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SYNOPSIS: First, an empirical formula to predict the magnitude of permanent ground displacement is proposed based on the
observed data at the past earthquake events. Next, a simplified procedure to estimate the failure probability of buried pipes is
proposed, in which the model of non-linear beam supported by ground spring elements is used to calculate the strdin in the pipe
by following the response displacement method. Finally, a simplified method to obtain the probability considering failure
modes expected to occur in the pipe is proposed and some numerical example showing the probability and discussions follow.

INTRODUCTION

The past large earthquakes have caused various types of
failures and malfunctions of lifeline facilitiesD. Among them,
extensive damage of such structures as buried manholes and
pipes in particular have been designated to liquefaction-
induced Permanent Ground Displacement (PGD) of
surrounding ground soil and uplift due to buoyancy force.
Considerable research efforts to find the relationship between
the PGD and uplift and the consequences of these buried
structures have been made by many researchers. However, in
most of the past researches, these major load effects have been
treated separately when considering the failure modes of these
buried structures. In this paper, a practical procedure to
probabilistically assess the safety of buried lifeline facilities
such as buried pipes and manholes is proposed considering
those PGD and uplift due to liquefaction of surrounding soil.

MAGNITUDE AND DISTRIBUTION OF PGD

Hamada et al.2 conducted a regression analyses by using
ground deformation data obtained from the 1964 Niigata, the
1971 San Fernand and the 1983 Nihonkai-Chubu earthquakes
and proposed an empirical formula to estimate the maximum
displacement from the thickness of the layer (H) which is
thought to liquefy and the gradient (®) of either the ground
surface or the bottom of the layer. However, the measured
ground deformation data are actually scattered to the
variables used there. In particular, this formula shows a
comparatively low correlation between D and @. Furthermore,
it is practically difficult to correctly determine ©, since the
gradient is usually less than a few percent. Therefore, using
the data obtained from the area in Niigata and Noshiro Cities
where the gradient of the ground surface is less than 1 %, a
new regression analysis was conducted to develop a simplified
but more practical formula. In this formula, only the thickness
of liquefiable layer was taken into account as a practical but
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major factor for predicting the maximum displacement of
liquefaction-induced PGD of such area consisting of alluvial
flat plains as Metropolitan Tokyo.

It was found clearly from the regression analysis that a
comparatively good correlation was in the maximum value of
magnitude of the ground deformation(Dmax) and the thickness
of liquefiable layer(H). However, as is shown in Figure 1, the
correlation coefficient of the PGD to the thickness varies
depending upon the areas under study. In the vicinity of the
Niigata Railroad Station DGP value becomes larger with the
thickness than the cases of the Ebigase-Shitayama area in
Niigata City and the area in Noshiro City. The vicinity of the
Niigata Railroad Station was already urbanized at the time of
the earthquake, and many underground structures such as
basements and foundation piles of buildings might have had a
significant influence o constrain the magnitude of the ground
deformations due to liquefaction, whereas the other areas
have not been developed yet at that time. Considering the
situation, the following two formulae were proposed for this
study:

Dmax=0.34 H o))
Dmax=12H @)

Where, Dmax: maximum wvalue of magnitude of ground
deformation in the horizontal direction (m)
H estimated thickness of the liquefied layer (m)
and Egs.(1) and (2) are to be applied to predict PGDs for the
urbanized and non-urbanized area, respectively.

The pattern of the ground deformation is considered to depend
essentially on the local topographical and geological condition
of a site. Figures 2(a) and (b) show the distributions of the
length of compressive and the tensile zones respectively
observed from the data of Niigata and Noshiro Cities. The
length in the compressive zone ranges from 150 to 450 meters
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with the mean value of 320 meters and in the tensile zone from
100 to 450 meters with the mean value of 240 meters,
respectively. The width of the ground deformation zone for the
both cases ranges from 100 to 400 meters with the mean value
of 240 meters. Based on these observed facts, the deformation
pattern shown in Figure 3 was assumed and used for this
study; a sinusoidal and trigonometric deformation loading
patterns were assurned in subsequent analyses of the pipe for
laterally orthogonal components of ground deformations.

FAILURE PROBABILITY OF EACH FAILURE MODE

Both compressive and tensile failures associated with the
axial and bending deformations acting perpendicularly to a
pipe are considered to be significant modes of failure of the
pipe due to PGD. Besides, the bending failure of the pipe due
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to uplift of manholes in the vertical plane is also considered as
another significant mode of failure in case of liquefied zone of
soil. Thus, in this study, the failure probability for each mode
above described is estimated by the following methods:

Generally, the principally influential factors for the failure of
structures during an earthquake are the characteristics of
earthquake motions, and the deformation and strength
characteristics of the ground and structure. There will be a
statistical variation in the values of all of these quantities.
Clearly it is required that any assessment of structural failure
probability be made considering all of these quantities with
the relevant variations. Primarily, in order to carry out such
complete assessment as above described, any study should
start first from the investigation of the cross-correlations
among these quantities with variation. However, in this
study, only the variation of maximum accelerations in
earthquake motions is considered as the controlling factor on
failures, and the variations of other quantities are assumed as
not so critical for the assessment and neglected.

A Performance Function (Z), in assessing whether a particular
mode of failure will occur or not, is given as ;
Z=0r— Os
Z = 0: Non-failure
Z <0 : Failure,

3)

Where, 0;: critical acceleration of each point of the
structure at which a limit status occur defined
at the ground surface

QOs: peak ground acceleration at the ground surface

The failure probability (Py) is then given by:

Pf=P(Z<0)=P(or< og) 4)
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In this study, since all quantities except the peak ground
acceleration are assumed deterministically, the quality of the
critical acceleration then becomes deterministic.

The failure probability of a particular failure mode of a pipe
due to any given a PGD may be determined by following the
process as shown in Figure 43, and similarly of the pipe by the
uplift of a manhole due to liquefaction in Figure 5. As
previously shown, it is first necessary to evaluate the critical
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acceleration in order to calculate the failure probability of
buried pipes due to PGDs and uplifts of a manhole. In this
study, the critical acceleration was evaluated by using the
response displacement method as follows:

The interactive effect of PGD on buried pipes has been
recently investigated in various research organizations, and
has been becoming clearer gradually. Since there exists not
yet any accepted method applicable for a practical evaluation



at present, it is therefore a subject yet to be examined in the
future whether the behavior of buried pipes under any given
PGD can be properly analyzed by so-called response
displacement method. However, in this study, it is assumed
that the surrounding soil of a pipe and manhole has reached
the liquefied state and the analysis to evaluate the critical
acceleration for a buried pipe due to PGD can be performed
properly with using reduced ground stiffness and strengths. In
the response displacement method, the buried pipes and
manholes are modeled as a beam with ground spring having a
bi-linear stress-strain relation. As is shown in Figure 4, the
critical value of maximum deformation (Dmer) at which the
strain of a pipe exceeds ultimate strain, is determined varying
the axial length of the manholes and the spring stiffness of the
surrounding soil. In this manner, relationship between the
Dmer and the physical conditions of the buried pipe was
produced.

A liquefaction analysis of the ground soil was conducted in
accordance with Japan High Way Bridge Code®), in which the
dynamic stress ratio causing liquefaction (R) is estimated from
SPT blow count (N), mean grain size (D50) and fine contents
(Fe), and shear stress ratio (I) in the ground soil during
earthquake is estimated from seismic coefficient (ks) at ground
surface as:

Ov
Letiks —

ov

(5)

Ta : reduction factor of L. (ra=1-0.015Z)

ov': effective over burden pressure (kgf/cms?)
Ov : over burden pressure (kgf/cm?)

Z :depth (m).

where,

Then, the factor of liquefaction resistance (FL) is determined
as below:

Fr 6)

|y

In this study, the ratio of the peak ground acceleration at the
ground surface(Omax) to gravity (g), dmax/g, is used instead of
ks in Eq.(5). By calculating FL value for each sand layer using
the above Eq.(5), the layer possible to liquefy is identified with
its thickness. Thus, the thickness of liquefied layer(H) is
related to Gimax and using this H in Eq.(1), Dmax is finally
obtained. The liquefaction analysis is performed by varying
omax and Dmax is estimated. Finally, comparing the critical
displacement (Dmer) and the above 0max~Dmax relation, the
critical acceleration (cter) for a particular buried pipe is
evaluated.

Fundamental concept of the procedure for obtaining the
failure probability of pipes.due to the uplift of the manhole is
as same as that of the PGD, while, the process to determine the
critical acceleration is different. At first, as shown in Figure 5,
liquefaction analyses are carried out varying Omax, the
relationships between the magnitudes of uplift of the manhole
and the unbalanced forces acting to the manhole are
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Figure 6 Forces Acting to Manhole During Liquefaction

calculated for various values of PGA based on the equilibrium
relation as is shown in Figure 65. On the other hand, an
analytical model of ground-pipe system is constructed, in
which the beam lain in the liquefied zone has no ground
spring. By using this model, the relationship between the
maximum displacement O, at which the strain of the pipe
exceed ultimate strain, and the shearing force F at the end of
the beam is estimated. Comparing these two relationships, as
shown in Figure 5, the critical acceleration for the failure
mode of the pipe due to the uplifi can be determined.

If following the above methods, through one time of very
laborious non-linear analysis of the pipe-ground system, it is
possible to evaluate, irrelevantly to the ground conditions and
various parameters for each failure mode, the critical
acceleration rot only for PGD by simply establishing the
relationship between the PGA and the thickness of liquefied
layer but also for the uplift by establishing the relationship
between magnitude of uplift of the manhole and the
unbalanced force acting to the manhole. As the result, this
method can be applied over a wide range of similar problems to
the above, and the method is relatively easy to be followed
even if a large number of design conditions need to be studied.

TOTAL PROBABILITY ‘OF FAILURE

The probability previously described is designated only to one
particular mode of failure. For example, the failure probability
calculated from the critical acceleration in an axial
compression analysis refers to a conditional probability of
failure at the point of interest under permanent deformation
in the axial direction, provided that the point lies within a
compression zone. Therefore, it is necessary to calculate the
probability, total probability, which considers the occurrence
of each possible failure mode.

To determine this total probability, we consider separately the
occurrence of the deformation under liquefaction in each
direction relative to the pipe. In practice, the deformation will
occur in the direction intercepting the pipe with some angle.



However, this situation is simplified here to assume the
deformation to occur either at 0 or 90 degree(s) to the pipe,
with a probability of occurrence of 0.5. In addition, among the
cases in which a deformation occurs in the direction along the
pipe axis, there will be such cases that the pipe lies either
within a compression or a tension zone. The probability of this
case is evaluated by taking the ratio of the deformation
pattern length in compression zones (Lc=240m) or length in
tensile zones (Lt=320m) to the sum of these two lengths
(Le+Lt=560m). According to this approach, the probabilities
that the pipe will lie in a deformation pattern in a compressive
zone (Re), or in a tensile zone (Rt), or the pipe is subject to
deformation in the direction perpendicular to the pipe axis
(Rm), are determined by the equations as follows:

Re=05 (=0.286) (7a)
c+ Lt
Re=05 —2< (=0.214) (1h)
¢ =0. TorLs ={.
Ry =05 70

In addition to the failures because of PGD, failure due to uplift
of manhole must be taken into consideration. The union of
these failure probabilities leads to the total probability of
failure. Since PGA, which is only random variable in the
procedure, is common to both phenomena of PGD and uplift,
the union of these failure probabilities of each case is equal to
the larger value of failure probability due to PGD or uplift.
Therefore, if the failure probabilities of compression, tension
and bending due to PGD are expressed as Pg, Pg, and Py
respectively, and failure probability due to uplift is expressed
as Py, the total failure probability Prcan be obtained as below:

Pr= R, Pr,'+ Rt Pr'+ Rm Ppm' (8)

Py’ : larger probabilities comparing Pr with Pg,
Py’ : larger probabilities comparing Pgwith Pg,
Pryy': larger probabilities comparing Pgy, with Pg,

where,

NUMERICAL MODEL OF PIPE

Physical properties of the pipe are shown in Figure 7(a) and
(b). A bi-linear load-strain relationship was employed. The
limiting tensile strain for the pipe was taken as 8% with a
consideration of fatigue failure. Compressive failure strain
was the buckling strain for the pipe determined from Eq.(9).

t
Esp=44 — )
sb Do
where, €sp: pipe buckling strain (%)
t : pipethickness (cm)
Dy, ¢ average pipe diameter (cm)

Eq.(9) is the same as that in the code for aseismic design of
high-pressure gas pipesé for the allowable buckling strain in

P
Compression
P 2
t=6.4mm
€sb S -
: £su £
D,,=264.2mm P EsA /1o
*/7 Yy
Tension

A : Section area of pipe
Es : Young modulus of steel (Es=2.1X 106 (kgf/cm2))
Es : Second modulus of steel (Es'=Es X 10-7 (kgf/em?2))
Py : Yield load of pipe (Py=Aogy)
Osy: Yield stress of steel (05,=2900 (kgf/em32))
gy : Critical tensile strain of steel (g5,=8 (%))
£sh: Critical compressive strain of steel

(es=44t/D (%))

Figure 7(a) Assumed Physical Property of Steel Pipe
(Inthe Case of Axial Force Load)
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Figure 7(b) Assumed Physical Property of Steel Pipe
(In the Case of Bending Load)
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Figure 8(a) Spring Characteristics of the Surrounding
Ground (In the Case of Axial Force Load)
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Figﬂlre 8(b) Spring Characteristics of the Surrounding
Ground (in the Case of Axial Force Load)



Table1 Reduction Factor for Soil Spring During
Liquefaction
Depth (m) FL=0.6 0.6<FL=0.8 0.8<F
05Z<10 (1/3)* 1/3 2/3
10=Z<20 1/3 2/3 2/3
* : Ois adopted in the Code for this portion
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(Rigid Beam) (Uniform Beam) Direction
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Figure 9(b)

straight pipes with the safety factor being unity. The bi-linear
load-strain relationship was formed using a straight line
between the origine and the yield point as the primary
gradient, followed by a secondary gradient after yield taking a
value of the primary gradient multiplied by a coefficient of
7x 10-3. This coefficient is determined from the code for
aseismic design of high-pressure gas pipes 8. For the bending
properties of the pipe, a bi-linear moment-strain relationship
was used on the basis of the properties of the pipe material.
Bending failure was assumed to occur when the compressive
strain at the ends of pipe reached the buckling strain.

Among the ground springs of the model, those acting in the
pipe axis direction were assumed to have a bi-linear stiffness
as shown in Figure 8(a), based on the code for aseismic design
of high-pressure gas pipes 5. The ground stiffness (ks = 0.6
kgf/cm3) and critical shear stress (tor = 0.1 kgf/cm2) are
approximately in the average values obtained from load tests
on gas pipes. Spring supporting the pipe perpendicularly in
the horizontal direction have a linear relation as shown in
Figure 8(b). These values of ground stiffness and critical shear
stress were modified by the coefficients shown in Table 1
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Manhole Pipe Soil Spring in Vertical
(Rigid Beam) (Uniform Beam}) Direction (Upper limit due
o _f_ _ to overburden and internal
0 1 f 8 friction of ground is taken
______ / account of)

/

_______ 7 -
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8 : Magnitude of Uplift
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Due to Liquefaction

Figure 10 Analytical Model for Uplift of Manhole

depending on the FL value and depth of the pipe. Table 1 is
taken Japan Highway Bridge Code 4.

Since the stiffness of the manholes is much greater than that
of the pipe, stress concentrations occur at the connection
between pipe and manhole. In this study, it is assumed that
failure only occurs at the connections. The typical distance of
neighboring two manholes is 200 to 300 meters. For this
reason, the design point of one pipe-manhole junction would
not be influenced by other manholes, and the analysis was
made using one manhole with a connected pipe only. The
analytical models for the permanent deformations in the pipe
axis direction and in the perpendicular direction are shown in
Figure 9(a) and (b). For the analysis of the pipe in the
perpendicular direction, a deformation pattern was used
where the point of maximum curvature of the distribution
coincided with the manhole junction, as shown in Figure 9(b).

The analytical model for uplift of manhole is shown in Figure
10. The length of liquefied area in the model is decided based
on the results of the study on equivalent diameters of liquefied
zones, which is carried out in Noshiro city after Nihonkai-
Chubu earthquake by Tanabe?. As shown in Figure 11,
liquefaction is seemed to occur mainly in the area from 10m to
40m of equivalent diameter. Based on this study, mean value
of equivalent diameter of liquefied zone is assumed 30m, and it
is assumed that the connecting point between pipe and
manhole is just -at the center of the liquefied zone.
Consequently, the length of liquefied area in the model
assumed to be 15m. Assuming that unliquefied ground is
perfectly sound, no reduction factor is taken into account to
the stiffness of ground springs.

CRITICAL GROUND DEFORMATIONS

The critical ground deformations for the pipe in the axial
direction are shown in Figure 12, with respect to the manhole
length. Similar results from the analysis of the pipe in the
perpendicular direction are shown in Figure 13. For the pipe
under axial tensile load, no failure occurs, because the
limiting tensile strain of 8% is large enough. From Figure 12
and 13, for the same critical deformation, failure is more likely
to occur in cases when the ground deformation ocecurs in the
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Table2 Results of Estimation of Failure Probability

Mean Value | Failure Mode Critical PGA: | Failure probability for | Larger Probabilities Total Failure Probability
of PGA: of Pipe Oor (gal) Each Failure Mode: |Comparing Pg, Py and Pey Pe=R.Py +R; Pg'+ Ry P Y
Olyay (82D Pr, Py Pr, Py | with Py : Py, Py', Pry’ Pkttt ™

compression 220 Ps=0.101 Pg'=0.101
100 PGD | tension non-failure Pgp= 0 Py'=0.069 P=0.078
(53.8 to bending non-failure Pro= 0 Psn'=0.069
185.8) ] ]
uplift (bending) 250 P4, =0.069
compression 220 Pg=0.440 Pg'=0.440
200 PGD | tensi fail Pg= 0 Pg'=0.359
ension non-failure I3 &' =0. P=0.382
(107.7 to bending non-failure Pfm= 0 Pgy'=0.359
371.6) . .
uplift (bending) 250 Pgy=0.359
compression 220 Pf.=0.692 Pg'=0.692
300 PGD | tension non-failure Pg= 0 Ps'=0.616 Pr=0.638
(161.4 to bending non-failure Pim= O Psn'=0.616
557.8) ] ]
uplift (bending) 250 Pg=0.616

Notice : ( - to ) denotes log variation of -O to +O

AN EXAMPLE OF NUMERICAL RESULTS

The assumed pipe, manhole, and ground conditions are shown
in Figure 15. As seen in the figure, the pipe is assumed to be
installed at 3.8 meters below the ground level, attached to
manholes with 25 meters in axial length. The thickness of
liquefaction was assessed in accordance with the method given
in the "Japan Highway Bridge Code6)", with liquefaction
taken to occur in sand layers. The probability distribution of
maximum ground surface acceleration was taken as a log
normal distribution as shown in Figure 16. The mean value
(omax) was varied at 100, 200 and 300 Gals, and the failure
probability was determined. The standard deviation of
logOimax was assumed as 0=0.269 in this example estimation.

Summary of the failure probability are shown in Table 2. In
this table, there was no failure due to permanent deformation
in the direction perpendicular to the pipe axis. As a result, the
value of the total failure probability was considerably
influenced by failure probability of uplift of the manhole,
because there is neither probability of tensile failure nor
bending failure due to PGD. As indicated in the example, if
critical PGA at surface O¢r is determined for each failure mode
only once, total failure probability is easily obtained for any
supposed PGA at surface.

CONCLUSION

The methodology to assess the safety of buried pipes against
Permanent Ground Displacement and uplift of manhole has
been proposed. And an example of the calculation in one case
was presented. Although the calculated values of failure

R,=0.286, R;=0.214, Rp,=0.5

probability are regarded not to have meanings, from. the
results of the calculation, the proposed procedure may be a
practical method to assess the safety of many buried pipes in
different ground conditions and under different earthquake
intensities. Furthermore, the concept of the proposed
procedure may be applicable to other types of buried lifeline
structures such as the pipe which has flexible joint or socket
joint, or reinforced concrete duct, by considering appropriate
analytical model for each structure.
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