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The optical memory effect has emerged as a powerful tool for imaging through multiple-scattering
media; however, the finite angular range of the memory effect limits the field of view. Here, we demonstrate
experimentally that selective coupling of incident light into a high-transmission channel increases the
angular memory-effect range. This enhancement is attributed to the robustness of the high-transmission
channels against perturbations such as sample tilt or wave front tilt. Our work shows that the high-
transmission channels provide an enhanced field of view for memory-effect-based imaging through
diffusive media.
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“Seeing through an opaque medium” has long been a
grand challenge, as ballistic light decays exponentially with
depth.Various techniques havebeen developed to extract the
weak signal from single or few scattering in an overwhelm-
ing background of multiply scattered light [1–5]. A recent
paradigm shift is harnessing multiply scattered or diffused
light for imaging applications [6–11]. The key ingredient
that enabled this strategic shift is the hidden correlations of
seemingly random speckles formed by the interference of
scattered light [12–16]. Quite remarkably, such correlations
have been both predicted and observed in the angular,
spectral, spatial, and temporal domains [17–30].
Perhaps the best known from all of the above correlations

is the angular “memory effect”: when the incident wave
front of a coherent beam on a diffusive medium is tilted by
a small angle, the transmitted wave front is tilted by the
same amount, resulting in the translation of the far-
field speckle pattern [25–29] [see Fig. 1(a)]. The angular
memory effect originates from the intrinsic correlations in
the transmission matrix t of a diffusive slab with a widthW
that is much larger than its length L [27,29,30]. In real
space, t is a banded matrix, because a point excitation at the
front surface emerges as a diffuse halo of radius L at the
back surface of the slab. In the spatial-frequency domain,
t displays correlations between the matrix elements along
the diagonal. The diagonal correlations are the origin
of the memory effect with an angular correlation width
θ0 ¼ λ=ð2πLÞ, where λ is the wavelength of light. While
the memory effect has already enabled various applications
in imaging [12–16], its limited angular correlation width
remains a central obstacle for wide-field imaging.

A recent breakthrough in coherent control of light in
diffusive media is the selective excitation of transmission
eigenchannels by wave front shaping [31–35]. It allows us
not only to vary the transmittance from near zero to the order
of unity, but also to drastically change the spatial distribution
of energy density inside the medium [35–40]. Moreover, it
has very recently been discovered that in a wide diffusive
slab, the transmission eigenchannels are localized in the
transverse directions and have the same transverse width at
the front and the back surfaces of the slab (i.e., there is no
transverse spreading) [41,42]. Since the transverse spread-
ing of scattered waves is inherently connected to the theory
behind the angular memory effect, the absence of spreading
immediately raises the question whether and how the
angular memory effect is modified for transmission eigen-
channels and whether one could make use of such mod-
ifications to increase the angular memory-effect range.
In this Letter, we investigate this question experimentally

and numerically by studying the angular memory effect
of transmission eigenchannels in wide diffusive slabs.
Compared to random incident wave fronts, we find that
the angular memory-effect range is enhanced for high-
transmission channels, but reduced for low-transmission
channels. These phenomena can be explained by the
robustness of the transmission eigenchannels against sam-
ple tilt or incident wave front tilt. Our work illustrates the
significance of high-transmission channels in memory-
effect-based imaging applications: they not only penetrate
deeper inside a diffusive medium, but also provide a wider
field of view due to their enhanced angular memory-effect
range. Furthermore, we observe the opposite behavior in
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reflection, where the angular memory-effect range is
reduced for high-transmission channels but enhanced for
low-transmission channels. This result suggests that the
angular memory-effect range of reflected light may be used
as a signature of coupling light into high-transmission
channels in experiments where there is no access to the
light field behind scattering media [43–45].
Experimentally, we measure the angular memory effect

by selectively coupling coherent light into a single trans-
mission eigenchannel. The scattering sample consists of
densely packed zinc oxide (ZnO) nanoparticles spin
coated on a cover slip. The thickness of the ZnO layer
L ≃ 10 μm is much smaller than its transverse dimensions
(2 cm × 2 cm). Since the transport mean free path lt ≃
1.5 μm is much shorter than L, light transport in the sample
is diffusive. The measured transmittance averaged over
random incident wave fronts is T̄ ≃ 0.2.

To find the transmission eigenchannels, we measure the
field transmission matrix twith the setup shown in Fig. 1(b)
[46]. A monochromatic laser beam of wavelength λ ¼
532 nm is modulated by a phase-only spatial light modu-
lator (SLM) before impinging on the sample. The trans-
mitted field is measured by common-path interferometry
with a CCD camera [41,47,51]. We modulate two orthogo-
nal polarizations of the incident field and record one linear
polarization of the transmitted light. The field transmission
matrix is obtained in spatial-frequency space. The incident
wave front Vn of a transmission eigenchannel is determined
from t†tVn ¼ τnVn, where τn is the nth transmission
eigenvalue (ordered from high to low τn). We display the
phase front of Vn on the SLM, and record the far-field
intensity pattern of the transmitted field Ið0Þ with the CCD
camera. We then tilt an eigenchannel wave front incident
onto the sample by angle θ and track the change in the
transmitted wave front. The transmitted intensity pattern
IðθÞ on the camera is numerically tilted back by θ, and its
Pearson correlation with the original pattern Ið0Þ is com-
puted as CðθÞ ¼ hδIð0ÞδIðθÞi=ðhδIð0Þ2i1=2hδIðθÞ2i1=2Þ,
where δI ≡ I − hIi and h� � �i represents spatial averaging
over the output pattern.We calculate the intensity correlation
coefficientCðθÞ of the ten highest transmission channels, of
the ten lowest transmission channels, and of twenty random
incident wave fronts. In Fig. 1(c) we show examples ofCðθÞ
for a high- and a low-transmission channel compared to that
of a random wave front: the high-transmission channel
decorrelates slower with tilt angle θ than the random wave
front, while the low-transmission channel decorrelates
faster. CðθÞ does not decay to 0 at large θ due to the limited
modulation efficiency of our SLM: as we tilt the incident
wave frontwith the SLM, a small portion of the field remains
unmodulated; therefore the corresponding transmitted fields
are correlated. From thewidth ofCðθÞ, we determine that the
angular memory-effect range for the highest transmission

channel θðhÞ0 is 1.52 times of that for a random wave front

θðrÞ0 , and the angular range for the lowest transmission

channel is θðlÞ0 ¼ 0.77θðrÞ0 .
To confirm that the angular memory effect is enhanced

for high-transmission channels and suppressed for low-
transmission channels, we numerically simulate light
propagation through two-dimensional (2D) diffusive slabs
(W ≫ L ≫ lt). We calculate the complete field transmis-
sion matrix t using the recursive Green’s function method
[46]. Evaluating the transmission eigenchannels of t, we
calculate the output fields of each eigenchannel with
respect to the tilt angle θ of its incident wave front. The
transmitted field is then tilted back by the same angle θ, and
its Pearson correlation with the original transmitted field is

computed. From the field correlation CðEÞ
n ðθÞ, the intensity

correlation CnðθÞ ¼ jCðEÞ
n ðθÞj2 is obtained. CnðθÞ decays

with the tilt angle θ, and its width θðnÞ0 gives the angular

(a)

(b)

(c)

FIG. 1. Angular memory effect, the experimental setup, and
data. (a) Sketch of the angular memory effect for a diffusive slab.
An incident beam generates a transmitted speckle pattern in far
field (green). When the input wave front is tilted by a small angle
θ, the output wave front is tilted by the same angle θ, leading to a
lateral shift of far-field speckle pattern (red). (b) Simplified
schematic of the experimental setup. The laser beam is modulated
by a phase-only SLM, imaged onto the pupil of a microscope
objective by a pair of lenses, and directed onto a ZnO nano-
particle film. The transmitted (reflected) light is measured by a
CCD camera CCD1 (CCD2) in the far field. NA and P stand for
numerical aperture and linear polarizer, respectively. (c) Exper-
imentally measured intensity correlation function CðθÞ of the
transmitted speckle patterns as a function of the normalized tilt

angle θ=θðrÞ0 , for a high-transmission channel (with T=T̄ ¼ 2.29,
blue dashed line), a low-transmission channel (with T=T̄ ¼ 0.58,
red dot-dashed line), and a random incident wave front (black

solid line). θðrÞ0 denotes the width of CðθÞ for the random wave

fronts where CðθðrÞ0 Þ ¼ Cð0Þ=2, and its value is about 1°.
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memory-effect range for the nth eigenchannel. Figure 2(a)

clearly shows that θðnÞ0 increases with the transmission
eigenvalue τn. The eigenchannels with transmittance τn
above the average value τ̄ have a larger memory-effect
range, while those of τn < τ̄ have a smaller memory-effect
range than the random wave fronts. Furthermore, we find

that the width θðhÞ0 for high-transmission channels is
inversely proportional to the effective sample thickness
Leff that includes the extrapolation lengths [46].
The numerically observed dependence of the eigen-

channel angular memory effect on transmittance agrees
qualitatively with the experimental observation. Such a
dependence might be surprising at first sight as none of the
eigenchannels of the complete transmission matrix spreads
laterally in the slab, and they all have the same transverse
widths at the front and the back sides of the slab [41].
However, we should recognize that once the incident wave

front of an eigenchannel is tilted, it is no longer the
eigenvector of t†t. Consequently, lateral spreading occurs
inside the slab, and the transmitted beam becomes wider
than the incident beam for all eigenchannels. The effective
widths of input and output beams are given by the
participation numbers of the field intensity profiles at the
front and the back surfaces of the slab [41]. Their difference
ΔD is the transverse spread. As shown in Fig. 2(b), ΔD
increases as the tilt angle θ increases. However, the increase
is much slower for high-transmission eigenchannels, indi-
cating they are more robust against the tilt of the incident
wave front than the low-transmission eigenchannels. This
leads to a larger memory-effect range for high-transmission
channels than low-transmission ones.
The transmission eigenvalue dependence of the tilt-

induced lateral spreading shown in Fig. 2(b) can be under-
stood as follows. When the incident wave front of a
transmission eigenchannel is tilted by an angle θ, it excites
not only this eigenchannel, but also other eigenchannels.
The latter can be approximated as a random superposition of
all other eigenchannels, which is equivalent to a random
incident wave front. The transmitted field profile at the back
side of the sample is then a superposition of a transversely
localized eigenchannel profile and a transversely spread
random wave front profile. For a high-transmission eigen-
channel, its output profile dominates over the random wave
front profile, but for a low-transmission channel, the output
is dominated by the random wave front profile. As a result,
the high-transmission channels have stronger correlation
and larger memory effect than the low-transmission
channels.
To make the above understanding more quantitative, we

introduce a phenomenological model that predicts Cn. As
illustrated in Fig. 2(c), the angular memory effect can be
equivalently considered as the correlation of transmitted
fields with respect to the tilt angle θ of the scattering sample
for a fixed incident field. The transmission matrix of the
tilted sample is tθ ¼ R†

θtRθ, where the tilting matrix is
written in the form Rθ ¼ 1þ X. We model the matrix X as
an N × N complex random matrix with independent and
Gaussian-distributed entries. The variance σ2=N of its
elements determines the amount of perturbation. When
the incident wave front corresponds to the transmission
eigenchannel Vn of the untilted sample, the transmitted
field through the tilted sample is tθVn, and its correlation
with the original transmitted field tVn is

Cn ≡ jhVnjt†tθjVnij2
hVnjt†tjVnihVnjt†θtθjVni

≃
1

1þ σ2
τn þ σ4τ̄=N
τn þ σ2τ̄

ð1Þ

(see [46] for the derivation). The prediction of the model
fits well to the numerical result [see Fig. 2(d)], with a value

(a)

(c) (d)

(b)

FIG. 2. Numerical and theoretical results. (a) Angular correla-

tion width θðnÞ0 of transmission eigenchannels vs their trans-
mittance τn. Each point represents an average over 10 disorder
realizations. The horizontal black line denotes the angular

correlation width for random incident wave fronts θðrÞ0 . (b) Trans-
verse spread ΔD of high (τ̄ < τn < 1, blue line) and low
(10−4 < τn < τ̄, red line) transmission eigenchannels vs tilt angle
θ of their incident wave fronts. (c) Sketch of the transmission
matrix of a tilted sample tθ ¼ R†

θtRθ, where Rθ is the tilting
matrix and t the field transmission matrix without tilting.
(d) Intensity correlation coefficient Cn of transmission eigen-

channels at the tilt angle θ ¼ θðrÞ0 ≈ 0.8°, obtained from numerical
simulation (red solid line), and the prediction of the phenom-
enological model, Eq. (1), with σ2 as the only fitting parameter
(black dashed line). The number of channels is N ¼ 3239. The
diffusive slabs have thickness k0L ¼ 100, width k0W ¼ 6000,
transport mean free path klt ¼ 4.6, average refractive index
n0 ¼ 1.5, where k ¼ n0k0, k0 ¼ 2π=λ, and λ is the vacuum
wavelength.
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of σ that depends only on θ and the effective sample
thickness Leff . In the limit θ ≪ 1 rad, it can be shown that
σ ∝ k0Leffθ [46]. Equation (1) shows that the perturbed
output is more correlated with the original output for high-
transmission channels, and when τn ≫ σ2τ̄, Cn is on the
order of unity. At the same time, the transmitted pattern
decorrelates more for low-transmission channels. For
τn → 0, Cn is on the order of 1=N, which is the expected
value between two uncorrelated speckle patterns with N
speckle grains.
For a fair comparison of the simulation and the exper-

imental data, we must take into account that only a limited
number of channels is controlled in the experiment [46].
The limited numerical aperture (NA) in the illumination
and the detection, the finite area of illumination on the
sample, the phase-only modulation of the (far-field) inci-
dent wave fronts, and single-polarization detection of the
transmitted light all reduce the range of transmittance of
experimentally realized eigenchannels [34,47,52]. Such
incomplete control also limits the enhancement or sup-
pression of the angular memory-effect range that can be
observed experimentally. Figure 3(a) shows the numeri-
cally calculated and the experimentally measured intensity
correlation coefficient Cn of transmission eigenchannels vs
their normalized transmittance T=T̄. The incomplete con-
trol reduces the ranges of both Cn and T=T̄. Despite the
reduced range, the modification of the angular memory
effect is clearly observed experimentally and agrees with
the simulation result.
A compelling question is raised by the enhanced

memory-effect range for high-transmission channels: will
the angular memory-effect range also be modified in
reflection once light is coupled into a high-transmission
channel? To answer this question, we experimentally

measure the reflection correlations for individual trans-
mission eigenchannels. The intensity pattern of reflected
light is recorded in the far field by a second CCD camera
(CCD2) in Fig. 1(b). The modification of the angular
correlations in reflection is opposite to the modification in
transmission: the high-transmission channels’ correlation is
smaller in reflection than the low-transmission channels’

correlation for a fixed tilt angle θðrÞ0 [see Fig. 3(b)]. The
angular correlation width θ0 in reflection for the highest
(lowest) transmission eigenchannel is 7% smaller (6%
larger) than that for the random incident wave fronts.
Our numerical simulation confirms the experimental obser-
vation: the intensity correlation coefficient in reflection

CðRÞ
n decreases as the transmittance increases [Fig. 3(b)].

Taking into account the incomplete control in our experi-
ment, the numerical results are in good agreement with the
experimental data.
The modification of the angular memory effect in

reflection can also be explained in the framework of our
phenomenological model by replacing τn by 1 − τn [46].
Once the incident light is coupled into a high (low)
transmission channel, the reflectance is low (high) and
the reflected field pattern is sensitive (robust) to the sample
tilt. The reduced memory-effect range in reflection may
provide experimental guidance for shaping the incident
wave front to couple light into high-transmission channels
when there is no access to the transmitted light [43–45].
In summary, we demonstrate that the angular memory

effect for individual transmission eigenchannels is distinct
from that of random wave fronts. With increasing trans-
mittance, the eigenchannel memory-effect range increases
in transmission, but decreases in reflection. Such variations
can be explained by our phenomenological model in terms
of the robustness of the eigenchannels against perturbations

(a) (b)

FIG. 3. Comparison between the experimental and the theoretical results. Correlation coefficient Cn in (a) [C
ðRÞ
n in (b)] of transmitted

(reflected) eigenchannel intensity patterns for θ ¼ 0 and θ ¼ θðrÞ0 as a function of their normalized transmittance T=T̄. θðrÞ0 is the width at
half maximum of the angular correlation function in transmission CðθÞ for (a) and in reflection CðRÞðθÞ for (b) for random incident
wave fronts. Blue solid line and black dots: numerical simulation results in the case of complete channel control (CCC) and incomplete
channel control (ICC), respectively. Green open squares (red open circles): experimental data for ten highest (lowest) transmission
channels. The simulation data represent an average over 50 disorder realizations. The simulation parameters are slab thickness
L ¼ 10 μm, width W ¼ 508 μm, lt ¼ 1 μm, n0 ¼ 1.4, background refractive index n1 ¼ 1.0 (in front of the slab), and
n2 ¼ 1.5 (at the back).
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such as a sample tilt or an incident wave front tilt. Our
model can be extended to other perturbations, such as
frequency detuning of the incident light, and provides an
understanding of the enhanced bandwidth (spectral
memory effect) for high-transmission channels, which
was observed previously [21]. Therefore, our work reveals
the general characteristic of high-transmission channels:
their transmitted fields are robust while their reflected fields
are sensitive against perturbations. Thanks to their larger
angular memory-effect range, the high-transmission chan-
nels provide a wider scan range than Gaussian beams or
random wave fronts, which will be useful for improving the
quality of memory-effect-based speckle imaging through
diffusive or otherwise complex media. Finally, the spatial
memory effect was recently discovered in anisotropic
scattering systems of length much larger than the scattering
mean free path but comparable to or smaller than the
transport mean free path [23,24,30]. It will be interesting to
investigate the spatial memory effect for the transmission
eigenchannels of such systems.
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