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ABSTRACT

Object oriented programming languages raised the level of abstraction by supporting

the explicit first class query constructs in the programming codes. These query constructs

allow programmers to express operations on collections more abstractly than relying on

their realization in loops or through provided libraries. Join optimization techniques from

the field of database technology support efficient realizations of such language constructs.

However, the problem associated with the existing techniques such as query optimization in

Java Query Language (JQL) incurs run time overhead. Besides the programming languages

supporting first-class query constructs, the usage of annotations has also increased in the

software engineering community recently. Annotations are a common means of providing

metadata information to the source code. The object oriented programming languages such

as C# provides attributes constraints and Java has its own annotation constructs that allow

the developers to include the metadata information in the program codes.

This work introduces a series of query optimization approaches to reduce the run

time of the programs involving explicit queries over collections. The proposed approaches

rely on histograms to estimate the selectivity of the predicates and the joins in order to

construct the query plans. The annotations in the source code are also utilized to gather the

metadata required for the selectivity estimation of the numerical as well as the string valued

predicates and joins in the queries. Several cache heuristics are proposed that effectively

cache the results of repeated queries in the program codes. The cached query results are

incrementally maintained up-to-date after the update operations to the collections.
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1. INTRODUCTION

A typical program will perform queries over collection data types, such as lists, by

examining the collection in a loop. Whereas, object oriented programming languages with

support for the explicit first class query constructs allow programmers to express operations

over collections as object queries. Extending programming languages to provide collection

queries as first class constructs in the language would not only allow programmers to write

queries explicitly in their programs but it would also allow compilers to leverage the wealth

of experience available from the database domain to optimize such queries. List compre-

hension expressions supported by Python, LINQ for C# and JQL for Java allow object

querying over collection of objects. The existing optimization approaches such as JQL,

however, incur high run time overhead as optimizations are performed only at run time.

Therefore, our objective in Paper I was to shift the task of query optimization from

run time to compile time and leave the least amount of work at run time as possible. The

advantage of generating query plans at compile time is that the time required for plan

construction is omitted at run time. But, the challenge of constructing a query plan at

compile time is that we should be able to deduce some information about inputs such as

size of collections, size of intermediate results, etc. In order to accomplish this task, we

performed some sample query executions, and learned the information such as the pattern

of changes to data, optimal query plan chosen between multiple subsequent executions

of the same program. Then, we built the histograms from the acquired information and

computed the selectivity estimates of the predicates and the joins in the queries. The query

plan is generated through the determined selectivity estimates at compile time.

In Paper II, we have focused on performing run time query optimization during a

single run of the program. In this scenario, estimations considering the data as well as

information regarding the data are not available until run time. Any learning that happens
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regarding the data has to be leveraged within a single run, from one execution of a query

to the next. We have adapted the approach proposed in Paper I by building the histograms

from the data at run time and used those histograms to determine the selectivity of the

joins and the predicates in the query. After determining the selectivities, we constructed

the query plan at run time that orders the joins and the predicates in the query.

In Paper III, we proposed an approach that integrates our approach of query optimiza-

tion at run time [29] and the join caching approach [39] for a single run of the program.

The caching approach [39] caches the joins involved in the queries instead of caching the

query results. The cache policy determines the joins to cache and the cache replacement

policy efficiently uses the available cache space. We also presented a detailed experimental

evaluation of the proposed strategy on a real world benchmark namely Robocode [27].

In Paper IV, we proposed an compile time query optimization approach for the ob-

ject queries on collections utilizing the programmer defined metadata. The approach an-

alyzes the source code and obtains the metadata provided through the annotations. The

histograms are built from the gathered metadata. Then, the predicate and join selectivity

estimates within a query are computed from these histograms. The query evaluation is per-

formed in two phases where first phase involved the application of the selection and join

optimizations. In the second phase, the query plan is generated at compile time through

the proposed selectivity cost heuristic. However, in cases of inaccurate metadata and sig-

nificant changes to the data, the query plan is modified at run time according to the correct

selectivity estimates obtained from the updated histograms.

The proposed approach in Paper IV, however, is only applicable for the numerical

valued attributes and also requires the annotations to be provided by the programmers man-

ually in the source code. Therefore, in order to overcome these limitations, in Paper V, we

proposed an approach that works for the string valued attributes and also generates the an-

notations automatically from the source code. The approach first collects the data from the

sample execution of the program and extracts the essential metadata for the string valued
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attributes. Then, the annotations consisting of the metadata values associated with string

attributes are generated in the source code and the histograms are built using those anno-

tations. The selectivity estimates of the predicates and the joins in the query are computed

from the histograms. Next, the query plan is generated at compile time through the max-

imum selectivity heuristic. The query plan is modified at run time in cases of significant

updates to the string data. The approach also incorporates the cache heuristics that deter-

mine whether to cache the query result or not. The cached query results are incrementally

maintained up-to-date.

In Paper VI, we proposed an approach for efficient caching and incrementalization

of object queries on collections. The approach performs the pattern matching of both the

query and update patterns in the source code at compile time. The cache policies determine

which queries to cache and also decide when to stop the incremental maintenance of the

cached results of the queries. The cached query results are incrementally maintained by

inserting the maintenance code after the update operations such as the addition, the removal

of objects from the collections and the field value modifications of the object states. The

approach also incorporates several cache replacement policies that replace the queries from

the cache when the cache size is full.
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2. LITERATURE REVIEW

Query optimizations for databases, relational and object-oriented, are a large area of

study. In this work, we primarily concentrate on query optimization techniques that re-

duce the run time, object oriented languages that support first class query constructs and

selectivity estimation techniques. Therefore, the related work can be divided into three

subsections namely (i) Object querying systems that offer object querying and allow pro-

grammers to explicitly mention queries in the program, (ii) Query optimization techniques

in the field of databases and (iii) Selectivity estimation techniques for the predicates and

joins in query. We provide the review of the existing approaches and the comparison of the

approaches across a number of characteristics and also present the limitations involved in

the techniques.

2.1. OBJECT QUERYING SYSTEMS

The Standard Template Library (STL) [43] provides C++ programmers with a library

of common data structures such as linked lists, vectors, dequeues, sets and maps and a set of

fundamental algorithms that operate on them. STL reduces the burden of C++ programmers

by implementing these data structures and performing the operations efficiently. Later on,

the languages raised the level of abstraction by supporting first-class query constructs and

those query constructs allowed the programmer to perform operations on the data structures

efficiently.

JQL [40, 41, 42] supports automatic optimization using join query optimization tech-

niques taken from the database domain. A query plan is constructed at run time after

incorporating information concerning size of relations. JQL performs sampling on a small

number of tuples to determine the selectivity of joins and predicates in a query. JQL handles

the addition, modification or deletion of the objects in the program by generating dynamic
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join order strategies [4, 19] at run time. However, selectivity estimates based on sampling

a small number of tuples does not lead to an efficient ordering of joins and predicates in a

query. In addition, query optimization imposes a run time burden on the program.

Similarly to JQL, LINQ [25] for C# operates on collections of objects by transform-

ing the queries into methods that perform filtering and mapping on the collection. LINQ

provides integrated querying for object collections, XML structure and SQL databases as

well. LINQ offers differed execution that defers the execution of a query until the moment

the data is actually requested. However, LINQ does not maintain statistics about the data

such as the size of a collection, distribution of values for doing additional optimizations

such as picking hash joins or nested loops based on sizes of collections. Also, some of the

LINQ optimizations are only for readability instead of performance improvement.

DryadLINQ [8] provides extensions to LINQ [25] and creates a programming envi-

ronment that is applicable for large scale distributed computing. DryadLINQ consists of

LINQ expressions that are written using .NET tools and those expressions perform oper-

ations on data sets. The approach of DryadLINQ is not applicable in our domain as the

focus of this work is not on performing operations on large scale distributed data.

Python provides list comprehension expressions [33] that allow for query like expres-

sions over collection of objects. The list comprehensions can filter and map collections and

the expressions always return lists. List comprehensions provide a neat, clear and concise

syntax. However, for complex transformations or predicates, the concise and clear syntax

becomes very difficult to read and also the list comprehensions are not efficient in situa-

tions with multiple source collections and complicated filter expressions. Further, Python

doesn’t provide any explicit join optimization techniques but just provides comprehensions

that serve as alternative to nested loops.

The query based debuggers developed for java in [20, 21, 22, 23] also support query-

ing operations over objects in running program and use join ordering strategies for opti-

mization. The queries consist of constraint evaluations that are similar to the relational
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database joins coupled with a selection. Then, the query evaluator applies sophisticated

optimization algorithms to speed the execution of the query and to deliver the results incre-

mentally. But, these query debuggers don’t perform optimally all the time, they sometimes

find fairly bad orderings and their primary objective is not to find the optimal join order.

These debugging tools also don’t have the capability of passing their results back to the

program for usage by the programmer.

2.2. QUERY OPTIMIZATION

The relational database literature is rich in research on join query optimization and

a significant amount of work has been focused on the optimization of queries. In this

document, we review the query optimization techniques that reduce the run execution time

of the queries.

In [12], they have studied the problem of optimizing queries for all possible values of

run time parameters that are unknown at optimization time, a task that they call Parametric

query optimization so that need for re-optimization is reduced. Parametric query optimiza-

tion [12] identifies multiple execution plans at compile time which are optimal for a subset

of all possible values of the run time parameters. However, this approach explores the

search space exhaustively and it is not cost effective if the query is executed infrequently

or if the query is executed with only a subset of parameters considered during compile

time. The Parametric query optimization approach also tends to miss statistical errors in its

estimates and has a much higher start up cost than optimizing a query a single time.

The problem in [12] has been resolved in [4] by progressively exploring the param-

eter space and building a parametric plan during several executions of the same query.

Progressive parametric query optimization maintains a data structure Parametric Plan (PP)

for the incremental maintenance of the plans and obtains the optimal plan by consulting the

PP data structure. Therefore, unlike Parametric query optimization, Progressive Paramet-

ric query optimization does not perform extra optimizer calls or extra plan-cost evaluation
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calls. At execution time, this approach selects which plan to execute by using only the

input cost parameters without recosting plans.

In [6], most of the optimization effort is performed at compile time and only selected

optimization decisions are delayed until run time. Choose-plan operators are used to exe-

cute the delayed decisions. The dynamic plans remain optimal even if parameters change

after the program has been compiled but before it is run. There is an overhead associated

with selecting which decisions to delay as well as with the implementation of the choose-

plan operator.

The dynamic query optimization approach in Rdb/VMS [2, 3] generates multiple

query plans in parallel in order to execute a query. When one plan finishes or makes sig-

nificant progress, the other plans are suspended. The dynamic optimization approach deals

with high uncertainties at execution time by using parallel runs and dynamic cost model.

This approach requires large resources, yet is only applied to subcomponents of a query.

Their sampling techniques for estimation were ineffective and the dynamic plans are vul-

nerable to estimation uncertainties.

Dynamic query evaluation [6, 19] and parametric query optimization [4, 12] generate

a number of query plans that are optimal for different run time data. However, the com-

plexity of these approaches increases dramatically as the number of unknown run time data

items increases. These approaches rely on randomization [38] when exploring the huge

search space or are forced to make simplifying assumptions. However, Dynamic reevalua-

tion of execution plan [6, 19] helps only partially since some estimations are impossible, or

imprecise, or too costly when done at the start retrieval time and since data interaction un-

certainty can often be irresolvable unless by the actual retrieval run. A Bayesian approach

to database query optimization in [35] uses decision-theoretic methods to pre compute sce-

narios and reduces uncertainties by sampling.

The proposed algorithm in [17] detects the sub-optimality of a query execution plan

by collecting statistics at significant points during the query execution. Their approach
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uses a regular query optimizer to generate a single plan, annotated with the expected cost

and size statistics at all stages of the plan. During the execution of query, the annotated

statistics are compared with the actual statistics and if there is a significant difference then

the query execution is suspended and re-optimized using accurate value of parameters.

However, reoptimizing part of the query and modifying the query execution plan at run

time incurs an overhead. Similarly in [7], query execution plans generated by an optimizer

are re-optimized just before query execution time if they are believed to be sub-optimal. At

query execution time, the actual statistics from the system catalogs are compared against the

statistics stored in the plan. If they are found to differ significantly the query is re-optimized

before execution. This differs from the approach in [17] as the query is only re-optimized

before execution begins and there is no collection of statistics, or modification of the plan

in the middle of query execution.

2.3. ESTIMATION OF SELECTIVITIES

The execution of the query is impacted significantly by the ordering of joins in a

query. The optimal ordering of the joins depends on the sizes of the collections and selec-

tivity of each stage. Knowing the selectivity of each stage reduces the burden of finding the

optimal ordering for a pipeline of n stages requiring n! possible orderings. Therefore, de-

termining the selectivity of each stage is a critical aspect of query optimization that decides

the order of evaluation of a query. Several techniques have been proposed in the literature

to estimate the selectivities such as sampling [10, 35, 42], probabilistic models [9, 35] and

histograms [1, 10, 13, 31].

The techniques based on sampling [10, 35, 42] primarily operate at run time and

compute their estimates by collecting and possibly processing random samples of the data.

The main disadvantage of this approach is the overhead it adds to query optimization and

the amount of data required for accurate estimation can be quite large. Although produc-

ing highly accurate estimates, sampling is quite expensive and, therefore, its practicality
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in query optimization is questionable, especially since optimizers need query result size

estimations frequently. Selectivity estimation in JQL [42] is done using a sampling heuris-

tic, that evaluates a small number of randomly selected tuples from the inputs and uses the

number that passes the query condition as an estimate of the selectivity of that join.

In [9], they propose an alternative approach for the selectivity estimation problem,

based on techniques from the area of probabilistic graphical models. They provide a uni-

form framework for select, foreign-key join selectivity estimation by introducing a system-

atic method for estimating the size of queries involving both operators. The advantage is

that their approach is not limited to answering a small set of predetermined queries i.e., a

single statistical model can be used to effectively estimate the sizes of any query, over any

set of tables and attributes in the database. But this technique involves the complexity of

building the probabilistic relational models from the data.

Despite the popularity of histograms, most issues related to their maintenance have

not been studied in the literature. Some recent work [1, 10, 13, 32] has addressed this short-

coming. Histograms approximate the frequency distribution of an attribute by grouping

attribute values into buckets and approximating true attribute values and their frequencies

in the data based on summary statistics maintained in each bucket. A major disadvantage

of histograms is the cost of building and maintaining them. The main advantages of his-

tograms over other techniques are that they incur almost no run time overhead, they do not

require the data to fit a probability distribution or a polynomial and, for most real-world

databases, there exist histograms that produce low-error estimates while occupying reason-

ably small space.

A novel approach for building histograms based on wavelets is presented in [24]. Still

some of the commercial DBMSs, use trivial histograms, i.e., make the uniform distribution

assumption [36]. That assumption, however, rarely holds in real data and estimates based

on it usually have large errors [1, 11]. Reducing the cost of maintaining equi-depth and

compressed histograms is the focus of [10].
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The concept of using feedback from the query execution engine to estimate data dis-

tributions is introduced in [5]. The data distribution is represented as a linear combination

of model functions. Feedback information is used to adjust the weighting coefficients of

this linear combination by a method called recursive-least-square-error. A different type

of feedback from the execution engine to the optimizer is proposed in [17]. The execution

engine invokes the query optimizer to re-optimize a query if the statistics collected during

execution lead to a better query plan.

In [1], they build self-tuning histograms based on feedback from the query execution

engine without looking at the data. The process of refinement consists of refining individual

bucket frequencies with every range selection on the histogram attribute, and periodically

restructuring the histogram, i.e., moving the bucket boundaries. But the self tuning his-

tograms are only suitable for low to medium data skew and are driven by feedback from

range selection queries. Moreover, the approach does not examine the data and it will lead

to inaccuracy in the estimates.
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Object querying is an abstraction of operations over collections, whereas manual

implementations are performed at low level which forces the developers to specify how

a task must be done. Some object-oriented languages allow the programmers to express

queries explicitly in the code, which are optimized using the query optimization techniques

from the database domain. In this regard, Java Query Language has been developed that

allows object querying and performs the query optimization at run time. Therefore, only

one problem is how to reduce the task of query optimization at run time as much as possible

within the Java Query Language system. In this paper, we have developed a technique

that performs query optimization at compile time to reduce the burden of optimization

at run time to improve the performance of the code execution. The proposed approach

uses histograms that are computed from the data and these histograms are used to get the

estimate of selectivity for query joins and predicates in a query at compile time. With these

estimates, a query plan is constructed at compile time and executed it at run time. The

experimental trials show that our method performs better in terms of run time comparisons

than the existing query optimization techniques used in the Java Query Language.
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1. INTRODUCTION

First class query constructs are being introduced in many object-oriented program-

ming languages. These constructs help in increasing the legibility of the programs and

capability of the programmers. Various constructs such as C# LINQ, Python comprehen-

sions and Java Query Language [21] allow queries to be written in a concrete manner.

These query constructs have various benefits over representing queries implicitly. Explicit

queries can be more concise and clear than the queries written by making use of other APIs.

These query constructs also allow developers to be more productive and work at a higher

level of abstraction.

JQL [21] is an addition to Java that provides the capability for querying collections

of objects. These queries can be applied on objects in collections in the program or can be

used for checking expressions on all instances of specific types at run time. Queries allow

the query engine to take up the task of implementation details by providing abstractions

to handle sets of objects thus making the code smaller and permitting the query evaluator

to choose the optimization approaches dynamically even though the situation changes at

run time. For example, if there is a nested loop iterating on two collections in a code

then the loop is executed by iterating over both the collections, whereas in JQL, the query

evaluator will select a method for joining two collections together by making use of join

query optimization techniques that a developer may think too complex or time-consuming

to write. The Java code and the JQL query will give the same set of results but the JQL

code is elegant, brief, and abstracts away the accurate method of finding the matches.

Object collections are mutated in object-oriented languages as objects will be added

or removed during the execution of a program. Therefore, same query evaluation at two

different places in the program may produce different results. The issue of updates to under-

lying data does not arise in list and set comprehensions in functional languages. However,
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this issue has been handled in Java Query Language (JQL) by generating the dynamic join

ordering strategies.

In this paper, we address the problem of reducing the burden of query optimization

to the query optimizer at run time in Java Query Language to a significant extent. Our key

concept is to perform the task of query optimization at compile time as much as possible.

We improvise over JQL on the issue of handling updates to data using histograms discussed

later in this section.

The main issues addressed in this paper are:

1. How to shift most of the work of query optimization from run time to compile

time so that least amount of work is left to be done at run time? To achieve this, we intend

to have the query plans generated at compile time. Query plans are a step by step ordered

procedure describing the order in which the query predicates need to be executed. Thus, at

run time, the time required for plan construction is omitted. So we need to have the code

working in static mode, i.e., without knowing the inputs at compile time, we need to be

able to derive some information about inputs like sizes of relations by estimating them to

generate the query plan.

2. What information is needed to allow the prediction and the code to work in a

static fashion? Given a join query, its selectivity needs to be estimated to design better

query plans. For such estimations and predictions we need to have information such as

sizes of relations, sizes of intermediate results, etc. To accomplish this task, we propose

the following:

• Perform some sample query executions.

• Have an estimate of pattern of data changes.

• From the results of sample queries, estimate the selectivities using histograms.

• Record change of data periodically before compile time, estimate delta change and

pattern of changes so that the histograms are adaptable for data additions.
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This paper describes a method using histograms to get the estimates of selectivity.

In JQL [21], they are using selectivity estimate based on sampling some number of tuples,

but that does not lead to efficient ordering of joins and predicates in a query. Therefore,

we propose using the estimates of selectivities of joins and the predicates from histograms

to provide us an efficient ordering of joins and predicates in a query. Once we collect this

information, we can form the query plan by having the order of joins and predicates in

a query. After we get the query plan at compile time, we execute that plan at run time

to reduce the execution time. Experimental results indicate that our approach reduces run

time execution less than the existing JQL codes run time due to our approach of optimizing

the query and handling data updates using histograms.
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2. RELATED WORK

Query optimizers perform poorly often because their compile time cost models use

inaccurate estimates of various parameters. A novel optimization model that assigns the

most of the work to compile time and delays carefully selected optimization decisions until

run time has been explored in [11]. Query plans are incomparable at compile time due

to the missing run time parameter bindings. Those plans are partially ordered by cost at

compile time and they use the choose plan operator to compare those partially ordered

plans at run time.

During a query execution, values of parameters may be changed during executions.

This makes the chosen plan invalid. This issue has been addressed in [12] by proposing

to optimize queries as much as possible at compile time taking into account all possible

values that parameters may have at run time.

An approach using a regular query optimizer to generate a single plan, annotated

with the expected cost and size statistics at all stages of the plan has been proposed in

[13]. During the execution of query, the annotated statistics are compared with the actual

statistics and if there is a significant difference then the query execution is suspended and

re-optimized using accurate value of parameters.

Even though Parametric Query Optimization exhaustively determines the optimal

plan in each point of the parameter space at compile time, it is not cost effective if the

query is executed infrequently or if the query is executed with only a subset of parameters

considered during compile time. This problem has been resolved in [3] by progressively

exploring the parameter space and building a parametric plan during several executions of

the same query.

A compile time estimator that provides quantified estimate of the optimizer compile

time for given query has also been proposed in [9]. They use the number of plans to
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estimate query compilation time and employ two novel ideas: (i) reusing an optimizers

join enumerator to obtain actual number of joins, but bypassing plan generation to save

estimation overhead; (ii) maintaining a small number of interesting properties to facilitate

counting.

Algorithms for compile time regular path expression expansion in the context of Lorel

query language for semistructured data have been explored in [15]. They expand regular

path expressions at compile time using the structural summary and thus, reducing the run

time overhead of database exploration.

All these approaches involve making decision after compile time. The way they deal

with uncertainty is to wait until they have more information. Therefore, we propose to

use histograms to estimate selectivities of joins and predicates in a query at compile time.

In our research, we prefer static query optimization at compile time over dynamic query

optimization because it reduces the query run time.
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3. ESTIMATING SELECTIVITY USING HISTOGRAMS

The selectivity of a predicate in a query is a decisive aspect for a query plan genera-

tion. The ordering of predicates can considerably affect the time needed to process a join

query. To have the query plan ready at compile time, we need to have the selectivities of

all the query predicates. To calculate these selectivities, we use histograms.

The histograms are built using the number of times an object is called. For this, we

partition the domain of the predicate into intervals called windows. With the help of past

queries, the selectivity of a predicate is derived with respect to its window. That is, if a

table T has 100,000 rows and a query contains a selection predicate of the form T.a=10 and

a histogram shows that the selectivity of T.a=10 is 10% then the cardinality estimate for the

fraction of rows of T that must be considered by the query is 10% x 100,000 = 10,000. This

histogram approach would help us in estimating the selectivity of a join and hence decide

on the order in which the joins have to be executed. So, we get the join ordering and the

predicate ordering in the query expression at compile time itself. Thus, from this available

information, we can construct a query plan. A detailed description of how the histograms

are built is given in the following section.

3.1. BUILDING HISTOGRAM

From the data distribution, we build the histogram that contains the frequency of

values assigned to different buckets. If the data is numerical, we can easily assign some

ranges and assign the values to buckets accordingly. If the data is categorical then we have

to partition the data into ranges with respect to the letter they start with and assign the

appropriate values to buckets. Next, we perform some sample query executions. These

sample executions consume a small amount of the available resources. From the results

of these queries, we will estimate frequencies for the histogram. However, the underlying
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data can tend to undergo changes. Thus we need to have an estimate for the pattern of data

changes. For this, we record changes in data, estimate delta change and pattern of change

which can be inferred as the executions proceed so that the histograms are adaptable for

data additions.

3.2. INCREMENTAL MAINTENANCE OF HISTOGRAMS

The underlying data could be mutable. For such mutable data, we need a technique

by which we can restructure the histograms accordingly. Thus, in between multiple query

executions if the database is updated, then we compute the estimation error of the histogram

by using the following equations.

µ j =
S

Nβ

β

∑
i=1

( fi−Bi)
2

Ti =
w1µ1 +w2µ2 + · · ·+wnµn

w1 +w2 + · · ·+wn

where µa is the estimation error for attribute a in the collection R, β is the number

of buckets, N is the number of tuples in R, S is the number of selected tuples, fi is the

frequency of bucket i in the histogram, S/N is the query frequency , Bi is the observed

frequency, Ti is the error estimate for each individual table and wi is the weight of attribute

i depending on the rate of change of the attribute.

If the calculated error (Ti) is > 0.5 then we update the histogram. Otherwise we use

the same old histogram to give the selectivity estimate. Next, we scan the data and update

buckets. If some buckets exceed a fixed threshold then we use split and merge algorithm.

However the issues are how and when we know that the underlying data has been updated.

For this, a heuristic that can be used is to consider popular queries. A popular query is a
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query that has high frequency of occurrence. These popular queries can help in reporting

data changes.

We can constantly keep track of the result set of a popular query. When the results of

consecutive executions of this query do not match, it indicates an update to the data and thus

we can compute the error and decide whether to recompute the histogram or to continue

with the existing histogram. However, we do not want to recompute a histogram for a table

that is not often accessed. Thus, we make use of the frequency of access of a particular

table to decide when and when not to compute the histogram. If the access frequency is

getting higher then it increase its probability and the corresponding histogram needs to be

maintained up-to-date. Access Frequency represents the number of tuples accessed by a

query.

When the access frequency is high, and the tuples are accessed more often, we need

to recompute the histogram. When the access frequency is low, the tuples are not accessed

frequently and therefore, there is no need to recompute the histogram even in case of a data

change.

When building a histogram, we need to assign the values to buckets. Frequency dis-

tribution for numerical data is straight forward but frequency distribution for alphabetical

data is not. Now considering the alphabetical data such as first names, last names, Organi-

zation names etc., question arises as to how we can split these into buckets. The idea we

propose here is to group the alphabetical data with respect to the letter they start with and

alphabets of similar frequency of occurrences grouped into a single bucket. This grouping

avoids the existence of a very high frequency alphabet with a very low frequency alphabet

in a bucket.

3.3. METHOD OUTLINE FOR ERROR ESTIMATION

For each attribute in the data table, we compute the error estimate by using standard

deviation between updated data values and old data values in the histogram buckets. Then,
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for every table, we have error estimates for all the attributes. Then, we take a weighted

average of all the attributes error estimates. If that weighted average is greater than a

certain threshold (say 0.5) then the tables histogram must be updated. Here is the approach

for the error estimates using the equations from Section 3.2:

• For every selection on the histogram attribute, we compute the approximation error

(Ti). For each table, we compute error estimate for all the attributes (µa) in that

table. Then for each table, we take a weighted average of all the attribute errors.

If that computed error (Ti) is greater than a threshold, and then we update histogram

otherwise we need not update the histogram. This is shown in the Algorithm 1 (Lines

1-7).

• If error (Ti) > 0.5 then we scan the data and update buckets.

• If some buckets exceed a threshold then we use split and merge algorithms.

Algorithm 1 Error Estimation Algorithm
Require: H: Histogram
Ensure: Hnew: Updated histogram based on estimate of the error

1: for T in TableList do
2: for a in T.attlist do
3: calculate µa
4: end for
5: calculate Ti
6: if (Ti > 0.5) then
7: Hnew=Update Histogram(H);
8: else
9: Hnew=H;

10: end if
11: end for
12: return Hnew;
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Algorithm 2 Evaluate Query Algorithm
Require: q: Query to be processed,Th: Time period Threshold, H: Initial Histogram, Tcur:

Current Time period of the query, Tprev: Previous Time period of execution of query
Ensure: rs: result set of a query

1: rs:=NIL
2: if (log contains(q)=true) then
3: if (Tcur - Tprev > Th) then
4: Hnew=Update Histogram(H);
5: rs=exec(q,Hnew);
6: else if (check DBupdate()=true) then
7: Hnew=Update Histogram(H);
8: rs=exec(q,Hnew);
9: else

10: Hnew=H;
11: rs=exec(q,Hnew);
12: end if
13: else if log contains(q)=false then
14: rs=exec(q,H);
15: end if
16: return rs;

3.4. QUERY EVALUATION

Given a query Q, we use the histogram H to get the estimate of the selectivity of

the query predicates and the selectivities of the joins. Now we have the join order and

predicate order in a query which will be used to construct a query plan. Below we discuss

the possible cases.

The first execution of Query Q uses the histogram H1 to estimate the selectivity. Then

the result of the query is computed. But for the subsequent execution of the same query

Q after a time T, the same histogram H can be left invalid. This situation arises because

there is a possibility that the underlying data has been updated between the first and the

second executions of the same query. The algorithm for query evaluation is presented in

Algorithm 2. Firstly, we check if the query is present in the log (Line 2) then the time
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period difference between consecutive executions of the same query Q from the query log

is computed and if that value is greater than a pre specified time interval then we directly

recompute the histogram because we have assumed the data may be modified within a pre

specified time interval (Lines 3-5). If the time period difference is less than the threshold,

we first compute the error through error estimate function discussed in Section 3.2 and then

based on the error estimate we decide whether to recomputed the histogram or not (Lines

7-12). If the query is not present in the log, then we execute the query based upon the initial

histogram that reduces the overhead cost of incremental maintenance of histogram.

3.5. THE SPLIT & MERGE ALGORITHM

The split and merge algorithm [1] helps reduce the cost of building and maintaining

histograms for large tables. The algorithm is as follows:

• When a bucket count reaches the threshold, T, we split the bucket into two halves

instead of recomputing the entire histogram from the data.

• To maintain the number of buckets (β) which is fixed, we merge two adjacent buckets

whose total count is least and does not exceed threshold T, if such a pair of buckets

can be found.

• Only when a merge is not possible, we recompute the histogram from data.

• The operation of merging two adjacent buckets merely involves adding the counts of

the two buckets and disposing of the boundary between them.

• To split a bucket, an approximate median value in the bucket is selected to serve as

the bucket boundary between the two new buckets using the backing sample.

As new tuples are added, we increment the counts of appropriate buckets. When a

count exceeds the threshold T, the entire histogram is recomputed or, using split merge, we

split and merge the buckets. The algorithm for splitting the buckets starts with iterating
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through a list of buckets, and splitting the buckets which exceed the threshold and finally

returning the new set of buckets.

After splitting is done, we try to merge any two buckets that add up to the least value

and whose count is less than a certain threshold. Then we merge those two buckets. If

we fail to find any pair of buckets to merge then we recompute the histogram from data.

Finally, we return the set of buckets at the end of the algorithm.

Thus, the problem of incrementally maintaining the histograms has been resolved.

Having estimated the selectivity of a join and predicates, we get the join and the predicate

ordering at compile time. We present the experimental results of how our approach for

various types of queries in the next Section 4.
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4. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed query evaluation and the

histogram maintenance algorithms with several experiments. The algorithms are imple-

mented in Java. For all the experiments, we have used an Intel Pentium IV 3.2 GHz, with

1.75 GB RAM running Eclipse v3.4.0.

We have considered four queries of differing complexity based on the number of

joins to explore the effect of query size on performance. The four queries are described in

Table 4.1. We have tested our algorithms performance using these benchmark queries.

4.1. OBSERVATIONS

We have conducted several experiments on these benchmark queries. In each ex-

periment, we have taken a query and executed it using the JQL optimization strategy and

our approach. We measured the run time of both the approaches for the query execution.

The average run time was taken over 50 runs for both the approaches. Similarly, we have

performed experiments for all the benchmark queries.

Figure 4.1 shows the comparison of run times of our approach and the JQL approach

for all the four benchmark queries. The difference in run times has occurred because in

our approach, we have estimated selectivities using histograms and these histograms are

incrementally maintained at compile time which provide the optimal join order strategy

most of the times faster than the exhaustive join order strategy used by JQL. And from

the Figure 4.1, we can see that as the number of joins increase in a query, JQLs approach

becomes more expensive and our approach performs much better than the exhaustive join

ordering strategy of JQL.

Figure 4.2 shows the difference achieved in run time and compile time for execution

of query q1. We can clearly see that our approach has decreased the run time for the
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Table 4.1. Benchmark Queries Details
Query Details
Query1: selectAll(Student s, Faculty f, Course c| s.id=2);
This query requires only the estimate of predicate which is directly made from the
histogram of the student attribute id.
Query2: selectAll(Student s, Faculty f| s.name==f.name);
This query has only one join, so no need of ordering, which can be also estimated
easily from the student and faculty name attribute sizes.
Query3: selectAll(Student s, Faculty f| s.name=f.name && s.id=2);
This query requires ordering of join and predicate.Predicate estimate is made from
the histogram of student attribute id. And the selectivity of the join is made from the
estimate of the student and faculty name attribute sizes.
Query4: selectAll(Student s, Faculty f, Course c| s.name=f.name &&
f.name==c.fname);
This query requires two joins and can be optimized by hash join rather than nested
loop join.
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Figure 4.1. Run times for queres q1,q2,q3 and q4

execution of query. However, the compile time for our approach is slightly higher than the

JQL because we are generating query plan at compile time.



30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Compile Time Run Time

T
im

e
 i

n
 S

e
co

n
d

s

Our Approach

JQL

Figure 4.2. Compile time vs. Run time



31

5. CONCLUSION AND FUTURE WORK

This work is motivated by the fact that the query optimization strategies from

database domain can be used in improving the run time executions in programming lan-

guages. In this paper, we proposed a technique for query optimization at compile time by

reducing the burden of optimization at run time. We proposed using histograms to get the

estimates of selectivity of joins and predicates in a query and then based on those estimates,

to order query joins and predicates in a query. From the join and predicate order, we have

obtained the query plan at compile time and then we executed the query plan at run time.

Experimental results showed that error estimate and split merge algorithms are efficient and

maintain the histograms accurately. Furthermore, our query evaluation algorithm performs

well for different types of queries as we have shown in our experimental results.
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Programming languages with explicit support for queries over collections allow pro-

grammers to express operations on collections more abstractly than relying on their real-

ization in loops or through provided libraries. Join optimization techniques from the field

of database technology support efficient realizations of such language constructs. We de-

scribe an algorithm that performs run time query optimization and is effective for single

runs of a program. The proposed approach relies on histograms built from the data at run

time to estimate the selectivity of joins and predicates in order to construct query plans.

Information from earlier executions of the same query during run time can be leveraged

during the construction of the query plans, even when the data has changed between these

executions. Experimental results demonstrate improvement over earlier approaches, such

as JQL.



35

1. INTRODUCTION

A typical program will perform queries over collection data types, such as sets, by

examining the collection in a loop. For example, scanning all members of a set for whether

they satisfy a certain condition is a low-level way of realizing a select query for that set.

Data structure libraries (e.g., STL [16]) or language level operations providing mapping op-

erators simplify the construction of such programs. However, if language were to support

queries as first-class language constructs, the level of abstraction of such programs would

be raised significantly. Abstract queries over data structures would allow the programmer

to filter or join these data structures, and produce new data structures in a straightforward

manner. Queries as first-class citizens of the language would allow programmers to de-

cide which queries to write instead of focusing on how these queries are implemented. A

compiler could then optimize the queries into high-performance implementations.

Language level constructs such as set and list comprehensions have been developed

early for SETL [13] and are popular in software design languages such as OCL [12]. Pro-

gramming languages such as Python or LINQ [10] have incorporated first-class query con-

structs. These query constructs are more concise and readable than their equivalent imple-

mentations through (possibly nested) loops.

The Java Query Language (JQL [14], [15]) allows the programmer to write queries

explicitly in Java code. JQL supports automatic optimization using join query optimization

techniques taken from the database domain: A query plan is constructed at run time after

incorporating information concerning the size of relations, etc. JQL performs sampling on

a small number of tuples to determine the selectivity of joins and predicates in a query.

During the execution of the program, objects may be added, modified, or deleted. Con-

sequentially, the same query may produce different results when invoked multiple times

during the execution of the program. JQL handles this issue by generating dynamic join
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order strategies [9] at run time. However, selectivity estimates based on sampling a small

number of tuples does not lead to an efficient ordering of joins and predicates in a query.

In addition, query optimization imposes a run time burden on the program.

In order to reduce this run time overhead, [11] proposed to perform query optimiza-

tion [7] at compile time. However, this approach focused on the optimization of multiple

subsequent executions of the same program. After executing several sample queries, selec-

tivities were estimated from histograms [1] and future data changes were predicted from

update patterns. During each run of the program, histogram and data changes learned were

recorded so that an optimal query plan could be selected and executed during the next run

of the program.

The focus of this paper is on performing query optimization during a single run of a

program. In this situation, estimations concerning the data as well as information regarding

changes to the data will not be available until run time. Any learning that happens regarding

the data has to be leveraged within a single run, from one execution of a query to the next.

Consequentially, query optimization will also be performed at run time.

This approach to query optimization introduces additional run time overhead. How-

ever, the cost of building histograms is mitigated, to some degree, by that each data item

needs to be scanned only once, in order to place it into the corresponding bucket of the

histograms. This cost is further reduced by determining selectivity values through a simple

look-up of the histograms. Building histograms at run time has the advantage that multi-

ple scans of data for each evaluation of a query (as in JQL) are avoided. By eliminating

multiple scans over the data, our approach incurs less run time overhead than JQL, despite

that our approach introduces additional overhead associated with building and maintaining

histograms [5].

This paper describes an algorithm for query optimization at run time that is effective

even for a single run of a program. We have adapted the approach proposed in [11] by

building the histograms from data at run time and using those histograms to determine
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the selectivity of joins and predicates in a query. After determining the selectivities, we

construct the query plan which orders joins and predicates in a query. The query will be

executed using that query plan. Experimental evaluation using different types and number

of joins demonstrates that our approach results in a reduced run time overhead compared

with that of JQL.

The rest of the paper is organized as follows. In Section 2, we present related work on

query optimization. Section 3 provides an overview and motivation for our work. Section 4

describes our approach to query optimization for single program runs. Section 5 presents

the performance evaluation of this work, and Section 6 provides conclusions and directions

for future research.
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2. RELATED WORK

The relational database literature is rich in research on join query optimization. A

significant amount of work has been focused on the optimization of queries at compile

time, but significant limitations of this approach have been discussed [7]. More recent

work on query optimization has focused on postponing optimization decisions to query

execution time.

Parametric query optimization [6] identifies multiple execution plans at compile time

which are optimal for a subset of all possible values of the run time parameters. Even

though this approach is able to identify the appropriate query plan without run time over-

head, when actual parameters are available, it explores the search space exhaustively and

also tends to miss statistical errors in its estimates.

In [4], most of the optimization effort is performed at compile time and only selected

optimization decisions are delayed until run time. Choose-plan operators are used to exe-

cute the delayed decisions. There is an overhead associated with selecting which decisions

to delay as well as with the implementation of the choose-plan operator.

In [8], an algorithm has been proposed that detects the sub-optimality of a query ex-

ecution plan by collecting statistics at significant points during the query execution. These

statistics help determine whether to change the execution plan for the remainder of the

query.

Dynamic query evaluation [4], [9] and parametric query optimization [2], [6] gen-

erate a number of query plans that are optimal for different run time data. However, the

complexity of this approach increases dramatically as the number of unknown run time data

items increases. These approaches rely on randomization when exploring the huge search

space or are forced to make simplifying assumptions. There is no run time overhead, but

these approaches have the disadvantage of not detecting statistical errors in estimates.
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3. OVERVIEW AND MOTIVATION

A query as first-class programming concept is an abstract operation over collections.

Programmers are able to write queries explicitly rather than expressing their low-level real-

ization, for example, in terms of (nested) loops. The compiler will perform this realization,

relying on join optimization techniques from relational database technology. In relational

databases, a join is an operation that combines two relations on a common attribute; the

result of this operation is the set of matching tuples constructed from the joined relations.

Joins are expensive operations in a query. Therefore, database engines attempt to minimize

the number of joins performed as well as to minimize the size of the relations that are being

joined. A powerful optimization is to construct a sequence of joins to be performed such

that the overall cost of the joins is minimized.

Similarly, when using a query as an abstraction in programs, a join is an operation

that combines two collections; the output of the join will be a new collection holding the

elements matched in the joined collections. Join query optimization here will attempt to

avoid constructing unneeded intermediate collections as well as minimize the size of such

intermediate collections.

For example, assume a program iterates over two collections in a nested loop to find

the matching items in both collections. The nested loop will be transformed to an object

query. With queries as first-class language constructs, the two collections are the domain

variables and the condition that determines which elements constitute a match comprises

the join operation.

In this paper, we propose an approach to optimize the execution of programs con-

taining queries as first-class constructs. From now on, when speaking of queries, query

execution, etc., we will refer to queries as first-class constructs in programs, not to database

queries.
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4. APPROACH

Joins are the most expensive operations involved in executing a query. Joins should be

ordered such that the results of one join cascades fewer tuples as the input for the next join,

as the sequence of queries is executed. Using the language of nested loops, join ordering

corresponds to the order in which loops are being nested. To obtain a query plan with the

proper ordering of join and predicate executions, information about the data manipulated,

such as the size of collections, is required. In our approach for query optimization, we begin

by building histograms from the collections. We then compute the selectivity of joins and

predicates. Next we generate the optimized query plan and execute the query. Details for

each of these steps are given in the following subsections.

4.1. BUILDING HISTOGRAMS AT RUN TIME

During the execution of the program, the histograms are built while scanning the

data, and each element is mapped into a corresponding bucket of the histogram. If no

element is mapped to a particular bucket, the bucket is set to one, or the previous bucket

count is incremented by 1. The data elements may change during program execution due to

additions, deletions, or modifications of the collections. However, updating the frequency

counts after every single change may place an undesirable burden on program execution,

as subsequently the selectivity values must be recomputed from the histogram also. As

mitigation, histograms are only updated when the change in the data is deemed significant,

judged by exceeding a specified threshold.

4.2. INCREMENTAL MAINTENANCE OF HISTOGRAMS

The data elements in collections may change from one evaluation of a query to the

next. These changes in the data will be reflected in the histogram when it is determined
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that the cost of updating the histogram is lower than the cost of using the current histogram,

based on an error estimate.

When data has been updated between multiple evaluations of the same query, the

estimation error of a histogram can be computed using the formula below, proposed in

[11]:

µ j =
S

Nβ

β

∑
i=1

( fi−Bi)
2

TR =
w1µ1 +w2µ2 + · · ·+wnµn

w1 +w2 + · · ·+wn

where µa is the estimation error for attribute a in the collection R, β is the number

of buckets, N is the number of tuples in R, S is the number of selected tuples, fi is the

frequency of bucket i in the histogram, S/N is the query frequency , Bi is the observed

frequency, TR is the error estimate for R and wi is the weight of attribute i depending on the

rate of change of the attribute.

If the computed error estimate (TR) is > 0.5, then the histogram is updated, other-

wise the original histogram is used to determine the updated selectivity values. The error

estimate is a vital piece of our method as it helps to decide when and if the histograms are

updated. This is important because updating the histograms forces the recomputation of

the selectivity values. This involves the rescanning of the histograms of the two attributes

and re-estimating the count of matching tuples.

4.3. DETERMINATION OF SELECTIVITY FROM HISTOGRAMS

The selectivity of predicates and joins in a query need to be computed in order to

construct a query plan. The selectivity of a predicate is defined as the number of tuples in a
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collection satisfying the predicate. We use the frequency of the buckets in the histogram for

the predicate to establish its selectivity. The selectivity of a join is defined as the number

of matching tuples in any two collections, divided by the cross product of the size of the

collections. It is similarly computed by counting the total number of frequencies of the

matching histogram buckets.

For a join of two collections on an attribute, the number of matching tuples cannot be

determined without executing the query. We can, however, estimate the matching number

of tuples from two histograms that have been built for that attribute with respect to the two

collections. The attribute domain is partitioned into equal intervals for buckets in the two

histograms. For each interval, we will take the maximum of the two bucket values in that

range because there can be at most that many matches in that range. Similarly, for all other

buckets in the two histograms, the maximum of the two bucket values in each range will be

taken. The sum of these values represents the estimated count of the matching number of

tuples. This estimate will be continuously improved as after each execution of a query, we

maintain statistics for each join, such as the actual selectivity and frequency of the join.

Estimatedcount =
i=n, j=m

∑
i=1, j=1

Max(xi,y j)

where n is the number of buckets in histogram x, m is the number of buckets in histogram

y and i, j are the indexes for the buckets in histograms x and y respectively.

For example, consider the query SelectAll(Student s, Faculty f | s.name.equals

(f.name) && s.id.equals(f.id)). We rely on the histograms to estimate selectivity, as follows.

For the Student and Faculty collections, the histograms H1 and H2 have been constructed

for the attribute id, respectively, as shown in Table 4.1. Assume that Student.id and Fac-

ulty.id have a range of values from 1 to 16. Assume that the frequencies of these values in

the collections have been arranged into buckets of the histogram as shown below.
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Table 4.1. Example of histogram buckets for an attribute
Interval Student.id Faculty.id

1-4 1 1
5-8 4 3

9-12 5 7
13-16 11 1

Compute the maximum values in each interval range.

• Interval 1−4 (I1) : max(H1,H2) = 1

• Interval 5−8 (I2) : max(H1,H2) = 4

• Interval 9−12 (I3) : max(H1,H2) = 7

• Interval 13−16 (I4) : max(H1,H2) = 11

The estimated count is the sum of the maximum values from all the intervals.

Estimatedcount = I1 + I2 + I3 + I4 = 1+4+7+11 = 23

The selectivity of the join equals the estimated number of matching tuples divided by

the product of the sizes of the two relations. Therefore, selectivity for join S.id==F.id is

23/(21*12) = 0.09. The selectivity is computed similarly for all other joins.

4.4. QUERY EVALUATION

During execution of the program, many queries may be evaluated. For each execution

of a query, the cheapest query plan needs to be determined so that the cost of executing the

queries is minimized. Queries may or may not be repeated during a single execution of

the program. If the same query is repeated several times, important information can be

learned from its previous execution. The following four cases may occur with respect to

the evaluation of a query.
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In Case 1, a query occurs for the first time, so there are no cached results and no

previous executions of the query are available. In order to construct a query plan for this

query execution, we need the selectivity of joins and predicates in the query (which we

obtain from the histograms). After determining the selectivities as described in Section 4.3,

the query will be executed using the query plan constructed based on selectivity ordering

of joins and predicates in the query. Once the query is executed, the selectivity of joins and

predicates as well as the join order followed in the query plan is stored.

In Case 2, a query has already been executed before, but its results have not been

cached. The join order as well as selectivity of joins and predicates can be determined

based on the previous execution of this query. However, the underlying data may have

changed since that previous execution. If the error estimate exceeds the specified threshold,

we update the histograms and recompute the selectivities based on the updated histograms.

In Case 3, a query has been executed before, but only partial results are available

from cache. We can immediately use the results that are available from cache, as the cache

is incrementally maintained and therefore up-to-date. For the remaining part of the query

for which the results are not cached, a query plan is formed that determines the order of

execution of the remaining predicates and joins in the query. As the same query has already

been executed, we can use the earlier computed join order and selectivities to determine

the query plan for the remaining predicates and joins. However, we need to again check if

significant changes to the date had occurred (see Case 2).

In Case 4, a query has already been executed and its complete result is available from

cache. We can use the results from cache, as discussed above.

4.5. LEARNING OF INFORMATION

We collect the following statistics regarding the execution of a query. For each query,

the query frequency and the join order obeyed in the most recent execution of the query

are stored. After execution of a query, information regarding the joins contained in that
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query is also determined. We collect the joins that are contained in that query, the time

required to execute each join, the frequency of each join, the selectivity of each join, and

the time taken for updating a cached join. These statistics are made available to simplify

the construction of the query plan for the next occurrence of a query.

4.6. JOIN ORDERING

The ordering of joins is the key step in building the query plan. As joins are the most

expensive operations performed when executing a query, the joins need to be arranged so

that the joins with higher selectivity are executed first which leads to fewer input tuples

being passed to the next join in the sequence.

Exhaustive enumeration of all the possible join orders may produce an optimal plan,

but the number of possible orders increases as the number of joins in a query increases,

rendering such strategy infeasible. Therefore, the maximum selectivity heuristic [14] is

used to order the joins: the joins are executing in decreasing order of selectivity. The joins

are prepared in order of selectivity to simplify the construction of query plans.
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5. PERFORMANCE EVALUATION

We have evaluated the performance of the proposed approach using query optimiza-

tion techniques for a single run of a program through several experiments. The object size

considered for all experiments was fixed at 200 except for the experiment with varying

objects reported in Figure 5.4. All experiments were performed on an Intel Pentium IV

running at 3.2 GHz with 1.75 GB RAM. The algorithms were implemented in Java within

JQL framework and executed under Eclipse v3.4.0.

We consider four different types of queries with varying numbers of joins. These

queries are referred to as q1, q2, q3, and q4. Details of the four benchmark queries are given

in Table 5.1. Figure 5.1 shows the execution time for these benchmark queries comparing

our approach with JQL. Our approach takes less time than JQL primarily due to the use of

histograms to estimate selectivity and to construct the query plan, whereas JQL estimates

selectivity by sampling and creates the query plan using an exhaustive join order strategy.

Figure 5.2 compares the execution times of our approach for a single run of the pro-

gram with the approach presented in [11] for multiple runs, again showing the four bench-

mark queries. The multiple-run query optimization is faster, because query optimization is

shifted from run time to compile time and because selectivity estimation is performed at

Table 5.1. Benchmark Queries Details
Query Details
q1: selectAll(Attends a:attendances | a.course == COMP101);
q2: selectAll(Attends a:attendances, Student s:students| a.course == COMP101 &&
a.student == s);
q3: selectAll(Attends a:attendances, Student s:students, Student t:students|
a.course == COMP101 && a.student == s && t.id < s.id);
q4: selectAll(Student s, Faculty f, Attends a, TopStudent t|s.id==t.id &&
s.departmentname==f.departmentname
&& s.course==a.course && s.name==t.name)
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Figure 5.1. Execution Time for Different Types of Queries: Our Approach vs. JQL
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Figure 5.2. Execution Time for Different Types of Queries: Our Approach (Single Run)
vs. Multiple Run Optimizations

compile time. Figure 5.3 shows the difference in compilation time and execution time of

our approach considering a mix of queries q1 to q4 and the approach relying on multiple

runs of the program [11]. As expected, the time to compile a program is substantially less

on the current approach as selectivity is estimated by analyzing information obtained from

previous runs.
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Figure 5.4. Execution Time for Different Object Size: Our Approach vs. JQL

Figure 5.4 shows the comparison between the proposed approach and JQL with re-

spect to varying number of objects and run time execution of a program with q2 types of

queries (having two joins). As the number of objects increase, the execution time of a pro-

gram in JQL increases more rapidly than our approach. This improvement in our approach

mainly comes from the advantage of building histograms during run time to compute the



49

0

0.05

0.1

0.15

0.2

q1 q2 q3 q4

A
v

e
ra

g
e

 e
xe

cu
ti

o
n

 t
im

e
 (

s)

Our Approach
JQL

Figure 5.5. Execution Time for Different Types of Queries: Our Approach vs. JQL

selectivity of joins and predicates over JQLs sampling of object values to compute selec-

tivity values.

Figure 5.5 compares the execution of the benchmark queries between the proposed

approach and JQL, each executed 200 times. The additional performance improvement of

our approach over JQL with more complex queries results from the impact of caching joins

which enables some queries to be evaluated partially or completely based on cached results.

In JQL, the complete results of repeated queries are cached thus requiring redundant storage

for queries with overlapping results, which reduces the effective size of the cache. With

query caching, there will consequentially be more cache misses.

Then, we have performed experiments on three cases of join query types to analyze

whether our approach is sensitive to the presence of a particular type of a query. Case 1

contains 65% q1, 15% q2, 10% q3, 10% q4. Whereas case 2 contains 40%q1, 30% q2,

20% q3, 10% q4 and case 3 contains 10% q1, 20% q2, 30% q3 and 40% q4.

As shown in Figure 5.6, our approach works better when the ratio of q1-type queries

is lower. Query q1 is relatively simple; the effectiveness of our approach increases com-

pared to JQL as the complexity of the queries (as reflected in the number of joins) increases.
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6. CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm for improving the execution time for single

runs of programs written using queries as first-class constructs. We perform query opti-

mization at run time by first constructing histograms from data and then estimating the

selectivity of joins and predicates from the histograms. Finally, a query plan is constructed

by ordering the joins and predicates using the maximum selectivity heuristics. If a query is

executed repeatedly during a run of the program, information regarding the join order and

selectivity of the joins can be obtained from preceding executions. In addition, joins may

be cached, providing further performance improvement. Experimental evaluation shows

that our approach performs better than JQL for complex queries during single runs of pro-

grams. We plan to further improve on this work by moving part of the construction of

the query plan to compile time, thus further reducing the overhead incurred by query opti-

mization at run time, while preserving the advantages of run time query plan selection and

construction.
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Many large programs operate on collection types. Extensive libraries are available in

many programming languages, such as the C++ Standard Template Library, which make

programming with collections convenient. Extending programming languages to provide

collection queries as first class constructs in the language would not only allow program-

mers to write queries explicitly in their programs but it would also allow compilers to

leverage the wealth of experience available from the database domain to optimize such

queries. This paper describes an approach to reduce the run time of programs involving

explicit collection queries by performing run time query optimization that is effective for

single runs of a program. In addition, it also leverages a cache to store previously com-

puted results. The proposed approach relies on histograms built from the data at run time

to estimate the selectivity of joins and predicates in order to construct query plans. Infor-

mation from earlier executions of the same query during run time is leveraged during the

construction of the query plans, even when the data has changed between these executions.

An effective cache policy is also determined for caching the results of join (sub) queries.

The cache is maintained incrementally, when the underlying collections change, and use of

the cache space is optimized by a cache replacement policy. Our approach has been im-

plemented within the Java Query Language (JQL) framework using AspectJ. Our approach

demonstrated that its run time query optimization in integration with caching sub query

result significantly improves the run time of programs with explicit queries over equivalent

programs performing collection operations by iterating over those collections. This paper
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evaluates our approach using synthetic as well as real world Robocode programs by com-

paring it to JQL as a benchmark. Experimental results show that our approach performs

better than the JQL approach with respect to the program run time.
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1. INTRODUCTION

First class query constructs allows programmers to write queries explicitly in their

programs and the compiler to use a number of optimization techniques developed for

databases. First class query constructs have been developed for various languages; these

include LINQ [32] for C#, JQL [49] for Java, and Python comprehensions [39]. The Java

Query Language (JQL) supports collection queries by providing the user a syntax to ex-

press operations over collections as queries [49]. JQL performs run time query optimization

through dynamic join ordering strategies. Estimation of the selectivity of joins and predi-

cates is performed through sampling on a small number of tuples which usually does not

lead to an effective ordering of the joins in the query.

In order to reduce run time overhead, Nerella et al. [35] proposed to perform query

optimization [9, 13] at compile time. However, this approach focused on the optimization

of multiple subsequent executions of the same program. After executing several sample

queries, selectivities were estimated from histograms [1] and future data changes were pre-

dicted from update patterns. During each run of the program, histogram and data changes

learned were recorded so that an optimal query plan could be selected and executed during

the next run of the program.

Traditionally, the programmers write a program that executes at run time with the

data input and generates the output after a single run. In the real world applications, there

exist usually both the kinds of scenarios such as program requiring optimizations during

a single run and multiple runs as well. For example, the real world application Robocode

[34] requires the optimal execution of battle during each single round of game. The focus

of this paper is on performing query optimization integrated with caching during a single

run of a program. In a single run of program, estimations concerning the data as well as

information regarding changes to the data will not be available until run time. Any learning
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that happens regarding the data has to be leveraged within a single run, from one execution

of a query to the next. Consequentially, query optimizations will also be performed at run

time.

This approach to query optimization introduces additional run time overhead. How-

ever, the cost of building histograms is mitigated, to some degree, by that each data item

needs to be scanned only once, in order to place it into the corresponding bucket of the

histograms. This cost is further reduced by determining selectivity values through a simple

look-up of the histograms. Building histograms at run time has the advantage that multi-

ple scans of data for each evaluation of a query (as in JQL) are avoided. By eliminating

multiple scans over the data, our approach incurs less run time overhead than JQL, despite

that our approach introduces additional overhead associated with building and maintaining

histograms [21].

In addition to query optimization, JQL caches query results. JQL relies on cache

heuristics such as the query/update ratio to determine whether to cache a given query. JQL

also updates cached query results incrementally, should the affected collections change.

However, query level caching requires redundant storage for queries with overlapping re-

sults, thereby reducing the effective size of the cache. Therefore, we might have a larger

number of cache misses which would increase the execution overhead of those queries. In

addition, JQL cache policies do not include a cache replacement policy to remove older

queries from the cache in order to make room for newer queries.

To circumvent the drawbacks of query level caching, we propose to store partial query

results, rather than complete queries. In particular, we cache the results of join (sub)queries.

We decompose a query such that the result of some of its joins can be obtained directly from

the data stored in the cache, while other (sub)queries are executed.

JQL is implemented on top of Java programs using AspectJ. AspectJ provides support

for Aspect Oriented Programming (AOP) in Java. For example, in order to implement cache

maintenance, the cache manager aspect in JQL weaves the code required to handle updates
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to data into the program code and keeps the cache up-to-date by intercepting all operations

that may update the data.

Our implementation is leveraging the JQL system, but realizes different algorithms

of ordering the joins, caching (sub)queries, maintaining the cache, and for implementing

cache and cache replacement policies. Our approach begins by building the histograms

from data at run time and using those histograms to determine the selectivity of joins and

predicates in a query. After determining the selectivities, we construct the query plan which

orders joins and predicates in a query. The query will be executed using that query plan

and then our approach caches results of the join sequences that are beneficial to cache

based on their characteristics such as their frequency, selectivity, and cost of updates. After

determining the entries to cache, we incrementally maintain the cache up-to-date. In order

to use the cache space efficiently, we also implemented a cache replacement policy.

We then conducted experiments varying various parameters affecting the perfor-

mance of queries as well as distributions of different types of queries in a program, in

order to compare our approach of join query optimization and caching join results to the

JQL approach of query optimization and caching entire query results.

The work reported in this paper is an extension to our previous work [36, 48]. We

addressed the problem of reducing the run time overhead by proposing a run time query

optimization approach [36] for a single run of the program and experimentally evaluated

the approach. A short-paper [48] provided overview of the approach of caching the explicit

queries in programming codes which caches the results of joins instead of caching the

entire query results. In our paper here, we first propose an approach that integrates both

of our approach of query optimization at run time [36] and the caching of joins [48] for

a single run of the program. Next, we present a detailed experimental evaluation of the

proposed strategies (not presented earlier) for caching of joins for explicit queries in the

programming codes. Additionally, we have also evaluated our approach using Robocode,

a real world program to show the benefit of our scheme.
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The remainder of this paper is organized as follows. Section 2 discusses related work

on query optimization and caching of query results. Section 3 gives the overview and

motivation for our approach. Section 4 describes our approach of query optimization at

run time. Section 5 presents experimental results and compares the performance of our

approach to that of JQL.
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2. RELATED WORK

The relational database literature is rich in research on join query optimization. A

significant amount of work has been focused on the optimization of queries at compile

time, but significant limitations of this approach have been discussed [25]. More recent

work on query optimization has focused on postponing optimization decisions to query

execution time.

Parametric query optimization [24] identifies multiple execution plans at compile

time which are optimal for a subset of all possible values of the run time parameters. Even

though this approach is able to identify the appropriate query plan without run time over-

head, when actual parameters are available, it explores the search space exhaustively and

also tends to miss statistical errors in its estimates.

Most of the optimization effort is performed at compile time and only selected op-

timization decisions are delayed until run time by Cole and Graefe [13]. Choose-plan

operators are used to execute the delayed decisions. The dynamic plans remain optimal

even if parameters change after the program has been compiled but before it is run. There

is an overhead associated with selecting which decisions to delay as well as with the im-

plementation of the choose-plan operator.

Kabra and DeWitt [26] have proposed an algorithm that detects the sub-optimality

of a query execution plan by collecting statistics at significant points during the query

execution. These statistics help determine whether to change the execution plan for the

remainder of the query.

Getoor et al. [20] proposed an approach that relies on probabilistic models to estimate

the result sizes of queries. Probabilistic relational models are constructed from the database

and are used for computing the estimates of selectivity for various queries. This is an effi-

cient technique for estimation but it introduces the complexity of building the probabilistic
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relational models from the data. A Bayesian approach [45] to database query optimiza-

tion uses decision-theoretic methods to pre compute scenarios and reduces uncertainties

by sampling. Cole [14], Chu et al. [12] propose an approach that uses decision theory for

finding a query execution plan with the least expected cost. The proposed approach re-

quires distribution of the parameter values as input and provides the query plan with the

least expected cost over the given distribution of parameter values as output. The major

limitation of the approach is the assumption that distribution of predicate selectivities is

always available before the execution.

Through dynamic query optimization in Rdb/VMS [4, 5], multiple query plans are

generated in parallel in order to execute a query. When one plan finishes or makes signifi-

cant progress, the other plans are suspended. This approach requires large resources, yet is

only applied to subcomponents of a query.

Dynamic query evaluation [13, 28] and parametric query optimization [7, 24] gen-

erate a number of query plans that are optimal for different run time data. However, the

complexity of this approach increases dramatically as the number of unknown run time

data items increases. These approaches rely on randomization [47] when exploring the

huge search space or are forced to make simplifying assumptions. There is no run time

overhead, but these approaches have the disadvantage of not detecting statistical errors in

estimates.

DryadLINQ [18] provides extensions to LINQ [32] and creates a programming en-

vironment that is applicable for large scale distributed computing. DryadLINQ consists of

LINQ expressions that are written using .NET tools and those expressions perform oper-

ations on data sets. Even though the approach of DryadLINQ is similar to JQL, it is not

applicable in our domain as the focus of this paper is not on performing operations on large

scale distributed data.

Caches are used widely in database systems to avoid recomputing expensive pred-

icates [23], as view indexes [43] and view caches [10, 42], to balance update costs and
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speed up queries, and to make views self-maintainable [41]. Existing cache selection algo-

rithms fail to address issues such as adaptivity [6], plan switching, cache sharing, or ease

of statistics collection during query execution. Previous work on optimizing incremental

view maintenance plans [29, 44] is non-adaptive.

A memory allotment strategy that partitions the cache into predicate regions has been

proposed by Fu [19], Keller and Basu [27]. In predicate caches, data is organized in units

called predicate regions that are defined by query predicates, where a predicate defines a

set of tuples that satisfies it. Containment analysis is used to determine whether a query

can be answered fully or partially using query results stored in the cache.

The problem of executing continuous multi-way join queries in unpredictable and

volatile environments has been addressed by Babu et al. [6]. A query class captures win-

dowed join queries in data stream systems and conventional maintenance of materialized

join views. This adaptive approach handles streams of updates whose rates and data char-

acteristics may change over time, as well as changes in system conditions such as memory

availability. In this paper the focus is specifically on the problem of adaptive usage and

incremental maintenance of caches to optimize query performance.

Degenaro et al. [16] has focused on keeping the cache up-to-date. They demon-

strated the use of caching in an Accessible Business Rules (ABR) framework for IBMs

Websphere. Their cache significantly reduces the number of queries to remote databases

by storing query results. They proposed enhancements to data update propagation (DUP)

by considering the values of database updates and as well as automatically computing de-

pendencies using compile time and run time analysis.

A self-adjusting computation approach has been proposed by Acar et al. [2, 3] that

combines Memoization and Dynamic Dependence Graphs. The changes are propagated

through Dynamic Dependence Graphs and Memoization helps in determining the parts of

the graph that are unaffected by the changes and reusing those results during the propa-

gation. However, the proposed self-adjusting computation approaches [2, 3] have certain
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drawbacks. First, the programmer has to express certain set of primitives explicitly in the

program. Second, the programmer needs to differentiate between the stable data and chang-

ing data and utilize a special set of primitives for operating on the changing data. Third,

rewriting of a normal program into a self-adjusting program will require significant changes

to the code and the process of rewriting the code would be error-prone and cumbersome

due to the strict restrictions on the usage of primitives in the implementation.

Caching small regions of a multidimensional query space called chunks has been

proposed by Deshpande et al. [17] to reduce response times for multidimensional queries.

Chunk-based caching allows queries to partially reuse the results of other queries with

which they overlap. To answer a new query, the chunks needed to answer that query are

computed and part of a new query will be answered from the cache while the remainder of

the query will be determined by retrieving the missing chunks from the back end using a

chunk-based

Qian [40] proposed an approach of “Query Folding” that rewrites a query to an alter-

native query that can be executed efficiently from the given resources such as materialized

views and cached results of previous queries. But the proposed approach of answering the

queries from views is computationally expensive as the algorithm requires exponential time

for determining whether a query can be answered from the resources provided.

The semantic caching techniques proposed by Dar et al. [15], Chidlovskii and

Borghoff [11] maintain the cache of the previous queries results along with their seman-

tic descriptions and groups the semantically related tuples into semantic regions. But, the

proposed semantic caching [15, 11] approaches are only applicable to selection queries

because, the semantic regions are formed based upon the constraints in the selection predi-

cates and can’t handle the complex queries involving joins. Whereas, in our approach, we

handle the complex queries involving joins between multiple collections and we determine

whether the query can be answered from the cache utilizing a hash map of cached joins

rather than the cached semantic regions.
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Ozcan et al. [37] reviewed query features that can be used to determine the contents of

a static result cache. They proposed to represent the popularity of a query more accurately

by measuring the stability of query frequency at specified time intervals. Ozcan et al. [38]

proposed static, dynamic and hybrid caching policies by incorporating query cost into the

caching policies along with the query frequency. They also proposed cache replacement

policies such as least costly used, least frequently and costly used. The major limitations of

the approach are that it doesn’t handle the incremental maintenance of cached results and

also the proposed caching policies that combine the query frequency with cost don’t incor-

porate the cost impact of updates affecting the cached results. Whereas in our approach,

the cache policy considers the cost impact of updates affecting the join results in the cache

and those cache results are incrementally maintained even in the presence of updates.

A cost aware cache replacement algorithm for web caching has been proposed by

Cao and Irani [8] that measures the caching cost benefit according to the saved network

bandwidth and size of response to each client request. However, the cost factors considered

in the proposed approach such as network cost and downloading latency are not applicable

in our approach of caching the explicit queries in the programming codes.

Zipf’s law (which predicts the popularity of access to an object) has been leveraged

for caching of web objects [46]. They have shown that Zipf’s law is effective in accurately

determining distribution of the use of data objects, thus allowing those objects to be cached

based on the observed usage patterns.

A probability driven cache (PDC) for caching search results in web search engines

based on a probabilistic model of search engine users has been presented in Lempel and

Moran [30]. They examined replacement policies for cached search result pages; four are

based on flavors of LRU schemes, and a fifth is their PDC model, which assigns priorities

to its cached result pages.
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3. OVERVIEW AND MOTIVATION

A query as first-class programming concept is an abstract operation over collections.

Programmers are able to write queries explicitly rather than expressing their low-level real-

ization, for example, in terms of (nested) loops. The compiler will perform this realization,

relying on join optimization techniques from relational database technology. In relational

databases, a join is an operation that combines two relations on a common key attribute; the

result of this operation is the set of matching tuples constructed from the joined relations.

Joins are expensive operations in a query. Therefore, database engines attempt to minimize

the number of joins performed as well as to minimize the size of the relations that are being

joined. A powerful optimization is to construct a sequence of joins to be performed such

that the overall cost of the joins is minimized.

Similarly, when using a query as an abstraction in programs, a join is an operation

that combines two collections; the output of the join will be a new collection holding the

elements matched in the joined collections. Join query optimization here will attempt to

avoid constructing unneeded intermediate collections as well as minimize the size of such

intermediate collections.

For example, assume a program that iterates over two collections in a nested loop

to find the matching items in both collections. The nested loop will be transformed to

an object query. With queries as first-class language constructs, the two collections are

the domain variables and the condition that determines which elements constitute a match

comprises the join operation.

In a program, if a nested loop operating over a collection is repeated, it is always ex-

ecuted afresh. However, if the same loop is written using a query, the results of executing

this loop could be cached and the results could be made available for the next repetition of

the loop. Caching the results of repeated queries saves execution time and thus effectively
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reduces the run time of a program. However, during an execution of a program, objects

may be added or removed from collections. Similarly, objects may be modified by state-

ments in the program. A query may depend on these collections, and therefore, even slight

changes to these collections may affect query results. Hence, the same query executed at

two different locations in a program may produce different result sets.

In this paper, we propose an query optimization approach [36] in integration with

caching [48] as illustrated in Figure 3.1 to improve the run time performance of programs

with queries as first-class constructs (programs where loops over collection data structures

have been replaced by explicit queries over the collections). From now on, when speak-

ing of queries, query execution, etc., we will refer to queries as first-class constructs in

programs, not to database queries.
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Figure 3.1. Illustration of the join query optimization approach integrated with the caching
of joins approach.
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4. QUERY OPTIMIZATION

Query optimization in a program consisting of object queries will reduce the execu-

tion time of the queries, which will eventually result in the reduction of the program run

time. Joins are the most expensive operations involved in executing a query. Using the

language of nested loops, join ordering corresponds to the order in which loops are being

nested. Query optimization phase needs to determine an optimal query plan that provides

the results of the program in a shorter time rather than the sequential iteration of the nested

loops. Therefore, determining the optimized order of executing joins is a key step in query

optimization. Joins should be ordered such that the results of one join cascades fewer tu-

ples as the input for the next join, as the sequence of queries is executed. To obtain a query

plan with the proper ordering of join and predicate executions, information about the data

manipulated, such as the size of collections, is required.

As illustrated in Figure 3.1, we generate the optimized query plan by first building the

histograms from the collections. Then, we compute the selectivity of joins and predicates.

After query execution, we determine whether the query should be cached so that its result

can be reused later in the program run, using heuristics such as frequency, selectivity and

impact of updates on joins. Details for each of these steps are given in the following

subsections.

4.1. BUILDING HISTOGRAMS AT RUN TIME

Histograms are maintained for approximating the distribution of data in attributes that

are the fields or properties of a class and they are constructed by partitioning the data into

mutually disjoint subsets. Histograms are computed on the underlying data and can be used

without much additional overheads inside the query optimizer. Also, histograms produce

low-error estimates by occupying small space. Histogram buckets contain the frequency of
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attribute value. These buckets help in estimating number of tuples of an attribute satisfying

a particular predicate and join condition.

During the execution of a program, the histograms are built while scanning the data

such as collections of a particular class type objects and each element in the collection is

mapped into a corresponding bucket of the histogram. Initially all the buckets counts are

set to zero. If the element is mapped to a particular bucket, then that bucket count is incre-

mented by 1. The data elements may change during program execution due to additions,

deletions, or modifications of the collections. As the collections change, the frequency

counts of the corresponding histogram buckets must be updated. However, updating the

frequency counts after every single change may place an undesirable burden on program

execution, as subsequently the selectivity values must be recomputed from the histogram

also. As mitigation, histograms are only updated when the change in the data is deemed

significant, judged by exceeding a specified threshold.

4.2. INCREMENTAL MAINTENANCE OF HISTOGRAMS

The data elements in collections may change from one evaluation of a query to the

next. These changes in the data will be reflected in the histogram when it is determined

that the cost of updating the histogram is lower than the cost of using the current his-

togram, based on an error estimate. The inputs needed for the histogram estimation are

attributes domain ranges, number of buckets and satisfying tuples in each bucket. The at-

tribute domain ranges are defined in the program and the number of buckets is obtained by

dividing the attribute domain range by size of the bucket. The number of satisfying tuples

are determined from the given data distribution. Histograms can be dynamically updated

between multiple evaluations of the same query. As new tuples are added, we increment

the counts of appropriate buckets. When a count exceeds the threshold T, the entire his-

togram is recomputed or, using split merge, we split and merge the buckets. The split and

merge algorithm [1] helps reduce the cost of building and maintaining histograms for large
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collections. When a bucket count reaches the threshold, T, we split the bucket into two

halves instead of recomputing the entire histogram from the data. To maintain the number

of buckets (β) which is fixed, we merge two adjacent buckets whose total count is least and

does not exceed threshold T, if such a pair of buckets can be found. Only when a merge

is not possible, we recompute the histogram from data. The operation of merging two ad-

jacent buckets merely involves adding the counts of the two buckets and disposing of the

boundary between them. To split a bucket, an approximate median value in the bucket is

selected to serve as the bucket boundary between the two new buckets using the backing

sample.

When data has been updated between multiple evaluations of the same query, the

estimation error of a histogram can be computed using the formula below, proposed by

Nerella et al. [35]:

µ j =
S

Nβ

β

∑
i=1

( fi−Bi)
2

T R =
w1µ1 +w2µ2 + · · ·+wnµn

w1 +w2 + · · ·+wn

where µa is the estimation error for attribute a in the collection R, β is the number

of buckets, N is the number of tuples in R, S is the number of selected tuples, fi is the

frequency of bucket i in the histogram, S/N is the query frequency , Bi is the observed

frequency, TR is the error estimate for R and wi is the weight of attribute i depending on

the rate of change of the attribute.

If the computed error estimate (TR) is > 0.5, then the histogram is updated, other-

wise the original histogram is used to determine the updated selectivity values. The error

estimate is a vital piece of our method as it helps to decide when and if the histograms are
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updated. This is important because updating the histograms forces the re computation of

the selectivity values. This involves the rescanning of the histograms of the two attributes

and re-estimating the count of matching tuples. The error estimation step therefore reduces

the overhead of re-computing the histograms and selectivity values. Thus, the incremen-

tal maintenance of histograms avoids multiple scans of data and provides the estimates of

number of attribute values satisfying certain predicate and join conditions.

4.3. DETERMINATION OF SELECTIVITY FROM HISTOGRAMS

The selectivity of predicates and joins in a query need to be computed in order to

construct a query plan. The selectivity of a predicate is defined as the number of tuples

in a collection satisfying the predicate. We determine the frequency of each bucket value

from the number of elements in that bucket. Then, we utilize that frequency value in the

computation of selectivity value of a predicate. The selectivity of a join is defined as the

number of matching tuples in any two collections divided by the cross product of the size

of the collections. It is similarly computed by counting the total number of frequencies of

the matching histogram buckets.

For a join of two collections on an attribute, the number of matching tuples cannot be

determined without executing the query. We can, however, estimate the matching number

of tuples from two histograms that have been built for that attribute with respect to the two

collections. The attribute domain is partitioned into equal intervals for buckets in the two

histograms. For each interval, we will take the maximum of the two bucket values in that

range because there can be at most that many matches in that range. Similarly, for all other

buckets in the two histograms, the maximum of the two bucket values in each range will be

taken. The sum of these values represents the estimated count of the matching number of

tuples. This estimate will be continuously improved as after each execution of a query, we

maintain statistics for each join, such as the actual selectivity and frequency of the join.
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Estimatedcount =
i=n, j=m

∑
i=1, j=1

Max(xi,y j)

where n is the number of buckets in histogram x, m is the number of buckets in histogram

y and i, j are the indexes for the buckets in histograms x and y respectively.

For example, consider the query SelectAll(Student s, Faculty f | s.name.equals

(f.name) && s.id.equals(f.id)). The selectivity of the two joins in the query needs to be

estimated, so that a query plan can be constructed which orders the joins based on their

estimated selectivity. The precise determination of the selectivity of a join, of course, re-

quires execution of the query. We rely on the histograms to estimate selectivity, as follows.

For the Student and Faculty collections, the histograms H1 and H2 have been constructed

for the attribute id, respectively, as shown in Table 4.1. In both histograms, the attribute

id is spread over equal-sized buckets. We take one bucket and check which histogram has

the maximum number of tuples for attribute id in its interval range. Similarly, we find the

maximum number of tuples for attribute id for all other buckets. Finally, we compute the

sum of the maximum values of all buckets and take it as the estimate of the count of the

matching number of tuples for attribute id in both collections. This scheme illustrated in

more detail using the following concrete values.

Assume that Student.id and Faculty.id have a range of values from 1 to 16. Assume

that the frequencies of these values in the collections have been arranged into buckets of

the histogram as shown below.

Compute the maximum values in each interval range.

• Interval 1−4 (I1) : max(H1,H2) = 1

• Interval 5−8 (I2) : max(H1,H2) = 4

• Interval 9−12 (I3) : max(H1,H2) = 7
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Table 4.1. Example of histogram buckets for an attribute
Interval Student.id Faculty.id

1-4 1 1
5-8 4 3

9-12 5 7
13-16 11 1

• Interval 13−16 (I4) : max(H1,H2) = 11

The estimated count is the sum of the maximum values from all the intervals.

Estimatedcount = I1 + I2 + I3 + I4 = 1+4+7+11 = 23

The selectivity of the join equals the estimated number of matching tuples divided by

the product of the sizes of the two relations. Therefore, selectivity for join S.id==F.id is

23/(21*12) = 0.09. The selectivity is computed similarly for all other joins.

4.4. QUERY EVALUATION

A query plan is defined as the strategy for executing a query by ordering of the predi-

cates and joins in a query. In a program consisting of object queries that are transformations

of nested loops on collections, a query plan will significantly affect the execution time of

queries based on the ordering of joins and predicates in the query. During execution of

the program, many queries may be evaluated. For each execution of a query, the cheapest

query plan needs to be determined so that the cost of executing the queries is minimized.

Query plan is developed after the estimation of selectivity of predicates and joins from

the histograms. An optimal query plan is chosen using the maximum selectivity heuristic

[31] for ordering the predicates and joins in the query pipeline. The maximum selectivity

heuristic orders the predicates and joins based on the selectivities such that the sizes of

results for the preceding stages in the pipeline are reduced. However, queries may or may
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not be repeated during a single execution of the program. If the same query is repeated

several times, important information can be learned from its previous execution. Further,

the query results may be cached depending on the established cache policy which further

reduces the cost of repeated evaluation of the query. The following four cases may occur

with respect to the evaluation of a query:

In Case 1, a query occurs for the first time, so there are no cached results and no

previous executions of the query are available. In order to construct a query plan for this

query execution, we need the selectivity of joins and predicates in the query. After deter-

mining the selectivities as described in Section 4.3, the query will be executed using the

query plan constructed based on selectivity ordering of joins and predicates in the query.

Once the query is executed, the selectivity of joins and predicates as well as the join order

followed in the query plan is stored.

In Case 2, a query has already been executed before, but its results have not been

cached. The join order as well as selectivity of joins and predicates can be determined

based on the previous execution of this query. However, the underlying data may have

changed since that previous execution. If the error estimate exceeds the specified threshold,

we update the histograms and recompute the selectivities based on the updated histograms.

In Case 3, a query has been executed before, but only partial results are available

from cache. We can immediately use the results that are available from cache, as the cache

is incrementally maintained and therefore up-to-date. For the remaining part of the query

for which the results are not cached, a query plan is formed that determines the order of

execution of the remaining predicates and joins in the query. As the same query has already

been executed, we can use the earlier computed join order and selectivities to determine

the query plan for the remaining predicates and joins. However, we need to again check if

significant changes to the date had occurred (see Case 2).

In Case 4, a query has already been executed and its complete result is available from

cache. We can use the results from cache, as discussed above.
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Algorithm 3 summarizes the query evaluation algorithm. The function ErrorEsti-

mate() in line 4 computes the error through the defined error estimate metric and the com-

puted error denotes how significantly the data has changed due to the underlying updates

to data. The function FindPrevSel(joinslist) in line 20 provides the selectivity estimates of

the joins computed in their previous occurrences in the queries. The function Estimate-

Sel(joinslist, predicatelist, previnfo) in lines 7,14 and 21 takes the list of joins, predicates

and the previously estimated selectivities of joins, predicates as input and provides the new

selectivity estimate of joins and predicates as the output. The function exec query(Order)

in lines 8, 15 executes a query with an order of joins specified in the argument. The func-

tion FindPrev(joinorder) in line 10 retrieves the join order followed in the execution for the

previous instance of this query.

4.5. LEARNING OF INFORMATION

We collect the following statistics regarding the execution of a query. For each query,

the query frequency and the join order obeyed in the most recent execution of the query are

stored. After execution of a query, information regarding the joins contained in that query

is also determined. We collect the joins that are contained in that query, the time required

to execute each join, the frequency of each join, the selectivity of each join, and the time

taken for updating a cached join.

4.6. JOIN ORDERING

The ordering of joins is the key step in building the query plan. As joins are the most

expensive operations performed when executing a query, the joins need to be arranged so

that the joins with higher selectivity are executed first which leads to fewer input tuples

being passed to next join in the sequence. Exhaustive enumeration of all the possible join

orders may produce an optimal plan, but the number of possible orders increases expo-

nentially as the number of joins in a query increases, rendering such strategy infeasible.
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Algorithm 3 Query Evaluation Algorithm
Require: query and their list of joins
Ensure: result of query

1: joinslist=all joins in a query;
2: predicatelist=all predicates in a query;
3: if (updates to data) then
4: E=ErrorEstimate();
5: end if
6: if (query not executed before) then
7: Order=EstimateSel(joinslist, predicatelist);
8: result=exec query(Order);
9: else if (query executed before && result not in cache) then

10: Prev Order=FindPrev(joinorder);
11: if (E < 0.5) then
12: Order=Prev Order();
13: else
14: Order=EstimateSel(joinslist,predicatelist);
15: result=exec query(Order);
16: end if
17: else if (query executed before && only partial results available) then
18: Cachedresults=Cache.get(joins);
19: Joinslist= all joins-cached joins;
20: PrevInfo=FindPrevSel(joinslist);
21: Order=EstimateSel(join order of remaining query,PrevInfo);
22: Remaining joins result=exec query(Order);
23: result=Cachedresult (Join) Remaining joins result;
24: else if (query executed before && complete results available in cache) then
25: result=Getresultsfromcache();
26: end if
27: return result;

Therefore, the maximum selectivity heuristic [31] is used to order the joins: the joins are

executing in decreasing order of selectivity. The joins are prepared in order of selectivity

to simplify the construction of query plans.
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5. PERFORMANCE EVALUATION

Firstly we have evaluated the performance of the proposed approach using query

optimization techniques for a single run of a program through several experiments and then,

we evaluated the optimization approach integrated with the caching of joins. Secondly, we

evaluated our approach of join caching on the real world benchmark Robocode[34]. The

algorithms are implemented in Java and the queries expressed in JQL syntax are translated

to Java code through the JQL compiler. Section 5.1 demonstrates the evaluation of our

approach on our considered query workloads, benchmark queries and Section 5.2 presents

the evaluation of our join caching approach on the real world benchmark Robocode.

5.1. OUR BENCHMARKS

We consider four different types of queries with varying numbers of joins. These

queries are referred to as q1, q2, q3, and q4. The complexity of a query is dependent on the

number of joins it contains. As the number of joins in a query increases, the complexity

of the query increases and thereby, the execution time of both the query and the program

increases. The complexity of a query is O(nk), where k is the number of joins in the query,

and n is the number of rows in each joined table. Details of the four benchmark queries

are given in Table 5.1 and for all the benchmark queries, we considered values up to 200 as

the attribute domain range. The query evaluator performance of JQL has been compared

with the equivalent manual implementations such as HANDOPT and HANDPOOR. HAN-

DOPT has the optimal join strategy hard coded, whereas HANDPOOR has the nested loop

implementation using the worst possible join ordering. They determined that the perfor-

mance of JQL query evaluator was always far better than HANDPOOR and comes close to

HANDOPT. Therefore, we have compared our approach with respect to JQL’s performance

in the following experiments.
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Table 5.1. Benchmark Queries Details
Query Details
q1: selectAll(Attends a:attendances | a.course == COMP101);
q2: selectAll(Attends a:attendances, Student s:students| a.course == COMP101 &&
a.student == s);
q3: selectAll(Attends a:attendances, Student s:students, Student t:students|
a.course == COMP101 && a.student == s && t.id < s.id);
q4: selectAll(Student s, Faculty f, Attends a, TopStudent t|s.id==t.id &&
s.departmentname==f.departmentname
&& s.course==a.course && s.name==t.name)
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Figure 5.1. Execution Time for Different Types of Queries: Our Approach vs. JQL

Figure 5.1 shows the execution time for these benchmark queries comparing our

approach with JQL. However, our approach takes less time than JQL primarily due to the

use of histograms to estimate selectivity and to construct the query plan, whereas JQL

estimates selectivity by sampling and creates the query plan using an exhaustive join order

strategy. This experiment has 95% confidence level corresponding to α = 0.05 where the

confidence intervals for JQL and our approach are 0.01 and 0.02, respectively.

Figure 5.2 compares the execution times of our approach for a single run of the

program with the approach proposed by Nerella et al. [35] for multiple runs, again showing
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Figure 5.2. Execution Time for Different Types of Queries: Our Approach (Single Run)
vs. Multiple Run Optimizations

the four benchmark queries. The multiple-run query optimization is faster, because query

optimization is shifted from run time to compile time and because selectivity estimation is

performed at compile time. This experiment has 95% confidence level corresponding to

α = 0.05 where the confidence intervals for both single and multiple runs is 0.08.

Figure 5.3 shows the difference in compilation time and execution time of our ap-

proach considering a mix of queries q1 to q4 and the approach relying on multiple runs of

the program [35]. As expected, the time to compile a program is substantially less on the

current approach as selectivity is estimated by analyzing information obtained from previ-

ous runs. This experiment has 95% confidence level corresponding to α = 0.05 where the

confidence intervals for single and multiple runs are 0.01 and 0.13 respectively.

Figure 5.4 shows the comparison between the proposed approach and JQL with

respect to varying number of objects and run time execution of a program with q2 types

of queries. As the number of objects increase, the execution time of a program in JQL

increases more rapidly than our approach. This improvement in our approach mainly comes

from the advantage of building histograms during run time to compute the selectivity of

joins and predicates over JQLs sampling of object values to compute selectivity values.
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Figure 5.4. Execution Time for Different Object Size: Our Approach vs. JQL

This experiment has 95% confidence level corresponding to α = 0.05 where the confidence

intervals for JQL and our approach are 1.32 and 0.98, respectively.

Figure 5.5 compares the execution of the benchmark queries between the proposed

approach and JQL, each executed 200 times. The additional performance improvement of

our approach over JQL with more complex queries results from the impact of caching joins
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Figure 5.5. Execution Time for Different Types of Queries: Our Approach vs. JQL

which enables some queries to be evaluated partially or completely based on cached results.

In JQL, the complete results of repeated queries are cached thus requiring redundant storage

for queries with overlapping results, which reduces the effective size of the cache. With

query caching, there will consequentially be more cache misses. This experiment has 95%

confidence level corresponding to α = 0.05 where the confidence intervals for JQL and our

approach are 0.01 and 0.02, respectively.

5.2. ROBOCODE EVALUATION

We evaluated our approach of join caching on a real world benchmark namely

Robocode [34]. The Robocode benchmark is also employed in [50] and it is a game written

in Java utilizing the collections operations. The game consists of robots moving around in

an 2D battle arena and scanning for other robots in their field of view. During the course of

the battle, the robots destroy each other by firing the bullets and the battle gets completed

after all the robots are dead. The source code of the game relies upon the collections such

as collection of robots and bullets. For example, consider the loop in Robocode (shown in

Figure 5.6) that iterates upon collections of robots, dead robots and checks explicitly if each
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Method for computing survival score of a robot
handleDeathEvents()
begin
for(Robot r : robots)
if( !r.isDead())
for(Robot dead : deadRobots)
if(r.team == null || r.team != dead.team)

r.scoreSurvival();
end.
JQL Query
begin
doAll(Robot r:robots, Robot dead:deadRobots | !r.isDead() &&
(r.team == null || r.team != dead.team))

r.scoreSurvival();
end.

Figure 5.6. Sample loop in the Robocode and the corresponding JQL query

robot is alive and increments its survival score for every other dead robot not present in this

robot’s team. The corresponding JQL query for this loop (shown in the Figure 5.6) operates

upon collections of robots, dead robots and computes the survival score of each robot by

filtering the robots that are not dead and performing the join upon the two collections that

provides the dead robots not present in this robot’s team.

We determined the eight frequently executed loops in the source code that contain

the joins between collections by profiling and converted those loops to the corresponding

JQL queries. Similar to the conversion of a sample loop to a query (shown in Figure 5.6),

we converted the other seven loops in the Robocode to JQL queries and executed those

queries using JQL compiler and query evaluator. Then, we performed the experimental

evaluation to determine the benefit of incrementalized caching approach over the uncached

implementation of the Robocode. In all the experiments, we evaluated the Robocode game

with no caching strategy, JQL and our caching strategies. The tunable parameters in the

game are the number of robots and the size of the battle arena. Therefore, we varied these

two parameters in different experiments.
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Figure 5.7. Execution Time of the Robocode game: Robocode with no caching vs.
Robocode with JQL vs. Robocode with Our Approach

In each experiment, we executed the Robocode game for 5 rounds and determined

the average run time of the game by measuring the battle completion times in each round.

Initially, we fixed the size of the arena and then varied the number of robots in the battle

arena. For example, the experiment in Figure 5.7 is performed with the fixed battle arena

size of 400 * 400 (width*height) and the number of robots from 10 to 100. We measured

the run time of each round of the game with the specified number of robots for the arena

size of 400*400. Then, we repeated this step three times for each round of game, once

without caching, the other two times with JQL and Our approach respectively. Thus, we

executed the Robocode game a total of 30 times for each arena size of the battle.

The experiments in Figures 5.7, 5.8, 5.9 demonstrate that in the smaller arenas such

as 400*400, 600*600 and 800*800 (width*height), the performance benefit obtained with

the caching approaches is not by much difference than the uncached implementation of the

Robocode. Because, in the smaller arenas, the robots get crowded in the smaller space and

eventually, they kill each other at a faster rate. Consequently, the length of the game de-

creases and results in less frequencies of the queries and joins in the smaller arenas. We can

also notice from the experiments in Figures 5.7, 5.8, 5.9 that for a few number of robots in
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Figure 5.8. Execution Time of the Robocode game: Robocode with no caching vs.
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Figure 5.9. Execution Time of the Robocode game: Robocode with no caching vs.
Robocode with JQL vs. Robocode with Our Approach

the smaller arenas, the uncached implementation of the Robocode performs slightly better

than the Robocode with the caching strategies. Moreover, for these experiments (shown in

Figures 5.7, 5.8, 5.9), the average number of query evaluations and the percentage of calls

satisfied from the cache in our caching approach are 25418, 42018, 48433 and 76.88%,

78.96%, 80.58% respectively.
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Figure 5.11. Execution Time of the Robocode game: Robocode with no caching vs.
Robocode with JQL vs. Robocode with Our Approach

Figures 5.10, 5.11, 5.12 show the experiments with larger battle arena sizes such as

3000*3000, 4000*4000 and 5000*5000 (width*height). We can clearly observe from the

experiments that as the size of the battle arena increases, the performance benefit of our

caching approach is more pronounced in comparison to the JQL and uncached implemen-

tation of the Robocode. The decrease in run time of the game is more for the larger arena
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Figure 5.12. Execution Time of the Robocode game: Robocode with no caching vs.
Robocode with JQL vs. Robocode with Our Approach

size of 5000*5000 in Figure 5.12 than the arena sizes of 4000*4000 and 3000*3000 in the

Figures 5.11, 5.10 respectively. This is due to the fact that the larger battle arena size in-

creases the length of game and as a result, the caching of larger number of alive robots saves

more time and eliminates the need of iterating over the list of all robots for explicitly check-

ing if each robot is alive as in the uncached implementation of Robocode. Consequently,

the frequency of queries and joins increases in larger arena. The additional run time benefit

of our caching approach over the JQL caching approach is due to the occurrence of the

joins such as join between the list of robots and dead robots occurring frequently in mul-

tiple queries. Therefore, our join caching approach was able to save the execution time of

several queries by answering them either partially or completely with the cached results of

those joins. Moreover, for these experiments (shown in Figures 5.10, 5.11, 5.12), the aver-

age number of query evaluations and the percentage of calls satisfied from the cache in our

caching approach are 99358, 104609, 152044 and 86.93%, 87.32%, 88.02% respectively.

The speed up obtained in all the experiments is significant because our caching ap-

proach also involves the overhead of tracking updates to the cached joins and incrementally

maintaining those cached results. These experiments demonstrated that as the number of
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robots increase further (say more than 100) in larger battle arena sizes, the performance

benefit in terms of execution time of the battle will be more pronounced in our caching

approach than the JQL and Robocode with no caching. However, the limitation of our

approach occurs in cases where the source code only consists of explicit queries with less

number of joins repeated in multiple queries.
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6. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm for improving the execution time for single

runs of programs written using queries as first-class constructs. We performed query op-

timization at run time by first constructing histograms from data and then estimated the

selectivity of joins and predicates from the histograms. Next, a query plan is constructed

by ordering the joins and predicates using the maximum selectivity heuristics. If a query is

executed repeatedly during a run of the program, information regarding the join order and

selectivity of the joins can be obtained from preceding executions. We also proposed an

approach for caching of joins involved in the queries instead of caching the query results.

We have presented a cache policy which determines the joins to be cached as well as a

cache replacement policy to efficiently use the available cache space. Experimental evalua-

tion using both synthetic as well as real world programs shows that our approach performs

better than JQL for complex queries during single runs of programs and caching of joins

has better run time performance than JQL, which caches complete query results.

We plan to further improve this work by moving part of the construction of the query

plan to compile time, thus further reducing the overhead incurred by query optimization at

run time, while preserving the advantages of run time query plan selection and construc-

tion. Further extensions of this work would be exploring more effective cache policies and

techniques for incremental maintenance of cached entries by pre-processing programs to

determine when to cache query results, which will help to further reduce the run time of

such programs. In future, we would like to study in more detail the benefit of join caching

with other real-world examples. This issue has been studied to some extent in databases

under view maintenance [22, 33, 51]. Moreover, we will explore a hybrid caching strategy

that incorporates both the query level caching and join caching.
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Object oriented programming languages have raised the level of abstraction by sup-

porting the object querying on collections. Programming languages can execute first class

query constructs, using query optimization techniques from the database field, for run time

optimizations. Existing approaches, however, such as Java Query Language (JQL), which

executes such query constructs on collections have high run time overhead. Therefore, we

propose an approach to reduce the burden of run time overhead by performing most of

the query optimization for object queries on collections at compile time. This approach

both analyzes the source code and obtains the metadata provided through annotations. It

relies on building histograms from the metadata information. Then, the predicate and join

selectivity estimates within a query are computed from these histograms. The selectivity

estimates are maintained accurate with the incremental maintenance of histograms to the

data changes in the program at run time. Next, both the selection and join optimizations

are applied on the queries. The optimizations help in skipping and eliminating the execu-

tion of some of the predicates and joins based on the collected metadata. Finally, a query

plan is generated at the compile time through the proposed selectivity cost heuristic. The

query itself is executed at run time according to the determined query plan. But, in cases of

inaccurate metadata and significant data changes in the source code, the query plan is mod-

ified at run time according to the correct selectivity estimates obtained from the updated

histograms. Our experimental results demonstrate that our approach reduces the run time

overhead of a program with collections more than the earlier approaches such as JQL.
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1. INTRODUCTION

Programming languages with sets have been developed earlier such as Set Language

(SETL) [16] and Standard Template Libraries (STL) [21]. These provided programmers

with a library of common data structures such as linked lists, vectors, dequeues, sets and

maps and a set of fundamental algorithms that operate on them. Later, the programming

languages incorporated the first-class query constructs, allowing the programmers to effi-

ciently perform operations on the data structures. Python provides list comprehension ex-

pressions [12] that allow for queries like expressions over the collection of objects. LINQ

[11] was developed for C# that operates on the collections of objects by transforming

queries into methods. These methods perform both filtering and mapping on the collec-

tion. JQL [19] supports automatic optimization for queries in Java programs using join

optimization techniques inherited from the database domain. JQL, however, uses sampling

for selectivity estimation. This estimation leads to an inefficient ordering of joins, predi-

cates in a query. The existing query optimization approaches [11], [19] for the first class

query constructs, however, perform the query optimization at run time and incur run time

overhead.

Besides the programming languages supporting first-class query constructs, the us-

age of annotations [8, 14, 15] has also increased in the software engineering community re-

cently. Annotations are a common means of providing metadata information to the source

code. The developers can use annotations to establish additional metadata information

about classes, methods and fields in the source code. The annotations are not only used

for documentation purposes [15, 17] but also to add the semantic properties to the program

code [8]. The object oriented programming languages such as C# provides attributes con-

straints and Java has its own annotation constructs that allow the developers to include the

metadata information in the program codes.
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The primary limitation involved in the generation of query plans at compile time is

that no availability of data exists (until run time). This will result in inaccurate estimates.

Estimates regarding the data, however, such as the size of the collections, the attribute do-

main ranges, and the percentage of data values within a certain range can be obtained from

the program through the annotations written by programmers. But, the static annotations

provided in the source code might become inaccurate over time and inaccuracies in the an-

notations will affect the results. Therefore, in this paper, we propose an efficient approach

that performs most of the optimization at compile time utilizing programmer defined meta-

data through annotations. The proposed approach also effectively maintains the correctness

of metadata collected from the annotations with the data changes in the program at run time.

The significant advantage of performing the compile time optimization is that the

program consisting of object queries on collections will incur less run time. Because, the

queries are executed using the optimized query plan obtained at compile time. Although the

compilation phase requires slightly more time, the query execution time optimization will

eventually result in a reduction of the program run time. Therefore, by performing the max-

imum query optimization at compile time, we will leave much less work to be performed at

run time. Consider a simple program performing computations over collections as shown

in Figure 1.1. The equivalent code shown in Figure 1.2 uses queries as first-class concepts

relying on the syntax of JQL [19] object queries. Both programs return the same result.

However, the program using queries explicitly is both succinct and elegant. If queries can

be realized efficiently, the program would also have the benefit of possible optimizations.

The object query (shown in Figure 1.2) operates upon collections of employees, developers

and seeks the list of employees having equivalent salaries as of developers in a company.

This paper’s primary contributions include the following:

• A novel approach for the optimization of first class query constructs in the program

codes utilizing programmer defined metadata
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1: <Employee> Employees, <Developer> Developers;
2: for(i=0;i<Employees.size();i++)
3: for(j=0;j<Developers.size();j++)
4: if(Employees.get(i).Salary==Developers.get(j).Salary)
5: return Employees.get(i);

Figure 1.1. Original program with explicit queries

1: <Employee> Employees, <Developer> Developers;
2: selectAll(Employee E:employees,
Developer D: developers | E.Salary==D.Salary);

Figure 1.2. Program using query abstractions

• Preprocessing Element for the program analysis

• Linear order approach for selectivity estimation of joins and predicates using his-

tograms

• Efficient maintenance of histograms for ensuring the correctness of static metadata

• New selectivity cost heuristic for generating most of the query plans at compile time

• Experimental evaluation of the proposed approach on benchmark queries in compar-

ison to JQL.

The overhead associated with the proposed approach is in the analysis of the source

code running the preprocessing element. This overhead, however, occurs only at compile

time and after the program is compiled once, it can be run many times which compensates

the overhead associated with one time analysis of the source code.

The rest of the paper is organized as follows. Section 2 presents the related work on

compile time query optimization approaches and usage of annotations by the programmers

in the program codes. Section 3 defines our metadata annotations and describes how we

maintain the accuracy of annotations with the changing data at run time. Sections 4 - 5
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provide our approach for query optimization at compile time using both the metadata and

estimation of selectivity techniques. Section 6 presents the performance evaluation of this

work, and Section 7 provides conclusions and directions for some future research.
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2. RELATED WORK

There exist only run time optimization approaches such as JQL [19], LINQ [11] in

the context of optimization of explicit queries in the programming codes. Therefore, we

focus on the existing query optimization techniques from databases that perform most of

the optimization tasks at compile time and discuss their limitations. The primary challenge

associated with doing query optimization at compile time is that the data, such as the size

of both the collections and the intermediate results, is unknown until run time. Therefore,

some literature work [2, 18] have focused on estimating the query selectivity for uncertain

data. Estimation techniques were developed to compute the selectivity of probabilistic

queries over uncertain data [18]. The accuracy of these estimation techniques for more

selective queries, however, is poor.

Our work is related to [5] where metadata is collected at run time and the query plan is

modified based on the semantics of the metadata. But, the proposed approach [5] has high

overhead associated with the construction of predicate inequality graphs and generation of

a number of different plans for different data that consume time. The approach also doesn’t

describe how the metadata is collected and provided at run time.

The statistics are collected at significant points during the query execution in [7].

The execution of a query is suspended in the middle if the actual statistics obtained at

run time are different from the annotated statistics obtained at compile time. However, a

mid query re-optimization through modification of the query execution plan in the middle

incurs overhead at run time. Similarly, the query execution plans in [4] generated by an

optimizer are re-optimized just before the execution if they are believed to be sub-optimal.

At the query execution time, the actual statistics from the system catalogs are compared

against the statistics stored in the plan. If they differ significantly, the query is re-optimized

before its execution. This method differs from the approach given in [7], as the query is
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only re-optimized before the execution begins and there is no collection of statistics, or

modification of the plan in the middle of a query execution.

The problem of optimizing queries for all possible values of run time parameters

that are unknown at the optimization time has also been studied [6]. A task identified as

Parametric query optimization is proposed so that the need for re-optimization is reduced.

This approach, however, exhaustively determines multiple execution plans at the compile

time. Additionally, it has a much higher start up cost than optimizing a query only once.

The problem in [6] has been addressed in [1] by exploring both the parameter space

progressively and incremental maintenance of the plans using a data structure known as

Parametric Plan. Therefore, unlike parametric query optimization [6], Progressive Para-

metric query optimization [1] does not perform either extra optimizer calls or extra plan-

cost evaluation calls. At the execution time, this approach selects which plan to execute by

using only the input cost parameters without re-costing plans.

An optimization model that both performs most of the work at compile time and

delays carefully selected optimization decisions until run time was proposed in [3]. The in-

comparable query plans were ordered at compile time, partially by cost. A choose-plan op-

erator was also developed to compare the partially ordered plans. The approach, however,

incurs overhead in both the implementation of the choose-plan operator and the selection

of the decisions to be delayed until run time.

Now, we briefly discuss about the existing work related to the use of annotations by

the programmers in the source codes. Smart Annotations approach proposed in [8] iden-

tifies the conflicts between source code and annotations. The approach offers a tool sup-

port to detect the incorrect and forgotten annotations by the developers in the source code.

However, their tool support is very limited and also the approach requires the developers

to write meta annotations about annotations in a logic query programming language. Dy-

namic annotations proposed in [14, 15] allow the developers to utilize the dynamic domain

knowledge to incorporate the dynamic data conditions in the annotation itself.
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3. METADATA ANNOTATIONS

We define the metadata annotation as an interface declaration (shown in Figure 3.1)

in Java that consists of the fields such as attribute name, minimum, maximum values of

attribute and ranges of the attribute values. Then, the developer can utilize the anno-

tation interface declaration to represent the metadata in the source code as a pattern of

@Metadata( f ield1, f ield2,..., f ieldn). Where f ieldi is the ith field of the metadata for the

attribute.

Consider the example object query in Figure 1.2 and the developer provides the

metadata annotations for the Employee.Salary and Developer.Salary attributes as shown

in Figure 3.2. The Preprocessing Element described later in Section 4.1 analyzes the given

metadata annotations and extracts the information such as minimum, maximum values of

salary attribute for employee, developer and percentages of employees, developers with

certain amount of salary. The significance of the metadata collection from the annota-

tions is that it allows the computation of selectivity estimate of join (Employee.Salary ==

Developer.Salary) that will eventually result in the generation of a query plan at the com-

pile time.

The primary advantage of our defined metadata annotations is that developers can

simply write these annotation interfaces as they are just classes and can also extend the

types of supported metadata annotations in the source code by defining many types of

metadata annotation classes. Further, the metadata annotations are easy to write because

they comply with Java’s annotations and require no changes to the existing annotations

constructs. The number of required metadata annotations in our approach are proportional

to the number of joinable attributes between the collections. As the number of joinable

attributes is always much less than the number of collections [20], the required number of

metadata annotations are also less. Therefore, the developers just need to write few extra
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public @interface Metadata{
String Attribute, Range1, Range2;
int min, max;
}

Figure 3.1. Annotations Interface

1: @Metadata1(Attribute=Employee.Salary, min=1000,
max=5000, Range1=20%<2000, Range2=40%>3000)

2: @Metadata2(Attribute=Developer.Salary, min=3000,
max=8000, Range1= 20%<4000, Range2=60%>5000)

Figure 3.2. Annotations

lines of code for metadata annotations. Thus, with a little programmer effort of writing

few number of annotations in the source code, we will achieve a significant benefit in the

program execution time.
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4. APPROACH

We propose a Preprocessing Element (PPE) scheme that both analyzes the source

code and collects the metadata provided through annotations in a program (see Section 4.1).

We efficiently maintain the correctness of static metadata with the varying data at run time

of the program (see Section 4.2). After program code analysis through PPE, we build

histograms from the gathered metadata (see Section 4.3). We then determine the list of

histogram buckets that satisfy either the predicate or the join expressions in the query (see

Section 4.4). We estimate the selectivities of both predicates and joins in queries from

these histogram buckets (see Sections 4.5 and 4.6). Next we perform the query evaluation

in two phases. The first phase involves skipping or eliminating the execution of selection

and join predicates in the query according to the given metadata (see Section 5.1). In the

second phase, we generate a query plan at compile time using the selectivity cost heuristic

(see Section 5.2).

4.1. PREPROCESSING ELEMENT (PPE)

The Preprocessing element analyzes the static program code and creates a table of

query, data usage frequencies. The PPE parses the metadata annotations provided by the

programmer in the source code using the “@Metadata” keyword. The PPE extracts the

information such as attribute name, domain range and percentages of attribute values in

certain ranges and collects the following metadata that are essential for the computation of

predicate and join selectivity estimates in a query.

4.1.1. Size of Collection (Sc). Size of collection denotes the total number of elements

within a collection. This metadata will be utilized in estimating both the selectivity of a

predicate and join. The selectivity of a predicate is defined as the ratio of number of tuples

satisfying the predicate condition and the number of tuples in a collection. Further, the
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selectivity of a join is defined as the ratio of the number of matches in both the collections

and the product of the sizes of two collections.

4.1.2. Attribute Domain Range (ADR). The attribute domain range for a numerical

attribute denotes an interval that has minimum and maximum values of an attribute at the

beginning and ending points, respectively. For a categorical attribute, the domain range

defines a list of all possible categories that an attribute will be classified into.

4.1.3. Percentage of Attribute Values in a Range (PR). The percentage of attribute

values in a range estimates the percentage of attribute values within a certain range.

The PPE puts the analyzed query information into a dependency table such as the

query frequency, the collections, the predicates, and the joins that the query is dependent

upon. The PEE also maintains the metadata log that contains the metadata for the predicates

and joins in a query.

When the PPE encounters a query, it determines whether or not the current query

is already contained in the dependency table, updating the dependency table accordingly.

Two queries are considered to be equal by the PPE if they have the same predicates and

joins. If a query is already contained in the dependency table, then the PPE updates the

query frequency only. Otherwise if the query is not present in the dependency table, the

PPE creates a new entry in the table and stores the information about that query. The PPE

maps a query in the dependency table to an entry in the metadata log. Then, it checks

if the predicates and joins of the query have their metadata in the metadata log. If all of

the dependent variables of a query have entries in the metadata log, then the PPE helps

determine the selectivity estimates of those predicates and joins in the query.

4.2. MAINTAINING ACCURACY OF METADATA

The metadata gathered from the static annotations might either become inaccurate

over time or may be different for different runs of the program. Further, the same queries

may be repeated across various parts of the program and the collected metadata may not
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be accurate for all of the instances of queries in the program due to the changes in data.

The inaccuracies in the metadata will affect the join selectivity estimates computed from

the histograms and result in a less optimal query plan. Therefore, we need to incrementally

maintain the histograms up-to-date and return the correct selectivity estimates.

We tracked the updates to the collections such as the collections.add() operations us-

ing AspectJ[9]. The update tracking aspect determines the histograms of joinable attributes

affected by the update. Then, our error estimate function [13] updated the histograms of

joinable attributes only if the histograms error estimate denotes a significant change in the

data. But, if the error estimate is checked for every update, then it will incur a certain over-

head on the execution time. For this reason, the error estimate function was checked only

if the number of updates exceeded a certain threshold. The updated histograms provide the

correct predicate, join selectivity estimates, and the optimized query plan for the execution

of query at run time.

Similarly, if the programmers provided incorrect annotations in the source code, then

our error estimate function corrected the inaccuracy in those estimates, providing the cor-

rect query plan for the query execution. However, if the programmers missed some of the

required annotations in the source code, then the generation of query plan was postponed to

run time. Because of a lack of sufficient metadata information and the selectivity estimates

of joins, the query plan couldn’t be determined at compile time.

4.3. CONSTRUCTION OF HISTOGRAMS FROM METADATA

The collected metadata is utilized in filling the histogram buckets with the estimated

number of attribute values. Metadata such as Size of collection (Sc) determines the total

count of attribute values in the buckets. The Attribute domain range (ADR) determines

the range of the buckets (i.e., beginning and ending values of a bucket range). Whereas,

percentage of attribute values in a range (PR) determines the estimated count of the number

of values in a certain bucket of the histogram.
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The histogram buckets maintain the estimated count of the attribute values. The hsi-

tograms are built at compile time and the incremental maintenance of histograms is detailed

in [13]. The primary advantage associated with the construction of histograms from the

metadata is that they incur less overhead for selectivity estimation of predicates and joins

which eventually leads to the generation of query plans at compile time. For example, if

a collection R has 10000 elements and a query contains a selection predicate of the form

R.value=100. The histogram shows that the estimated percentage of R.value=100 is 10%.

Then, the cardinality estimate for the fraction of elements of R that must be considered by

the query is 10% * 10000 = 1000. The selectivity of predicate R.value is 1000
10000 = 0.1

4.4. DETERMINATION OF THE SATISFYING HISTOGRAM BUCKETS

We propose a linear order approach for finding the satisfying histogram buckets

matching the predicate and join conditions in the query. The following Sections 4.4.1, 4.4.2

describes the proposed approach for determining the satisfying buckets of predicates and

joins in the query, respectively.

4.4.1. Predicates. For predicates in the query, we need to find the buckets in the

histograms that satisfy the predicate condition. Our approach determines whether or not the

bucket in the attribute histogram satisfies the predicate condition by assessing the following

two conditions. If the bucket’s low end is greater than the predicate condition. Else if the

bucket’s high end is less than the predicate condition. Then, the bucket doesn’t satisfy

the predicate condition. Therefore, the buckets that have these conditions (see (1) and (2)

below) evaluated to false are added to the list of satisfying buckets.

Bi.low > Pred.cond (1)

Bi.high < Pred.cond (2)
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where Bi.low and Bi.high are the respective lower and higher ends of the bucket range

and Pred.cond is the predicate condition.

4.4.2. Joins. We must also determine the overlapping range of attributes for joins in

a query. Then, we need to find the histogram buckets in the overlapping range that satisfy

the join condition of a query. We use the variables Latest Begin, Earlier End to determine

the overlapping range. Latest Begin is defined as the maximum starting value for all of the

attribute domain ranges. Earlier End is defined as the minimum finishing value for all of

the attribute domain ranges. Initially, Latest Begin is initialized to zero and Earlier End is

initialized to infinity. At the end of overlapping range determination method, Latest Begin

and Earlier End contain the beginning and ending values of the overlapping interval range

of the attribute domains.

We scan the attribute domain ranges iteratively and, for each attribute domain range,

we determine whether or not the attribute’s beginning value is greater than the Latest Begin.

If it is greater, the value of Latest Begin is updated to the attribute’s beginning value. Then,

we determine whether or not, the attribute’s ending value is less than Earlier End, update the

Earlier End value correspondingly. After iteration for all of the attribute’s domain ranges,

if the Latest Begin is less than the Earlier End, then there exists an overlapping range, and

we update the overlapping interval as [Latest Begin, Earlier End].

After finding the overlapping interval of the attribute’s domain ranges, we determine

the buckets of histogram in the overlapping range by assessing the following two condi-

tions. If the bucket’s high end is less than the overlapping interval’s lower end. Else if the

bucket’s lower end is greater than the overlapping interval’s higher end. Then, the corre-

sponding bucket of the histogram doesn’t fall in the overlapping range of the two attribute

domains. Therefore, the buckets having these conditions (see (3) and (4) below) evaluated

to false are added to the list of satisfying buckets.
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Bi.high < Overlap.low (3)

Bi.low > Overlap.high (4)

where, Bi.low and Bi.high are the respective lower and higher ends of the bucket

range. Overlap.low and Overlap.high are the respective lower and higher ends of the

overlapping interval range.

4.5. SELECTIVITY ESTIMATION OF PREDICATES

The selectivity of a predicate is defined as a ratio of the number of elements satisfying

both the query predicate condition and the total number of elements in the collection.

Selectivityo f Predicate(σ) =
Nm

Sc
(5)

where σ is the selectivity of the predicate, Nm is the number of matches satisfying a

predicate condition, and Sc is the size of collection.

We obtained the list of buckets that satisfy the predicate condition (as described in

Section 4.4.1) for determining the number of estimated matches. We then computed the

sum of the attribute count values stored in those buckets. The list of satisfying buckets

were denoted by Bsat=B1,B2, ..,BM, and the count of the attribute values in those buckets

were denoted by C1[B1],C2[B2], ...,Cm[Bm]. The number of estimated matches (Nm) was

computed as the sum of counts in the list of satisfying buckets. The size of the collection

(Sc) was computed as the sum of counts in the total buckets of the attribute. We denoted the

estimated selectivity of the predicate with (σ̂estd). The estimated selectivity of the predicate

was computed as a ratio of the number of estimated matches and the total number of tuples.
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σ̂estd =
∑

Sat
i=1Ci[B̂i]

∑
total
i=1 Ci[B̂i]

(6)

where σ̂estd is the estimated selectivity of the predicate, Bi is the ith bucket of the at-

tribute’s histogram involved in the predicate expression, Sat is the list of satisfying buckets

in the attribute’s histogram, and Ci[B̂i] is the number of the attribute values in the corre-

sponding ith bucket of the histogram.

4.6. SELECTIVITY ESTIMATION OF JOINS

The selectivity of join is defined as a ratio of the number of matches in both the

collections and the product of the sizes of two collections.

Selectivityo f Join(on) =
Nm

S1 ∗S2
(7)

where on is the selectivity of the join, Nm is the number of matches satisfying a join

condition, and S1, S2 are the sizes of two collections.

We obtained the list of buckets in the overlapping region of attribute domains (as

described in Section 4.4.2) and thus determine the estimate of matches in both collections.

We then computed the selectivity estimate of the join from these histogram buckets as

follows. For each interval in both of the satisfying buckets in the overlapping range of two

histograms, we will take the product of the two bucket values. Because, there can be at

most that many matches in that range. Similarly, the product of the two bucket values in

each range was considered for all other satisfying buckets within the two histograms. We

denoted the estimated selectivity of the join with ônestd . The estimated number of matching

tuples in both the collections was computed as the summation of the product, of the attribute

count values, in the buckets.
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ônestd =
∑

i=Sati, j=Sat j
i=1, j=1 Ci[B̂i]∗C j[B̂ j]

∑
i=total, j=total
i=1, j=1 Ci[B̂i]∗C j[B̂ j]

(8)

where Sati and Sat j are the list of satisfying buckets in histograms i and j, respectively.

Bi and B j are the buckets i and j, respectively, overlapping in two attributes histograms.

Ci[B̂i] and C j[B̂ j] are the corresponding number of values in the buckets. Total is the number

of buckets in both the attribute’s histograms.
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5. QUERY EVALUATION

Our query evaluation consisted of two phases: 1) the application of both selection

and join optimizations [5] and 2) the generation of query plans. During the first phase, we

utilized the metadata collected by the Preprocessing element to both eliminate and skip the

execution of some join and selection operations at run time. These optimizations reduced

the execution time of queries which eventually led to the run time reduction of a program.

During the second phase, we generated the query plan according to the selectivity cost

heuristic. These two phases are described as follows.

5.1. SELECTION AND JOIN OPTIMIZATIONS

5.1.1. Selection Elimination. If the selection predicate is unsatisfiable according to

the metadata, then the entire query expression is unsatisfiable. Therefore, if any selection

predicate is identified by the metadata as unsatisfiable, then the evaluation of the query

expression involving that selection operation can be eliminated at run time.

Consider a query selectAll(Employee E:employees, Developer D:developers |

E.Salary>2000 && E.Salary< D.Salary) with the given metadata E.Salary< 1000. From

this metadata, we can infer that the values of E.Salary are less than 1000, and the selection

predicate seeks values of E.Salary greater than 2000. The selection predicate E.Salary is,

therefore, unsatisfiable, and the evaluation of the selection operation on each tuple can be

skipped during the query execution, thereby reducing the run time of the program.

5.1.2. Join Elimination. If, according to the metadata, a join operation on two

collections is identified as unsatisfiable, then the entire query expression is unsatisfiable,

and execution of that entire query will be eliminated at run time.

Consider a query selectAll(Employee E:employees, Developer D:developers |

E.Salary > 2000 && E.Salary < D.Salary) with the given metadata D.Salary<2000. A
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join operation on employee and developer salaries is unsatisfiable as the selection predi-

cate employee salary seeks values greater than 2000. While, the developer salary values

are less than 2000 as specified by the metadata. Therefore, the unsatisfiable join operation

eliminates the evaluation of the query expression, on each tuple, in both collections.

5.1.3. Selection Skipping. If a selection predicate always evaluates to true, accord-

ing to the metadata, then that selection predicate is redundant and will be skipped during

the execution of the query at run time. Therefore, by skipping the redundant selection

predicates, we avoid the overhead of performing a selection operation on each tuple in the

collection, resulting in a run time reduction.

Consider a query SelectAll(Employee E:employees, Developer D:developers |

E.Salary>2000 && E.Salary<D.Salary) with the given metadata E.Salary>3000.

E.Salary>2000 is a redundant selection predicate in the query as from the given metadata,

the values of E.Salary are greater than 3000. Therefore, the redundant selection predicate

will be skipped during the query execution at run time.

5.1.4. Join Skipping. If a join operation on two collections always evaluates to

true, according to the metadata, the join operation is redundant and will be skipped during

the execution of query at run time.

Consider a query SelectAll(Employee E:employees, Developer D:developers |

E.Salary<2000 && E.Salary<D.Salary) with the given metadata D.Salary>3000. Con-

dition E.Salary<D.Salary will always evaluate to true. Additionally, the redundant join

operation will be skipped during the execution of query at run time.

5.2. QUERY PLAN GENERATION

The query plan for a query is defined as the ordering of predicates and joins in a

query. An exhaustive ordering strategy explores all possible combinations of join orderings,

and selecting the minimum cost query plan. As the number of joins increases, however,

the execution overhead increases significantly. Therefore, we propose a selectivity-based
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cost heuristic for the ordering of joins and predicates in a query. The heuristic orders

the minimum cost predicates and joins first in the query plan. The cost of query plan,

predicate and join costs are computed (as shown below) based upon the selectivity estimates

of predicates and joins at compile time.

Cost of Query Plan: The cost of query plan is defined as the number of output tuples

produced by the predicates and joins in the query.

C(QP) =
n

∑
j=1

C f (Pj)+
n

∑
k=1

C f (Jk) (9)

where C(QP) is the number of output tuples by predicates and joins, Pj is the predi-

cate j, Jk is the join k, C f (Pj) is the cost of predicate, and C f (Jk) is the cost of join.

Cost of Predicate: The cost of a predicate is defined as the number of the output

tuples resulting from the predicate condition. It is determined as follows.

C f (Pj) = Selest ∗Sr (10)

where Selest is the selectivity of the predicate estimated from the given metadata and

Sr is the size of the collection r.

Cost of Join: The cost of a join is defined as the number of output tuples produced by

the join condition and is computed as follows.

C f (Jk) = Selest ∗Sr ∗Ss (11)

where Selest is the selectivity of the join estimated from the given metadata while Sr

and Ss are the sizes of the collections r and s respectively, upon which the join operation is

performed.

Thus, the proposed minimum selectivity cost heuristic helps in generating a single

optimized query plan at the compile time without the burden of generating alternative plans.
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The static optimization, however, might not be appropriate in cases of queries being set up

at run time and varying data at run time. In case of queries using local variables, whose

values are only known at run time, we generated selectivity estimates for the available joins

and predicate variables at compile time. We postponed the generation of query plan for the

remaining variables to run time. Whereas, in the case of data changes at run time, we

assessed if the change in data is significant and then modified the query plan at run time by

obtaining the correct selectivity estimates from the updated histograms (see Section 4.2).
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6. EXPERIMENTAL EVALUATION

We have evaluated the performance of our query optimization approach through sev-

eral experiments. The most relevant approach to our current work is JQL′s run time opti-

mization of explicit queries in the programming codes. Therefore in the experiments, we

have compared our approach to JQL and observed the difference in run time execution of

program consisting explicit queries. We implemented all the components of our approach

in Java such as PPE, histograms construction, selectivity estimation strategies and query

plan generation.

We have chosen the queries considered by JQL i.e. four different types of queries

with varying number of joins and complexities as benchmark queries (shown in Table 6.1).

The benchmark queries containing one, two, three and four joins are named as OneJoin,

TwoJoin, ThreeJoin and FourJoin respectively. The benchmark queries range over collec-

tions of students, faculty, courses, attendances and top students. The worst case evaluation

order of OneJoin, TwoJoin, ThreeJoin and FourJoin queries are O(n2), O(n3), O(n4) and

O(n5) respectively. We expressed these queries in JQL syntax and translated them to Java

code using the JQL compiler. We wrote the metadata annotations for the joinable attributes

of the queries in the source code as shown in Table 6.1.

For each benchmark query, we have compared our approach of compile time query

optimization (OurApproach) with JQL [19] approach of run time query optimization using

exhaustive, selectivity heuristic join ordering strategies (JQL-Exhaustive, JQL-Selectivity)

and manually hand coded optimization strategy (HandOpt). In each experiment, we mea-

sured the average run time for 10 runs of the benchmark query evaluation for a given

collection size.

The objective of the experiments in Figures 6.1, 6.2 and 6.3 is to determine how

the performance of the query optimization approach varies with the number of objects in
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Table 6.1. Benchmark Queries and Metadata
Query Details
OneJoin: SelectAll(Student S:students,Faculty F:faculty|S.id.equals(F.id))
TwoJoin: SelectAll(Student S:students,Faculty F:faculty,Course C:courses|
S.id.equals(F.id) && F.id.equals(C.id))
ThreeJoin: SelectAll(Student S:students,Faculty F:faculty,Course C:courses,
Attends A:attendances|S.id.equals(F.id) && F.id.equals(C.id) && C.id < A.id)
FourJoin: SelectAll(Student S:students,Faculty F:faculty,Course C:courses,
Attends A:attendances, TopStudents T:topstudents|S.id.equals(F.id) &&
F.id.equals(C.id) && C.id < A.id && A.id > T.id)
Metadata
@Metadata1(S.id,min=0,max=100,Range1=20%<30,Range2=40%>60)
@Metadata2(F.id,min=50,max=150,Range1=30%<80,Range2=20%>110)
@Metadata3(C.id,min=75,max=150,Range1=40%<120,Range2=10%>140)
@Metadata4(A.id,min=100,max=200,Range1=25%<130,Range2=35%>150)
@Metadata5(T.id,min=0,max=100,Range1=20%<40,Range2=30%>70)
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Figure 6.1. Execution time of TwoJoin benchmark query

collections. We can clearly observe from the Figures 6.1, 6.2 and 6.3 that our approach

performs better than the JQL-Selectivity strategy and also at par with the hand written

query optimization strategy HandOpt. Also, the impact of the run time difference is more

in the FourJoin benchmark query than the ThreeJoin and TwoJoin queries. The difference
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Figure 6.2. Execution time of ThreeJoin benchmark query
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Figure 6.3. Execution time of FourJoin benchmark query

in run time gain achieved by our approach than the JQL approach in all the experiments

is primarily due to the use of histograms and a linear order approach of determining the

satisfying histogram buckets to estimate selectivities. Additionally, this improvement in our

approach mainly comes from the advantage of performing most of the query optimization

tasks at compile time. Whereas, JQL performs the entire query optimization at run time

such as selectivity estimation by sampling and query plan generation.
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Figure 6.4. Our Approach Vs JQL Exhaustive (ThreeJoin)
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Figure 6.5. Our Approach Vs JQL Exhaustive (FourJoin)

In Figures 6.4 and 6.5, we have shown the comparison of run times for our approach

with the selectivity cost based join ordering strategy and the JQL approach with the exhaus-

tive join ordering strategy (JQL-Exhaustive). We have evaluated the ThreeJoin, FourJoin

benchmark queries with both the strategies by varying the number of objects in the collec-

tions. From the Figures 6.4, 6.5 it can be clearly noticed that the exhaustive join ordering

strategy in JQL increases the run time significantly in comparison to our approach with
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Figure 6.6. Percentages of Accurate Metadata (FourJoin query)

join ordering determined at compile time. Because, as the number of joins increase in the

benchmark query, time required for exhaustive strategy to evaluate all possible join order-

ings increases to a great extent. Whereas, our approach is faster than JQL primarily due

to the join ordering determined through proposed selectivity cost heuristic that uses the

histograms to estimate selectivities from the metadata.

The experiment in Figure 6.6 shows that as the percentage of accurate metadata in

the source code increases, the execution time of the program decreases. The execution time

is higher in cases of lower percentages of accuracy in the metadata. Because, we utilized

the error estimate function for detecting the error in estimates and incrementally updated

the histograms for providing the modified query plan at run time. Figure 6.6 illustrates that

the reduction in the execution time stabilizes after 70% of accurate metadata. Thus, our

approach was able to obtain a good performance improvement in the execution time of the

benchmark query with even 70% of accurate metadata in the source code.

We performed the experiment in Figure 6.7 to determine the effect of the changes to

the data at run time on our approach and JQL approach. We varied the number of updates

and inserted them into the source code randomly by adding elements to the Student, Faculty
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Figure 6.7. Effect of Updates for Our Approach Vs. JQL (ThreeJoin query)

and Courses collections in the ThreeJoin benchmark query. This experiment demonstrates

that our approach takes less run time for the execution of the benchmark query than the

JQL approach. Because, the JQL approach performs sampling of the data after each update

to compute the correct selectivity estimates and generate the new query plan. Whereas,

our approach incrementally updates the histograms and provides the correct selectivity es-

timates.

The experiment in Figure 6.8 shows the effect of the selection and join optimizations

on the execution time of benchmark queries. The proposed selection and join optimiza-

tions skip or eliminate the execution of predicates and joins in the queries based upon the

collected metadata. We can observe in Figure 6.8 that our approach with selection and

join optimizations enabled obtains a significant reduction of run time in comparison to

our approach when these optimizations are not enabled. Because when the optimizations

are not enabled, a join operation is performed on every tuple of the collection to check if

that tuple satisfies the join condition whereas when the optimizations are enabled, selec-

tion and join optimizations eliminates performing the join operations having unsatisfiable

conditions based upon the metadata.
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Figure 6.9. Join Order Comparison for Our Approach Vs. JQL

We have performed an experiment in Figure 6.9 to judge the correctness of our opti-

mizations and to see if the same optimizations were performed in the run time optimization

as well. From the experiment, we observed that more than 75% of the evaluations, our

compile time optimizations were same as the run time optimizations and in only a few

cases our optimizations were not accurate.
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From all the experiments conducted above, we state that our approach reduces the run

time of a program by performing query optimization at compile time through utilization of

metadata provided in the program. Interestingly, our approach has performed at par with

the hand coded optimization strategy in the program. Our approach may incur some run

time overhead if the program contains more number of queries that use local variables at run

time. Because, our approach of compile time optimization would not be able to generate

query plan at compile time for those queries. The proposed selection and join optimizations

also had a significant impact on the run time of the program. The improvements in execu-

tion time of the benchmark queries are related to the programmers in practice. Because,

the programmers can write these queries explicitly rather than expressing their low-level

realization, for example, in terms of (nested) loops. As nested loops operations are most

time consuming, optimizing them results in a huge difference to the execution time of the

program. Additionally, these queries abstract away the details of implementation of the

joins from the programmer. Instead, the query evaluator determines the optimal join or-

dering strategy and executes the joins in the query using an optimal join implementation

strategy such as the hash join. These optimizations relieve the programmer’s burden of

manually implementing the time consuming and complex join optimizations. Therefore,

our approach allows the developers to express the queries along with metadata annotations

for obtaining the results they want, without having to worry about the optimal execution of

the queries.
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7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach that reduced the run time overhead by per-

forming most of the query optimization at compile time for the first class query con-

structs written explicitly in programs. The proposed approach first analyzed the source

code through a Preprocessing Element and gathered all the metadata from the program

through the annotations provided by the developer. Then, the histograms were built from

the obtained metadata and incrementally maintained up-to-date with the data changes in

the program at run time. The selectivity estimates of predicates and joins in the queries

were computed from the satisfying histogram buckets. Then, the query evaluation was

performed in two phases where first phase involved application of the selection and join

optimizations. In the second phase, the query plan was generated at compile time through

the proposed selectivity cost heuristic. Finally, the query was executed at run time accord-

ing to the determined query plan. The query plan was modified at run time in the cases of

inaccurate metadata and significant changes to the data for ensuring the correctness of the

selectivity estimates computed from the metadata.

Our experimental evaluation has shown that our approach performed better than the

JQL approach for complex queries. In future, we will further reduce the programmer effort

by generating the metadata annotations in the source code through the information col-

lected from several runs of the program. We will also extend our approach by determining

required metadata for string predicates and propose strategies for selectivity estimation of

those string predicates and joins. Further, we intend to evaluate the approach on real world

program codes.
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Object oriented programming languages raised the level of abstraction by supporting

the explicit first class query constructs in the programming codes. The query constructs

can be optimized by leveraging the techniques of query optimization from the domain of

databases. The existing optimization approaches such as JQL, however, incur high run

time overhead as optimizations are performed only at run time. Therefore, in this paper,

we propose an approach that performs the query optimization at compile time utilizing

the metadata annotations in the source code. The proposed approach first collects the data

from the sample execution of the program and extracts the essential metadata for the string

valued attributes. Then, the annotations consisting of the metadata values associated with

string attributes are generated in the source code and the histograms are built using those

annotations. The selectivity estimates of the predicates and the joins in the query are com-

puted from the histograms. Next, the query plan is generated at compile time through the

maximum selectivity heuristic. The query plan is modified at run time in cases of signif-

icant updates to the string data. The approach also incorporates the cache heuristics that

determine whether to cache the query result or not. The cached query results are incremen-

tally maintained up-to-date. Our experimental results demonstrate that our approach has

reduced the run time of the program more than the earlier approaches such as JQL.
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1. INTRODUCTION

Programming languages such as SETL [16] and C++ Standard Template Library [22]

provided a library of data structures that makes programming with the collections conve-

nient. First class query constructs have been developed for object oriented programming

languages such as JQL [20] for Java, LINQ [10] for C# and Python comprehensions [15].

The existing query optimization approaches [10], [21] for the first class query constructs,

however, perform the query optimization at run time and incur run time overhead.

In the recent years, the usage of annotations [8], [13], [14], [19] has also gained pop-

ularity in the software engineering community. The programmers are increasingly relying

on the annotations to provide the metadata information about the fields, the methods and

the classes in the program. in the source code. The modern programming languages such

as Java has its own annotation constructs and C# provides attribute constraints that allow

the programmers to include the additional metadata information in the source code. The

existing approaches [8], [13], [14], [19], however, are utilizing the annotations for check-

ing only the name and structural properties of the fields or the methods. In our approach,

we utilize the metadata annotations to provide the data statistics for the query optimizer

and optimize the queries. The metadata used in our approach is similar to the metadata

generated for the queries in the databases [17].

We proposed a run time query optimization approach [11] and a compile time query

optimization approach [12] that optimizes the object queries on collection utilizing the

metadata annotations. The proposed approach [12], however, is only applicable for the

numerical valued attributes and also requires the annotations to be provided by the pro-

grammers manually in the source code. Therefore, in order to overcome the limitations of

our earlier work, in this paper, we propose an approach that works for the string valued

attributes and also generate the annotations automatically from the source code.
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The primary limitation for generating the query plan at compile time is that the in-

formation about the data such as collections is not available until run time. However, the

estimates about the data can be obtained from the metadata such as the size of the collec-

tions, the percentages of attribute values in certain alphabet and string length ranges. But,

the metadata estimates computed at compile time become invalid as the source code evolves

at run time. Therefore, in order to ensure the correctness of the estimates, we modify the

query plan at run time in cases of updates to the data.

The major advantage of performing the query optimization at compile time is that it

reduces the run time overhead. The other significant advantage of the proposed approach

is that the annotations are generated in the source code and it eliminates the developer’s

burden of manually annotating the source code entities. The approach also addresses the

important issue of developers forgetting to annotate the source code entities. Consider the

sample program in Figure 1.1 with the nested loops iterating upon the collections of stu-

dents, faculty and seeking the students whose names are equal to that of faculty. Figure 1.2

shows the corresponding object query that operates upon collections of students, faculty

and seeks the students whose names are equal to that of faculty. Even though, both the

programs return the same result, the program using query abstractions is clear and suc-

cinct. Additionally, we can optimize the execution of the object query using the query

optimization strategies.

This paper’s primary contributions are the following:

• A novel approach for the optimization of the object queries containing the string

valued attributes by using the metadata annotations

• Generation of metadata annotations from the source code

• Selectivity estimation strategies for the string valued predicates and joins

• Generation of query plans at compile time
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1: <Student> students, <Faculty> faculty;
2: for(i=0;i<students.size();i++)
3: for(j=0;j<faculty.size();j++)
4: if(students.get(i).name==faculty.get(j).name)
5: return students.get(i);

Figure 1.1. Original program with explicit queries

1: <Student> students, <Faculty> faculty;
2: selectAll(Student s:students, Faculty f: faculty |

s.name==f.name);

Figure 1.2. Program using query abstractions

• Cache heuristics and the incremental maintenance of the cached results

• Experimental evaluation of the proposed approach on benchmark queries and com-

parison to the JQL approach

The rest of the paper is organized as follows. Section 2 presents the related work

on compile time query optimization approaches and the usage of annotations by the pro-

grammers in the program source codes. Section 3 provides our approach for extracting

the meatdata values, generating the annotations and the selectivity estimation strategies.

Section 4 describes the query plan generation, cache heuristics and the incremental main-

tenance of cached results. Section 5 presents the experimental evaluation of this work and

Section 6 provides conclusions and directions for some future research.
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2. RELATED WORK

There exist only run time query optimization approaches such as LINQ [10], JQL

[21] in the context of object queries optimization in the programming codes. Therefore,

in this section, we focus on the existing compile time query optimization techniques in

databases and also discuss the approaches in software engineering domain utilizing the

metadata annotations.

The limitation for generating the query plan at compile time is that the information

about the intermediate results is not known until run time. Therefore, some literature work

[2], [18] have focused on estimating the query selectivity for uncertain data. An approach

of query optimization for the probabilistic queries over uncertain data has been proposed

in [18].

The mid-query re-optimization approach in [7] suspends the query execution in the

middle if the statistics obtained at compile time are different from the actual statistics at run

time. The mid query re-optimization approach, however, incurs a run time overhead due

to the modification of the query plan in the middle of execution. The adaptive query opti-

mization approach in [4] modifies the query plan just before the execution if the collected

statistics are different from the actual statistics. Further, the adaptive query optimization

approach [4] differs from the mid query re-optimization [7], as there is no collection of the

statistics or the modification of the query plan in the middle of query execution.

Parametric query optimization [6] generates multiple query plans at compile time

and thereby eliminates the need for regenerating a query plan at run time. The approach,

however, exhaustively determines multiple plans at compile time. Moreover, the startup

cost of the approach is high rather than optimizing the query only once. Progressive para-

metric query optimization [1] addresses the problem in [6] by progressively exploring the

parameter space. The approach utilizes a Parametric Plan data structure for the incremental
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maintenance of the plans. Additionally, the approach selects the query plan to execute at

run time by using only the input cost parameters without re-costing the plans.

The approach proposed in [3] performs most of the query optimization at compile

time and delays only some optimization decisions to run time. The approach orders the

incomparable query plans at compile time partially by cost. The proposed approach, how-

ever, incurs an overhead in the implementation of choose plan operator and selecting the

optimization tasks to be delayed until run time.

The approach proposed in [19] expresses the interconnections between the metadata

and the source code of a program through the metadata invariants. The approach maintains

the metadata consistent by validating the invariant conditions on the evolving applications.

The proposed approach, however, requires a separate domain specific language for express-

ing the metadata invariants. Further, the invariants only check either the name or the type

inconsistency of the fields and the methods in the source code.

The dynamic annotations [13] allow the developers to expose the dynamic domain

concepts through the annotations. The dynamic conditions for checking the validity of the

annotation are embedded in the annotation itself.

The smart annotations approach proposed in [8] detects the incorrect and forgot-

ten annotations by the developers in the source code. The approach verifies whether the

evolved source code is correctly annotated by assessing the format of the annotations based

on the name and the structural characteristics. The approach, however, requires a logic

query program language to express the constraints of the annotations.

The approach proposed in [5] modifies the query plan generated at compile time ac-

cording to the metadata collected at run time. The approach, however, has high overhead

associated with the construction of predicate inequality graphs and the generation of dif-

ferent query plans for different data.

The existing database query optimization algorithms cannot be applied directly to

the optimization of object queries because of the huge difference in complexity of the data
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sizes handled by the databases and the program codes. Additionally, to the best of our

knowledge, there is no existing method that performs optimization of object queries in the

source codes at compile time. From now on, the terms “query” and “query execution” in

this paper refer to a first class query construct in the programs but not to a database query.
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3. PROPOSED APPROACH

We extract the metadata information from the data collected through a sample run of

the program (see Section 3.1). We then generate the annotations consisting of the meta-

data values from the source code (see Section 3.2). After the generation of metadata an-

notations, we build the histograms and determine the histogram buckets that satisfy the

predicate and join conditions in the query (see Sections 3.3 and 3.4). We then compute

the selectivity estimates of the predicates and the joins from these histogram buckets (see

Section 3.5 and 3.6). Next, we generate the query plan through the maximum selectivity

heuristic and modify the query plan at run time in cases of updates to the data (see Sec-

tion 4.1). We incorporate cache heuristics that determine whether to cache the query result

or not (see Section 4.2). We incrementally maintain the cached query results up-to-date

(see Section 4.3).

3.1. EXTRACTION OF METADATA

The data in the source code contains the collections of objects. We collect the values

of those objects from the sample execution of the program. For example, if the source code

contains the collection of students, then we gather the values of the student objects for the

attribute name. We form the ranges of the bucket values for each query attribute according

to the alphabetical or the string length ranges. We then extract the following metadata that

are essential for the computation of the selectivity estimates of the string valued attributes.

3.1.1. Size of Collection. The size of the collection determines the total number of

elements in a collection. For example, the total number of elements in a student collection

is 500.

3.1.2. Percentage of Attribute Values in an Alphabetical Range. The percentage

of attribute values in an alphabetical range estimates the percentage of the attribute values
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public @interface Metadata{
String Attribute, Range1,Range2,...,Rangen;
}

Figure 3.1. Annotations Interface

1: @Metadata1(Attribute=“Student.name”,Range1=“A-E:30%”,
Range2=“E-I:20%”, Range3=“I-M:10%”, Range4=“M-Q:40%”)

2: @Metadata2(Attribute=“Faculty.name”, Range1=“A-E:35%”,
Range2=“E-I:15%”, Range3=“I-M:20%”, Range4=“M-Q:30%”)

Figure 3.2. Annotations based on alphabetical ranges

1: @Metadata1(Attribute=“Student.name”,Range1=“1-5:20%”,
Range2=5-9:80%)

2: @Metadata2(Attribute=“Faculty.name”, Range1=“1-5:30%”,
Range2=“5-9:70%)

Figure 3.3. Annotations based on string length ranges

that are present in a certain alphabetical range. For example, the percentage of values of

student’s name attribute in the alphabetical range ‘A-D’ is 60%.

3.1.3. Percentage of Attribute Values in a String Length Range. The percentage

of attribute values in a string length range estimates the percentage of attribute values that

are present in certain ranges of the string length. For example, the student’s name attribute

contains 70% of the elements within the string length range of ‘1-5’.

3.2. GENERATION OF METADATA ANNOTATIONS

In order to generate a metadata annotation for an attribute in the query, we first

obtain the data values for the attribute (as described in Section 3.1). We declare the
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‘Metadata’ as an interface in Java that consists of the string valued fields (see Fig-

ure 3.1). Then, we generate the metadata annotation in the source code as a pattern of

@Metadata( f ield1, f ield2,..., f ieldn). The first field represents the name of the attribute and

the other fields represent the ranges of values. Figures 3.2, 3.3 illustrate the metadata anno-

tations generated in the source code according to the alphabetical and string length ranges

for the student and faculty name attributes of the object query (shown in Figure 1.2). We

can observe from the Figures 3.2 and 3.3, that the metadata consists of the attribute name,

the percentages of attribute values in the alphabet and string length ranges respectively. The

importance of the metadata collection is that they are utilized in the computing the selectiv-

ity estimate of the join student.name.equals( f aculty.name) and it results in the generation

of the query plan at compile time.

We generate an annotation for every query field by ensuring that the invariant condi-

tion (shown in (1)) holds true. The invariant condition is that for all the query fields that are

equal to the member fields of the classes, there exists a metadata annotation in the source

code.

∀q f == f && f ∈ c

∃@MetadataAnnotation
(1)

Where, f is a field, q f is a query field and c is a class.

Additionally, the invariant condition (shown in (1)) addresses the major issue of de-

velopers forgetting to annotate the source code entities. Because, we ensure that the invari-

ant condition always holds true and thereby, we annotate every query field with a @Meta-

data annotation.

Next, we address the following questions regarding the generated annotations.

3.2.1. Is the Annotation Generated Correctly. We define the annotation as a

correctly generated annotation, if there exists a value in the metadata annotation for all the
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@Target(ElementType.TYPE)
public @interface Metadata{...}

Figure 3.4. Meta Annotations for Annotations

fields in the metadata interface. Otherwise, if any field in the interface has a value missing

in the metadata annotation, then the annotation is an incorrectly generated annotation.

We ensure that an annotation is generated correctly by validating the correctness in-

variant (shown in (2)). The invariant condition is that for all fields in the metadata interface,

there exists a value in the generated metadata annotation.

∀ f ∈MetadataInter f ace

∃v ∈@MetadataAnnotation
(2)

Where, f is the field and v is the corresponding value for the field.

3.2.2. Is the Generated Annotation Applicable to a Source Code Entity. We

utilize the @Target annotation that is a part of the standard Java annotation system to in-

dicate that the metadata annotation is applicable to a source code element (as shown in

Figure 3.4).

3.2.3. Is the Generated Annotation Valid at all Instances. We indicate the state of

the annotations through the meta annotations @IsValid and @IsNotValid. Initially, when

there are no updates to the data, we indicate all the metadata annotations by a @IsValid

annotation. After the updates to the data in the program, we indicate the invalid metadata

annotations with a @IsNotValid meta annotation.

3.3. CONSTRUCTION OF HISTOGRAM BUCKETS

We parse the @Metadata keywords in the source code and extract the fields

( f ield1, f ield2,..., f ieldn) associated with @Metadata annotation. The f ield1 contains the
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attribute name and the other fields such as f ield2,..., f ieldn contain the percentages of the

attribute values in the bucket ranges. The histogram buckets are built using these metadata

values from the annotations. The construction of histograms will not incur much overhead

as we infer all the information for initializing the buckets from the metadata annotations.

3.4. DETERMINATION OF SATISFYING HISTOGRAM BUCKETS

We determine the histogram buckets that satisfy the predicate and join conditions as

follows.

3.4.1. Predicates. We find whether the bucket satisfies the predicate condition by

assessing the following conditions. If the bucket’s lower end is greater than the predicate

condition. Else if the bucket’s higher end is less than the predicate condition. Then, the

bucket does not satisfy the predicate condition. We evaluate the conditions (3) and (4)

based on the lexicographic order if the histogram buckets are built according to the alpha-

bet ranges. Similarly, we evaluate the conditions (5) and (6) if the histogram buckets are

formed according to the string length ranges. Finally, the buckets that have these conditions

evaluated to false are added to the list of satisfying buckets for a predicate in the query.

Pred.cond ≺ B.low (3)

B.high≺ Pred.cond (4)

B.low > Pred.cond (5)

B.high < Pred.cond (6)

where B.low, B.high are the respective lower and higher ends of the bucket range and

Pred.cond is the predicate condition.

3.4.2. Joins. In order to determine the histogram buckets that satisfy the join con-

dition, we first need to find the overlapping range of the two attributes. We determine the

overlapping range of the two attribute domains involved in a join through our linear order



137

approach proposed in [12]. The approach obtains the overlapping interval by scanning the

two attribute domains and maintains the latest beginning (LatestBegin) and earlier ending

(EarlierEnd) values of the attribute domain ranges scanned so far. At the end of the al-

gorithm, the interval [LatestBegin, EarlierEnd] will be returned as the overlapping range

of the two attribute domains. We then determine the buckets that fall into the overlapping

range by evaluating the conditions (5), (6) and (7), (8) if the bucket values are based on

the alphabet ranges and the string length ranges respectively. The buckets that have these

conditions evaluated to false are added to the list of satisfying buckets for a join in the

query.

B.high≺ Overlap.low (7)

Overlap.high≺ B.low (8)

B.high < Overlap.low (9)

B.low > Overlap.high (10)

where, B.low and B.high are the respective lower and higher ends of the bucket range.

Overlap.low and Overlap.high are the respective lower and higher ends of the overlapping

interval range.

Next, we compute the selectivity estimates of the both the predicates and the joins

from the satisfying histogram buckets.

3.5. SELECTIVITY ESTIMATION OF PREDICATES

The selectivity estimate of the predicate is defined as the ratio of the number of ele-

ments satisfying the predicate condition and the total number of elements in the collection.

σestd =
Ne

Sc
(11)
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Where, σestd is the selectivity estimate of the predicate, Ne is the number of elements

satisfying the predicate condition and Sc is the size of collection c.

We determined the set of attribute buckets that satisfy the predicate condition in Sec-

tion 3.4.1. We now compute the total selectivity estimate of the predicate as the summation

of counts of all the satisfying buckets divided by the size of the collection.

σestdtotal =
∑∀B∈Sat f (Ai.B)

Sc
(12)

Where, σestdtotal is the total selectivity estimate of the predicate, f (Ai.B) is the frequency

count of bucket B in attribute Ai, Sat is the set of satisfying buckets and Sc is the size of the

collection c.

3.6. SELECTIVITY ESTIMATION OF JOINS

The selectivity estimate of the join is defined as the ratio of the estimated number of

matches in both the collections and the product of the sizes of both the collections.

onestd=
Mestd

S1 ∗S2
(13)

Where, onestd is the selectivity estimate of the join, Mestd is the estimated number of matches

and S1, S2 are the sizes of two collections.

In order to estimate the selectivity of a join, we obtain the buckets that satisfy the

join condition and also in the overlapping range of two attributes (as determined in Sec-

tion 3.4.2). Let OB be the overlapping bucket of the two attributes A1 and A2 involved in

the join i.e., OB ∈ A1 and OB ∈ A2. Then, the estimated number of matches for the join

equals the product of the bucket counts in both the attributes.

Mestd = f (A1.OB)∗ f (A2.OB) (14)
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Where, Mestd is the estimated number of matches, f (A1.OB) and f (A2.OB) are the fre-

quency counts of the bucket OB in the attributes A1 and A2 respectively.

The total selectivity estimate of the join is computed as the summation of the esti-

mated number of matches for all the overlapping buckets divided by the product of the sizes

of the collections.

onestdtotal=
∑∀OB j∈OBS f (A1.OB j)∗ f (A2.OB j)

S1 ∗S2
(15)

Where, onestdtotal is the total selectivity estimate of the join, OBS is the set of over-

lapping buckets, S1, S2 are the sizes of the two collections, f (A1.OB j) and f (A2.OB j) are

the frequency counts of the bucket OB j in the attributes A1 and A2 respectively.
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4. QUERY EVALUATION

We first assess if the query is present in the cache, and if it is present, we provide

the cached results. Otherwise, if the query doesn’t have the results cached, we generate the

query plan and execute the query. Then, we determine whether to cache the results of a

query or not. If the cache heuristics determine to cache the query result, we keep the query

result in the cache. We also incrementally maintain the cached results after the updates.

4.1. QUERY PLAN GENERATION

We utilize the selectivity estimates of the predicates and the joins computed from

the histogram buckets in order to generate the query plan. Rather than evaluating all the

possible join orderings through an exhaustive ordering strategy, we order the joins and

predicates in a query through the Maximum Selectivity Heuristic [9]. The heuristic orders

the joins and the predicates with the maximum selectivities first. Consequently, it reduces

the number of output tuples for the remaining join and predicate operations. The query plan

generated at compile time from the selectivity estimates, however, will be invalid in cases

of updates to the data in the source code at run time. As a result, we need to modify the

query plan at run time according to the correct selectivity estimates. We modify the query

plan if the ratio of query frequency and the number of updates exceeds a certain threshold

value.

4.2. CACHE HEURISTICS

We propose the following cache heuristics that consider the query frequency, evalua-

tion time, number of updates and the maintenance time of updates.

4.2.1. Time Only Ratio. This cache heuristic computes the ratio of the maintenance

time of the updates and the query evaluation time. The total maintenance time is computed
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as the summation of the times taken by all the updates that affect the cached query result.

If the cache factor value is less than the threshold value of 0.25, then the query result

is cached. The queries with the higher cache factor values are not cached by this cache

heuristic. Because, the higher cache factor value implies that the maintenance time of the

updates is more than the query re-evaluation time. Therefore, it is not beneficial to cache

the queries that incur more maintenance overhead.

tmu =
n

∑
i=1

tui (16)

C f =
tmu

tq
(17)

where C f is the cache factor of the query, tq is the query evaluation time, tui is the time

taken for an update ui, and tmu is the total maintenance time for all the updates.

4.2.2. Frequency and Time Ratio. This cache heuristic considers both the fre-

quency and evaluation time of the query and the updates. The heuristic computes the ratio

of the product of query frequency, query evaluation time and the product of number of

updates and maintenance time of the updates.

C f =
q f

nu
∗

tq
tmu

(18)

where C f is the cache factor of the query, q f is the query frequency, nu is the number of

updates, tq is the query evaluation time, and tmu is the total maintenance time of all the

updates.

If the cache factor exceeds the threshold value of 0.25, then the query result is cached.

The cache heuristic caches the queries with the higher cache factor values as the higher

values of the cache factor implies that the update frequency and maintenance time of the

updates are low. Consequently, the frequency and the evaluation time of the queries are
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high. Therefore, it is beneficial to cache the queries that are more frequent, require more

evaluation time and incur less maintenance overhead.

4.3. INCREMENTAL MAINTENANCE OF CACHED RESULTS

The three types of update operations occurring within the collection of objects are

the addition, the removal and the modification of field objects. We describe how we handle

each type of update operation and incrementally maintain the cached query results up-to-

date as follows.

4.3.1. Addition. The addition of new objects to the collections makes the cached

queries dependent upon those collections inconsistent. Rather than evaluating all the ob-

jects in the collection through the query pipeline again, we evaluate only the newly added

objects. If the objects satisfy the query conditions, then we add them to the cached results

of the queries.

4.3.2. Removal. The removal of the existing objects from the collections also

makes the cached results of the queries dependent on those collections inconsistent. We

assess if the cached results of the dependent queries contain the removed object, if yes,

then we remove the object from the cached results of the queries else not.

4.3.3. Field Modification. The field modification operation modifies the object

field value to a new value. Then, the cached results of the queries dependent upon this

field will be affected. Therefore, we first evaluate the queries with the new value of the

object field and if the object satisfies the query conditions, we add it to the respective query

caches. Next, we assess the caches of the dependent queries to determine if they contain

the object with the old value of the field. If any of the cached tuples contain the object with

the old field value, then we remove those tuples from the query caches.
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5. EXPERIMENTAL EVALUATION

We have evaluated the performance of our approach of compile time query optimiza-

tion for the string valued data through several experiments. We implemented all the compo-

nents of our approach such as the generation of annotations, selectivity estimation strate-

gies, query plan generation, cache heuristics and the incremental maintenance of cached

results in Java. We compared our approach (OurApproach) with the existing JQL ap-

proach of run time query optimization [21]. Because, JQL approach is the most related to

our work in the context of object query optimization in programming codes.

We have chosen the queries considered by JQL i.e., four different types of queries

with varying number of source collections, joins and complexities as the benchmark queries

(shown in Table 5.1). The benchmark queries containing one, two, three and four source

collections are named as OneSource, TwoSource, ThreeSource and FourSource respec-

tively. The benchmark queries range over collections of students, faculty, courses and top

students. The worst case execution order of the OneSource, TwoSource, ThreeSource and

FourSource queries are O(n), O(n2), O(n3) and O(n4) respectively. We expressed the

queries in JQL syntax and translated them to the Java code using JQL compiler. We also

incorporated the query plan generation strategy into the compiler.

We constructed a benchmark program that varies the ratio of query evaluations and

updates to the objects in the source collections. Two types of cases can occur in the source

codes such as the program containing more number of updates than the query evaluations

and the vice versa. We considered both these types of cases with Case 1 as the bench-

mark program consisting of more number of updates than the query evaluations and Case

2 benchmark program denoting more number of query evaluations than the updates. Case1

is more complicated than Case 2 because if the number of updates are more than the query

evaluations, then the overhead of modifying the query plan and maintenance of the cached
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Table 5.1. Benchmark Queries
Query Details
OneSource: SelectAll(Student S:students|S.name.equals(“Tim”))
This query has one source collection of students and one predicate.
TwoSource: SelectAll(Student S:students,Faculty F:faculty|S.name.equals(F.name))
This query has two source collections of students, faculty and one join.
ThreeSource: SelectAll(Student S:students,Faculty F:faculty,Course C:courses|
S.name.equals(F.name) && F.name.equals(C.fname))
This query has three source collections of students, faculty, courses and two joins.
FourSource: SelectAll(Student S:students,Faculty F:faculty,Course C:courses,
TopStudent T:topstudents |S.name.equals(F.name) && F.name.equals(C.fname)
&& S.name.equals(T.name))
This query has four source collections of students, faculty, courses, top students
and three joins.

results will be high. The benchmark program consists of 1000 operations where each op-

eration consists of either a query evaluation or a random addition, removal of the object

from one of the source collections. Table 5.2 shows the number of query evaluations and

updates for each ratio value in both the cases and for a total number of 1000 operations.

For example, in Case 1, the ratio value of 0.2 indicates that the number of query evaluations

are 167 and the number of updates are 833. Consequently, in Case 2, the ratio value of 0.2

denotes that the number of query evaluations and updates are 833, 167 respectively.

For each benchmark query, we evaluated our approach and the JQL approach on both

the cases of benchmark program. We varied the ratio of the query evaluations and updates

from 0 to 1 in intervals of 0.2. We measured the average run time of each experiment by

performing 10 runs of the the benchmark program. The size of the student and faculty

collections in TwoSource, ThreeSource and FourSource queries are 500, 200, 100 respec-

tively, whereas, the size of the courses and top students collections in ThreeSource and

FourSource queries are 100, 50 respectively.

The experiments in Figures 5.1, 5.2 and 5.3 illustrate the evaluation of the TwoSource,

ThreeSource and FourSource benchmark queries on the Case 1 benchmark program. We
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Table 5.2. #Query Evaluations and #Updates
Values for the Case 1 Benchmark Program
Ratio #Query Evaluations #Updates
0.2 167 833
0.4 286 714
0.6 375 625
0.8 445 555
Values for the Case 2 Benchmark Program
Ratio #Query Evaluations #Updates
0.2 833 167
0.4 714 286
0.6 625 375
0.8 555 445
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Figure 5.1. Evaluation of Two Source benchmark query on the Case 1 benchmark program

can observe from the Figures 5.1, 5.2 and 5.3 that our approach achieves less run time than

the JQL approach. The overhead of modifying the query plan at run time is less in our

approach since most of the optimization tasks are performed at compile time.

The experiments in Figures 5.4, 5.5 and 5.6 demonstrate the evaluation of the

TwoSource, ThreeSource and FourSource benchmark queries on the Case 2 benchmark

program. We can observe from the experiments that our approach takes less execution time
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Figure 5.2. Evaluation of Three Source benchmark query on the Case 1 benchmark pro-
gram
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Figure 5.3. Evaluation of Four Source benchmark query on the Case 1 benchmark program

rather than the JQL approach for all the benchmark queries. As the number of updates

are less than the query evaluations in Case 2, the overhead of modifying the query plan

is insignificant. Moreover, our approach utilizes the histograms built from the generated

annotations and determines the selectivities through a linear order approach. Additionally,

the generation of query plan at compile time and the efficient cache heuristics also lead to
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Figure 5.4. Evaluation of Two Source benchmark query on the Case 2 benchmark program
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Figure 5.5. Evaluation of Three Source benchmark query on the Case 2 benchmark pro-
gram

the reduction in run time. The run time difference obtained in Case 1 is more significant

than Case 2 because it demonstrates that our approach performs well even if there are more

number of updates than the query evaluations.

Next, we performed the experiment in Figure 5.7 to determine the impact of varied

number of objects in the source collections on our approach. We evaluated the TwoSource
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Figure 5.6. Evaluation of Four Source benchmark query on the Case 2 benchmark program
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Figure 5.7. Evaluation of Two Source and Three Source benchmark queries for varying
number of objects

and ThreeSource benchmark queries by varying the number of objects from 100 to 500.

From the Figure 5.7, we can observe that as the number of objects in the collections in-

creases, the execution time of our approach increases. This can be clearly noticed in the

experiment by the difference in execution times between the ThreeSource and TwoSource

benchmark queries.
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Figure 5.8. Evaluation of our cache heuristics for Two Source benchmark query
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Figure 5.9. Evaluation of our cache heuristics for Three Source benchmark query

The objective of the experiments in Figures 5.8, 5.9 and 5.10 is to determine the cache

heuristic that results in less run time of the program. We evaluated the benchmark queries

on Case 1 benchmark program with varying number of query evaluations and updates.

Figures 5.8, 5.9 and 5.10 illustrate that the time only cache heuristic performed better than

the frequency and time cache heuristic for all the benchmark queries. Therefore, we utilized

the time only cache heuristic in all the experiments.
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Figure 5.10. Evaluation of our cache heuristics for Four Source benchmark query

From all these experiments conducted above, we can state that our approach of com-

pile time optimization utilizing the metadata annotations achieves less run time than the

JQL approach. We evaluated the performance of our approach on benchmark programs

with varying number of updates and query evaluations. If there are no updates to the data

at run time, the query plan generated at compile time using annotations is valid at all in-

stances. Thus in this case, our approach will not incur any overhead of modifying the

query plan at run time. The results of the OneSource benchmark query evaluation were

not included nevertheless there is an improvement obtained in the execution time. The im-

provements in execution time obtained in all the experiments are significant and are relevant

to the programs in practice. Note that a join operation between two collections in a query

correlates to a nested loop iterating upon collections in the program. The loop analysis in

program codes [21] demonstrated that the nested loops over collections occur often in the

programming codes. Therefore, we considered those types of loops in program codes as

the benchmark queries. Further, we describe the run time benefit of our approach in terms

of the number of resulting matches for a benchmark query. Consider the TwoSource query

operating upon collections of size 500 each, then the number of resulting matches could be
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500*500 (250000). We can observe that the query evaluation computing these many num-

ber of matches is a complex operation. Consequently, the ThreeSource and FourSource

queries operating upon the source collections are also complex operations. Therefore, the

gain in the run time by our approach on these query evaluations is beneficial to the large

programs.
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6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a compile time query optimization approach for the ob-

ject queries containing the string valued attributes. The proposed approach first collects

the data from a sample run of the program and then extracts the metadata required for the

string valued attributes. Next, the annotations were generated in the source code based

on the metadata values and the histogram buckets were built using those annotations. The

selectivity estimates of the predicates and joins in the query were computed from the his-

tograms. The query plan was generated at compile time through the maximum selectivity

heuristic. The generated query plan was modified at run time in cases of significant updates

to the data. The query results were cached if the cache heuristics determine it was beneficial

to cache the query results. The cached results of the queries were incrementally maintained

up-to-date. The experimental results validate that our proposed approach performs better

than the existing JQL approach.

In future, we will evaluate the approach on real world program codes. Moreover,

we intend to explore more effective optimization strategies and the selectivity estimation

techniques for further reducing the run time overhead.
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Object oriented programming languages raised the level of abstraction by incorporat-

ing first class query constructs explicitly into program codes. These query constructs allow

programmers to express operations over collections as object queries. They also provide

optimal query execution, utilizing query optimization strategies from the database domain.

However, when a query is repeated in the program, it is executed as a new query. This

paper presents an approach to reduce the run time execution of programs involving ex-

plicit queries by caching the results of repeated queries while incrementally maintaining

the cached results. We performed the pattern matching of both queries and updates at com-

pile time. We propose several cache heuristics that determine not only which queries to

cache but also when to stop the incremental maintenance of cached query results. We also

propose a method for the incremental maintenance of cached results of queries by handling

different types of update operations such as addition, removal of objects from the collec-

tions and field value modifications of the object states. We incorporated cache replacement

policies that replace the queries from the cache when the cache size is full. Our experimen-

tal results demonstrate that our approaches of caching and incrementalization have reduced

execution times for the programs with object queries on collections when compared with

earlier approaches such as Java Query Language (JQL).
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1. INTRODUCTION

Object oriented programming languages supporting first-class query constructs allow

programmers to efficiently perform operations on data structures such as collections. These

query constructs have been developed for various languages, including LINQ [10] for C# ,

JQL [18] for Java, and Python comprehensions [13]. Typically in a program, an operation

of finding the common elements from two collections is performed through iterations in a

nested loop and if the same operation is repeated in the program, it would be re-executed.

If we realize the operation as a query abstraction, however, we can cache the results of the

query and thus, avoid query re-execution. Consequently, caching the results of repeated

queries in a program both saves execution time and effectively reduces the run time exe-

cution of a program. These results may become invalidated, however, due to the addition,

deletion, or modification of objects within the collections at run time. Therefore, we need

to maintain the cached results up-to-date.

Both caching and incrementalization approaches [9, 14, 15, 16, 19] have been pro-

posed for explicit, first class query constructs in programming codes. Only a few, however,

are completely automated approaches [9, 14]. Aspect Oriented Programming (AOP) [7]

has been used to cache queries [3, 19]. AspectJ [8] provides support for AOP in Java. Us-

ing AspectJ in caching strategies, however, creates considerable overhead in the memory

consumption and results in delay in the run time. The incrementalization rules proposed

in [6, 9] define how to maintain a query incrementally at each update. These proposed

approaches identify every expensive computation as a query, maintaining them incremen-

tally only when beneficial. These approaches, however, miss the essential characteristic of

selecting only a few expensive computations to cache.

Our earlier work [17] addressed the problem of caching explicit queries in program-

ming codes by caching the results of joins instead of caching the entire query results. The
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approach proposed here detects the join sequences to be cached at run time. The cache

policy determines which join sequences to be cached at run time. This approach, however,

performs well only when the program consists of explicit queries, with multiple sub joins

repeated in several queries.

Therefore, in this paper, to overcome all of the limitations previously mentioned,

we propose an automated caching and incrementalization approach for object queries on

collections in programming codes. We identify the pattern of queries and updates in the

source code at compile time. We determine the type of update operation and then insert

the corresponding maintenance code automatically into the source code after the update

operation. We propose cache policies that determine which queries to cache. We also

propose cache replacement policies that replace certain queries from the cache when the

cache size is full. We perform an experimental evaluation of our approach by varying

the parameters such as number of query evaluations and updates to the objects within the

collections.

The major contribution of this work is to address the following four research ques-

tions within the context of object query caching in programming codes:

• How do we decide which queries to cache?

• How do we incrementally keep the cached results up-to-date?

• When do we stop the incremental maintenance of cached results?

• What is the impact of various caching strategies on the performance?

Our proposed approach will save programmers a significant amount of effort by au-

tomating the procedure for caching and incrementalization of expensive computations i.e.,

queries in the program code. Additionally, this approach frees developers from manually

writing the maintenance code for complex computations that might otherwise be difficult

and time-consuming. The proposed cache heuristics reflect the run time information such
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as the maintenance time of updates, the query evaluation time, the cost of query, and the

updates. Thus, the efficiencies we obtain in the program execution times are the result

of careful run time monitoring. These proposed cache heuristics also help reduce the ex-

ecution time of several queries. This reduction leads to a significant run time reduction

of the program. By recognizing the query, update patterns at compile time, we can also

track different types of update patterns affecting the query cache. Moreover, by inserting

the necessary maintenance code for an update operation in the source code, our approach

eliminates the need for AspectJ to track and weave the code required for incremental main-

tenance.

The rest of the paper is organized as follows. Section 2 presents the related work

on caching and incrementalization approaches for object queries in programming codes.

Section 3 discusses the motivation behind our work. Section 4 describes the caching ap-

proach that involves both cache policies and cache replacement policies. Section 5 provides

the approach for incrementalization of cached query results. Section 6 presents the perfor-

mance evaluation of this work, and Section 7 provides conclusions and directions for future

research.
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2. RELATED WORK

In this section, we discuss existing approaches for the caching and incrementalization

of object queries in programming codes.

JQL [19] relies on cache policies, such as AlwaysCache and Query/U pdate ratio, to

determine whether or not to cache a given query. The AlwaysCache policy always caches a

query, irrespective of the number of updates. Consequently, the policy incurs a high over-

head by performing the incremental maintenance for every cached query result. Further,

the policy misses the essential feature of selecting the queries to keep in the cache that incur

less maintenance overhead. The Query/U pdate ratio policy only considers the frequency

of both queries and updates. Not, all of the frequent update operations, however, are sig-

nificant in terms of either cost or maintenance time. Moreover, AspectJ [8] is utilized in

JQL to track the update operations to the data and weave the required code for handling

those update operations. The aspect oriented caching approach in JQL, however, does not

instrument assignments only to fields of objects that participate in queries. Additionally,

JQL fails to employ any cache replacement policies to replace the queries from the cache.

AutoWebCache [3] is a middleware solution for caching dynamic content. Although

the approach has effective cache invalidation policies, it caches every query on a cache

miss. Additionally, the effect of varying cache size on the hit rates of requests was not

considered. Finally, the approach does not involve any cache replacement strategies.

The approach proposed in [9] identifies all of the expensive computations (queries)

in the program and maintains those expensive computations incrementally. The rules pro-

posed for incremental maintenance determine when to incrementally maintain a query re-

sult. This approach, however, does not have an effective cache policy for selecting which

queries to keep in the cache. Moreover, the approach does not involve any cache replace-

ment policies.



160

An automatic incrementalization approach for data structure invariant checks has also

been proposed [16]. This approach is implemented in Java language; it incrementalizes the

invariant checks by re-checking only the changed parts of the data structure.

The elimination method proposed in [4] aims at removing queries from considera-

tion for cache maintenance that are not influenced by a database update. This approach

determines whether or not the update can influence the cached query by comparing the

query with the updated subschemas. A comparison of the query and update subschemas,

however, must be done for all the cached queries.

The use of caching in an Accessible Business Rules (ABR) framework for IBMs

Websphere [5] has also been demonstrated. The cache significantly reduces the number

of queries to remote databases by storing query results. The proposed enhancements to

data update propagation (DUP) consider the values of database updates and automatically

compute dependencies using both compile time and run time analysis.

A self-adjusting computation approach proposed in [1, 2] combines Memoization and

Dynamic Dependence Graphs. This self-adjusting computation approach [1, 2] however,

has drawbacks. First, the programmer must differentiate between the stable data and the

changing data, utilizing a special set of primitives for operating on the changing data. Sec-

ond, rewriting of a normal program into a self-adjusting program will require significant

changes to the code. Moreover, the process of rewriting the code would be error-prone and

cumbersome due to the strict restrictions on the usage of primitives in the implementation.

Static, dynamic, and hybrid caching policies proposed in [12] incorporate both query

cost and query frequency into the caching policies. Cache replacement policies such as

least costly used and least frequently used were also proposed. The major limitation of

the proposed approach in [12] is that it does not handle the incremental maintenance of

cached results. Additionally, the proposed caching policies do not consider the cost impact

of updates affecting the cached results.
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3. MOTIVATION

Programming languages that incorporate first class query constructs along with

caching strategies for query results alleviate the programmer’s burden of writing the op-

timized code manually for determining the cache elements and incrementally maintaining

the cached results.

Consider a collection of students and faculty in a university setting. Consider a query

where we must obtain a list of students who are teaching assistants (TAs) as well. Program

1 illustrates the nested loop implementation that iterates upon collections of students and

faculty, determining the students whose names are equal to that of faculty. Program 2

illustrates the corresponding object query implementation that seeks the students who are

teaching assistants as well. The object query relies on Java Query Language syntax. The

query is succinct and it will be executed optimally using query optimization strategies such

as hash join, sort join. The query optimizer determines the implementation strategy for the

join based on the join operator. Both the Programs 1 and 2 are shown in Figure 3.1. The

list of teaching assistants needs to be computed frequently, either every month or every

semester. Additionally, there will be updates to the student and faculty collections such

as the addition of new students, the addition of new faculty and the removal of graduated

students.

If we use the nested loop iteration over collections (as shown in program 1), we must

iterate the nested loop every time to obtain the list of students who are teaching assistants

as well. However, if we use the object query implementation shown in program 2, we can

cache the results of the repeated execution of the query. Then, in cases of updates, we need

to incrementally maintain the cached result of the query to obtain the valid results. If the

number of updates is more frequent than the query, however, we will incur an overhead

in maintaining the cache incrementally. Therefore, we need efficient cache heuristics to
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program1 (Nested loop upon collections)
Collection students, faculty, TAs;

for(Student s:students)
for(Faculty f:faculty)
if(s.name.equals(f.name))
TAs.add(s);

(An example of nested loops over Students and Faculty collections)

program2 (Object query)
Collection students, faculty, TAs;
TAs=selectAll(Student s,Faculty f|

s.name==f.name);

(An example of object query on Students and Faculty collections)

Figure 3.1. Program 1 and Program 2

determine when it would be beneficial to cache a query and when to stop the incremental

maintenance of a cached query result.
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4. CACHING APPROACH

We identified both the query and the update patterns in the source code at the compile

time (see Sections 4.1 and 4.2). We propose efficient cache policies that determine which

queries to cache. We incrementally maintain the cached query result only if the cache policy

determines it is beneficial to do so (see Sections 4.3, 4.4). We also propose several cache

replacement policies for selecting the queries to evict from the cache (see Section 4.5).

We perform incremental maintenance of cached query results after an update operation by

inserting the necessary maintenance code (see Section 5).

4.1. RECOGNITION OF QUERY PATTERNS

The queries written in JQL are translated to Java code by the JQL compiler. Dur-

ing the translation of JQL queries to Java statements, we perform a pattern matching of

queries in the source code at the compile time. A query is represented in JQL as both

SelectAll(Domainvariables | query.expr) and doAll(Domainvariables | query.expr). The

DomainVariables of a query provide the collections that are being queried. The query.expr

is a conjunctive normal form consisting of the domain variables. We parse the query state-

ments in the source code containing either the ‘selectAll’ or the ‘doAll’ keyword. We then

extract both the domain variables and the query expression, separated by a ‘|’ symbol. We

also infer both the collections present in the domain variables and the fields involved in the

query expression.

4.2. RECOGNITION OF UPDATE PATTERNS

Three fundamental types of update patterns occur in the source code containing the

collections of objects. The first type of update is the addition of new objects to the collec-

tions. The second type of update is the removal of existing objects from the collections.
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The third type of update is the modification of object field values to new values. We recog-

nize the statement in the code as an update if it contains either an add, a remove or a field

assignment operation. We then determine if a new object is added to the collection or an

existing object is removed from the collection or if the state of object is modified to a new

value. Each type of update pattern is identified within the source code as follows:

4.2.1. Add Update. The patterns of the add operation updates in the source code

include Collection.add(object) and Collection.addAll(elements). The Collection is a col-

lection of objects of a class or a primitive type such as integer and string. The elements

is a collection of elements added to the collection. We need to recognize the statements

in the source code containing this pattern of add operation. However, the source code can

contain many numbers of objects added to various collections. Therefore, we recognize

only the add operations to the collections that map to the list of query collections obtained

by parsing the query patterns (see section 4.1). Consider both the example query shown

in Figure 3.1 and an update operation students.add(newstudent). We deduce the type of

update as an add operation and infer that a new student has been added to the students

collection.

4.2.2. Remove Update. The patterns of the remove operation updates in the

source code include Collection.remove(object), Collection.removeAll(elements) and Iter-

ator.remove(). The Collection is a collection of objects of a primitive type or a class, and

the object is an object that is removed from the collection. The elements is a collection

of elements removed from the collection. We identify only the remove operations for the

collections that are involved in the queries as well. In doing so, we avoid the overhead of

tracking all of the remove operations for various collections present in the source code.

4.2.3. Field Update. The patterns of the field modification operations in the source

code include Object.field=newvalue and list.set(int index, Object newvalue). The Object is

an object of a class and the newvalue is the modified value of the object state. The index

is the index of the element in the list, and the newvalue is the updated value of the element
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in the index position. The challenge here is to avoid analyzing all of the field assignment

operations in the source code. Because, a large number of these field assignment operations

might not be relevant to the queries. Therefore, we analyze a field assignment statement

only if it contains a field that is present in the analyzed query expressions.

In the following section, we provide definitions for both the query and update cost

utilized in the cache policies.

4.3. QUERY AND UPDATE COST

4.3.1. QueryCost. We define the cost of a query as the product of sizes for all of

the collections within the domain variables.

queryCost(q) = ∏
∀ci∈q
|q.ci| (1)

where queryCost(q) is the cost of the query q and |q.ci| is the size of the ith domain

variable collection.

4.3.2. UpdateCost. We define the cost of an update as the product of sizes for the

collections within a query affected by an update. We compute the set of collections affected

by an update through the static analysis of both query and update patterns at compile time.

We maintain a hash map known as a dependency table that maps the dependency variables

to its queries. The dependency variables include the collections and the fields on which the

query depends. The dependency table is used for look-up during analysis to determine the

set of collections within a query affected by an update.

updateCost(uk) = ∏
∀c j∈q,c j 6=ci

|q.c j| (2)
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where updateCost(uk) is the cost of the kth update, ci is the updated collection, and

c j is the jth collection affected by the update.

The total cost for all of the updates (Uc) affecting the cached query result is defined

as the sum of the individual costs of all the updates (uk).

Uc =
n

∑
k=1

uk (3)

where Uc is the total cost of all the updates affecting a query cache, n is the number of

updates, and uk is the cost of the kth update.

4.4. CACHE POLICIES

The cache policies determine which queries to keep in the cache. We need efficient

cache strategies that reduce both the incremental maintenance overhead as well as the ex-

ecution time of a program. We propose several cache heuristics by considering multiple

factors, including the query frequency, the query cost, the query evaluation time, the up-

date cost, and the maintenance time of the updates. The proposed cache policies consider

the queries that are beneficial to cache and incur less maintenance overhead thereby result-

ing in less run time of the program. We have chosen the threshold values for the cache

factors based on the empirical results in our earlier work [11] and the JQL approach [19]

that considered the ratio of queries and updates.

4.4.1. Time Only Ratio (TOR). This cache policy computes the ratio of the main-

tenance time for updates to both the query’s cache and the evaluation time. The total

maintenance time of updates is the sum of the times taken by all of the updates that affect

the cached query result.

tmu =
n

∑
i=1

tui (4)
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Ctor =
tmu

tq
(5)

where Ctor is the time only ratio cache factor for the query, tq is the query evaluation time,

tui is the time taken for an update ui, and tmu is the total maintenance time taken for all of

the updates.

If the cache factor (Ctor) of the query is less than 0.25, then the query result is cached.

A threshold value of 0.25 signifies that the query is cached as long as the maintenance time

of updates is less than one-fourth of the query evaluation time. A query with a value of

cache factor greater than the threshold is not cached.

4.4.2. Frequency and Time Ratio (FTR). This cache policy considers the frequency

of the query, the number of updates, the query evaluation time, and the maintenance time

of the updates. If the cache factor value is greater than 0.25 then the query result is cached.

C f tr =
q f

nu
∗

tq
tmu

(6)

where C f tr is both the frequency and the time ratio cache factor for the query, q f is the

query frequency, nu is the number of updates, tq is the query evaluation time, and tmu is the

total maintenance time taken for all of the updates.

4.4.3. Cost Only Ratio (COR). This cache policy considers only the cost of both

the query and the updates. The policy computes the ratio of the maintenance cost of the

updates and the query cost.

Ccor =
Uc

qc
(7)
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where Ccor is the cost only ratio cache factor for the query, qc is the cost of the query and

Uc is the total cost of the updates affecting a query cache.

If the cache factor value is less than 0.5, the query result is cached. If this value is

more than 0.5, it is not cached. Lower cache factor values imply that the cost of the query

is higher. Correspondingly, the cost of the updates to the query is lower. Because queries

with these values are beneficial, only the lower values of the cache factor are cached by

this policy. The higher value of the cache factor implies that the query cost is less and the

update cost is more. As the cost of the updates increases, the queries incur more overhead

for maintenance of their cached results up-to-date. Therefore, the cache policy does not

cache the queries with higher cache factor values.

4.4.4. Frequency and Cost Ratio (FCR). This cache policy considers not only

the frequency but also both the cost of the query and the updates. It computes a ratio of

the product of the frequency, the cost of updates affecting the query, and the product of

the frequency, and the cost of the query. The policy caches the query only if C f cr ≤ 1.

Otherwise, the query result is not cached. A query will be cached by this policy as long as

the product of the frequency and the cost of the updates affecting the query is less than the

product of both the frequency and the cost of the query.

C f cr =
nu ∗Uc

q f ∗qc
(8)

where C f cr is the frequency and the cost ratio cache factor for the query, q f is the query

frequency, qc is the cost of the query, nu is the number of updates, and Uc is the total cost

of the updates affecting a query cache.

Unlike JQL cache policies, our heuristics consider several factors, such as the eval-

uation time of the query, the maintenance time of the updates, the cost of the query, and

the cost of the updates. The JQL policy, however, considers only the frequency factor for
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both the queries and the updates. The results from our study also indicate that our proposed

cache heuristics improve the execution time of the program.

4.5. CACHE REPLACEMENT POLICIES

4.5.1. Least Frequent Query (LFQ). With the least frequent query policy, the

value of the query is set to the query frequency. This policy replaces the query with the

least frequency value from the cache.

VLFQ = q f (9)

where VLFQ is the frequency value of the query and q f is the query frequency.

4.5.2. Least Costly Query (LCQ). This policy replaces the query with the least cost

value from the cache.

VLCQ = qc (10)

where VLCQ is the cost value of the query and qc is the query cost.

4.5.3. Least Time for Query Evaluation (LTQ). The least time for query evaluation

policy replaces the query from the cache that requires the least time for its evaluation.

VLT Q = tq (11)

where VLT Q is the time value of the query, and tq is the query evaluation time.

4.5.4. Least Frequency and Time Ratio (LFT). Within the least frequency and

time ratio policy, the value of the query is set to the cache factor of the frequency and time
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ratio policy defined in Section 4.4.2. The policy replaces the query with the lowest value

of C f . It is because the lowest value of cache factor denotes that the number of updates

affecting its cached result is high and the maintenance time for updating the cache is also

high.

VLFT =
q f

nu
∗

tq
tmu

(12)

where VLFT is the frequency and time ratio value of the query, q f is the query frequency, nu

is the number of updates, tq is the query evaluation time, and tmu is the maintenance time

taken for updates.

4.5.5. Highest Maintenance Time Only Ratio (HMT). The highest maintenance

time only ratio policy evicts the query from the cache that has the highest ratio value of

maintenance time of updates and the evaluation time. Thus, the policy replaces the query

that requires more maintenance time for updating the cache.

VHMT =
tmu

tq
(13)

where VHMT is the maintenance time only ratio value of the query, tq is the query evaluation

time, and tmu is the maintenance time taken for updates.

4.5.6. Highest Update Cost Only Ratio (HUC). The highest update cost only ratio

policy chooses the query as a victim according to the ratio of the cost of the updates and

the cost of the query. The value of the query is set to the cache factor of the cost only ratio

policy defined earlier. This policy replaces the query with a highest value of this ratio.

VHUC =
Uc

qc
(14)
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where VHUC is the update cost only ratio value of the query, qc is the cost of the query, and

Uc is the total cost of the updates affecting a query cache.

4.5.7. Highest Update Frequency and Cost Ratio (HUFC). The highest update

frequency and cost ratio policy considers both the frequency and the cost of the updates as

well as the query. We employ the same formula defined in Section 4.4.4 for the frequency

and cost ratio cache policy. This policy replaces the query with the highest value of this

cache factor because the highest value implies that the frequency and cost of updates is

high and also the frequency and cost of query is less.

VHUFC =
nu ∗Uc

q f ∗qc
(15)

where VHUFC is the update frequency and cost ratio value of the query, q f is the query

frequency, qc is the cost of the query, nu is the number of updates, and Uc is the total cost

of the updates affecting a query cache.
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5. INCREMENTALIZATION APPROACH

We determined the different types of update patterns occurring within the collections

of objects (see Section 4.2). These updates include the addition of objects to the collections,

the removal of objects from the collections, and field modifications of the object state. We

describe here how each type of update operation is handled. We discuss how the incre-

mental maintenance of cached query results is performed in the following subsections. The

incremental maintenance of the cached query results is halted if the cache factor value of

the query does not satisfy the threshold range defined for the cache policy.

5.1. ADDITION OF OBJECTS

The addition of new objects to the collections makes the cached results of the depen-

dent queries on those collections inconsistent. After identifying an add or an addAll update

pattern (as described in Section 4.2), we infer the collection to which either the new object

or elements are added. Rather than evaluating the entire query again for all of the elements

within the collection, we evaluate only the new objects through the query pipeline. We

then add the objects satisfying the query condition to the cached query result. Either all of

the new objects may pass the query condition, only some of the objects may pass, none of

them may satisfy the condition. Therefore, the size of the cached query results will only

increase; they will not decrease if objects are added to the collections.

Next, we automatically insert either an addUpdate or an addAllUpdate function

call into the source code. We do so because the type of identified update operation is

an add operation. The function call addUpdate(collection,newobject) takes the collec-

tion and new object as its two input arguments. Whereas, the function call addAllUp-

date(collection,newelements) takes the collection and new elements as its two input argu-

ments. The collection is of the type Java collections. The newob ject is the object that is
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inserted into the collection. The newlements are the elements that are inserted into the col-

lection. Both the addUpdate and addAllUpdate function calls obtain the queries dependent

upon the collection. The functions then evaluate each dependent query by passing only the

newly added object to the query pipeline, such as query.evaluate(newobject). If the new

object satisfies a query condition then the new object is added to the corresponding query

cache.

5.2. REMOVAL OF OBJECTS

The removal of the objects from the collections will affect the cached results of the

queries dependent on those collections. After analyzing a remove update pattern (as de-

scribed in Section 4.2), we obtain the collection after the object is being removed from. We

then obtain the list of queries dependent upon this collection and delete the cached query

results involving the removed object. Therefore, the size of the cache will only decrease; it

will not increase if objects are removed.

In the source code, we insert either a removeUpdate(collection, object) or a re-

moveAllUpdate(collection, elements) function call after the remove operation. The remove-

Update function takes the two input arguments as the collection and the object that has been

removed from the collection. Whereas, the removeAllUpdate function takes the collection

and the elements that are removed from the collection as the two input arguments. For each

dependent query, the tuples from their cache are removed if they involve an object value

that has been removed from the collection. Thus, the dependent query cache results are

updated in accordance with the deletion of objects from the collections.

5.3. MODIFICATION OF OBJECTS

Modifying the object state values make the cached result of the queries dependent on

that field invalid. After analyzing an object state modification (as described in Section 4.2),

we determine the field that has been modified. We also determine the class containing
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this field. We insert a line of maintenance code i.e., the fieldUpdate(field, class, newvalue)

function call after the field modification operation. Similarly, for the list.set update oper-

ation, we insert the function call listSet(src, index, newvalue) after the update operation.

The src is the source list that is updated, and the newvalue is the value of the element at

the index position that has been set. Both the fieldUpdate and the listSet functions retrieve

the queries dependent upon the field and the list, respectively. The dependent queries are

evaluated with a new field value. The satisfying results are then added to the respective

query caches. Next, the dependent query caches are assessed. If any of the tuples contain

the old field value of the object, all of those tuples are removed from the corresponding

query caches.
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6. EXPERIMENTAL EVALUATION

We have evaluated the performance of the caching and the incrementalization ap-

proach through several experiments. We implemented all of the components from our

approach in Java, including the pattern recognition of queries, updates, the cache policies,

and the incremental maintenance of cached results. We compared our approach of caching

and incrementalization (OurApproach) with the existing JQL caching approach [19]. The

JQL approach incorporates two cache policies: JQL-Ratio and JQL-Always. We also eval-

uated the performance of our approach with a no caching strategy (No-Caching) enabled

for the execution of benchmark queries.

We chose the queries considered by JQL i.e., three different types of queries with

varying number of source collections and complexities as benchmark queries (listed in

Table 6.1). The benchmark queries containing one, two, and three collections were iden-

tified as OneSource, TwoSource, and ThreeSource queries, respectively. These bench-

mark queries range over the students, the faculty, and the courses collections. The worst

case evaluation order of the OneSource, TwoSource, and ThreeSource queries were O(n),

O(n2), and O(n3), respectively. We expressed these queries in JQL syntax and translated

them to the Java code using the JQL compiler.

We constructed a benchmark program that varied the ratio of both query evaluations

and updates to the objects in the collections. Two types of cases can occur in the program.

Either the program might contain more query evaluations than updates, or the vice versa.

We considered both these types of cases with the case 1 as the benchmark program contain-

ing more number of updates than the number of query evaluations. Case 2 represents more

number of query evaluations than the number of updates. Case 1 was more challenging be-

cause the overhead of maintaining the cached results was high due to the large number of

updates. The benchmark performed 5000 operations for both cases where each operation



176

Table 6.1. Benchmark Queries
Query Details
OneSource: SelectAll(Student S:students|S.name.equals(“Tim”))
This query has one source collection of students and an update to the
student object simply requires checking the object’s name field against
“Tim”.
TwoSource: SelectAll(Student S:students,Faculty F:faculty|
S.name.equals(F.name)
This query has two source collections of students, faculty and an
update to the student object requires checking against all faculty objects.
ThreeSource: SelectAll(Student S:students,Faculty F:faculty,
Course C:courses,|S.name.equals(F.name) && F.name.equals(C.fname)
This query has three source collections of students, faculty and courses
and an update to the student object requires checking against all faculty
and course objects.

consists of either a query evaluation or a random addition and removal of a student object

from the student collection. Because each benchmark query used a student collection as a

source, the cached query results were affected by the updates to the student objects.

For each benchmark query, we evaluated our proposed approach on the benchmark

program by varying both the ratio of the query evaluations and the updates from 0 to 1 in in-

tervals of 0.2. We also executed the benchmark program with the JQL cache strategies and

the no caching strategy by varying the ratio of the query evaluations and the updates. For

all of the experiments, we repeated the execution of the benchmark program 10 times with

the number of operations, the ratio value and the size of collections as input parameters.

The average run time of 10 runs of the benchmark program was taken in each experiment.

We examined the effect of both adding and removing objects from the collections on

the cached results of queries in the case 1 benchmark program (see Figures 6.1 and 6.2).

The operations in this program consisted of not only query evaluations but also the random

addition and removal of student objects from the student collection. Figures 6.1 and 6.2

illustrate that, for both benchmark queries, our cache strategies require less run time than

either the JQL-Ratio and the JQL-Always cache strategies. These figures also suggest that
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Figure 6.1. Evaluation of Two Source benchmark query on the Case 1 benchmark program
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Figure 6.2. Evaluation of Three Source benchmark query on the Case 1 benchmark pro-
gram

the TimeOnly cache heuristic requires less run time than do all of the other proposed cache

heuristics. The no caching strategy, however, performed better than our approach for both

the TwoSource and the Three Source benchmark queries (as shown in Figures 6.1 and 6.2).

This strategy performed better because the number of update operations was more than the

number of query evaluations in case 1. Therefore, the no caching strategy did not incur
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Figure 6.3. Evaluation of Two Source benchmark query on the Case 2 benchmark program

the maintenance overhead as it did not perform any incremental maintenance of cached

results for the updates. This study further revealed that our approach performed better than

did JQL even if the overhead of incrementally maintaining the cached results due to the

updates is more. The effective cache policies in our approach balance the overhead of

keeping the query result in the cache, maintaining up-to-date cached results. Additionally,

our approach recognizes the update patterns at the compile time, inserting the maintenance

code for an update operation into the source code. Using AspectJ for tracking and weaving

the code in JQL, however, creates considerable overhead and results in delay in the run

time.

The experiments in Figures 6.3 and 6.4 illustrate the comparison of our cache strate-

gies with both the JQL and the no caching strategies for the case 2 benchmark program. For

both benchmark queries, our cache strategies performed better than did the JQL-Ratio, the

JQL-Always and the No-Caching strategies. As expected, in case 2, if the number of query

evaluations were more than the number of updates, then our approach and the JQL caching

approach will incur less overhead for the incremental maintenance of the cached results and

offer benefit in the execution time than the No-Caching strategy. Our approach, however,
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Figure 6.4. Evaluation of Three Source benchmark query on the Case 2 benchmark pro-
gram

requires even less execution time than does the JQL approach due to the effective cache

policies that consider the factors such as the query evaluation time and the maintenance

time of the updates.

From all these experiments in Figures 6.1, 6.2, 6.3 and 6.4, we determined that con-

sidering the evaluation time of queries and the maintenance time of updates in cache heuris-

tics is more beneficial than the cost of the query and the updates.

We next worked to determine the effect of modifications to the object field values on

the cached results of the queries dependent upon the collections of those objects. These

experiments were performed on the case 1 benchmark program containing more number

of field modification operations than the number of query evaluations. We first inserted

the student.name field alteration operation into the benchmark program, altering the name

value of a student object to a name selected randomly from the set of new name values. The

benchmark program then generated many number of such field modification operations

according to the specified ratio value of query evaluations and updates. Our TimeOnly

cache strategy required less run time than did the JQL-Ratio cache strategy (see Figures 6.5

and 6.6); the difference in run time was more in the ThreeSource query than it was in the
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Figure 6.5. Effect of field modifications of object values on Two Source benchmark query
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Figure 6.6. Effect of field modifications of object values on Three Source benchmark query

TwoSource query. More specifically, as the complexity of the benchmark query increased,

the run time benefit obtained in our approach grew. The difference in execution times

between our approach and JQL was primarily, due to the benefit of execution time obtained

from our effective cache policy. Our approach also tracks the updates of fields that are

present only in the queries. The aspect oriented caching approach in JQL, however, did not

instrument assignments only to fields of objects that participate in queries.
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Figure 6.7. Evaluation of our cache replacement policies

We evaluated our cache replacement policies by considering a benchmark program

containing all of the TwoSource and ThreeSource benchmark queries. This benchmark

program consisted of 2000 operations. Here, each operation was either a TwoSource or

a ThreeSource query evaluation. We denoted the cache size as the number of queries in

the cache. We varied the limit for the number of queries in the cache from 10 to 50. We

chose a low number of queries in the cache as the limit because, in this case, more num-

ber of queries would be replaced in the cache for bringing the new queries into the cache.

Therefore, in this experiment we determine how effectively the cache replacement policies

perform in cases of low limit values for the number of queries in the cache. However, if we

choose a large limit value for the number of queries in the cache, then the requirement of a

replacement policy will be less in comparison to the low limit value cases. Figure 6.7 illus-

trates that the Highest Maintenance Time Ratio (HMT) cache replacement policy obtained

less run time than did the other policies. Additionally, as the number of queries in the cache

increased from 10 to 50, the average run time of the benchmark decreased. It is because

with more number of queries in the cache, the execution time of several queries will be

reduced. Our study illustrates that the replacement policies in our approach do impact the
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Figure 6.8. Evaluation of our approach with the TimeOnly cache heuristic and the cache
replacement policies

execution time. This impact is a major advantage over existing approaches (such as JQL)

that do not incorporate any cache replacement policies and as a result, the older frequent

queries remain in the JQL cache.

We evaluated our approach by utilizing various combinations of the proposed cache

heuristics and the cache replacement policies on the benchmark program with the same

settings as in the previous experiment (see Figures 6.8, 6.9, 6.10 and 6.11). We can observe

that out of all the combinations of the cache polices and replacement polices, the com-

bination of the Least Frequency and Time Ratio (LFT) replacement policy and the cache

policy results in less run time of the program. These experiments again demonstrate that

considering the query evaluation time, the maintenance time of the updates, the frequency

of the queries, and the updates in the cache heuristics is more beneficial than the cost of

both queries and updates. Thus, our approach combining cache heuristics with replacement

policies impacts program’s run time.

From all the experiments conducted above, we can state that our approach takes less

execution time than the existing approach such as JQL. The experiments also demonstrate

that our approach performs better even if the overhead of incrementally maintaining the
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Figure 6.9. Evaluation of our approach with the Frequency&Time cache heuristic and the
cache replacement policies
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Figure 6.10. Evaluation of our approach with the CostOnly cache heuristic and the cache
replacement policies

cached results due to the updates is more. Overall, for all of the benchmark queries, both

the TimeOnly and the Frequency&Time ratio cache policies performed better than did

the CostOnly and the Frequency&Cost ratio cache policies. The results of the OneSource

benchmark query were not included. Nevertheless, the execution time was improved. Thus,

our approach was able to efficiently cache different complex queries with multiple cache
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Figure 6.11. Evaluation of our approach with the Frequency&Cost cache heuristic and the
cache replacement policies

policies. Furthermore, the different combinations of the proposed heuristics and policies

in our approach significantly impacted the program’s run time. In each of these experi-

ments, the size of the students and faculty collections was considered to be 500; the size

of the courses collection was considered to be 100. The number of comparisons required

to handle the addition of the student object to the collection of students would be different

for each benchmark query. For the TwoSource query, the added student object would be

compared to all of the 500 faculty objects. For the ThreeSource query, the added student

object would be compared to both the 500 faculty and the 100 course objects. Instead,

if we re execute the queries instead of caching and incrementally maintaining the result,

then the number of comparisons for the TwoSource and the ThreeSource queries would be

500*500 (250000) and 500*500*100 (25000000), respectively. Similarly, the removal of

a student object from the student collection would require those many comparisons. The

field modification updates, however, are more complex operations than either the object ad-

dition or the object removal operations because the objects with the new field value need to

be evaluated in the query pipeline. Additionally, the cached results containing the old field

value need to be removed. As a result, the run time reduction achieved by our approach
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for the program consisting of field modification operations is a significant benefit. Thus,

all of these query execution time optimizations assist programmers in practice because the

queries correspond to the nested loops that occur frequently within the program codes.
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7. CONCLUSION AND FUTURE WORK

In this paper, we proposed a caching and incrementalization approach to reduce the

run time of program consisting of object queries over collections. We identified both the

patterns of queries and updates at the compile time. We presented different cache heuris-

tics that determine not only which queries to cache but also when to stop the incremental

maintenance of cached results. We also proposed cache replacement policies that effec-

tively replace a query from the cache. We incrementally maintained the up-to-date cached

results by inserting the maintenance code after an update operation. We handled several

types of update operations to the collections of objects, such as the addition of objects to

the collections, the removal of objects from the collections, and the field modifications of

the object states.

Our experimental evaluation has shown that our approach performed better than the

JQL approach for the benchmark queries of different complexities and in scenarios of dif-

ferent number of query evaluations and updates. In future, we will handle the updates

occurring to the collections through different variables. Moreover, we intend to evaluate

our approach on real world program codes. Further, we will also explore more effective

cache policies and incrementalization strategies for caching the results of object queries

upon collections.
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SECTION

4. CONCLUSION

This document presents a series of approaches to reduce the run time execution of

the programs written using first class query constructs. The proposed approaches perform

the query optimization at compile time and run time. The approaches rely on histograms

to estimate the selectivities of predicates and joins in order to generate the query plan. The

annotations in the source codes are also utilized to gather the metadata required for the

selectivity estimation of the numerical as well as the string valued attributes in the queries.

The proposed approach in Paper I performed the query optimization at compile time

based on the sample executions of the queries. The histograms were utilized to estimate

the selectivities of predicates and joins and the query plan was generated at compile time

utilizing these selectivity estimates. The histograms were maintained through the split

merge algorithms based on the error estimate.

The proposed approach in Paper II performed the query optimization during a single

run of the program. The histograms were constructed from the run time data and the selec-

tivity estimates of joins and predicates were estimated from the histograms. The query plan

was generated at run time through the maximum selectivity heuristic. The information re-

garding the join order and selectivity of joins was leveraged between the query executions

during a run of the program.

The proposed approach in Paper III performed the query optimization at run time and

cached the joins involved in the queries. The cache policy determined the joins to cache and

the cache replacement policy efficiently used the available cache space. The experimental

evaluation using both synthetic as well as real world programs has shown that our approach

performs better than JQL for complex queries.
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The proposed approach in Paper IV analyzed the source code through a Preprocessing

Element and gathered all the metadata from the program through the annotations provided

by the programmer. The histograms were built from the metadata and the selectivity es-

timates of predicates and joins in the queries were computed from the histograms. The

query evaluation was performed in two phases where first phase involved application of

the selection and join optimizations. In the second phase, the query plan was generated at

compile time through the proposed selectivity cost heuristic. The query plan was modified

at run time in the cases of inaccurate metadata and significant changes to the data.

The query optimization approach proposed in Paper V extracted the metadata re-

quired for the string valued attributes through a sample run of the program. The metadata

annotations were generated in the source code based on the metadata values. The his-

tograms were built from the annotations and the selectivity estimates of the predicates and

the joins were computed from the histograms. The query plan was generated at compile

time through the maximum selectivity heuristic. The generated query plan was modified at

run time in cases of significant updates to the data. The query results were cached if the

cache heuristics determined it was beneficial to cache the query results. The cached results

of the queries were incrementally maintained after the update operations to the collections.

The caching and incrementalization approach proposed in Paper VI identified the

patterns of queries and updates at compile time. The cache heuristics determined which

queries to cache and also when to stop the incremental maintenance of the cached results

of the queries. The cached query results were incrementally maintained by the mainte-

nance code after the update operations such as the addition, the removal of objects from

the collections and the field value modification of the object states. The approach also in-

corporated several cache replacement policies that effectively replaced the queries from the

cache.

We have evaluated the performance of our compile time and run time query optimiza-

tion approaches through several experiments. We considered different queries with varying
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number of joins and complexities as benchmark queries. We have compared our approach

with JQL approach of run time query optimization. In each experiment, we measured the

average time taken for an evaluation of the benchmark query for a given collection size.

The experimental results demonstrated that our approach performed better than the exist-

ing approaches such as JQL. Furthermore, our experimental evaluation has shown that our

approach performed better than the JQL approach for the benchmark queries of different

complexities and in scenarios of different number of query evaluations and updates.

Future research will seek to exploit more effective optimization strategies, selectiv-

ity estimation techniques, cache policies and techniques for incremental maintenance of

cached entries that further reduce the run time overhead of the programs. Further, they will

consider the update operations occurring to the collections through different variables in

the program codes.
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