and b†Gj create these states out of the fictitious

vacuum and fulfill the local constraint
P

α b
†
αjbαj ¼ 1. We

now rewrite the Hamiltonian (1) in terms of the b bosons,
using the constraint to eliminate (“fully condense”) b0j
such that b†Hj and b

†
Gj create excitations on top of the mean-

field ground state. To quadratic (Gaussian) order in b, the

Hamiltonian decouples into Higgs and Goldstone parts,
H ¼ E0 þHH þHG, which both take the form

Hα ¼
X

i

Aαib
†
αibαi þ

X

hiji
Bαijðb†αi þ bαiÞðb†αj þ bαjÞ; ð8Þ

(α ¼ H, G). The coefficients Aαi and Bαij are nonuniform
and depend on the mixing angles θi. HH and HG can be
diagonalized numerically by bosonic Bogoliubov trans-
formations, bαj ¼

P
kðuαjkdαk þ v�αjkd

†
αkÞ [21].

We now present the results of the mean-field theory. In
the absence of dilution, p ¼ 0, the mean-field equation (6)
can be solved analytically. A superfluid solution appears
for U < U0

c ¼ 4n̄Jz where z ¼ 4 is the coordination
number of the lattice; it has a uniform mixing angle cos θ ¼
U=U0

c and order parameter ψ ¼ ð1 −U=U0
cÞ1=2. As the

system is translationally invariant, all excitations have
plane wave character. In the superfluid phase, the
Goldstone mode is gapless while the gapped Higgs mode
softens at the QPT. In the insulating phase the two modes
are gapped and degenerate. All clean mean-field results
agree with earlier work [39].
The behavior changes dramatically in the presence of

disorder. Figure 3 shows the average and typical order
parameter for site dilutions p ¼ 1=8 and 1=3, resulting
from a numerical solution of the mean-field equations (6)
[42]. As expected, the onset of superfluidity is suppressed
compared to the clean case, p ¼ 0. The large difference
between the average and typical order parameter for
U=ðn̄JÞ slightly below the onset of superfluidity indicates
the coexistence of superfluid puddles with insulating
regions, characteristic of a Griffiths phase (which is wider
for stronger dilution). At lower U, the order parameter is
only moderately inhomogeneous.
Turning to excitations on top of the mean-field ground

state, Fig. 4(a) visualizes examples of the lowest-energy

FIG. 2. Peak position ωH of the spectral function χ00ρρðq;ωÞ vs
wave vector jqj (along the coordinate directions) for different
distances r from criticality. (a) dilution p ¼ 0. (b) p ¼ 1=3. The
simulation parameters agree with Fig. 1. Statistical errors are
about a symbol size or less.

(a) (b)

FIG. 3. (a) Local order parameter ψ j for several U=ðn̄JÞ for a
system of 1282 sites with dilution p ¼ 1=3. (b) Average and
typical (geometric average) local order parameter ψ as function of
U=ðn̄JÞ for dilutions p ¼ 0; 1=8, and 1=3, using 1000 disorder
realizations. Statistical errors are comparable to the linewidths.
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eigenstates in both the Higgs and Goldstone channels for
dilution p ¼ 1=3. Clearly, these states show nontrivial
localization properties. To characterize the localization,
we calculate the inverse participation number P−1ð0Þ ¼P

jðjuαj0j2 − jvαj0j2Þ2 [41] and the corresponding gener-
alized dimension τ2ð0Þ ¼ lnPð0Þ= lnL [43]. The depend-
ence of τ2 on the interaction U for the lowest-energy
eigenstates in the Higgs and Goldstone channels is pre-
sented in Fig. 4(b). For both weak and strong dilutions,
p ¼ 1=8 and 1=3, we observe the same behavior. In the
insulating phase, both excitations are degenerate and
strongly localized as indicated by the rapid drop of τ2
toward zero with increasing L.
Upon entering the superfluid phase with decreasing U,

the two excitations evolve in opposite directions. The Higgs
mode becomes even more localized, reflected in a further
decrease of τ2. In contrast, the lowest Goldstone excitation
undergoes a rapid delocalization transition. Its dimension
τ2 increases quickly, and its L dependence changes sign. It
now increases toward τ2 ¼ 2 with increasing L, indicating
an extended state. Within our numerical accuracy, the
crossing of the τ2 vs U=ðn̄JÞ curves coincides with the
onset of superfluid order. In fact, we have derived an
analytic expression for the wave function of the lowest
Goldstone excitation in the superfluid phase that proves
that it is extended whenever the system features a macro-
scopic order parameter [21].
We also study the dependence of the localization on the

excitation energy [21]. On the insulating side, the excita-
tions are strongly localized for all energies, and the same is
true for the Higgs mode in the superfluid phase. Goldstone
excitations with nonzero energy appear to be localized as
well, with a localization length that diverges with vanishing

energy. We do not find any evidence for a mobility edge at
nonzero energy, in contrast to the Bose glass results
reported in Ref. [44].
To establish a connection to the Monte Carlo simula-

tions, we compute the spectral densities of the Higgs and
Goldstone Green functions χαjkðtÞ ¼ −iΘðtÞh½b†αjðtÞ þ
bαjðtÞ; b†αkð0Þ þ bαkð0Þ�i with α ¼ G, H. Figure 5 shows
the spectral densities at zero wave vector for several
interactions U=ðn̄JÞ, comparing the clean case with dilu-
tion p ¼ 1=3. The spectral densities of the diluted system
are very broad, even though the eigenmodes are non-
interacting within the Gaussian approximation and thus
have no intrinsic width. This demonstrates that the broad-
ening of χ00 is due to disorder-induced localization effects.
Moreover, the peak in the Higgs spectral function does not
soften at the superfluid-Mott glass transition, mirroring the
Monte Carlo results in Fig. 1. In contrast, the clean spectral
functions show the expected δ peaks at energies corre-
sponding to the Higgs and Goldstone masses.
To summarize, we found the Higgs mode to be strongly

localized across the superfluid-Mott glass QPT; the scalar
response is thus noncritical and violates naive scaling. The
lowest Goldstone excitation, in contrast, delocalizes upon
entering the superfluid phase. Higher-energy Goldstone
excitations are localized, implying the absence of a non-
zero-energy mobility edge for the excitations.
The mean-field theory used in the second half of this

Letter provides only an approximate description of the
superfluid-Mott glass transition. In particular, it does not
correctly capture rare regions effects because it cannot
describe the fluctuations of large superfluid puddles in an
insulating matrix. Whereas rare regions are known to be
unimportant for the thermodynamics of this QPT [12], their
effects on excitations are less well understood. Moreover,
the Gaussian approximation for HH and HG neglects

(a) (b)

FIG. 4. (a) Wave functions of the lowest-energy Goldstone and
Higgs modes for p ¼ 1=3 and several U=ðn̄JÞ, visualized as
juαj0j2 − jvαj0j2. (b) Generalized dimension τ2 of the lowest-
energy Goldstone and Higgs modes vs interaction U=ðn̄JÞ for
p ¼ 1=8 and 1=3 (averaged over 1000 disorder realizations).
Statistical errors are smaller than the symbol size.

(a) (b)

FIG. 5. Spectral functions χ00ðq ¼ 0;ωÞ of the Goldstone (solid
lines) Higgs (dashed lines) excitations for several interactions
U=ðn̄JÞ. The curves are shifted upward with increasingU. Dotted
lines mark the position of the Higgs peak in χ00. (a) Dilution p ¼
1=3 (240 disorder realizations, statistical errors are comparable to
the linewidths). (b) Clean case, p ¼ 0; here the peaks in the figure
represent δ functions.
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anharmonic effects (which could be included by keeping
higher-order terms in the expansion of H). However, the
agreement between the mean-field results and the numeri-
cally exact Monte Carlo simulations gives us confidence in
their validity.
Potential routes to analyze the superfluid-Mott glass

transition experimentally include ultracold atoms, dirty and
granular superconductors, as well as diluted quantum
antiferromagnets. Recently, the effects of the Higgs mode
on the dynamical conductivity in disordered superconduct-
ing thin films were modeled by a bosonic Hamiltonian
similar to ours [45,46]. The Monte Carlo data in these
papers appear to be compatible with a more conventional
scenario in which the Higgs response sharpens and softens
as the QPT is approached. We believe that this may stem
from the comparatively weak disorder used in Refs. [45,46]
which causes a slow crossover to the disordered behav-
ior [47].
In conclusion, our work demonstrates that disordered

QPTs can feature unconventional collective excitations
even if their thermodynamic critical behavior is completely
regular. This implies a number of important general
questions about collective modes at disordered QPTs:
Can one classify the excitation dynamics along similar
lines as the thermodynamics? What is the character (and
critical behavior) of the delocalization transition of the
Goldstone mode? Under what conditions does a mobility
edge appear? Is it related to many-body localization? What
role is played by the space dimensionality? These questions
remain tasks for the future.
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