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1. INTRODUCTION 

1.1. EQUILIBRIUM PHASE TRANSITIONS 

Phase transitions are fundamental processes that have been detected in nature. 

What is a phase transition? A phase transition can be defined as the singularity of 

the free energy and other thermodynamic variables that occurs if a system transforms 

from one state to a qualitatively different one. One of the examples is the phase tran

sition of water from liquid to vapor. If water is heated at atmospheric pressure, the 

temperature increases until the evaporation temperature (T = 373.15K) is reached. 

At this point, further heating does not increase the temperature, but only turns the 

liquid water into vapor. This heat is called latent heat which overcomes the attractive 

forces between the water molecules in the liquid state. When all of the liquid has 

evaporated, then the temperature rises again. This phenomenon formally corresponds 

to an infinite heat capacity 

{1) 

at the evaporation temperature [1]. If the entropy Sis discontinuous at the transition 

temperature, the transition is called a first-order phase transition. In contrast a phase 

transition at which the entropy is continuous, is called a second-order phase transition 

or critical point. In other words, 1st order phase transitions involve latent heat, while 

continuous transitions do not. 
The phase transition of liquid to vapor at atmospheric pressure is of 1st order, 

characterized by a large jump in density. If one follows the phase boundary to higher 

T, this density difference goes to zero at a critical point, at Tc = 647 K for water. 

This behavior of the density difference means that a second order phase transition 

occurs at the critical point. 
Systematic investigations of phase transitions started, perhaps, in 1869 when T. 

Andrews discussed the liquid-gas critical point in C02 [2, 3). In 1894, van der Waals 

suggested the equation of state (P + a/V2 )(V- NAb)= RT for a fluid of volume V, 
pressure P, and temperature T. It provided one of the first theoretical explanations of 

phase transition phenomena. In 1895, P. Curie noticed the similarity of the magnetic 

critical point in iron to the liquid-gas critical point. After that, magnetism became 

one of major topics in phase transition phenomena research. After the Ising model 

(1925) was introduced, L.D. Landau (1937) suggested his general theory for phase 
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transitions [4, 5]. We now know that Landau theory is not exact because it does not 

contain fluctuation effects. Nonetheless, Landau theory remains a valuable starting 

point for the investigation of critical phenomena. The modern area of phase transition 

research started in 1944, when L. Onsager [6] solved the two dimensional Ising model 
exactly and found behavior different from Landau theory. 

1.1.1. Phase Transitions in Magnetism. From the early 20th century to 

the present, many physicists have tried to understand and solve the phase transition 

phenomena in magnetic materials. The most basic theoretical model, called the Ising 

model, was introduced by Lenz and Ising [7, 8] who were studying the phase transition 
of ferromagnets at the Curie temperature. This model consists of a lattice in which 

each site is occupied by a binary "spin" variable si = ±1. Each spin interacts with 

its neighbors. If no external field exists, the Hamiltonian is given by 

H(s11 s2 , .•• , sN) = -J ~ sisj, 
<ij> 

(2) 

where J is an interaction energy. For J > 0 spins prefer to be parallel, leading to 

ferromagnetic behavior while J < 0 leads to anti parallel spin configurations (anti

ferromagnet). For J > 0 and sufficiently low temperature T < Tc, where Tc is the 

critical temperature, all spins align parallel to a common axis and this phase is called 

a ferromagnetic phase. If T > Tc, the parallel alignment is destroyed by thermal mo

tion. This phase is called a paramagnetic phase. The two phases can be distinguished 

via the magnetization m =< Si >, which is the order parameter of the transition; 

m = 0 corresponds to the paramagnetic phase, and m =/: 0 corresponds to the fer
romagnetic phase. This is illustrated in the left panel of Fig. 1.1. The ferromagnet 

has two equivalent states (m > 0 and m < 0) at low temperature. As the external 

field H-+ o+, the magnetization m approaches a non-zero positive value. However, 

when H changes sign at H = 0, m has same magnitude but different sign. Crossing 

the H = 0 line at T < Tc is thus a first-order phase transition. From T ~ Tc, m is 

continuous at H = 0. Thus, as in the liquid-gas case the critical point at T = Tc is 

the end point of the line of first-order phase transitions, as is illustrated in the right 

panel of Fig. 1.1. 
1.1.2. Landau Theory. Early theoretical approaches to phase transitions 

were of the mean-field theory (MFT) type. The MFT is an approximative method 

and is broadly used in many-body problems. This theoretical method is based on 

the assumption that neighboring spins affect a selected spin only via their average 

field. Thus, the problem is reduced to a one-body problem with an effective field. 
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m H 

tttt FM PM 

Figure 1.1. Phase transition in a ferromagnet. Left: Behavior of the order parameter. 
Right: Phase diagram of the ferromagnet as function of temperature and 
external magnetic field. When the external field H = 0, a continuous 
(second-order) phase transition occurs at T = Tc. 

Landau introduced a generalization of earlier MFT, now called the Landau theory. 

The significant assumption of Landau theory is that in the vicinity of the critical 

point, one may expand the free energy in a power series in the order parameter 

(9]. Thus the free energy F is a function1 of the magnetization m, and the external 

magnetic field h, 

F~ -hm+am2 +bm3 +cm4 ···, (3) 

where a, b, and c are system parameters. The stable physical state is given by the 

minimum of F. In this section we shall only consider the symmetric case, therefore 

we can set b = 0 (In the case of b =/:- 0, a first-order transition would occur). 

If no external field exists (h = 0), the critical point of Landau theory is easily 

explained. When T > Tc, m = 0 gives a minimum of F. When T < Tc, two minima 

ofF appear (see Fig. 1.2) and are corresponding to 

Fa m=±y2c· (4) 

In the Fig. 1.2, the two inner dashed parabolas are corresponding to T > Tc and 

the outer dashed parabolas represent the condition T < Tc. Thus a > 0 corresponds 

to the paramagnetic phase, a < 0 corresponds to the ferromagnetic phase. Close to 

1 It is known as the Landau function equal to the Gibbs free energy. 
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Te we can thus write a = ao(T - Te) with a positive constant a0 . The singularity in 
Eq. (4) is an example of the critical singularities generally occurring in the vicinity 
of a critical point, i.e., 

and 

x(T) "" IT- Tei-'Y' 

C(T) "' IT - Tel-a , 

(5) 

(6) 

(7) 

(8) 

where x(T) is the magnetic susceptibility, C(T) is the specific heat, and me is the 

magnetization at T = Te. As follows from Eq. (4), the critical exponent for the 
magnetization m in Landau theory is {3 = 0.5. The other exponents take the values 

a = 0, 'Y = 1, and 6 = 3 in Landau theory [9, 10]. For example, by using the 

minimization property (8F/8m) = 0, we obtain a nonlinear equation form. The 

magnetic susceptibility is then given by x(T) = (8h/8m);;. 1 • If T > Tc under the 

condition of m --+ 0, x(T) = 1/2a(T). If T < Tc , x(T) = -1/4a(T). These two 

power-laws give a critical exponent 1 = 1. 

a<O 
I~ 

I I 
I I 

m 

Figure 1.2. Landau free energy for a sequence of temperatures with a= ao(T- Te) 
and b = 0. The two inner dashed parabolas correspond to T > Te and 
the outer dashed parabolas represent the condition T < Tc. 
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The Landau free energy depends only on the average value of the order param

eter, it does not contain any space dependence. Landau theory can be generalized by 

making m a function of position and adding a gradient term to the free energy. The 

minimum condition 8Ff8m(f) = 0 then reads 

(9) 

By expanding m and h about their averages, m0 + <5m(f7) and ho + <5h(f7), where 

mo and ho are constants, one can find the <5m-<5m correlation function G(f7) rv 

exp( -r /e). The correlation length e(T) diverges as 

(10) 

at the critical point where the correlation length critical exponent is v = 1/2. 

1.1.3. Fluctuations and Ginzburg Criterion. A crucial question for 

the validity of Landau theory is the strength of the order parameter fluctuations. 

In the original Landau theory, Eq. (3), they have been neglected, and even in the 

generalized form leading to Eq. (9), they have been assumed to be small. In this 

subsection we discuss under what conditions this assumption is fullfilled. The long

range fluctuations are described by correlation functions 

G(xi- x2) = (m (xi) m (x2))- (m (xi)) (m (x2)}, (11) 

where xi- x2 = fis the distance and m(x) is the order parameter. In a ferromagnet 

fluctuations can be considered small, if 

(12) 

where the integrals are taken over a correlation volume. Statistically the numerator 

represents the variance of the order parameter fluctuation and it is compared with 

the mean-square value of the order parameter. Close to the critical point, G(f) takes 

the general form [3] 

1 f 
G(f) ~ rt-2+11 exp(-e), (13) 
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where e represents the correlation length. The critical exponent is TJ = 0 in Landau 
theory. Evaluating Eq. (12) leads to 

(14) 

for T - Tc, and the exponent must satisfy the condition 

dv - 2{3 - 2v > 0. (15) 

Inserting the mean field values v = 1/2, {3 = 1/2 gives d > 4. The effects of fluctu

ations must therefore be considered for d < d"t' = 4 to describe the critical behavior 

correctly. In contrast, for d > d"t', we can expect Landau theory to give the correct 

critical behavior. d~ is called the upper critical dimension, and the condition (15) is 

the Ginzburg criterion [11]. 

1.1.4. Landau-Ginzburg-Wilson Theory. In order to adequately describe 

the order parameter fluctuations, one needs to generalize the Landau free energy 

function ( 3) to a functional that depends on a spatially varying order parameter field 

¢(x). Expanding in both ¢ and its gradient yields the so-called Landau-Ginzburg

Wilson (LGW) theory [12, 13, 14] 

s [¢ (x)] = J ddx [t¢2 (x) + c(V'¢ (x))2] + u J ddx¢4 (x). (16) 

In contrast to the original Landau theory, the LGW theory is a nontrivial many

body problem which cannot be solved in closed form. Understanding critical phenom

ena based on the LGW theory was made possible by the development of the renor

malization group by K.G. Wilson [12, 13] who was awarded the 1982 Nobel Prize in 

physics. 
Wilson's renormalization group (RG) is based on the earlier idea of Kadanoff 

scaling [3, 9, 15]. The crucial idea is that at a critical point the correlation length 

diverges and therefore the system effectively looks scale invariant. We shall explore 

these scaling ideas in Subsec 1.2. 
1.1.5. Universality Class. Critical phenomena are characterized by sets 

of critical exponents and systems can be classified according to the values of these 

exponents. Interestingly, the critical exponents of several physical systems are ex

actly identical. Thus, we can aggregate these models and label them as being in 
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same universality class (9, 10]. Usually, critical exponents depend on the spatial di

mensionality2 d, and on the symmetry of the order parameter. For example, the 3d 

Ising model and the 2d Ising model do not have the same critical exponents. The 

Heisenberg model also should not be described by critical exponents of the 3d Ising 

model: although the two models have the same dimensionality, they have different 

order parameter symmetries (0(3) vs Z(2)). The universality class is independent of 

microscopic details such as the geometric structure of the lattice (triangular, square, 

and hexagonal lattice) (9, 10]. Critical exponents for low dimensional Ising models 

are shown in the Table 1.1. 

Table 1.1. The critical exponents of the Ising model. MF: Mean-field solution; On
sager solution (1944): Exact solution of two-dimensional Ising model with
out a field; Ising (d = 3): Results of computational experiments. 

MF Onsager solution (d = 2) Ising (d = 3) 

a 0 0 0.110(5) 
{3 1/2 1/8 0.325±0.0015 

'Y 1 7/4 1.2405±0.0015 
8 3 15 4.82(4) 
v 1/2 1 0.630(2) 

'fJ 0 1/4 0.032±0.003 

1.2. SCALING THEORY 
In this section, we shall introduce the scaling theory (3, 9, 10] for equilibrium 

phase transitions. The scaling theory is based on the assumption that the only rele

vant length close to a critical point is the correlation length (16]. As shown previously, 

physical quantities are characterized by power-laws in the vicinity of the critical point 

and these power-laws mathematically have the implicit property of scale invariance. 

In order to define the concept of scaling, we introduce the Widom scaling (17] as

sumption and the Kadanoff block-spins (15] which illustrate a schematic example for 

scaling properties near the critical point. 
1.2.1. Scaling Properties Near the Critical Point. Consider a system 

of interacting spins on a lattice of lattice constant ro, distance from criticality t 

2Dimensionality does not affect the universality class if d ~ cJ.t, d't is the upper critical dimension. 
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and field h. If the system is close to a ferromagnetic phase transition, neighboring 

spins are mostly parallel. This implies that we can approximately replace a group 

of neighboring sites (or bonds) by a single site. Repeating this everywhere in the 

lattice leads to a new lattice of "block-spins" with a lattice constant lr0 and modified 

distance from criticality tz and field h1. If we now rescale all lengths by a factor l, 

the free energy density changes by a factor z-d. Further assuming that tz = zxt and 

h1 = [Y h, we obtain the scaling form 

f(t, h)= z-dfWt, [Yh) (17) 

for the free energy and the correlation length 

{18) 

This implies that f and ~are not functions of the two variables t, h independently. 

Instead, they can be combined to one relevant variable. For example, if we simply 

set l to l = t-l/x, functional forms of the free energy and the correlation length are 

(19) 

This is the scaling hypothesis.3 [9, 10, 17, 16]. These relations were first found by 

Wilson [12, 13] on a phenomenological basis. 
By taking the appropriate derivative of f, the scaling behavior of thermody

namic functions can be found. When h = 0, the two functions in Eq. (19) give the 

power-laws j(t) "' tdfx and ~(t) "' ri/x respectively. For the ferromagnetic phase 

transition, the spontaneous magnetization m(t) is 

m(t) "-' t(d-y)/x, (20) 

because m = a f I {)h. Comparing with m( t) I'V tf3 gives a relationship which is called 

the scaling relation [9, 10, 16} 

d-y ) /3= -= (d-y v 
X 

(21) 

3Widom proposed that close to the critical point the singular part of the free energy density 
f = F jV is a function of one rather than two arguments, see Refs. (16, 17]. 
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with v = 1/x. The magnetization at the critical point (t = 0) with l = h-1111, 

gives another scaling relation which is called the Widom scaling relation [17], 

6 = _Y_. (23) 
d-y 

From the susceptibility and the specific heat, x = (omjoh)T, C = -T(fP f jat2)h, 
two more scaling relations can be derived· 

2y-d 
"Y = -x- = (2y- d)v, 

2x-d 
a=--=2-dv. 

X 

By using these scaling relations for the critical exponents, we can derive the 

Rushbrook scaling law [16] and the Widom scaling law [17, 18], 

a+2f3+"Y = 2 

a + /3( 6 + 1) = 2. 

1.3. PERCOLATION THEORY 

(24) 

(25) 

(26) 

(27) 

Percolation concerns the movement of particles on randomly connected network 

systems [19, 20, 21]. Representative examples can be found in forest fires, oil fields, 

diffusion in disordered media, and random magnetism. For example, water moving 

through porous rocks is a well-known example of percolation phenomena in nature. 

In this case, the paths for water can be considered a random network. If one considers 

percolation on a lattice consisting of "sites" connected by "bonds" , one can distinguish 

two different kinds of percolation problems. If the sites are randomly occupied or 

empty, we speak of a site percolation problem. In contrast, a bond percolation problem 

arises if the bonds can be present or absent with some probability. Percolation is a 

purely geometric problem in which clusters of connected sites or bonds are clearly 

defined static objects. Percolation theory treats and predicts the geometric properties 

of these clusters on the network mathematically. 
Historically, Flory (1941) [19] and Stockmayer (1943) [22] developed the frame

work of percolation theory on the Bethe lattice (or Cayley tree model) to describe 

polymerization processes in which small molecules branch to macromolecules. In 

1957, Broadbent and Hammersley [23) introduced the percolation problem into the 
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mathematics literature. The relations between percolation and critical phenomena 

have been studied in great detail since the 1970's [24, 25]. 

1.3.1. Site Percolation on A Lattice. Consider an infinite lattice system, 

with each site randomly occupied independent of its neighbors with probability p. 

When p = 0, all sites are in empty state, but empty sites are getting occupied at 

p > 0. All sites are occupied at p = 1. In the region 0 < p < 1, the occupied sites 

form connected clusters, whose typical size increases with p. For small p, below some 

critical value Pc, called the percolation threshold, all clusters are of finite size, even 

in an infinite lattice. When p reaches Pc, an infinite cluster of connected sites starts 

to form which spans the entire sample. The phase transition occurring across Pc is 

called the percolation transition. Its order parameter is the probability P00 (p) of a 

site to belong to the infinite cluster. The percolation transition is illustrated in Figs. 

1.3 and 1.4. In the left panel of Fig. 1.3, the infinite cluster has not appeared yet, 

this corresponds to P00 = 0. At p ~ Pc the infinite cluster appears (see right panel of 

Fig. 1.3) and P 00 =f 0. Close to Pc, the order parameter follows a power-law with the 

critical exponent {3, 

p --4 p~, (28) 

analogous to the critical phenomena discussed in Subsecs 1.1 and 1.2. The critical 

exponent {3 is only dependent on the dimensionality and, as mentioned before, this is 

known as universality4 • 

1.3.2. Distribution of Finite-size Clusters. An interesting question in 

percolation theory is the distribution of the sizes of the clusters, and how it changes 

with p. Since the probability of a site to be occupied is p, one can imagine that the 

s-cluster has s occupied sites with probability p8 and the occupied edge sites have 

empty neighboring sites with the probability 1 - p each. However, the number of 

these perimeter sites depends on the shape of the cluster. Therefore the number of 

clusters with s sites per lattice ns(P) is 

(29) 

where g(s, t) is a configuration factor5 and t is a number of perimeter sites. The 

summation l:tg(s, t) is proportional to s-8 As on the condition of s being very large 

4In this section we only treat a site percolation problem, but in agreement with universality, a 
bond percolation shows same. critical behavior. . . . . . 

liThe number of lattice ammals (or configurations of fimte clusters) With s1ze sand penmeter t. 
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Figure 1.3. Example of site percolation on the square lattice. Left: At p < Pc, oc
cupied sites form small finite-size clusters. Right: At p 2 Pc, an infinite 
cluster spanning the entire lattice emerges. Blue dashed oval shows the 
infinite cluster. 
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Figure 1.4. The behavior of the order parameter (Poo) at the percolation transition. 
Here Pc is a percolation threshold (critical point). 

[21, 25, 26], 

g(s) = L:g(s, t) ""s-6A8
, 

(30) 

t 
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where A is a constant and (} is an exponent6 which is associated with the statistics of 
lattice animals (27, 28). 

When p--+ 0 under the condition of s --+ oo, this condition gives (1- p)t ~ 1 
and therefore n8 (p) is given by, 

ns(P < Pc) f'V s-6p8 A8 

= s-6 exp ( -s ln (P~)) 
"' exp ( -c1s). (31) 

When p > Pc, if pis close to 1, this condition gives p8 ~ 1. Here, we can neglect 

the term for g(s) because sis close to the system size. Thus n 8 (p) is given by 

ns(p > Pc) "'const · (1- p)t 

"'B(s) exp (-tln - 1-) "'exp ( -c2 • t). 
1-p 

(32) 

In d-dimensional hyper-cubic lattice, sis proportional to rd, s"' rd, and tis propor

tional to rd-1, t "'rd-1. Therefore by using 

t d-1 1-1/d "'r =s , 

we obtain the cluster size distribution 

(33) 

(34) 

The results of Eqs.(31) and (34) can be combined. Using the analogy between 

percolation and critical phenomena, we can postulate a scaling form for n8 (p) close to 

the percolation threshold (this also follows from Fisher's Ising droplet modeF [29]), 

(35) 

with 

f(x) "'exp(-const · x11u] (x > 0) (36) 

6For examples: (J = 1 (d = 2), 3/2 (d = 3), and 5/2 (d > 8) in the Bethe lattice. 
7This model was first suggested by Essam and Fisher (1963) and extended by Fisher (1967). In 

this droplet model, z ,.... As"' represents droplet's sn;face a:ea where s is the number of molecules in 
the droplet and A is a constant of order unity to differentiate shapes of the droplet. 
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and 

(x < 0). (37) 

Here, a and r are critical exponents. 

1.3.3. Criticality and Scaling of Percolating Clusters. In this sub-

section, we relate the scaling of the cluster number to other critical properties of the 

percolation problem. Each lattice site is either empty or occupied, and if it is occu

pied, it belongs either to a finite cluster or to the infinite cluster. The fraction Poo(P) 

of sites belonging to the infinite cluster is thus given by, 

(38) 
8 

Here, the sum over s gives the probability that an arbitrary chosen site belongs to 

any finite cluster. Thus, near the critical point Pc, the relative strength is Poo,rez(p) = 
P00 (p) - Poo,c(P), but Poo,c(P) = 0 because Es ns(Pc)s = Pc· By using these relations 

we can show that the asymptotic behavior of P oo,rel (p) is represented by the following 

Poo,rel(P) = Poo(P)- Poo,c(P) 

- L [ns(Pc)- ns(P)] S + O(p- Pc) 
8 

(39) 

where z = IP- Pel sa (or z = IP- Pcll/rr s) and the integration over z gives the 

gamma function. In this integration, only z > 0 could be considered, because the 

infinite cluster dose not exist in p < Pc· The integration converges to a finite value 

and the leading behavior of P oo (p) is 

(40) 

Therefore, from Eqs. (28) and ( 40), we obtain the relation for the critical exponent 

{3, 

r-2 
{3 --- . 

(j 

( 41) 
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The average cluster size S is obtained by 

(42) 

Comparing with the definitionS"" IP- Pcl--y which follows from the analogy between 

S and the susceptibility Eq.(6), we have 

3-T 
!=--. 

(}' 

The total number of clusters per site M(p) is defined by 

M(p) = L ns(P) 
8 

(43) 

(44) 

and it is analogous to the free energy per site F(T) "' IT- Tcl 2-a. Therefore the 

critical exponent a is obtained by the following steps, 

M = L ns"' Ids s-r exp( -cs) 
8 

"' IP- Pci'.,.; 1
> I dz z-1+c1

;.,.1 f(z), (45) 

T-1 
a=2--. (46) 

(}' 

By combining the three scaling laws above, Eqs. (41), (43), and (46), we can confirm 

the Rushbrooke scaling law 

(47) 

Now we need to investigate the correlation length ~P for the percolating cluster, 

in order to have a full set of critical exponents which describe the critical behavior. 

As we mentioned before, the correlation length is given by the average distance of 

two sites belonging to the same cluster. The correlation length follows a power-law 
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with the critical exponent v, 

(48) 

1.3.4. Fractal Dimension of The Percolating Cluster. Close to the per

colation threshold, the geometric structure of the spanning cluster is inhomogeneous. 

Right at Pc its structure is actually that of a fractal, a system of non-integer dimension 

d1 (called the fractal dimension). If N(L) denotes the number of occupied sites in a 

spanning cluster, N(L) is proportional toLd for the homogeneous distribution. For 

the fractal case, however, N(L) is proportional to Ld1 and d1 can take non-integer 

values. 

Therefore, if one takes a sphere with radius R in the infinite cluster and then 

counts the number of occupied sites in that sphere, the count is proportional to Rd1. 

Since the probability of an arbitrary occupied site to belong the infinite cluster is P 00 

, this gives the relation 

(49) 

(at p ::fPc, the structure is fractal for length up to the correlation length ep)· By Eqs. 

(28) and (48), one obtains the scaling relation 

(3 
d, = d-

ll 

which is only valid ford< 6 (21]. 

(50) 

Now to consider the correlation length, we note that e is the average distance 

of two sites belonging to the same cluster or, equivalently, the squared radius of a 

given cluster. If a site belongs with probability nss to an s-cluster with radius Rs, e 
is given by the average of R~ over all clusters 

2 2 'Es R~s2ns I _ ~-2v e = L: s2ns ,..... p Pc . 
(51) 

In the fractal region, Rs ,....., s1fdJ. Therefore Eq. (51) gives (See Ref. (21]) 

1 - = O'll 
d, 

(52) 



and, we obtain the scaling law which relates v to the other exponents 

T-1 
dv = 'Y + 2{3 = 2 - a = --. 

u 
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16 

(53) 

The preceding sections dealt with phase transitions in equilibrium systems. 

However, research has shown that abrupt transitions can also occur between different 

nonequilibirum steady states. These nonequilibrium phase transitions display large

scale fluctuations and collective behavior over large distances just like equilibrium 

phase transitions (30, 31, 32]. This section gives an introduction into the nonequilib

rium phase transitions in stochastic nonequilibrium lattice models (33, 31, 32]. 

What is a nonequilibrium system? Recall that a thermodynamic equilibrium 

state is characterized by being time-independent and by the absence of macroscopic 

currents (34, 35]. Thus, one can broadly distinguish two classes of nonequilibrium 

systems. In one class are systems whose steady states are proper equilibrium states, 

but they are prepared in states far from equilibrium. The other class, nonequilib

rium steady states, involve macroscopic currents. In the microscopic view, this can 

be understood by looking at the transition probabilities between microscopic states. 

Consider the master equation 

(54) 

where PA(t) and PB(t) are the probabilities for each state and W is the transition 

rate between the two states. In equilibrium, they fulfill the so-called detailed balance 

condition [35], and the P(t) are given by the Boltzmann distribution. 

(55) 

In contrast nonequilibrium steady states do not require detailed balance [31, 36]. As 

a result, the key point of difference between equilibrium and nonequilibrium is that 

the stationary probability distribution and the transition rates are known for the 

equilibrium, but for the nonequilibrium one must find the time-dependent solutions 

of the master equations. 
In this section we treat nonequilibrium steady states, i.e., nonequilibrium sys-

tems of the 2nd kind. 
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1.4.1. The Contact Process. The contact process [37, 38, 39] which was pro

posed by T.E. Harris in 1974 is a prototype for nonequilibrium lattice models similar 

to the Ising model for equilibrium lattice models. It can be viewed as a model for 

describing epidemic processes8 without immunity [31]. 

The contact process is defined on ad-dimensional hypercubic lattice. Each site 

can be occupied by a particle (active, denoted by A), or it can be empty (inactive, 

denoted by J). The time evolution of the contact process is a continuous-time Markov 

process [40] having two basic transitions. ( i) Occupied sites can spontaneously become 

empty with a "healing" rate JJ, which can be set to unity. ( ii) Empty sites get occupied 

("infection") at a rate nA./ (2d) where n is the number of occupied nearest neighbor 

sites, and A is called the infection rate. 

The value of A controls the behavior of the contact process. For sufficiently 

small A, the healing process dominates the state of the system. Thus, all sites will 

eventually become empty, resulting in a completely inactive state. For sufficiently 

large A, the infection process dominates and a nonzero fraction of sites will remain 

occupied. This state is called active state. 
The nonequilibrium phase transition between the inactive and active states 

which occurs at a critical value Acis a so-called "absorbing-state" transition: If the 

system is in the inactive state (the absorbing state), it cannot leave it anymore. 

8i 8i+l 

"~" ~ ~ ~ :/· eo oe t ·$··$· . ·-. ·$··£P· 
1 t j. I I () 00 (.) C· t+dt ·$··$· . -. ·$··$· 1 1 I I I 

: : ' I : I 
'JJ2 'JJ2 1/2 112 1/2 1/2 

Figure 1.5. Schematic update for the contact process in d = 1. Infected-sites ( occu
pied) infect their neighbors at rate A/2 (n = 1, d = 1) and recover at rate 
1. This figure is reprinted from Ref. [31] 

1.4.2. Critical Phenomena of The Contact Process. The order param

eter of the nonequilibrium phase transition in the contact process is the density of 

sThe representative model is the SIR(S) model, the contact process is a generalized version of it 

on lattices. 
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active sites PA 

PA(t) =< ~ L si(t) >, 
i 

(56) 

where N is the total number of sites, si = 0, 1 is the occupation number of site i, and 

( · · ·) denotes the average over the realizations of the Markov process. In the long time 

limit, if the system is in the active phase (A > Ac), PA reaches a nonzero stationary 

value p~at, and if the system is in the inactive phase (A< Ac), the stationary value 

of PA is zero. Close to Ac, the stationary value of the order parameter PA follows a 

power-law 

(57) 

where {3 is the order parameter critical exponent. 

Imagine the contact process starting from a single active site embedded in an 

otherwise inactive lattice. For A < Ac, we expect all activity to die out with time, 

while for A > Ac, activity will survive even for t -+ oo with a certain probability. This 

survival probability Ps is thus zero in the inactive phase, but nonzero in the active 

phase. Close to Ac, P8 behaves as 

where {3' is another critical exponent. 
In analogy with equilibrium critical points, one can introduce a correlation 

length 

and a correlation time 

(60) 

which characterize the clusters of active sites. Here vn and v .1 are the critical exponents 

that characterize the divergence of the correlations in the vicinity of the critical point. 

The ratio of these two critical exponents produces the dynamical exponent z = vn / v .1, 
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thus 

(61) 

The four critical exponents, vn, v .L, (3 , and (3', completely determine the universality 

class of a phase transition in a nonequilibrium lattice model. 

In analogy to equilibrium critical phenomena, the behavior of observables close 
to Ac is characterized by scaling. Let us discuss critical behavior and scaling properties 

of the contact process. If we set ~ = A - Ac, the scaling form of the order parameter 

reads 

(62) 

where F is a universal scaling function [31, 41]. At criticality, PA is simplified to a 

time-dependent form, 

(63) 

where the critical exponent a= (3/vn describes the time evolution of the density (for 

instance, starting from a fully occupied lattice). The survival probability has the 

analogous scaling form 

(64) 

where F is another scaling function. Therefore the time evolution of this quantity is, 

at criticality, 

(65) 

where the critical exponent 5 = (3' fvn describes the survival probability at criticality 

of a cluster starting from a single seed. 
Next we study the pair connectedness function C(x, t) = (sx(t) · so(O)) which 

describes the probability that site x is active at time t when starting from a single 

active site at x = 0 and t = 0. This correlation function has a scaling form 

(66) 
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where d is the dimensionality and () is the so-called initial slip critical exponent. In 

the active phase, as mentioned, PA(t) and P8 (t) both saturate in the long time limit. 

Therefore their product can be replaced by the autocorrelation 

C(O, oo) = pPs "" 6_f3+f3'. (67) 

Comparing with the scaling form Eq. (63) in the limit of x ._ 0 gives 

(68) 

Thus the time-independent form of Eq. (63) in the long time limit is 

(69) 

Now we obtain the hyper scaling law, by using Eqs. (64) and (66), 

(70) 

which holds below the upper critical dimension dt. 
The number of occupied sites at time t when starting with a single occupied site 

at time 0 can be found from 

N(t) = j ddxc(x,t). (71) 

Therefore, at criticality, the number of occupied sites behaves as 

(72) 

For the contact process, the upper critical dimension can be determined by using 

the hyper scaling law. The initial slip exponent () shows a non-zero positive value in 

this model [31, 42, 41, 43, 44], thus 

d {3 + {3' 
---->0, (73) 
z liJI 
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and mean field values of critical exponents, i.e. z = 2, f3 = {3' = 1, and v11 = 1, give 
d > 4. So the upper critical dimension is 

(74) 

Although a general absorbing state transition is characterized by four exponents, we 

will see it Subsubsec. 1.4.4 that for the contact process f3 = {3' and thus a= o. 
1.4.3. Mean-field Approximation for The Contact Process. A basic 

understanding of the contact process can be achieved by means of a mean-field ap

proximation. To derive the mean-field equation, we replace the occupation number 

si of the neighbors of a given site by their average PA. This gives 

(75) 

This equation has two stationary solutions, i.e., PA = 0 and PA = (.X - 1) /.X. The 

first one, PA = 0 represents the inactive state, the second one represents the active 

state. The phase transition occurs at .X = 1, when the active solution first appears 

and the inactive one becomes unstable. Setting 6.. = .X - .Xc = .X - 1, we obtain 

(76) 

in the vicinity of critical point. Thus the critical exponent f3MF has the value f3MF = 1. 

The time evolution of the order parameter is given by 

(77) 

at the critical point. Close to the critical point, we instead obtain 

f),. 

PA(t) = .X+ ( ~ -.X) exp( -6.t)' 
po 

(78) 

where Po = p(O) is a constant. Asymptotically, PA(t) shows an exponential decay, 

i.e. PA(t) rv e-l~lt "' e-t/eu, independent of the sign9 of 6.. From this asymptotic 

behavior, we can obtain the correlation time 

(79) 

9For ~ > 0, PA(t)"' i + xt (A- ! ) e-At and for~< 0, PA(t)"' -~(A- ! ) -l eAt 
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with v11 MF = 1. 

To discuss spatial correlations, we need to permit spatial variations and add a 

gradient term similar to Subsubsec. 1.1.2. Therefore the mean-field equation now is 

{80) 

where PA = PA(x, t). Comparing space and time derivatives suggests [41] 

where the dynamic exponent in the mean-field theory is ZMF - 2 and a critical 

exponent VJ.MF = 1/2 for correlation length emerges via ZMF = viiMF/VJ.MF· 

1.4.4. Universality Class- Directed Percolation (DP). According to 

the so-called DP conjecture [45, 46], the contact process should belong to the directed 

percolation universality class. The DP conjecture was introduced by Jassen {1981) 

and Grassberger {1982). It states that a system is in the DP universality class if {i) it 
has a one-component order parameter and exhibits a continuous phase transition into 

a unique absorbing state, provided that ( ii) the dynamic rules involve only short-range 

processes, and (iii) the system has no additional symmetries or quenched randomness 

[31, 45, 46]. 

What is directed percolation? In normal {isotropic) percolation, as discussed in 

Subsec 1.3, a site can be connected to its neighbors in all directions. In contrast, in 

directed percolation, only bonds in one direction are allowed, as illustrated in Fig. 

1.6. 

Epidemic process such as the contact process can be mapped onto DP by relating 

the time direction to the special direction in the DP problems. 

1.4.5. Generalized Contact Process. In the previous sections we in-

troduced the contact process which has a single absorbing-state and we found that 

its critical behavior falls into the directed percolation universality class. The com

mon feature of lattice models belonging into the DP class is the existence of a single 

absorbing-state. According to the DP conjecture, if there are several symmetric 

absorbing states in the system, the critical behavior is expected to belong to a uni

versality class other than DP. 
Examples of universality classes with two absorbing-states are the parity-conserving 

(PC) universality class (47, 48, 49, 50] and the Z2-symmetric directed percolation 

(DP2) universality class (31, 51] which coincide in 1d but are distinct classes in higher 

dimensions. The PC class is one of the ubiquitous classes for nonequilibrium lattice 
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Figure 1.6. Difference between isotropic and directed percolation. Left : Bond per
colation from a single seed (red dot) toward all directions. Right : Per
colation (represented by arrows) is only allowed in downward direction, 
and dashed bonds represent forbidden directions in percolation process. 

Table 1.2. Critical exponents of the directed percolation universality class: In d = 1, 
exponents V.L and vu are obtained from a series expansion by Jensen 
(1999). Exponents of other dimensions come from computational calcula
tions which were performed by Voigt and Ziff ford= 2 (1997) and Jensen 
ford= 3 (1992) [42]. 

MF d=l d=2 d=3 
{3 = {3' 1 0.276486(8) 0.584(4) 0.81(1) 

VL 1/2 1. 096854( 4) 0.734(4) 0.581(5) 
vu 1 1.733847(6) 1.295(6) 1.105(5) 
z 2 1.580745(10) 1.76(3) 1.90(1) 

a=8 1 0.159464(6) 0.4505±0.0010 0. 732±0.004 
() 0 0.313686(8) 0. 2995±0.0010 0.114±0.004 

models. One representative model is the branching and annihilating random walk with 

an even number of offspring (BARWe) [31, 32, 50], where the number of particles is 

conserved mod 2. The generalized contact process [31, 51] with two absorbing-states 

is a representative model in the DP2 class. 

The generalized contact process was suggested by H. Hinrichsen in 1997 [51]. 

The difference between this model and the simple contact process is the number of 

absorbing states. While the simple contact process has a single absorbing state, the 

generalized contact process involves m symmetric absorbing states. The model is 
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defined on a lattice whose sites can now be in one of m + 1 states the active state A 
' ' 

or one of m inactive states Ik (k = 1, · · · , m). k is sometimes called the color index10• 

The dynamic rules of this model are defined by the transition rates 

w ( si,t+dt, si+l,t+dtlsi,t, Si+t,t) for pairs of nearest neighbor sites, 

w (A, hi A, A) = w (Ik, AlA, A) = fl/m, 

w (h, hlh, A) = w (h, hiA, Ik) = J-lk, 

w (A, Alh, A) = w (A, AlA, h) = 1, 

w (A, Iklh Ik) = w (Iz, AIIl, h)= 1, (82) 

where fl and J-lk are healing rates and the indices k and l denote different absorbing 

•,• 
® • 

or 
• ® 

® • 

' ® ® 
or 

• • 

• ® 

' ® ® 
or 

• • 

® ([) 

' ® • 
or . ([) 

(f) ® 

' • ® 
or 

0 • 
Figure 1. 7. Schematic update of the generalized contact process. The occupied site is 

represented by the solid dot and different colored empty sites are labeled 
by k and l (k # l). 

states k # l. Full symmetry between the absorbing states requires the condition 

p,1 = P,2 = · · · = J-lm = p,. Generally we may set fl = p,, if there is no attractive or 

repulsive interaction between occupied sites. In the above dynamics, inactive sites 

with random colors are created within active islands but transformations between 

different colored states are not allowed. The first three rates in Eq. (79) are analogous 

to the simple contact process. The 4th rate prevents domains of different colors from 

sticking together. Instead, they can separate and move via the creation of active sites. 

1.4.6. Universality Class of The Generalized Contact Process. Ac

cording to the DP conjecture, a transition with a single absorbing state will be in 

the DP universality class. If the symmetry among different absorbing states does not 

exist in the generalized contact process (GCP), one of them will be dominant in the 

lOThere is no deeper physical meaning here, this word is just used as an index to distinguish the 
m inactive states in Ref. [51]. 
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Table 1.3. Critical exponents of DP2 universality class. Ford= 1 all values coincide 
with the PC class and ford= 2 all exponents take mean-field values with 
logarithmic corrections according to the GV class [32]. 

{3 {3 (J a 8 z 

d = 1 0.92(3) 0.92(3) 0.000(1) 0.285(5) 0.285(5) 1.747 
d=2 0 1 0 0 1 2 

long time limit and we may expect DP critical behavior. However, the non-DP critical 

behavior is expected, if the symmetry exists. Especially if there are two symmetric 

absorbing states, the GCP belongs to the Z2-symmetry directed percolation class 

(DP2 class). For the d = 1 this class coincides with the parity-conserving class (PC 

class) which is represented most prominently by branching annihilating walks with 

an even number of offspring (BAREe). This model is defined by particles diffusing 

and undergoing reactions 

2A ~ 0 

A ~ (n+ l)A, (83) 

where k1 and k2 are rates corresponding to annihilating and branching and n = 

2, 4, 6, ... indicates the number of offspring. The long-time dynamics of the GCP with 

two absorbing states can be mapped onto BARWe process in ld by considering the 

domain walls 1112 and 1211 to be particles, 1112 = 012 [51, 42]. The rates (79) then 

create the reactions 

012021 ~ 0 

o12 ~ o12021n12, (84) 

corresponding to annihilation and branching of these particles. However in higher 

dimension systems, the interfaces11 between differently colored inactive domains are 

lines, therefore we cannot treat the interface as a particle in mapping to the BARWe. 

The values of the critical exponents of the DP2/PC universality class in ld are 

known with high accuracy (see Table 1.3). In 2d, the DP2 class is very close to its 

upper critical dimension. In fact, based on a conjecture by Dornic et al. [52], the 

11We may think these interfaces as strings or walls of As. See Refs (31, 51]. 
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2d DP2 class maps onto the genemlized voter model12 (GV) class which is exactly at 

its upper critical dimension. This suggests that the upper critical dimension of DP2 

universality class is d~ = 2. 

1.5. SUMMARY 

In this section we introduced the background and theories to support the next 

sections. In first two subsections (Subsecs 1.1 and 1.2), we discussed equilibrium 

phase transitions based on the Ising model and its mean-field theory which were dis

cussed via Landau theory. Although Landau theory is incorrect in low-dimensional 

systems, this theoretical approach to criticality still gives valuable insights into phase 

transitions. Going beyond mean-field theory, we then introduced the effects of fluctu

ations and the Ginzburg criterion. Finally, we discussed Widom's scaling assumption 

and the resulting scaling forms of physical quantities. 

In Subsec 1.3, we introduced the classical percolation theory which concerns the 

movement of particles on randomly connected network systems. We mainly discussed 

a site percolation problem in order to apply it to site dilutions in sections 2 and 3. 

In Subsec 1.4, we introduced two nonequilibrium lattice models, i.e., the con

tact process and the generalized contact process. Nonequilibrium phase transitions 

in these models are the primary topic of this dissertation. After explaining a key dif

ference between equilibrium and nonequilibrium systems we introduced the nonequi

librium critical properties of the contact process. Then we discussed the generalized 

contact process which is not in the universality class of the contact process. Thus we 

showed two different kinds of universality classes for nonequilibrium lattice models. 

The remainder of this thesis consists of reprints of four papers. Sections 2 and 3 

deal with nonequilibrium phase transitions of the contact process and the generalized 

contact process on percolating lattices. Sections 4 and 5 explore the phase diagram 

and the phase transitions of the generalized contact process in more detail. 

12The voter model is defined by spin-flip dynamics, but "opinions" is used instead of spin config
urations. Two absorbing-states can be represented by two spins states (all spin up or down). 



27 

BIBLIOGRAPHY 

[1] H. Stocker W. Greiner, L. Neise. Thermodynamics and statistical mechanics. 
Springer-Verlag, New York, 1995. 

[2] Thomas Andrews. The bakerian lecture: On the continuity of the gaseous and liq
uid states of matter. Philosophical Transactions of the Royal Society of London, 
159, 1869. 

[3] H. Eugene Stanley. Introduction to phase tmnsitions and critical phenomena. 
Oxford Univ. Press, Oxford, 1971. 

[4] L. Landau. Theory of phase transformations. i. Zh. Eksp. Teor. Fiz. Phys. Z. 
Sowjetunion, 7 11:19 26, 1937 1937. 

[5] L. Landau. Theory of phase transformations. ii. Eksp. Teor. Fiz. Phys. Z. 
Sowjetunion, 7 11:627 545, 1937 1937. 

[6] L. Onsager. Phys. Rev., 65:117-149, 1944. 

[7] E. Ising. Z. Physik, 31:253, 1925. 

[8] S. G. Brush. Rev. Mod. Phys., 39:883-893, 1967. 

[9] B. Bergersen M. Plischke. Equilibrium statistical physics. Prentice Hall, New 
Jersey, 1989. 

[10] R. K. Pathria. Statistical mechanics. Butterworth Heinemann, Oxford, 1996. 

[11] V. L. Ginzburg. Sov. Phys. Sol. State., 2:1824, 1960. 

[12) K. G. Wilson. Phys. Rev. B, 4:3174, 1971. 

[13] K. G. Wilson. Phys. Rev. B, 4:3184, 1971. 

[14) R. Sknepnek. Magnetic and superconducting quantum critical behavior of itiner
ant electronic systems. PhD thesis, Univ. of Missouri-Rolla, 2004. 

[15) L. P. Kadanoff et. Rev. Mod. Phys., 39:395, 1967. 

[16) K. Huang. Statistical mechanics. John Wiley & Sons, New York, 1987. 

[17) B. Widom. J. Chern. Phys., 43:3892, 1965. 

[18] L. E. Reichl. A morden course in statistical physics. John Wiley & Sons, New 
York, 1998. 

(19] P. J. Flory. J. Am. Chern. Soc., 63:3089, 1941. 



28 

[20] P. J. Flory. Statistical mechanics of chain molecules. Interscience Publisher, New 
York, 1969. 

[21] D. Stauffer and A. Aharony. Introduction to percolation theory. Taylor & Francis, 
London, 1994. 

[22] W. H. Stockmayer. J. Chem. Phys., 11:45, 1943. 

[23] J. Hammersley S. Broadbent. Percolation processes i. crystals and mazes. Pro-
ceedings of the Cambridge Philosophical Society, 53:629-641, 1957. 

[24] J. W. Essam. Rep. Prog. Phys., 43, 1980. 

[25] K. M. Gwilym J. W. Essam. J. Phys. C: Solid State Phys., 4:L228, 1971. 

[26] A. J. McKane T. C. Lubensky. J. Phys. A: Math. Gen., 14:L157-Ll61, 1981. 

[27] E. Stoll C. Domb, T. Schneider. J. Phys. A: Math. Gen., 9:L90, 1975. 

[28] C. Domb. J. Phys. A: Math Gen., 9:L141, 1976. 

[29] M. E. Fisher. Physics, 3:225, 1967. 

[30] T. Vojta. J. Phys. A, 39:R143-R205, 2006. 

[31] H. Hinrichsen. Adv.Phys., 49:815-958, 2000. 

[32] G. Odor. Rev. Mod. Phys., 76:663, 2004. 

[33] T. Liggett. Interacting particle systems. Springer-Verlag, New York, 1985. 

[34] F. Reif. Fundamentals of statistical and thermal physics. McGRAW-HILL, Sin
gapore, 1985. 

[35] D. Chandler. Introduction to modern statistical mechanics. Oxford university 
press, New York, 1987. 

[36] R. Dickmann J. Marro. Nonequilibrium Phase Transitions in Lattice Models. 
Cambridge university press, Cambridge, 1999. 

[37] T. E. Harris. Ann. Prob., 2:969, 1974. 

[38] A. de la Torre P. Grassberger. Ann. Phys. {N.Y.), 122:373, 1979. 

[39] R. Dickman. Nonequilibrium Statistical Mechanics in One Dimension. Cam-
bridge University Press, Cambridge, England, 1997. 

[40] A. A. Markov. Theory of Algorithms. Academy of Sciences of the USSR, 1954. 

[41] S. Lubeck. International Journal of Modern Physics B, 18:3977, 2004. 

[42] T. Vojta M. Y. Lee. Phys. Rev. E, 81:061128, 2010. 



(43] J. Mast T. Vojta, A. Farquhar. Phys. Rev. E, 79:011111, 2009. 

(44] I. Jensen. Phys. Rev. A, 45:R563-R566, 1992. 

(45] H. K. Janssen. Z. Phys. B, 42:151-154, 1981. 

(46] P. Grassberger. Z. Phys. B, 47:365-374, 1982. 

(47] D. ben Avraham D. Zhong. Phys. Lett. A, 209:333-337, 1995. 

(48] I. Jensen. J. Phys. A, 26:3921-3930, 1993. 

(49] I. Jensen. Phys. Rev. E, 50:3623-3633, 1994. 

(50] U. C. Tauber J. Cardy. Phys. Rev. Lett., 77:4870, 1996. 

(51] H. Hinrichsen. Phys. Rev. E, 55:219, 1997. 

29 

(52] J. Chave I. Dornic, H. Chate and H. Hinrichsen. Phys. Rev. Lett., 87:045701, 
2001. 



30 

2. NONEQUILIBRIUM PHASE TRANSITION ON A RANDOMLY 
DILUTED LATTICE 

Thomas Vojta and Man Young Lee 

Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 

Abstract13 

We show that the interplay between geometric criticality and dynamical fluctuations 

leads to a novel universality class of the contact process on a randomly diluted lattice. 

The nonequilibrium phase transition across the percolation threshold of the lattice is 

characterized by unconventional activated (exponential) dynamical scaling and strong 

Griffiths effects. We calculate the critical behavior in two and three space dimensions, 

and we also relate our results to the recently found infinite-randomness fixed point in 

the disordered one-dimensional contact process. 

ta All of this section is reproduced from Physical Review Letters 96 035701 (2006) and then 
reformatted and renumbered 
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Nonequilibrium systems can undergo continuous phase transitions between dif

ferent steady states. These transitions are characterized by collective fluctuations over 

large distances and long times similar to the behavior of equilibrium critical points. 

Examples can be found in population dynamics and epidemics, chemical reactions, 

growing surfaces, and in granular flow and traffic jams (for recent reviews see, e.g., 
Refs. [1, 2, 3, 4, 5, 6]). 

If a nonequilibrium process is defined on a randomly diluted spatial lattice, its 

dynamical fluctuations coexist with geometric fluctuations. Site or bond dilution 

defines a percolation problem for the lattice with a geometric phase transition at the 

percolation threshold (7]. In this Letter we address the question of how the interplay 

between geometric criticality due to percolation and dynamical fluctuations of the 

nonequilibrium process influences the properties of the phase transition. 

Our starting point is the contact process (8], a prototypical system exhibiting a 

nonequilibrium phase transition. It is defined on ad-dimensional hypercubic lattice 

(d 2:: 2). Each site can be active (occupied by a particle) or inactive (empty). In the 

course of the time evolution, active sites infect their neighbors, or they spontaneously 

become inactive. Specifically, the dynamics is given by a continuous-time Markov 

process during which particles are created at empty sites at a rate >..nj(2d) where n 
is the number of active nearest neighbor sites. Particles are annihilated at unit rate. 

For small birth rate >.., annihilation dominates, and the absorbing state without any 

particles is the only steady state (inactive phase). For large birth rate >.., there is a 

steady state with finite particle density (active phase). The two phases are separated 

by a nonequilibrium phase transition in the directed percolation (9, 10] universality 

class at some >.. = >..~. 
We introduce quenched site dilution (11] by randomly removing lattice sites 

with probability p. The resulting phase diagram of the site-diluted contact process 

is sketched in Fig. 2.1. For small impurity concentrations below the percolation 

threshold of the lattice, p < Pc, the active phase survives, but the critical birth rate 

increases with p (to compensate for the missing neighbors). Right at the percolation 

threshold the active phase survives on the infinite percolation cluster for>.. > >..*. The 

(multi) critical birthrate >..* must be smaller than the critical birthrate of the one

dimensional (lD) contact process because the critical percolation cluster is connected, 

infinitely extended, and its fractal dimension is D 1 > 1. For p > Pc, no active phase 

can exist because the lattice consists of disconnected clusters of finite size that do not 

support a steady state density of active sites. 
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The contact process on a site-diluted lattice therefore has two nonequilibrium 

phase transitions, separated by a multicritical point. For p < Pc, the transition 

(marked by "a" in Fig. 2.1) is expected to be in the universality class of the generic 

disordered contact process [12, 13, 14] which has reattracted considerable attention 

recently [15, 16]. In contrast, the phase transition across the percolation threshold Pc 

of the lattice for A> A* (transition "b" in Fig. 2.1) has received much less attention. 

In this Letter, we show that the interplay between geometric criticality and 

dynamic fluctuations leads to a novel universality class for this nonequilibrium phase 

transition. Even though the transition is driven entirely by the geometry of the 

lattice, the dynamical fluctuations of the contact process enhance the singularities 

in all quantities involving dynamic correlations. Our results can be summarized as 

follows. The dynamical scaling is not of conventional power-law form but activated, 

i.e., the relation between correlation length ~.L and correlation time ~II is exponential, 

(85) 

with the critical exponent '¢ being equal to the fractal dimension of the critical per

colation cluster, '¢ = D1. As a result, the long-time decay of the density p of active 

sites at p = Pc is ultra-slow, 

p(t)"' [ln(t/to)t8 . (86) 

Inactive 

MCP 

b 

Figure 2.1. Schematic phase diagram of a site diluted contact process as function of 
impurity concentration p and birth rate A. There is a multicritical point 
at p = Pc and A = A*. The phase transition (b) across the percolation 
threshold of the lattice is the topic of this Letter. 
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The exponent t5 = f3c/(vcDJ) is determined by D1 together with the order parameter 

and correlation length exponents, f3c and Vc, of the lattice percolation transition [17]. 

In contrast to the enhanced dynamical singularities, the exponents of static quantities 

like the steady state density Pst and the spatial correlation length e.L are identical the 
corresponding lattice percolation exponents, 

Pst(p) "' ~~~/3c (~ < 0) 1 

e.L "' l~l"c . 
(87) 

(88) 

where ~ = p - Pc measures the distance from the percolation threshold. Off criti

cality, i.e., away from the percolation threshold, we find strong Griffiths effects [18] 

characterized by a non-exponential density decay (12], 

p(t) "' (t/totd/z' (p > Pc) 

p(t) - Pst ,..., e-l{d/z")In(t/to)Jl-1/.t (p < Pc) ' 

{89) 

(90) 

where the nonuniversal exponents z' and z" diverge as z', z" "' ef' for p -+ Pc· In the 

remainder of the Letter we sketch the derivation of these results and calculate expo

nent values and additional observables. We also relate our results to the disordered 

1D contact process [15, 16] and to the diluted quantum Ising model [19]. 

Let us start by considering the steady state density Pst of active sites (i.e.,the 

order parameter of the transition). A nonzero steady state density can only develop 

on the infinite percolation cluster; finite clusters do not contribute because they even

tually go into the inactive state via a rare fluctuation. For .A > Ac, the infinite cluster 

is in the active phase. The total steady state density is proportional to the number of 

sites in the infinite cluster, Pst "'Poo(P)"' (Pc- p)l3c. The order parameter exponent 

of the nonequilibrium transition is therefore identical to that of the lattice percolation 

transition, {3 = f3c, as stated in (87). To determine the spatial correlation length e.1 
we note that the correlations of the contact process cannot extend beyond the con

nectedness length ec of the percolating lattice because sites on different percolation 

clusters are decoupled. On the other hand, for .A> .A., all sites on the same cluster 

are strongly correlated in space even though they collectively fluctuate in time. We 

thus COnclude e "'ec and l/ = Vc in agreement with (88). 
We now study the time dependence of the density p(t) of active sites, starting 

from a completely active lattice. We first consider the contact process on a single 

percolation cluster of finite size (number of sites) s. For .A > .A. such a cluster is 
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locally in the active phase. It therefore has a metastable state with a nonzero density 

of active sites. This metastable state can decay into the inactive state only via a rare 

collective fluctuation involving all sites of the cluster. The probability for such a rare 

event decreases exponentially with the size 8 of the cluster. Therefore, the life time 

ts of the metastable active state on a cluster increases exponentially with its size 8, 

t (8) rv t eA(>.)s 
8 0 ' (91) 

where t0 is some microscopic time scale. The prefactor A(..\) vanishes at the mul

ticritical point, A(..X.) = 0, and increases with increasing ..\. The number of sites 8 

of a percolation cluster is connected to its linear size Rs via 8 "' Rl}1 • Therefore, 

(91) establishes the exponential relation between length and time scales, lnt8 "' Rl}1 

leading to activated dynamical scaling (85). 

After having analyzed a single cluster we turn to the full percolation problem. 

From classical percolation theory, we know that close to Pc the number n8 of occupied 

clusters of size 8 per lattice site (excluding the infinite cluster for p < Pc) obeys the 

scaling form 

The scaling function f ( x) behaves as 

f(x) "' exp( -B1x) 

f(x) -

f(x) "' 

const 

(p > Pc) 

(p = Pc) 

(p < Pc)· 

(92) 

(93) 

(94) 

(95) 

where B1, B2 are constants. The exponents Tc and Uc determine all critical exponents 

of the percolation transition of the lattice including the correlation length exponent 

Vc = ( 'Tc - 1) I ( du c), the order parameter exponent f3c = ( 'Tc - 2) I u c, and the fractal 

dimension D1 = dl(rc- 1) of the percolating cluster [7]. 
In order to obtain the total density of active sites for the contact process on 

the diluted lattice, we sum the number of active sites over all percolation clusters. 

Combining the cluster size distribution (92) with the lifetime of the metastable active 

state (91) leads to 

p(t, fl.) "' J d8 8 n8 (tl.) exp[-tlts(8)] (96) 



35 

Right at the percolation threshold, this reduces to 

(97) 

The leading behavior of this integral can be found by noticing that only islands with 

sizes > Smin(t) = A-1 ln(t/to) contribute at timet. The critical long-time dependence 
of the total density is thus given by 

p(t, 0)"' [ln{t/to)]2-Tc (p = Pc)• (98) 

This completes the derivation of {86) with the critical exponent C5 given by (5 = Tc-2 = 

f3c/(vcDt) in agreement with general scaling arguments [15, 16]. 

We now consider the behavior of the density off criticality. In the inactive phase, 
p > Pc, the time dependence of the density is given by 

(99) 

For long times, the leading behavior of the integral can be calculated using the saddle
point method, giving 

(p > Pc) (100) 

equivalent to {89). The nonuniversal exponent z' is given by z' = (Ad/ Bt)D.-I/uc "' 
cDf 
C,j_ • 

In the active phase, p < Pc, there is a nonzero steady state density Pst coming 
from the infinite percolation cluster. However, the approach of the density towards 

this value is still determined by the slow decay of the metastable states of the finite 

percolation clusters 

p(t, D.)- Pst(Ll) "' (101) 

"' J dssl-Tcexp [- (B2slilll/uc)l-1/d- (t/toeAs)] 

Using the saddle point method to calculate the leading long-time behavior gives {for 

P < Pc) 

[ ] 1-1/ci 
p(t, D.)- Pst(Ll) "'e- (B2/A)JaJ1I"cln(t/to) {102) 
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This completes the derivation of (90) with z" = (Ad/ B2)1~1-l/uc "' ~f'. The non

exponential off-critical relaxation of the density (89,90) is characteristic of a Griffiths 

region in the contact process [12, 18]. We also point out that time and spatial cor

relation length enter these equations in the form of the combination ln(t)/~f' again 
characteristic of activated scaling. 

We now turn to the influence of an external source field h that describes spon

taneous particle creation at a rate h at each lattice site. To determine the steady 

state density as a function of h we again start by considering a single percolation 

cluster of size s. For A > A*' the cluster is active if at least one particle has been 

spontaneously created on one of the s sites within the life time ts(s) = t0eAs. For 

small h, the average number of particles created on a cluster of size s within time t 8 is 

Ms(h) = hsts = hstoeAs. If Ms > 1, the cluster is (almost) always active. If Ms < 1, 

it is active with a probability proportional to M8 • The total steady state density is 

obtained by summing over all clusters 

Pst(h, ~) ""'J ds s n8 (~) min[1, Ms(h)J . (103) 

Evaluating this integral analogously to the time-dependent density (96) yields, for 

small fields h, 

Pst(h) ""' [ln(ho/h)t5 (p = Pc), 

Pst(h) ~ (h/ho)dfz' (p > Pc), 

Pst(h) ""' exp [-(d/z") ln(ho/h)]1-l/d (p < Pc) , 

(104) 

(105) 

(106) 

where h0 '"" 1/t0 . At p = Pc, the relation between density and field is logarithmic, as 

expected from activated scaling. Off criticality, we find strong Griffiths effects similar 

to those in the time-dependence of the density. 

The above results can also be derived from a scaling theory. In the active phase, 

the density is proportional to the number of sites in the infinite percolation cluster. 

Thus, its scale dimension must be f3c/vc. Time must enter via the scaling combination 

ln(t)bDJ reflecting the exponential dependence of the life time (91) on the cluster size. 

The field h, being a rate, scales like inverse time. We therefore obtain the following 

scaling form: 

p[~, ln( t), ln(l/ h)] = /lc/vc p[~b-l/llc, ln(t)b"', ln(1/ h)b"'] (107) 
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Table 2.1. Critical exponents of the nonequilibrium phase transition at p = Pc in two 
and three space dimensions. 

Exponent d=2 d=3 
{3 = f3c 5/36 0.417 
V= Vc 4/3 0.875 
1/J = D1 = d- f3c/Vc 91/48 2.523 
(5 = f3c/(vcDf) 5/91 0.188 

where b is an arbitrary (length) scale factor and 1/J = D1. This form is consistent with 

all our explicit results. 

All critical exponents of the nonequilibrium phase transition are determined 

by the classical percolation exponents of the lattice. In two space dimensions, their 

values are known exactly and in three dimensions they are known numerically with 

high accuracy [7]. Table I shows numerical exponent values for these cases. 

We also briefly comment on the early time behavior. For .A > .A. each percolation 

cluster is locally in the active phase. Starting from a single active seed, the cloud 

of active sites thus initially grows ballistically, i.e., the radius of the cloud grows 

linearly with time, until a metastable state is reached in which it covers the entire 

percolation cluster. The time required for this initial spreading on an island of size 

s is ti ( s) """ R8 """ s11 D I. As discussed above, the metastable state decays only at 

the much larger time scale ts ( s) "' eAs. We thus arrive at the somewhat surprising 

conclusion that the early time behavior of the contact process on our diluted lattice 

is much faster than the logarithmically slow long-time decay of the density. 

In the remaining paragraphs, we discuss the generality of our results, compare 

them to the transition in the diluted quantum Ising model [19] and to the recently 

found infinite-randomness critical point in a random 1D contact process [15, 16]. We 

also compare to a general classification of phase transitions with quenched disorder 

[20]. 

The logarithmic time and field dependencies (86) and (104) at the nonequilib

rium phase transition at p = Pc as well as the strong Griffiths effects in its vicinity are 

the direct result of combining the spectrum of percolation cluster sizes (92) with the 

exponential dependence (91) of the life time on the cluster size. We therefore expect 

similar behavior in other diluted equilibrium or nonequilibrium systems that share 
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this exponential relation between length and time scales. One example is the diluted 

transverse field Ising model [19]. In this system, the energy gap of a cluster decreases 

exponentially with its size. As a result, the scaling behavior at the quantum phase 

transition across the percolation threshold of the lattice is very similar to the one 

found in this paper. 

Recently, the critical point of the 1D contact process with spatial disorder was 

found to be of infinite-randomness type [15, 16]. Analogous behavior is expected 

for the generic disordered directed percolation transition in higher dimensions, e.g., 

the transition at p < Pc in the site-diluted contact process (transition a in Fig. 2.1). 

Our critical point at the percolation threshold shares some characteristics with these 

infinite-randomness critical points, notably the exponential relation between correla

tion length and time as well as the logarithmically slow decay of the total density. 

However, it belongs to a different universality class with novel critical exponents. 

Moreover, the early time behavior is different (logarithmically slow at the generic 

infinite randomness critical point but of power-law type at our transition). 

Lastly, we point out that our results are in agreement with a general classification 

of phase transitions with quenched disorder (and short-range interactions) according 

to the effective dimensionality deff of the droplets or clusters [20]. Three cases can 

be distinguished: (i) If the clusters are below the lower critical dimension of the 

problem, deff < d;, the critical behavior is of conventional power-law type and the 

Griffiths effects are exponentially weak. (ii) If deff = d;, the critical point shows 

activated scaling accompanied by strong, power-law Griffiths effects. This case is 

realized in random transverse field Ising magnets (19, 21] as well as in our diluted 

contact process. (iii) If deff > d;, the phase transition is smeared because locally 

ordered clusters can undergo the phase transition independently from the bulk. This 

occurs, e.g., for some metallic quantum magnets (22] or for the contact process with 

extended defects (23, 24]. 
In conclusion, we have shown that the contact process on a diluted lattice has 

unusual properties. The interplay between geometric criticality and dynamical fluctu

ations leads to a novel universality class with activated scaling and ultraslow dynam

ics. Interestingly, despite its ubiquity in theory, experimental observations of directed 

percolation scaling (25] are very rare. Our results suggest that peculiar disorder effects 

may be responsible for this in at least some of the experiments. 
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Abstract14 

We study nonequilibrium phase transitions of reaction-diffusion systems defined 

on randomly diluted lattices, focusing on the transition across the lattice percolation 
threshold. To develop a theory for this transition, we combine classical percolation 

theory with the properties of the supercritical nonequilibrium system on a finite-size 

cluster. In the case of the contact process, the interplay between geometric criticality 

due to percolation and dynamical fluctuations of the nonequilibrium system leads to 

a new universality class. The critical point is characterized by ultraslow activated 

dynamical scaling and accompanied by strong Griffiths singularities. To confirm 

the universality of this exotic scaling scenario we also study the generalized contact 
process with several (symmetric) absorbing states, and we support our theory by 
extensive Monte-Carlo simulations. 

3.1. INTRODUCTION 
In recent years, considerable effort has been directed towards identifying and 

classifying phase transitions far from thermal equilibrium. Such nonequilibrium tran
sitions can be found in a wide variety of problems in biology, chemistry, and physics. 

Examples include population dynamics, the spreading of epidemics, surface chemi

cal reactions, catalysis, granular flow, traffic jams as well as growing surfaces and 

14 All of this section is reproduced from Physical Review E 79 041112 (2009) and then reformatted 
and renumbered. This paper is an extended version of PRL 96 035701 (2006}, thus many parts of 
this section are overlapped in section 2 
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interfaces (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8]). Nonequilibrium phase transitions are 
characterized by large scale fluctuations and collective behavior in space and time 
very similar to the behavior at equilibrium critical points. 

A particularly interesting situation arises when an equilibrium or nonequilibrium 
many-particle system is defined on a randomly diluted lattice. Then, two distinct 

types of fluctuations are combined, viz. the dynamical fluctuations of the many

particle system and the static geometric fluctuations due to lattice percolation [9). 

In equilibrium systems, their interplay gives rise to novel universality classes for the 
thermal [10, 11, 12) and quantum [13, 14, 16, 15) phase transitions across the lattice 
percolation threshold. 

In this paper, we investigate the interplay between dynamical fluctuations and 

geometric criticality in nonequilibrium many-particle systems. We focus on a partic

ularly well-studied type of transitions, the so-called absorbing state transitions, that 

separate active, fluctuating steady states from inactive (absorbing) states in which 

fluctuations cease completely. The generic universality class for absorbing state tran

sitions is directed percolation (DP) [17). It is conjectured [18, 19) to be valid for all 
absorbing state transitions with scalar order parameter and no extra symmetries or 

conservation laws. In the presence of symmetries and/ or conservation laws, other uni

versality classes can be realized, such as the DPn class in systems with n symmetric 

absorbing states [20). 
For definiteness, we consider the contact process [21], a prototypical system in 

the DP universality class. We show that the contact process on a randomly site or 

bond diluted lattice has two different nonequilibrium phase transitions: (i) a generic 
disordered DP transition at weak dilutions (below the lattice percolation threshold) 

driven by the dynamic fluctuations of the contact process and (ii) the transition across 
the lattice percolation threshold driven by the geometric criticality of the lattice. The 

former transition has been investigated for a number of years [22, 23, 24, 25); it has 

recently reattracted considerable attention because it is governed by an exotic infinite

randomness fixed point [26, 27, 28, 29). In contrast, the latter transition has received 

much less attention. 
Here, we develop a theory for the nonequilibrium transition across the lattice 

percolation threshold by combining classical percolation theory with the properties 

of the supercritical contact process on a finite-size cluster. We show that the criti

cal point is characterized by ultraslow activated (exponential) dynamical scaling and 

accompanied by strong Griffiths singularities. The scaling scenario is qualitatively 

similar to the generic disordered DP transition, but with different critical exponent 
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values. To confirm the universality of this exotic scenario, we also investigate the 

generalized contact process with n (symmetric) absorbing states [20]. This is a partic

ularly interesting problem because the generic transition of the disordered generalized 

contact process does not appear to be of infinite-randomness type [26, 27]. 

The paper is organized as follows. In Subec. 3.2, we introduce our models, the 

simple and generalized contact processes on a randomly diluted lattice. We also dis

cuss the phase diagrams. In Subec. 3.3 we briefly summarize the results of classical 

percolation theory to the extent necessary for our purposes. Subsection 3.4 contains 

the main part of the paper, the theory of the nonequilibrium transition across the 

lattice percolation threshold. Subsection 3.5 is devoted to the question of the gener

ality of the arising scaling scenario. We conclude in Subsec. 3.6. A short account of 

part of this work has already been published in Ref. [30]. 

3.2. SIMPLE AND GENERALIZED CONTACT PROCESSES ON 
DILUTED LATTICES 

3.2.1. Contact Process. The clean contact process [21] is a prototypical 

system in the DP universality class. It is defined on a d-dimensional hypercubic 

lattice. (We consider d 2: 2 since we will be interested in diluting the lattice.) Each 

lattice site r can be active (infected, state A) or inactive (healthy, state I). During the 

time evolution of the contact process which is a continuous-time Markov process, each 

active site becomes inactive at a rate p ("healing") while each inactive site becomes 

active at a rate >..m/(2d) where m is the number of active nearest neighbor sites 

("infection"). The infection rate >.. and the healing rate J-l are external parameters. 

Their ratio controls the behavior of the contact process. 

For >.. « p, healing dominates over infection, and the absorbing state without 

any active sites is the only steady state of the system (inactive phase). For sufficiently 

large infection rate >.., there is a steady state with a nonzero density of active sites 

(active phase). These two phases are separated by a nonequilibrium phase transition 

in the DP universality class at a critical value (>../ p)~ of the ratio of the infection and 

healing rates. 

The basic observable in the contact process is the average density of active sites 

at timet, 

p(t) = ~d L::(nr(t)) (108) 
r 
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where nr(t) = 1 if the site r is active at timet and nr(t) = 0 if it is inactive. Lis the 

linear system size, and ( ... ) denotes the average over all realizations of the Markov 

process. The longtime limit of this density (i.e., the steady state density) 

Pstat = lim p(t) 
t-+oo 

(109) 

is the order parameter of the nonequilibrium phase transition. 

3.2.2. Generalized Contact Process. Following Hinrichsen [20], we now 

generalize the contact process by introducing n different inactive states Ik with k = 

1 ... n (n = 1 corresponds to the simple contact process). Here, k is sometimes called 

the "color" label. The time evolution is again a continuous-time Markov process. 

The first two rates are equivalent to those of the simple contact process: An active 

site can decay into each of the inactive states Ik with rate J.L/n, and a site in any of 

the inactive states becomes active at a rate >..mj(2d) with m the number of active 

nearest-neighbor sites. To introduce competition between the different inactive states, 

we define a third rate: If two neighboring sites are in different inactive states, each 

can become active with a rate u. This last rule prevents the boundaries between 

domains of different inactive states from sticking together infinitely. Instead they can 

separate, leaving active sites behind. 
The properties of the clean generalized contact process have been studied in 

some detail in the literature [20, 31]. If the boundary activation rate u vanishes, 

the behavior becomes identical to the simple contact process for all n. (This becomes 

obvious by simply dropping the color label and treating all inactive sites as identical.) 

For u > 0, the system becomes "more active" than the simple contact process, and 

the universality class changes. In one space dimension, a phase transition exists for 

n = 1 (in the DP universality class) and for n = 2 (in the Z2-symmetric directed 
percolation (DP2) class which coincides with the the parity-conserving (PC) class in 

one dimension [5]). For n ~ 3 the system is always in the active phase, and no phase 

transition exists at finite values of>.., J.L and u. 
The generalized contact process in higher space dimensions presumably behaves 

in an analogous fashion: There is a DP transition for n = 1 while the properties for 

n > 1 are different. For sufficiently large n, the system is always active 15. 

3.2.3. Lattice Dilution. We now introduce quenched site dilution by 

randomly removing each lattice site with probability p. (Bond dilution could be 

15For d = 2 n = 2, Hinrichsen [20] finds a mean-field transition while our own simulations suggest 
that the syste~ always active. Since this difference is of no importance for the present paper, it will 

be addressed elsewhere. 
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Figure 3.1. (Color online:) Schematic phase diagrams for the simple and generalized 
contact processes on a diluted lattice in dimensions d ;::::: 2 as a function of 
dilution p and inverse infection rate ).-1 (healing and boundary activation 
rates p, and a are fixed). Case (a) applies to systems that display a 
phase transition at ).~ in the absence of dilution. There is a multictitical 
point (MCP) at (pc, >..) separating the generic transition from the lattice 
percolation transition. Case (b) is for systems that are always active in 
the absence of dilution. 

introduced analogously.) As long as the vacancy concentration p remains below tM 

lattice percolation threshold Pc, the lattice consists of an infinite connected clustet 

of sites accompanied by a spectrum of finite-size clusters. In contrast, at dilutioo~ 

above Pc, the lattice consists of disconnected finite-size clusters only. 

Figure 3.1 schematically shows the resulting phase diagrams of the nonequilil::>-. 

rium process as a function of the infection rate ). and dilution p, keeping the healiil~ 

rate JJ and the boundary activation rate a, if any, constant. Depending on the prop-. 

erties of the clean undiluted system, there are two qualitatively different cases. 

(a) If the undiluted system has a phase transition at a nonzero critical iilfectiolt 

rate >.~, the active phase survives for all vacancy concentrations below the perc()latiolt 
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threshold, P < Pc· It even survives at the percolation threshold Pc on the critical per

colation cluster because it is connected, infinitely extended, and its fractal dimension 

D 1 is larger than unity. The critical infection rate Ac increases with increasing dilu

tion P to compensate for the missing neighbors, reaching .X. at Pc· The active phase 

cannot exist for p > Pc because the lattice consists of finite-size clusters only, and the 

nonequilibrium process will eventually end up in one of the absorbing states on any 

finite-size cluster. Thus, in case (a), our system features two nonequilibrium phase 

transitions, (i) a generic (disordered) transition for dilutions p < Pc, driven by the 

dynamic fluctuations of the nonequilibrium process and (ii) the transition across the 

lattice percolation threshold driven by the geometric criticality of the lattice. They 

are separated by a multicritical point at (pc, .X.) which was studied numerically in 

Ref. [33]. 

(b) If the undiluted system is always active (as for the generalized contact pro

cess with a sufficiently high number of inactive states), the phase diagram is simpler. 

The active phase covers the entire region p :::; Pc for all .\ > 0 (.X. is formally zero) 

while the inactive phase exists in the region p > Pc· There is no generic (disordered) 

nonequilibrium phase transition, only the transition across the lattice percolation 

threshold. 
The focus of the present paper is the nonequilibrium phase transition across the 

lattice percolation threshold that exists in both cases. In order to develop a theory 

for this transition, we combine classical percolation theory with the properties of the 

nonequilibrium process on a finite-size cluster. In the next section we therefore briefly 

summarize key results of percolation theory. 

3.3. CLASSICAL PERCOLATION THEORY 
Consider a regular lattice in d dimensions. If each lattice site is removed with 

probability p [34], an obvious question is whether or not the lattice is still connected 

in the sense that there is a cluster of connected (nearest neighbor) sites that spans 

the entire system. This question defines the percolation problem (see Ref. [9] for an 

introduction). 
In the thermodynamic limit of infinite system volume, there is a sharp boundary 

between the cases of a connected or disconnected lattice. If the vacancy concentration 

p stays below the percolation threshold Pc, an infinite cluster of connected sites exists 

(with a probability of unity). For p > Pc, an infinite cluster does not exist, instead, 

the lattice consists of many disconnected finite-size clusters. 
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The behavior of the lattice for vacancy concentrations close to the percolation 

threshold can be understood as a (geometric) continuous phase transition or critical 
phenomenon. The order parameter is the probability P 00 of a site to belong to the 

infinite connected percolation cluster. It is obviously zero in the disconnected phase 

(p > Pe) and nonzero in the percolating phase (p < Pe)· Close toPe it varies as 

(p < Pe) (110) 

where f3e is the order parameter critical exponent of classical percolation. Note that 

we use a subscript c to distinguish quantities associated with the classical lattice 
percolation problem from those of the nonequilibrium phase transitions discussed 

later. In addition to the infinite cluster, we also need to characterize the finite clusters 

on both sides of the transition., Their typical size, the correlation or connectedness 

length ee diverges as 

(111) 

with lie the correlation length exponent. The average mass Be (number of sites) of a 

finite cluster diverges with the susceptibility exponent 'Ye according to 

(112) 

The complete information about the percolation critical behavior is contained 

in the cluster size distribution ns, i.e., the number of clusters with s sites excluding 

the infinite cluster (normalized by the total number of lattice sites). Close to the 

percolation threshold, it obeys the scaling form 

(113) 

Here A= p _ Pe, and Te and O'e are critical exponents. The scaling function f(x) is 

analytic for small x and has a single maximum at some Xmax > 0. For large lxl, it 

drops off rapidly 

j(x) "' exp [-Btxlluc] (x > 0), 

f(x) "' exp [- (B2xl/uc)l-1/d] (x < 0), 

(114) 

(115) 
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Figure 3.2. (Color online:) Schematic of the metastable state of the supercritical 
contact process on a single percolation cluster. A and I denote active and 
inactive sites, and e; is the connected correlation length of the density 
fluctuations on the cluster. 

where B1 and B2 are constants of order unity. All classical percolation exponents are 

determined by Tc and O'c including the correlation lengths exponent Vc = (rc- 1)/(dac), 
the order parameter exponent f3c = (rc- 2)/ac, and the susceptibility exponent 

'Yc = (3- Tc)/ac. 
Right at the percolation threshold, the cluster size distribution does not contain 

a characteristic scale. The structure of the critical percolation cluster is thus fractal 

with the fractal dimension being given by D1 = d/(rc- 1). 

3.4. NONEQUILIBRIUM TRANSITION ACROSS THE LATTICE 

PERCOLATION THRESHOLD 
3.4.1. Single-cluster Dynamics. To develop a theory of the nonequilibrium 

phase transition across the lattice percolation threshold, we first study the nonequi

librium process on a single connected finite-size cluster of s sites. For definiteness, 

this section focuses on the simple contact process. The generalized contact process 

will be considered in Subsec. 3.5. 
The crucial observation is that on the percolation transition line (for .X> .X.), the 

contact process is supercritical, i.e., the cluster is locally in the active phase. The time 
evolution of such a cluster, starting from a fully active lattice, therefore proceeds in 

two stages: Initially, the density Ps of active sites decays rapidly towards a metastable 

state (which corresponds to the steady state of the equivalent infinite system) with a 

nonzero density of active sites and islands of the inactive phase of linear size e; (see 
Fig. 3.2). This metastable state can then decay into the inactive (absorbing) state 
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only via a rare collective fluctuation involving all sites of the cluster. We thus expect 

the long-time decay of the density to be of exponential form (suppressing subleading 

pre-exponential factors), 

Ps( t) "' exp[ -t/ts( s )] , (116) 

with a long lifetime ts that increases exponentially with the cluster size s 

ts(s) =to exp[A(A)s] (117) 

for sufficiently large s. Here, t0 is some microscopic time scale. 

The lifetime increases the faster with s the further the cluster is in the active 

phase. This means, the prefactor A(A) which plays the role of an inverse correlation 

volume vanishes at the multicritical value A* and monotonically increases with in

creasing A. Close to the multicritical point, the behavior of A(A) can be inferred from 

scaling. Since A(A) has the dimension of an inverse volume, it varies as 

(118) 

where v* is the correlation length exponent of the multicritical point and D f is the 

(fractal) space dimensionality of the underlying cluster. 

Note that ( 117) establishes an exponential relation between length and time 

scales at the transition. Because the number of sites s of a percolation cluster is 

related to its linear size Rs via s '"'"' R~1 , eq. (117) implies 

(119) 

Thus, the dynamical scaling is activated rather than power-law with the tunneling 

exponent being identical to the fractal dimension of the critical percolation cluster, 

'1/J = Df. 
To confirm the above phenomenological arguments, we have performed extensive 

Monte-Carlo simulations of the contact process on finite-size clusters using clean one

dimensional and two-dimensional systems as well as diluted lattices. Our simulation 

method is based on the algorithm by Dickman [35] and described in detail in Refs. 

[28, 29]. 

A characteristic set of results is shown in Fig. 3.3. It shows the time evolution 

of the contact process on several one-dimensional clusters of different size s, starting 
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Figure 3.3. {Color online:) Contact process on one-dimensional clusters of size s, 
starting from a fully active lattice at A = 3.8, J.L = 1 which is in the 
active phase. (a) Double-logarithmic plot of density vs. time showing 
the two-stage time-evolution via a metastable state. (b) Log-linear plot 
demonstrating that the long-time decay is exponential. All data are av
erages over 105 independent runs. 

from a fully active lattice. The infection rate A= 3.8 (we set J.L = 1) puts the clusters 

(locally) in the ordered phase, i.e., it is supercritical, since the critical value in one 

dimension is Ac = 3.298. All data are averages over 105 independent trials. The 

double-logarithmic plot of density Ps vs. timet in Fig. 3.3a clearly shows the two

stage time evolution consisting of a rapid initial decay (independent of cluster size) 

towards a metastable state followed by a long-time decay towards the absorbing state 

which becomes slower with increasing cluster size. Replotting the data in log-linear 

form in Fig. 3.3b confirms that the long-time decay is exponential, as predicted in 

(116). 
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Figure 3.4. (Color online:) Lifetime t 8 as a function of cluster size s for different 
values of the infection rate ..\. The other parameters are as in Fig. 3.3. The 
dashed lines are fits of the large-s behavior to the exponential dependence 
(117). Inset: Correlation volume A-1 as a function of the distance from 
bulk criticality. The dashed line is a power-law fit. 

The lifetime ts of the contact process on the cluster can be determined by fitting 

the asymptotic part of the Ps(t) curve to {116). Figure 3.4 shows the lifetime as a 

function of cluster size s for four different values of the infection rate ..\. Clearly, for 

sufficiently large clusters, the lifetime depends exponentially on the cluster size, as 

predicted in ( 117). (The data for ,\ = 3.4 which is very close to the bulk critical point 

of ,\c = 3.298 have not fully reached the asymptotic regime as can be seen from the 

remaining slight curvature of the plot.) By fitting the large-s behavior of the lifetime 

curves to the exponential law (117), we obtain an estimate of the inverse correlation 

volume A. The inset of Fig. 3.4 shows this correlation volume as a function of the 

distance from the bulk critical point. In accordance with (118) it behaves as a power 

law. The exponent value of approximately 0.95 is in reasonable agreement with the 

prediction v = 1.097 for our one-dimensional clusters. 

We have performed analogous simulations for various sets of two-dimensional 

clusters as well as finite-size diluted lattices. In all cases, the Monte-Carlo results 

confirm the phenomenological theory summarized in eqs. (116), (117), and (118). 

3.4.2. Steady-state Density and Density Decay . We now consider the 

full problem, the contact process on a diluted lattice close to the percolation threshold. 

To obtain observables of the entire system, we must sum over all percolation clusters. 

Let us start by analyzing static quantities such as the steady state density 

Pst of active sites (the order parameter of the nonequilibrium transition) and the 

spatial correlation length ~.L· Finite-size percolation clusters do not contribute to the 
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steady-state density because the contact process eventually decays into the absorbing 

inactive state on any finite-size cluster. A steady-state density can thus exist only 

on the infinite percolation cluster for p < Pc· For A > A*, the infinite cluster is 

supercritical, i.e., a finite fraction of its sites is active. Thus, the total steady-state 

density is proportional to the number of sites in the infinite cluster, 

{ 
jp- P ~~c 

Pst "'Poo(P) "' O c 
(p < Pc) 

(p > Pc) 
(120) 

Consequently, the order parameter exponent (3 of the nonequilibrium transition is 

identical to the corresponding exponent f3c of the lattice percolation problem. 

The (average) spatial correlation length ~.L of the nonequilibrium process can 

be found using a similar argument. On the one hand, the spatial correlations of the 

contact process cannot extend beyond the connectedness length ~c of the underlying 

diluted lattice because different percolation clusters are completely decoupled. This 

implies ~.L ;S ~c· On the other hand, for A > A*, all sites on the same percolation 

cluster are strongly correlated in space, implying ~.L 2:: ~c· We therefore conclude 

(121) 

and the correlation length exponent li.L is also identical to its lattice percolation 

counterpart lie. 

We now turn to the dynamics of the nonequilibrium transition across the per

colation threshold. In order to find the time evolution of the total density of active 

sites (starting from a completely active lattice), we sum over all percolation clusters 

by combining the cluster size distribution (113) with the single-cluster time evolution 

(116). The total density is thus given by 

p(t,fl.) - J dssns(fl-)ps(t) 

"' J dssn8 (fl-) exp[-t/ts(s)] (122) 

In the following, we evaluate this integral at the transition as well as in the active 

and inactive phases. 
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Right at the percolation threshold, the scaling function in the cluster size dis
tribution (113) is a constant, /(0), and (122) simplifies to 

p(t, 0) "'J ds s1-Tc exp[-(tjt0eA11 )] • {123) 

To estimate this integral, we note that only sufficiently large clusters, with a minimum 
size of Smin(t) = A-1ln(t/to), contribute to the total density at timet, 

p( t, 0) "' 100 ds s1-Tc ,...., s~l':c . 
Bmin 

(124) 

The leading long-time dependence of the total density right at the percolation thresh

old thus takes the unusual logarithmic form 

p(t, 0) "' [ln(t/to)t6 , {125) 

again reflecting the activated dynamical scaling, with the critical exponent given by 

(5 = 'rc- 2 = f3c/(vcDf ). 

In the disconnected, inactive phase (p > Pc) we need to use expression (114) 
for the scaling function of the cluster size distribution. The resulting integral for the 

time evolution of the density reads 

(126) 

For long times, the leading behavior of the integral can be calculated using the 

saddle-point method. Minimizing the exponent of the integrand shows that the 
main contribution at time t to the integral (126) comes from clusters of size s0 = 

-A-1ln[B1dl/uct0 j(At)]. Inserting this into the integrand results in a power-law 

density decay 

p(t, d) "' (t/to)-dfz' (127) 

The nonuniversal exponent z' is given by z' = (Ad/ B1)d -l/uc ,...., ef', i.e., it diverges 

at the critical point p = Pc· 
In the percolating, active phase (p < Pc), the infinite percolation cluster con-

tributes a nonzero steady state density Pst(d) given by (120). However, the long-time 

approach of the density towards this value is determined by the slow decay of the 
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metastable states of large finite-size percolation clusters. To estimate their contri

bution, we must use the expression (115) for the scaling function of the cluster size 

distribution. The resulting integral now reads 

p(t, D.)- Pst(D.) I'V J ds sl-Tc exp [-(B2slb.ll/dc)l-1/d 

- (t/toeAs)] . (128) 

We again apply the saddle-point method to find the leading low-time behavior of this 

integral. Minimizing the exponent shows the main contribution coming from clusters 

of size so= -A-1ln[B2ID.I1/dc(d -1)/(Atd)]. By inserting this into the integrand, we 

find a nonexponential density decay of the form 

p(t, A)- Pst(D.) "'e-[(d/z")ln(t/to)Jl-1/a (129) 

Here, z" == (Ad/ B2)ID.I-l/dc rv ~f' is another nonuniversal exponent which diverges 

at the critical point. 
The slow nonexponential relaxation of the total density on both sides of the 

actual transition as given in (127) and (129) is characteristic of a Griffiths phase 

[36] in the contact process [37]. It is brought about by the competition between 

the exponentially decreasing probability for finding a large percolation cluster off 

criticality and the exponentially increasing lifetime of such a cluster. Note that time 

t and spatial correlation length ~1. enter the off-critical decay laws (127) and (129) in 

terms of the combination In(t/t0)/~f' again reflecting the activated character of the 

dynamical scaling. 
3.4.3. Spreading from A Single Seed. After having discussed the time 

evolution of the density starting from a completely infected lattice, we now consider 

the survival probability Ps(t) for runs starting from a single random seed site. To 

estimate P8 (t), we note that the probability of a random seed site to belong to a 

cluster of size s is given by s n8 (D.). The activity of the contact process is confined 

to this seed cluster. Following the arguments leading to (116), the probability that 

this cluster survives is proportional to exp( -t/ts). The average survival probability 

at time t can thus be written as a sum over all possible seed clusters, 

P8 (t, D.)"' J dssn8 (D.) exp[-t/ts(s)] . (130) 
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This is exactly the same integral as the one governing the density decay (122). We 

conclude that the time dependence of the survival probability for runs starting from a 

single seed is identical to the time evolution of the density when starting from a fully 

infected lattice, as is expected for the contact process under very general conditions 

(see, e.g., Ref. [5]). 

To determine the (average) total number N ( t) of active sites in a cloud spreading 

from a single seed, we observe that a supercritical cloud initially grows ballistically. 

This means its radius grows linearly with time, and the number of active sites follows 

a power law. This ballistic growth stops when the number of active sites is of the 

order of the cluster sizes. After that, the number of active sites stays approximately 

constant. The number N8 (t) of active sites on a percolation cluster of size s is thus 

given by 

(t < ti(s)) 
(t > ti(s)) 

(131) 

where ti(s) "' Rs(s) "' t0 s11DJ is the saturation time of this cluster. Note that Ns 
decays to zero only after the much longer cluster lifetime ts(s) = toexp[A(.A)s] given 

in (117). 
We now average over all possible positions of the seed site as in (130). This 

yields 

(132) 

with Smin rv A-1 ln(tjt0 ). At criticality, this integral is easily evaluated, giving 

(133) 

The lower bound of the integral (i.e., the logarithmically slow long-time decay of 

the clusters) produces a sub leading correction only. Consequently, we arrive at the 

somewhat surprising conclusion that the initial spreading follows a power-law and 

is thus much faster than the long-time density decay. In contrast, at the infinite

randomness critical point governing the generic (p < Pc) transition, both the initial 

spreading and the long-time decay follow logarithmic laws [26, 27, 28, 29]. Note that 

a similar situation occurs at the percolation quantum phase transition in the diluted 

transverse-field Ising model [13] where the temperature-dependence of the correlation 

length does not follow the naively expected logarithmic law. 
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3.4.4. External Source Field. In this subsection we discuss the effects of 

spontaneous activity creation on our nonequilibrium phase transition. Specifically, 

in addition to healing and infection, we now consider a third process by which an 

inactive site can spontaneously turn into an active site at rate h. This rate plays the 

role of an external "source field" conjugate to the order parameter. 

To find the steady state density in the presence of such a source field, we first 

consider a single percolation cluster. As before, we are interested in the supercritical 

regime >. > >. •. At any given timet, a cluster of size swill be active (on average), if 

at least one of the s sites has spontaneously become active within one lifetime t 8 (s) = 

t0eAs before t, i.e., in the interval [t-t8 (s), t]. For a small external field h, the average 

number of active sites created on a cluster of size s is M8 (h) = hst8 (s) = hst0eAs. 

This linear response expression is valid as long as Ms « s. The probability w8 (h) for 

a cluster of size s to be active in the steady state is thus given by 

(Ms(h) < 1) 
(Ms(h) > 1) 

(134) 

Thrning to the full lattice, the total steady state density is obtained by summing 

over all clusters 

Pst(h, !:1) ""J ds s ns(!:l.) min[1, Ms(h)] . (135) 

This integral can be evaluated along the same lines as the corresponding integral 

(122) for the time-evolution of the zero-field density. For small fields h, we obtain 

Pst(h, 0) "" [1n(ho/h)t6 

Pst ( h, !:J.) "' ( h/ ho )dl z' 

( A) "' e[(djz11 ) Jn(h/ho)]1-l/d hPst h,u 

(p = Pc), 

(p > Pc), 

(p < Pc) ' 

(136) 

(137) 

(138) 

where hPst(h, !:1) = Pst(h, !:1)- Pst(O, !:1) is the excess density due to the field in the 

active phase and ho = 1/to. At criticality, p = Pc, the relation between density Pst 
and field h is logarithmic because the field represents a rate (inverse time) and the 

dynamical scaling is activated. Off criticality, we find strong Griffiths singularities 

analogous to those in the time-dependence of the density. The exponents z' and z" 
take the same values as calculated after eqs. (127) and (129), respectively. 

3.4.5. Scaling Theory. In Subsubsecs 3.4.2 and 3.4.4, we have determined 

the critical behavior of the density of active sites by explicitly averaging the single 
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cluster dynamics over all percolation clusters. The same results can also be obtained 

from writing down a general scaling theory of the density for the case of activated 
dynamical scaling (28, 29]. 

According to (120), in the active phase, the density is proportional to the number 

of sites in the infinite percolation cluster. Its scale dimension must therefore be 

identical to the scale dimension of P00 which is f3c/vc. Time must enter the theory 

via the scaling combination ln(t/to)b.P with the tunneling exponent given by¢= n, 
and ban arbitrary length scale factor. This scaling combination reflects the activated 

dynamical scaling, i.e., the exponential relation (119) between length and time scales. 

Finally, the source field h, being a rate, scales like inverse time. This leads to the 

following scaling theory of the density, 

p(A, ln(t/to), ln(ho/h)] = 

= fle/Vep[Ab-l/ve, ln(t/toW", ln(ho/h)b.P] (139) 

This scaling theory is compatible with all our explicit results which can be rederived 

by setting the arbitrary scale factor b to the appropriate values. 

3.5. GENERALITY OF THE ACTIVATED SCALING SCENARIO 
In Subsec 3.4, we have developed a theory for the nonequilibrium phase transi

tion of the simple contact process across the lattice percolation threshold and found it 

to be characterized by unconventional activated dynamical scaling. In the present sec

tion, we investigate how general this exotic behavior is for absorbing state transitions 

by considering the generalized contact process with several absorbing states. 
This is a particularly interesting question because the generic transitions (p < 

Pc) of the diluted simple and generalized contact processes appear to behave differ

ently. The generic transition in the simple contact process has been shown to be 

of infinite-randomness type with activated dynamical scaling using both a strong

disorder renormalization group (26, 27] and Monte-Carlo simulations (28, 29]. In 

contrast, the strong-disorder renormalization group treatment of the disordered gen

eralized contact process [27] suggests more conventional behavior, even though the 

ultimate fate of the transition could not be determined. 
To address the same question for our transition across the lattice percolation 

threshold, we note that any difference between the simple and the generalized contact 

processes must stem from the single-cluster dynamics because the underlying lattice 
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Figure 3.5. (Color online:) Schematic of the metastable state of the supercritical 
generalized contact process with two inactive states on a single percolation 
cluster. A denotes the active state, and It and h are the inactive states. 
e~ is the connected correlation length of the density fluctuations on the 
cluster. 

is identical. In the following we therefore first give heuristic arguments for the single

cluster dynamics of the supercritical generalized contact process and then verify them 

by Monte-Carlo simulations. 
If the percolation cluster is locally in the active phase (A> A.), the density time 

evolution, starting from a fully active lattice, proceeds in two stages, analogously to 

the simple contact process. There is a rapid initial decay to a metastable state 

with a nonzero density of active sites and finite-size islands of each of the inactive 

phases (see Fig. 3.5). For this metastable state to decay into one of then absorbing 

configurations, all sites must go into the same inactive state which requires a rare 

large density fluctuation. Let us assume for definiteness that the decay is into the 

It state. The main difference to the simple contact process considered in Subsubsec. 

3.4.1 is that sites that are in inactive states l2 ... In cannot directly decay into It. 

This means, each of the inactive islands in states h . . . In first needs to be "eaten" 

by the active regions before the entire cluster can decay into the It state. This can 

only happen via infection from the boundary of the inactive island and is thus a 

slow process. However, since the characteristic size of the inactive islands in the 

metastable state is finite (it is given by the connected density correlation length e~ 

on the cluster), this process happens with a nonzero rate that is independent of the 

sizes of the underlying percolation cluster {for sufficiently large s). 
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The decay of the metastable state into one of the absorbing states is therefore 

brought about by the rare collective decay of a large number of independent corre

lation volumes just as in the simple contact process. As a result, the lifetime ts(s) 
depends exponentially on the number of involved correlation volumes, i.e., it depends 

exponentially on the cluster size s. We thus find that the long-time density decay of 

the generalized contact process on a single large percolation cluster is governed by 

the same equations (116) and (117) as the decay of the simple contact process. 

To verify these phenomenological arguments, we have performed large-scale 

Monte-Carlo simulations of the generalized contact process with two and three ab

sorbing states on clean and disordered one-dimensional and two-dimensional lattices. 

In all cases, we have first performed bulk simulations (spreading from a single seed) 

to find the bulk critical point. An example is shown in Fig. 3.6, details of the bulk 

critical behavior will be reported elsewhere. 

After having determined the critical point, if any, we have selected several pa

rameter sets in the bulk active phase and studied the long-time density decay of the 

generalized contact process on finite size clusters. As expected, the decay proceeds 

via the two stages discussed above. As in Subsubsec. 3.4.1, we extract the lifetime 

t 8 from the slow exponential long-time part of the decay. Two characteristic sets of 

results are shown in Fig. 3.7. The figure confirms that the lifetime of the generalized 

contact process on a finite-size cluster depends exponentially on the number of sites 

in the cluster, as given in (117). We have obtained analogous results for all cases 

investigated, verifying the phenomenological theory given above. 
Because the long-time dynamics of the generalized contact process on a single 

supercritical cluster follows the same behavior (116) and (117) as that of the simple 

contact process, we conclude that its nonequilibrium transition across the percolation 

threshold will also be governed by the theory developed on Subsec. 3.4. In other words, 

the lattice percolation transitions of the simple and generalized contact processes 

belong to the same universality class, irrespective of the number n of absorbing states. 

3.6. CONCLUSIONS 
In this final subsection of the paper, we first summarize our results, discuss 

their generality, and relate them to the behavior of certain quantum phase transi

tions on diluted lattices. We then compare the recently found infinite-randomness 

critical point at the generic transition (p < Pc) to the behavior at our lattice perco

lation transition. Finally, we relate our findings to a general classification of phase 

transitions with quenched spatial disorder [38]. 
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Figure 3.6. (Color online:) Bulk phase transition of the generalized contact process 
with two absorbing states in d = 1 measured via spreading from a single 
seed: Number N of active sites vs. time t for different healing rates J.L. 
The infection and boundary activation rates are fixed,..\= cr = 1, and the 
data are averages over 106 runs. The critical point appears to be close to 
J.L = 0.628 in agreement with [20]. 

To summarize, we have investigated absorbing state phase transitions on ran

domly diluted lattices, taking the simple and generalized contact processes as ex

amples. We have focused on the nonequilibrium phase transition across the lattice 

percolation threshold and shown that it can be understood by combining the time evo

lution of the supercritical nonequilibrium process on a finite-size cluster with results 

from classical lattice percolation theory. The interplay between geometric criticality 

and dynamic fluctuations at this transition leads to a novel universality class. It is 

characterized by ultraslow activated (i.e., exponential) rather than power-law dynam

ical scaling and accompanied by a nonexponential decay in the Griffiths regions. All 
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Figure 3.7. (Color online:) Lifetime ts as a function of cluster sizes for the generalized 
contact process with two inactive states at different values of the healing 
rate f." · The infection and boundary activation rates are fixed, ).. = a = 1. 
and the dat a are averages over 106 runs. (a) d = 1 where the bulk syst.e~ 
has a transition, see Fig. 3.6. (b) d = 2, where we do not find a bulk 
transition because the system is always active [32]. The dashed lines are 
fits of the large-s behaviors to the exponential law (117) . 

critical exponents of the nonequilibriurn phase transition can be expressed in terms 

of the classical lat tice percolation exponents. Their values are known exactly in two 

space dimensions and with good numerical accuracy in three space dimensions; they 

are summarized in Table 3.1. 
Thus, our transition in d = 2 provides one of the few examples of a nonequilib-

rium phase transition with exactly known critical exponents. 

The logarithmica1ly slow dynamics (125) , (136) at criticality together with the 

small value ofthe exponent 5 .make a numerical verification of our theory by sim

ulations of the full diluted lattice a very costly proposition. The results of recent 
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Table 3.1. Criti~al exponents .of the nonequilibrium phase transition across the per
colatiOn threshold m two and three space dimensions. 

Exponent d=2 d-3 
{J- fJc 5/36 0.417 
V = Vc 4/3 0.875 
'1/J=D,=d-fJc/Vc 91/48 2.523 
8 = f3c/(vcDJ) 5/91 0.188 

Monte-Carlo simulations in two dimensions [29] at p = Pc are compatible with our 

theory but not yet sufficient to be considered a quantitative verification. This remains 

a task for the future. 
The unconventional critical behavior of our nonequilibrium phase transition at 

p = Pc is the direct result of combining the power-law spectrum (113) of cluster sizes 

with the exponential relation (119) between length and time scales. We therefore ex

pect other equilibrium or nonequilibrium systems that share these two characteristics 

to display similar critical behavior at the lattice percolation transition. One proto

typical example is the transverse-field Ising model on a diluted lattice. In this system, 

the quantum-mechanical energy gap (which represents an inverse time) of a cluster 

decreases exponentially with the cluster size. Consequently, the critical behavior of 

the diluted transverse-field Ising model across the lattice percolation threshold is very 

similar to the one found in this paper [13]. Other candidates are magnetic quantum 

phase transitions in metallic systems or certain superconductor-metal quantum phase 

transitions [39, 40, 41, 42], even though a pure percolation scenario may be hard to 

realize in metallic systems. 
Our work has focused on the nonequilibrium phase transition across the lattice 

percolation threshold. It is instructive to compare its critical behavior to that of the 

generic transition occurring for p < Pc (see Fig. 3.1). Hooyberghs et al. [26, 27] applied 

a strong disorder renormalization group to the one-dimensional disordered contact 

process. They found an exotic infinite-randomness critical point in the universality 

class of the random-transverse field Ising model (which likely governs the transition 

for any disorder strength [43]). The same analogy is expected to hold in two space 

dimensions. Recently, these predictions were confirmed by large scale Monte-Carlo 

simulations [28, 29]. Our nonequilibrium transition across the lattice percolation 
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threshold shares some characteristics with these infinite-randomness critical points, 

in particular, the activated dynamical scaling which leads to a logarithmically slow 
density decay at criticality. 

However, the generic and percolation transitions are in different universality 

classes with different critical exponent values. Moreover, the initial spreading from 

a single seed is qualitatively different (logarithmically slow at the generic infinite

randomness critical point but of power-law type at our percolation transition). Fi

nally, at the percolation transition the simple and generalized contact processes are 

in the same universality class while this does not seem to be the case for the generic 

transition [27]. 

The results of this paper are in agreement with a recent general classification of 

phase transitions with quenched spatial disorder and short-range interactions [39, 38]. 

It is based on the effective dimensionality detr of the droplets or clusters. Three classes 

need to be distinguished: (a) If the clusters are below the lower critical dimension of 

the problem, detr < d-;, the critical behavior is conventional (power-law scaling and 

exponentially weak Griffiths effects). This is the case for most classical equilibrium 

transitions. (b) If detr = d;, the dynamical scaling is activated and accompanied 

by strong Griffiths effects. This case is realized at the nonequilibrium transition 

considered here as well as the generic transition of the disordered contact process. 

It also applies to various quantum phase transitions [44, 13, 40]. (c) If detr > d;, a 

single supercritical cluster can undergo the phase transition independently of the bulk 

system. This leads to the smearing of the global phase transition; it occurs, e.g., in 

dissipative quantum magnets [45, 46] or in the contact process with extended defects 

[47]. 
In conclusion, our work demonstrates that absorbing state transitions on per

colating lattices display unusual behavior. Interestingly, experimental verifications of 

the theoretically predicted critical behavior at (clean) absorbing state transitions are 

extremely rare [48]. For instance, to the best of our knowledge, the only complete 

verification of directed percolation scaling was found very recently in the transition 

between two turbulent states in a liquid crystal [49]. Our theory suggests that un

conventional disorder effects may be responsible for the surprising absence of directed 

percolation scaling in at least some of the experiments. 
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We investigate the generalized contact process with two absorbing states in one 

space dimension by means of large-scale Monte-Carlo simulations. Treating the cre

ation rate of active sites between inactive domains as an independent parameter leads 

to a rich phase diagram. In addition to the conventional active and inactive phases we 
find a parameter region where the simple contact process is inactive, but an infinites

imal creation rate at the boundary between inactive domains is sufficient to take the 

system into the active phase. Thus, the generalized contact process has two different 

phase transition lines. The point separating them shares some characteristics with a 

multicritical point. We also study in detail the critical behaviors of these transitions 

and their universality. 

4.1. INTRODUCTION 
Many systems in physics, chemistry, and biology are far from thermal equilib

rium, even if they are in time-independent steady states. In recent years, continuous 

phase transitions between different nonequilibrium steady states have attracted lots 

of attention. Just as in equilibrium, these transitions are characterized by large-scale 

fluctuations and collective behavior over large distances and long times. Examples 

can be found, e.g., in surface growth, granular flow, chemical reactions, population 

dynamics, and even in traffic jams [1, 2, 3, 4, 5, 6, 7]. 
Continuous nonequilibrium phase transitions can be divided into different uni

versality classes according to their critical behavior, and considerable effort has been 

16 All of this section is reproduced from Physica.l Review E 81 061128 (2010) and then reformatted 

and renumbered. 
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devoted to categorizing the variety of known transitions. A well-studied type of 

nonequilibrium phase transitions separates fluctuating (active) steady states from 

absorbing (inactive) states where fluctuations stop completely. The generic univer

sality class for these so-called absorbing state transitions is directed percolation (DP) 
[8]. More specifically, it was conjectured by Janssen and Grassberger [9, 10] that all 

absorbing state transitions with a scalar order parameter and short-range interactions 

belong to this class as long as there are no extra symmetries or conservation laws. 

While nonequilibrium transitions in the DP universality class are ubiquitous in both 

theory and computer simulations, experimental verifications were only found rather 

recently in ferrofluidic spikes [11] and in the transition between two turbulent states 

in a liquid crystal (12]. 
Absorbing state transitions in universality classes different from DP can occur 

in the presence of additional symmetries or conservation laws. Hinrichsen [13] in

troduced nonequilibrium lattice models with n ;::: 2 absorbing states. In the case of 

two symmetric absorbing states (n = 2), he found the transition to be in a new uni

versality class, the Z2-symmetric directed percolation class (DP2). If the symmetry 

between the absorbing states is broken, the critical behavior reverts back to DP. In 

one dimension, the DP2 universality class coincides [4] with the parity-conserving PC 

class [14] which is observed, e.g., in the branching-annihilating random walk with an 

even number of offspring (BARWE) [15]. 
In this paper, we revisit one of the stochastic lattice models introduced in Ref. 

[13], the generalized contact process with two absorbing states in one space dimen

sion. Compared to the simple contact process [16], this model contains an additional 

dynamical process, viz., the creation of active sites at the boundary between domains 

of different inactive states. By treating the rate for this process as an independent 

parameter we uncover a rich phase diagram with two different types of phase transi

tions, separated by a special point that shares many characteristics with a multicrit

ical point. We perform large-scale Monte-Carlo simulations of this model to study in 

detail the critical behavior of these transitions. 
Our paper is organized as follows. We introduce the generalized contact process 

with several absorbing states in Subsec. 4.2. In Subsec. 4.3, we summarize the mean

field theory for this system. Subsec. 4.4 is devoted to the results and interpretation 
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of our Monte-Carlo simulations. We conclude in Subsec. 4.5. 

4.2. THE GENERALIZED CONTACT PROCESS WITH SEVERAL 
ABSORBING STATES 

The contact process [16] is a paradigmatic model in the DP universality class. 
It is defined on a d-dimensional hypercubic lattice. Each lattice site r can be in one 

of two states, namely A, the active (infected) state or I, the inactive (healthy) state. 
Over the course of the time evolution, active sites can infect their nearest neighbors, 
or they can become inactive spontaneously. More precisely, the contact process is 
a continuous-time Markov process during which active sites turn inactive at a rate 

J.L, while inactive sites become infected at a rate >..m/(2d) where m is the number of 

active nearest neighbors. The healing rate J1. and the infection rate >.. are external 
parameters whose ratio determines the behavior of the system. 

If p. » >.., healing dominates over infection. All infected sites will eventually 

become inactive, leaving the absorbing state without any active sites the only steady 
state. Thus, the system is in the inactive phase. In the opposite limit, >. » p., the 

infection survives for infinite times, i.e., there is a steady state with a nonzero density 
of active sites. This is the active phase. The nonequilibrium phase transition between 

these two phases at a critical value of the ratio >../ J1. is in the DP universality class. 
In 1997, Hinrichsen [13] introduced a generalization of the contact process. Each 

lattice site can now be in one of n+ 1 states, the active state A or one of the n different 
inactive states Ik ( k = 1 ... n). k is sometimes called the "color" index. The dynamics 
of the generalized contact process is defined via the following rates for transitions of 

pairs of nearest-neighbor sites, 

w(AA .-.. Aik) = w(AA .-.. IkA) - J.t/n , (140) 

w(Aik .-.. Ikik) = w(IkA .-.. Ikik) - /.l.k , (141) 

w(Aik .-.. AA) = w(IkA .-.. AA) - >.., (142) 

w(Ikiz .-.. IkA) = w(Ikiz .-.. Aiz) - CJ, (143) 

with k, l = 1 ... n and k i= l. All other rates vanish. We are mostly interested in the 

fully symmetric case, /.l.k = p. for all k. For n = 1 and P, = p., the so defined generalized 
contact process coincides with the simple contact process discussed above. One of 

the rates p,, J.L, >., and CJ can be set to unity without loss of generality, thereby fixing 

the unit of time. We choose >. = 1 in the following. Moreover, to keep the parameter 
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space manageable, we focus on the case p, = J.t in the bulk of the paper. The changes 

for P, =I= J.t will be briefly discussed in Subsec. 4.5. 

The process (143) prevents inactive domains of different color (different k) to 

stick together indefinitely. They can separate, leaving active sites in between. Thus, 

this transition allows the domain walls to move through space. It is important to 

realize that without the process (143), i.e., for r7 = 0, the color of the inactive sites 

becomes unimportant, and all Ik can be identified. Consequently, for r7 = 0, the 

dynamics of the generalized contact process reduces to that of the simple contact 

process for all values of n. 

Hinrichsen [13] studied the one-dimensional generalized contact process by means 

of Monte-Carlo simulations, focusing on the case r7 = >. = 1. For n = 2, he found a 

nonequilibrium phase transition at a finite value of J.t which separates the active and 

inactive phases. The critical behavior of this transition coincides with that of the PC 

universality class. For n ~ 3, he found the model to be always in the active phase. The 

Monte-Carlo simulations were later confirmed by means of a non-hermitian density

matrix renormalization group study [17]. 
Motivated by a seeming discrepancy between these results and simulations that 

we performed during our study of absorbing state transitions on a percolating lattice 

[18], we revisit the one-dimensional generalized contact process with two inactive 

states. In contrast to the earlier works we treat the rate r7 of the process (143) as an 

independent parameter (rather than fixing it at r7 = >. = 1). 

4.3. MEAN-FIELD THEORY 
To get a rough overview over the behavior of the generalized contact process with 

two inactive states, we first perform a mean-field analysis. Denoting the probabilities 

for a site to be in state A, Ill and l2 with PA, P1, and P2, respectively, the mean-field 

equations read: 

dPAfdt = (1- J.t)PA- P~ + 2r7PtP2 , 

dPifdt = p,PA/2- PAP!- r7PtP2 ' 

dP2jdt - j.tPA/2- PAP2- r7PtP2 . 

(144) 

(145) 

(146) 

Let us begin by discussing the steady states which are given by the fixed points of the 

mean-field equations. There are two trivial, inactive fixed points P1 = 1, PA = P2 = 0 

and p2 = 1, pA = Pt = 0. They exist for all values of the parameters J.t and r7 and 

correspond to the two absorbing states. In the case of r7 = 0, these fixed points are 
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unstable for J.1. < 1 and stable for J.£ > 1. In contrast, for u > 0, they are always 
unstable. 

The active fixed point is given by P1 = P2 and fulfills the equation 

(147) 

For u = 0, this equation reduces to the well-known mean-field equation of the simple 

contact process, 0 = (1- J.t)PA- Pl with the solution PA = 1- J.1. for J.1. < 1. Thus, 
for u = 0, the nonequilibrium phase transition of the generalized contact process 

occurs at J.1. = J.£'! = 1. This means, it coincides with the transition of the simple 
contact process, in agreement with the general arguments given in Subsec. 4.2. In 

the general case, u =/:- 0, the steady state density of active sites, PA, is given by the 

positive solution of 

(148) 

We are particularly interested in the behavior of PA for small u. As long as J.£ < 
JJ.'! = 1 (i.e., in the active phase of the simple contact process), a small, nonzero u 

only provides a subleading correction to PA. At J.1. = J.£'! = 1, the density of active 
sites vanishes as PA"' .jU with u ___. 0. Finally, for J.£ > JJ.'! = 1, the density of active 

sites vanishes as PA "'u/(J.£- 1). 
We thus conclude that within mean-field theory, the generalized contact process 

with two inactive states is in the active phase for any nonzero u. This agrees with 

older mean-field results but disagrees with more sophisticated methods which predict 

a nonequilibrium transition at a finite value of J.£ [13, 17]. The mean-field dynamics 
can be worked out in a similar fashion. We find that the approach to the stationary 

state is exponential in time anywhere in parameter space except for the critical point 

of the simple contact process at J.£ = 1, u = 0. However, it is known that mean

field theory does not reflect the correct long-time dynamics of the generalized contact 

process which is of power-law type [13]. Therefore, we do not analyze the mean-field 

dynamics in detail. 

4.4. MONTE CARLO SIMULATIONS 
4.4.1. Method and Overview. We now turn to the main part of the paper, 

viz., large-scale Monte-Carlo simulations of the one-dimensional generalized contact 

process with two inactive states. We perform two different types of calculations: (i) 

decay runs and (ii) spreading runs. Decay runs start from a completely active lattice; 
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we monitor the time evolution of the density p( t) of active sites as well as the densities 

Pt (t) and P2(t) of sites in inactive states 11 and 12 , respectively. Spreading simulations 

start from a single active (seed) site embedded in a system of sites in state 11. (From a 

domain wall point of view, the spreading runs are therefore in the even parity sector.) 

Here we measure the survival probability P8 (t), the number of sites in the active cloud 
Ns(t) and the mean-square radius of this cloud, R2(t). 

In each case, the simulation proceeds as a sequence of events. In each event, 
a pair of nearest-neighbor sites is randomly selected from the active region. For 

the spreading simulations, the active region initially consists of the seed site and its 

neighbors; it is updated in the course of the simulation according to the actual size of 

the active cluster. For the decay runs, the active region comprises the entire sample. 

The selected pair than undergoes one of the possible transitions according to eqs. 

{140) to (143) with probability rw. Here the time step r is a constant which we have 

fixed at 1/2. The time increment associated with the event is r/Npair where Npair is 

the number of nearest-neighbor pairs in the active region. 
Using this method we studied systems with sizes up to L = 106 lattice sites and 

times up to tm= = 108 , exploring the parameter space 0 :$ p. :$ 1 and 0 :$ u :$ 1. 

The u-p. phase diagram resulting from our simulations is displayed in Fig. 4.1. This 

phase diagram shows that the crossover from DP critical behavior at u = 0 to DP2 (or, 

equivalently, PC) critical behavior at u > 0 occurs in an unusual fashion. The phase 
boundary uc(JJ) between the active and inactive phases does not terminate at the 

critical point of the simple contact process located at (p., u) = (p.~, 0) ~ (0.30325, 0). 
Instead, it ends at the point (p., u) = (p.*, 0) ~ (0.552, 0). In the parameter range 
p.r:f < p. < p.*, the system is inactive at u = 0, but an infinitesimally small nonzero u 

takes it to the active phase. 
Thus, the one-dimensional generalized contact process with two inactive states 

has two types of phase transitions, (i) the generic transition occurring at p. > p.• and 

u = uc(JJ) > 0 (marked by the dashed blue line and arrows in Fig. 4.1) and (ii) 

the transition occurring for p.~ < p. < p.* as u approaches zero (solid red line and 
arrows). We note in passing that our critical healing rate for u = 1 is P,c = 0.628(1), 

in agreement with Ref. [13] 
In the following subsections we first discuss in detail the simulations that lead 

to this phase diagram, and then we present results on the critical behavior of both 

transitions as well as special point (p.*, 0) ~ (0.552, 0) that separates them. 
4.4.2. Establishing The Phase Diagram. We first performed a number 

of spreading simulations at u = 0 and various p. for maximum times up to 3 x 104 • 
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Figure 4.1. (Color online) Phase diagram of the 1D generalized contact process as 
function of the healing rate J.L and the boundary rate u. A line of DP2 (PC) 
transitions (blue dashed line) separates the active and inactive phases. For 
u--+ 0, this line does not terminate in the simple contact process critical 
point at J.L~ ~ 0.30325 and but at J.L* ~ 0.552. For J.L~ < J.L < J.L*, the 
system is inactive at u = 0 (thick solid red line), but an infinitesimal u 
takes it to the active phase. Inset: Close to the endpoint at J.L*, the phase 
boundary behaves roughly as CJc"' (J.L- J.L*)2 . 

The resulting number N8 (t) of active sites in the cluster is shown in Fig. 4.2. The 

figure demonstrates that the transition between the active and inactive phases occurs 

at J-L = 0.30325(25). A fit of the critical curve to Ns "' t9 cp yields 8cp = 0.315(5). 

As expected from the general arguments in Subsec. 4.2, both the critical healing 

rate and the initial slip exponent 8cp agree very well with the results of the simple 

contact process (see, e.g., Ref. [19] for accurate estimates of the DP exponents). 

Thus, at u = 0, the generalized contact process undergoes a transition in the directed 

percolation universality class at J.L = J.L~ = 0.30325(25). 
We now turn to nonzero u. Because the domain boundary process (143) creates 

extra active sites, it is clear that the phase boundary between the active and inactive 

phases has to shift to larger healing rates J.L with increasing u. In the simplest crossover 

scenario, the phase boundary uc(J.L) would behave as CJc "' (J.L- J.L~)l/tl' where ¢ is a 

crossover exponent. To test this scenario, we performed spreading simulations for 

times up to 107 at several fixed J.L > J.L~ in which we vary u to locate the transition. 

Examples of the resulting N8 (t) curves for several u at J.L = 0.428 and J.L = 0.6 are 

shown in Fig. 4.3. The set of curves for J.L = 0.6 (Fig. 4.3b) behaves as expected: 
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Figure 4.2. (Color online) Spreading simulations at u = 0: Number Ns of active sites 
as a function of time t. The solid line for 11 = 0.30325 represents a fit 
to Ns "' t9 cp yielding 8cp = 0.315(5). The data are averages over 25000 
runs. 

Initially, Ns(t) follows the behavior of the simple contact process at this 11· At later 

times, the curves with u ~ 0.25 curve upwards implying that the system is in the 

active phase. The curves for u ~ 0.25 curve downward, indicating that the system is 

in the inactive phase. Thus, uc(f.L = 0.6) ~ 0.25. 

In contrast, the set of curves for f1 = 0.428 (Fig. 4.3a) behaves very differently. 

After an initial decay, Ns(t) curves strongly upwards for all values of u down to the 

smallest value studied, u = w-4 . This suggests that at 11 = 0.428, any nonzero u 

takes the generalized contact process to the active phase. The phase transition thus 

occurs at u = 0. 
We determined analogous sets of curves for many different values of the healing 

rate in the interval 11i = 0.30325 < f1 < 0.65. We found that the phase transition 

to the active phase occurs at u = 0 for fli < 11 < 11* = 0.552, while it occurs at a 

nonzero u for healing rates 11 > 11*. This establishes the phase diagram shown in Fig. 

4.1. The phase boundary thus does not follow the simple crossover scenario outlined 

above. In the following subsections, we analyze in detail the critical behavior of the 

different nonequilibrium phase transitions. 
4.4.3. Generic Transition. We first consider the generic transition oc-

curring at 11 > 11• ~ 0.552 and nonzero u (the blue dashed line in Fig. 4.1). Figure 

4.4 shows a set of spreading simulations at u = 0.1 and several f1 in the vicinity of 

the phase boundary. The data indicate a critical point at f1 ~ 0.582. We performed 
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Figure 4.3. (Color online) Spreading simulations: Number N8 of active sites as a 
function of time t for several 0' at fixed I.L = 0.428 (panel a) and /.L = 0.6 
(panel b). The data are averages over 103 (at the smallest 0') to 105 runs. 
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Figure 4.4. (Coloronline) Spreading simulations at 0' = 0.1 for several ~L close to the 
phase boundary. Main panel: Survival probability Ps as a function of 
time t. The data are averages over 105 runs. Inset: Number Ns of active 
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Figure 4.5. (Color online) Critical spreading simulations: Survival probability Ps and 
number of active sites Ns as functions of t for several points (f.l-, a) located 
on the generic phase boundary. The inset shows the prefactor Ba of the 
critical power law Ps = Bar6 as a function of a. The solid line is a fit to 
Ba "' a-< which gives ( = 0.284. 

analogous simulations for several points on the phase boundary. Figure 4.5 shows 

the survival probability Ps and number Ns of active sites as functions of time for 

all the respective critical points. In log-log representation, the Ns and Ps curves for 

different a and 11- are perfectly parallel, i.e., they represent power-laws with the same 

exponent. Fits of the asymptotic long-time behavior to Ps = Bat-li and N 8 = Gate 

give estimates of 5 = 0.289(5) and 8 = 0.000(5). Moreover, we measured (not shown) 

the mean-square radius R2(t) of the active cloud as a function of time. Its long time 

behavior follows a universal power law. Fitting to R2 (t) "'t21z gives 2/z = 1.145(5) 

(z = 1.747(7)) . Here z = vlljv.l. is the dynamical exponent, i.e., the ratio between 

the correlation time exponent vu and the correlation length exponent VJ.. 

In addition to the spreading simulations, we also performed density decay sim

ulations for several (f.l-, a) points on the phase boundary. Characteristic results are 
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Figure 4.6. (Color online) Critical density decay simulations: Density PA of ac
tive sites as function of t for several points (J-1.) a) on the generic phase 
boundary. The solid lines are fits to a power law PA = Bat-a giving 
a = 0.285(5). The data represent averages of 400 runs with system size 
L = 104 . 

presented in Fig. 4.6. The figure shows that the density PA of active sites at critical

ity follows a universal power law) PA = Bare. at long times. The corresponding fits 

give a = 0.285(5) which agrees (within the error bars) with our value of the survival 

probability exponent 8. We thus conclude that the generic transition of our system is 

characterized by three independent exponents (for instance 1/.L) z and 8) rather than 

four (as could be expected for a general absorbing state transition [4]). We point 

out) however) that even though Ps and PA show the same power-law time dependence 

at criticality, the behavior of the prefactors differs. Specifically, the prefactor Ba 
of the density is increasing with increasing a while the prefactor Ba of the survival 

probability decreases with increasing a. 
All the exponents of the generic transition do not depend on J-1. or a , implying 

that the critical behavior is universal. Moreover) their values are in excellent agree

ment with the known values of the PC (or DP2) universality class (see, e.g. ) Ref. 

[4, 5]). We therefore conclude that the critical behavior of the generic transition of 

generalized contact process with two inactive states is universally in this class. 

4.4.4. 'fransition at a = 0. After discussing the generic transition) we 

now turn to the line of transitions at J-1.':! < J-1. < J-1.* and a = 0. To investigate these 
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Figure 4.7. (Color online) Density decay simulations. Main panel: stationary density 
Pst as a function of the boundary rate a for various healing rates J.L. For 
J.L't < f.L < J.L*, the solid lines are fits of the low-a behavior to Pst = B"a. 
At the simple contact process critical point, f.L = J.L't = 0.30324, and at 
the endpoint, f.L = p* = 0.552, we fit to power-laws Pst ,....., aw which gives 
exponents of Wcp = 0.108(2) and w* = 1.4(1). The data are averages over 
50 to 200 runs with system sizes L = 2000 to 5000. Inset a: prefactor 
BJ-6 of the linear a dependence as a function of f.L- p':f. A fit to a power 
law gives BJ-6 ,....., (p- p':f)-~< with K. = 2.32(10). Inset b: prefactor Bp. as 
a function of J.L* - p. A fit to a power law gives BJ-6 "" (p* - p)~<" with 
K,* = 0.91. 

transitions more closely, we performed both spreading and density decay simulations 

at fixed J.L and several a-values approaching a = 0 (as indicated by the solid (red) 

arrows in the phase diagram, Fig. 4.1). 
Let us start by discussing the density decay simulations. Figure 4. 7 shows the 

stationary density Pst of active sites as a function of a for several values of the healing 

rate J.L. Interestingly, the stationary density depends linearly on a for all healing rates 

J.L't < J.L < p*, in seeming agreement with mean-field theory. This means Pst = Bp.aw 

with w = l -and B~ being a p-dependent constant. We also analyzed, how the prefactor 

. B of th~> fu.e~-field~Hke b¢havior depends on the distance from the simple contact 
I' >> . : • •. . •-· . 
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Figure 4.8. (Color online) Spreading simulations: Survival probability Ps as a func
tion of timet at f.t = 0.4 for various values of the boundary rate a. The 
data are averages over 100000 runs. Inset: Low-u limit of the stationary 
P8 as a function of f.t· The dashed line is a fit to Pr; ,...., (ft* - p )13 with 
p* = 0.552 and (3 = 0.87(5) in agreement with the PC universality class 
(see, e.g., Refs. [4, 5]). 

process critical point. As inset a) of Fig. 4.7 shows, B~-' diverges as (p- p':f)-"' with 

"'= 2.3(1). 
At the critical healing rate J.t~ of the simple contact process, the stationary 

density displays a weaker a-dependence. A fit to a power-law Pst "" awep gives an 

exponent value of Wcp = 0.108(2). In contrast, at the endpoint at healing rate p*, the 

corresponding exponent w* = 1.4(1) is larger than 1. 

These results of the density decay simulations must be contrasted with those 

of the spreading simulations. Figure 4.8 shows the time dependence of the survival 

probability P8 for f.t = 0.4 and several a. At early times, all curves follow the a = 0 

da.ta due to the small values of the rate of the boundary activation process (143). 

(Note that the a= 0 curve does not reproduce the survival probability of the simple 

contact process. This is because in our generalized contact process, a sample is 

surviving as long as not every site is in state h even if there are no active sites.) In 

the long-timelimit, the P8 curves approach nonzero constants, as expected in an active 

phase. However, in contrast to the stationary density Pst (Fig. 4. 7), the stationary 
· to zero with vanishing boundary a. Instead, it approaches a 
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a-independent constant. We performed similar sets of simulations at other values of 

J.L in the range J.L~ < J.L < p,•, with analogous results. We therefore conclude that -

somewhat surprisingly - the survival probability and the stationary density of active 

sites display qualitatively different behavior at the a = 0 phase transition. 

We now show that the properties of these quantities can be understood within a 

simple domain wall theory. The relevant long-time degrees of freedom at p, > p,';! and 

a « 1 are the domain walls between 11 and 12 domains. These domains are formed 

during the early time evolution when the system follows the simple contact process 

dynamical rules (140) to (142). At late times, the domain walls can hop, they can 

branch (one wall branching into three), and they can annihilate (two walls vanish if 

the meet on the same bond between two sites). This means, the domain wall dynamics 

follows the branching-annihilating random walk with two offspring (BARW2). 

In our case, the BARW2 dynamics is controlled by two rates, the domain wall 

hopping rate rand the branching rate n (annihilation occurs with certainty if two 

walls meet). These two rates depend on the underlying generalized contact process 

dynamics. In the limit a « 1 they are both linear in the boundary rate, r = a Fr(p,), 
n = aF0 (p,) because a single boundary activation event is sufficient to start a domain 

wall hop or branching (Fr and Fo are nontrivial functions of p,). Because both rates 

are linear in a, their ratio is a-independent, thus the steady state of the domain walls 

does not depend on a in the limit a ~ 1. This explains why the survival probability 

Ps of the generalized contact process saturates at a nonzero, a-independent value in 

Fig. 4.8. It also explains the a-dependence of the stationary density Pst of active sites 

in the following way: For a ~ 1 and p, > J.L~, active sites are created mostly at the 

domain walls at rate a. Consequently, their stationary density is proportional to both 

a and the stationary domain wall density Pdw, i.e., Pst "'apdw, in agreement with Fig. 

4. 7. (The linear a-dependence of Pst is thus not due to the validity of mean-field 

theory.) 
These results imply that the phase transition line at a = 0 between p,';! and p,* is 

not a true critical line because there is no (nontrivial) diverging length scale. It only 

appears critical because the stationary density of active sites vanishes with a. Note 

that this is also reflected in the fact that the system is not behaving like a critical 

system right on the phase transition line a = 0 (no power-law time dependencies, 

for instance). Instead, the physics of this transition line is controlled by the BARW2 

dynamics of the domain walls with a finite correlation length for all p,';! < p, < p,*. 

4.4.5. Scaling at The Contact Process Critical Point (p,';!,O). Even 

though the generalized contact process is not critical at a = 0 and p, > p,~, its 
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~ehavior close to the critical point of the simple contact process can be understood 
m terms of a phenomenological scaling theory. 

Let us ~sume that the stationary density of active sites close to (~t'!, O) fulfills 
the homogeneity relation 

(149) 

where fl.~t = JJ- JJ'! and b denotes an arbitrary scale factor. {3ep and v,; are the usual 
order parameter and correlation length exponents and Yep denotes the scale dimension 
of u at this critical point. Setting b = ulf'llcp then gives rise to the scaling form 

Pst( fl.~t, u) = uf3c,./(r4,.Ycp) X ( fl.~t u-1/(v,fpycp)) (150) 

where X is a scaling function. At criticality, fl.~t = 0, this leads to Pst(O, u) ,....., 
u 13cpf(v.fpyc,.) (using X(O) = const). Thus, Wep = {3epj(v,;yep). For u -+ 0 at nonzero 

tl.~t, we need the large-argument limit of the scaling function X. On the active side 
of the critical point, fl.~t < 0, the scaling function must behave as X(x) ,....., lxl/3cp to 

reproduce the correct critical behavior of the density, Pst ,....., IlL - ~t'!l/3c,.. 

More interesting is the behavior on the inactive side of the critical point, i.e., for 
fl.~t > 0 and u -+ 0. Here, we assume the scaling function to behave as X ( x) ,....., x-lf.. 

In this limit, we thus obtain Pst ,...., (ll.~t)-lf.uW Uust as observed in Fig. 4.7) with 

w = ({3cp + r;,)j(v,;yep)· As a result of our scaling theory, the exponents w,wcp and 

r;, are not independent, they need to fulfill the relation wep({3ep + r;,) = {3epw. Our 
numerical values, w = 1, Wep = 0.108(2) and r;, = 2.32(10) fulfill this relation in 

very good approximation, indicating that they represent asymptotic exponents and 

validating the homogeneity relation (149). Using {3ep = 0.2765 and v,; = 1.097 (19], 

the resulting value for the scale dimension yep of u at the simple contact process 

critical point is yep= 2.34(4). 
4.4.6. The Endpoint (1-L*, 0). Finally, we turn to the point (/-L*, u) = 

(0.552, O) where the generic phase transition line terminates on the IL axis. At first 
glance, one might suspect this point to be a multicritical point because it is located at 

the intersection of two phase transition lines. However, we argued in Subsubsec. 4.4.4 
(based on the domain wall theory) that the transition line at u = 0 and IL'! < IL < IL* 

is not critical. This implies that the endpoint (IL*, 0) is not multicritical but a simple 

critical point in the same universality class (viz., the PC class) as the generic transition 

at JJ > JJ*. In fact, the endpoint can be understood as the critical point of the BARW2 

domain wall dynamics in the limit u __. 0. 
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To test this hypothesis, we first study the survival probability and density of 

active sites as p,* is approached along the p, axis. The inset of Fig. 4.8 shows the 

stationary survival probability (more precisely, its saturation value for u -+ O) as 

a function of p,. The data can be well fitted by a power-law Ps "' (p,* - p,)/3 with 

f3 = 0.87{5). The corresponding information on the stationary density of active sites 

can be obtained from inset b) of Fig. 4.7. It shows the prefactor B'"' of the linear u

dependence Pst = B'"'u as a function of p,* - p,. Sufficiently close to p,*, their relation 

can be fitted by a power law B'"' "' (p,* -p,)"* with K* = 0.91. Thus both f3 and K* 

agree with the order parameter exponent of the PC universality class within their 

error bars. This confirms the validity of the domain wall theory of Subsubsec. 4.4.4 

at p,*. 

The discussion of the u-dependence of Ps and Pst right at p,* is somewhat more 

complicated because it is determined by the subleading cr-dependencies of the domain

wall rates r and n. Moreover, because the dynamics is extremely slow at p, ~ p,* 

and u « 1, our numerical results close to the endpoint are less accurate then our 

other results. According to the domain wall theory of Subsubsec. 4.4.4, the stationary 

survival probability should fulfill the homogeneity relation 

(151) 

where !:1p, = p,- p,* while f3 and v..L are the order parameter and correlation length 

exponents of the BARW2 transition (PC universality class). The only unknown 
exponent is y*. The same homogeneity relation should hold for the domain wall 

density, but not the density of active sites. 
Setting the scale factor to b = crlf'y* gives the scaling form 

(152) 

Right at the endpoint, f1}J = 0, this gives Ps "' cr/3/(IIJ.y•). To test this power-law 

relation and to determine y*, we performed spreading simulations at p, = p,* and 

several u between 0.03 and 1. The low-er behavior (not shown) can indeed be fitted 

by a power law in cr with an exponent !3/(v..Ly*) = 0.5(1). Using the well-known 

values f3 = 0.92 and v..L = 1.83 of the PC universality class, we conclude y* = 1.0(2). 

Within the domain wall theory, PDW"' Ps and the stationary density of active sites 

is Pst "' CTPDW "' ~· with w* = 1 + /3/(v..Ly*) = 1.5(1). This agrees well with the 
numerical estimate of 1.4(1) obtained from the density decay simulations in Fig. 4.7. 
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The scaling form (152) can also be used to determine the shape of the phase 
boundary at J.L > J.L*. The phase boundary corresponds to a singularity of the scaling 
function Y at some nonzero value of its argument. Thus, the phase boundary follows 

the power law u"' (J.L- J.L*)".l. 11•. At fit of the data in Fig. 4.1 leads to vl.y• = 1.8(2) 

which implies y* = 1.0(1) in agreement with the above estimate from the spreading 
simulation data. 

To investigate the time dependence of P8 close to the endpoint, the homogeneity 

relation (151) can be generalized to include a time argument. On the right hand side, 

it appears in the scaling combination (tfto)bz with t0 the basic microscopic time scale. 

It is important to realize that this microscopic scale diverges as u-1 with u -+ 0 

(independent of any criticality at J.L*). Thus, the right scaling combination is actually 

tubz. We used the resulting scaling theory to discuss the power-law decay of P. on 

the phase boundary shown in Fig. 4.5a. The scaling theory predicts P.,...., u-<t-6 with 

( = 8 as the endpoint is approached. This agrees with our numerical data (shown in 

the inset of Fig. 4.5a) which give ( ~ 0.284 
In summary, all our simulation data support the notion that the endpoint (J.L*, 0) 

is a not a true multicritical point but a simple critical point in the same universality 

class (PC) as the entire generic phase boundary at J.L ;::: p,*. The behavior of some 

observables makes it appear multicritical, though, because the microscopic time scale 

of the domain wall dynamics diverges with u -+ 0. 

4.5. CONCLUSIONS 
In summary, we have studied the phase transitions of the generalized contact 

process with two absorbing states in one space dimension by means of large-scale 

Monte-Carlo simulations. We have found that this model has two different nonequi

librium phase transitions, (i) the generic transition occurring for sufficiently hight 

values J.L > p,* of the healing rate and nonzero values of the boundary activation rate 

u, and (ii) a transition at exactly u = 0 for J.L~ < J.L < p,*. 
The generic transition is in the parity-conserving (PC) universality class (which 

coincides with the DP2 class in one dimension) everywhere on the J.L ;::: J.L* phase 
boundary, in agreement with earlier work [13, 17]. In contrast, the u = 0 transition 

turned out to be not critical. The density of active sites rather goes to zero with 

the vanishing boundary activation rate u while the survival probability remains finite 

for u-+ 0. Its behavior is controlled by the BARW2 dynamics of the domain walls 

between different inactive domains (which is not critical for J.L~ < J.L < J.L*). It is 
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interesting to note that the behavior of our model at O" = 0 differs qualitatively from 

the O" - 0 limit of the finite-O" behavior in the entire parameter region 1-L'! < 1-L < 1-L*. 

As a result, the crossover between directed percolation (DP) critical behavior at 

O" = 0 and parity conserving (PC) critical behavior for O" > 0 does not take the naively 

expected simple scaling form. In particular, the generic (O" > 0) phase boundary does 

not continuously connect to the critical point of the O" = 0 theory (the simple contact 

process critical point). Instead, it terminates at a separate endpoint (t-L*, 0) on the 

{L-axis. While this point shares some characteristics with a multicritical point, it is 

actually just a simple critical point in the same universality class (PC) as the entire 

generic phase boundary. 

We emphasize that the crossover between the DP and PC universality classes 

as a function of O" in our model is very different from that investigated by Odor and 

Menyhard [20]. These authors started from the PC universality class and introduced 

perturbations that destroy the symmetry between the absorbing states or destroy the 

parity conservation in branching and annihilating random walk models. They found 

more conventional behavior that can be described in terms of crossover scaling. In 

contrast, the transition rates (140) to (143) of our model do not break the symmetry 

between the two inactive states anywhere in parameter space. 

Crossovers between various universality classes of absorbing state transitions 

have also been investigated by Park and Park [21, 22, 23]. They found a discontinuous 

jump in the phase boundary similar to ours along the so-called excitatory route from 

infinitely many absorbing states to a single absorbing state [21]. Moreover, there is 

some similarity between our mechanism and the so-called channel route [22] from the 

PC universality class to the DP class which involves an infinite number of absorbing 

states characterized by an auxiliary density. In our case, at O" = 0 (but not at any finite 

O"), any configuration consisting of I1 and I2 only can be considered absorbing because 

active sites cannot be created. The density of I1-I2 domain walls then plays the role 

of the auxiliary density; it vanishes at the endpoint (t-L*, 0). However, our crossover 

occurs in the opposite direction than that of Ref. [22]: The small parameter O" takes 

the system from the DP universality class to the PC class. Note that an unexpected 

survival of active sites has also been observed in a version of the nonequilibrium 

kinetic Ising model with strong disorder. Here, the disorder can completely segment 

the system, and in odd-parity segments residual particles cannot decay [24]. 
The generalized contact process as defined in eqs. (140) to (143) is characterized 

by three independent rates (one rate can be set to one by rescaling the time unit). In 

the bulk of our paper, we have focused on the case il = f.l for which our system reduces 
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Figure 4.9. (Color online) ProJection of the phase diagram of the generalized contact 
process on the jl - p, plane. The individual symbols show the locations 
of the phase boundaries as determined from our simulations: solid blue 
circles- transition for CJ = 0 (simple contact process) , solid red triangles 
- generic transition for CJ = 1, open squares- approximate location of the 
endpoint of the generic transition (CJ-+ 0) estimated from the transition 
at CJ = 0.01. The lines are guides to the eye only. Points A and B are the 
simple contact process critical point and the endpoint investigated in the 
main part of the paper. 

to the usual contact process in the limit of CJ -+ 0. In order to study how general 

our results are, we have performed a few simulation runs for jl :f; p, focusing on the 

fate of the endpoint that separates the generic transition from the CJ = 0 transition. 

The results ofthese runs are summarized in Fig. 4.9 which shows the phase diagram 

projected on the jl- p, plane. 
The figure shows that the line of endpoints of the generic phase boundary re-

mains distinct from the simple contact process (o- = 0) critical line in the entire jl- f..L 

plane. The two lines only merge at the point jl = 0, p, = 1 where the system behaves 

as compact directed percolation (13]. 
Our study was started because simulations at p, ~ J.J-i and CJ « 1 (18] seemed to 

suggest that the generalized contact process with two absorbing states is always active 

for any nonzero CJ, The detailed work reported in this paper shows that this is not the 

case; a true inactive phase appears, but only at significantly higher p, > p,*. Motivated 

by this res~l£ 1 \Ye .also ct1J"e£ully reinvestigated the generalized contact process with 

· n ~· 3 absofbin~ ~8;te1r.whiclJo; hQS been: reported to be always active (for any nonzero 
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a-) in the literature [13, 17]. However, in contrast to the two-absorbing-states case, 

we could not find any inactive phase in this system. 

Let us close by posing the question of whether a similar splitting between the n = 
1 critical point and the n = 2 phase transition line also occurs in other microscopic 

models with several absorbing states. Answering this questions remains a task for 

the future. 
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ABSORBING STATES IN TWO DIMENSIONS 
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Abstract17 

We explore the two-dimensional generalized contact process with two absorbing 

states by means of large-scale Monte-Carlo simulations. In part of the phase diagram, 

an infinitesimal creation rate of active sites between inactive domains is sufficient to 

take the system from the inactive phase to the active phase. The system therefore 

displays two different nonequilibrium phase transitions. The critical behavior of the 

generic transition is compatible with the generalized voter (GV) universality class, 

implying that the symmetry-breaking and absorbing transitions coincide. In contrast, 

the transition at zero domain-boundary activation rate is not critical. 

5.1. INTRODUCTION 
Phase transitions between different nonequilibrium steady states are a topic 

of great current interest in statistical physics. These transitions display large-scale 

fluctuations and collective behavior over large distances and long times just as equi

librium phase transition. They occur, for example, in surface growth, granular flow, 

chemical reactions, population dynamics, and even in traffic jams [1, 2, 3, 4, 5, 6, 7]. 

The so-called absorbing state transitions are a particularly well-studied type of 

nonequilibrium phase transitions. They separate fluctuating (active) steady states 

from absorbing (inactive) states where fluctuations stop completely. Generically, ab

sorbing state transitions are in the directed percolation (DP) [8] universality class; 

Janssen and Grassberger [9, 10] conjectured that all absorbing state transitions with 

a scalar order parameter and short-range interactions belong to this class as long 

17 All of this section is reproduced from the manuscript ( e-printed version, ar Xiv: 1010.3298) which 
is accepted for publication in Physical Review E. 



92 

as there are no extra symmetries or conservation laws. This conjecture has been 

confirmed in countless theoretical and computer simulation studies. Experimental 

verifications were found in ferrofluidic spikes [11] and in the transition between two 
turbulent states in a liquid crystal [12]. 

In recent years, significant attention has focused on absorbing state transitions 

in universality classes different from DP that can occur if the system features addi

tional symmetries or conservation laws. In 1997, Hinrichsen [13] suggested several 

nonequilibrium stochastic lattice models with n ~ 2 absorbing states. In the case of 

two symmetric absorbing states (n = 2), he found the transition to be in a different 

universality class, the Z2-symmetric directed percolation (DP2) class which is some

times also called directed Ising (DI) class. If the symmetry between the absorbing 

states is broken, the critical behavior reverts back to DP. 

Recently, we revisited [14] one of the stochastic lattice models introduced in 

Ref. [13], viz., the generalized contact process with two absorbing states in one space 

dimension. By employing large-scale Monte-Carlo simulations, we found a rich phase 

diagram featuring two different nonequilibrium phase transitions separated by a spe

cial point that shares some characteristics with a multicritical point. The generic 

transition occurs at nonzero values of the infection, healing and domain-boundary 

activation rates. It belongs to the DP2 universality class which coincides [4] with 

the parity-conserving (PC) class [15] (occurring, e.g., in the branching-annihilating 

random walk with an even number of offspring (BARWE) [16]). In addition, we found 

an unusual line of phase transitions at zero domain-boundary activation rate which 

turned out to be non-critical. 
Here, we consider the generalized contact process with two symmetric absorbing 

states in two space dimensions. The purpose of this paper is twofold. First, we wish to 

investigate whether the two-dimensional generalized contact process also displays the 

above-mentioned rich phase diagram having two nonequilibrium phase transitions. 

Second, we wish to study the critical behavior of these transitions and their univer

sality. According to a conjecture by Dornic et al. [17], the DP2 universality class 

in two dimensions should coincide with the generalized voter (GV) universality class 

for which the upper critical dimension is exactly two. Alternatively, the transition 

could split into a symmetry-breaking Ising transition and a DP transition [18, 19]. 

To address these questions, we perform large-scale Monte-Carlo simulations. 
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Our paper is organized as follows. We introduce the generalized contact process 

with several absorbing states in Subsec. 5.2. Subsec. 5.3 is devoted to the results and 

interpretation of our Monte-Carlo simulations. We conclude in Subsec. 5.4. 

5.2. GENERALIZED CONTACT PROCESS WITH SEVERAL 
ABSORBING STATES 

We first define the simple contact process [20], one of the prototypical models 

in the DP universality class. Each site r of a d-dimensional hypercubic lattice can be 

in one of two states, either A, the active (infected) state or I, the inactive (healthy) 

state. During the time evolution of the contact process, active sites infect their 

nearest neighbors, or they heal (become inactive) spontaneously. More rigorously, 

the contact process is a continuous-time Markov process during which active sites 

become inactive at a rate J.L, while inactive sites tum active at a rate >.mj(2d) where 

m is the number of active nearest neighbor sites. The healing rate J.L and the infection 

rate >. are external parameters. 

The long-time state of the contact process is determined by the ratio of these 

two rates. If J.L » >., healing occurs much more often than infection. Thus, all infected 

sites will eventually become inactive, and the absorbing state without any active sites 

is the only steady state. Consequently the system is in the inactive phase for J.L » >.. 
In the opposite limit, >. » J.L, the infection survives for infinite times, i.e., there is a 

steady state with a nonzero density of active sites. This is the active phase. These 

two phases are separated by a nonequilibrium phase transition in the DP universality 

class occurring at some critical value of the ratio >.j J.L· 

Following Hinrichsen [13], we now generalize the contact process to n absorbing 

states. Each lattice site can now be in one of n + 1 states, the active state A or one 

of the n different inactive states Ik ( k = 1 ... n). k is sometimes referred to as the 

"color" index. The Markov dynamics of the generalized contact process is defined via 

the following transition rates for pairs of nearest-neighbor sites, 

w(AA .- Aik) = w(AA .- IkA) = Jl/n' (153) 

w(A!k .- Ikik) = w(IkA .- Ikik) = ILk , (154) 

w(A!k .- AA) = w(IkA .- AA) = >., (155) 

w(Ikit .- IkA) = w(Iklt .- Alz) = a, (156) 

with k, l = 1 ... n and k 'I l. All other transition rates vanish. We are mostly 

interested in the fully symmetric case, /-Lk = J.L for all k. For n = 1 and jl = J.L, 
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the so defined generalized contact process coincides with the simple contact process 

discussed above. One of the rates jl, J.L, A, and a can be set to unity without loss 

of generality, thereby fixing the unit of time. We choose A = 1 in the following. 

Moreover, to keep the parameter space manageable, we focus on the case jl = J.L 18. 

The rate (156) is responsible for the new physics in the generalized contact 

process. It prevents inactive domains of different color (different k) to stick together 

indefinitely. By creating active sites at the domain wall, the two domains can separate. 

Thus, the rate (156) allows the domain walls to move through space. We emphasize 

that without the process (156), i.e., for a= 0, the color of the inactive sites becomes 

unimportant, and all Ik can be identified. Consequently, for a = 0, the dynamics 

of the generalized contact process reduces to that of the simple contact process for 

all values of n. In the main part of this paper, we shall focus on the case of n = 2 

inactive states. 
Before we turn to our Monte-Carlo simulations of the two-dimensional general

ized contact process, let us briefly summarize the simulation results in one dimension 

[14] for comparison. For a = 0, i.e., in the absence of the boundary activation 

process (156), the system undergoes an absorbing state transition at a healing rate 

J.L = J.L~P :::::: 0.303, which agrees with the critical healing rate of the simple contact 

process. In agreement with the general arguments above, this transition is in the 

DP universality class. For healing rates between J.L'! and J.L* :::::: 0.552, the system is 

inactive if a= 0 but an infinitesimal nonzero a takes it to the active phase. Finally, 

for J.L > J.L*, the transition occurs at a finite nonzero value of a. The one-dimensional 

generalized contact process with two inactive states thus has two lines of phase tran

sitions, (i) the generic transition occurring at J.L > J.L* and a= ac(J.L) > 0 and (ii) the 

transition occurring for J.L'! < J.L < J.L* as a approaches zero. 

5.3. MONTE-CARLO SIMULATIONS 
5.3.1. Method and Phase Diagram. In order to address the two main 

problems raised in the introduction, viz, the phase diagram of the two-dimensional 

generalized contact process with two inactive states and the critical behavior of its 

phase transitions, we performed two types of large-scale Monte Carlo simulations, 

(i) decay runs and (ii) spreading runs. Decay runs start from a completely active 

lattice· we measure the time evolution of the density p(t) of active sites as well as the , 
18We studied the phase diagram for p, 'f= 1-' in one space dimension in Ref. [14]. We fo~nd that the 

I. . beh · · the same as in the ;; = " case. We expect the same to be true m two space qua 1tat1ve av10r IS ,.. ,.. 

dimensions. 
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Figure 5.1. (Color online) Phase diagram of the two-dimensional generalized contact 
process with two inactive states as function of the healing rate J.L and the 
domain-boundary activation rate u. For J.L < J.L~P = 0.6066, the system is 
in the active phase for any u. For J.L~ < J.L < J.L* = 1.0000, the system is 
inactive at O" = 0 (thick solid red line), but an infinitesimal u takes it to 
the active phase. For J.L > J.L*, the system is inactive for any u. 

densities Pt(t) and P2(t) of sites in inactive states It and h, respectively. Spreading 

simulations start from a single active (seed) site embedded in a system of sites in 

state It. Here we monitor the survival probability Ps(t), the number of sites in the 

active cloud Ns(t) and the mean-square radius of this cloud, R2(t). 

In both types of runs, the simulation is a sequence of individual events. In each 

event, a pair of nearest-neighbor sites is randomly selected from the active region. 

For the spreading simulations, the active region initially consists of the seed site and 

its neighbors; it is updated in the course of the simulation according to the actual 

size of the active cluster. For the decay runs, the active region comprises the entire 

sample. The selected pair than undergoes one of the possible transitions according 

to eqs. (153) to (156) with probability rw. Here the time step T is a constant which 

we fix at 1/2. The time increment associated with the event is T / Npair where Npair is 

the number of nearest-neighbor pairs in the active region. 
Using this procedure, we investigated the parameter region 0.5 :5 J.L :::;: 1.2 and 

0 s u 5 1. We simulated samples with sizes up to 20000 x 20000 sites for times up 

to tmax = 3 x 106. The u - J.L phase diagram that emerged from these calculations is 

shown in in Fig. 5.1. 
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In many respects, it is similar to the phase diagram of the one-dimensional 

generalized contact process (14]. In the absence of the domain-boundary activation 

process (i.e., for CJ = 0), the transition from the active phase to the inactive phase 

occurs at a healing rate of J.L = J.L;! = 0.6066(2) which agrees well with the critical 

point of the simple contact process (see, e.g., Refs. (22, 23]). For healing rates in 

the interval J.Li < J.L < J.L* = 1.0000(2), the generalized contact process is inactive 

at CJ = 0, but an infinitesimal nonzero CJ takes it to the active phase. Thus, we find 

a line a phase transitions at J.Li < J.L < J.L* and CJ = 0. In addition to this line of 

CJ = 0 absorbing state transitions, we also find a line of generic (nonzero CJ and J.L) 

transitions. In contrast to one space dimension, this line is exactly "vertical" within 

our accuracy, i.e., the critical healing rate J.Lc = 1.0000(2) does not depend on CJ for 

all CJ > 0. We note in passing that our critical healing rate is in agreement with the 

estimate J.Lc ~ 0.99{1) obtained in Ref. [13] for CJ = 1. 

In the following subsections we shall discuss in detail the properties of both 

phase transition lines as well as special point (J.L*, 0) that separates them. 

5.3.2. Generic Transition. In order to identify the generic transition and 

to study its critical behavior, we performed sets of spreading simulations at constant 

domain-boundary activation rate CJ = 0.01,0.05,0.1,0.5 and 1. For each CJ, we have 

varied the healing rate J.L varying from 0.8 to 1.1. Figure 5.2 shows the resulting 

time evolution of the survival probability Ps and the number of sites in the active 

cloud Ns(t) for CJ = 0.1 and several J.L. The data indicate a critical healing rate of 

J.Lc = 1.0000(2) for this CJ value. Analogous simulations for CJ = 0.01, 0.05, 0.5 and 

1 yielded, somewhat surprisingly, exactly the same critical healing rate. We thus 

conclude that in the two-dimensional generalized contact process, the critical healing 

rate J.Lc is independent of <J for all CJ > 0. 
Figure 5.3 shows the survival probability Ps and number Ns of active sites as 

functions of time for all the respective critical points. In log-log representation, the 

long-time parts of the N8 and P8 curves for different CJ are perfectly parallel within 

their statistical errors, i.e., they differ only by constant factors, confirming that the 

critical behavior of the generic transition is universal. Fits of the long-time behavior 

to the pure power laws Ps = Bur6 and Ns = Cut8 give estimates of 8 = 0.900(15) 

and e = -0.100(25). These values are very close to the mean-field values 8MF = 1 

and eMF = o. According to the conjecture by Dornic et al. [17]' the generic transition 

should be in the GV universality class. Because the upper critical dimension of this 
· l"t 1 · exactly two this conjecture corresponds to mean-field behavior 

umversa 1 y c ass IS ' 

with logarithmic corrections. 
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Figure 5.2. (Color online) Spreading simulations at u = 0.1 for severalJ.L close to the 
phase boundary. Main panel: Number Ns of active sites as a function of 
time t. Inset: Survival probability Ps as a function of time t. The data 
close to criticality are averages over 106 runs on a 4000 x 4000 system, 
smaller numbers of runs were used away from criticality. 

To test this prediction we compare in Fig. 5.4 plots of ln(Ps t) vs. ln(t) (straight 

lines corresponds to power laws) and Ps t vs. ln(t) (straight lines correspond to loga

rithmic behavior). Although both functional forms describe the long-time data rea

sonably well, the curves in the ln(Ps t) vs. ln(t) plot show a systematic downward 

curvature. Moreover, the semi-logarithmic plot, Ps t vs. ln(t), leads to straight lines 

over a longer time interval which we take as evidence for GV critical behavior. We 

performed an analogous analysis for number of active sites Ns . Again, both a simple 

power law and mean-field behavior with logarithmic corrections describe the data 

reasonably well, with the quality of fits being somewhat higher for the latter case. 

We also measured (not shown) the mean-square radius R2(t) of the active cloud as a 

function of time. A pure power-law fit of its long time behavior, R2(t) "' t 21z, gives 

2/z = 0.97(4) (z = 2.06(8)). The data can be described equally well by mean-field 

behavior R2(t) "'t with logarithmic corrections. 
In addition to the spreading runs, we also performed density decay runs at 

the generic phase boundary. The resulting density of active sites p as a function of 

time can be fitted with a pure power law p(t) "' ca giving a very small value of 

a= 0.080(4). A better fit is achieved with the simple logarithmic time dependence 
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Figure 5.3. (Color online) Survival probability Pi! and number of active sites N$ as 
functions of t for several points located on the generic phase boundary 
fl, = 1.0000 (2 x 106 to 107 runs used). Inset: prefactor B, vs. cr. Th~ 
straight line is a fit to a power-law B, "'a-<:. 

p(t) "'1/ ln(t jt0 ) (with t0 a microscopic time scale) expected for the GV universality 

class. This type of behavior is demonstrated in Fig. 5.5. 
In summary, although all our results for the generic transition can be fitted 

both by pure power laws and by mean-field behavior with logarithmic corrections, 

the latter functional forms yield fits of somewhat higher qua.lity. We also note that 

the critical exponents resulting from the pure power-law fits approximately fulfill the 

hyperscaling relation 8 - d/ z == -a- 6. However, the agreement is not very good (in 

particular, it is significantly worse than in one dimension [14]), indicating that the 

measured pure power~laws are not the true asymptotic behavior. Our results thus 

support the conjecture that the generic transition of the two-dimensional generalized 

contact process with two inactive sta.tes is in the GV universality class. 

5.3.3. Transition at tJ :-,.:; 0. After addressing the generic transition, we 

now discuss in more detail the line of phase transitiot1s occurring at a :::::: 0 and 
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Figure 5.4. (Color online) Survival probability Ps(t) for several points located on the 
generic phase boundary plotted as Pat vs. ln(t). Straight lines correspond 
to mean-field behavior with logarithmic corrections. Inset: Same data 
plotted as ln(Ps) t) vs. ln(t). Straight lines represent pure power laws. 

lli < 11 < 11*. To study these transitions, we carried out several sets of simulations 

for fixed healing rate l.t and several a values approaching a = 0. 

We start by discussing the density decay runs. Figure 5.6 shows the stationary 

density Pst of active sites (reached at long times) as function of a for several values 

of the healing rate l.t· The figure shows that the stationary density depends linearly 

on CJ for all healing rates in the interval~.t'! < 1.t < l.t* , i.e., Pst = Bit~ with w = 1 

and B"' being a 11-dependent constant. We also analyzed how the prefactor B~-' of this 

mean-field-like behavior depends on the distances from the simple contact process 

critical point and from the special point at 1.t = ~.t* and CJ = 0. As inset (a) of Fig. 

5.6 shows, B"' diverges as (!1-l.t'!t"' with r;, = 1.56(5). According to inset (b) , it 

vanishes as (!l* - ~.t)"'• with K* ~ 0.23 when approaching /l*· 
At the critical healing rate ~.t'! of the simple contact process, the stationary 

density displays a weaker CJ-dependence. A fit to a power-law Pst "' ~cp gives an 

exponent value of Wcp = 0.274(5). 
Let us now compare these results with the behavior of spreading simulations in 

the same parameter regiotL Fi~ure 5.7 shows the survival probability P.(t) and the 

number ofactive siteS . . Joi a. fixed healing rate of /l = 0.8 and severa.I values 
.. of the · · ···· · '~n iilitih.f deeay, the number of active sites grows 

With t he system is ln the active phase for 
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Figure 5.5. (C?lor online) Density of active sites plotted as p-l(t) vs. In(t) for several 
pomts located on the generic phase boundary. The data are averages over 
.100 ru~s with system size 500 x 500. The curve for <J = 0.01 is shown 
m the mset because its density values are much smaller than those of the 
other curves. 

all 0' > 0. In agreement with this, the survival probability approaches a nonzero 

constant in the long-time limit. Remarkably, this stationary survival probability 

does not approach zero with vanishing (J. Instead, it approaches a u-independent 

constant. We performed similar sets of simulations at other values of p in the range 

/-l~P < f..l < J-t*, with analogous results. 

We thus conclude that the behavior at the a = 0 transition of the two-dimensional 

generalized contact process is very similar to the one-dimensional case. It can be un

derstood in terms of the domain-wall motion as follows (14J. The relevant long-time 

degrees of freedom at f." > J.Li and u « 1 are the domain walls between I1 and I:! 
domains. These walls can hop, branch and annihilate. The crucial observation Ls 

that the rates which control the domain wall dynamics are all proportional to u for 

u « 1, implying that their ratios are a-independent. Consequently, the stationary 

state of the domain walls does not depend on a for a « 1. This explains why the 

survival probability Ps saturates at a nonzero, u-independent value in Fig. 5. 7. It 

also explains the u-dependence of the stationary density Pst because active sites are 

created mostly at the domain walls ~t ra.te <J. Therefore, their stationary density is 

proportional to both (J and tbestatiormry domainwall density Pdw, i.e. , Pn "'apdw, 

in agreemehtwith Fig. on this. ~gument, the exponent K'"-in inset (b) 
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Figure 5.6. (Color online~ Density decay simulations. Main panel: stationary density 
Pst as a functiOn of the boundary rate a for various healing rates J.L. For 
J-Li < J-L < J.l*, the solid lines are fits of the low-a behavior to p = B a 
At the simple contact process critical point, J.L = J.Li = 0.6066,.twe fi( t~ 
the power-law Pst rv ifNep which gives an exponent of Wcp = 0.274(5). The 
data are averages over 300 to 600 runs with system sizes 100 x 100. Inset 
a: prefactor BJJ of the linear a dependence as a function of J.L- J.Li- A fit 
to a power law gives BJJ rv (J.L-J.LitK with"'= 1.56(5). Inset b: prefactor 
BJJ as a function of J.L* - J.l· A fit to a power law gives BJJ "' (J.L* - J.Lt' 
with ,• ~ 0.23. 

of Fig. 5.6 should be identical to the exponent (3 of the generic transition line [14], 

which vanishes in mean-field theory. Our value, ,• ~ 0.23 is thus somewhat too high 

which we attribute to it not representing the asymptotic behavior, in agreement with 

the significant curvature of the data in inset (b) of Fig. 5.6. 

Just as in one dimension, the phase transition line at a = 0 and J.Li < J-L < J.l* 

is thus not a true critical line. It only appears critical because the stationary density 

Pat (trivially) vanishes with a. Correspondingly, the time evolution right on the 

transition line a = 0 does not display critical power laws. also implies that the point 

(J-L, u) = (J-L*, O) is not a multicritical point, but a simple critical point in the same 

universality class as the generic transition. 
5.3.4. Scaling of Pat at The Contact Process Critical Point (J.Li , 0). The 

behavior of the stationary density of active sites Pst close to the simple contact process 
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Figure 5. 7. (Color online) Spreading simulations: Survival probability Ps and number 
of active sites N8 as functions of time t for a fixed healing rate of f..L = 
0.8 and several a. The data are averages over 2000 to 10000 runs on a 

4000 x 4000 system. 

critical point at f..L = J.Li and a= 0 can be understood in terms of a phenomenological 

scaling theory. We assume the homogeneity relation 

(157) 

where 6.J.L = J.L-J.Li, and b is an arbitrary scale factor. {3qJ = 0.584 and v~ = 0.734 are 

the usual order parameter and correlation length exponents of the two-dimensional 

contact process [22, 23], and yqJ denotes the scale dimension of a at this critical point. 

Setting b = a 1/Yc, gives rise to the scaling form 

Pst ( 6.J.L, a) = af3cpf(vfr,Ycp) X ( 6.J,L a-1/(vfr,Ycp)) 
(158) 

where X is a scaling function. At criticality, AJ.L = 0, this leads to Pst(O, a) "' 

af3c,/(vf,Ycp) (using X(O) = const). Thus, wqJ = {3qJj(v~yqJ). For a -+ 0 at nonzero 
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!::.J.L, we need the large-argument limit of the scaling function X On the t' 'd f 
the criti 1 · !). . · ac Ive s1 eo 

ca pomt, f.L < 0, the scalmg function behaves as X(x) "' lxi/Jep to d 
th t · · 1 repro uce 

e correc cntiCa behavior of the density, Pst "' lf.L _ f..L~I/Jep. 

On the inactive side of the critical point i e £or A 11 > 0 and 0 ' · · • u.,_ q --+ , we assume 
the scaling ~unc~ion to behave as X(x) "'x-". We thus obtain Pst"' (!::.f.L)-"qw (just 

~observed m Fig. 5.6) with w = (/3c.p + K)/(v~yc.p)· As a result of our scaling theory, 
he exponents w, Wc.p and ,.. are not independent, they need to fulfill the relation 

wc.p(/3cp + K) = /3c.pw. Our numerical values, w = 1, wc.p = 0.274 and ,.. = 1.56 fulfill 

this relation in very good approximation, indicating that they represent asymptotic 

exponents and validating the homogeneity relation (157). The resulting value for the 

scale dimension Yep of qat the simple contact process critical point is Yc.p = 2.9(1). 

5.4. CONCLUSIONS 

To summarize, we investigated the two-dimensional generalized contact process 

with two inactive states by means of large-scale Monte-Carlo simulations. Its global 

phase diagram is very similar to that of the corresponding one-dimensional model. 

In particular, the generic (q > 0) phase boundary between the active and inactive 

phases does not continuously connect to the critical point of the q = 0 problem, i.e., 

the critical point (J.L~, 0) of the simple contact process. Instead, it terminates at a 

separate end point (f.L*, 0) on the f.L axis. As a result, the two-dimensional generalized 

contact process has two nonequilibrium phase transitions. In addition to the generic 

transition occurring for q > 0, there is a line of transitions at q = 0 and J.L'l' < f.L < f.L* . 

We note that there is one interesting difference between the phase diagrams in one 

and two dimensions. In one dimension, the critical healing rate f.Lc increases with 

increasing boundary rate q, In contrast, the results of this paper show that the 

critical healing rate in two dimensions is completely independent of (f. The reason 

for this difference is presently an open question. 
To determine the critical behavior of the generic transition, we performed simu

lations at and close to several points on the generic ( q > 0) phase boundary. We found 

the same critical behavior for all of these points, i.e, it is universal. Our data can be 

fitted reasonably well with pure power laws, giving the exponents 8 = - 0.100(25), 

§ = 0.900(15), a= 0.080(4), and z = 2.06(8). However, fits of equal and sometimes 

even better quality over longer ranges of time can be obtained by fitting to mean-field 
·t· al b h · e 0 r 1 "' - 0 and z = 2 with logarithmic corrections. We en IC e av10r, = , a = , .... - • 

thus conclude that our results support the conjecture [17] that the critical behavior 

f th t d. · al eralized contact process is in the generalized voter (GV) 
o e wo- 1mens1on gen 
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universality class which is right at its upper critical dimensions. (In other words, 

the DP2 class coincides with the GV class in two dimensions). We also note that 

our simulations showed no indications of the transition being split into a symmetry

breaking transition and a separate DP transition as found in some absorbing-state 
Potts models [18]. 

As in one space dimension, the line of transitions at (7 = 0 and J.l! < J.l < J.l* 

is not a critical line. The survival probability Ps remains finite when approaching 

this line. The density p of active sites vanishes, but simply because the domain

boundary activation rate (7 vanishes. The behavior in the vicinity of the transition 

line is controlled by the dynamics of the 11-h domain walls which is not critical for 

J.ld < J.l < J.l*. 

Crossovers between various universality classes of absorbing state transitions in 

one dimension have been investigated by several authors [24, 25, 26, 27]. Some of the 

scenarios lead to conventional crossover scaling (of the type (7c rv (J.t- J.ti) 114>). Park 

and Park [25] found a discontinuous jump in the phase boundary along the so-called 

excitatory route from infinitely many absorbing states to a single absorbing state. 

There also is some similarity between our mechanism and the so-called channel route 

[26] from the PC universality class to the DP class which involves an infinite number 

of absorbing states characterized by an auxiliary density (which is density of 11-h 
domain walls in one-dimensional the generalized contact process [14]). To the best of 

our knowledge, a similarly systematic investigation of crossovers between absorbing 

state universality classes in two space dimensions has not yet been performed. 

As our results suggest that the two-dimensional generalized contact process is 

right at the upper critical dimensions, the critical behavior of its (generic) phase 

transition in dimensions d > 2 should be governed by mean-field theory. 
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