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Abstract The integer quantum Hall effect features a paradigmatic quantum phase transition. Despite
decades of work, experimental, numerical, and analytical studies have yet to agree on a unified under-
standing of the critical behavior. Based on a numerical Green function approach, we consider the quantum
Hall transition in a microscopic model of non-interacting disordered electrons on a simple square lattice. In
a strip geometry, topologically induced edge states extend along the system rim and undergo localization–
delocalization transitions as function of energy. We investigate the boundary critical behavior in the lowest
Landau band and compare it with a recent tight-binding approach to the bulk critical behavior [Phys. Rev.
B 99, 121301(R) (2019)] as well as other recent studies of the quantum Hall transition with both open and
periodic boundary conditions.

1 Introduction

Applying a strong perpendicular magnetic field on a
two-dimensional free-electron gas leads to highly degen-
erate eigen energies En = (n + 1/2)�ω, the Landau
levels. Here, n is a non-negative integer and ω is the
cyclotron frequency, ω = eB/m. Disorder lifts the
degeneracy and broadens the Landau levels into Lan-
dau bands (LBs), leading to extended states in the
band center Ec that separate two localized phases. The
integer quantum Hall (IQH) transition is characterized
by a power-law divergence of the localization lengths
ξ ∼ |E − Ec|−ν at the critical energy Ec. The value of
the localization-length exponent ν is not settled despite
a large body of work in the literature. There are devi-
ations between experimental and theoretical reports as
well as between several numerical approaches [1–4].

We recently analyzed the IQH transition in a micro-
scopic tight-binding model of non-interacting electrons
on a square lattice using the topology of an infinite
cylinder [5]. By means of a careful scaling analysis, we
obtained ν = 2.58(3) in agreement with recent results
based on the semi-classical Chalker-Coddington (CC)
network model [2,6–11] and other approaches [12,13].
This value is incompatible with the best experimental
results, ν ≈ 2.4 [1].

In the present work, we make use of the topological
features of the IQH effect and consider simple square
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lattices in a strip geometry with open boundaries. Here,
edge states, extended along the system rim, appear, see
left panel of Fig. 1.

The topological effects change the characteristic of
the transition: states above and below the critical
energy are localized and extended, respectively, ren-
dering a localization–delocalization transition in the
boundary behavior. We study this transition using
the recursive Green function method and determine
the boundary critical behavior. We find a localization-
length exponent ν = 2.61(2) in agreement with the bulk
value.

We introduce the model and approach in Sect. 2. Sec-
tion 3 is devoted to the analysis of the IQH transition.
We conclude in Sect. 4.

2 Model

We consider a tight-binding model of non-interacting
electrons moving on a square lattice of N×L sites, given
by the Hamiltonian matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

H1 I
I H2 I

I H3
. . .

. . . . . . I
I HN

⎞
⎟⎟⎟⎟⎟⎠

with

0123456789().: V,-vol 123
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Fig. 1 IQH transition in the lowest LB for flux Φ = 1/10
and disorder W = 0.5. Left: Local density of states ρi (visu-
alized by color) for a strip of width L = 32 for an edge
state (E = 3.40), the critical state (E = 3.42), and a local-
ized state (E = 3.44). Only a part of the strip (total length
N = 104) is shown. Right: Dimensionless Lyapunov expo-

nent Γ (E, L) as function of E for several L. The statistical
errors are well below the symbol size. The solid lines are
third-order polynomial fits. The inset shows an analysis of
the crossing energy E× according to Eq. (3) with y = 0.88
and α = 1/2.6 for several ratios r

Hx =

⎛
⎜⎜⎜⎜⎜⎜⎝

ux,1 eiϕx

e−iϕx ux,2 eiϕx

e−iϕx ux,3
. . .

. . . . . . eiϕx

e−iϕx ux,L

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

expressed in a Wannier basis. Geometrically, the lattice
is a stack of N layers Hx of L sites each. H and Hx

have block-tridiagonal and tridiagonal forms, respec-
tively, representing open boundaries (obc) in the x and
y directions. The disorder is implemented via indepen-
dent random potentials ux,y, drawn from a uniform
distribution in the interval [−W/2,W/2]. W character-
izes the disorder strength. The hopping terms have unit
magnitude, and the uniform out-of-plane magnetic field
B is represented via direction-dependent Peierls phases
[14,15]. The hopping in the y direction suffers a com-
plex phase shift ϕx = 2πΦx whereas the bonds in the
x direction, representing couplings between consecutive
layers, do not have phase shifts. This leads to the off-
diagonal identity matrices I in H. Φ = Bl2/Φ0 denotes
the magnetic flux through a unit cell (of size l2) in mul-
tiples of the flux quantum Φ0 = h/e.

In the clean case, W = 0, the interplay of the lattice
periodicity and the Peierls phases leads to feature-rich
Landau-level formation as function of flux Φ, known
as the Hofstadter butterfly [16,17]. In our previous
work [5], we considered the implications of the butterfly
structure (the intrinsic widths and spacings of the Lan-
dau levels) for the observation of universal properties of
the IQH transition. In particular, we discussed how to
chose the magnetic field values and disorder strengths.
We found that the limit of small φ represents the best

conditions to avoid Landau level coupling. We then ana-
lyzed the bulk IQH transition for Φ = 1/1000, 1/100,
1/20, 1/10, 1/5, 1/4, and 1/3 in the lowest Landau band
[5]. We observed universal behavior for Φ � 1/10, where
our data collapse when the system size L is expressed
in multiples of the magnetic length LB = 1/

√
2πΦ. In

the current work, we examine the boundary transitions
for the same set of system parameters.

We employ the recursive Green function method [18–
22] to characterize the behavior of the electronic states.
It recursively computes the Green function G(E) =
limη→0 [(E + iη)I − H]−1 at energy E. I is the identity
matrix and η shifts the energy into the complex plane
to avoid singularities. Based on a quasi-one-dimensional
lattice with N � L, the smallest positive Lyapunov
exponent,

γ(E,L, Φ,W ) = lim
N→∞

1
2N

ln |GN
1N |2 , (2)

describes the exponential decay of the Green function
between the 1st and Nth layers. For the current sys-
tem, the matrix GN

1N = G1
11 · G2

22 · G3
33 . . .GN

NN can
be written as product of the diagonal blocks Gx

xx =[
(E + iη)I − Hx − Gx−1

x−1,x−1

]−1
. We approximate the

limit η → 0 by setting η to a small nonzero value,
η = 10−14. We use the dimensionless Lyapunov expo-
nent Γ ≡ 〈γ〉L for the scaling analysis. 〈γ〉 represents
the ensemble average of 50 strips of size L × 106 with
width L up to 512. For Φ = 1/10, we improve the accu-
racy using 200 realizations of width L up to 768.
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3 Simulation and analysis

Using the recursive Green function method, we create
Γ (E,Φ,L) data sets in the energetic vicinity of the tran-
sition in the lowest LB for several Φ. The right panel
of Fig. 1 shows the data for Φ = 1/10. We first per-
form a simple scaling analysis. To this end, we describe
the E dependence of Γ (for each L and Φ) by a third-
order polynomial. For each Φ, we identify Ec using the
crossings of the Γ vs. E curves for two different L with
ratio r, Γ (E×, L) = Γ (E×, L/r). The crossings can
be extrapolated to infinite L using the scaling ansatz
Γ (E,L) = Γc + Γr(E − Ec)L1/ν + ΓiL

−y with relevant
(r) and irrelevant (i) correction terms, which implies

E×(L, r) = Ec +
Γi(ry − 1)

Γr(1 − r−1/ν)
L−1/ν−y . (3)

The inset of Fig. 1 shows this extrapolation for Φ =
1/10; we use ν = 2.6 and y = 0.88 so that the data
for four values of r collapse and the largest number of
crossings follow Eq. (3), leading to Eobc

c = 3.42233(1).1
The fact that the data in the inset nearly perfectly col-
lapse onto the predicted functional form (3) indicates
that deviations from the linear energy dependence of
Γ implied in (3) are not important for crossings of
nearby system sizes. Unfortunately, this extrapolation
depends on the (a priori unknown) value of y. We can
exclude higher values, y � 0.9 for which the E× vs.
L curves develop a pronounced S-shape, which would
imply that at least three correction-to-scaling terms are
important. However, we cannot strictly exclude smaller
y values (even though the range of crossings that follow
(3) becomes smaller with decreasing y). For y = 0.4, the
resulting critical energy, 3.42213(2), agrees nearly per-
fectly with our value Epbc

c = 3.422151(3) for the cylin-
der geometry, where the determination of Ec is more
accurate and robust [5]. Within the standard picture of
the IQH effect, the critical energies for open and peri-
odic boundaries should coincide in the thermodynamic
limit, because chiral edge states cannot Anderson local-
ize due to the absence of back scattering. This suggests
that the above estimate y ≈ 0.9 of the irrelevant expo-
nent is an effective value for our current system sizes
only, while the asymptotic value is lower. We perform
the same analysis for all Φ; Fig. 2 shows the resulting
Γ (Epbc

c , Φ, L) and their slopes Γ ′(Epbc
c , Φ, L) at bulk

criticality Epbc
c .

The data for Φ = 1/3 and 1/4 behave clearly dif-
ferently from those for lower Φ, whose data asymptoti-
cally collapse as function of L/LB. As in the case of the
cylinder geometry [5], we thus consider systems with
Φ � 1/10 to be in the universal regime. If we use Eobc

c

1 We consider fits as reasonable when the mean squared
deviation approximates the data’s standard deviation.
Unless noted otherwise, the given uncertainties of the criti-
cal estimates represent statistical standard deviations with
respect to individual fits.

instead of Epbc
c in Fig. 2, the data collapse is of signif-

icant lower quality.
In the following, we use the data for Φ = 1/10

for which we have better statistics and larger sizes to
extract estimates of the critical exponents and ampli-
tudes. We perform fits at both Eobc

c and Epbc
c to capture

errors stemming from the uncertainties of Ec. For Eobc
c ,

power-law corrections Γ (Ec, L) = Γc(1 + aL−y) lead
to reasonable fits for L ≥ 32, yielding Γc = 0.6577(3)
and y = 0.951(7). For Epbc

c , the simple power-law
description is limited to a smaller L range. We obtain
Γc = 0.614(4) with y = 0.49(5) and Γc = 0.606(13) with
y = 0.42(14) for L ≥ 128 and L ≥ 256, respectively.

We now consider the slope Γ ′ to get estimates for
the relevant exponent ν. For both Ec estimates, we get
good-quality fits Γ ′(Ec, L) = Γ ′

cL
1/ν even without irrel-

evant scaling corrections for L ≥ 128, leading to ν =
2.556(5) for Eobc

c and ν = 2.619(7) for Epbc
c . For a wider

range, L ≥ 32, power-law corrections to scaling need to
be included, Γ ′(Ec, L) = Γ ′

c(1+aL−y)L1/ν . This yields
ν = 2.523(16) with y = 1.2(2) and ν = 2.598(16) with
y = 1.8(3) for Eobc

c and Epbc
c , respectively.

In addition to the simple scaling analysis, we also per-
form fits of sophisticated scaling functions Γ (xrL

1/ν ,
xiL

−y), expanded in terms of relevant and irrelevant
scaling field, xrL

1/ν and xiL
−y [23]. We consider a large

collection of such fits based on various subsets of the
data and different fit expansions. The results of these
fits show fluctuations similar to the results presented
above. Hence, whereas the compact fits give robust esti-
mates of ν, they do not give a reliable estimate of y,
systematically affecting Ec, and Γc.

4 Conclusion

In summary, we have investigated the IQH transition
in the lowest Landau band in a strip geometry with
open boundary conditions for a microscopic model of
electrons. In contrast to cylindrical systems, edge states
lead to a transition between an extended and a localized
phase. Table 1 compares the critical parameters of the
IQH transition for the tight-binding model and the CC
model for both cylinder and strip geometries.

Interestingly, literature values of the irrelevant expo-
nent y seem to have a strong dependence on the geom-
etry. Whereas y is very small in cylinders, it is sig-
nificantly higher (y � 1) for strips. Does this imply
that strong but shorter ranged boundary corrections are
dominant at the current system sizes, whereas longer
ranged bulk corrections dominate asymptotically, or do
bulk corrections vanish in strip geometry? In the cur-
rent model, the estimate of y is strongly correlated with
the critical energy; a straightforward analysis yields a
critical energy marginally different from the bulk value
as well as a larger y. However, assuming the bulk crit-
ical value to be valid, we observe a significant better
agreement of Γc with the result of the open-boundary
CC model investigation.
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Fig. 2 Lyapunov exponent Γ and its slope Γ ′ = ∂Γ/∂E at
criticality, Epbc

c , as function of the effective length L/LB for
several Φ. Errors are below the symbol size. Lines are guide

to the eye only. The inset shows Γ ′ scaled using the relevant
exponent ν = 2.6, emphasizing that ν ≈ 2.6 describes the
asymptotic behavior for Φ � 1/5

Table 1 Critical parameters obtained by means of the tight-binding lattice (TBL) and the CC network model (CCNM)
for systems in topology of a cylinder (pbc) and a strip (obc)

TBL, pbc [5] CCNM, pbc [2] TBL, obc (current) CCNM, obc [24]

ν 2.58(3) 2.593 [2.587,2.598] 2.61(2) 2.55(1)
y 0.35(4) 0.17 [0.14,0.21] � 0.9 1.29(4)
Γc 0.815(8) 0.780 [0.767,0.788] 0.61(1) 0.6158(8)

The main message of the present paper is, however,
that the estimate of the localization length exponent
ν is very robust. Combining statistical and systematic
errors, we estimate ν = 2.61(2) based on the bulk criti-
cal energy, which agrees well with recent high-accuracy
CC model calculations. Even, if we consider the vari-
ations between different fits combined with the uncer-
tainty of the critical point, we observe ν = 2.58(5),
a value considerably different from the experimental
value ν ≈ 2.4.

Acknowledgements This work was supported by the
NSF under Grant Nos. DMR-1506152 and DMR-1828489.

Author contribution statement

M. P. and T. V. conceived the presented idea. M. P. per-
formed the simulations, analyzed the data, and took the
lead in writing the manuscript. All authors discussed
the results and provided critical feedback to the analy-
sis and the manuscript.

References
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