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ABSTRACT

This dissertation contains two main parts:

In Part One, for regression problems with grouped covariates, we adopt the idea

of sparse group lasso (Friedman et al., 2010) to the framework of the sufficient dimension

reduction. We propose a method called the sparse group sufficient dimension reduction

(sgSDR) to conduct group and within group variable selections simultaneously without

assuming a specific model structure on the regression function. Simulation studies show

that our method is comparable to the sparse group lasso under the regular linear model

setting, and outperforms sparse group lasso with higher true positive rates and substan-

tially lower false positive rates when the regression function is nonlinear or (and) the error

distributions are non-Gaussian. One immediate application of our method is to the gene

pathway data analysis where genes naturally fall into groups (pathways). An analysis of

a glioblastoma microarray data is included for illustration of our method.

In Part Two, for many-valued or continuous Y , the standard practice of replacing

the response Y by a discrete version of Y usually results in the loss of power due to the

ignorance of intra-slice information. Most of the existing slicing methods highly reply on

the selection of the number of slices h. Zhu et al. (2010) proposed a method called the

cumulative slicing estimation (CUME) which avoids the otherwise subjective selection

of h. In this dissertation, we revisit CUME from a different perspective to gain more

insights, and then refine its performance by incorporating the intra-slice covariances.

The resulting new method, which we call the covariance cumulative slicing estimation

(COCUM), is comparable to CUME when the predictors are normally distributed, and

outperforms CUME when the predictors are non-Gaussian, especially in the existence of

outliers. The asymptotic results of COCUM are also well proved.
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1. INTRODUCTION

1.1. CURSE OF DIMENSIONALITY

With the fast development of technology and information society, high dimensional

data has become an issue that can arise in every scientific field, for example, the anal-

ysis of genetic data and some of the economic models. However, it is commonly known

that it is difficult to analyze and organize the high dimensional data due to the curse of

dimensionality (Bellman, 1961). The basic idea of curse of dimensionality is when the

dimensionality increases, the volume of the space increases so fast that the available data

become sparse. In other words, the sparsity increases exponentially given a fixed amount

of sample data points. Intuitively, much larger data sets are needed to achieve the same

accuracy even under moderate dimension case. However, this is impractical in reality due

to limited sample sizes. This becomes even more difficult when the number of predictors

p exceeds the number of observations n. A typical example of this phenomena can arise

in genetic association studies while one faces thousands and millions of genes with only

tens or hundreds of sample size. From Fisher’s point of view (Fisher, 1924), large sam-

ple regression methods are appropriate only when the sample size n is much larger than

the number of predictors p, preferably more than one thousand. So dimension reduction

was an issue even during Fisher’s era and before. Nowadays, how to deal with the high

dimensional data has become a popular topic for statisticians.

1.2. HIGH DIMENSIONAL DATA ANALYSIS

Several methodologies have been developed to address the issue of curse of dimen-

sionality. There are essentially two approaches: Function Approximation and Dimension

Reduction. The former assumes that the regression function is a sum of univariate smooth

functions (Xia, Tong, Li and Zhu, 2002) which includes additive model approach (Hastie

and Tibshirani, 1986) and the projection pursuit regression (Friedman and Stuetzle, 1981).

However, most of the function approximation methods seem to have singled out the ap-

proximation of the regression function as their objective (Li, 1991). As indicated by Li
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(1991), dimension reduction in statistics has a wider scope than functional approximation.

Hence, dimension reduction methods became more popular after 1990. As it is defined

in the dictionary, dimension reduction is the process of reducing the number of random

variables under consideration, and can be divided into feature selection and feature ex-

traction. Feature selection aims to find out a subset of the original predictors, and many

of the variable selection methods are designed to achieve this goal. On the other hand,

feature extraction reduces the dimension of space by looking for the linear combination of

the original variables to obtain the most important information. Dimension reduction has

been used for data visualization and there are many different types of dimension reduction

methods.

Next we will categorize some of the classical dimension reduction methods from

two different perspectives. According to Zhu (2011), one way of classifying dimension

reduction methods depends on whether the training data is labeled (supervised) or not

(unsupervised). A major difference between the supervised dimension reduction and un-

supervised dimension reduction is the former makes use of predictor information which

is related to the response variable while the latter leaves out the information from the

response variables. Unsupervised dimension reduction includes the traditional Principle

Component Analysis (PCA) and Singular Value Decomposition (SVD), while the super-

vised dimension reduction includes Ordinary Least Square (OLS) and Partial Least Square

(PLS).

The other way of classifying dimension reduction methods is based on the geomet-

ric structure point of views (Burges, 2009), which includes the projective methods and

manifold learning methods. The idea of projective methods is to project the high dimen-

sional data into a lower dimensional subspace that can capture the information from the

data. This is also the main idea of most sufficient dimension reduction methods which

we will discuss latter in this article. Meanwhile, Principle Component Analysis (PCA)

(Pearson, 1901), Kernel PCA (Schlkopf et al., 1998), Probabilistic PCA (Tipping and

Bishop, 1999A; Tipping and Bishop, 1999B), Canonical Correlation analysis (Hotelling,

1936), Oriented PCA (Diamantaras and Kung, 1996) all belong to this category. In Man-

ifold learning methods, there are several methods such as Landmark MDS (Silva and
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Tenenbaum, 2002), Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Laplacian

Eignmaps (Belkin and Niyogi, 2003) and Spectral Clustering (Shi and Malik, 2000; Meila

and Shi, 2000; Ng et al., 2002). Among many dimension reduction methods, sufficient

dimension reduction has been widely used during recent years. As we stated before, we

will work within the framework of sufficient dimension reduction in this dissertation.

1.3. SUFFICIENT DIMENSION REDUCTION (SDR)

The phrase “sufficient dimension reduction” with its modern meaning was intro-

duced in 1990’s (Li, 1991; Cook, 1998a; Cook and Yin, 2001) in the context of regression

graphics. A common sufficient dimension reduction objective is to reduce the dimension

of predictors X without loss of information on the regression and without requiring a pre-

specified parametric model. For a typical regression problem with a univariate random

response Y and a p-dimensional random vector X,

Y = g(βTX, ε) (1.1)

where g is an unknown link function, sufficient dimension reduction (SDR: Li, 1991;

Cook and Weisberg, 1991; Cook, 1998) aims to reduce the dimension of X without loss

of information on the regression and without requiring a pre-specified parametric model.

The terminology “sufficient” is similar to Fisher’s classical definition of sufficient statistic:

if D represents the data, then a statistic t(D) is sufficient about θ if

D|(θ, t) ∼ D|t.

In sufficient dimension reduction, the “sufficiency” is defined similarly: there exists η ∈

Rp×q, q ≤ p such that:

Y |X ∼ Y |(ηT
1 X, ηT

2 X, ..., ηT
q X) ∼ Y |ηTX (1.2)
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where η = [η1, η2, ..., ηq]. The existence of η is clear since η can be a p by p identity matrix.

There are some expressions equivalent to (1.2). For example, (1.2) can be interpreted as

Y depends on X only through q dimensional subspace, that is,

Y X | ηTX (1.3)

where indicates independence. Also, it is equivalent to

Y X | PS{η}X (1.4)

where PS{η} denotes the projection operator for S{η}; and ηTX is a lower dimensional

projection of X onto a subspace S ⊆ Rp without the loss of information on the regression.

The subspace

S{η} = span{η1, η2, ..., ηq}

mentioned above is defined as a dimension reduction subspace. However, the dimension

reduction subspace is not unique since any space that contains the dimension reduction

subspace is also a dimension reduction subspace. So we are looking for the smallest dimen-

sion reduction subspace which is the intersection of all the possible dimension reduction

subspaces, defined as

SY |X = ∩SDRS

and is called the central subspace. And the dimension of the central subspace

dim(SY |X) = d

is called the structural dimension. The central subspace is well defined under very mild

condition (Cook, 1996; Yin, Li and Cook, 2008). We assume the existeness of the central

subspace through this dissertation. Particularly, if d = 0, then the response is independent

of all the predictors. If d = 1, a possible model is

Y |X = µ(βTX) + σ(βTX)ε,
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where ε X, β 6= 0 and ε ∼ N(0, 1), such model is called the Single-index Model (SIM)

(Wang, Xu and Zhu, 2012). If d = 2, then the model is

Y |X = µ(βT
1 X, βT

2 X) + σε,

for example,

Y = (x1 + x2 + 1)(2x3 − x4) + σε.

The basic idea of sufficient dimension reduction is to replace the predictors X ∈ Rp with a

lower dimensional projection PSX onto a subspace S ⊆ Rp without the loss of information

on the original regression of Y |X. Subsequent modeling and prediction can then be built

upon the reduced dimensional projection.

A short example will be illustrated here to demonstrate the concepts of central

subspace and the structural dimension. Suppose the true model is:

Y = exp(0.75(X1 + X2 + 1)(2X3 −X4) + 1) + 0.5ε

where X = (X1, X2, . . . , X10)
T , and ε X. Then, the central subspace is

ηT =

 1 1 0 0 0 . . . 0

0 0 2 −1 0 . . . 0



and the structural dimension d is equal to 2. The main idea for the sufficient dimension

reduction in this example is: we can replace the original 10 dimensional predictors X

with the two dimensional linear combination of all predictors ηTX to achieve the goal

of dimension reduction without the loss of information on the regression. Apparently, in

this example,

ηTX =

 X1 + X2

2X3 −X4
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The concept of central mean subspace was first introduced by Cook and Li in 2002,

which is a notion similar to the central subspace. The central mean subspace is designed

to give a complete picture of the relationship between X and E(Y |X) instead of Y. A

similar definition as in (1.4), if

Y E(Y | X) | PS{η}X, (1.7)

then the intersection of all subspaces in (1.7) is defined as central mean subspace, denoted

by SE(Y |X). Since E(Y |X) is a function of X, it is obvious that (1.4) implies (1.7) and

consequently SE(Y |X) is a subspace of SY |X. Yin and Cook (2002) proposed the central

kth-moment dimension reduction subspace as an extended central space which is based on

E(Yk|X). It was pointed out in Zhu and Zeng (2006) that, the central mean dimension

reduction subspace for E(eitY|X) (t ∈ R), when put together, recovers the central sub-

space. Yin and Li (2011) pointed out the fact that estimating the central mean subspaces

E[f(X)|Y ] for a rich enough family of functions f is equivalent to estimating the central

subspace SY |X itself. The ensemble approach introduced by Yin and Li (2011) nicely built

a nice bridge between the central mean subspace and the central subspace.

1.4. LITERATURE REVIEW

From the introduction, we can easily see that the goal of sufficient dimension

reduction is to estimate and make statistical inferences about the central subspace or the

central mean subspace and the structural dimension. Many methods have been developed

to estimate SY |X or SE(Y |X). Essentially, there are global and local sufficient dimension

methods. And we will first have an overview of these two categories and then provide

details on some of the popular methods.

1.4.1. Global Methods. Most of the global sufficient dimension reduction meth-

ods can be classified into three categories (Wang, 2009): forward regression based, inverse

moment based and joint moment methods. A typical example of joint moment methods

is Principal Hessian Directions (pHd) (Li, 1992; Cook, 1998), which is based on the third
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moment matrix

E[(Y − E(Y))ZZT ].

Forward regression based methods include the classical Ordinary Least Square (OLS)

(Duan and Li, 1991), Fourier methods (Zhu and Zeng, 2006) and so on. Inverse regres-

sion methods include Slice Inverse Regression (SIR) (Li, 1991; Hsing and Carrol, 1992;

Zhu and Ng, 1995), kernel estimate of SIR (Fang and Zhu, 1996), parametric inverse

regression (Bura and Cook, 2001), inverse third moments (Yin and Cook, 2003), sliced

average variance estimation (SAVE) (Cook and Weisberg, 1991), Directional regression

(DR) (Li and Wang, 2007) and inverse regression based on minimum discrepancy ap-

proach (Cook and Ni, 2005). In contrast to high-dimensional forward regression models,

inverse regression has the substantial advantage of avoiding the high dimensional predic-

tors X by literally dealing with a one dimension to one dimension regression problem

(Li, 1991). Sliced Inverse Regression (SIR) (Li, 1991) is so far one of the most popular

sufficient dimension reduction methods. It is also a typical example of a method involving

some form of spectral decomposition.

The general idea of spectral decomposition approach is (Wen and Cook, 2007):

first find a symmetric population kernel matrix M such that

span(M) ⊆ SY |X,

then spectrally decompose a consistent estimate M̂ , and finally use the span of eigenvec-

tors corresponding to the d largest eigenvalues of M̂ to estimate span(M). In this process,

two critical issues are the determination of the structural dimension d and the estimation

of the kernel matrix M̂ on a sample level. Li (1991), Schott (1994) and Bura and Cook

(2001) have discussed details on the determination of structural dimension d. About the

estimate of M̂ , some nonparametric methods such as kernel and smoothing splines could

be used. In SIR (Li, 1991), the idea of “slicing” which is proposed to estimate the kernel

matrix is very simple and effective. Next we introduce the main idea of SIR.
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Consider a general model as (1.1), and assume the structural dimension d is known.

First of all, the development of most sufficient dimension reduction methods relies on

a crucial condition imposed on the marginal distribution of X, the so called linearity

condition:

E(X|βTX) = P T

β(ΣXX)
X (1.8)

where

ΣXX = Cov(X),

Pβ(ΣXX)
= β(βT ΣXXβ)−1βT ΣXX

is the orthogonal projection operator w.r.t. inner product (a, b)Σ = aT Σb and β is an or-

thonormal basis for SY |X. This is a very mild condition. Hall and Li (1993) showed that

when the dimension of X is large, for most directions β even a highly nonlinear regression

is still nearly linear. In general, when X is elliptically symmetrically distributed, for ex-

ample, X follows a multivariate normal distribution, the linearity condition holds (Eaton,

1986). The condition can also be induced by predictor transformation (Li and Yin, 2008),

reweighting (Cook and Nachtsheim, 1994), and clustering (Li, Cook, and Nachtsheim,

2004). In addition, Linearity condition is imposed on the marginal distribution of X

instead of the conditional distribution of Y|X under the traditional regression modeling,

and hence no pre-information about the link function is required (model free). Hall and

Li (1993) considered the case when (1.8) is severely violated, and had a discussion about

how to detect this violation using SIR.

In SIR, for simplicity, all predictors X are standardized as

Z = Σ
−1/2
XX {X− E(X)}.

Let ν = (ν1, ν2, . . . , νd) be an orthonormal basis for SY |Z, we have

SY |X = Σ
−1/2
XX SY |Z
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and

νi = Σ
1/2
XXβi.

SIR (Li, 1991) showed that

span{M} ⊆ SY |Z,

where the kernel matrix

M = Cov (E(Z|Y)).

On the sample level, SIR (Li, 1991) estimates this kernel matrix M by slicing the contin-

uous response Y into H pieces with Nh observations in the hth (h = 1, 2, . . . H) slice, and

takes

M̂ =
H∑

h=1

f̂hẐhẐT
h

where the slice weight

f̂h =
Nh

n

and the standardize sample mean of each slice

Ẑh = Σ̂
−1/2
XX {Xh − X̄h}.

Here X̄h and the Xh are the sample mean and the design matrix in the hth slice respec-

tively. Then apply the spectral decomposition on M̂ν̂i = λ̂iν̂i (i = 1, . . . , d) to find the

the standardized central subspace which is the space spanned by the first d eigenvec-

tors ν̂1, ν̂2, . . . , ν̂d corresponding to eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Finally, the central

subspace can be obtained by

β̂i = Σ̂
−1/2
XX ν̂i.

SIR is widely applied in the literature due to its simplicity and computational

feasibility. SIR is also very robust to the selection of the number of slices (Li and Zhu,

2007). Details on this issue will be addressed in the later sections. However, there are two

obvious limitations of SIR. Like most of the sufficient dimension reduction methods, SIR

might fail under n < p scenarios because the covariance matrix ΣXX is not invertible. The
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other limitation of SIR is that it might fail to recover the central subspace when E(X|Y)

degenerates. For example, when the link function is symmetric or X and β are symmetric

about zero, i.e. E(X|Y) = 0, then there is no information we can obtain from M , then

β̂ is hence a poor estimate of β. In that case, second or higher moments based methods

might be appropriate to use. Some inverse moment based methods such as sliced average

variance estimation (SAVE) (Cook and Weisberg, 1991) which uses

M = E{Ip − V ar(Z|Y)}

as its kernel matrix is developed to address this issue. However, SAVE is not very efficient

in estimating monotone trends for small to moderate sample size (Li and Wang, 2007).

Directional regression (DR) (Li and Wang, 2007) is proposed to overcome these difficulties

by using

2E{E2(ZZT |Y)}+ 2E2{E(Z|Y)E(ZT |Y)}

+2E{E(ZT |Y)E(Z|Y)}E{E(Z|Y)E(ZT |Y)} − 2Ip

as its kernel matrix.

1.4.2. Local Methods. However, all the above methods normally require a

relatively large sample size and a specified distribution of the predictor X (linearity con-

dition). Kernel based methods are developed to address the above issues. Minimum

average variance estimation (MAVE) (Xia et al. 2002; Xia, 2007) and Slice Regression

(Wang and Xia, 2008) both belong to local sufficient dimension reduction methods which

use kernel smoothing techniques. As one of the earliest and most fundamental methods,

MAVE is widely applied in other areas such as time series, economics and bioinformatics.

The idea of MAVE is motivated by SIR (Li, 1991), average derivative estimation (ADE)

(Hardle and Stoker, 1989) and spline smoothing methods. Here, we briefly discuss the

idea of MAVE method.

Consider a general model as shown on (1.1) with zero mean for the error term.

The objective function of MAVE is

E{Y − E(Y|BTX)}2 (1.9)
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subject to BBT = I and the goal is to minimize (1.9) in order to get the solution B =

(β1, . . . , βd) as the basis for central mean subspace. On the sample level, following the

idea of local linear smoothing estimation, MAVE approximates (1.9) as

σ2
B(BTX0) =

n∑
i=1

[Yi − {a0 + bT
0 BT (Xi −X0)}]2ωio (1.10)

Here a0 + bT
0 BT (Xi −X0) is the local linear expansion of E(Yi|BTXi) at point X0 and

the weights ωio is defined as

Kh{BT (Xi −X0)}/
∑

KhB
T (Xl −X0)}

with
∑n

i=1 ωio = 1, where Kh(·) is a p-dimensional kernel function with bandwidth h. Xia

et al. (2002) gave two choices of ωio by using a multidimensional kernel weight and a

refined kernel weight. Under mild conditions (Xia et al., 2002), it can be shown that

σ2
B(BTX0)− σ̂2

B(BTX0) = Op(1).

Therefore the original objective function can be obtained by

min B:BBT =I
aj ,bj ,j=1,...,n

(
n∑

j=1

n∑
i=1

[Yi − {aj + bT
j BT (Xi −Xj)}]2ωij) (1.11)

where bT
j = (bj1, . . . , bjd).

Considering the prior group information, the group wise dimension reduction pro-

cedure proposed by Li, Li and Zhu (2010) is actually applying idea of MAVE (Xia et al.,

2002) into groupwise dimension reduction. Details about Li, Li and Zhu (2010) will be

provided in the next section. MAVE works better for a small sample size and it is able

to estimate the central mean subspaces exhaustively (Yin and Li, 2011). Moreover, it

does not require the linearity condition. However, MAVE is sensitive to extreme values

(Wang and Xia, 2008) and can infer only about the central mean subspace, which means

MAVE only gives limited central subspace information. To overcome such limitation,

density MAVE (DMAVE) (Xia, 2007) and Sliced Regression (Wang and Xia, 2008) are
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introduced. On the other hand, MAVE requires kernel smoothing and is computationally

slow (Li, Zha and Chiaromonte, 2005). Unlike global methods and local methods, Li, Zha

and Chiaromonte (2005) proposed a new SDR approach by estimating contour directions

of small variations in the response.

1.5. EXTENSION

The future research and application of sufficient dimension reduction are very

useful and promising. Despite many existing successful methods based on regular settings,

there are many extensions under the framework of sufficient dimension reduction. In this

section, we give a brief review on several important extensions.

• Response

First of all, we can consider a complex form of responses. Most of the methods we

mentioned earlier are only applicable to univariate response. However, it is very

common that the response might be in a special structure, such as multidimen-

sional structure. Cook and Setodji (2003) proposed a model free test of dimension

for reduced rank in multivariate regression. Li, Wen and Zhu (2008) proposed a

projective resampling method for dimension reduction with multivariate responses,

and Zhu, Zhu and Wen (2010) also worked on multivariate regression problem under

the framework of dimension reduction.

• Predictors

Intuitively, we can consider some complex forms for predictors, such as categorical

predictors (Li, Cook and Chiaromonte, 2003; Wen and Cook, 2007) or predictor

with a matrix structure (Li, Kim and Altman, 2010). More commonly in genetic

analysis, predictors can be in group structures. It is wildly recognized that many

of the biological units naturally fall into groups. So the incorporation of prior

group information can greatly increase the statistical efficiency. Recently, Li et

al. (2010) proposed a groupwise dimension reduction which incorporates the prior

group information when the predictors under investigation fall naturally into several

groups. However, this method fails under the n < p case. The first part of this
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dissertation provides a possible solution by conducting variable selection within

sufficient dimension reduction for grouped predictors when n << p. More details

will be provided in Section 3.

• Nonlinear SDR

As we mentioned earlier, the central subspace is always composed by a linear com-

bination of all predictors, but it is possible the structure is nonlinear. This normally

happens especially when the predictors are in a complex format or n < p. So many

nonlinear sufficient dimension reduction methods (Wong and Li, 1992; Wu, Liang

and Mukherjee, 2010; Zhu and Li, 2011; Li, Artemiou and Li, 2011) are and will be

developed to address this issue.

• Discriminant Analysis

The linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA)

are the most popular existing methods for discrimination. However, the idea of

sufficient dimension reduction is also useful for discriminate analysis (Cook and

Yin, 2001). Let’s assume Y as a discrete random variable taking C distinct values

to indicate the C classes. According to the idea of discriminant analysis, we need to

assign X to the class having the largest posterior probabilities Pr(Y = c|X = x).

Theorically, we define the discriminant subspace (DS) S such that

D(Y|X) = D(Y|PSX),

where

D(Y|X) = argmaxcPr(Y = c|X).

The central discriminant subspace (CDS) SD(Y|X) is the intersection of all discrim-

inant subspace. The CDS is naturally a subset of the central subspace for the

regression of Y on X. The structure of SIR and SAVE suggests that they might

be quite useful for constructing summary plots in discriminant analysis (Cook and

Yin, 2001). For example, SIR is equivalent to LDA and SAVE is equivalent to QDA
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in the population for the purpose of constructing principal predictors and summary

plots. Cook and Yin (2001) reviewed on graphical methods that can be viewed as

pre-processors, aiding the analyst’s understanding of the data and the choice of a

final classifier.

• Variable Selection

Last but not the least, we can incorporate variable selection methods into the frame-

work of sufficient dimension reduction in order to construct model free variable

selections. The idea of combining variable selection methods and sufficient dimen-

sion reduction methods has become more popular especially when the model is

sparse. More details will be discussed in the following section.
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2. VARIABLE SELECTION WITHIN SDR

2.1. VARIABLE SELECTION

Variable selection, also known as feature selection in machine learning, is the pro-

cess of selecting a subset of relevant predictor variables for use in model construction.

A simple model is always easier for interpretation. Removing the excess variables not

only reduces the noise to the precise estimation (Tong, 2010), but also alleviates the

collinearity issue caused by having too many predictors (Fan and Lv, 2009). Moreover,

this can greatly save computation cost caused by high dimensional data. As one of the

most important dimension reduction approaches, many variable selection approaches have

been developed. Essentially, there are two types of methods: test based variable selection

methods and shrinkage methods.

2.1.1. Test-Based Methods. Traditional best subset selection is one of the

classical test based variable selection methods. The basic idea of best subset selection is

to select a subset that can optimize a specified criterion. One can use forward, backward

or stepwise regression methods as the pattern of subset changing at each step. Many

criterion have been proposed for choosing the best subset such as: Akaike Information

Criterion (AIC) (Akaike, 1973), Bayesian Information Criterion (BIC) (Schwarz, 1978),

Adjusted Coefficient of Determination Criterion, Residual Mean Square Criterion, and

Mallows’s Cp Criterion (Mallows, 1973).

2.1.2. Shrinkage Methods. Since test based variable selection need to run

over all possible variable subsets, it is computationally too expensive for many modern

statistical applications (Fan, 2009). An alternative variable selection class is shrinkage

method. The idea of shrinkage methods is to apply a specified penalty rule on all predictors

to the regression model. The shrinkage method can shrink the unnecessary predictors to

zero. One advantage of shrinkage methods is that they are computationally feasible.

A general form of penalized least square (PLS) problem as following:

minβ(||Y −Xβ||22 +

p∑
j=1

pλ(|βj|)) (2.1)
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where Y = (Y1, . . . , Yn)T is centered response vector and the centered design matrix is X =

(X1, . . . ,Xn)T , pλ here is a penalty function with the tuning parameters λ. Commonly

used parameters selection methods include cross-validation, generalized cross-validation,

AIC, BIC and RIC (Shi and Tsai, 2002). Details about the selection of tuning parameters

will be discussed in the next section. Meanwhile, many methods are proposed to develop

different forms of penalty function pλ.

Lasso (Tibshirani, 1996) is perhaps the most classical shrinkage method. The idea

of Lasso (2.2) is by imposing the L1 penalty ||β||1 to the ordinary least square in order

to balance the fit of the model and the number of predictors. The first term in (2.2)

represents the loss function minimized in the ordinary least squares, the second term is

the lasso penalty function while the multiplier λ > 0 is the penalty constant. Large

value of λ will set some components βj exactly to 0. Lasso is very popular since it is

computationally feasible and also it is capable of producing a sparse model. However,

Lasso doesn’t perform well if predictors are highly correlated. In that case, Lasso tends

to randomly select only one variable from each correlated group. Lasso also fails when

the number of significant predictors is greater than the sample size, since lasso selects at

most n variables before it saturates (Zou and Hastie, 2005).

minβ{||Y −Xβ||22 + λ||β||1} (2.2)

Prior to Lasso, Ridge Regression (Tikhonov, 1943) (2.3) applys the L2 penalty to the

regression problem. Ridge regression can perform better than Lasso when the number of

significant predictors is greater than the sample size or models with correlated predictors.

However, the ridge regression method doesn’t work well for sparse models due to the issue

of overselecting predictors.

||Y −Xβ||22 + λ||β||22 (2.3)

In order to remedy the disadvantages of lasso and ridge regression as mentioned above,

Elastic Net (Zou and Hastie, 2005) (2.4) is proposed by combining L1 and L2 penalty to
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OLS. Elastic Net method outperforms Lasso under correlated predictors models.

||Y −Xβ||22 + λ1||β||1 + λ2||β||22 (2.4)

There are other forms of penalty functions such as Lq penalty (q ≥ 1), the smoothly

clipped absolute deviation (SCAD) (Fan and Li, 2001) and minimax concave penalty

(MCP) (Zhang, 2010). Fan and Li (2001) advocates penalty functions that give estima-

tors with the property of sparsity, unbiasedness and continuity.

2.2. MODEL FREE VARIABLE SELECTION

Most of the existing variable selection methods are model based. We assume the

underlying true model is known up to a finite dimensional parameter or the imposed

working model is usefully similar to the true model (Li, 2008). However, the true model

might be in a complex form and it is usually unknown. This means if the underlying

modeling assumption is badly violated, then none of these variable selection methods

would work well. In fact, people usually use the terms “variable selection” and “model

selection” interchangeably (Li, Cook and Nachtsheim, 2005). The goal for model selection

is usually for further prediction. However, if our goal is identifying the explanatory

variables that have detectable effects instead of future prediction, then variable selection

does not always have to be part of model selection. For a variable selection method that

does not require any underlying true model, it is called “model free variable selection”.

It has been shown that the general framework of sufficient dimension reduction

is useful for variable selection (Bondell and Li, 2009) since no pre-specified underlying

models between Y and X are required. Model free variable selection can be achieved

through the framework of SDR (Li, 1991, 2000; Cook, 1998). This idea can be simply

illustrated in the following way. In variable selection, suppose we decompose the predictors

as

XT = (XT
1 ,XT

2 ) (2.5)
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where X1 corresponding to p1 insignificant elements of X, X2 corresponding to the re-

maining p2 = p− p1 significant variables. Equivalently, we want to find X2 such that

Y X1 | X2 (2.6)

which implies that, given X2 , X1 contains no further information about Y. In sufficient

dimension reduction as mentioned in Section one, let span (η) = SY |X , d = dim(SY |X),

and partition

ηT = (BT
1 ,BT

2 ). (2.7)

According to the above partition of X (2.5), then it leads (2.7) to B1 = 0. Hence, the

motivation for imposing the framework of sufficient dimension reduction into variable

selection approaches is clear. Similar to the classification of other variable selection meth-

ods, there are essentially two types of model free variable selection methods. That is,

model free test-based methods and model free shrinkage methods.

2.2.1. Model Free Test-Based Methods. Variable selection is an important

step in model-based regression. However, testing the significance of subsets of predictors

was not available in sufficient dimension reduction until Cook (2004). Cook (2004) showed

that the form of (2.6) is equivalent to

PHSY |X = Op (2.8)

Where H = span((Ip1 , 0)T ) is the subspace of Rp corresponding to the co-ordinates X1

and Op indicates the origin in Rp. Cook (2004) used SIR (Li, 1991) to develop marginal

coordinate hypothesis testing (MCH) as the first model free test-based variable selection

method. MCH used (2.8) as null hypothesis to construct test statistic

Tn(H) = ntrace(PĤM̂PĤ) (2.9)

Ĥ = span(Σ̂−1/2αx),
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where αx is a p by r used-selected basis for H with rank r. The M̂ here is the same as the

estimate kernel matrix in SIR (Li, 1991). Chen and Li (1998) proposed the approximate

sliced inverse regression-based t test.

Test-based methods typically incorporate the test into a variable subset search

procedure (Bondell and Li, 2009). In the spirit of most test-based methods, Li, Cook and

Nachtsheim (2005) proposed another model free variable selection method by applying

the backward elimination procedure in a standard normal theory to the Gridded χ2 -test.

First, let X = (x1,X
T
2 )T , η = (η1, η

T
2 )T and define the population residuals

r1|2 = x1 − E(x1|X2)

ry|2 = y − E(y|X2).

Li, Cook and Nachtsheim (2005) showed that under the residual coverage condition,

ry|2 r1|2 =⇒ y x1|X2.

The application of this proposition and backward elimination leads to a model free vari-

able screening procedure. There are two components for the implementation of variable

screening process: the determination of a smoothing method and an independence test.

Li, Cook and Nachtsheim (2005) used the global first-order ordinary least square (OLS)

fit as a smoother. Then define the population OLS residual

ey|2 = y − E(y)− βT
y|2{X2 − E(X2)}

e1|2 = x1 − E(x1)− βT
1|2{X2 − E(X2)}

where βy|2 and β1|2 are the population OLS vectors from the regression of y on X2 and

x1 on X2, respectively. Similar to the previous proposition, under the residual coverage

condition,

ey|2 e1|2 =⇒ y x1|X2.
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Li, Cook and Nachtsheim (2005) used the Gridded χ2 -test as the independence test to

êy|2 and ê1|2.

2.2.2. Model Free Shrinkage Methods. However, model free test-based meth-

ods are computationally intensive especially when the dimension p is large. To remedy

this deficiency, model free shrinkage methods are proposed by reformulating SDR as a

penalized regression problem (Ni, Cook and Tsai, 2005; Li and Nachtsheim, 2006; Li

and Yin, 2008). Li (2007) proposed a unified approach combining SDR and shrinkage

estimation to produce sparse estimators of the central subspace. Wang et al. (2012)

proposed a distribution-weighted lasso method for the single-index model. The motiva-

tion for combining SDR with penalized regression is: central subspace is formed by linear

combinations of ALL the original predictors and hence it is hard to interpret the result.

For example (Li and Nachtsheim, 2006), consider true model

Y = exp(−0.759ηTX + 1) + 0.5ε (2.10)

where X = (X1, X2, . . . , X6)
T , η = (1,−1, 0, 0, 0, 0)T and ε ∼ N(0, 1). The solution of the

central subspace given by SIR (Li, 1991) is

η̂ = (0.765,−0.638,−0.079, 0.029,−0.003,−0.001)T (2.11)

We can see that the coefficients for the last four predictors given by SIR are significantly

smaller than the first two predictors, but it still fails to shrink the insignificant predictors

to zero. This is a critical issue especially when the model is sparse. Notice that Lasso

or Elastic Net are able to shrink useless variables to zero. Ni, Cook and Tsai (2005)

applied Lasso penalty under the framework of sufficient dimension reduction to obtain

a shrinkage sliced inverse regression estimator. Li and Nachtsheim (2006) combined the

least angle regression (Efron et al., 2004) (LARS) algorithm and SIR to produce sparse

SIR algorithm. However, these methods all rely on special sufficient dimension reduction

methods (e.g. SIR).
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Li (2007) developed a unified approach within the context of sufficient dimension

reduction to produce sparse estimates of the central subspace. The idea of Li (2007) can

be described as follows. For all methods taking the spectral decomposition approaches,

let M be the corresponding kernel matrix, νT
i Gνj = 1 if i = j and 0 otherwise, where G

is a positive definite matrix. We can always convert condition

Mνi = λiΣXXνi(i = 1, . . . , d)

to a regression-type optimization problem and then employ a penalty to the regression,

such as Lasso.

β̂ = argminβ

p∑
i=1

||G−1mi − ββT mi||2G (2.12)

subject to βT Gβ = Id, and ||β||1 ≤ λ. Here, mi is the column of the kernel matrix M1/2,

and i = 1, . . . , p.

However, all the above model free shrinkage methods fail when the sample size is

smaller than the total number of predictors due to the limitations of those SDR methods

they adopted. Li and Yin (2008) developed ridge SIR estimator using L2 regularization

to SIR to solve this problem. The idea of ridge SIR estimator is the following. For a

nonnegative constant τ , let

Gτ (A, C) =
h∑

y=1

f̂y||(X̄y − X̄)− Σ̂XXACy||2 + τvec(A)T vec(A) (2.13)

where vec(·) is a matrix operator that stacks all columns of the matrix to a single vector.

The first term in (2.13) is the least-square form of SIR (Cook, 2004), and the second term

in (2.13) is a form similar to the L2 regularization. Let (Â, Ĉ) be the solution to the

minimum Gτ (A, C). Then span(Â) is a ridge SIR estimator of the central subspace SY |X.

However, the ridge SIR estimator is not capable of variable selection because it

generates linear combinations of all the predictors. Hence, Li and Yin (2008) also proposed

the sparse ridge SIR estimator by utilizing L1 regularization to the least square formulation
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of SIR. The sparse ridge SIR estimator can be obtained by minimizing

Gλ(α) =
h∑

y=1

f̂y||(X̄y − X̄)− Σ̂XXdiag(α)ÂĈy||2 (2.14)

over α, subject to
∑p

j=1 |αj| ≤ λ, for some nonnegative constant λ. Here the sparse ridge

SIR estimator of the central subspace SY |X is defined as

span(diag(α̂Â)),

where α̂ = (α̂1, . . . , α̂p) ∈ Rp.

Other than the methods described above, there are some extensions for model free

shrinkage methods. For example, Bondell and Li (2009) proposed a general shrinkage es-

timation strategy for the entire inverse regression estimation (IRE) family. The shrinkage

inverse regression estimator of the central subspace SY |X is defined as

span{diag(α̂)η̂},

which can be obtained by minimizing

Gs(α) = n{vec(θ̂)− vec(diag(α)η̂γ̂)}T Vn{vec ˆ(θ)− vec(diag(α)η̂γ̂)} (2.15)

subject to
∑p

j=1 |αj| ≤ τ , τ ≥ 0. In addition, Wang et al. (2012) developed a new

shrinkage method for the single-index model. Details for that paper will be provided in

the next section.
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3. SPARSE GROUP SUFFICIENT DIMENSION REDUCTION

3.1. LITERATURE REVIEW

In the previous section, we have introduced the idea of model free variable selection

and described several model free variable selection approaches. However, none of those

model-free variable selection methods take the prior group (predictor network) information

into account. Intuitively, methods which ignore the group or cluster information are not

capable of providing a complete solution and normally result in a loss of power. In

addition, the analysis results may be difficult to interpret. Prior group information is

common in gene pathway analysis where genes naturally fall into groups. More discussions

about gene pathway analysis will be provided in the following section.

In this section, we adopt the idea of sparse group lasso (Friedman et al., 2010) to

the framework of the sufficient dimension reduction for regression problems with grouped

covariates. We propose a method called the sparse group sufficient dimension reduction

(sgSDR) to conduct group and within group variable selection simultaneously without

assuming a specific model structure on the regression function. Simulation studies show

that our method is comparable to the sparse group lasso under the regular linear model

setting, and outperforms sparse group lasso with higher true positive rates and substan-

tially lower false positive rates when the regression function is nonlinear or (and) the error

distributions are non-Gaussian. An analysis of a glioblastoma microarray data is included

for illustration of our method.

Let’s first review some variable selection methods which consider the prior group

information. The idea of test-based group variable selection methods is usually minimizing

a specified loss function by imposing a penalty function on the group parameters. This

raises the question of how to penalize a group of parameters. The group lasso proposed

by Yuan and Lin (2006) overcomes that problem by minimizing the following penalized
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least squares regression:

1

2
||y −

G∑
g=1

X (g)β(g)||22 + λ

G∑
g=1

√
pg||β(g)||2, (3.1)

where y = (y1, . . . , yn) is the observed centered response vector, X (g) is the submatrix

of the centered design matrix X = (x1, . . . ,xn)T with columns corresponding to the

predictors in the gth group, β(g) the coefficient vector of that group with pg as its length.

Also, here

G∑
g=1

√
pg||β(g)||2 =

√
p1

√
β2

11 + β2
12 + . . . + β2

1p1
+ . . . +

√
pG

√
β2

G1 + β2
G2 + . . . + β2

GpG
,

and βgk denotes the kth element in the gth group with k = 1, . . . , pg and g = 1, . . . , G.

Particularly, if p1 = p2 = . . . = pG = 1, then

G∑
g=1

√
pg||β(g)||2 = |β1|+ |β2|+ . . . + |βp|.

In other words, this objective function is reduced to regular lasso if the group structure

is ignored. Notice that the rescaling factor pg makes the penalty level proportional to the

group size, which ensures that small groups are not overwhelmed by large groups in group

selections. The group lasso penalty has been investigated in multiple studies (Bakin, 1999;

Meier et al., 2008; Huang et al., 2009). The sparsity of the solution is determined by the

tuning parameter λ. A smaller tuning parameter value will result in more shrinkage on

groups selection. Detailed discussions about the tuning parameters selection will be given

in next subsection.

However, group lasso assumes that X (g) is orthonormal, that is, the data is or-

thonormal within each group. Simon and Tibshirani (2011) pointed out this orthonor-

malization changes the problem. They also proposed an improved version of group lasso,

called the standardized group lasso. Standardized group lasso considers (3.2) which
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penalizes the fit of each group X (g)β(g) rather than the individual coefficients β(g),

1

2
||y −

G∑
g=1

X (g)β(g)||22 + λ

G∑
g=1

√
pg||X (g)β(g)||2. (3.2)

Both group lasso and standardized group lasso are useful methods for identifying impor-

tant groups. However, it is not capable of selecting important predictors within each

group, which will be an issue when pg is large.

Friedman et al. (2010) proposed the sparse group lasso (SGL) which may achieve

sparsity of both groups and within each group by minimizing the following penalized least

squares regression:

1

2
||y −

G∑
g=1

X (g)β(g)||22 + λ1

G∑
g=1

√
pg||β(g)||2 + λ2||β||1. (3.3)

Sparse group lasso is capable of selecting important groups and important predictors

within the selected groups simultaneously. Objective function (3.3) achieves this goal by

imposing L2 penalty to group parameters for group selections and the L1 penalty to all β

for within group variable selection. Sparse group lasso can be viewed as an extension to

group lasso (Yuan and Lin, 2006). Hence, it is clear that sparse group lasso is reduced to

the group lasso when λ2 = 0, and regular lasso when λ1 = 0. Furthermore, sparse group

lasso might lead to better predictions since it takes the cluster structure into consideration;

and also, its within-group variable selection aspect can lead to more parsimonious models

and hence interpretable results. However, all the above lasso-based methods assume a

linear relationship between the response and the predictors, and may not be robust

to non-Gaussian errors. In other words, they might fail if the modeling assumptions

are violated. But in real life, most modeling problems are very complicated and not

necessarily described by a linear model with Gaussian errors. Therefore, we propose a

sparse group sufficient dimension reduction method to overcome these limitations.

Li et al. (2010) proposed the groupwise dimension reduction within the context of

sufficient dimension reduction which incorporates the prior grouping information into the

estimation of the central mean subspace. Li et al. (2010) first defined τ1 ⊕ · · · ⊕ τg as a
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groupwise mean dimension reduction subspace with respect to {S1, . . . , Sg} such that

E(Y|X) = E(Y|Pτ1X, . . . , Pτ1X), (3.4)

where the subspace τl ⊆ Sl for l = 1, . . . , g and {S1, . . . , Sg} are the subspaces of Rp that

form an orthogonal decomposition of Rp. Thus {S1, . . . , Sg} satisfy

S1 ⊕ · · · ⊕ Sg = Rp.

Then the intersection of all groupwise mean dimension reduction subspace is defined as

groupwise central mean dimension reduction subspace, denoted by

SE(Y|X)(S1, . . . , Sg) = τ ∗1 ⊕ · · · ⊕ τ ∗g (3.5)

for some subspaces τ ∗1 ,. . . ,τ ∗g . Groupwise dimension reduction (Li et al., 2010) is an

extension to MAVE (Xia et al., 2002). Recall (1.9), (1.10) and (1.11) in MAVE (Xia et

al., 2002), as a grouping version of MAVE, groupwise dimension reduction showed that

groupwise central mean subspace can be recovered by estimating Dvl
E(Y|V ) such that

span(⊕g
l=1E{Dvl

E(Y|V )DT
vl
E(Y|V )}) = SE(Y|X)(S1, . . . , Sg) (3.6)

where vl = (vl1 , . . . , vlpl
)T represents the evaluation of the random vector of Vl = γT

l X

with γl ∈ Rp×pl as a basis matrix of Sl and Dvl
denotes the differential operator

(∂/∂vl1
, . . . , ∂/∂vlpl

)T .

It also showed that the left hand side of (3.6) is equivalent to

span(E{(⊕g
l=1Dvl

)E(Y|V )(⊕g
l=1Dvl

)T E(Y|V )}) (3.7)

where Dvl
is treated as ordinary vectors of numerals. Equation (3.7), makes clear the

lose connection between groupwise dimension reduction and MAVE. Simulation studies
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and real data analyses show that the groupwise dimension reduction approach can sub-

stantially increase the estimation accuracy and enhance the estimates interpretability.

However, their method is limited to the dimension reduction of the conditional mean

function (E(Y |X)), and is not capable of variable selections. The sparse group sufficient

dimension reduction (sgSDR) method we propose in this article can conduct variable se-

lection in the general dimension reduction context (not limited to the conditional mean

function) while incorporating the group knowledge, and can also be applied to the n << p

setting.

3.2. SPARSE GROUP SUFFICIENT DIMENSION REDUCTION

3.2.1. Methodology. In this paper, we propose a method called the sparse group

sufficient dimension reduction (sgSDR), which conducts both group and within-group

variable selections simultaneously under the framework of sufficient dimension reduction.

We focus on the following general single-index model:

Y = g(βTX, ε) (3.8)

where ε X. Without loss of generality, we assume that X is centered with E(X) = 0,

and also suppose that X can be slitted into G groups,

XT = (X(1),X(2), · · · ,X(G)),

where X(g) is a pg-dimensional row vector, for g = 1, . . . , G, and
G∑

g=1

pg = p. Wang et al.

(2012) proposed the distribution-transformation least squares estimator in a single-index

model under large p small n setting. Following Wang et al. (2012), we consider the

following minimization problem:

1

2
||Fn(y)−

G∑
g=1

X (g)β(g)||22 + λ1

G∑
g=1

√
pg||β(g)||2 + λ2||β||1, (3.9)
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where

Fn(y) = (Fn(y1), . . . , Fn(yn))T

and X are all centered, and Fn(.) is the empirical distribution function. We call the

solution (β(g)) of (3.9) the sparse group sufficient dimension reduction estimator (sgSDR).

Equation (3.9) is based on the following observation.

Proposition 1. Under the linearity condition, and assume that Σs, the marginal covari-

ance matrix of all the significant predictors (denoted by Xs here for easy of exposition) is

invertible, then

Σ−1
s Cov{Xs, F (Y )} = cβs, (3.10)

where βs consists all non-zero coefficients of β from (3.8), c ∈ R1 is a constant, F (Y ) is

the cumulative distribution function of Y .

Proof: The proof borrows heavily from Theorem 2.1 of Li and Duan (1989), hence

we include it here for reference.

Theorem 3.1. (Li and Duan, 1989) Under model (1.1) and linearity condition (1.8),

assume Ω = (a, b) is a nonempty convex set in Rp+1, the criterion function L(θ, y) is

convex in θ with probability 1 and the risk function R(a, b) as the expectation of the loss

function L(θ, y), that is, R(a, b) = E{L(a+bTx, y)}. The minimization problem: minimize

R(a, b) over (a, b) ∈ Ω has a solution β∗ such that β∗ is proportional to β, that is,

β∗ = γβ,

for some scalar γ.

The proof of the above theorem is similar to (Li and Duan, 1989) and it can be

shown as the following: Since

R(a, b) = E{L(a + bTX, y)}

= E[E{L(a + bTx,y)|(βTx, ε)}]

= E[E{L(a + bTx, g(α + βTx, ε))|(βTx, ε)}]
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where g(·) is any link function. Applying Jensen’s inequality, since L(θ, y) is convex in θ

with probability 1 and then we have

R(a, b) ≥ E{L[E{(a + bTx, g(α + βTx, ε))|(βTx, ε)}]}

= E{L(a + E(bTx|βTx, ε),y)}

Due to the linearity condition, the conditional expectation E(bTx|βTx) is linear in βTx,

i.e.

E(bTx|βTx) = c + dβTx.

Therefore,

E{L(a + bTX, y)} ≥ E{L(a + (c + dβTx),y)}

for some constants c and d. Hence, it is obvious to see the result β∗ = γβ.

Proof of Proposition 1: Let SF (Y)|X denote the central subspace for the re-

gression of F (Y) versus X, let η be the orthonormal basis of SF (Y)|X and let β be an

orthonormal basis of SY |X. Since

Y X | PS{η}X

implies

F (Y ) X | PS{η}X.

We have

SF (Y )|X ⊆ SY |X.

In order to show that (3.10) holds, we only need to show that

Σ−1
s Cov{Xs, F (Y )} ∈ SF (Y )|X.

Since the loss function for ordinary least square is convex, this is an obvious result from

the previous theorem (Li and Duan, 1989).
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Proposition 2. The above proposition is also true for any monotonic transformation of

response Y.

Proof: The proof of this proposition follows because

Σ−1
s Cov{Xs, h(Y )} ∈ Sh(Y )|X,

where h(·) is any transformation of y. This proposition implies that the empirical cumula-

tive distribution function used in our method can be replaced by any other transformation

of Y. The reason we choose F (Y) is due to its simplicity. More discussion about the

monotonic transformation of Y will be given later.

3.2.2. Selection of Tuning Parameters. The sparsity of the solution is de-

termined by the tuning parameters λ. Specifically, in (3.9), λ1 controls the sparsity of

group selection while the number of variables selected within each group depends on the

value of λ2. The larger value of λ1 implies more shrinkage on group parameters which will

result in fewer groups being selected. Similarly, smaller value of λ2 implies less shrinkage

on individual parameters which will result in more variables within groups being selected.

And vice versa. Intuitively, more shrinkage might lead to loss of important predictors

while less shrinkage will end up with interpretation difficulty and inaccurate prediction.

This raises the issue of how to balance the selection of two tuning parameters λ1 and λ2.

In this paper, to select the two tuning parameters, λ1 and λ2, we employ the commonly

used five-fold cross validation as well as a modified BIC-type criterion.

3.2.2.1. Cross validation. Cross validation is a classical model validation tech-

nique for evaluating how the results of a statistical analysis will generalize to future data

set. The traditional implementation of cross validation is to split the data set into two

complimentary subsets, one subset is treated as training set for performing the analysis

on while the other subset is treated as validation set or testing set for validating purpose.

Cross validation includes K-fold cross-validation, two fold cross-validation, repeated ran-

dom sub-sampling validation, and Leave-one-out cross-validation (please refer to: An

Introduction to the Bootstrap; Efron and Tibshirani, 1993).
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For K-fold cross-validation, the value of K is typically chosen as 5 or 10. In sparse

group sufficient dimension reduction, we notice that the five-fold cross validation and

ten-fold cross validation do not make a much difference. So in this paper, five-fold cross

validation is applied for less computational time. Simon et al. (2012) pointed out that

it is time consuming to work on two tuning parameters at the same time. Hence, Simon

et al. (2012) suggested that when using λ1 = 19λ2, the simulation performance is the

best. But there are no theoretical justification of this special λ1 to λ2 ratio, and also the

λ1 to λ2 ratio needs to be adjusted when the scenarios vary. So we decide to run over all

possible combinations of λ1 and λ2 on a grid instead of fixing the λ1 to λ2 ratio.

The algorithm can be described in the following way:

1. We first provide a wide range of values for both λ1 and λ2

2. Next randomly choose four fifths of the data set for training and the rest of the data

will be used for testing purpose.

3. Then apply all combinations of λ1 and λ2 on the λ1-λ2 grid from step one to the

training subset.

4. Obtain the value of β̂ from sparse group sufficient dimension reduction method for

one combination of λ1 and λ2.

5. Compute the estimate response Ŷtesting from the testing data set of each of the

parameter combination selected from previous step.

6. The parameter combination with the minimum |Ŷtesting − Ytesting| will be finally

selected, where Ytesting is the true response from the testing subset.

This might cost a little bit longer computing time than applying the 19 times ratio

directly, but it generally leads to a more precise result.

Cross validation is widely used due to its simple implemention. However, it only

yields meaningful results if the validation set and training set are drawn from the same

population. Particularly, the lasso-typed methods do not appear to be consistent in

variable selection if cross validation is applied for tuning parameter selection (Wang and
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Leng, 2009; Chand, 2012). Hence, we also consider a modified BIC approach for tuning

parameter selection.

3.2.2.2. Modified bayesian information criterion. As one of the most popular

model selection tools, BIC (Schwarz, 1978) has been widely used as a tuning parameter

selection method. Schwarz defined the BIC as:

BICλ(γ) = log (σ̂2) + log(n)× p

n
(3.11)

where σ̂2 is the residual variance and p is the total number of parameters. The candidate

model with the minimum BIC value will be finally selected. In the model selection process,

adding more parameters to a new model will always increase the likelihood (the first term

in (3.11)). But for the law of parsimony in statistical modeling, a complex model will

lead to greater variance of the estimates. (3.11) achieves the goal of balancing the model

simplicity and the goodness of fit. Several published works have shown that the traditional

BIC can identify the true model consistently when the predictor dimension is fixed (Nishii,

1984; Yang, 2005).

However, there are no theoretical results showing that the traditional BIC is also

consistent with a diverging number of parameters or whether this selection is true for

penalized-type methods, such as Lasso type problems (Wang and Leng, 2009). In order

to remedy these two deficiencies, Wang and Leng (2009) suggested a modified Bayesian

information criterion (BIC) criterion to choose the value of the tuning parameters.

BICλ(γ) = log (σ̂2
S) + |S| × log(n)× cn

n
(3.12)

where |S| is the number of significant selected parameters in the model, cn > 0 and (3.12)

is reduced to the traditional BIC (3.11) when cn = 1. In (3.12), σ̂2
S is the ratio of sums

of squares of error for the significant parameters of the model (SSES) to the sample size,

that is,

σ̂2
S = infβs(||Y −XSβS||2/n).
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Wang and Leng (2009) also prove that this modified BIC will identify the model consis-

tently under both a diverging number of parameters model and penalized estimators.

However, traditional BIC and AIC are designed for p < n case and might not

perform well when the number of predictors is greater than the sample size. As proposed

by An et al. (2009), an extra constant c is added in the first term in order to avoid the

excessively over fitted models particularly when p is much greater than n.

BICλ(γ) = log (σ̂2
S + C0) + |S| × log(n)× cn

n
(3.13)

where C0 is a positive constant. There is no theoretical properties about the specific

values of C0, and hence the choice of C0 relies on one’s empirical experience.

In sparse group sufficient dimension reduction, we apply a modified BIC method

following Wang et al. (2009) and An et al. (2009). The BIC criterion is defined as:

BICλ1,λ2(γ) = n× log
(RSSλ1,λ2

n
+ c

)
+ log(n)× p̂s ×

cn

n
, (3.14)

where p̂s denotes the total number of selected significant predictors (those with nonzero

estimated coefficients) using λ1 and λ2.

RSSλ1,λ2 = ‖Response−Xβ̂‖2
2

with

Response = Y

for SGL and

Response = Fn(y)

for sgSDR. Here

c = c0 × V ar(Response)
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where c0 is simply set as 0.001 throughout all our simulations. In theory, it is required in

Wang et al. (2009) that cn →∞. Under sgSDR, it is quite desirable when

cn = n0.98

is used for the simulation results. Simulation studies suggest that this modified BIC

method outperforms the traditional five-fold cross validation method for the group selec-

tion.

3.2.3. Simulation. In this section, we compare the performance of our method

with the sparse group lasso. We adopt the SLEP package (Liu et al., 2009) to implement

our method. We considered linear models, nonlinear models and generalized linear models

with Gaussian and non-Gaussian errors. We use the average true positive rate (TPR =

the ratio of the number of correctly declared active variables to the number of truly active

variables); and the average false positive rate ( FPR = the ratio of the number of falsely

declared active variables to the total number of truly inactive variables) as evaluation

measurements to summarize variable selection results from 100 simulation runs.

3.2.3.1. Model I. For a fair comparison, we first consider a regular linear model as

Simon et al. (2012) discussed in their paper. The predictor X is generated from N(0, Ip),

ε is standard normal and independent of X, the univariate response Y is constructed as:

Y =
G∑

g=1

(β(g))TX(g) + σε, (3.15)

where G = 10, σ is set to make the signal to noise ratio as 2. And the coefficients for

the first l group are β(g) = (1, 2, 3, 4, 5, 0, . . . , 0)T , for g = 1, . . . , l, with l varying from 1

to 3; and all zeros for the rest of G − l groups. Following Simon et al. (2012), we took

n = 60, p = 1500. Table 3.1 provides the average true positive and false positive rates on

variable and group selections, respectively. As shown on Table 3.1, the performances of

sgSDR and SGL are comparable in the sense that the average TPRs and FPRs on both

group level and variable level are very close to each other.
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Table 3.1. sgSDR: Linear Model I With Gaussian Error

l = 1 l = 2 l = 3

Method TPR FPR TPR FPR TPR FPR

sgSDR (var) 0.754 0.126 0.640 0.321 0.584 0.357

Cross SGL (var) 0.753 0.100 0.641 0.317 0.562 0.328

Validation sgSDR (group) 0.990 0.790 0.951 0.868 0.924 0.842

SGL (group) 0.980 0.800 0.970 0.891 0.906 0.847

sgSDR (var) 0.680 0.031 0.341 0.021 0.265 0.031

Modified SGL (var) 0.640 0.034 0.300 0.034 0.268 0.032

BIC sgSDR (group) 1.00 0.674 0.930 0.782 0.907 0.890

SGL (group) 1.00 0.989 0.995 0.968 0.942 0.940

3.2.3.2. Model II. We now consider a variation of Model I. We take p = 2000,

G = 10, Y is still generated as in (3.15), however, the predictors now are mildly cor-

related, ε follows Cauchy(1) distribution, and β(g) = (−2, 3, 0, . . . , 0)T , for g = 1, . . . , l,

with l varying from 1 to 3; and zeros otherwise. Specifically, within each group, X(g) =

(X
(g)
1 , . . . , X

(g)
200) are all generated as independent standard normal random variables ex-

cept X
(g)
3 , which is generated to be correlated with Xg

1 and Xg
2 by:

X
(g)
3 =

2

3
X

(g)
1 +

2

3
X

(g)
2 +

1

3
eg, (3.16)

where eg follows standard normal distribution. A different version of Model II was con-

sidered by Wang et al. (2012). Table 3.2 shows the simulation results with n = 60 from
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Table 3.2. sgSDR: Linear Model II With Cauchy Error and Correlated Predictors

l = 1 l = 2 l = 3

Method TPR FPR TPR FPR TPR FPR

sgSDR (var) 1.00 0.024 0.985 0.035 0.920 0.038

Cross SGL (var) 0.722 0.416 0.713 0.412 0.741 0.425

Validation sgSDR (group) 1.00 0.950 1.000 0.920 1.000 0.977

SGL (group) 0.833 0.825 0.750 0.799 0.853 0.825

sgSDR (var) 0.910 0.006 0.800 0.009 0.750 0.015

Modified SGL (var) 0.295 0.023 0.302 0.021 0.243 0.022

BIC sgSDR (group) 1.000 0.253 0.870 0.395 0.840 0.544

SGL (group) 0.620 0.501 0.600 0.485 0.603 0.513

100 simulation runs. We can see that our method (sgSDR) is more robust under the

Cauchy random error, which tends to yield relatively higher TPR and significantly lower

FPR, compared with SGL with respect to variable selections. With p = 2000 in our set-

ting, SGL provides a FPR about 40% higher than our method, which means that about

800 more inactivate variables are mistakenly selected as significant variables by SGL. On

the group level, sgSDR outperforms SDR with higher TPR and lower FPR with either

tuning parameter selection method. The modified BIC method can significantly decrease

the group FPR while its TPR it is not as high as those selected by the cross validation

method.
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3.2.3.3. Model III. In this example, the linear model (3.15) is reconsidered with

larger sample size, larger dimension p and more groups, that is, n = 200, p = 5000 and

G = 50. The predictors are generated by N(0,Σ), where Σ =
(
.5|i−j|), i, j = 1, . . . , p. We

consider l (5, 10, 15) significant groups, with β(g) = (3, 1.5, 2, . . . , 0)T , g = 1, . . . , l. The

results are shown on Table 3.3. Similar conclusions as Model II on both variable level and

group level can be drawn here.

3.2.3.4. Model IV. We now compare the performances of sgSDR and SGL for

nonlinear models under the standard normal and Cauchy errors. We consider the following

model:

Y = exp
( G∑

g=1

X(g)β(g) + 3ε
)

(3.17)

The predictors X and the coefficients β are set up exactly the same as those of Model II,

and ε ∼ N(0, 1) or standard Cauchy, respectively. As shown on Table 3.4, our method

outperforms SGL with significantly lower FPR and slightly higher TPR. For models with

nonlinear regression function and Cauchy errors, SGL fails completely, the average FPR

for SGL is above 99%, which implies that it mistakenly selected over 1900 inactive pre-

dictors as significant ones. The tuning parameter method, modified BIC performs very

well in these two cases on both variable selection level and group level, with significant

higher TPR (almost 1) and lower FPR.
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Table 3.3. sgSDR: Linear Model III With Cauchy Error

l = 1 l = 2 l = 3

Method TPR FPR TPR FPR TPR FPR

sgSDR (var) 0.980 0.031 0.880 0.046 0.770 0.065

Cross SGL (var) 0.724 0.268 0.620 0.198 0.655 0.284

Validation sgSDR (group) 1.000 0.684 1.000 0.730 0.985 0.780

SGL (group) 0.810 0.632 0.870 0.660 0.836 0.749

sgSDR (var) 0.930 0.0025 0.600 0.005 0.315 0.006

Modified SGL (var) 0.093 0.013 0.1311 0.0128 0.154 0.011

BIC sgSDR (group) 1.000 0.182 0.900 0.300 0.570 0.293

SGL (group) 0.400 0.311 0.350 0.281 0.335 0.273
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Table 3.4. sgSDR: Nonlinear Model IV with Gaussian and Cauchy Error

l = 1 l = 2 l = 3

Method TPR FPR TPR FPR TPR FPR

sgSDR (var) 0.990 0.032 0.990 0.028 0.977 0.031

Gaussian Error SGL (var) 0.980 0.871 0.973 0.955 0.960 0.985

Cross Validation sgSDR (group) 1.00 0.894 1.000 0.957 1.000 0.971

SGL (group) 1.000 0.993 1.000 1.000 1.000 1.000

sgSDR (var) 0.900 0.003 0.965 0.005 0.888 0.012

Gaussian Error SGL (var) 0.800 0.437 0.918 0.798 0.983 0.955

Modified BIC sgSDR (group) 0.980 0.223 0.990 0.431 0.960 0.574

SGL (group) 1.000 1.000 1.000 1.000 1.000 1.000

sgSDR (var) 1.000 0.017 0.980 0.040 0.921 0.026

Cauchy Error SGL (var) 1.000 1.000 1.000 0.996 1.000 1.000

Cross Validation sgSDR (group) 1.000 0.933 1.000 0.900 1.000 0.952

SGL (group) 1.000 1.000 1.000 1.000 1.000 1.000

sgSDR (var) 0.900 0.001 0.825 0.009 0.767 0.022

Cauchy Error SGL (var) 1.000 1.000 1.000 0.999 1.000 1.000

Modified BIC sgSDR (group) 1.000 0.111 0.950 0.387 0.900 0.628

SGL (group) 1.000 1.000 1.000 1.000 1.000 1.000
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3.3. GENE PATHWAY DATA ANALYSIS

3.3.1. Basics of Genetics. Genetics has become an indispensable component in

modern biology and medicine (Griffiths et al., 2000). Genetics researches have made great

contributions to the many aspects of the agriculture, biology, disease research and society.

Most of the genetic studies aim to detect the associations between gene expressions and

the occurrence or progression of disease phenotypes. In this section, we will first introduce

some basic concepts in genetics studies, then have a brief discussion about some existing

gene pathway analysis methods, and finally apply our method sgSDR to a gene pathway

data set.

Deoxyribonucleic acid (DNA), which was discovered by Watson and Crick (1953),

known as one of the most key and basic components in genetics studies. DNA is a bio-

logical molecule which contains the hereditary material in human beings and almost all

other organisms. The DNA molecule (Watson and Crick, 1953) has a double-stranded

helix consisting of two long polymers of simple units called nucleotides, molecules with

backbones made of deoxyribose sugar and phosphate groups, along with any of the four

nitrogenous base attached to the sugars (see Figure 3.1, image courtesy of 23andme (May

2013), https://www.23andme.com/gen101/genes). These four nitrogenousbase are: A

(adenine), T (thymine), G (guanine), C (cytosine). In a DNA double helix, each type of

nucleobase on one strand bonds with just one type of nucleobase on the other strand.

This is called complementary base pairing. For example, ‘A’ always pairs with ‘T’,

and ‘G’ always pairs with ‘C’. (see Figure 3.2, image courtesy of 23andme (May 2013),

https://www.23andme.com/gen101/genes)
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Figure 3.1. Structure of the DNA Molecule

Figure 3.2. Pairing Base

A chromosome is an organized structure of the long molecules of DNA and protein

found in the nucleus of cells. Humans have 23 pairs of chromosomes (see Figure 3.3, im-

age courtesy of 23andme (May 2013), https://www.23andme.com/gen101/genes), chim-

panzees have 24 pairs and bananas have 11 pairs of chromosomes. A chromosome consists

of a single, very long DNA helix on which thousands of genes are encoded. In other words,

genes are the short subunits of DNA containing in each chromosome. Each person has

the same set of genes, about 20,000 in all. (see Figure 3.4, image courtesy of Wikipedia

(2013), http://en.wikipedia.org/wiki/Intron)
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Figure 3.3. Chromosomes: Human

Genes make proteins which results in different phenotypes. In the process of trans-

fering the information from gene to protein requires two steps: the DNA on which the

gene resides must be firstly transcribed from DNA to messenger RNA (mRNA) and then

it translated from mRNA to protein. This process is called gene expression or we can say

a gene is expressed when it is active in making protein. The total complement of genes

in an organism or cell is called as its genome.

Figure 3.4. Gene

3.3.2. Microarray Technology. Genetic association studies aim to detect the

associations between gene expressions and the occurrence or progression of disease phe-

notypes. Recent developments in microarray techniques make it possible to profile gene
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expressions on a whole genome scale, simultaneously measuring expressions of thousands

or tens of thousands of genes. The DNA microarray, also known as DNA chip, is used

to obtain the measurement of gene expression levels for all known genes in a genome

(Griffiths et al., 2008). Affymetrix is one of the major companies produce gene chips

in United States. Each gene chip contain 6.5 million of locations with millions of DNA

strands built up in each location, and each DNA probe is 25 base pairs in length (See Fig-

ure 3.5, image courtesy of Affymetrix Image Library (2013), www.affymetrix.com). The

process of measuring the gene expression by using Affymetrix gene expression arrays can

be briefly described below (Olbricht, 2010) (See Figure 3.6 and Figure 3.7, image cour-

tesy of Affymetrix Image Library (2013), www.affymetrix.com): 25 prespecified base pair

DNA probes from a reference genome are first chosen as targets from a specific organism

genes; then a fluorescent dye labeled mRNA sample is used to hybridized to the target

array through the complementary base pairing principle; then it comes up wih two types

of probes with a perfect match probe (PM) and a mismatch probe (MM); after hybridiza-

tion, mRNA transcription levels for each probe are measured in the form of a quantitative

intensity reading; and finally the Robust Multi-array Average (RMA) method is applied

to summarize and normalize all the probe reading into one number for each gene, which

makes it easier for further analysis.

Figure 3.5. Affymetrix Gene Chip Microarray
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Figure 3.6. Hybridization of mRNA Sample to the Array: 1

Figure 3.7. Hybridization of mRNA Sample to the Array: 2

3.3.3. Gene Pathway Analysis Reviews. New challenges arise for the analysis

of microarray data due to the large number of genes surveyed and often the relatively

small sample sizes. A large amount of existing approaches (to list a few: Alon et al.,

1999; Dudoit et al., 2002; Nguyen and Rocke, 2002; Rosenwald et al., 2003) has been

developed to identify a small subset of genes or linear combinations of genes which are

often referred to as super genes, that have influential effects on diseases. Such studies can

lead to a better understanding of the genetic causation of diseases and better predictive

models.

However, since the presence of cluster structure of genes (gene pathways) was ig-

nored, these methods are insufficient to dissect the complex genetic structure of many
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common diseases. It is well known that most biological units such as genes behave in-

teractively by groups, that is, the pathway or genetic regulatory network (GRN). Here

the clusters are composed of co-regulated genes with coordinated functions. Gene an-

notation databases, such as KEGG (Ogata et al., 2000), Reactome (Matthews et al.,

2008), PID (http://pid.nci.nih.gov/) and BioCyc (Karp et al., 2005), group functionally

relevant genes into biological pathways. Since it is commonly believed that genes carry

out their functions through intricate pathways of reactions and interactions, intuitively,

pathway-based analysis can offer an attractive alternative to improve the power of gene (or

SNP)-based methods, and may help us to identify relevant subsets of genes in meaningful

biological pathways underlying complex diseases.

There is considerable interest in pathway-based analyses (to list a few: Manoli

et al., 2006; Wang et al., 2007; Li and Li, 2008; Wei and Pan, 2008; Ma and Kosorok,

2009; Pan et al., 2010; Zhu and Li, 2011). Pathway-based approaches in microarray

data analysis often yield biological insights that are otherwise undetectable by focusing

only on genes with the strongest evidence of differential expressions. Most pathway-based

methods focus on identifying meaningful biological pathways underlying complex diseases,

assuming that if a pathway (cluster) is strongly associated with the phenotype, then all

genes within that pathway are associated with the phenotype. However, if only a subset

of genes within a pathway contributes to the outcome, then these methods may result in

loss of power. Our sparse group sufficient dimension reduction is developed to address

this problem, where pathway selection and within pathway gene selection can be achieved

simultaneously.

3.3.4. A Real Data Analysis. We hereby apply our method to a survival

analysis for glioblastoma patients (Horvath et al., 2006) using gene expression profiles

with about 1500 genes and 33 pathways. (See Figure 3.8, image courtesy of Next Gen-

eration Pharmaceutical (NGP), http://www.ngpharma.com/article/Mechanistic-Disease-

Modeling (2013))
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Figure 3.8. Glioblastoma

Glioblastoma is the most common and aggressive malignant brain tumor in hu-

mans. Patients with this disease have a median survival time of approximately 15 months

from the time of diagnosis despite various treatments such as surgery, radiation and

chemotherapy. Consisting of two independent sets of clinical tumor samples of n = 55

and n = 65, the dataset was obtained by Affymetrix HG-U133A arrays, and processed

by the RMA method (Irizarry et al., 2003). As Pan et al. (2010) pointed out, the two

datasets were somewhat different from each other, and they only used dataset one in

their analysis. Following Pan et al. (2010), we also focus on the 50 patients with observed

survival times from dataset one, and took the log survival time (in days) as the response

variable in our analysis and the gene expression profiles as predictors. Our goal is to

simultaneously identify significant pathways and genes within those pathways that are

strongly associated with the survival time from glioblastoma.

We merged the gene-expression data with the 33 regulatory pathways recorded in

the KEGG database. Among the 1668-node of the 33 pathways, 1507 (Entrez ID) out of

22283 genes (Probe ID) are identified on the HG-U133A chip. Following Li and Li (2008),

Pan et al. (2010), and Zhu and Li (2011), we only use these 1507 genes in our following
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analysis. When there are multiple probe set ids corresponding to a single Entrez KEGG

id, we took the average expression levels of those probe ids.

We compared our result with Li and Li (2008). As reported on Table 3.5, our

pathway selection is similar to that of Li and Li (2008) except for pathway 6, 13, 18; 17

and 27 (Cell cycle, Extracellular matrix-receptor interaction, Gap junction, Complement

and coagulation cascades, Type I diabetes mellitus). Among those five pathways, the first

three pathways were selected by our method but not by Li and Li (2008), while the latter

two were selected by Li and Li (2008) only. As reported in Sun, et al. (2012), the entire

tumor growth profile in brain cancer is a collective behavior of cells regulated by the cell

cycle pathway (pathway 6). The study result from Phillips laboratory (UCSF) shows that

heparan sulfate proteoglycans (HSPGs) in extracellular matrix (pathway 13) can change

tumor cell behavior including proliferation, invasion and recruitment of inflammatory cells.

Zhu and Li (2011) ranked all the 33 pathways according to their significance, pathway 17

and 27 which were only selected by Li and Li (2008), ranked 30th and 28th, respectively,

suggesting that they are not very important pathways.

MAPK signaling pathway (pathway 1), Cytokine-cytokine receptor interaction

pathway (pathway 3), Neuroactive ligand-receptor interaction pathway (pathway 5), and

Complement and coagulation cascades (pathway 18) were ranked as the top 4 significant

pathways related to the brain cancer by Zhu and Li (2011) using a nonlinear dimension

reduction method. Our pathway selection is consistent with Zhu and Li (2011), since

all these 4 pathways are selected by sgSDR. For the within pathway gene selection, our

method selected 85 unique genes. Among them, 10 genes are the same as that of Li and

Li (2008), i.e., MAP3K7, CX3CL1, SYNJ2, UBE2E1, SMURF2, CLDN6, IRF3, IL21R,

PCK1, FOXO1A. And FOXO1A was also identified by Pan et al. (2010) as one of the

significant transcription factors associated with glioblastoma.
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Table 3.5. Pathway Selections for Glioblastoma Data

Group Pathway Name sgSDR Li and Li

1 MAPK signaling pathway X X

2 Calcium signaling pathway X X

3 Cytokine-cytokine receptor interaction X X

4 Phospatidylinositol signaling system X X

5 Neuroactive ligand-receptor interaction X X

6 Cell cycle X

7 Ubiquitin mediated proteolysis X X

8 Apopttosis X X

9 Wnt signaling pathway X X

10 Transforming growth factor-beta signaling pathway X X

11 Axon guidance X X

12 Focal adhesion X X

13 Extracellular matrix-receptor interaction X

14 Cell adhension molecules X X

15 Adherens junction X X

16 Tight junction X X

17 Gap junction X

18 Complement and coagulation cascades X

19 Toll-like receptor signaling pathway X X

20 Jak-STAT signaling pathway X X

21 Natural killer cell mediated cytotoxicity X X

22 Circadian rhythm

23 Regulation of actin cytotoxicity X X

24 Insulin signaling pathway X X

25 Adipocytokine signaling pathway X X

26 Type II diabetes mellitus X X

27 Type I diabetes mellitus X

28 Alzheimer’s disease

29 Prion diseases

30 Cocaine addition

31 Unknown

32 Unknown

33 Unknown
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3.4. DISCUSSION

In this dissertation, we propose a method called sgSDR within the framework of

sufficient dimension reduction which could conduct group and within group variable se-

lection simultaneously. Our method is comparable to the sparse group lasso (Friedman

et al., 2010; Simon et al., 2012) for the linear models, and outperform it when the re-

gression function is nonlinear. Also, our method is robust to the error distributions. A

glioblastoma data is used to illustrate the applications of our method to the gene pathway

analysis. As extensions to this paper, there are some possible future work.

• The best transformation of Y.

As shown in the second proposition in this section, any monotonic transformation

of the response Y works for sgSDR. It is natural to wonder whether there is a best

transformation of Y. Examples of such topic can be refer to Yin and Li (2011).

• The consistency of modified BIC.

The modified BIC used in this section can lead to a significantly lower FPR for both

variable and group level selection. However, comparing to cross validation the TPR

of modified BIC is slightly lower in a few cases.

• The consistency of our group and variable selections.

The asymptotic properties of sgSDR and SGR deserve further investigations.
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4. A NOTE ON CUMULATIVE MEAN ESTIMATION

4.1. INTRODUCTION

For many-valued or continuous Y , the standard practice in SDR is to replace the

response Y with a discrete version Y̌ by partitioning the range of Y into h non-overlapping

slices, then work on Y̌ and assume that SY̌ |X = SY |X. However, this assumption is

not always true, and the differences between the working and target regressions can be

significant. Moreover, even under the case of equality, we might still face the loss of power

since we use only the information retained in Y̌ , discarding all the intra-slice information.

The number of slices h is a tuning parameter much like the tuning parameter en-

countered in the smoothing literature (Li, 1987; Härdle et al., 1988). Experience indicates

that good results are often obtained by choosing h to be somewhat larger than d+1, try-

ing a few different values of h as necessary. However, beyond empirical experience, how

to select the optimal h is an open problem.

For the menthods mentioned in the first two sections, most of the sliced based

methods such as sliced average variance estimation (SAVE) (Cook and Weisberg, 1991)

and Directional regression (DR) (Li and Wang, 2007) heavily rely on the choice of the

total number of slices h (Li and Zhu, 2007). Results from the above methods might vary

significantly if a different h is applied. To the best of our knowledge, there are no existing

criterion about the selection of the number of slices in the literature.

According to the empirical studies of SIR (Li, 1991), it is suggested that the num-

ber of slices h needs to be at least larger than the structural dimension d. Intuitively, more

slices will lead to a better estimation since the integrity of SY |X is well preserved. How-

ever, as pointed out by Zhu and Ng (1995), the increasing number of slices h will result

in larger asymptotic variance since the number of data points within each slice is smaller.

To preserve the integrity of SY |X and maintain the estimation accuracy simultaneously,

Zhu et al. (2010) proposed a method called the cumulative slicing estimation (CUME)

which sums up all possible estimations relating to E(XI(Y ≤ ỹ)) for all ỹ in the support

of Y to avoid the otherwise subjective selection of h. They showed that the estimator of
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CUME enjoys the common
√

n convergence rate and is more efficient comparing to SIR

and other first-moment slicing estimation methods.

4.2. CUMULATIVE SLICING ESTIMATION (CUME)

In this subsection, we give a brief review of CUME (Zhu et al., 2010). For ease of

exposition, we assume hereafter that E(X) = 0. Define

m(ỹ) = E(XI(Y ≤ ỹ)) (4.1)

for ỹ ∈ R1. To preserve the integrity of SY |X, let Ỹ be an independent copy of Y and the

kernel matrix for CUME is given by:

M = E[m(Ỹ )mT (Ỹ )w(Ỹ )], (4.2)

where w(.) is a nonnegative weight function which is often set as 1.

Assuming the linearity condition (1.8), the column space of M is a subset of ΣSY |X,

where Σ = Cov(X). At the sample level, suppose (Xi, Yi), i = 1, · · · , n are independent

copies of (X, Y ), we can estimate M by

Mn =
1

n

n∑
i=1

mn(Yi)m
T
n (Yi)w(Yi),

where

mn(Yi) =
1

n

n∑
j=1

(Xj − X̄)I(Yj ≤ Yi),

and

X̄ =
1

n

n∑
i=1

Xi.

Let

Σ̂ =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T

be the sample predictor variance, assuming a known d, the CUME estimator of SY |X is

constructed by the d eigenvectors of Σ̂
−1

Mn corresponding to its d largest eigenvalues.
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Zhu et al. (2010) also studied the asymptotic properties of the CUME estimator as shown

in the following theorems.

Theorem 4.1. Suppose max1≤i≤pE(X8
i ) < ∞ uniformly for p, and then

||Σ−1
n Mn −Σ−1M|| = O(pn−1/2 log n)

almost surely where || · || is the Frobenius norm.

The above theorem shows the strong consistency when p = O(pn−1/2 log n). Par-

ticularly, the convergence rate of ||Σ−1
n Mn −Σ−1M|| is reduced to n−1/2 log n when the

dimension p is fix.

Theorem 4.2. Assume the following regularity conditions:

1. max1≤i≤pE(X8
i ) < ∞ uniformly for p;

2. The minimum eigenvalue of Σ satisfies λmin(Σ) > 0;

3. The largest eigenvalue of M satisfies λmax(M) < ∞ holds uniformly for p;

4. E{γT T (X, Y )γ} → G > 0 for any unit length γ;

5. p = o(n1/2).

Then
√

nγT (Σ−1
n Mn −Σ−1M)γ → N(0, G)

in distribution.

Here

T (X, Y ) = Σ−1{XXT − EXXT − (X− EX)EXT − EX(X− EX)T}Σ−1M

-Σ−1[2m(Y )mT (Y )ω(Y ) + 2E{(Y ≤ Ỹ )mT (Ỹ )ω(Ỹ )|X, Y }

+2E{m()XT Y T I(Y ≤ Ỹ )ω(Ỹ )|X, Y } − 6M]
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and Ỹ is an independent copy of Y . This result states the asymptotic normality holds

when p = O(n1/2).

4.3. THE ENSEMBLE ESTIMATORS’ APPROACH

The idea of ensemble approach is based on the fact that estimating the central

mean subspace for a rich enough family of functions is the same as estimating the central

subspace itself (Yin and Li, 2011). Several methods have been developed to combine

central mean subspaces into the central subspace such as Cook and Li (2002), Yin and

Cook (2002), Zhu and Zhu (2009), Xia (2007), Fukumizu, Bach and Jordan (2009), Wang

and Xia (2008), Zhu and Zeng (2006). Yin and Li (2011) introduced a general method

for combining estimators of a family of central mean subspaces into a single estimator of

the central subspace using the MAVE-type procedures as basic estimators for the central

mean subspaces. This ensemble estimators’ approach (Yin and Li, 2011) unifies the central

mean subspace (Cook and Li, 2002), the central moment subspace (Yin and Cook, 2002),

Fourier transform estimators (Zhu and Zeng, 2006) and sliced regression (Wang and Xia,

2008) into a coherent system.

The main result of Yin and Li (2011) is summarized by the following theorem.

Theorem 4.3. Let J be a family of functions f : ΩY → F, FY be the distribution

function of Y , L2(FY ) be the class of functions f(Y ) with finite variances and (f1, f2) =

E[f1(Y )f2(Y )] as the inner product. Let SE[f(Y )|X] be the central mean subspace for the

conditional mean E[f(Y )|X], as defined in Cook and Li (2002). If J is a subset of

L2(FY ) that is dense in B, where B = {IB : B is a Borel set in ΩY }, then we have:

span{S[E(f(Y )|X)] : f ∈ J } = SY |X. (4.3)

Hence, for a sufficiently rich family of f(Y ), the conditional mean subspaces

S[E(f(Y )|X], when put together, can recover the central subspace SY |X. Such family J

is said as characterizing the central subspace. Yin and Li showed that both the Fourier

transformation method proposed by Zhu and Zeng (2006), and the sliced regression (SR)

proposed by Wang and Xia (2008) are special examples of the above ensemble estimators.
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Example 4.4. Zhu and Zeng (2006) used Fourier transformation or characteristic func-

tion m(x, t) of the conditional density function f(Y |X)(y|x) which is defined as

m(x, t) = E[T (Y, t)|X = x] =

∫
exp{ıty}fY |X(y|x)dy.

Zhu and Zeng (2006) showed that

SY |X =
∑
t∈R

SE[T (Y,t)|X]

where T (Y ) is a transformation of Y . More specifically, T (Y, t) = exp(ıtY ) in Zhu and

Zeng’s paper (2006). In Yin and Li (2011) notation, that is,

J = {ft(y) = eıty : t ∈ R1},

where ı is the imaginary unit. This family is dense in L2(FY ). Zhu and Zeng also pointed

out that it is not necessary to use all the possible transformation of Y , a properly chosen

transformation family is good enough to recover the entire central subspace by collecting

the central mean subspace of T (Y ) versus X.

Example 4.5. In sliced regression (Wang and Xia, 2008), Wang and Xia proved that for

any matrix B,

Y X | BTX

is equivalent to

P (Y ≤ y|X = x) = P (Y ≤ y|BTX = BT x)

for all y ∈ R1 and x ∈ Rp. In Yin and Li (2011) notation, well known that the above

transformation family is dense in L2(FY ). This result shows that the central subspace

of Y is related closely to the central mean subspace of I(Y ≤ y). Moreover, the central

subspace SY |X can be fully recovered as long as the central mean subspace of I(Y ≤ y)|X

is estimated for all y ∈ R1.
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The ensemble approach enjoys many advantages such as being able to estimate the

central subspace, estimation accuracy and easy computation. However, there are some

limitations of ensemble approach: the choice of J and the determination of the number

m. It is difficult to derive a general criterion for all possible families. Also, the choice of

m varies from a case to case basis. Theoretically, within the computational capacity, the

larger m, the better results.

4.4. CUME REVISIT: THE ENSEMBLE ESTIMATORS’ APPROACH

In this section, we revisit CUME via the ensemble approach’s perspective (Yin

and Li, 2011). We are now ready to demonstrate that CUME also belongs to the family

of the ensemble estimators. Let

J = {ft(y) = I(−∞,t)(y) : t ∈ R1},

let ηt = Σ−1m(t) be the population coefficient vector from the ordinary least squares fit

of of ft(Y ) on X without the intercept term. Following the result of Duan and Li (1991),

it is not hard to prove that the above OLS coefficient falls into the central mean subspace

SE[ft(Y )|X]. We use the following proposition to conclude our discussion of CUME in this

section.

Proposition 3. Let J = {ft(y) = I(−∞,t)(y) : t ∈ R1}, for t = Y1, . . . , Yn, Σ−1m(t) ∈

SE[ft(Y )|X], and the column space of Σ̂
−1

Mn provides a consistent estimator of SY |X.

Proof: The proof partly relied on Theorem 1 of Cook and Li (2002), hence we

include it here for reference.

Theorem 4.6. (Cook and Li (2002)) Let γ be a basis matrix for SE(Y |Z), assume that

E(Z|γT Z) is a linear function of Z and let β be defined as (4.4) using an exponential

family objective function (4.5), where R(a, b) is a risk function and Φ is a strictly convex

function. Then

β ∈ SE(Y |Z)

(α, β) = argmina,bR(a, b) (4.4)
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L(a + bT Z, Y ) = −Y (a + bT Z) + Φ(a + bT Z) (4.5)

The proof of the above proposition can be shown as the following:

• Proof of Σ−1m(t) ∈ SE[ft(Y )|X]:

Since ft(y) = I(−∞,t)(y), Σ−1m(t) is the population coefficient vector from the or-

dinary least square fit of ft(Y ) on X without the intercept term. By Theorem 3.1

and Theorem 1 of Cook and Li (2002), we can show that Σ−1m(t) ∈ SE[ft(Y )|X].

• Proof of consistency of Σ̂
−1

Mn:

Since J = {ft(y) = I(−∞,t)(y) : t ∈ R1} is dense in L2(FY ), by Theorem 4.3, we

have span{S[E(f(Y )|X)] : f ∈ J } = SY |X. Let m̂(t) denote the corresponding sample

estimate of m(t), since Σ̂
−1 ˆm(t) is a consistent estimate of S[E(f(Y )|X)], Σ̂

−1
Mn is

also a consistent estimate of SY |X.

According to the above proposition, we can see that CUME is also a special example of

the family of the ensemble estimators.

4.5. COVARIANCE INVERSE REGRESSION ESTIMATION (CIRE)

In this subsection, we will introduce the idea of covariance inverse regression esti-

mation methods as well as how it motivates our method. For most sufficient dimension

applications, if the response Y is discrete or categorical, conditional sample means can be

used to estimate E(X|Y ). Meanwhile, if the response Y is continuous, E(X|Y ) is usually

estimated by replacing Y with a discrete version of Y through partitioning Y into h slices

as introduced by Li (1991). For example, in SIR, let Φ(y) defined as in (4.6), Li (1991)

showed that the expected value of Φ(Y ) in the sth slice,

ξs = E{Φ(Y )|Js = 1} = Σ−1{E(X|Js = 1)− E(X)} ∈ SY |X

and

span(Var(ξ(y))) ⊆ SY |X
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where Y is substituted by the h slices of Y in the sample level and

Φ(y) = Σ−1{E(X|Y = y)− E(X)} = Σ−1/2E(Z|Y = y) ∈ SY |X. (4.6)

However, it is clear that replacing Y by a sliced version of Y can result in loss of infor-

mation. In order to recover information missed by the sliced means, Cook and Ni (2006)

proposed an improved method by incorporating the intraslice covariances into the central

subspace estimation. This method (Cook and Ni, 2006) can be described in the following

way.

We first define

ςs(Y ) = Φ(y)− ξs = Σ−1{E(X|Y = y)− E(X|Js = 1)} ∈ SY |X

and intraslice covariance

Cov{ςs(Y ), Y |Js = 1} = Σ−1 Cov{X, Y |Js = 1} ∈ SY |X

where

Js(Y ) =

 1 Y is in slice s

0 otherwise

The intraslice covariance is added to ςs to remedy the loss of information through

slicing.

βs = Σ−1 Cov(X, Y Js) = fsΣ
−1 Cov(X, Y |Js = 1) + fsE(Y |Js = 1)ξs

On the sample level, consider a random sample (Xi, Yi) for i = 1, . . . , n. For tradi-

tional methods where intraslice variance does not involve,

ς̂s = Σ̂
−1/2

n∑
i=1

Js(Yi)Ẑi

n∑
i=1

Js(Yi)
.
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For CIRE, the basis in slice s can be estimated as

β̂s = Σ̂
−1/2 1

n

n∑
i=1

YiJs(Yi)Ẑi

where Σ̂ is the sample covariance matrix of X and Ẑi = Σ̂
−1/2

(Xi − (X̄)). It is easy to

see that comparing to other tradition SDR methods, CIRE considers the specific values

of Y not just the discretized version of Y . This is meaningful especially when the value

of Y fluctuates significantly in a big range.

4.6. COVARIANCE CUMULATIVE SLICING ESTIMATION (COCUM)

4.6.1. The Method. As Cook and Ni (2006) pointed out, the use of

ηt = Σ−1m(t)

discards the intra-slice information which might result in a loss of power. In this subsec-

tion, we propose a method called the covariance cumulative slicing estimation (COCUM)

which incorporates the intra-slice information into the estimation of the central subspace

Sft(Y )|X.

To recover the intra-slice covariance information, following Cook and Ni (2006),

we take

mc(ỹ) = E(XY I(Y ≤ ỹ)) (4.7)

for ỹ ∈ R1. The kernel matrix for COCUM, Mc, is constructed similar as (4.2) except

replacing m(ỹ) with mc(ỹ).

Let Ft = P (Y ≤ t) and denote

βt = Σ−1E(XY I(Y ≤ t)),

it is easy to show that βt can be decomposed as

FtΣ
−1 Cov(X, Y |I(Y ≤ t) = 1) + E(Y |I(Y ≤ t) = 1)ηt.
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Proposition 4. Assuming the common linearity condition, then βt ∈ SY |X, for t ∈ R1.

Furthermore, comparing with CUME, the column space of Σ−1Mc always encloses that of

Σ−1M.

Proof: Let

gt(y) = yI(y ≤ t) =

 y y ≤ t

0 y > t

ht(y) = I(y ≤ t) =

 1 y ≤ t

0 y > t

and

m(t) = Σ−1 Cov{ht(y),X}

mc(t) = Σ−1 Cov{gt(y),X}.

In the previous section, we have proved that

Σ−1 Cov{X, ht(Y )} ∈ Sht(Y )|X,

where h(·) is any transformation of y, and hence we can obtain that

m(t) ∈ Sht(Y )|X

and

mc(t) ∈ Sgt(Y )|X .

It is clear that for α ∈ Rp×d,

gt(y) X | αTX ⇒ ht(y) X | αTX,

but the other direction does not necessarily hold. Therefore, we can conclude that

Sht(Y )|X ⊆ Sgt(Y )|X.
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Also since it is shown in the previous proposition that

Σ−1Mc = Sgt(Y )|X

and

Σ−1M = Sht(Y )|X.

Therefore,

Σ−1M ⊆ Σ−1Mc.

Proposition 4 suggests that theoretically COCUM always outperform CUME since it

recovers more of the central subspace.

4.6.2. The Asymptotic Properties. The asymptotic properties of COCUM

are shown in this subsection.

Theorem 4.7. Let Xi be the ith coordinate of X, suppose max1≤i≤pE(X8
i Y 8) < ∞ uni-

formly for p, and then

||Σ−1
n Mc

n −Σ−1Mc|| = o(pn−1/2 log n)

almost surely where || · || is the Frobenius norm, where Mc
n = 1

n

n∑
i=1

mc(Yi)m
T
c (Yi)w(Yi).

Proof: This proof is similar to CUME (Zhu et al., 2010). Here, note that Σ =

Cov(X), and mc(ỹ) as defined in (4.7).

Step 0: Note that

Σ−1
n Mc

n−Σ−1Mc = Σ−1(Σ−Σn)Σ−1
n (Mc

n−Mc)+Σ−1(Σ−Σn)Σ−1
n Mc+Σ−1(Mc

n−Mc).

Therefore, it suffices to study the convergence order of ||Σn −Σ|| and ||Mc
n −Mc||.

Step 1: Show

||Mc
n −Mc|| = o(p logn/

√
n)

almost surely.
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Write Mc
n as a standard U-Statistic as:

Un1 =
2

n(n− 1)(n− 2)

∑
i<j<k

{XjX
T
k YjY

T
k I(Yj ≤ Yi)I(Yk ≤ Yi)w(Yi)

+XiX
T
k YiY

T
k I(Yi ≤ Yj)I(Yk ≤ Yj)w(Yj)

+XjX
T
i YjY

T
i I(Yj ≤ Yk)I(Yi ≤ Yk)w(Yk)}

The projection of Un1 is:

Ûn1 =
n∑

i=1

E(Mc
n|Xi, Yi)− (n− 1)E(Mc

n).

Step 1.1: Show

||Un1 − Ûn1|| = o(p logn/n) (4.8)

almost surely. Let Rn = Un1 − Ûn1 is also a U-Statistic, according to Serfling (page 183),

var(Rn) = { 6

n(n− 1)(n− 2)
}{3(n− 3)(n− 4)

2
ξ1 + 3(n− 3)ξ2 + ξ3},

where

ξc = var{hc(X1, . . . ,Xc)}

and h1 = 0 in this case and hence ξ1 = 0. Therefore,

var(Rn) =
18(n− 3)ξ2 + 6ξ3

n(n− 1)(n− 2)
.

According to Lemma B in Serfling (page 68), since max1≤i≤pE(X8
i Y 8) < ∞ uniformly,

so we can imply that E|
p∑

i=1

XiY |8 = O(p4), and hence ||ξi|| = O(p2) for i = 2, 3. Refer

Serfling (page 182) for more details about hc. Therefore, we have var(Un1−Ûn1) = O( p2

n2 ).

Step 1.2: In this step, a stronger consistency will be proved. Based on Serfling

(page 189), let

λn = (
p logn

n
)−1.
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It suffices to show that, for any ε > 0, λn||Rn|| < ε holds almost surely, for n → ∞. In

other words, that is

P (limsupλn||Rn|| > ε) = 0. (4.9)

Applying Borel-Cantelli Lemma:

∞∑
k=0

P (λ2k+1max2k≤n≤2k+1 ||Rn|| > ε) < ∞. (4.10)

Since Rn is a reverse martingale (Serfling (page 177)), then

P (supj≥n||Rj|| > t) ≤ t−2E||Rn||2.

Also since the kth term of (4.10) is bounded by

ε−2λ2k+1E|U2k − Û2k |2 = O((k + 1)−2).

Therefore (4.10) is convergent. Borel-Cantelli Lemma shows that

||Rn|| = o(p logn/n)

almost surely. Therefore,

||Un1 − Ûn1|| = o(p logn/n).

Step 2: We will show that

||Ûn1 −Mc|| = O(p logn/
√

n) (4.11)

almost surely. We rewrite Ûn1 in the following way:

Ûn1 =
2

n

n∑
i=1

[E{XjX
T
k YjY

T
k I(Yj ≤ Yi)I(Yk ≤ Yi)w(Yi)|Xi, Yi}

+E{XiX
T
k YiY

T
k I(Yi ≤ Yj)I(Yk ≤ Yj)w(Yj)|Xi, Yi}
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+E{XjX
T
i YjY

T
i I(Yj ≤ Yk)I(Yi ≤ Yk)w(Yk)|Xi, Yi}]− 5Mc,

that is

Ûn1 = 2I1 + 2I2 + 2I3 + M,

where

I1 =
1

n

n∑
i=1

[E{XjX
T
k YjY

T
k I(Yj ≤ Yi)I(Yk ≤ Yi)w(Yi)|Xi, Yi} −Mc

=n−1
n∑

i=1

mc(Yi)m
T
c (Yi)w(Yi)−Mc,

I2 =
1

n

n∑
i=1

[E{XiX
T
k YiY

T
k I(Yi ≤ Yj)I(Yk ≤ Yj)w(Yj)|Xi, Yi} −Mc

=n−1
n∑

i=1

mc(Yi)m
T
c (Yi)w(Yi)−Mc,

and

I3 =
1

n

n∑
i=1

[E{XjX
T
i YjY

T
i I(Yj ≤ Yk)I(Yi ≤ Yk)w(Yk)|Xi, Yi} −Mc

=n−1
n∑

i=1

mc(Yi)m
T
c (Yi)w(Yi)−Mc.

From the previously step, we can prove

||I1|| = o(p logn/
√

n)

almost surely. Similar arguments can be used to proof

||I2|| = o(p logn/
√

n)
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and

||I3|| = o(p logn/
√

n).

Step 3: A similar technique can be clearly applied to proof

||Σn −Σ|| = o(p logn/
√

n)

almost surely.

This theorem shows that COCUM posesses the same asymptotic property as

CUME. Zhu, Miao and Peng (2006), derived the strong consistency for the slicing es-

timation of the SIR matrix when p = o(n1/4). However, the results from both CUME and

COCUM are faster than Zhu, Miao and Peng (2006) obtained.

Theorem 4.8. Assume the following regularity conditions:

1. max1≤i≤pE(X8
i Y 8) < ∞ uniformly for p;

2. The minimum eigenvalue of Σ satisfies λmin(Σ) > 0;

3. The largest eigenvalue of Mc satisfies λmax(Mc) < ∞ holds uniformly for p;

4. E{γT T (X, Y )γ} → G > 0 for any unit length γ;

5. p = o(n1/2).

Then
√

nγT (Σ−1
n Mn −Σ−1M)γ → N(0, G)

in distribution.

Here

T (X,Y) = Σ−1{XXT − EXXT − (X− EX)EXT − EX(X− EX)T}Σ−1Mc

-Σ−1[2mc(Y )mT
c (Y )ω(Y ) + 2E{XY I(Y ≤ Ỹ )mT

c (Ỹ )ω(Ỹ )|X, Y }
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+2E{mc(Ỹ )XT Y T I(Y ≤ Ỹ )ω(Ỹ )|X, Y } − 6Mc]

and Ỹ is an independent copy of Y .

Proof: This proof is similar to CUME (Zhu et al., 2010). The entire proof contains

the following steps:

Step 1.1: Show

||Σn −Σ− Tn1|| = Op(p/n), (4.12)

where

Tn1 =
1

n

n∑
i=1

XiX
T
i − EXXT − (X̄− EX)EXT − EX(X̄− EX)T .

Reason: note that

P (||Σn −Σ− Tn1|| > ε) = P (||(X̄− EX)(X̄− EX)T || > ε)

≤ E||(X̄− EX)T (X̄− EX)||/ε

= E(X-EX)T (X− EX)/(nε)

=Op(p/n).

Step 1.2: Show

||Mc
n −Mc − Tn2|| = Op(p/n), (4.13)

where

Tn2 =
2

n

n∑
i=1

mc(Yi)mc(Yi)
T ω(Yi)

+ 2n−1
n∑

i=1

E{XiYiI(Yi ≤ Y )mT
c (Y )ω(Y )|Xi, Yi}

+ 2n−1
n∑

i=1

E{mc(Y )XT
i Y T

i I(Yi ≤ Y )ω(Y )|Xi, Yi} − 6Mc
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Since max1≤i≤pE(X2
i Y 2) < ∞ uniformly for p, then

||Mc
n −Mc − Tn2|| = ||Un1 − Ûn1|| = Op(p/n)

Step 1.3:

||(Σ−1
n Mc

n −Σ−1Mc) + Σ−1
n Tn1Σ

−1Mc −Σ−1
n Tn2||

=
∥∥Σ−1

n (Mc
n −Mc − Tn2)−Σ−1

n (Σn −Σ− Tn1)Σ
−1Mc||

=Op(p/n).

Step 2: In this step, we will prove the normality for

γT (Σ−1
n Mc

n −Σ−1Mc)γ

where γ is a unit-length vector. Let T (Xi,Yi)
n

as the ith summand in Σ−1Tn1Σ
−1Mc −

Σ−1Tn2, and let

Zni = γT T (Xi, Yi)γ/
√

n,

for i = 1, 2, . . . , n.

Step 2.1: We have

n∑
i=1

var(Zni) = E{γT T (Xi, Yi)γ} −→ G (4.14)

as

E{γT T (Xi, Yi)γ} −→ G.

Also, for any given ε > 0, and as n →∞,

n∑
i=1

E|Zni|2I(|Zni| ≥ ε)

=n E(|Zn1|2I(|Zn1| ≥ ε))
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≤ n(E|Zn1|4)1/2P{|Zn1| ≥ ε}

≤ {E|γT T (X, Y )γ|4}1/2P{|γT T (X, Y )γ| ≥
√

nε}

≤ λ
1/2
max{E|T 4(X, Y )|}P{|γT T (X, Y )γ| ≥

√
nε}

≤ λ
1/2
max{E|Σ−1T1Σ

−1Mc|4 + E|Σ−1T2|4}P{|γT T (X, Y )γ| ≥
√

nε}

≤ λ
1/2
max{E|T1(X)|4 + E|T2(X, Y )|4}P{|γT T (X, Y )γ| ≥

√
nε}

Apply condition 2 and condition 3 in the theorem, then the last inequality holds.

Since max1≤i≤pE(X8
i Y 8) < ∞ uniformly for p, we have

λ1/2
max{E|T1(X)|4 + E|T2(X, Y )|4} = O(p).

Moreover, the Markov inequality entails that

P{|γT T (X, Y )γ| ≥
√

nε} ≤ E{|γT T (X, Y )γ|}√
nε

.

Therefore,
n∑

i=1

E|Zni|2I(|Zni| ≥ ε) = O(p/
√

n) → 0

Together with (4.14), we can see that
n∑

i=1

Zni satisfies the conditions of the Lindeberg-Feller

central limit theorem.

Step 2.2: Show

γT{(Σ−1
n −Σ−1)Tn1Σ

−1Mc − (Σ−1
n −Σ−1)Tn2}γ

is bounded. Firstly, by Cauchy-Schwarz inequality, we have

|γT (Σ−1
n −Σ−1)Tn1Σ

−1Mcγ| ≤ ||γT (Σ−1
n −Σ−1)||||Tn1Σ

−1Mcγ||.
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Since all the elements of Σ−1
n −Σ−1 are of the rate n−1/2, and then it is easy to get that

||γT (Σ−1
n −Σ−1)|| = Op(

√
p/n).

Rewrite Σ−1Mcγ := α and ||α|| < ∞. Therefore,

||Tn1Σ
−1Mcγ|| ≤ Op(

√
p/n)

and hence

|γT (Σ−1
n −Σ−1)Tn1Σ

−1Mcγ| = Op(p/n).

Similarly, we have

|γT (Σ−1
n −Σ−1)Tn2γ| = Op(p/n).

Both of them show the convergence rate Op(p/n) of γT{(Σ−1
n −Σ−1)Tn1Σ

−1Mc− (Σ−1
n −

Σ−1)Tn2}γ. Therefore,
√

nγT (Σ−1
n Mn −Σ−1M)γ is asymptotically normal.

The above theorem shows that the asymptotic normality holds for p = o(n1/2),

which is better than the rate p = o(n1/3) in some literature (Fan and Peng, 2004; Zhu

and Zhu, 2009).

4.6.3. The Determination of d. One of the goals for sufficient dimension

reduction is to estimate the structural dimension. Many methods have been developed

to determine the structural dimension, such as Li (1991), Schott (1994), Bura and Cook

(2001), Zhu, Miao and Peng (2006), Zhu, Wang, Zhu and Ferre (2010). We list the details

for some of the above methods.

The idea of the criterion used by Schott (1994) is based on a testing process. The

test procedure with

H0 : k = m v.s. H1 : k > m (4.15)

test the value of m starting at 0. The value of m increases by 1 each time until the null

hypothesis is rejected. Define

Ŵ1 = Ω̂−1/2∆̂Ω̂−1/2;
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Ŵ2 =
h∑

i=1

(Ω̂−1/2Ω̂iΩ̂
−1/2 − τ̂iI)2/h;

Ŵ3 = Ŵ1 + Ŵ2,

where ∆̂ =
∑h

i=1(X̄i − X̄)(X̄i − X̄)T /h, h is the total number of slices with Ω̂i as the

sample covariance matrix from the ith slice and Ω̂ = (Ω̂1 + . . .+Ω̂h)/h. Also, τ̂i is specified

as

τ̂i = trace(P ∗Ω̂−1/2Ω̂iΩ̂
−1/2P ∗)/(p−m)

and P ∗ is the eigen-projection of

W ∗
2 =

h∑
i=1

(Ω−1/2ΩiΩ
−1/2 − I)2/h

corresponding to its p−m smallest latent roots and p is the dimension of predictors. The

test statistic for testing (4.15) is the average of the p−m smallest latent roots of Ŵi. This

testing procedure carries on until H0 is rejected.

BIC-type methods are also popular, especially for high-dimensional covariates. The

procedure is easy to implement and the estimate is consistent. Both Zhu, Miao and Peng

(2006) and Zhu, Wang, Zhu and Ferre (2010) applied the BIC-type method to determine

the structural dimension d. Zhu, Miao and Peng (2006) sets

G(k) =
n

2

p∑
i=1+min(τ,k)

(logθ̂i + 1− θ̂i)−
Cnk(2p− k + 1)

2
(4.16)

where θ̂1 ≥ θ̂2 ≥ . . . ≥ θ̂p are the eigenvalues of Ω̂ = Ĉov{E(X|y)} + Ip. The second

term on (4.16) is a penalty term with Cn as a penalty constant which is specified by a

data-driven manner.

Also, Zhu, Wang, Zhu and Ferre (2010) uses

G(k) =
n

∑k
l=1{log(λ̂l + 1)− λ̂}

2
∑p

l=1{log(λ̂l + 1)− λ̂}
− 2Cn

k(k + 1)

2p
. (4.17)
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Here, λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p are the eigenvalues of the kernel matrix M̂ . Interested readers

may refer to Zhu, Wang, Zhu and Ferre (2010) for details of M̂ . For both (4.16) and

(4.17), the estimate structural dimension K̂ is defined as the maximizer of G(k) over

= 1, . . . , p.

Following Zhu, Zhu and Feng (2010), we use a modified BIC-type method for

COCUM. Define

G(k) = n
k∑

i=1

λ2
ni/

p∑
i=1

λ2
ni − Cnk(k + 1)/2 (4.18)

where λ̂n1 ≥ λ̂n2 ≥ . . . ≥ λ̂np are the sample eigenvalues of kernel matrix. In COCUM,

the kernel matrix is

M = E[mc(Ỹ )mT
c (Ỹ )w(Ỹ )], (4.19)

and mc is defined in (4.7). And the estimated dimension K̂ is defined as

K̂ = arg max1≤k≤pG(k). (4.20)

The idea of the determination of the value of the penalty constant Cn is: if Cn

is too small, then this modified BIC method tends to overestimate the dimension K; if

Cn is too large, then this modified BIC method tends to underestimate the dimension K.

A data-driven manner is needed to choose an appropriate value for Cn under a certain

method. As pointed out in Zhu, Zhu and Feng (2010):

Theorem 4.9. If Cn/n → 0 as n →∞ and Cn →∞, then K̂ −K = O(1).

In COCUM, we let

Cn = 0.5log(n)

which mostly leads to satisfactory results and also satisfies the consistency result from

the previous theorem also holds.

4.7. SIMULATION STUDIES

In this section, we compare the performance of COCUM with CUME. We consid-

ered several different models with the design matrix generated from normal, Cauchy and
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Gamma distribution. To evaluate the performance of different methods, various criteria

are used. In this paper, we use the ratio of square multiple correlation coefficient to the

dimension d followed by Li and Dong (2009):

ρ2

d
=

trace{(β̂TΣβ̂)−1(β̂TΣβ)(βTΣβ̂)(βTΣβ)−1}
d

(4.21)

as evaluation measurements to summarize simulation results from 1000 runs. Here β̂ is

the estimate for true β and Σ is the covariance matrix for predictor X. The idea is the

ρ2 gets closer to the true dimension d if the sample version βTX and its true value have

a linear relation and it is 0 if they are uncorrelated. Hence, the closer the ratio is to 1,

the better fit of the model. In addition, the frequencies of estimated structural dimension

over the 1000 trials are given as the measurements of the modified BIC performance. All

numbers reported in the frequency table are multiplied by 10.

4.7.1. Model I. For a fair comparison, we first consider a regular linear model as

CUME (Zhu, Zhu and Feng, 2010) discussed in their paper. The predictor X is generated

from N(0, Ip), ε is standard normal and independent of X, the univariate response Y is

constructed as:

Y = Xβ + 4ε, (4.22)

where β = (1, 1, 1, 1, 0, . . . , 0)T . Following Zhu, Zhu and Feng (2010), we took all combina-

tions of n = 200, 400 and 600, p = 10, 15 and 20. Table 4.1 provides the average correlation

coefficient ratio (4.21) and the standard deviation for both CUME and COCUM respec-

tively. As shown on Table 4.1, under the regular linear model with normally generated

random predictors, the performances of CUME and COCUM are comparable in the sense

that the average ratio and standard deviation are very close to each other. In addition,

we observe that, with the increase of sample size, the performances of both CUME and

COCUM improve, and deteriorate with the increase of p. The frequencies of structural

dimension estimate d̂ is provided in Table 4.2 which indicates the good performances of

the use of the modified BIC method.
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Table 4.1. COCUM: Model I

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.82 0.08 0.90 0.05 0.93 0.03

COCUM 0.80 0.09 0.88 0.05 0.92 0.03

p = 15 CUME 0.74 0.10 0.85 0.05 0.90 0.04

COCUM 0.72 0.10 0.83 0.06 0.89 0.04

p = 20 CUME 0.69 0.10 0.82 0.06 0.87 0.04

COCUM 0.64 0.10 0.79 0.06 0.85 0.04

Table 4.2. COCUM: Model I Dimension Estimate
p n d = 1 d > 1

CUME COCUM CUME COCUM

10 200 89.7 100 10.3 0

10 400 98.1 100 1.9 0

10 600 99.4 100 0.6 0

15 200 54.8 99.8 45.2 0.2

15 400 79.8 100 20.2 0

15 600 93.2 100 6.8 0

20 200 16.7 98.7 83.3 1.3

20 400 42.2 100 57.8 0

20 600 63.4 100 36.6 0

4.7.2. Model II. We now consider a more complicated model with two dimensions

(d = 2). The predictor X = (X1, X2, X3, . . . , Xp) is still generated from N(0, Ip), ε is
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standard normal and independent of X, the univariate response Y is constructed as:

Y = 1.5(5 + X1)(2 + X2 + X3) + 0.5ε. (4.23)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 1, 0, . . . , 0)T . The

simulation results are shown on Table 4.3 and Table 4.4, we observe that the performance

of COCUM is slightly better than CUME in this case. In addition, CUME has the serious

problem of underestimating the structural dimension d.

4.7.3. Model III. Let’s try another interesting model with two dimensions (d =

2) with the predictor X = (X1, X2, X3, . . . , Xp) generated from N(0, Ip), and standard

normal ε. The univariate response Y is constructed as:

Y = 4sin((0.25X1 + 1)2) + 0.5(X2 + X5 + 1)2 + 0.2ε. (4.24)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, 0, 1, 0, . . . , 0)T .

Simulation results are shown on Table 4.5 and Table 4.6. The modified BIC method

perfectly works in this case.

Table 4.3. COCUM: Model II

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.71 0.22 0.80 0.18 0.85 0.14

COCUM 0.75 0.19 0.84 0.15 0.88 0.11

p = 15 CUME 0.66 0.19 0.74 0.17 0.79 0.14

COCUM 0.69 0.18 0.78 0.14 0.83 0.12

p = 20 CUME 0.63 0.16 0.71 0.16 0.76 0.14

COCUM 0.64 0.16 0.74 0.14 0.79 0.12
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Table 4.4. COCUM: Model II Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 100 1 0 98.5 0 0.5

10 400 100 0.3 0 99.7 0 0

10 600 100 0.2 0 99.8 0 0

15 200 100 0 0 82.9 0 17.1

15 400 100 0 0 98.1 0 1.9

15 600 100 0 0 99.3 0 0.7

20 400 100 0 0 74 0 26

20 600 100 0 0 91 0 9

Table 4.5. COCUM: Model III

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.90 0.08 0.95 0.04 0.96 0.02

COCUM 0.89 0.09 0.94 0.04 0.96 0.03

p = 15 CUME 0.85 0.10 0.92 0.05 0.94 0.04

COCUM 0.84 0.11 0.91 0.05 0.94 0.03

p = 20 CUME 0.93 0.04 0.95 0.03 0.93 0.04

COCUM 0.92 0.04 0.94 0.03 0.92 0.04
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Table 4.6. COCUM: Model III Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 28.4 0.1 71.6 99.9 0 0

10 400 3.3 0 96.7 100 0 0

10 600 0.2 0 99.8 100 0 0

15 200 6.1 0 93.9 99.7 0 0.3

15 400 0.1 0 99.9 100 0 0

15 600 0 0 100 100 0 0

20 200 0 0 100 100 0 0

20 400 0 0 100 100 0 0

20 600 0 0 100 99.9 0 0.1

4.7.4. Model IV. In the following model, we consider predictors generated from

non-Gaussian distribution. Let’s first work on a model with two dimensions (d = 2) with

the predictor X = (X1, X2, X3, . . . , Xp) generated from Cauchy(1), and standard normal

ε. The univariate response Y is constructed as:

Y = 0.5(X1 + 1)2 + (0.5 + (X2 + 1.5)2) + 0.5ε. (4.25)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T . As the

simulation results shown on Table 4.7 and Table 4.8, COCUM significantly outperforms

CUME with over 60 percents higher correlation ratio than CUME for any combination of

n and p. The mode of all d̂ is always 2 for this model.
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Table 4.7. COCUM: Model IV

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.29 0.23 0.29 0.23 0.30 0.23

COCUM 0.86 0.33 0.91 0.29 0.93 0.27

p = 15 CUME 0.22 0.21 0.23 0.21 0.23 0.22

COCUM 0.81 0.36 0.87 0.32 0.89 0.31

p = 20 CUME 0.17 0.19 0.17 0.19 0.18 0.20

COCUM 0.76 0.38 0.85 0.35 0.86 0.33

Table 4.8. COCUM: Model IV Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 4 44.8 76.8 45.5 19.2 9.4

10 400 0.8 42.1 54 47.8 45.2 10.1

10 600 0.1 39.5 37.5 52.8 62.4 7.7

15 200 0.4 39 54.8 41.8 44.8 19.2

15 400 0.1 37.6 28.9 45 71 17.4

15 600 0 38 15.1 46.8 84.9 15.2

20 200 0 37 39.5 37.4 60.5 25.6

20 400 0 33.2 11 43.6 89 23.2

20 600 0 30.5 3.9 46 96.1 23.5

4.7.5. Model V. Here, we consider another model with two dimensions (d = 2)

with the predictor X = (X1, X2, X3, . . . , Xp) generated from Cauchy(1), and standard
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normal ε. The univariate response Y is constructed as:

Y = 0.5(X3 + 1)2 +
√

0.5 + (X2 −X5 + 1.5)2 + 0.5ε. (4.26)

In this case, β = (β1, β2) where β1 = (0, 0, 1, 0, . . . , 0)T and β2 = (0, 1, 0, 0, 1, 0, . . . , 0)T .

The simulation results on Table 4.9 and Table 4.10 also show that the performance of

COCUM is better in this case. The mode of all d̂ is always 2 for this model.

4.7.6. Model VI. In addition to Cauchy distribution generated random vari-

ables, we will also consider Gamma distribution random variables in the next two sim-

ulation models. Here, we let the predictor X = (X1, X2, X3, . . . , Xp) generated from

Gamma(0.1, 10), and standard normal ε. The univariate response Y is constructed as:

Y = (10 + (X2 + 0.5)2)
√

(0.25 + X1) + 0.5ε. (4.27)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T . Table 4.11

and Table 4.12 demonstrate the good performances of COCUM. In addition, CUME has

the serious problem of underestimating the structural dimension d.

Table 4.9. COCUM: Model V

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.45 0.26 0.47 0.27 0.48 0.26

COCUM 0.81 0.35 0.81 0.36 0.85 0.34

p = 15 CUME 0.38 0.24 0.40 0.25 0.41 0.24

COCUM 0.78 0.37 0.82 0.35 0.82 0.35

p = 20 CUME 0.33 0.22 0.35 0.23 0.36 0.23

COCUM 0.75 0.38 0.80 0.36 0.81 0.36
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Table 4.10. COCUM: Model V Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 32.2 25 66.1 55.2 1.7 19.8

10 400 26 23.9 68.3 52.3 5.7 23.8

10 600 23 25.1 66.9 51.3 10.1 23.6

15 200 6.2 20.6 84.4 44.8 9.4 34.6

15 400 4.5 20.3 71.7 49.2 23.8 30.5

15 600 3.8 20.1 63.5 45.6 32.7 34.3

20 200 0.4 18.1 77 42.1 22.6 39.8

20 400 0.5 18.8 54.5 40.9 45 40.3

20 600 0.5 21.9 39 39.2 60.5 38.9

Table 4.11. COCUM: Model VI

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.52 0.16 0.57 0.25 0.63 0.32

COCUM 0.93 0.15 0.96 0.08 0.98 0.04

p = 15 CUME 0.49 0.08 0.51 0.11 0.54 0.19

COCUM 0.89 0.20 0.94 0.10 0.96 0.07

p = 20 CUME 0.48 0.04 0.49 0.07 0.51 0.10

COCUM 0.85 0.22 0.92 0.14 0.95 0.08
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Table 4.12. COCUM: Model VI Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 99.5 8.3 0.5 91 0 0.7

10 400 100 1.8 0 97.2 0 1

10 600 100 0.3 0 99 0 0.7

15 200 90 3.6 10 90.1 0 6.3

15 400 99.2 0.8 0.8 95.4 0 3.8

15 600 100 0.1 0 95.9 0 4

20 200 50.6 1.4 49.4 75.7 0 22.9

20 400 83.5 0.3 16.5 87.6 0 12.1

20 600 95.9 0.1 4.1 94.3 0 5.6

4.7.7. Model VII. This is another model with Gamma distribution random

variables and d = 2. Here, we let the predictor X = (X1, X2, X3, . . . , Xp) generated from

Gamma(0.1, 10), and standard normal ε. The univariate response Y is constructed as:

Y = (X1 + 0.25) + 0.9log(0.25 + (0.5 + X2)
2) + 0.5ε. (4.28)

In this case, β = (β1, β2) where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T . The simula-

tion results on Table 4.13 and Table 4.14 lead us to draw the same conclusion as on the

previous model. Also, CUME has the serious problem of underestimating the structural

dimension d.
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Table 4.13. COCUM: Model VII

n = 200 n = 400 n = 600

Method ratio deviation ratio deviation ratio deviation

p = 10 CUME 0.56 0.22 0.67 0.30 0.75 0.31

COCUM 0.89 0.19 0.95 0.08 0.97 0.04

p = 15 CUME 0.51 0.12 0.57 0.21 0.65 0.27

COCUM 0.84 0.21 0.92 0.11 0.94 0.06

p = 20 CUME 0.49 0.07 0.53 0.14 0.58 0.20

COCUM 0.79 0.24 0.88 0.16 0.92 0.08

Table 4.14. COCUM: Model VII Dimension Estimate

p n d = 1 d = 2 d > 2

CUME COCUM CUME COCUM CUME COCUM

10 200 99.8 19.1 0.2 80.9 0 0

10 400 100 7.3 0 92.7 0 0

10 600 100 2.6 0 97.4 0 0

15 200 89.2 5.1 10.8 94.5 0 0.4

15 400 98.7 1.4 1. 98.4 0 0.2

15 600 99.7 1.3 0.3 98.7 0 0

20 200 46.2 0.8 53.8 93.9 0 5.3

20 400 83 0.2 17 96.8 0 3

20 600 94.4 0.1 5.6 99.4 0 0.5
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4.8. CONCLUSION

In this chapter, we proposed a new method called Covariance Cumulative Slicing

Estimation (COCUM). Compared with most slicing methods, COCUM does not only

recover the loss information caused by replacing the continuous predictors Y by a discrete

version of Y , but also minimizes the variation results leading by choosing different numbers

of slices h. Most importantly, COCUM considers the specific value of y in the kernel

matrix. This means, COCUM is more robust to the outliers. The simulation results show

that COCUM is comparable to CUME when the predictors are normally distributed. But

COCUM outperforms CUME when the predictors do not follow the Gaussian distribution,

such as Cauchy or Gamma distribution. Figure 4.1 shows the graph of the response Y

from Model I to Model III and Figure 4.2 shows the graph of y from Model IV to Model

VII. For the graphs, the x-axis represents the order of the data and the y-axis stands for

the value of y. For brevity, we only use the case with n = 800 and p = 10. We can see

that in the second figure, the response values vary significantly in a wide range; while the

Y values on the first figure is more stable. Our simulation results indicate the advantages

of incorporating the values of Y into the kernel matrix. Associated asymptotic results are

also proven.
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Figure 4.1. The graph of y: Model I - Model III
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MATLAB ALGORITHM: sgSDR
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%--------The following is the Matlab code for sgSDR--------------%

%----------------------------------------------------------------%

w_DSGL_CV10_output=[];

w_SGL_CV10_output=[];

w_DSGL_BIC0_output=[];

w_SGL_BIC0_output=[];

z_DSGL_CV10_output=[];

z_SGL_CV10_output=[];

z_DSGL_BIC0_output=[];

z_SGL_BIC0_output=[];

TPR_DSGL_CV10_output=[];

TPR_SGL_CV10_output=[];

TPR_DSGL_BIC0_output=[];

TPR_SGL_BIC0_output=[];

FPR_DSGL_CV10_output=[];

FPR_SGL_CV10_output=[];

FPR_DSGL_BIC0_output=[];

FPR_SGL_BIC0_output=[];

TPR_DSGL_CV10_GRP_output=[];

TPR_SGL_CV10_GRP_output=[];

TPR_DSGL_BIC0_GRP_output=[];

TPR_SGL_BIC0_GRP_output=[];

FPR_DSGL_CV10_GRP_output=[];

FPR_SGL_CV10_GRP_output=[];

FPR_DSGL_BIC0_GRP_output=[];

FPR_SGL_BIC0_GRP_output=[];

ngrp=10; % the # of groups

grpsize=200; % the group size

beta_true_grp=[1 1 0 0 0 0 0 0 0 0]; % true group info

for simu_loop=1:10
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m=100;n=2000; % m is sample size %n is the dimension of beta

%randNum=10;

% --------------------generate random data--------------------%

A=randn(m,n); % the data matrix

%noise=3.*randn(m,1);

noise=trnd(1,m,1);

%first group

A1=A(:,1);

A2=A(:,2);

A3=(2/3).*A1+(2/3).*A2+(1/3).*(randn(m,1));

A(:,3)=A3;

%second group

A201=A(:,201);

A202=A(:,202);

A203=(2/3).*A201+(2/3).*A202+(1/3).*(randn(m,1));

A(:,203)=A203;

xOrin=zeros(n,1); % true beta

xOrin(1:2,1)=[-2 3];

xOrin(201:202,1)=[-2 3];

%xOrin(401:402,1)=[-2 3];

y=exp(A*xOrin+noise);

%centering predictors

for k=1:n

A(:,k)=A(:,k)-mean(A(:,k));

end

sample_size = size(A, 1);

[f x]=ecdf(y);

newf=f(2:end, 1);

newx=x(2:end, 1);

nsize=size(y,1);
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F=[];

for k=1:nsize

c=y(k);

index=find(newx==c);

F=[F newf(index)];

end

F=F’;

%centering F

F=F-mean(F);

%y=A*xOrin +...

%noise*0.01; % the response

%centering y

y=y-mean(y);

%----------------------- Set optional items ----------------------%

opts=[];

% Starting point

opts.init=2; % starting from a zero point

% Termination

opts.tFlag=5; % run .maxIter iterations

opts.maxIter=200; % maximum number of iterations

% regularization

opts.rFlag=0; % use input

% Normalization

opts.nFlag=0; % without normalization

%opts.nFlag=1; %with normalization

% Group Property (group 1)

opts.ind=[ [1, 200, sqrt(200)]’, [201, 400, sqrt(200)]’,...

[401, 600, sqrt(200)]’, [601, 800, sqrt(200)]’, ...

[801, 1000, sqrt(200)]’, [1001, 1200, sqrt(200)]’,...

[1201, 1400, sqrt(200)]’, [1401, 1600, sqrt(200)]’,...
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[1601, 1800, sqrt(200)]’, [1801,2000, sqrt(200)]’];

%------------------sgSDR Cross Validation 10 process---------------%

param1_range = [0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

param2_range = [0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

cv_fold_num = 5; % by default use 10-fold cross validation.w

lldiff=[];

cv_performance=zeros(length(param1_range),length(param2_range));

for cv_idx = 1: cv_fold_num

te_index = cv_idx : cv_fold_num : sample_size;

tr_index = setdiff( 1 : sample_size, te_index );

cv_X_tr = A(tr_index, :);

cv_X_te = A(te_index, :);

cv_Y_tr = F(tr_index);

cv_Y_te = F(te_index);

cv_W = [];

cv_C = [];

lldiff=[];

for rho1_idx = 1:length(param1_range)

rho_1 = param1_range(rho1_idx);

for rho2_idx = 1:length(param2_range)

rho_2 = param2_range(rho2_idx);

z=[rho_1,rho_2];

[cv_w, cv_c,ValueL] = sgLeastR(cv_X_tr, cv_Y_tr,z,opts);

cv_W = [cv_W cv_w];

cv_C = [cv_C cv_c];

diff=sum((cv_Y_te-cv_X_te*cv_w).*(cv_Y_te-cv_X_te*cv_w));

lldiff=[lldiff diff];

end
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end

metric_arr=reshape(lldiff, length(param2_range),length(param1_range));

metric_arrt=metric_arr’;

cv_performance=cv_performance+metric_arrt;

end

[i j] = find(cv_performance == min(cv_performance(:)));

rho1_idx=i(1,1);

rho2_idx=j(1,1);

param1 = param1_range(rho1_idx);

param2 = param2_range(rho2_idx);

% use the selected

z=[param1,param2];

[w_DSGL_CV10,c1,ValueL] = sgLeastR(A, F, z,opts); %DSGL

% lamda 1 and lamda 2

z=z’;

z_DSGL_CV10_output=[z_DSGL_CV10_output z];

% estimate of beta from DSGL

w_DSGL_CV10_output=[w_DSGL_CV10_output w_DSGL_CV10];

%group info computation

w_DSGL_CV10_grp=[]; %used to create est. group info

for k=1:ngrp

lgrp=1+grpsize*(k-1);

ugrp=grpsize+grpsize*(k-1);

if all(w_DSGL_CV10(lgrp:ugrp)==0)

w_DSGL_CV10_grp(k)=0;

else

w_DSGL_CV10_grp(k)=1;

end

end

%group evaluation
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BETA=beta_true_grp~=0; %Ori_nonzero

beta1=w_DSGL_CV10_grp~=0; %Est_nonzero

TP_DSGL_CV10_grp=sum( ( (BETA==1) + (beta1==1) )==2 );

FP_DSGL_CV10_grp=sum( ( (BETA==0) + (beta1==1) )==2 );

FN_DSGL_CV10_grp=sum( ( (BETA==1) + (beta1==0) )==2 );

TN_DSGL_CV10_grp=sum( ( (BETA==0) + (beta1==0) )==2 );

TPR_DSGL_CV10_grp=TP_DSGL_CV10_grp/(TP_DSGL_CV10_grp+FN_DSGL_CV10_grp);

FPR_DSGL_CV10_grp=FP_DSGL_CV10_grp/(FP_DSGL_CV10_grp+TN_DSGL_CV10_grp);

% --------------------Sparse Group Lasso Cross Validation-----------------%

param1_range = [0.0005 0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

param2_range = [0.0005 0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

cv_fold_num = 5; % by default use 10-fold cross validation.w

lldiff=[];

cv_performance=zeros(length(param1_range),length(param2_range));

for cv_idx = 1: cv_fold_num

te_index = cv_idx : cv_fold_num : sample_size;

tr_index = setdiff( 1 : sample_size, te_index );

cv_X_tr = A(tr_index, :);

cv_X_te = A(te_index, :);

cv_Y_tr = y(tr_index);

cv_Y_te = y(te_index);

cv_W = [];

cv_C = [];

lldiff=[];

for rho1_idx = 1:length(param1_range)

rho_1 = param1_range(rho1_idx);

for rho2_idx = 1:length(param2_range)

rho_2 = param2_range(rho2_idx);
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z_s=[rho_1,rho_2];

[cv_w, cv_c,ValueL] = sgLeastR(cv_X_tr, cv_Y_tr,z_s,opts);

cv_W = [cv_W cv_w];

cv_C = [cv_C cv_c];

diff=sum((cv_Y_te-cv_X_te*cv_w).*(cv_Y_te-cv_X_te*cv_w));

lldiff=[lldiff diff];

end

end

metric_arr=reshape(lldiff, length(param2_range),length(param1_range));

metric_arrt=metric_arr’;

cv_performance=cv_performance+metric_arrt;

end

[isgl jsgl] = find(cv_performance == min(cv_performance(:)));

rho1_idx_sgl=isgl(1,1);

rho2_idx_sgl=jsgl(1,1);

param1_sgl = param1_range(rho1_idx_sgl);

param2_sgl = param2_range(rho2_idx_sgl);

z_sgl=[param1_sgl,param2_sgl];

[w_SGL_CV10,c2,ValueL]=sgLeastR(A, y, z_sgl, opts); %SGL

% lamda 1 and lamda 2

z_sgl=z_sgl’;

z_SGL_CV10_output=[z_SGL_CV10_output z_sgl];

% estimate of beta from DSGL

w_SGL_CV10_output=[w_SGL_CV10_output w_SGL_CV10]; %SGL

%group info computation

w_SGL_CV10_grp=[]; %used to create est. group info

for k=1:ngrp

lgrp=1+grpsize*(k-1);

ugrp=grpsize+grpsize*(k-1);

if all(w_SGL_CV10(lgrp:ugrp)==0)
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w_SGL_CV10_grp(k)=0;

else

w_SGL_CV10_grp(k)=1;

end

end

%group evaluation

BETA=beta_true_grp~=0; %Ori_nonzero

beta2=w_SGL_CV10_grp~=0; %Est_nonzero

TP_SGL_CV10_grp=sum( ( (BETA==1) + (beta2==1) )==2 );

FP_SGL_CV10_grp=sum( ( (BETA==0) + (beta2==1) )==2 );

FN_SGL_CV10_grp=sum( ( (BETA==1) + (beta2==0) )==2 );

TN_SGL_CV10_grp=sum( ( (BETA==0) + (beta2==0) )==2 );

TPR_SGL_CV10_grp=TP_SGL_CV10_grp/(TP_SGL_CV10_grp+FN_SGL_CV10_grp);

FPR_SGL_CV10_grp=FP_SGL_CV10_grp/(FP_SGL_CV10_grp+TN_SGL_CV10_grp);

%----------------------------sgSDR BIC Process---------------------%

param1_range = [0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

param2_range = [0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

BIC=[];

gama=0; % need to try 0, 0.5 and 1

czero=0.1;

BIC_W=[];

BIC_C=[];

for rho1_idx = 1:length(param1_range)

rho_1 = param1_range(rho1_idx);

for rho2_idx = 1:length(param2_range)

rho_2 = param2_range(rho2_idx);

z=[rho_1,rho_2];

[BIC_w, BIC_c,ValueL] = sgLeastR(A,F,z,opts);



93

BIC_W = [BIC_W BIC_w];

BIC_C = [BIC_C BIC_c];

RSS_lamda=sum((F-A*BIC_w).*(F-A*BIC_w));

c=czero*var(F);

M_size=BIC_w~=0;

M_lamda=sum(M_size);

difference=n-M_lamda;

combination=nchoosek(n,M_lamda);

bic=m*log(RSS_lamda/m+c)+log(m)*M_lamda+2*gama*combination;

BIC=[BIC bic];

end

end

BIC_performance=reshape(BIC, length(param2_range),length(param1_range));

BIC_performance=BIC_performance’;

[i j] = find(BIC_performance == min(BIC_performance(:)));

rho1_idx=i(1,1);

rho2_idx=j(1,1);

param1 = param1_range(rho1_idx);

param2 = param2_range(rho2_idx);

z=[param1,param2];

[w_DSGL_BIC0,c1,ValueL] = sgLeastR(A, F, z,opts); %DSGL

% lamda 1 and lamda 2

z=z’;

z_DSGL_BIC0_output=[z_DSGL_BIC0_output z];

% estimate of beta from DSGL

w_DSGL_BIC0_output=[w_DSGL_BIC0_output w_DSGL_BIC0];

%group info computation

w_DSGL_BIC0_grp=[]; %used to create est. group info

for k=1:ngrp

lgrp=1+grpsize*(k-1);
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ugrp=grpsize+grpsize*(k-1);

if all(w_DSGL_BIC0(lgrp:ugrp)==0)

w_DSGL_BIC0_grp(k)=0;

else

w_DSGL_BIC0_grp(k)=1;

end

end

%evaluation

BETA=beta_true_grp~=0; %Ori_nonzero

beta3=w_DSGL_BIC0_grp~=0; %Est_nonzero

TP_DSGL_BIC0_grp=sum( ( (BETA==1) + (beta3==1) )==2 );

FP_DSGL_BIC0_grp=sum( ( (BETA==0) + (beta3==1) )==2 );

FN_DSGL_BIC0_grp=sum( ( (BETA==1) + (beta3==0) )==2 );

TN_DSGL_BIC0_grp=sum( ( (BETA==0) + (beta3==0) )==2 );

TPR_DSGL_BIC0_grp=TP_DSGL_BIC0_grp/(TP_DSGL_BIC0_grp+FN_DSGL_BIC0_grp);

FPR_DSGL_BIC0_grp=FP_DSGL_BIC0_grp/(FP_DSGL_BIC0_grp+TN_DSGL_BIC0_grp);

%--------------Sparse Group Lasso BIC Process---------------------%

param1_range = [0.0005 0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

param2_range = [0.0005 0.001 0.003 0.005 0.007 0.009 0.01 0.03 0.05 0.07 ...

30 50 70 90 100 200 300 400 500];

BIC=[];

gama=0; % need to try 0, 0.5 and 1

czero=0.1;

BIC_W=[];

BIC_C=[];

for rho1_idx = 1:length(param1_range)

rho_1 = param1_range(rho1_idx);

for rho2_idx = 1:length(param2_range)

rho_2 = param2_range(rho2_idx);
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z=[rho_1,rho_2];

[BIC_w, BIC_c,ValueL] = sgLeastR(A,y,z,opts);

BIC_W = [BIC_W BIC_w];

BIC_C = [BIC_C BIC_c];

RSS_lamda=sum((y-A*BIC_w).*(y-A*BIC_w));

c=czero*var(y);

M_size=BIC_w~=0;

M_lamda=sum(M_size);

difference=n-M_lamda;

combination=nchoosek(n,M_lamda);

bic=m*log(RSS_lamda/m+c)+log(m)*M_lamda+2*gama*combination;

BIC=[BIC bic];

end

end

BIC_performance=reshape(BIC, length(param2_range),length(param1_range));

BIC_performance=BIC_performance’;

[i j] = find(BIC_performance == min(BIC_performance(:)));

rho1_idx=i(1,1);

rho2_idx=j(1,1);

param1 = param1_range(rho1_idx);

param2 = param2_range(rho2_idx);

z=[param1,param2];

[w_SGL_BIC0,c1,ValueL] = sgLeastR(A, y, z,opts); %DSGL

% lamda 1 and lamda 2

z=z’;

z_SGL_BIC0_output=[z_SGL_BIC0_output z];

% estimate of beta from DSGL

w_SGL_BIC0_output=[w_SGL_BIC0_output w_SGL_BIC0];

%group info computation

w_SGL_BIC0_grp=[]; %used to create est. group info
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for k=1:ngrp

lgrp=1+grpsize*(k-1);

ugrp=grpsize+grpsize*(k-1);

if all(w_SGL_BIC0(lgrp:ugrp)==0)

w_SGL_BIC0_grp(k)=0;

else

w_SGL_BIC0_grp(k)=1;

end

end

%evaluation

BETA=beta_true_grp~=0; %Ori_nonzero

beta4=w_SGL_BIC0_grp~=0; %Est_nonzero

TP_SGL_BIC0_grp=sum( ( (BETA==1) + (beta4==1) )==2 );

FP_SGL_BIC0_grp=sum( ( (BETA==0) + (beta4==1) )==2 );

FN_SGL_BIC0_grp=sum( ( (BETA==1) + (beta4==0) )==2 );

TN_SGL_BIC0_grp=sum( ( (BETA==0) + (beta4==0) )==2 );

TPR_SGL_BIC0_grp=TP_SGL_BIC0_grp/(TP_SGL_BIC0_grp+FN_SGL_BIC0_grp);

FPR_SGL_BIC0_grp=FP_SGL_BIC0_grp/(FP_SGL_BIC0_grp+TN_SGL_BIC0_grp);

% -------------------outputs computation--------------------------%

% evaluation for DSGL_CV10

%TPR=true positive rate=true declared positive/true positive=TDP/TP

%FPR=false positive rate = declared false positives/true negative

%FDR = false discovery rate = declared false positive/ declared positive

Y=xOrin~=0; %Ori_nonzero

T1=w_DSGL_CV10~=0; %Est_nonzero

TP_DSGL_CV10=sum( ( (Y==1) + (T1==1) )==2 );

FP_DSGL_CV10=sum( ( (Y==0) + (T1==1) )==2 );

FN_DSGL_CV10=sum( ( (Y==1) + (T1==0) )==2 );

TN_DSGL_CV10=sum( ( (Y==0) + (T1==0) )==2 );

TPR_DSGL_CV10=TP_DSGL_CV10/(TP_DSGL_CV10+FN_DSGL_CV10);
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FPR_DSGL_CV10=FP_DSGL_CV10/(FP_DSGL_CV10+TN_DSGL_CV10);

% evaluation for SGL_CV10

Y=xOrin~=0; %Ori_nonzero

T2=w_SGL_CV10~=0; %Est_nonzero

TP_SGL_CV10=sum( ( (Y==1) + (T2==1) )==2 );

FP_SGL_CV10=sum( ( (Y==0) + (T2==1) )==2 );

FN_SGL_CV10=sum( ( (Y==1) + (T2==0) )==2 );

TN_SGL_CV10=sum( ( (Y==0) + (T2==0) )==2 );

TPR_SGL_CV10=TP_SGL_CV10/(TP_SGL_CV10+FN_SGL_CV10);

FPR_SGL_CV10=FP_SGL_CV10/(FP_SGL_CV10+TN_SGL_CV10);

%evaluation for DSGL_BIC0

Y=xOrin~=0; %Ori_nonzero

T3=w_DSGL_BIC0~=0; %Est_nonzero

TP_DSGL_BIC0=sum( ( (Y==1) + (T3==1) )==2 );

FP_DSGL_BIC0=sum( ( (Y==0) + (T3==1) )==2 );

FN_DSGL_BIC0=sum( ( (Y==1) + (T3==0) )==2 );

TN_DSGL_BIC0=sum( ( (Y==0) + (T3==0) )==2 );

TPR_DSGL_BIC0=TP_DSGL_BIC0/(TP_DSGL_BIC0+FN_DSGL_BIC0);

FPR_DSGL_BIC0=FP_DSGL_BIC0/(FP_DSGL_BIC0+TN_DSGL_BIC0);

%evaluation for SGL_BIC0

Y=xOrin~=0; %Ori_nonzero

T4=w_SGL_BIC0~=0; %Est_nonzero

TP_SGL_BIC0=sum( ( (Y==1) + (T4==1) )==2 );

FP_SGL_BIC0=sum( ( (Y==0) + (T4==1) )==2 );

FN_SGL_BIC0=sum( ( (Y==1) + (T4==0) )==2 );

TN_SGL_BIC0=sum( ( (Y==0) + (T4==0) )==2 );

TPR_SGL_BIC0=TP_SGL_BIC0/(TP_SGL_BIC0+FN_SGL_BIC0);

FPR_SGL_BIC0=FP_SGL_BIC0/(FP_SGL_BIC0+TN_SGL_BIC0);

%collecting all the outputs

TPR_DSGL_CV10_output=[TPR_DSGL_CV10_output TPR_DSGL_CV10];
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TPR_SGL_CV10_output=[TPR_SGL_CV10_output TPR_SGL_CV10];

TPR_DSGL_BIC0_output=[TPR_DSGL_BIC0_output TPR_DSGL_BIC0];

TPR_SGL_BIC0_output=[TPR_SGL_BIC0_output TPR_SGL_BIC0];

FPR_DSGL_CV10_output=[FPR_DSGL_CV10_output FPR_DSGL_CV10];

FPR_SGL_CV10_output=[FPR_SGL_CV10_output FPR_SGL_CV10];

FPR_DSGL_BIC0_output=[FPR_DSGL_BIC0_output FPR_DSGL_BIC0];

FPR_SGL_BIC0_output=[FPR_SGL_BIC0_output FPR_SGL_BIC0];

%colletcing group info output

TPR_DSGL_CV10_GRP_output=[TPR_DSGL_CV10_GRP_output TPR_DSGL_CV10_grp];

TPR_SGL_CV10_GRP_output=[TPR_SGL_CV10_GRP_output TPR_SGL_CV10_grp];

TPR_DSGL_BIC0_GRP_output=[TPR_DSGL_BIC0_GRP_output TPR_DSGL_BIC0_grp];

TPR_SGL_BIC0_GRP_output=[TPR_SGL_BIC0_GRP_output TPR_SGL_BIC0_grp];

FPR_DSGL_CV10_GRP_output=[FPR_DSGL_CV10_GRP_output FPR_DSGL_CV10_grp];

FPR_SGL_CV10_GRP_output=[FPR_SGL_CV10_GRP_output FPR_SGL_CV10_grp];

FPR_DSGL_BIC0_GRP_output=[FPR_DSGL_BIC0_GRP_output FPR_DSGL_BIC0_grp];

FPR_SGL_BIC0_GRP_output=[FPR_SGL_BIC0_GRP_output FPR_SGL_BIC0_grp];

end

%------------------mean--------------------------%

TPR_DSGL_CV10_meanavg=mean(TPR_DSGL_CV10_output)

TPR_SGL_CV10_meanavg=mean(TPR_SGL_CV10_output)

TPR_DSGL_BIC0_meanavg=mean(TPR_DSGL_BIC0_output)

TPR_SGL_BIC0_meanavg=mean(TPR_SGL_BIC0_output)

FPR_DSGL_CV10_meanavg=mean(FPR_DSGL_CV10_output)

FPR_SGL_CV10_meanavg=mean(FPR_SGL_CV10_output)

FPR_DSGL_BIC0_meanavg=mean(FPR_DSGL_BIC0_output)

FPR_SGL_BIC0_meanavg=mean(FPR_SGL_BIC0_output)

%------------------group mean-----------------------%

TPR_DSGL_CV10_GRP_meanavg=mean(TPR_DSGL_CV10_GRP_output)

TPR_SGL_CV10_GRP_meanavg=mean(TPR_SGL_CV10_GRP_output)
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TPR_DSGL_BIC0_GRP_meanavg=mean(TPR_DSGL_BIC0_GRP_output)

TPR_SGL_BIC0_GRP_meanavg=mean(TPR_SGL_BIC0_GRP_output)

FPR_DSGL_CV10_GRP_meanavg=mean(FPR_DSGL_CV10_GRP_output)

FPR_SGL_CV10_GRP_meanavg=mean(FPR_SGL_CV10_GRP_output)

FPR_DSGL_BIC0_GRP_meanavg=mean(FPR_DSGL_BIC0_GRP_output)

FPR_SGL_BIC0_GRP_meanavg=mean(FPR_SGL_BIC0_GRP_output)

\clearpage



APPENDIX B

MATLAB ALGORITHM: COCUM
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%----------------The following code is for COCUM-----------------%

%----------------------------------------------------------------%

%-------------------generate random variables--------------------%

all_r_CUME=[];

all_r_COCUM=[];

all_dis_CUME=[];

all_dis_COCUM=[];

all_dim_est_CUME=[];

all_dim_est_COCUM=[];

for simu_loop=1:1000

n=400; %sample size

p=10; %the # of predictors

dim=2;

x=randg(2,n,p);

noise=(0.5).*randn(n,1);

truebeta=[1 0 0 0 0 0 0 0 0 0 ; 0 1 0 0 0 0 0 0 0 0 ]’; %true beta

x1=x(:,1);

x2=x(:,2);

x3=x(:,3);

y=0.5.*(x1+1).*(x1+1)+(0.5+(x2+15).*(x2+15))+noise;

%---------------------CUME Computation---------------------%

q = size(y,2);[n,p] = size(x);

Tmp = (inv(cov(x,1)))^(1/2);

z = (x - ones(n,1) * mean(x)) * Tmp;

LAMBDA = zeros(p);

for ii = 1:q

[a, pos] = sort(y(:,ii));

zz = z(pos, :);

muz = cumsum(zz)/n;

LAMBDA = LAMBDA + muz’ * muz;
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end

[U,S,V] = svd(LAMBDA/n);

Basis_CUME = Tmp*U(:,1:dim);

Sigval_CUME = diag(S);

%----------------------COCUM Computation---------------------------%

yy = y(pos);

zzyy = zeros(n,p);

for i = 1: n

zzyy(i,:) = zz(i,:)*yy(i);

end

muzy = cumsum(zzyy)/n;

LAMBDA = muzy’ * muzy;

[U,S,V] = svd(LAMBDA/n);

Basis_COCUM = Tmp*U(:,1:dim);

Sigval_COCUM = diag(S);

%----------------Evaluation of the performances------------------%

P_truebeta=truebeta*inv((truebeta’*truebeta))*truebeta’;

P_estbeta_CUME=Basis_CUME*inv((Basis_CUME’*Basis_CUME))

*Basis_CUME’;

P_estbeta_COCUM=Basis_COCUM*inv((Basis_COCUM’*Basis_COCUM))

*Basis_COCUM’;

r_CUME=trace(P_truebeta*P_estbeta_CUME)/dim;

r_COCUM=trace(P_truebeta*P_estbeta_COCUM)/dim;

dis_CUME=trace(inv(Basis_CUME’*cov(x,1)*Basis_CUME)

*(Basis_CUME’*cov(x,1)*truebeta)

*inv(truebeta’*cov(x,1)*truebeta)

*(truebeta’*cov(x,1)*Basis_CUME));

dis_COCUM=trace(inv(Basis_COCUM’*cov(x,1)*Basis_COCUM)

*(Basis_COCUM’*cov(x,1)
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*truebeta)*inv(truebeta’*cov(x,1)*truebeta)

*(truebeta’*cov(x,1)*Basis_COCUM));

all_r_CUME=[all_r_CUME r_CUME];

all_r_COCUM=[all_r_COCUM r_COCUM];

all_dis_CUME=[all_dis_CUME dis_CUME];

all_dis_COCUM=[all_dis_COCUM dis_COCUM];

%------------------the determination of dimension d------------------%

C=10*0.05*log(n);

allG_CUME=[];

allG_COCUM=[];

Slambda_CUME=Sigval_CUME.*Sigval_CUME;

Dif_CUME=log(Sigval_CUME+1)-Sigval_CUME;

for k=1:p

%G_CUME=n*sum(Slambda_CUME(1:k))

/sum(Slambda_CUME)-(C*k*(k+1)/p);

G_CUME=n*sum(Dif_CUME(1:k))

/(2*sum(Dif_CUME))-(C*k*(k+1)/p);

allG_CUME=[allG_CUME G_CUME];

end

dim_est_CUME=find((allG_CUME) == max(allG_CUME(:)));

Slambda_COCUM=Sigval_COCUM.*Sigval_COCUM;

Dif_COCUM=log(Sigval_COCUM+1)-Sigval_COCUM;

for k=1:p

%G_COCUM=n*sum(Slambda_COCUM(1:k))

/sum(Slambda_COCUM)-(C*k*(k+1)/p);

G_COCUM=n*sum(Dif_COCUM(1:k))

/(2*sum(Dif_COCUM))-(C*k*(k+1)/p);

allG_COCUM=[allG_COCUM G_COCUM];

end

dim_est_COCUM=find((allG_COCUM) == max(allG_COCUM(:)));
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all_dim_est_CUME=[all_dim_est_CUME dim_est_CUME];

all_dim_est_COCUM=[all_dim_est_COCUM dim_est_COCUM];

end

%-------------------------all outputs------------------------%

avg_r_CUME=mean(all_r_CUME)

avg_r_COCUM=mean(all_r_COCUM)

std_r_CUME=std(all_r_CUME)

std_r_COCUM=std(all_r_COCUM)

avg_dis_CUME=mean(all_dis_CUME)/dim

avg_dis_COCUM=mean(all_dis_COCUM)/dim

std_dis_CUME=std(all_dis_CUME)

std_dis_COCUM=std(all_dis_COCUM)

avg_dim_est_CUME=mean(all_dim_est_CUME)

avg_dim_est_COCUM=mean(all_dim_est_COCUM)

summary_dimension_CUME=tabulate(all_dim_est_CUME)

summary_dimension_COCUM=tabulate(all_dim_est_COCUM)

plot(y)
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