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The magnetic-field-tuned quantum superconductor-insulator transitions of disordered amorphous indium
oxide films are a paradigm in the study of quantum phase transitions and exhibit power-law scaling behavior.
For superconducting indium oxide films with low disorder, such as the ones reported on here, the high-field state
appears to be a quantum-corrected metal. Resistance data across the superconductor-metal transition in these
films are shown here to obey an activated scaling form appropriate to a quantum phase transition controlled by
an infinite-randomness fixed point in the universality class of the random transverse-field Ising model. Collapse
of the field-dependent resistance vs temperature data is obtained using an activated scaling form appropriate to
this universality class, using values determined through a modified form of power-law scaling analysis. This
exotic behavior of films exhibiting a superconductor-metal transition is caused by the dissipative dynamics of
superconducting rare regions immersed in a metallic matrix, as predicted by a recent renormalization group
theory. The smeared crossing points of isotherms observed are due to corrections to scaling which are expected
near an infinite-randomness critical point, where the inverse disorder strength acts as an irrelevant scaling
variable.

DOI: 10.1103/PhysRevB.99.054515

I. INTRODUCTION

The magnetic-field-tuned quantum superconductor-
insulator transition of quasi-two-dimensional amorphous
indium oxide thin films has been studied for almost three
decades (for early examples see Refs. [1,2]). Generally,
superconductor-insulator transitions can be tuned in several
ways using perpendicular or parallel magnetic fields, charge
carrier concentration or disorder [3]. The nature of these
quantum phase transitions is not settled. The canonical theory
for the perpendicular field-tuned superconductor-insulator
transition implies that the transition is directly from insulator
to superconductor, without an intermediate metallic regime.
A finite, nonzero resistance is expected only at the quantum
critical point, which is predicted to have a universal resistance
value of h/4e2 [4]. Experimental observations of broad
metallic regimes between the superconducting and insulating
regimes have been reported, seemingly contradicting this
prediction [5–7]. In two-dimensional crystalline films
quantum superconductor-to-metal transitions [8] have also
been reported and have been interpreted as evidence of a
Bose metal [9–12]. However, in some instances it is difficult
to prove that these metallic regimes are not just artifacts
caused by heating due to the measuring current, radio

*Present address: Department of Physics, University of Rochester,
Rochester, New York 14627, USA.

†goldman@umn.edu

frequency interference, or some other source, as disordered
superconducting thin films are extremely sensitive to external
perturbations [13].

Quantum phase transitions occur at zero temperature when
the ground state of a system changes in response to a vari-
ation of parameters in the Hamiltonian. Since zero absolute
temperature is experimentally inaccessible, the presence of
such a transition must be inferred from changes in mea-
surable properties that are influenced by quantum fluctua-
tions that persist to nonzero temperatures. In the case of
superconductor-insulator transitions, film resistance measure-
ments are commonly analyzed using scaling. The resistance of
disordered superconducting films near a magnetic-field-tuned
superconductor-insulator transition can be described in terms
of a power-law scaling form [14],

R(δ, T ) = �(δT −1/νz ), (1)

where δ = |B − Bc|/Bc is the distance from the critical field
Bc and � is a scaling function. This scaling form implies that
the magnetoresistance isotherms (R vs B curves at fixed T ) all
cross at the critical field Bc. Moreover, the magnetoresistance
isotherms are expected to collapse into two branches when
plotted as a function of δT −1/νz for the correct value of the
exponent product νz. Here, ν is the correlation length expo-
nent, and z is the dynamical critical exponent. In principle,
knowledge of these exponents can be used to identify the
universality class of the transition.
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The electrical transport data for the lower-resistance in-
dium oxide films studied here do not fall neatly into this
description. The high-magnetic-field regime is metallic rather
than insulating, which is a consequence of these lower-
resistance films being less disordered than films that exhibit a
direct superconductor-insulator transition. Instead of a single
magnetic field at which magnetoresistance isotherms cross,
a series, or essentially a continuum, of crossing fields is
observed. Similar effects were reported by Gantmakher and
collaborators two decades ago [15] and at the time were
analyzed using an ad hoc scaling form.

In a number of recent publications, the systematic vari-
ation of the crossing field with temperature was found to
be accompanied by a strong systematic variation of the
value of the effective exponent νz determined at each cross-
ing point. Examples include the superconductor-metal quan-
tum phase transitions of ultrathin single-crystal Ga films
[16], La2AlO3/SrTiO3 interfaces [17], and ionic liquid-gated
single-crystal flakes of ZrNCl and MoS2 [18] and of mono-
layer NbSe2 [19]. The analysis employed in these works
involved the use of the power-law scaling form (1) at crossing
points at selected temperatures, using nearby isotherms to
collapse the data and determine effective values of the expo-
nent product νz as a function of temperature. These effective
values were found to diverge as the quantum phase transition
is approached, i.e., for T → 0 and B → Bc. This behavior was
interpreted as being evidence of a quantum Griffiths singu-
larity [20–22] associated with an infinite-randomness critical
point [23,24], as had been predicted by a renormalization
group calculation [25,26] for a quantum superconductor-metal
phase transition (for reviews, see, e.g., Refs. [27,28]).

This theory also predicts that a quantum superconductor-
metal phase transition governed by an infinite-randomness
fixed point features activated dynamical scaling, rather than
power-law scaling. In this case, z → ∞ as T → 0. The scal-
ing form of the resistance differs from Eq. (1), taking the form
[29]

R

(
δ, ln

T0

T

)
= �

[
δ

(
ln

T0

T

)1/νψ
]
, (2)

where once again δ = |B − Bc|/Bc is the distance from the
critical field and ν is the correlation length exponent. The
exponent ψ is the tunneling exponent, and T0 is a microscopic
temperature scale, which acts as an additional fitting parame-
ter. Equation (2) predicts a single crossing point in magnetic
field and does not account for the temperature dependence
of the crossing fields observed here. The smeared crossing
points result from corrections to scaling which become less
important as the temperature is decreased toward zero. These
are explained in the Appendix.

We will show in the present work on indium oxide films
exhibiting superconductor-metal transitions that curves of
resistance vs temperature, R(T ), at different magnetic fields
of films with smeared crossing points of magnetoresistance
isotherms can be collapsed using activated scaling [Eq. (2)].
This provides strong evidence for a quantum superconductor-
metal phase transition governed by an infinite-randomness
fixed point with activated dynamical scaling. Our paper is
organized as follows. In Sec. II, we briefly describe the

experimental methods. Section III presents the experimental
results. We describe the scaling analysis in Sec. IV, paying
particular attention to the relationship between power-law and
activated dynamical scaling. We conclude in Sec. V by putting
our results into a broader perspective.

II. EXPERIMENTAL METHODS

The InOx films used for these studies were about 30 nm
thick and were grown by electron beam evaporation of In2O3.
During deposition, an O2 partial pressure between 2 × 10−5

and 9 × 10−4 mbar was maintained in the chamber by bleed-
ing gas through a needle valve while continuing to pump
[30]. Amorphous films were produced when the substrate
temperature was kept below about 40 ◦C. These films then sat
at ambient temperature in air for about 3 years, during which
time they underwent annealing. This process does not change
the carrier concentration but reduces the disorder. Subsequent
measurements were carried out initially using a Quantum
Design physical property measurement system to determine
the basic characteristics of the films and then with an Oxford
Kelvinox-25 dilution refrigerator for lower-temperature and
detailed measurements.

The range of temperatures over which these measurements
are reliable is limited by factors such as electromagnetic noise,
self-heating due to the measuring current, and limitations
of the cooling power and base temperature of the dilution
refrigerator employed. The leads to the cryostat were filtered
only at room temperature, so that there was electromagnetic
noise delivered to the sample. Measurements of resistance
were confined to currents at which the I-V characteristics
were linear, eliminating the possibility of heating due to the
measuring current.

The minimum achievable temperature at which the data
were reliable was determined from the behavior of the high-
field metallic regime above the transition. The conductance
in this regime, if it corresponds to that of a two-dimensional
(2D) quantum corrected metal, should be a linear function of
the natural logarithm of temperature [31,32]. The temperature
at which the conductance deviated from this form at high
magnetic fields was then taken as the minimum temperature
at which reliable measurements and analysis could be carried
out.

III. RESULTS

The InOx films studied exhibited zero-field transition tem-
peratures of approximately 2.8 K. Curves of resistance R vs
temperature T of one of the films at various magnetic fields B
are shown in Fig. 1. At perpendicular magnetic fields B ≈ 7 T ,
the temperature dependence dR/dT of the resistance changes
sign. This change occurs at a resistance that is much lower
than the quantum resistance h/4e2 for Cooper pairs (which
is the typical value for a direct superconductor-insulator
transition).

The films exhibited metallic behavior under magnetic
fields greater than 8 T, as signified by the linear dependence
of their conductances on the logarithm of temperature (see
Fig. 2). This is the expected behavior for a conventional
2D quantum corrected disordered metal [31,32]. Additionally,
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FIG. 1. Sheet resistance vs temperature at magnetic fields of 0,
3.0, 4.0, 5.0, 6.0, 6.2, 6.5, 6.7, 6.8, 6.9, 7.0, 7.100, 7.150, 7.225,
7.325, 7.4, 8.0, and 12.0 T (bottom to top).

there was what might be termed an anomalous metallic regime
at magnetic fields intermediate between those in which the
films were obviously superconducting and those in which
they were metallic. In this regime the values of dR/dT were
positive, suggesting the onset of superconductivity; however,
their resistances did not fall to zero at the lowest measurable
temperatures. In subsequent analysis we will assume that a
film in this field range, with perhaps the exception of the high-
est fields in the range, would ultimately become superconduct-
ing. Magnetoresistance isotherms were generated using the
measured R(T, B) curves by carrying out a matrix inversion
of the temperature-swept data. At first glance, it appeared that
there was a single crossing point, which would be typical for

FIG. 2. Conductance vs ln T in fields of 7.225 and 8 T. The
coefficient of ln T for the linear fit in units of e2/h is 0.4435.
Conductance varying linearly with ln T at fields above those at which
a crossover is found (see Fig. 3) is a clear indication of a quantum
corrected metal.

FIG. 3. Detailed view of the magnetoresistance isotherms close
to the quantum phase transition, showing a series or continuum
of crossings spread out over a range of temperatures and fields.
The temperatures shown are 110–170 mK in 20 mK steps and
200–1700 mK in 50 mK steps (top to bottom on the right-hand side
of the plot). The inset shows isotherms at temperatures of 160, 180,
and 200–800 mK in 50 mK steps. The crossing points are marked by
black squares. The region shown in the inset is marked on the main
plot with a dashed box.

a conventional quantum superconductor-insulator transition.
However, a detail of the crossing region, displayed in Fig. 3,
reveals that there is a series (or continuum) of crossings,
spread out over a range of temperatures and magnetic fields.
The crossing magnetic fields increase with decreasing temper-
ature and appear to saturate in the limit of zero temperature.
This unusual phenomenology is not compatible with the stan-
dard power-law scaling analysis. As will be discussed in the
next section, it can be explained by activated scaling when
subleading corrections to scaling are included.

IV. SCALING ANALYSIS

We first follow the approach of [16], in which power-law
scaling is applied to each crossing point to obtain an effective
value of the exponent product νz, which will be temperature
dependent. At a conventional quantum phase transition, the
effective values of νz are expected to be constant or at least
to saturate at a finite asymptotic value at the critical point.
In contrast, the νz values in Fig. 4 increase rapidly as the
quantum phase transition is approached, suggesting uncon-
ventional behavior.

An important issue in the quantitative analysis is the re-
lationship between the activated dynamical scaling [Eq. (2)]
expected at an infinite-randomness critical point and the
power-law scaling employed in the standard techniques. In the
Appendix we show that if a system is governed by activated
scaling with corrections to scaling, then the effective value of
the exponent product νz obtained from a power-law scaling
analysis in the vicinity of crossing points found at different
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FIG. 4. Effective exponent (νz)eff vs temperature. The solid line
is a two-parameter fit to the data of Eq. (3) with (νψ )eff and T0 as
adjustable parameters, yielding (νψ )eff = 0.62 and T0 = 1.21 K.

temperatures is given by(
1

νz

)
eff

=
(

1

νψ

)
eff

1

ln(T0/T )
, (3)

where (νψ )eff is the exponent product for the universality
class of the quantum phase transition exhibiting activated
scaling. Here again, ν is the correlation length exponent of
the transition, and ψ is the tunneling exponent.

The relationship between 1/(νψ )eff and the asymptotic
value 1/νψ is given by(

1

νψ

)
eff

= 1

νψ
− aω

ψ

(
ln

T0

T

)−ω/ψ

, (4)

where the corrections in the second term vanish as T → 0.
Here, ω is the leading irrelevant exponent (whose value is not
fixed by the existing theories), and the prefactor a is defined
in the Appendix.

To find values of the effective exponent product νz at a
crossing point, we considered a sequence of narrow tem-
perature intervals such that the magnetoresistance isotherms
within each of the intervals have a well-defined crossing field
Bx(T ). For the sets of isotherms within each interval a stan-
dard power-law scaling analysis was performed, collapsing
them into one another around their crossing fields Bx(T ). In
this case it was important to quantify the extent to which the
curves collapsed. This was done by limiting the analysis to
points near the crossing, where the scaling function � can be
approximated as linear. The isotherms are plotted as ln R vs
δT −1/νz for a set of possible νz values. The upper and lower
branches of the rescaled curves are fit to lines, and the νz value
is chosen for which the upper and lower branches of the curves
are both closest to colinear. This value that best collapsed
the isotherms in a given temperature interval was assigned a
temperature equal to the average temperature of the isotherms
in this interval. With this technique, effective values of νz as

FIG. 5. Sheet resistance versus the scaling parameter described
in Eq. (2) for activated scaling. The data collapse around critical field
Bc = 7.21 T, with νψ = 0.62 and T0 = 1.21 K as determined from
the fit in Fig. 4.

a function of temperature could be found. These values are
presented in Fig. 4.

The expression on the right-hand side of Eq. (3) vanishes
in the limit of zero temperature, implying that the effective νz
diverges. By means of Eq. (3), the temperature dependence
of the exponent product νz obtained from power-law scaling
can be used to determine the product (νψ )eff of the activated
scaling form [Eq. (2)]. The solid line in Fig. 4 is the result of
a two-parameter fit of the data to Eq. (3).

The best fit yields an exponent product (νψ )eff = 0.62, in
good agreement with the numerical predictions [33–35] for
a two-dimensional infinite-randomness critical point in the
random transverse-field Ising universality class. The range of
temperatures covered in the analysis of νz shown in Fig. 4
does not extend to low enough values to make an absolute
claim of νz divergence in the limit of zero temperature but fits
to a curve that diverges in this limit. This fit further supports
the quantum critical point being an infinite-randomness fixed
point.

One can solidify this conclusion by scaling the full set of
resistance isotherms using Eq. 2, the activated scaling form.
At this point in the analysis the only unknown parameter is the
critical field of the quantum phase transition Bc. To find Bc we
employed a numerical method used by [36], in which the vari-
ance of the magnetoresistance isotherms plotted against the
scaling parameter was minimized. It was found that a value
of Bc = 7.21 T resulted in the best collapse. This is shown
in Fig. 5. Similar results were found when magnetoresistance
isotherms from another sample were scaled using the same
form [Eq. (2)].

While this method gave a well-defined best value for Bc,
best values for νψ and T0 were not easy to determine. For a
fixed value of Bc, the variance as a function of νψ and T0 did
not have a well-defined minimum. Instead, there was an ex-
tended region in which the variance was roughly minimized.
The values of νψ and T0 from the fit to Eq. (3) fell within
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FIG. 6. Crossing field versus temperature. The solid line is a fit
to Eq. (5), with u, Bc, and exponent p = 1/νψ + ω/ψ as adjustable
parameters. T0 = 1.21 K was fixed as determined from the fit in
Fig. 5. The best fit was achieved for u = −5.56 × 10−3, p = 2.40,
and Bc = 7.24 T .

this region and yielded a reasonable scaling collapse. It is not
surprising that a unique value of νψ could not be determined
since it was assumed to be constant. Within this method,
Eq. (2) was used to scale the magnetoresistance isotherms, and
the expected weak temperature dependence of (νψ )eff was not
taken into account.

Examining Fig. 5, we see that the scaling collapse breaks
down at large values of the scaling parameter for both the
upper and lower branches. In the upper branch, the five
disconnected regions correspond to magnetic fields of 8, 9,
10, 11, and 12 T. Similarly, there is a breakdown in the lower
branch at 6.7 T. We believe that these breakdowns occur
because at low fields and sufficiently low temperatures the
film is in an ordered superconducting state not influenced by
quantum fluctuations of the order parameter. Correspondingly,
at high fields, it is in a metallic state similarly not influ-
enced by quantum fluctuations. The breakdown of scaling in
the upper branch occurs at the magnetic field at which the
conductance becomes a linear function of the logarithm of
the temperature. Thus, the breakdown of scaling marks the
leaving of the regime of quantum critical behavior, where the
scaling is expected to apply.

It should be noted that the use of Eq. (2) to collapse the
data ignores the corrections to scaling, which are essential
to the temperature dependence of the crossing field. These
corrections vanish in the zero-temperature limit, where the
crossing fields converge to a fixed value. In the Appendix we
show that the corrections give rise to a shift in the crossing
points Bx(T ). This shift δx(T ) = [Bc − Bx(T )]/Bc will take
the form

δx(T ) ∼ u

(
ln

T0

T

)− 1
νψ

− ω
ψ

, (5)

where u is the leading irrelevant variable responsible for the
corrections and ω is the associated exponent. The crossing

fields shown in the inset to Fig. 3 are plotted as a function of
temperature in Fig. 6. They are shown with a fit to Eq. (5).
As T → 0, δx → 0, and the crossing fields approach Bc.
The zero-temperature limit of the crossing fields in Fig. 6 is
slightly higher than, but within 0.3% of, the Bc used for best
collapse of the data shown in Fig. 5.

V. DISCUSSION AND CONCLUSION

Let us first comment on the sources of disorder in the
InOx films used here [37]. As an amorphous material, disorder
occurs on the atomic length scale based on randomness in
interatomic spacings. The compound also has between 5% and
30% oxygen vacancies, which determine the carrier concen-
tration. To preserve neutrality, some In atoms have a valence
of +1 instead of +3. This results in a random distribution of va-
lence and charge fluctuations, a distribution which is thought
to give rise to a stoichiometric disorder [38] and may give rise
to extended defect states [39]. In addition to structural and
chemical disorder, there is longer-scale disorder stemming
from the films’ characteristic undulating morphology.

Film characteristics depend on the interplay between the
carrier concentration and the quenched disorder. The former
is largely fixed during deposition. However, the annealing
process has the potential to drive a film from a highly disor-
dered as-prepared nearly insulating state to a less disordered
and more metallic state [30]. Films in the lower-mobility,
highly disordered as-prepared state are known to exhibit direct
quantum superconductor-insulator transitions, which can be
analyzed using conventional power-law scaling. On the other
hand, annealed films of higher mobilities have been shown
here to exhibit a quantum superconductor-metal phase transi-
tion governed by an infinite-randomness critical point.

The explanation for this difference lies in the dynam-
ics of rare, locally ordered regions close to the quantum
phase transition. For the films in question, these rare regions
are superconducting “puddles” immersed in an insulating or
metallic matrix. According to the classification put forward
in Refs. [40,41], the rare-region dimensionality needs to be
at the lower critical dimension d−

c of the problem to produce
quantum Griffiths singularities. Rare superconducting regions
immersed in an insulating matrix are below d−

c and thus pro-
duce only exponentially small corrections to the conventional
bulk critical behavior. In contrast, rare regions embedded
in a metallic matrix are right at d−

c because the coupling
to gapless electronic excitations causes Ohmic dissipation
that slows down their dynamics [40]. Thus, a disorder-tuned
superconductor-metal transition is expected to feature quan-
tum Griffiths singularities.

Note that these arguments require that the electrons which
cause the dissipation can penetrate the entire superconducting
puddle. Spivak et al. [7,42] pointed out that in the limit of large
rare-region size, the dissipation will scale with the surface of
the rare region rather than its volume, cutting off the quantum
Griffiths physics at the lowest temperatures. However, be-
cause of the exponential dependence of the rare-region energy
scale on its size, this crossover temperature is expected to be
extremely low, leaving a wide temperature regime governed
by quantum Griffiths physics (see also Millis et al. [43]).
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The important question is under which conditions these
quantum Griffiths singularities lead to activated scaling with
a divergent dynamical critical exponent. This depends on
whether the Harris criterion [44] is satisfied or not. If the tran-
sition in the absence of disorder fulfills the Harris criterion,
dν > 2, then even if Griffiths singularities exist, the dynami-
cal exponent would not be expected to diverge. Alternatively,
if the clean correlation exponent violates the Harris criterion, z
may diverge upon the introduction of quenched disorder [41].
In the case of a clean superconductor-metal transition tuned
by magnetic field, ν = 1

2 , and d = 2. As a consequence, the
Harris criterion is violated, and z is expected to diverge [45].

These general scaling arguments are confirmed by explicit
model calculations. Hoyos et al. investigated the effects of
dissipation on a disordered quantum phase transition with
O(N ) order-parameter symmetry through the use of a strong-
disorder renormalization group theory applied to the Landau-
Ginzburg-Wilson field theory appropriate to the problem
[25,26]. They found that for Ohmic dissipation, the quan-
tum phase transition is controlled by an infinite-randomness
fixed point in the universality class of the random transverse-
field Ising model. The dynamical scaling between the char-
acteristic length scale ξ and the corresponding timescale
ξτ is not of power-law type, ξτ ∼ ξ z, but activated, ξτ =
exp (const × ξψ ), leading to Eq. (2).

It is our conjecture that as the mobility of the films in-
creases and the high-field state becomes metallic, rather than
insulating, Ohmic dissipation increases, and the quantum crit-
ical point changes from that of a conventional superconductor-
insulator transition to an infinite-randomness critical point.

In summary, the quantum superconductor-metal transition
of high-mobility amorphous InOx films tuned by perpendic-
ular magnetic field exhibits quantum Griffiths effects which
lead to an infinite-randomness quantum critical point. This is
expected for systems with quenched disorder in the presence
of Ohmic dissipation and is caused by the formation of
large rare regions which are locally ordered superconducting
puddles.
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APPENDIX

In this appendix we provide a derivation of Eq. (3) and a
discussion of the effect of corrections to scaling. For simplic-
ity, we first consider the case without corrections to scaling.

Including such corrections is straightforward and does not
change the results qualitatively. The standard power-law scal-
ing form of the resistance at a magnetic-field-tuned transition
is given by

R(δ, T ) = �
(
δT − 1

νz
)
, (A1)

where � is the scaling function, ν is the correlation length
exponent, z is the dynamical critical exponent, and δ =
|B − Bc|/Bc measures the distance from the critical field Bc.
The critical resistance Rc = R(0, T ) = �(0). Curves of R vs
δ at different temperatures cross at δ = 0. Now consider the
slope of the resistance with respect to δ,

S(T ) = ∂R

∂δ

∣∣∣∣
δ=0

= T −1/νz �′(0), (A2)

from which it follows that

1

νz
= − d ln S

d ln T
. (A3)

This value will be independent of T as long as there are no
corrections to scaling.

We now turn to activated scaling, as expected for the
random transverse field Ising model. The scaling form of the
resistance is given by

R

(
δ, ln

T0

T

)
= �

[
δ

(
ln

T0

T

) 1
νψ

]
. (A4)

Here, ψ is the tunneling exponent. Note that at δ = 0, this
form predicts a single-valued critical resistance Rc, i.e., a
single crossing point for isotherms. To find the exponent
product νψ , one can repeat the procedure used for power-law
scaling,

S(T ) = ∂R

∂δ

∣∣∣∣
δ=0

=
(

ln
T0

T

) 1
νψ

φ′(0). (A5)

Thus, S(T ) behaves as a power of ln (T0/T ). Taking the
appropriate logarithmic derivative yields

1

νψ
= d ln S

d ln[ln (T0/T )]
. (A6)

If there are no corrections to scaling, this value will not depend
upon temperature. An extra complication stems from the
microscopic scale, T0, which is an additional fitting parameter.

Let us now work out what happens if one insists on ana-
lyzing data that follow the activated scaling form by using the
procedure for power-law scaling. In other words, we calculate
the logarithmic derivative with respect to T of the slope given
in Eq. (A5):(

1

νz

)
eff

= − d ln S

d ln T
(A7)

= − d

d ln T
ln

[
φ′(0)

(
ln

T0

T

) 1
νψ

]
(A8)

= − d

d ln T

[
1

νψ
ln

(
ln

T0

T

)]
. (A9)
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This becomes(
1

νz

)
eff

= − 1

νψ

1

ln (T0/T )

d ln (T0/T )

d ln T

= 1

νψ

1

ln (T0/T )
, (A10)

which completes the derivation of Eq. (3).
The right-hand side of the last expression vanishes in the

limit of zero temperature, which means that νz determined in
this manner would diverge in the zero-temperature limit.

A similar result is obtained if corrections to scaling are
included in the derivation, where the corrections are due to
a leading irrelevant variable, u. Near an infinite-randomness
critical point the inverse disorder strength serves as an irrele-
vant scaling variable. The form then becomes

R

(
δ, ln

T0

T
, u

)
= �̄

[
δ

(
ln

T0

T

) 1
νψ

, u

(
ln

T0

T

)− ω
ψ

]
, (A11)

where the exponent ω > 0. We expand the scaling function in
the second argument, such that

R

(
δ, ln

T0

T
, u

)
= �

[
δ

(
ln

T0

T

) 1
νψ

]

+ u

(
ln

T0

T

)− ω
ψ

�u

[
δ

(
ln

T0

T

) 1
νψ

]
, (A12)

where both � and �u are unknown functions.
One consequence of this corrected scaling form is that

R is not temperature independent at δ = 0, as in Eq. (A4).
Instead, R(0, ln T0/T , u) = Rc + u(ln T0/T )−ω/ψ�n(0), where
R approaches Rc only as T → 0. A second consequence is
that R(δ) curves at finite temperatures do not cross right at
δ = 0. The crossing points shift as a function of temperature
and approach δ = 0 in the T → 0 limit.

The temperature dependence of the crossing points Bx(T )
can be determined by expanding the scaling functions in
Eq. (A12) linearly around δ = 0 and determining where two
isotherms cross. Let us take isotherms at T and 2T , although
any multiplier can be used, and determine where

Rc + δ

(
ln

T0

T

) 1
νψ

�′(0) + u

(
ln

T0

T

)− ω
ψ

�u(0)

= Rc + δ

(
ln

T0

2T

) 1
νψ

�′(0) + u

(
ln

T0

2T

)− ω
ψ

�u(0). (A13)

Critical resistance Rc here is the value at the critical point
without corrections, as in Eq. (A4). This equation can be
rearranged and simplified by making the approximation

(
ln

T0

2T

) 1
νψ

=
(

ln
T0

T
− ln 2

) 1
νψ

=
(

ln
T0

2T

) 1
νψ

(
1 − ln 2

ln T0/T

) 1
νψ

≈
(

ln
T0

2T

) 1
νψ

(
1 − ln 2

νψ

1

ln T0/T

)
. (A14)

This can be used to show that the difference between the
scaling terms can be written as

(
ln

T0

T

)− 1
νψ

−
(

ln
T0

2T

)− 1
νψ

= −ω ln 2

ψ

(
ln

T0

T

)− 1
νψ

−1

,

(A15)
while, analogously, the correction terms can be written as

(
ln

T0

T

)− ω
ψ

−
(

ln
T0

2T

)− ω
ψ

= −ω ln 2

ψ

(
ln

T0

T

)− ω
ψ

−1

.

(A16)
This can be inserted into the crossing condition, Eq. (A13), to
show that the crossing points vary with temperature as

δx(T ) ∼ u

(
ln

T0

T

)− 1
νψ

− ω
ψ

, (A17)

where δx(T ) = [Bc − Bx(T )]/Bc and Bx(T ) is the crossing
point. Deviation of the crossing point δx vanishes as T → 0.

By following a calculation similar to that leading to
Eq. (A10), it can also be shown that if the data are analyzed
using power-law scaling at the crossing points,(

1

νz

)
eff

=
(

1

νψ

)
eff

1

ln(T0/T )
, (A18)

where (
1

νψ

)
eff

= 1

νψ
− aω

ψ

(
ln

T0

T

)− ω
ψ

, (A19)

where a = [c�′′
u (0) + u�′

u(0)]/�′(0). In the limit of T → 0,
(1/νz)eff → 0, and (1/νψ )eff → 1/νψ .
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