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ABSTRACT 

This research is focused on dead time and the subsequent count loss estimation in 

radiation detection systems.  The dead time is the minimum amount of time required 

between two events to permit detection of those events individually by a radiation 

detection system.  If events occur during the system dead time, they are lost.  Such lost 

information can be important in many applications including high-precision 

spectroscopy, positron emission tomography (PET), and the scanning of spent nuclear 

fuel.  Understanding of the behavior of radiation detection systems is important; thus this 

work included a comprehensive review of dead time and pulse pile-up models and 

methods.  The most common way to estimate detector dead time is by one-parameter 

approximations known as nonparalyzable and paralyzable models.  This research 

proposes a two parameter model that estimates the detector paralysis factor and the dead 

time based on a graphical method.  To determine the two parameters characteristics of a 

detection system, this work tested a novel technique to saturate the detector using a 

decaying source.  The modified decaying source method, unlike other methods,  does not 

assume the idealized behavior of detection system in use and calculates the overall dead 

time of the detection system. The paralysis factor for high purity germanium detection 

system was estimated approaching 100% and the dead time was on the order of 5-10 µs 

which compares well with the literature. 
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SECTION 

1. INTRODUCTION 

 

Every radiation detection system is inherently limited by dead time and high-

count-rate applications are especially affected.  Detection system dead time is defined as 

the time required by the system to process one event before it is ready to process another.  

Events that occur during the dead time are lost. For low-count-rate applications, detection 

systems can process most of the radiation events without much loss; however, in 

applications involving a higher rate of incoming radiation, detection systems can lose a 

significant amount of data.  To assess the losses that occur in a detection system, the 

overall dead time of the counting system must first be determined.  This information can 

become crucial in applications such as spent fuel scanning and positron-emission 

tomography (PET).  In spent fuel scanning, the objective is to analyze the data obtained 

from the energy spectrum to estimate the quantities of various isotopes present. The data 

collected are those events remaining after the dead time losses, and for a better analysis, 

the lost counts should be added to the observed data. Similarly in PET systems, the 

knowledge of system dead time is important for accurate analysis. 

Researchers have been interested in dead time and the count loss phenomenon 

since the early forties, and this research is still continuing due to the need for carrying out 

the measurements at higher count rates and the demand for higher accuracy. Many 

models have been developed that predict count loss behavior.  Further, various methods 

have been developed to calculate a detection system’s dead time, to correct the count rate 

loss, and to estimate the original count rate data. The motivation behind such research 
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was originally to gain a sound understanding of the operation of detection systems at 

high-count-rate applications and to characterize detection systems effectively in terms of 

generalized dead-time models.  Following is a summary of the two articles written to 

better understand the characteristics of radiation detection systems, with a focus on dead 

time determination and count loss correction. 

 

1.1 RADIATION DETECTOR DEAD TIME AND PULSE PILE-UP - A STATUS 
OF THE SCIENCE 

Since the early days of radiation measurement, researchers have been interested in 

the true behavior of counting systems. Over time, as the field progressed and new 

detection systems were invented, the demand for better accuracy has grown steadily.  

Continued interest in this field has produced hundreds of research papers on count loss 

correction and dead time measurement.  An attempt has been made to gather some of the 

most important models, methods and techniques, which are scattered all around in the 

form of journal articles and books, and to compile them in one place for the ease of an 

interested user.  While the list of publications in this area is huge (few hundred), the 

authors have tried to select the most important works, divided them into three main 

categories of: 1) dead time models, 2) methods and correction techniques for overall dead 

time of counting system, and 3) methods for estimation of instrumentation dead time. 

Each of model and measurement technique is described, with their applications and 

limitations noted.    
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1.2 MEASUREMENT AND APPLICATION OF PARALYSIS FACTOR FOR 
IMPROVED DETECTOR DEAD TIME 

The idealized one-parameter dead time models (i.e., the paralyzable and 

nonparalyzable models) are inadequate to properly model the dead time response of a 

detection system. To address this deficiency, this work developed a two-parameter dead 

time model based on a more realistic hybrid model. The two parameters used in this 

model are the paralysis factor ( ) and the total dead time ( ) of a detection system.  The 

paralysis factor is a novel concept that characterizes a detection system. It varies from 0 

to 1, where zero means that the detection system is nonparalyzable, and 1 indicates that it 

is completely paralyzable.  

This measurement method uses a modified decaying source technique that relies 

on a high count rate, fast decaying source. The high count rate saturates the detector 

initially, and it is followed by an increase in count rate up to a peak and then a decrease. 

This characteristic rise and fall of count rate behavior is exploited to estimate the 

paralysis factor and dead time of the detection system. This model has advantage over 

other dead-time models in that it makes no initial approximations about the detection 

system type, and it estimates the overall dead time of the whole detection system. 
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PAPER 

1. RADIATION DETECTOR DEAD TIME AND PULSE PILE-UP - A 

STATUS OF THE SCHENCE 

Amol Patil and Shoaib Usman 

 

ABSTRACT:  Since the early forties, researchers from around the world have been 

studying the phenomenon of dead time in radiation detectors. Many have attempted to 

develop models to represent this phenomenon; so far, however, there is no general 

agreement on the applicability of any given model for a specific detector under specific 

operating conditions.  Further, the related problem of pile-up is often confused with the 

dead time phenomenon.  Much work, therefore, is needed to devise a generalized and 

practical solution to these related problems. Many methods have been developed to 

measure and compensate for the detector dead-time count loss, and much research has 

addressed dead time and pulse pile-up.  The modest goal of this article is to summarize 

the measurement and compensation techniques proposed in some of the most significant 

work on these topics and to review the dead time correction models applicable to present 

day radiation detection systems.  

 

Index Terms—Dead-time, nonparalyzable, paralyzable, resolving time 
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I. INTRODUCTION 

The counting of pulses, in a random process is inevitably affected by losses.  In 

nearly all detector systems, a minimum amount of time must separate two events so that 

they can be recorded as two separate events.  In some cases, the limiting time may be 

determined by processes in the detector itself, and in most other cases the limit arises 

from the associated electronics.  This minimum time separation is usually called the dead 

time (or resolving time) of the counting system [i].  The total dead time of a detection 

system is usually due to the intrinsic dead time of the detector (e.g., the drift time in a gas 

detector), the analog front end (e.g., the shaping time of a spectroscopy amplifier), and 

the data acquisition process (e.g., the conversion time of ADCs, or the readout and 

storage times).  Thus, there is a need for correction on three different levels, first, for the 

internal losses inherent in the detector itself, second, for the losses generated by the 

system circuitry, and lastly, for the multichannel analyzer, i.e. the analogue to digital 

conversion time. It is possible to correct for counting losses only if both the nature of the 

original process and the effects of dead time are clearly understood.  A typical pulse 

counting system is shown in Figure 1 which also gives an overview of the dead time 

associated with various units.  In most detectors a small pulse lasting for only a fraction 

of a micro second is generated which is not strong enough to be processed directly.  To 

preserve the information carried by these individual pulses they are first processed by a 

preamplifier which adds a relatively long (tens of micro-second) tail to the original pulse.  

It is important to point out that all the information pertaining to the timing and the 

amplitude of the original pulse is contained in the leading edge of the tailed pulse, which 

is then carried to an Amplifier where it is amplified and shaped.  Charge collection time 

 



6 

 

of the detector determines the rise time of the tailed pulse produced by the preamplifier. 

Amplifier’s shaping of the pulse plays a critical role in preserving the spectroscopic and 

timing (or count rate) information.  A compromise is generally needed for any high count 

rate application.    

  

 

Figure 1. Sources of dead time in a typical detection system 

 

To avoid ballistic deficit, the shaping time constant of the amplified pulse must be 

significantly larger than the rise time of the tailed pulse otherwise the amplitude of the 

shaped pulse will be compromised.  Ballistic deficit is not a major concern as long as the 

charge collection time (and consequently the preamplifier’s pulse rise time) is constant 

for all pulses.  However, in most cases the charge collection time depends on the location 

of the initial interaction of the radiation within the detector.  This leads to variable 

ballistic deficit and energy resolution degradation.  On the other hand, if the pulse 

shaping time is too long the amplified pulse will carry either a positive tail or a negative 

undershoot.  Both of these will lead to pile-up and energy resolution degradation.  The 

other situation where pile-up becomes an issue is when pulses with flat top arrive close to 

each other producing a combined pulse of summed amplitude.  This situation is referred 
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as the peak pile-up (Figure 2).  The basic difference between the dead time and the pile-

up is the fact that in pile-up summed pulse is produced when two pulses combine leading 

to energy resolution as well as count rate degradation.  In case of dead time, the second 

pulse is lost without any energy degradation of the first pulse.  In the literature both these 

problem are often mixed up.   

 

 

Figure 2. Pulse pile-up 

 

In most high count rate situation both dead time as well as pile-up problems are 

possible.  As Evans [ii] pointed out that every detection instrument used for counting 

exhibits a characteristic time constant resembling the recovery time.  He noted that after 

recording one pulse, the counter is unresponsive to successive pulses until a time interval 

equal to or greater than its dead time, , has elapsed.  He found that if the interval 

between two true events is shorter than the resolving time , only the first event is 

recorded. Thus the detection system causes a loss of counts and distorts the distribution.  

Evans elegantly explains that the radiation counter systems do not actually count the 

nuclear events but the intervals between such events. This is an entirely different way of 

looking at the counting process in a detection system.  

Figure 1 shows a typical counting system where each unit can possibly add some 

dead time and contribute towards the overall dead time and loss of counts.  Identification 



8 

 

of the individual contribution to the total dead time helps in recognizing the bottleneck 

areas of the counting system and devising measures to correct the count loss accordingly.  

The relative contribution of each component can significantly vary depending on the 

component design and operating conditions.   

Detector is first unit in the counting system.  As discussed in section II, depending 

on the choice of detector, a wide variation of detector dead time is observed.  For Geiger-

Muller (GM) counters, the detector dead time contribution is perhaps the most significant 

within the entire counting system.  Detector pulses are only a fraction of a microsecond 

wide [1].  However, for extremely high count rates (exceeding million counts per second) 

it is foreseeable that these pulses may over ride each other and lead to the problem of 

pile-up.  In most cases however, dead time is the primary concern arising from a detector. 

In some cases the detector is able to produce pulses at a much faster rate than the 

subsequent instrumentation can process and in such cases the instrumentation determines 

the overall dead time of the system.      

The next unit in the counting system is the preamplifier which is used to provide 

optimized coupling and electronic matching between the detector and amplifier.  It’s 

main purpose, however, is to maximize the signal to noise ratio.  The pulses from a 

preamplifier are long tail pulses with short rise time and a fall time of tens of 

microsecond to ensure full collection for charge from the detector.   

In the shaping stage of the pulse processing, the problem of pile-up introduced in 

the preamplifier is removed.  However, at high count rates some piled-up pulses may 

reach the preamplifier saturation limit.  This situation results in the degradation of energy 

resolution. 
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Amplifier, which is the next component in pulse processing, is perhaps the most 

important component in the counting system.  Its primary function is to shape the tail 

pulse coming from the preamplifier and further amplify it, as required.  The tail pulses 

are converted to linear amplified pulse within the expected range of the subsequent units 

in the counting system, usually between 0 to 10 volts.  As discussed earlier, the shape of 

the amplified pulse plays a critical role in minimizing pile-up, and ballistic deficit to 

preserve the energy resolution as well as the count rate information.  In addition to the 

pile-up, a dead time is also associated with the amplified pulse, which is of the same 

order as the width of the shaped pulse and is only a few microseconds [1].  It is important 

to point out that invariably a compromise is to be made to preserve the energy resolution 

of the pulses and the count rate information.   

The SCA (Single Channel Analyzer) is not a major contributor to the dead time 

problem of the counting system.  A total of 1-2 micro-second dead time is added because 

of their functioning [1].  Modern counters, another unit in counting chain, have even 

smaller dead time associated with them.  For example ORTEC 994 [iii] counter reports a 

dead time for paired pulses of 10-40 nanosecond.   

MCA or Multi Channel Analyzer is the next major contributor to the dead time in 

the counting system.  Based on their design, MCA’s can produce pile-up and/or dead 

time.  The main contributor to the dead time in an MCA is the ADC or Analog to Digital 

Converter.  The dead time of a Wilkinson type ADC is linearly dependent on the pulse 

height.  In most modern MCAs, the system is capable of automatically correcting for the 

dead time by counting for a longer duration of time (live time) than the clock time.  It is 

however important to point out the auto correction is only limited to the dead time 
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associated with the MCA.  MCA electronics is not capable of de-convoluting two or 

more piled-up pulses or correct for the dead time initiated in the detector.  

  Muller [iv] has complied a comprehensive bibliography on radiation 

measurement system’s dead time covering almost all significant contributions to the area 

from 1913 till 1981.  He has listed various articles in this area in chronological order of 

appearance and also according to the subject area.  The present work differs in its 

approach, as the main goal of this paper is to gather some of the major findings on dead 

time and pile-up behavior, which includes common modeling methods and measurement 

techniques for the interested user.  This article is by no means an exhaustive bibliography 

of all contribution in area of detector dead time and pile-up associated with measurement 

system.  Rather, the authors have tried to present most prevalent and useful methods in 

this area.  

The next section (II) discusses the physical phenomenon responsible for the 

occurrence of dead time in various detectors followed by major models for system dead 

time in section III.  Section IV reviews the common methods for measuring system’s 

dead time followed by a section devoted to dead time and pile-up measurement of 

electronic instrumentation.  

II. PHYSICAL PHENOMENON OF DEAD TIME 

Detector design, geometry and material can significantly impact the phenomenon 

of dead time and pulse pile-up in addition to the operating conditions including the high 

voltage applied to a gas filled or semiconductor detector, operating temperature and 

pressure. This section discusses the physical phenomena of dead time and pile-up in 

major radiation detectors. 
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A. GAS FILLED DETECTORS 

In a gas filled detector, when an electron-ion pair is produced (say in a G-M tube) 

by radiation, the electron is accelerated toward the anode creating a cascade of secondary 

ionization leading to what is called as Townsend avalanches [i].  In G-M counter this 

avalanche propagates along the anode wire at the rate of 2-4 cm/micro-second [v] and 

eventually envelopes the entire anode.  Collection of all the negative charge results in the 

initial pulse, which lasts for a few microseconds.  However, the exact duration of the 

pulse will depend on the geometric dimensions of the counter, location of the initial 

ionization, as well as the operating voltage.  Obviously one would also expect pressure, 

temperature and the inherent nature of the fill gas (work function) impacting the charge 

collection time.  G-M counter does not provide any spectroscopic information therefore 

one is not concerned about pile-up, that is another event taking place during the charge 

collection time resulting in any pulse height resolution degradation.  All pulses from G-M 

counter are of the same amplitude irrespective of the energy of radiation initiating them.   

Although electrons are collected at the anode rather quickly, positive ions tend to 

wander longer around the anode due to their low mobility before being collected at the 

cathode.  Presence of positive charge results in severe distortion of the electric field.  Any 

subsequent event during the time when the electric field is distorted will either produce 

no pulse at all or produce a pulse with reduced amplitude, which may or may not be 

detected by the counting system.  Therefore G-M counters are prone to dead time count 

losses.  Duration of dead time will again depend on; the detector geometry, fill gas 

properties and operating condition of pressure, temperature and voltage.   
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Figure 3 illustrates the dead time, resolving time and recovery time of a GM tube.  

These three terms are unfortunately used interchangeably causing some confusion for the 

readers.  As discussed earlier, the positive ions slowly drift toward the cathode; 

consequently the space charge becomes more dilute.  There is a minimum electric field 

necessary to collect the negative charge and produce any pulse in the tube.  By strict 

definition, dead time is the time required for the electric field to recover to a level such 

that a second pulse of any size can be produced.  Just after the dead time the electric field 

gradually recovers and the amplitude of the second pulse is hampered by the presence of 

the lingering positive charge, therefore immediately after the dead time if a second pulse 

is produced, its amplitude will be reduced.   

 

 

Figure 3. Dead time representation of a G-M detector 

 

A minimum amplitude for the second pulse is needed for it to pass through the 

discrimination threshold and be recorded.  The time needed between the two pulses to 

produce this minimum amplitude second pulse is called as the resolving time of the 

detector system.  Since the true dead time is impossible to measure, resolving time is 

often referred to as dead time of the G-M counter.  Finally, after complete recombination 
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of the gas in the Geiger tube a full amplitude pulse can be produced. The minimum time 

required to produce the full amplitude pulse is called as the recovery time of the detection 

system. Typically, the dead time for a GM detector is on the order of hundreds of micro-

seconds [i].  

In proportional counters the avalanche is local, i.e. not engulfing the complete 

anode wire.  The production of initial ion pair and its subsequent multiplication is 

proportional to the energy deposited in the fill gas. Therefore the energy spectroscopy 

information of the interaction is preserved.  However, if a second event takes place within 

the charge collection time of the first interaction, the second pulse will pile- up with the 

first pulse producing a summed pulse degrading the energy resolution.  Likewise, if the 

second event takes place before all the positive ions are neutralized, the amplitude of the 

second pulse will be reduced, again leading to degradation of the energy resolution.  

Therefore for proportional counter it is more of a pile-up problem than that of dead time. 

 

B. SCINTILLATION DETECTORS 

There are two major categories of scintillators; inorganic and organic scintillators.  

In the case of inorganic scintillator, the energy state of the crystal lattice structure is 

perturbed by radiation and elevates an electron from its valence band into conduction 

band or activator sites when impurity is added (which is mostly the case) to the crystal by 

design.  Subsequent return of electron from excited state to valence band produces 

photon/light emission (Figure 4).  Detailed discussion of scintillation process is beyond 

the scope of this paper.  Interested readers are referred to the literature [vi,vii].  
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Figure 4. Energy band structure for semiconductor crystal 

 

There is some finite time associated with excitation and de-excitation of the 

perturbed sites and in many cases the decay time is composed of more than one 

component.  There is also a wide range of decay times. For example, NaI(Tl), the most 

commonly used scintillator material, has a decay time of approximately 230ns whereas 

some fast inorganic material such as BaF2 with a decay time of less than a nanosecond 

are also available.  Presence of secondary de-excitation path (e.g., Phosphorescence) can 

further complicate the phenomenon, producing light yield at much longer decay time.  

Researchers [viii ,ix] have reported large variability in the performance of inorganic 

scintillators.  In case of scintillators if the second interaction is within the dead time of 

the first interaction, the light emission from the second interaction will add to light 

emission of the first event and can potentially produce a summed peak, therefore the 

problem lands in the realm of pulse pile-up.  However, due to comparatively small decay 

times this becomes a problem only at significantly high count rates.  In the case of 

organic scintillators the excitation is that of a single molecule (for noble gas scintillators 

like Xe and Kr it is a single atom) and the electron is promoted to higher energy level.  

De-excitation of these electrons produces the scintillation photons which are responsible 
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for the pulse formation.  Most organic scintillators have a small decay constant in the 

range of nano-seconds (e.g. Anthracene solvent has a decay time constant of only 3.68ns 

[x]) and are well suited for high intensity measurements.  For scintillators, in general, the 

problem of pile-up is not as important as compared to the G-M counters.  For scintillator 

detectors, material characteristics play the most critical role in the detector performance.  

Minute amount of impurities can drastically alter detector performance including pile-up. 

Furthermore additional dead time or pile-up considerations are warranted in matching an 

appropriate photomultiplier tube or photo diodes.  Light-to-pulse conversion process (by 

PMT or photo diodes) can also add a few nano-seconds of dead time [1].  Proper choices 

of PMT electronics and operation conditions are required to optimize the system for high 

count rate applications. 

 

C. SEMICONDUCTOR DETECTORS 

 Semiconductor detector operation is based on collection of charge carried by 

electron and holes, which are produced due to radiation interaction.  Major advantage of 

semiconductor is its superior energy resolution because only a few eVs of deposited 

radiation energy is required to produce a pair of charge carrier (electron and holes) as 

compared to approximately 30 eV of radiation energy deposition to produce an ion pair in 

gas filled detector.  High charge carrier production coupled with more than thousand 

times higher density as compared to gas filled detector results in favorable characteristics 

of semiconductor detectors.  Unlike gas filled detectors where only electrons contribute 

to the signal in semiconductor detectors the mobility of holes is comparable to that of 

electrons, and hence both charge carriers contribute to the pulse formation.  The mobility 
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of the electrons and holes depends on; material characteristics, strength of the electric 

field applied and operating conditions (temperature).  For most cases the charge carrier 

mobility is on the order of 103 - 104 cm2/V-sec [xi].  Therefore for a typical detector the 

charge collection time is just a fraction of a micro-second [i].  

If a second event takes place before all the charge from the first event is collected, 

the charge carriers produced by the second event will be added to the pulse produced by 

the initial event, hence leading to the problem of pile-up.  Since both the charge carriers 

are contributing to the formation of pulses there is no dead time in the strict sense, and 

only pile-up is observed.  

The shape of the pulse is dependent on the location of the initial interaction where 

electron-hole formation takes place, and the mobility of each charge carrier in the 

material at the operating voltage. Charge carrier mobility is also a strong function of 

detector temperature. Voltage applied to the p-n junction causes the depletion layer to 

grow and hence increases the active volume of the detector (Figure 5). Therefore detector 

geometry, operating voltage, and temperature play important role in pile-up time for a 

semiconductor detector.  

 

Figure 5. A p-n junction with reverse bias as a semiconductor detector 
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III. DEAD TIME MODELS 

Over the last sixty years many researchers have proposed models to correct for 

dead time.  These models rest on the assumption that a Poisson distribution exists at the 

input of a detector.  In one of the earliest papers on this topic, Levert and Sheen [xii], 

demonstrated that the frequency distribution of discharges counted by a Geiger-Muller 

counter is not necessarily a Poisson distribution. Rather it depends on the resolving time, 

which may be comparable to the observation interval.  Feller [xiii] and Evans [ii] have 

developed the two basic types of idealized models for dead time, i.e., type I or 

(nonparalyzable model) and type II (paralyzable model), respectively.  The paralyzable 

detection system is unable to provide a second output pulse unless there is a time interval 

equal to, at least the resolving time  between the two successive true events.  If a 

second event occurs before this time, then the resolving time extends by .  Thus, the 

system experiences continued paralysis until an interval of at least  lapses without a 

radiation event. This interval permits relaxation of the apparatus.   

Based on the interval distribution of radiation events, the fraction of those events 

which are longer than  is given as , where n is the average number of true events 

per unit time.  Product of this fraction with the true count rate provides the observed 

count rate;  

.                   (1) 

 

The nonparalyzable or the type I detector system is non-extending and is not 

affected by events which occur during its recovery time (dead time) . Thus the 

apparatus is dead for a fixed time τ after each recorded event. If the observed counting 
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rate is m, then the fraction of time during which the apparatus is dead is . The fraction 

of time during which the apparatus is sensitive is . Thus, the fraction of true 

number of events that can be recorded is given as; 

 

       
                      (2) 

 

or         .                                        (3) 

 

For low count rates, both these models give virtually the same result, but their 

behavior is a lot different at higher rates (Figure 6).  The count loss in a paralyzable 

model is predicted to be much higher than in nonparalyzable model.  As one can see that 

at extremely high count rates the paralyzable systems do not record any counts.  

 

 

Figure 6. Paralyzable and nonparalyzable models of dead time 

 

Feller [xiii] while proposing the idealized dead time models pointed out that the 

actual counter behavior is somewhere between the two idealized cases.  This can easily 
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be shown by Taylor expansion of the paralyzing expression and by truncating after the 

first terms results in nonparalyzable expression.  By retaining higher order terms, the 

result approaches that of a paralyzable model, as shown in Figure 7.  The first attempt to 

develop a generalized dead time model was reported by Albert and Nelson [xiv].  Albert 

and Nelson’s generalized approach is based on associating a probability θ for detector 

getting paralyzed. The value of θ can vary from 0 to 1.  Thus, for a generalized dead time 

model, only a fraction θ of all incoming events are capable of triggering an extension of 

the dead time.  For the extreme case, θ=1, the model approaches Type II (paralyzable). 

For the other extreme, θ=0, the model becomes type I (nonparalyzable).   

 

 

Figure 7. Taylor expansion of paralyzable model 

 

  The major contribution in generalized approach for dead time came from 

Takacs’s [xv] who was the first one to obtain Laplace transform of the interval density 

for generalized dead time.  Muller in a series of reports and publications [xvi,xvii,xviii ] 

further simplified the generalized model given by Takacs.  The output (observed) count 

rate (m) for generalized dead time can be expressed as, 
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                             (4) 

where  is the generalized dead time and θ is the probability of paralysis.  

Another representation of this development is presented by Lee and Gardner [xix] 

who made use of two independent dead times.  The hybrid model proposed by them;  

 

                 (5) 

makes use of the paralyzable dead time  and the nonparalyzable dead time .  Least 

square fitting of the data obtained from the decaying of Mn56 source, they obtained the 

two required dead times for a GM counter.  While in their discussion the order of the two 

dead times was alluded, but not identified precisely.  It appears that for G-M counter they 

placed a nonparalyzable dead time before the paralyzable dead time.  They did not offer 

any justification for this order of the two dead times.  Obviously one would expect a 

significant change in the dead time behavior if the order of the two dead times were 

reversed.  The hybrid model is a good application of the generalization originally 

proposed by Albert and Nelson [xiv]. However, Lee and Gardner did not offer any 

practical method to determine the two dead times.  

Patil and Usman [xx] presented a graphical technique to obtain the two 

parameters for a generalized dead time model using data from a fast decaying source.  

They offered a simple modification to the hybrid model [xix] simplifying it back to 

another form of the original Takacs equation (equation 4); 

 .                (6) 
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In their paper, Patil and Usman, referred to the probability of paralyzing as the 

paralysis factor . Measurements were made to obtain the paralysis factor and the dead 

time for an HPGe detector.  Using the graphical technique they found the dead time of 5-

10 micro-second and the paralysis factor approaching unity.   

Hasegawa and co-workers [xxi] proposed a technique of measuring higher count 

rates based on the system clock.  Realizing that in some parts of the data acquisition 

system processing is performed on fixed system clock.  Latching or buffering system is 

used to retain system information temporally to synchronize output event with the system 

clock.  This latching capability allows the system to measure more counts than the 

standard nonparalyzable model.  Their system has the ability to record one event per 

system cycle irrespective of the timing of the arrival of the true events.  Unless there are 

no true events, one event is recorded per system cycle.  This way the system is able to 

record more events than the nonparalyzable system.  Based on Poisson distribution of the 

input count rate the on clock nonparalyzable count loss model’s observed count rate is 

expressed by,  

 .               (7) 

 

For a fast system clock there can be significant improvement in the counting 

efficiency.  This model is considered to be of the nonparalyzable kind, however, by 

relying on the system clock it counts more than a standard nonparalyzable model. 

 



22 

 

IV. DETECTION SYSTEM DEAD TIME MEASUREMENT AND CORRECTION 
METHODS  

One of the simplest methods of estimating the overall dead time of a counting 

system is the two-source method originally developed by Moon [xxii] and later 

incorporated in the work of other researchers [xxiii , xxiv]. This method is based on 

observing the counting rate from two sources individually and in combination. Because 

the counting losses are nonlinear, the observed rate of the combined sources will be less 

than the sum of rates when the two sources were counted individually and the dead time 

can be counted from the difference.
 

The advantage of the two-source method is that it uses observed data to predict 

the dead time. Because the two-source method is essentially based on observation of the 

difference between two nearly equal, large numbers, careful measurements are required 

to get reliable values for the dead time.   

Repeating well-defined geometry is necessary to measure dead time using two-

source method which might be difficult in some situations.  A dummy source is used to 

replicate the exact geometry when counting the sources individually.  Likewise if the 

background is not negligible the algebraic expression for the dead time is little more 

involved.  It is also important to point out that in order to achieve good measurements 

counting statistics must also be incorporated in the experiment.  In some cases scattering 

from surroundings may also influence the measurements. 

The Decaying source is another commonly used method for measuring overall 

dead time of detection system [i]. This technique, which requires a short lived 

radioisotope, is based on the known behavior of a decaying source where the true count 

rate varies as: 
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                (8) 

 

where  is the true rate at the beginning of the measurement and  is the decay 

constant of the particular isotope. Assuming negligible background and substituting (8) in 

the expression for the non-paralyzable model i.e., , one obtains:  

 

.                (9) 

 

If  is plotted as the abscissa and as the ordinate the slope of the straight 

line so obtained would be .  The initial true rate  can be obtained by finding the 

intercept of the straight line with the y-axis (Figure 8).  Finally the dead time is calculated 

by taking the ratio of the slope ( ) with the intercept ( ). Similar procedure can be 

carried out for the paralyzable model, where the abscissa is taken to be  and the 

ordinate is taken to be .  In this case, the slope again would be  and the 

intercept is .  

 

Figure 8. Decaying source method for (a) nonparalyzable and (b) paralyzable model 
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The decaying source model has the advantage of not only measuring the value of 

dead time, but also testing the validity of the idealized paralyzable and nonparalyzable 

models.  However, care should be taken that the isotope used for this technique is pure 

with a single half-life, which is not too long or too short such that the entire counting rate 

range can be measured in a reasonable time.  The half-life of the decaying isotope must 

be known with good accurately.  A disadvantage of this method is that it takes a long 

time for dead time determination.  Yi and coworkers recently applied the decaying source 

method for calibrating dose rate meters [xxv] and reported good success. 

Another variation of the decaying source method could be when a constant source 

is measured at various distances from the detector.  However the distance between the 

source and the detector must be measured accurately because of the 1/r2 dependence of 

the observed count rate and inaccuracies in the distance measurement will be squared.  

For low intensity measurements the distances is usually not very long consequently the 

geometric variability (assumption of point source-point detector is no longer valid) may 

also contribute to the overall quality of the measurement.  Scattering from the 

surroundings or even the air between the source and the detector can also complicate the 

measurements.  This is particularly true for high energy sources where the scattering 

interactions could be complex. 

Patil and Usman [xx] contributed to the effort by proposing a modified decaying 

source method to measure the two detector parameters i.e., the dead time and the 

paralysis factor of the detector system.  The detection system consisted of the radiation 

detector, preamplifier, amplifier and multichannel scaler.  HPGe detector was tested 

using a short lived isotope (Mn56 and V52).  A multi-channel scaler with zero dead-time 
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was used to collect the decay statistics.  The plot below (Figure 9) shows the 

characteristic rise and fall behavior as the source decays away.  

 

 

Figure 9. Characteristic decay of V52 with HPGe counting system 

 

The two variables in equation 6 were introduced: the total dead time of detection 

system  and the paralysis factor , which is a property of a detector system and tells 

about the amount of paralysis present.  

 The paralysis factor for a detection system is the ratio of paralyzable-to-total-

dead-time.  The paralysis factor is calculated from the rise time of the isotope decay 

curve.  The dead-time is interpolated from the maximum peaking count curve which is a 

property of a detector.  This method has advantage over other methods that in the 

calculation of dead time, there is no assumption made about the kind of model associated 

i.e., paralyzable or nonparalyzable.  Further, this technique, which can be used at high 

counting rates, calculates the overall dead time for the detection system which includes 

the radiation detector. 
 

Pomme [xxvi, xxvii , xxviii ] has contributed significantly to the study of Pile-up 

and dead-time.  His work addresses the count loss issues in counter systems when pile-up 
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losses and dead-time occur in combinations as a series arrangement of dead-time.  In this 

work, a counter is injected with artificial dead time (paralyzable and nonparalyzable) for 

every counted event to calculate the count losses and errors arising due to both the pile-

up and dead time.  Based on the assumption that the arrival time of events in the 

spectrometer is stochastically distributed based on an exponential distribution, and the 

assumption of the stationary process with a stable input rate n, Pomme modeled each 

electronic pulse with a finite width .  The count loss mechanism competes with the 

fixed dead time imposed (paralyzable or nonparalyzable) on every counted event and 

combination of pile-up and dead time can be seen as equivalent to a series arrangement. 

Further, the model calculates the average output rates for a cascade of pile-up with 

nonparalyzable dead time:   

 

              (10) 

 

and for pile-up with paralyzable dead time: 

 

                       (11) 

 

    Where,     . 

 

In addition, Pomme has calculated the error caused by the cascade effect on the 

loss-corrected count rate. This calculation can be done in either of two ways: 
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Measurement can be made in ‘live time mode’ while relying on the obtained real-time-to-

live-time correction factor, or, they can be made by working in real-time mode and 

explicitly using the inverse throughput formula.  However, Pomme makes paralyzing 

dead time and nonparalyzing dead time assumptions to calculate the system dead-time 

while these are the two extreme cases for dead time determination.  

The method proposed by Galushka, and reviewed by J.W. Muller [xxix], can be 

applied for online correction of counts lost due to dead time.  The dead-time losses are 

restored based on the assumptions that the incoming pulses from the detector are purely 

Poisonion, and that the dead time remains constant and is of the nonparalyzable type. 

Figure 10 shows the arrangement of incoming arrivals with fixed dead time .  

 

 

Figure 10. Relationship between (a) the observed arrival times Tj followed by a dead  
time τ (b) the corresponding Poisson process tj 

 

If one removes the observed sequence T1, T2,… of arrival times along with the 

corresponding paralysis duration, a new sequence (b) of arrivals, 

 

      
               

                  
(12) 
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is obtained such that  itself is a Poisson process.  The losses in this method can be 

estimated based on a logical circuit that fits the new series  (for K occurrences) into the 

fixed dead time as lost events in the original Poisson process.  Based on this correction, 

additional pulses can be electronically added to the counting circuit to compensate for the 

lost pulses. 

However if the artificially added pulses are a significant fraction of the total 

corrected count rate, then the new averages are no longer independent events.  Thus the 

accuracy of the output becomes doubtful. Moreover, there may be issues with averaging 

the count rates, i.e., imprecise correction factors, and care must be taken to use 

appropriate observation intervals to determine average arrival interval.  Further this 

method is not applicable to fast varying sources (e.g., fast build up or decaying isotopes) 

with sharp rise and fall behavior.  Since the correction pulses are generated based on the 

observation of the previous averaging time, therefore the correction circuit may under-

correct or over-correct around the peaking point and thus introducing additional errors in 

the final corrected count rate.  This shortcoming can be removed by additional level of 

checks for the count loss correction data. After the actual logical circuit proposed by 

Galushka, one can have additional circuit to compare between the original count and the 

corrected count rate to correct for any over/under compensation for fast varying source.      

This method has not so far been given the attention that it deserves.  Muller 

suggested that this method cannot be applied to paralyzable dead times.  This limitation 

may not be true and further work is needed to investigate the feasibility of extending this 

method for paralyzing dead times.  Incorporating a known expression of extendable dead 

time, which could depend on count rate and using the extendable dead time for all 
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corrections may be a plausible solution to the limitation.  Likewise, as Muller pointed out 

this method compromises on accuracy, however additional research can possibly 

overcome some of these deficiencies.  

 

V. METHODS FOR MEASURING INSTRUMENTATION DEAD TIME 

In the previous section some important methods and techniques were discussed 

which are used to measure the overall dead time of the entire measurement system.  Dead 

time of the entire measurement includes not only the dead time introduced in the detector 

while generating these random pulses but also the additional dead time introduced in the 

electronic pulse processing.  Techniques and methods have been developed to measure 

the dead time associated with the electronic components involving pulse processing.  

This section will briefly discuss a few of those important techniques and methods.   

The two-source method discussed in previous section was modified by Baerg 

[xxx] with the use of a source-pulser combination.  Muller [xxxi] later developed a 

technique with the use of two pulse generators for better dead time characterizations.  

Another variation of the two-source method was proposed by Schonfeld and Janssen 

[xxxii], in which electronic switches were used to keep the source geometry fixed, to 

achieve ideal measurement conditions. Vinagre and Conde [xxxiii ] developed a method 

for instrumentation dead time measurements based on introducing variable delays 

between the true pulses from a detector and generated ones from a pulser, to measure the 

output count rate and corresponding dead times.  

Another pulser based technique was introduced by Strauss and co-workers, 

[xxxiv] who developed a solid-state pulse generator along with electronic circuitry to 
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count logic pulses for true and observed radiation events.  It is to be noted that the dead 

time calculated with all the methods described below is only the instrumentation dead 

time and one is required to add the detector dead time to obtain the overall dead time of 

the counting system. 

Baerg [30] proposed the modified source-generator method (MSGM), which is 

one of the earlier methods of instrumentation dead time measurement using a variation of 

the two-source method. His technique replaces one of the sources with a periodic pulse 

generator which is connected to the amplifier along with the signal from a detector. As a 

result of using one artificial pulse, the combined probability of counting is determined by 

the random pulse interval distribution which is originating from the lone source.  By 

counting the random pulse alone and then in combination with the periodic pulses gives 

two simultaneous equations which can then be solved for dead time. 

If the periodic pulse rate is  and random source rate is , and the total 

counting rate is , then the dead time can be shown as;   

.                     (13) 

 

The two-source method was derived only for nonparalyzing dead times, however, 

with proper modifications the MSGM can be extended for paralyzable dead times.  In 

addition, this method has two advantages: first, it requires no special sources and, second, 

since only one source is required and because it remains fixed during the course of 

measurement, no uncertainty arises from its positioning.  It is however important to note 

that the pulse repetition rate of the pulse generator must be stable and the pulses 
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generated must be of identical shape and size from that of the detector. 

  In a similar approach, called as the Source-Pulser method [xxxv,xxxvi] the 

input pulse train, which is the superposition of pulses from a source and from an 

oscillator is fed into the preamplifier test input.  The numerical value of the dead time for 

paralyzable and nonparalyzable systems can be calculated.  It is observed that the 

superposition of regularly spaced pulses the ones from the source, gives rise to some 

complicated interval densities. Other researchers [xxxvii ,xxxviii ] have treated the 

problem rigorously and derived the corrections applicable for the nonparalyzable case.  

The two-oscillator method proposed by Muller [xxxix,xl] mixes the periodic 

pulses of two entirely independent quartz oscillators and feeds the combined pulse to the 

dead-time unit.  The frequencies need to be as high as possible while being smaller than 

one half of the reciprocal of the dead time ( ). In addition, the difference 

between the frequencies of the two oscillators should be small.  The simplified expression 

for dead time for this case is given by; 

 

                               (14) 

 

where, , , and are the count rates in the singles and sum channel for time interval 

t.  The main advantages of this approach are its simplicity and accuracy.  The fact that no 

radiation detector is involved here, the impact of background or noise is avoided, because 

of which the final expression is much simplified unlike the two source method with 

background term included.  This method can also be a used as a check for extendable 

dead time, by using variable frequencies and measuring the dead times thus obtained. 
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Schonfeld and Janssen [32] have modified the two-source method, calling it the 

modified two-source method (MTSM). This method uses two detectors with two fixed 

sources, and switches S1 and S2 for singles and sum counting. Measurements are taken 

with three different switch combinations yielding seven count rates.  Based on the ratios 

of obtained count rates the simplified expression for dead time is given as; 

 

                     
(15) 

 

where , , and  are count rates obtained by operating the switches in different 

positions.  

This method, overcomes the some of the problems arising due to counting 

statistics and scattering because of the geometry at the cost of some extra 

instrumentation.   Each of the seven measurements for the count rate have some inherent 

uncertainty associated with it. With the ratios taken to arrive at the dead time, the error 

will further propagate.  Thus, care must be taken to check each individual unit, especially 

the known dead time circuit before the experiment is conducted. 

Vinagre and Conde [33] have suggested a method to measure the effective dead 

time of a counting system based on the artificial piling-up of the detector pulses with 

electronic pulses delayed by a specific time interval.  This method is different from the 

pulser method described above in that here the dead time is estimated based on time 

correlation between the pulses from the detector and those from the pulse generator.  In 



33 

 

the experiment, signal from the detector is passed through a preamplifier (PA) and a 

linear amplifier (A). A pulse discriminator then converts it to logic pulse (free of noise) 

and it further goes to an electronic counter (EC) or gets processed through an MCA.  The 

pulse rate at the output is measured as a function of the delay introduced between the 

detector pulses and the electronically generated pulses. 

  For no delay the pulses are summed and the counting system cannot resolve the 

electronic pulses from the detector pulses.  By increasing the delay beyond the system 

effective dead time, the measured count rate increases quickly as the counting system is 

capable of resolving the events. The effective dead time is obtained from the point where 

the count rate is the mean of the maximum and minimum total count rate. This method 

can be applied to most counting systems using a radiation detector. It cannot be applied to 

the cases in which the detector itself has a large intrinsic dead time.  The DMP method 

requires extra instrumentation, and the effect of this instrumentation (uncertainty with 

each unit) on the dead time measurements should also be analyzed.  

There are many variations for measuring the instrumentation dead time and one 

such approach makes the correction with the insertion of an electronic unit with a fixed 

dead time in the analog or digital part of the signal chain.  The basic requirement for this 

technique is that the inserted dead time must be longer than the dead time of any other 

unit of chain [xli,xlii ,xliii ].  Other variation of the source-pulse technique discussed 

above is known as the pulser method which uses the pulses from an electronic pulse 

generator, with known frequency, to mix them with detector pulses [xliv ,xlv,xlvi].  

Additional procedures to deal with dead time involve the detection of pile-up pulses with 

electronic PUR (Pile-Up Rejecters) [xlvii ,xlviii ] circuits or their correction using digital-
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processing techniques [xlix].  

The pulser technique with event tagging proposed by Strauss and co-workers [34] 

uses a pulse generator of known repetition rate. The pulser input is mixed with the pulses 

coming from the detector at the preamplifier which is followed by a multichannel 

spectroscopy system.  A pulse selector unit is used which sends logic signal to a scaler 

with AND gate.  When a busy signal is sent by the pulse selector the scaler does not 

record the count.  Therefore it only counts the observed events during the AND gate and 

rejects events when the system is busy. Another scaler is used to count the original 

incoming events into the preamplifier. The fractional difference between the contents of 

the two scalers gives the overall dead time estimate.  

In this method care must be taken that the events in the AND gate from MCA and 

pulser coincide well within a short time interval for true data collection. Alternatively an 

OR gate could be used instead of the AND gate to count for the sum of original and 

observed count rate in one of the scalers for dead time calculation.  While this method is 

straightforward, it misses out on accounting for the dead time arising from the detector, 

which the user will need to calculate separately to find the total detection system dead 

time.  

 

VI. CONCLUSION 

Years of research on dead time has produced new models and techniques to 

clarify our understanding of the subject of detection system dead time and pile-up.  By 

knowing the system dead time along with pulse pile-up, one can easily find the losses 

occurred in a given interval of time and estimate the original count rate.  The traditional 
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one parameter models for dead time determination are becoming increasingly insufficient 

in modeling the true behavior of counts lost.  Thus there is a need for a more realistic 

generalized model which better characterizes the detector dead time.  The concept of a 

two parameter generalized dead time, which has been introduced decades ago by Albert 

and Nelson [14] and Muller [18], has however not been embraced by the community 

because of the challenges in its application. The main issue in the realization of a 

generalized dead time remains the development of measurement techniques, to estimate 

the two parameters. Some of the recent studies [19, 20] have developed generalized 

models and techniques to estimate a total dead time for a detection system. 

For many applications the bottleneck in pulse counting occurs in the electronics 

and instrumentation part of the detection system.   A number of methods are available to 

determine the dead time and pile-up caused by the instrumentation systems.  The 

pioneering work of Pomme [26] and others have shown the possibility of having dead 

time and pile-up occur in cascades, and given methods to correct for count losses due to 

such phenomenon.  Many studies have assumed a pure Poisson distribution at the input of 

the electronic devices in calculation of the instrumentation dead time.  This assumption 

made by many researchers is incorrect, as presence of dead time in the previous 

electronic modules and the detector itself may change the original Poisson distribution 

from the radioactive source.  There are only a few researchers that are incorporating this 

fact and one needs to take note of this while estimating the count loss.   

In addition, for many application oriented users, the distinction between the dead 

time and pulse pile-up is not obvious and in some cases the naïve researcher incorrectly 

believes that MCA live-time correction is capable of correcting all types of dead time 
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losses.  The MCA live-time time correction can only correct for the time lost in the 

analog to digital conversion, and  not the losses originating in the detector or electronic 

modules. Thus one must thoroughly understand the working of every single unit in a 

detection system before making any kind of assumptions to estimate the detector dead 

time.  

 

VII. NOMENCLATURE: 

n = True count rate 

m = Observed count rate 

 = Dead time 

 = Paralyzing dead time  

 = Nonparalyzing dead time 

 = Pulse width 

 = Paralysis factor  

= Probability of paralyzing  
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2.  MEASUREMENT AND APPLICATION OF PARALYSIS FACTOR FOR 

IMPROVED DETECTOR DEAD TIME CHARACTERIZATION 

Amol Patil, and Shoaib Usman 

ABSTRACT: This paper describes the finding of an experimental study to measure 

detector paralysis factor and the use of this parameter in conjunction with detector dead-

time to better model detector dead time response.  The idealized one-parameter; 

paralyzable and non- paralyzable models are inadequate to properly model dead-time 

response of any real detector system.  To address this deficiency, a more realistic two 

parameter model is proposed which incorporates paralysis factor of the detector in 

addition to the dead-time.  The revised two parameters based model is an extension of 

Lee and Gardner’s two dead-times model.  A simple scheme is proposed to deduce these 

parameters from the recorded data based on rise and drop of count rates from a decaying 

source.  Measurements were made using 56Mn and 52V.  The data collected in this study 

shows that a high purity germanium (HPGe) detector has a paralysis factor of close 50-

77% and a dead time of 5-10µs.  Using the data collected by Lee and Gardner, the 

paralysis factor for a Geiger-Muller (G-M) counter is estimated to be approximately 5%.  

These results are consistent with the approximating assumption that GM counters are 

non-paralyzable and HPGe detectors are paralyzable. 

Index Terms — Dead time Model, Detector Paralysis, Loss of Count Rate, Decaying 

Source Method, Germanium radiation detectors. 
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1.  INTRODUCTION 

All detectors systems under intense radiation environment exhibit count loss due 

to dead-time.  As the name implies, dead-time is an interval of time during which a 

detector is unable to respond to a new event that would ordinarily produce a count.  

During this time the detector is said to be ‘dead’ or ‘paralyzed’.  Therefore, for every 

detector system there is a minimum amount of time which must separate two events in 

order for them to be recorded as two independent events.  

The total dead time of a detection system is due to two contributing factors.  

Firstly, the intrinsic dead-time of the detector itself leads to count loss.  This intrinsic 

dead-time of the detector depends on the physical phenomena involved in radiation 

interaction and detection.  For example, a GM counter could be dead during the charge 

collection time while positive ions are drifting to the wall and the electrons are being 

collected at the anode.   For a simple counting system this intrinsic dead-time also 

includes the initial pulse processing in the pre-amplifier and possibly the amplifier unit.  

Figure 1 demonstrates the sources of dead-time in a typical counting system.   

 

 

 
 

 



42 

 

 

Figure 1.  Sources of a counting system’s dead time 

It is important at this point to discuss the phenomenon of pile-up, which is closely 

associated with the phenomenon of detector dead-time.  Pile-up is the phenomenon when 

a single pulse is produced as a consequence of two or more events in the detector.  Or in 

other words, multiple pulses are superimposed leading to a ‘summed peak’ in a 

spectroscopy system. This results in count loss and degradation of spectrum resolution. 

The other source of count loss is due to the finite time associated with pulse 

processing in the electronics.  The most significant contribution in electronic dead-time is 

from the analog to digital converter (ADC) module for pulse height analysis.  Thus there 

is a need for correction at two different levels, i.e. to correct for the system-circuitry 

generated losses and the inherent internal losses of the detector itself.  With the help of 

modern electronics and available software systems, circuit dead-time is corrected by 

measuring for live-time. Live time is the sum of the real-time and the lost time during 

ADC conversion.  Live-time correction will only address the counts lost during the 

spectral analysis – that is while the MCA is sorting the first pulse to select the correct bin 

appropriate for its height.  During this time if a second pulse is presented by the detector 

system to the MCA, it will be lost.  It is important to point out that live-time correction 

will not recover the loss of pulses in the detector system.  Due to pile-up, pulses 

presented to MCA are convolution of two or more detector events and no MCA system is 

able to perform the de-convolution to separate the two or more events responsible for the 

piled-up pulse.  Therefore in addition to live-time correction, the detector observed 

counts need to be corrected using a suitable model.  The central theme of our work is to 
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develop an experimental technique to measure detector system’s count loss.  This 

manuscript will present; 

a) A revised two parameters model based on paralysis factor and detector 

dead-time, which is an extension of Lee and Gardner’s [1] hybrid 

model. 

b) A practical method to measure paralysis factor and detector dead-time 

using an intense fast decaying source. 

 

The detector dead-time correction is critical in many medical as well as high 

precision spectroscopy applications [2, 3].  Likewise, for nuclear reactor application and 

monitoring of spent fuel, dead-time correction is vitally important [4].  When the detector 

system is operated in current mode, the effect of dead-time is not as obvious; however, 

slow and reduced response to radiation intensity changes is the result of detector dead-

time in current mode operation.   

Detector dead-time has been a topic of interest for more than five decades now.  

Recently, researchers [5, 6] have proposed dead-time compensation techniques to 

automatically correct for dead-time losses.  However, there is no realistic dead-time 

model commonly acceptable to the radiation measurement community.  Most models 

presume the detector behavior to be either paralyzable or non-paralyzable [7,8,14,16].  

Based on this assumption a dead-time is calculated and correction is applied.  The 

response of any real detector lies in between the two idealized models.  This research has 

developed a method to measure the extent of paralysis.  Based on this “paralysis factor,” 
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and the detector dead-time, a more realistic two parameter dead-time correction model is 

proposed.  The new model does not require any idealized assumption about the detector 

being paralyzable or non-paralyzable detector.  Therefore, using this new model, detector 

response can be described in a more precise manner.  

 

2. BACKGROUND – DEAD TIME MODELS AND MEASUREMENT  

The non-paralyzable or Type I model given by Feller [7] and Evans [8] is perhaps 

the simplest and most widely used representation of detector loss of count behavior.  This 

model essentially states that the dead time remains fixed and any events taking place 

during this time are lost.  However, after this fixed duration of time, independent of the 

number of events lost during the time, the detector fully recovers.  Therefore, if ‘m’ is the 

observed count rate and ‘n’ the true count rate then the non-paralyzable model is given 

as; 

   or                            (1) 

 
The paralyzable model or the Type II model also proposed by Feller [7] and 

Evans [8] assume that the duration of paralysis is not fixed but is extendable.  The 

extension in dead-time is dependent on actual count rate.  That is, if a second event 

occurrs during the dead-time before the detector is fully recovered, the event will be lost 

and the paralysis will prolong for another fixed duration of time.   Mathematically; 

  
                                                             (2) 

 



45 

 

 

 

Both these models are the highly idealized and the response of an actual detector 

is likely to fall in between the two extremes.  Müller [9] showed that an expansion series 

of the paralyzable equation (2) leads to; 

 

                                      (3) 

 
 

And in fact, the non-paralyzable model is an approximation of the paralyzable 

model, when only the first two terms are included in the expansion.  Response of an 

actual detector which may fall between the two idealized models can be represented by 

including an appropriate number of terms in the denominator of equation (3).  Figure 2 

graphically shows the two idealized models and two approximation including first 4 and 

first 6 terms of the Taylor’s expansion.  As Müller [9] concluded, the two traditional 

dead-time models are arbitrarily chosen mainly for convenience and that the actual 

experimental results “always fall somewhat in between” the two models. Subsequently, 

additional efforts are made to develop a more realistic model to describe dead-time 

behavior of an actual detector.  Gardner and Liu [10] studied the feasibility of developing 

a true count rate dependent dead-time formula.  And use of this variable dead-time to 

estimate the true count rate from the observed count rate.  They also reported the 

inadequacy of the simple idealized models (equation 1 and 2) to predict the actual 

behavior.   
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 Figure 2.  Taylor expansion of paralyzable model 

 
Probably the most notable work to better describe the dead-time behavior is the 

hybrid model proposed by Lee and Gardner [1].  This two parameter model takes into 

account both non-paralyzable and paralyzable dead-times. This is the only model so far to 

have both kinds of dead-times incorporated in the equation;   

 

                                                          (4) 

 

Lee and Gardner [1] applied their new model to study the dead-time behavior of a 

Geiger-Mueller counter and reported good success in extending the useful range of GM 

counters.  

Several techniques have been developed to measure the dead-time [11, 12] of a 

detector system.  However, most of these techniques require an assumption to be made 

about the applicability of one of the two idealized models.  The two most commonly used 

methods are; the two source method and the decaying source method [13, 14].  A single 

source can also be used at varying distance from the detector to measure the dead-time 
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for a wide range of count rates.  However, in view of several practical challenges 

including; interference from scattered radiation, questionable validity of point source and 

point detector assumption and the uncertainty in distance measurement, this technique 

has not been used extensively.  Therefore, the two source method and the decaying 

source method remain the most widely used experimental methods to measure detector 

dead-time. Gardner and Liu [10] have provided a detailed description of these techniques.   

 

3.  MODEL AND MEASUREMENT TECHNIQUE  

The hybrid model proposed by Lee and Gardner [1] has many advantages 

including a sound physical basis for GM counters.  We have made a slight modification 

to this model, that is, instead of using both dead-times for non-paralyzable and 

paralyzable, i.e.  and , a single total dead time and a ‘Paralysis Factor’- f , is 

used to model the dead time response;  

 

                                                      (5) 

 

The paralysis factor (f), is an inherent property of the detector system and is a 

measure of the dead-time elongation as a consequence of a second or subsequent event.  

In other words, an ideally paralyzable detector would have f =1 and an ideally non-

paralyzable detector will have f =0.  Measurement of two dead-times would require 

careful monitoring of detector recovery process using an oscilloscope and separate 

observation of the two dead-times (i.e.  and ) under the operating condition.   
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The advantage of using the paralysis factor based dead-time model over the 

traditional one parameter models is that no presumption about the detector being ideally 

paralyzable or non-paralyzable is required before using the raw data to estimate the dead-

time.   

 
When a detector is exposed to a fast decaying source, it is observed that after the 

initial period of absolute paralysis (when the observed count rate is zero), the observed 

count rate increases to a maximum value before decreasing due to the decaying source.  

Moreover, the initial rise is highly dependent on the extent of paralysis.  In the case of 

non-paralyzable detector, the increase is rapid and a step increase in count rate is 

observed.  On the other hand, if the detector is paralyzable, a slow increase in the count 

rate is observed.  Moreover, it was observed that the time to reach peak observed count 

rate, also depends on the decay constant (or half life) of the decaying source. 

 

The typical behavior of a realistic detector is shown in Figure 3.  If the initial 

count rate before the introduction of the fast decaying source was small (i.e. either 

background or a very weak constant source) and the initial activity of the fast decaying 

source is strong to ensure absolute paralysis, a drop in count rate will be observed.  

Depending on the initial strength and the half life of the fast decaying source, the detector 

will remain completely paralyzed for some duration of time, until the true event rate has 

reduced to a level that the detector is able to process the information.  From this point on, 

the count rate will increase.  The observed count rate will soon become equal to the count 

rate before the introduction of the fast decaying source (mRf).  The observed count rate 
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will continue to increase till it reaches a maximum value (mpeak).  Subsequently, the 

observed count rate will decrease as the fast decaying source diminishes to zero.  

 

   
Figure 3.  Typical peaking behavior of a realistic detector 

 

This rise and drop of observed count rate can be explained with the help of Figure 

4, which shows the effect of true count rate on the observed count rate under the 

assumption of either ideally paralyzable detector or ideally non-paralyzable detector. 

 
Figure 4.  Observed vs. true count rate 

 
 

The curve in Figure 4 shows that for non-paralyzable detector, an increase in the 

true count rate will result in an increase in the observed count rate which approaches an 
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asymptotic value of .  The paralyzable detectors exhibit a different behavior.  At low 

count rates, an increase in the true count rate results in an increase in the observed count 

rate.  However, a maximum count rate of   is observed when the true count rate 

is .  If the true count rate is increased further, the observed count rate will decrease.  

This situation may be referred to as ‘over-killing’.  In fact, if the true count rate is 

extremely high, the detector can be completely paralyzed and no counts would be 

observed.  Likewise, the term ‘under-kill’ can be introduced to describe the situation 

when the true count rate is lower than  and hence an increase in the true count rate 

would yield an increase in the observed count rate.  Maximum count rate will be 

observed at the point when the true count rate is exactly  .  This point can be referred 

as the “peaking point.’  

As suggested by several previous researchers [1, 9, 10] all real detectors are partly 

paralyzable.  It was observed in this research that the rise and drop of the observed count 

rate with decreasing true count rate is the characteristic of a given detector.  Moreover, 

the rate of rise and fall depends on the extent of paralysis.  For an ideal non-paralyzable 

detector, the rise due to the introduction of a strong source will be instantaneous.  While 

an ideal paralyzable detector will have a much slower response.  Depending on the extent 

of paralysis, the actual detector’s behavior falls in between the two ideal cases.   

We proposed to make use of this characteristic rise and fall of count rate observed 

by an actual detector to measure the paralysis factor of the detector in question.  In fact, 

the data collected in the decaying source method is adequate for the purpose of 

determining the paralysis factor as well as the detector dead-time.   
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When a decaying source experiment is conducted in the presence of a constant 

background, ( ), before the introduction of the decaying source, the observed count 

rate is; 

                                                     (6) 

 
 

This would be the case of under-kill.  When a high-activity, fast-decaying source 

is then introduced, the detector is over-killed and the observed count rate is zero.  This 

over kill situation will continue till the fast decaying source has diminished to a level 

such that the detector begins to respond.  Shortly after this time the observed count rate 

will return to the background count rate which one could use as a reference count rate 

( )  which is equal to .  However, the true count rate at this point ( ) is much 

higher than the background.  It is because of the over killing that the observed counts are 

so small; 

                                                  (7) 

 
 

The count rate will continue to increase and will reach the peaking count rate 

at a true count rate; 

                                                        (8) 
 
 

Where,  is the initial true count rate and is the time lapse between and 

.  While λ is the decay constant for the fast decaying source.  At this point the 
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observed count rate would be;  

                                                  (9) 

 
 

 
Moreover, at this peaking point; 
 

                                                         (10) 

 
 

The above four equations (6, 7, 9 and 10) have four unknowns; , , f, and, τ.  

Therefore, in theory one can solve for the unknowns.  Or one could use standard curve 

fitting techniques to determine the four unknowns using the entire set of data points.  

However, because of the model being an ill-conditioned problem an explicit analytical 

solution is not feasible.  Regression solution using standard tools like SigmaPlot failed to 

converge on a solution due to singularity problem.  We feel that the complex non-linear 

nature of the model equations is responsible for this non-convergence.   To avoid this 

problem we have devised a graphical technique to determine both the paralysis factor and 

the detector dead-time.  

 
When these underkill-overkill-full recovery experiments were conducted, it was 

found that the peaking and decay of observed count rate depends on some characteristic 

property of the detector and the decay constant of the fast decaying source.  To facilitate 

inter-comparison of these experiments, the sampling time was normalized with the half 

life of the decaying source.  At this time it was observed that the half rise time that is the 
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time from half peaking-value to peaking-value depends solely on the paralysis factor.  It 

was found to be independent of dead-time, half life of the decaying source and the initial 

activity of the decaying source.  This is true particularly if the initial background activity 

is small/negligible.  A plot of paralysis factor vs. rise time is shown in Figure 5.  It is 

important to point out that this rise time (i.e.  to ) is unitless because of the 

normalization.  Figure 5 can be useful for determining the paralysis factor of a detector. 

 

 

Figure 5.  Paralysis factor vs. rise time plot 
 
 

After performing a decaying source measurement, the data can be plotted on a 

normalized time scale, and the half peaking time can be determined.  The paralysis factor 

can be obtained by using Figure 5 and the measured half peaking time.  Once paralysis 

factor is determined, only the detector dead-time remains to be estimated. 

 
Further analysis of the experimental data also revealed that peaking count rate is 

also a characteristic of the detection system.  Moreover, the peaking count rate only 
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depends on the paralysis factor and the detector dead-time.  To facilitate use of this 

technique, peaking count rate is plotted against paralysis factor for various dead-times.  

These curves are shown in Figure 6.  Once the user has collected the decay source data, 

estimated the paralysis factor, and noted down the peaking count rate, it is quite easy to 

read the corresponding dead-time from Figure 6.  Once both the dead-time and the 

paralysis factor are ascertained the dead-time model is complete. 

 

 

Figure 6.  Maximum peaking count vs. paralysis factor  
 
 

4.  EXPERMENTAL RESULTS 

Most of the traditional work to investigate the phenomenon of detector dead-time 

has been focused on GM counter [1, 5, 10, and 15].  We opted to test our dead-time 

model for a High Purity Germanium (HPGe) detector.  This choice is due to the extensive 

use of HPGe for gamma spectroscopy and proposed use of the device for high intensity 

measurements for spent fuel monitoring [4].  For this investigation an ORTEC coaxial 
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HPGe detector (model-GEM15P4) with a relative efficiency of 17% was used. The 

detector has a diameter of 47.0mm and a length of 49.6mm. 

For data acquisition an ORTEC multichannel scalar (Model MCS-pci) with MCS-

32 software was used.  The MCS has a total of 65,535 channels.  The time resolution can 

vary between 100ns to 1300sec with no dead-time losses between shifting channels.  

The decaying source (56Mn) was produced at the UMR nuclear reactor by 

irradiating 99.99% pure 55Mn.  Manganese is a very good element for this type of 

irradiation experiment because of it 100% natural abundance and significant thermal 

neutron cross section.  Once 56Mn is produced, it decays with a half life of 2.578 hours.  

Subsequently, we validated our results by using a 52V (half life of approximately 3.76 

min).  For the case of 56Mn, the MCS was set to collect sequential count rate data for 

sampling interval of 1 or 2 intervals.  However, due to much smaller half life of 52V this 

time interval was reduced to 30 milliseconds.  A constant background source (137Cs) was 

used.  The exact value of this background source is not critical for the proposed 

technique. 

Figure 7 shows the data collected using 52V.  As expected, after normalization 

both 52V and 56Mn (Figure 8) data show a very similar behavior of rise and fall.  It is also 

interesting that in both cases, the maximum observable count rate (peaking count rate) 

was found to be approximately 6E4 counts per second.          
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Figure 7.  Decaying source data for 52V (τ=5.5µs, f=44.0%) 

using HPGe detector (Bin Size = 30ms, Max. count Rate=1940 counts per 30 ms and T1/2=3.76 min) 
 
 

 
Figure 8.  Decaying source data for 56Mn (τ=9.78µs, f=49.9%) 

using HPGe detector (Bin Size = 2s, Max. count Rate=84,000 counts per 2 s and T1/2=2.58 hr) 
 
 

Half peaking time was estimated after plotting the data on a normalized time 

scale.  This half peaking time was used in conjunction with the graph illustrated in Figure 

5 to estimate the paralysis factor.  For HPGe tested at MST, a paralysis factor between 90 

to 100% was recorded. 

 
Using this paralysis factor and the curves presented in Figure 6 the detector dead-

time was estimated using interpolation between the available curves.  Measured detector 
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dead-time ranged between 6 – 10µs.  These values are within the expected range.  Since 

there are no reports on the part paralysis factor, the high values of 50-77% are in 

agreement with the general belief [16] that solid state detectors are mostly paralyzable.  

Likewise, the dead-time values are also well within expected range.    

No data for GM counter was directly collected.  However, using the data reported 

by Lee and Gardner [1] the paralysis factor for GM counter is estimated to be 5%.  This 

result also supports general agreement that GM counters are non-paralyzable. 

 

5.  PARAMETER MEASUREMENT SCHEME AND MODEL APPLICATION 

It is ease to recognize that a two parameter based deadtime correction scheme 

either using a single deadtime in conjunction with a paralysis factor (as proposed here) or 

using two deadtimes [1] would produce better results.  However, application of such 

scheme is not viable unless a practical method is available for measuring these 

parameters.  Lee & Gardner [1] reported the non-paralyzable ( ) and paralyzable 

deadtimes ( ) for the GM counter to be 285 and 16 µs respectively.  But they did not 

offer any further explanation on the procedure used to obtain these numbers and how 

other users could test their detectors for their deadtime behavior.   

Present work provides a simple method for users to experimentally determine the 

detector deadtime and paralysis factor.  The procedure is quite simple and would require 

the following steps;     

1) Bring a fast decaying source close to the detector and record the changes in 
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count rate.  Multi channel scaler (MCS) can be used for this data collection. 

 The source must be strong enough to ensure that the detector is completely 

paralyzed, and in the beginning no counts are recorded. The observed count 

rate will increase as the source decays away and the detector will recover from 

paralysis.  The observed count rate will continue to increase and will reach a 

maximum (peaking count) before decreasing due to source decay.   

2) Plot this count rate data on a normalized time scale (i.e. actual time divided by 

the half life of the fast decaying source).  

3) Determine the Normalized Rise time or Half Peaking Time (tp – tp/2) – that is 

the time for the observed count rate to its peak value from half of the peaking 

value.  This time will have no units as the plot is on normalized time.  

4) Using this Normalized Rise Time and Figure 5 determine the Paralysis factor.  

5) Using this Paralysis factor and the Peaking Count Rate that was recorded by 

the system determine the deadtime of the system by interpolating between the 

curves on Figure 6.  

 
We have used a graphical method to estimate the dead time and paralysis factor 

because of the nature of the equations which lead to an ill-conditioned problem for a 

numerical solution.  In the absence of a simple numerical solution, the proposed graphical 

approach (as described above) can provide a quick and easy means for the user(s) to 

determine detector’s dead time and paralysis factor.  Using these two parameters one can 

apply an improved dead time correction (equation 5) to determine the true count rate with 

better accuracy.      
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6.  CONCLUSION 

An improved method of characterizing detector dead-time behavior is proposed.  

The new two parameter model uses the traditional dead-time in conjunction with a 

paralysis factor a newly introduced parameter.  This paper also describes an experimental 

method to deduce the two parameters from a decaying source experiment.   

The authors feel that this new way of looking at detector dead time enhances the 

understanding about the phenomenon of detector dead-time. The paralysis factor based 

detector dead-time model is superior to any existing model, in that this scheme allows us 

to quantify the extent of paralysis the detector experiences under a given operating 

condition.  Quantitative results obtained on paralysis factor and the detector dead-times 

are in good agreement with the existing literature.  

Successful use of 52Vas the fast decaying source suggests that the proposed 

technique can be used with any fast decaying source.  This feature of the new technique 

is particularly useful for its practicality.  We observed a lower paralysis factor for 52V 

(61%) experiment and the corresponding dead-time was also found to be smaller (6.05 

µs) than the dead-time found using 56Mn as the fast decaying source.  This difference 

could be due to a number of factors including changes in the operating conditions and 

also possibly a difference in the average radiation energy.  

The ongoing study on the energy dependence of paralysis factor and detector 

dead-time should reveal more information on our understanding of the phenomenon.  It is 

however important to point out that in our initial investigation these parameters are 

system dependent and are likely to be impacted by electronic settings, amplifier gain, 
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high voltage setting etc.  Overall, agreement between the results obtained by using 56Mn 

and 52V was reasonable.       
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SECTION 
 

2. CONCLUSION 
 

The field of radiation measurement has numerous applications, and the number is 

constantly growing. With improvements in the instrumentation of radiation detection 

applications over the years, especially in high-count-rate applications, measurement 

accuracy is more important than ever. The research presented here has investigated the 

count loss problem and developed more accurate models and methods to estimate 

detection system dead time and characterize radiation measurement systems. This work 

involved two parts:  

 

1.  a comprehensive review of the literature on count loss and dead time for radiation 

detectors, and 

2.  experiments to test the detector performance and analyze the data generated 

 

In a typical detection system overall dead-time and pile-up losses originate from 

the various components of the system.  The user must understand the sources of loss in 

these components before applying any correction methods. Dead-time and pile-up losses 

can originate in any of three areas: a) at the detector, b) in the processing instrumentation, 

and c) in the multichannel analyzer.  The review of dead-time and pile-up models and 

count loss correction methods provides the first comprehensive summary of issues related 

to the origination of these phenomena in a detection system.  It also describes the 
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important models and methods developed to address dead time, pile-up, and count loss 

correction, including their applications and limitations. Traditionally researchers have 

relied on idealized one-parameter dead-time models to correct for count loss.  Although 

originally proposed decades ago, the generalized model for dead time correction as never 

been fully accepted.  Some work has experimented with the concept of a two-parameter 

generalized dead time; however, much more work must be done to make this model 

acceptable to the scientific community. 

The modified decaying source method proposed here introduces a new 

measurement technique to estimate the total dead time of a detection system.  It modifies 

the existing hybrid dead-time model and proposes a new parameter, the paralysis factor, f.  

This factor indicates the extent to which a detector can be paralyzed.  This method uses 

the paralysis factor and peaking count rate to estimate the dead time of the counting 

system.  This technique can be used with moderately fast decaying sources (e.g. V51) and 

requires no assumption of idealized dead time model. 

The research on detection system dead time behavior has clarified the count loss 

behavior of radiation detection systems.  Its the major highlights include: 

• review of detector dead time and pulse pile-up  

• description of important models and methods with their limitations 

• introduction of a generalized two-parameter dead time model to determine the 

paralysis factor and dead time of detection system  

• use of a paralysis factor to define detector behavior 
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• proposal for a novel technique to determine detection system dead time using a 

high-activity, fast-decaying source 

• presentation of a simple graphical approach for dead time determination 
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3. FUTURE WORK 

 

 This research has laid foundation for significant investigations that could 

compliment the present work. The ideas which came up during the investigation of 

detector dead time problem are listed below. 

A. Simulation for detector dead time: A lot of work has been done to replicate the exact 

experimental behavior of a detection system using Fortran simulations. It was felt 

the need to better understand the dead time response of amplifiers and other 

instrumentation, addition of which would be useful to generate the overall dead time 

of the detector system. 

B. Count rate dependence of dead time: The extension of dead time is a known 

phenomenon but something which has not been studied extensively. In the above 

paper the dead time dependence on count rate has been shown and modeled to fit the 

estimated probabilities. Further studies are needed to precisely model this behavior 

and confirm the results from the present study. 

C. Chi-square – dead time relationship: On analyzing the source decay data from V52 

and Mn56 it was found that the Chi-square data for the observed count rate always 

behaves in a certain way throughout the decay process. More in depth study is 

needed to understand the relationship between the observed count rate and detector 

dead time.  

D.    Energy and Voltage dependence of dead time: Some of the studies have revealed that 

the count rate measurement is dependent on the applied voltage, especially in the 
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case of Geiger Muller counters.  The voltage applied to a detector is responsible for 

pulling the charge particles to the respective electrodes to collect the total charge for 

pulse formation. Thus a variation in count loss can be studied to estimate the 

optimum voltage for obtaining a low dead time for a given application. Similarly the 

count rate dependence on energy needs to be studied to better characterize the losses 

in the energy spectrums thus obtained. 
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