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Abstract 

In this work certain aspects of Functional 

Analysis are considered in the setting of linear 

spaces over the division rings of the real Quaternions 

and the real Cayley algebra. 

The basic structure of Banach spaces over these 

division rings and the rings of bounded operators on 

ii 

these spaces is developed. Examples of finite and infinite 

dimensional spaces over these division rings are given. 

Questions concerning linear functionals, the Hahn-Banach 

Theorem and Reflexivity are considered. The Stone

Weierstrass Theorem is proven for functions with values 

in a real Cayley Dickson algebra of dimension n. 

The concepts of inner product spaces and Hilbert 

spaces over the Quaternions and the Cayley algebra are 

developed. An extensive study of Hilbert spaces over the 

Quaternions is carried out. 

In the case of Hilbert spaces over the Quaternions, 

the Riesz-Representation Theorem and the Jordan-von Neumann 

Theorem are proven. In addition, spectral theorems for 

both self-adjoint and normal operators are proven for 

finite dimensional Hilbert spaces. 

These results are extended to infinite dimensional 

spaces for the cases of compact self-adjoint operators and 



iii 

compact normal operators. The spectrum of an 

arbitrary bounded Hermitian operator on a Hilbert space 

over the Quaternions is shown to be non-void. 

A generalization of the Fourier Transform for 

functions in L~( -IX> , oo ) and L~(- ro , o0 ) is given. The 

Plancherel Theorem is proven for functions in L~(- oo ,oo ) • 

Finally, the Jordan-von Neumann theorem is proven for 

a Hilbert space over the Cayley algebra. 
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I. Introduction 

Theoretical physics has been the source of some 

of the most interesting and complex mathematical problems 

of this century. Nowhere is this more evident than in 

the discipline of Quantum Mechanics. It has been the 

motivation for such fundamental theories as the theory 

of Distributions and the theory of Non-associative 

algebras to name only two. 

Since its initial development, the mathematical 

structure of Quantum Mechanics has been imbedded in 

Complex Hilbert Spaces. But as early as 1936 (Birkhoff, G. 

and von Neumann, J., 1936) it was conjectured that 

Complex Hilbert Spaces might not be the most natural 

· setting for the theory. This idea was largely ignored 

by physicists and mathematicians alike for over 20 years. 

However, in 1962, J. M. Jauch and his coworkers published 

a paper in the Journal of Mathematical Physics on the 

Foundations of Quaternion Quantum Mechanics. This paper 

was followed by two others and was the impetus for much 

of the research being done today. Numerous other physicists 

have followed in their footsteps and among these are 

G. Emch (Emch, G., 1963) and V. S. Varadarajan 

(Varadarajan, V. s., 1968). 



As a result of these investigations many questions 

concerning the structure of Hilbert spaces over the 

Quaternions have arisen. In addition, questions about 

Hilbert spaces over other non-commutative and non

associative scalars have also been raised. 

Motivated by the work of Jauch, we have investigated 

in this paper some of the aspects of Quaternionic Hilbert 

spaces. Choosing not to restrict ourselves just to 

Hilbert spaces over the Quaternions we have considered 

questions of functional analysis in the setting of 
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linear spaces over the division rings of the real 

Quaternions and the real Cayley numbers. In this study, 

those theorems of elementary functional analysis which 

depend primarily on the algebraic structure of the scalars 

have been of primary interest. Therefore, most of the 

generalizations are algebraic rather than topological. 
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II. Review of the Literature 

0. Teichmuller attributed the idea of a Hilbert space 

over the division ring of real Quaternions to H. Wachs 

in a paper dealing with theory of such spaces, in 1938 

(Teichmuller, o., 1938). According to Teichmuller, Wachs 

made the conjecture in 1934 that a theory of these spaces 

could be developed. In his paper in 1938, which was his 

Ph.D. dissertation at Gottingen, Teichmllller studied the 

properties of these spaces and operators on the~. 

Teichmullers definition of a Hilbert space over Q 

required the axiom of separability. Among the topics 

discussed were the following: The basic properties of a 

Quaternion valued inner product, the proof of the Cauchy

Schwartz inequality, the Riesz representation theorem, 

the concept of dimension and the projection theorem. 

In addition he defined the concept of a an imaginary 

operator and discussed the "normal" form of such operators. 

He defined T to be imaginary if T* = -T, T2 = -E where E 

is the identity operator. Using the results of spectral 

theory on real Hilbert spaces developed by Riesz, Rellich, 

and von Neumann, Teichmuller proved the following theorem 

which he called the fundamental theorem for normal operators. 

Theorem Let N be a normal operator in a Wachsschen space 

R. Then there exists operators A, B, T0 and a subspace 

R1 with the properties, 



(a) A and B are self adjoint operators, B is non

negative definite; R1 is the closed Hull of 

the domain of B, T0 is an imaginary operator 

from R1 to R1 • 

(b) Each spectral projector of A or B commutes with 

N and N*; R1 reduces N and N*, and in R1 , T0 
commutes with N and N*. 

(c) If C is a bounded operator and C commutes with 

N and N* then C commutes with A and B; R1 reduces 

c, and the restriction of C to R1 commutes with 

To. 
(d) N = A + T0B 

N* = A - T B 0 

In the same period that Teichmuller was doing his 

4-

work on Wachsschen spaces, E. H. Moore (Moore, E. H., 1935) 
was studying finite and infinite dimensional spaces over 
the real Quaternions. He introduced the concept of 

Quaternion valued inner product and considered the question 
of conoical forms and generalized inverses of matrices with 
Quaternion entries. 

Beginning in 1962 there was a series of three papers 
by Jauch, Finklestein et. al., in the Journal of Mathe
matical Physics (Finklestein, D., Jauch, J., Schiminovich, 
s., and Speiser, D., 1962, 1963) in which the formulation 
of the mathematical structure of Quantum Mechanics was 
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developed in the setting of a Hilbert space over the real 

Quaternions. Their definition of a Hilbert space over 
Q was essentially that of Teichmuller. 

In the first paper the Cauchy Schwartz inequality 
was proven and the results of the projection theorem were 
used although it was not stated explicitly." Their basic 
consideration was to determine the appropriate analog 
of the Schrodinger equation in the case under consideration. 
A generalized version of Stone's Theorem and the representation 
of semi-groups of operators on a Hilbert space was given 
and the Schrodinger equation was obtained in the usual 
way from this result. In addition, they also attempted 
to assign a physical significance to the new symmetries 
induced on the linear space by the automorphisms of the 
Quaternions. 

In the second paper they considered the representation 
of compact groups by matrices with real Quaternion entries. 
In addition to proving certain standard theorems about group 
representations, they developed a criterion under which 
such representations reduce over the skew field of real 
Quaternions. The criterion was given in terms of the 
Schur-Frobenius classification of groups. 

The last paper in the series was primarily a con
sideration of the physical consequences of the concept of 
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Q-covariance which is developed in this paper. In addition, 

they show that in the case of a Hilbert space over the 

Quaternions, the lattice of closed subspaces has a 

symmetry group which is connected, whereas it is not for 

the case of complex Hilbert space. 

s. Natarajan and K. Viswanath (Natarajan, s. and 

Viswanath, K., 1969) also considered the question of 

Quaternionic group representations. They considered only 

compact metric groups. A generalized Peter-Weyl Theorem 

was proven and the problem of finding all irreducible 

representations of an arbitrary compact metric group was 

considered. It was shown that in the case of Abelian 

groups that the representations are all one dimensional. 

Emch, has studied the structure of a Quaternionic 

Relativistic QuantumMechanics and the representations of 

the Lorentz Group. (Emch, G. 1963). He utilized the 

mathematical tools developed by Jauch and his co-workers. 

Other Physicists have considered aspects of Quaternionic 

QuantumMechanics. Bargmann has given a proof of Wigner's 

Theorem on Symmetry Operations for the case of Quaternionic 

Hilbert Space. (Bargmann, V. 1964). 
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The study of matrices with Quaternion entries has 
relevance to this area of research since a linear 
transformation on a finite dimensional linear space over 
Q can be represented by a matrix with Quaternion entries. 
Since 1936 there have been several papers on such matrices 
but none of these have been framed in the context of 
linear operators on linear spaces over the Quaternions. 

One of the first works was by Wolf in 1936 (Wolf, L., 
1936). In this paper necessary and sufficient conditions 
are given under which, for two matrices A and B, there 
exists a nonsingular matrix S such that SAs-1 = B. The 
criterion for non-singularity of Quaternion matrices is 
that of Moore, (Moore, E. H., 1935). 

The next paper in this area was by Lee in 1949, 
(Lee, H. c., 1949). In this work Lee considered the 
eigenvalue problem for Quaternion matrices and the related 
question of canonical forms. Using the symplectic rep
resentation, Lee proved that an n x n matrix with real 
Quaternion entries has 2n complex eigenvalues. The use-
fulness of this work is somewhat restricted by the fact 
that Lee requires the eigenvalues to be complex and not 
general Quaternions. 



Using the results and methods of Lee, Wiegmann 

(Wiegmann, N. A., 1955) obtained additional results 

about canonical forms for matrices with Quaternion 

entries. Among the topics considered were the Jordan 

Canonical form, similarity for Quaternion matrices, 

polar forms, and finally the concept of unitary 

equivalence. 
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In two later papers, Wiegmann (Wiegmann, N. A., 1955, 

1956) determined the structure of unitary and orthogonal 

matrices. 

The most relevant result in the area of Quaternionic 

matrices is due to J. L. Brenner (Brenner, J. L., 1951). 

Brenner proved that every Quaternion matrix has at least 

one eigenvalue. In the proof of this result, Brenner had 

to appeal to a very important theorem due to Eilenberg 

and Niven which is the Fundametal Theorem of algebra for 

the Quaternions. (Eilenberg, s. and Niven, I., 1944). 

One of the first papers in functional analysis dealing 

with linear spaces over the Quaternions was by Soukhomlinov 

(Soukhamlinov, G. A., 1938). In this paper Soukho.mlinov 

proved the analog of the Hahn-Banach theorem for linear 

spaces over Q as well as the complexes. 
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A generalization o~ the Soukhamlinov theorem was 

given by T. Ono (Ono, T., 1953). Ono proved the ex-

tension theorem ~or semi-linear functionals on linear spaces 
over the Quaternions. A semi-linear £unctional ~ is add

itive but f(x•a) = ~(x)•a' where a' is an automorphism 

o~ a. 

There have been numerous other generalizations o~ the 

Hahn-Banach theorem. One o~ the more interesting was by 

Harte (Harte, R. E., 1965). Harte proved an extension 

theorem o~ the Hahn-Banach type ~or linear ~unctionals, 

on a linear space over a Banach algebra, which take their 

values in the dual space o~ the algebra. 

Another paper along these lines is by Bonsall and 

Goldie (Bonsall, F. and Goldie, A., 1953). They proved 

an extension theorem ~or linear ~unctionals on linear 
spaces over algebras which "represent their linear 

~unctionals". 

Numerous other generalizations in this area have 

been given and among these are the papers by G. Vincent 

Smith (Vincent-Smith, G., 1965), A. W. Ingleton (Ingleton, 

A. w., 1952), and A. F. Menna (Menna, A. F., 1946). 

The :"Stone-Weierstrass Theorem" has been proven for 

continuous Quaternion valued functions on a compact 
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Hausdor~~·space by Holladay (Holladay, J. c., 1957). 

One o~ the more interesting examples o~ a linear 

space over the Quaternions was studied by Fueter in a 

series o~ papers beginning in 1936, (Fueter, R., 1936). 

Fueter de~ined the concept o~ an analytic ~unction o~ 

Quaternion variable. Although he did not base the 

concept o~ analyticity on the derivative o~ a runction, 

he did obtain many results analogous to those o~ complex 

~unction theory. 

The ~irst paper on linear spaces over Cayley numbers 

was by Goldstine and Horwitz (Goldstine, H. H. and 

Horwitz, L. P.). They gave a de~inition o~ a linear 

space over Cayley numbers and de~ined an inner product with 

values in the Cayley numbers. In addition to the usual 

postulates ~or a real valued inner product, they assumed 

that (i) (ax,x) = a(x,x), (ii) (ax,y) = a(x,y) ~or a real, 

(iii) (x,y) = (y,x) and (iv) Re[Cax,y)} = Re la(x,y)]. 

Since this inner product is not homogeneous with respect 

to general Cayley numbers they de~ined a new 

product ( , ) given by (x,y) = Rel(x,y)). Using the latter 

inner product they reproved or simply stated many well 

known results ~or real Hilbert spaces. Their de~inition 

of a subspace was simply a real subspace. Using known 

results from spectral theory in real Hilbert spaces they 
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obtained a spectral resolution for elements of the 

Cayley Operator group, a concept defined in the paper. 

In a second paper Goldstine and Horwitz (Goldstine, 

H. H., and Horwitz, L. P., 1966) study the concept of a 

Hilbert space over a finite dimensional associative 

algebra. The spectral resolution for a bounded Hermit

ian operator is developed and theory of preceeding paper 

is shown to be a special case of the theory in this 

paper. 

Horwitz and Biedenharn (Horwitz, L. P., and 

Biedenharn, L. c., 1965) study the structure of a Quantum 

Theory described by a Hilbert space over an arbitrary 

associative algebra with a unit. They show that the 

minimal ideals of the algebra play a role analagous to 

the bases in a complex Hilbert space. 

Saworotnow (Saworotnow, P. P., 1968) generalizes 

the spaces studied by Horwitz and Biedenharn. Saworotnow 

studies the concept of Hilbert modules, which is a module 

over a real H* algebra. He shows that the scalars con

sidered by Horwitz and Biedenharn are a special case of 

an H* algebra and hence his theory is more general. 
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III. Definitions and Terminology 

In this Chapter the basic definitions and termin

ology that are to be used throughout this paper are given. 

A. Rings and algebras 

Definition A ring consists of a set R ~ {a,b,c, ••• ,} 

together with two binary operations+,·. In 

addition the following properties are satisfied. 

(a) With respect to + R is an abelian group 

with the neutral element denoted by 0. 

The element inverse to x £ R is denoted by 

-x. 

(b) For any three elements a, b, and c in R 

a•(b+c) = a•b + a•c 

(b+c)•a = ba + ca. 

Definition Let R be a ring. The commutator [a,b] of 

any two elements of R is defined as [a,b] = ab-ba. 

The associator of any three elements of R is 

defined as (a,b,c) = (ab)c- a(bc). If [,] 

vanishes identically on R, R is commutative. 

If ( , , ) vanishes identically on R, R is 

associative. 

Definition An algebra A over a field F is a ring which is 

also a linear space over F and the following is 

satisfied. 
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(a) «•a = a•oc V a c A, ot£.F 

( b ) · ( oc • a ) • b = a • ( ot· b ) V a , b t. A, cu F 

De~inition Let A be an algebra over a ~ield F. A is 

called an algebra with involution i~ there 

exists an operation "-" on A satis~ying the 

properties ~or all a, b £ A and ac c. F. 

(a+b) = a + b 

(a•b) = b • a 

Throughout this paper, the various algebras discussed will 

be assumed to have the reals as the underlying ~ield. 

B. The Real Quaternions and Real Cayley numbers. 

1. algebraic aspects. 

The Real Quaternions (Cayley numbers) ~orm an 

algebra over the real ~ield o~ dimension 4(8). I~ 

the basis elements are denoted by {e0 ,e1 ,e2 ,e3\ 

({e0 ,e1 ,e2 , ••• ,e7}) the multiplication table ~or 

the algebra is given by: 
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Quaternion algebra. 

eo el e2 e3 

eo eo el e2 e3 

el e· 1 -eo e3 -e2 

e2 e2 -e3 -eo el 

e3 e3 e2 -el -eo 

Cayley algebra. 

eo el e2 eJ e4 e2 e6 e2 

eo eo el e2 e3 e4 e5 e6 e7 

el el -eo e3 -e2 e5 -e4 -e 
7 e6 

e2 e2 -e -e el e6 e -e4 -e5 
3 0 7 

e3 e3 e2 -el -eo e7 -e6 e5 -e4 

e4 e4 -e5 -e6 -e 
7 

-e 
0 el e2 e3 

e5 e5 e4 -e7 e6 -el -eo -e3 e2 

e6 e6 e7 e4 -e5 -e2 e3 -e 
0 -el 

e7 e7 -e 
6 e5 e4 -e 

3 
-e 2 el -eo 

From the multiplication table, it is clear that the 

Quaternion algebra (Cayley algebra) is associative but 

non-commutative (non-commutative and non-associative). 

It is also clear that each algebra has a unit, e 0 • 
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Each Quaternion (Cayley-number) "a11 can be expressed 

-- aoeo + t akek (a = aoeo + t akek) where the 
k=l k=l 

as a 

aj are real numbers. Each Quaternion (Cayley number) 

"a" has an involution which is given by 

a = aoeo - t akek (a == aoeo 
k=l 

-t 
k=l 

The "trace" of a Quaternion (Cayley number) "a" is 

defined as t(a) = a + a. It easily follows that if 
3 

a = a 0e0 + ~ akek then 2aj = -t(eja) j = 1,2,3, and 
k=l 

2a0 = a + a. Also, the following theorem can easily be 

proven. 

Theorem 1. If a is any Quaternion with a 

Then 

3 
( ii) L ekaek = 2t(a). 

k=O 

The (algebraic) norm of any Quaternion (Cayley 

"a" is defined by n(a) = aa = aa. Clearly, n(a) = 
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Every Quaternion (Cayley number) "a" possesses an 
-1 

inverse de~ined by a = ~(a)· As a consequence o~ the 

existence o~ inverses the Quaternions (Cayley numbers) 

~orm a non-commutative (non-commutative and non

associative) division algebra. (Kurosh, 1960). 

Although the Cayley algebra is non-associative it 

does have the important property (Kurosh, 1960) that 

(a,a,b) = (b,a,a) = 0 ~or any two Cayley numbers a,b. 

In addition it can be shown that (a-1 ,a,b) = (a,a-1 ,b) = 0. 

Such algebras are called alternative. In ~act, it turns 

out that every alternative division ring is either 

associative or an eight dimensional Cayley algebra over 

its center. (The center is the subset o~ the algebra 

which commutes and associates with every element in the 

algebra. The center o~ the algebras considered in this 

paper is always the reals.) 

Theorem 2. Let a be any quaternion such that neal = 1. 

Then there exists a real number e and a 

quaternion I such that I 2 = -e0 and 

a = cos e e0 + sin 9 I. 

1, one can take e -1 
= tan 

2 2 2 1/2 
(al+a2+a3) 

ao 
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and I to be I Then it follows 

easily that a = cos e e0 + sin e I. 

Corollary Any quaternion a can be written as 

a= r(cos e e0 + sine I), where r, 9 are 
2 

real numbers, I a quaternion such that I = -e0 • 

r, e, r all depend on a. 

Definition 2 Let I be any quaternion such that I = -e0 • 

2. 

Let e be any real number, then e 19 is defined 
re as e = cos e e 0 + sin a I. It is easily 

verified that e 19 has the following properties. 

(a) 191 e • e 
192 = e 

1(91+92) 

(b) 
1•9 

e = eo 

(c) 
re1 -Ie1 

e = e 

(d) n(e reJ = 1. 

Topological properties. 

Since both the Quaternions and the Cayley numbers 

are algebras over the reals they are linear spaces over 

the reals. Moreover, they are both finite dimensional. 

The Quaternions and the Cayley numbers both form 

normed linear spaces over the reals. If a is any 
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Quaternion (Cayley number) the norm (topological) of 

a is defined as I a I == [ n(a)] l/2• It is easy to 

verify that "1 1 11 satisfies the properties of a norm. 

Using the completeness of the reals the following theorem 

can easily be proven. 

Theorem 1. With respect to 11 1 1 ",the Quaternions 

(Cayley numbers) form a Banach Space. 

If a,b are any two Quaternions (Cayley numbers) then 

(a,b) is defined to be (a,b) = ~t(ab). It is elementary 

to show that ( , ) has the property of a real inner 

product. Moreover, since (a,a) ~ tt(aa) = lal 2 the 

following is true. 

Theorem 2. With respect to ( , ) the Quaternions (Cayley 

numbers) form a real Hilbert Space. 

c. The Real Cayley-Dickson algebras. 

If A is an algebra over a field F of dimension 

n, a new algebra B of dimension 2n can be constructed 

over the same field by a process known as the Cayley

Dickson process (Schafer, 1966). Algebras constructed 

in this manner are called Cayley-Dickson algebras. 

Although only the real field will be used in this 

paper, it should be noted that the process is valid 
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for arbitr~ry base field (Schafer, 1966) and more 

generally tor algebras over a commutative, associative 

ring (Panico, 1968). 

The p~ocess will no~ be described. Let A be 

an algebra of dimension n over the reals with unit 1 

and involution ''-"• Define B to be the set of all 

If b ~ (a1 ,a2 ) is any element of B and ~ is any 

real numbe~, define ~·b ~ (d·a1 ,«·a2 ). If b' = (a3,a4) 

is any otber element of B then define b+b' = (al+a3 ,a2+a4 ) 

and b•b' ~ <a1a3+~-a~·a2 ,a1a~+a3a2 )-where ~ is a real 

number different from o. B· now becomes an algebra 

with respect to the operations of scalar multiplication, 

+,·. The ldentity forB is the element (1,0). 

Moreover, t~e sub-algebra B' = \ (a,O) l a £ A} is 

isomorphic to A. The element e = (0,1) is an 

element of B ~ith the property e2 = p(l,O) == ,P•l, 

1 being tbe identity of B. If the elements of A are 

identified ~1 th the elements of B' then every b £ B 

can be e~~essed as b ~ al + ea2 • Multiplication 

is then gi~en by Ca1+ea2 )(a3+ea~) = <a1a 3+ra4a 2) 

+ e(a1ay.+s.3s.2). An i:n-vol"U.tion can be defined in B 

as follows: For b E B, b ~ a1 + ea2, define 

b = a1 - ~2• It is easily shown that - satisfies 

the requir~~ents of an in~olution. 
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It can be shown (Scha~er, 1966) that the new 

algebra is alternative i~ and only i~ the initial 

algebra is associative. 

The Quaternions and Cayley numbers arise 

naturally ~rom this process. I~ the initial algebra 

A is the complex numbers and p- is taken to be .,P = -1, 

the resulting algebra B is the algebra o~ real Quaternions. 

IrA is the real Quaternions andp is -1 then B is 

the real Cayley algebra. Herea~ter, the ~ollowing 

notations will be used ~or the various number systems. 

Re - real numbers 

K - complex numbers 

Q - Quaternions 

C - Cayley numbers. 

D. Linear Spaces Over the Real Quaternions. 

De~inition A (right) linear space over Q is an additive 

abelian group in which there is de~ined an 

operation o~ scalar multiplication by elements 

o~ Q. Scalar multiplication is assumed to 

obey the rollowing laws ~or all x,y f L, 

a, b E Q. 

(i) (x+y)•a = x•a + y•a 

(ii) ~(a+b) = x•a + x•b 

(iii) x•(a.b) = (xa)•b 
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A left space is defined similarly. The 

choice of scalar multiplication is more or 

less arbitrary. 

Example 1. Let L = { <x1 ,x2 , ••• ,xn) I xj £ Q l . If x,y 

are any two elements of L with x = (x1 ,x2 , ••• ,xn) and 

Y -- (y1 ,y2 , ••• ,yn) then x•oc: (x1 .or,x2·u, ••• ,~·Ot) 

x + Y: (xl+yl,x2+y2, ••• ,xn+yn). 

Example 2. Let X be any nonvoid set and F(X) the 

collection of all Quaternion valued functions defined 

on X. If f, g E F(X) then (f• at ) (x) : f(x) .()( and 

(f+g) (x) = f(x) + g(x). 

It should be noted that the fundamental theory of 

finite dimensional linear spaces over associative division 

algebras is well known (Jacobson, 1953). The definitions 

of basis, dimension, subspace, etc. are exactly the same 

as those in the complex case and will not be given here. 

E. Linear Spaces Over the Real Cayley Algebra. 

Definition A (right) linear space over the real Cayley 

algebra is 

( i) a right linear space over (Re) e 0 

(ii) L is closed with respect to a multiplication 

on the right by elements of the Cayley 

algebra. 
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(iii) This scalar multiplication is assumed 

to obey the ~ollowing rules (~or all 

x,y £ L, cc, () e C). 

(a) (x+y) •CC = X•ct + Y•"' 

X•(IX+~) = X•IX + x•p 

x•e = x. 
0 

(b) Define [ x, C( ,{!I] = 
Then [x,IX,Q-1] = 

(x• u) p 
·1 

( X , ri.- , Ol] 

x• (ex~). 

= [x,cc,oc l -- o. 

(iv) There exists a non-trivial real subspace 

LR o~ L such that [x,~X,~] = 0 for all 

X f LR and « , f.> t. C • 

(v) Every x t L can be expressed uniquely 
7 

as x = L xjej where the xj f. LR and 
j=O 

the ej are the Cayley basis elements. 

Definition A Cayley-Subspace M of L is a real subspace 

o~ L such that for every pair x,y E L and 

every Dl t C, x + y L L and X· C( £ L. 

Example 1. Let L = { (x1 ,x2 , ••• ,xn) \ xj f C} • If x,y 

are any two elements of L and ~ is any Cayley number then 

define x + y = (x1+y1 , ••• ,xn+yn) and x·~ = (x1~,x2 ·cc, ••• ~·~). 

With these definitions L is a linear space over the Cayley 
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Numbers. LR in this case is the real subspace 

LR = { (x1 , ••• ,xn) I xj t: Re } • 

Example 2. Let X be any nonvoid set and F(X) the 

collection of all C valued functions defined on X. For 

f', g E F(X) and 0( r. c, define (f+g) (x) = f(x) + g(x) and 

(f• o<. ) (x) = f(x)·CC • With these definitions F(X) is a 

linear space over C. FR(X) is the real subspace of 

F(X) consisting of real valued functions on X. 

F. Linear Transformations and Linear Functionals. 

In the following, let F be either Q or C or a 

subalgebra of Q or c. 

Definition Let L1 and L2 be (right) linear spaces over 

F. A mapping T: L14 L2 is called 

(i) additive if T(x+y) = T(x) + T(y) ~ x,y E L1 

(ii) D homogeneous if T(x• 01 ) = T(x)·"" for 

every ot 1: D where D is a subring of F. 

(iii) F homogeneous if T(x• c< ) = T (x) .at V oca F. 

(v) Linear if both (i) and (iii) hold. 

Definition Let L be a linear space over F. A mapping 

f': L -+ F is called a linear functional if 

f'(x+y) = f(x) + f'(y) and f(x· Ot ) = f'(x) • ~ 

for every x,y L L, ~EF. 



Examples of linear transformations and linear 

functionals will be given in a later section. 

Definition Let 1 be a linear space over F and T a 

transformation of 1 into L. A subspace M 

of L is called an invariant subspace i:f T is 

T(M) C M. 
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IV. Normed Linear Spaces over Q and C 

A. Definitions and Examples. 

In the following, F will denote either the real 

Quaternions or Cayley numbers. 

Definition A linear space over F is called a normed 

linear space if there exists a function 

II II: L ---+- Re with the following properties. 

( i) 11 xI\~ 0 V x ~: L and II x II = 0 iff x ::: 0. 

(ii) llx•«ll =JI x II •lc<.l 'f/ x e: Land oc ~F. 

(I I is the norm in F). 

( iii ) II x+ y Jl $ II x II + If y II "/ x , y e: L • 

As usual, if p is defined by p(x,y) ::: llx-yH, 

then p is metric and the space is topologized 

by this metric. 

In view of the inequality Ill :x.ll !!!!" II y II \ 

~ llx-yll the norm II II is a continuous real 

valued function of its argument. 
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Definition A linear space L over F with a topology T 

is called a topological linear space if 

addition and scalar multiplication are con

tinuous with respect to the topology on L. 

Using the properties of the norm the following 

theorem is easy to prove. 

Theorem 1. Any normed linear space L over F is a topolog

ical space if the topology is defined by the 

metric p(x,y) = II x-yll • 

1. Examples of Normed Linear spaces. 

Example 1. Let L be the linear space over F defined by 

L = { (x1 , ••• ,x )fxj E F} with operations defined point-
n n 2 1/2 

For any x E L, define IIXll = (L lxk l ) • wise. 
k=l 

It is easy to verify that this function satisfies the 

properties of a norm. 

Example 2. Let X be any topological space and B(X) consist 

of the collection of all F-valued bounded functions on X. 

(i.e. suplf(x)l<oo for every f£BCXl.) For f £ B(X) define 
xrX 

llf II u = sup I f(x)l • The set B(X) becomes a linear space 
X X 

over F if (f+g)(x) = f(x)+g(x) and (f.~ )(x) = f(x)·~ • 

With respect to ll·ffu, B(X) is a normed linear space over F. 
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Example 3. Let L be the collection o~ all continuous F 

valued ~unctions defined on [a, b] • L is a linear space 

over F if the operations are de~ined pointwise. L 

becomes a normed linear space i~ ~or ~ E L n~ll; Jblf(x)J d. 
a 

Example 4. Consider the set to,2n] with ordinary 

Lebesque measure. Any Quaternion valued ~unction ~ on 

(0,2Tr] can be expressed as ~(x) = t_ fk(x)ek where 
k=O 

the ~k are real valued ~unctions on (o,2n] • 

3 
Definition A Q-valued ~unction ~ = L:: ~kek de~ined on 

k=O 

[o, 2lTl is Lebesque-measurable i~~ each of 

the ~k are Lebesque measurable. 

p 
De~inition Let P > 0. Then LQ l 0,2n] is de~ined to be 

the class o~ all measurable Q-valued ~unctions de~ined on 

[ o, 2Tl'] such that If 1 P £ L~e ~or all ~ E L~[ o, 211) • It 

is clear that if f f L~ then ~·« is also in L~ ~or every 

d.t:Q. Since lf+glp~ 2P( tflp + lgtP), L~ is also 

closed under addition. There~ore ~he class L~(0,2TI) is 

a right linear space over Q. 



Definition For f £ L~, II f II P is defined as 

II r II P ~ ( t~ r I P ) 1/p • 
0 
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From the definition of Ill! its easy to see that 

llf·« liP= llfllp •let!. To shotv that II lip satisfies the 

other properties of a norm is non-trivial. 

The proofs of the following two theorems carry over 

from the usual proofs directly and will not be given 

(Royden, 1969). 

Theorem 2. (Holder, P ., 1). 
p P' 1 1 

Let f £ LQ, g £ LQ where P + p1 = 1, and P > l. 

I 

Then f•g f LQ and 

2TT 2TT 
(i) \f f•gl~f lf•gl 

0 0 

2Tf 
(ii) f I f·g\ ~II flip· II g\lp, 

0 

2TT 

(iii) 1 f f·g( ~ llfllp ·!lgllp, 

0 

Theorem 3. (Minkowski). 
p 

Let f,g t LQ. Then t\ f+g\\ P ~ \If liP + II g lip· 

Now if functions that are equal almost everywhere 
p 

are identified, the space LQ[0,2IT] becomes a normed 

linear space over Q. 



B. The Ring of Linear Transrormations on a Normed 

Linear Space over F. 

1. Semi-linear Transrormations. 
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The definition of a linear transformation has been 

given in !II. There is another type transformation 

which proves to be important in later work. 

Definit~ Let 11 , L2 be linear spaces over Q. A 

transformation T: L1 ~ 1 2 is called semi

linear if 

(i) T(x+y) = T(x) + T(y). 

(ii) T(x•cx) = T(x)o<' where 

automorphism of o< • 

I • 
J.S an 

It should be noted that every auto morphism of Q 

is an inner auto-morphism. That is, «1 = p~p-1 for some 

p £ Q. (MacDuffee, 1940). Also, since I,Scc_.P-11 =\Of.\ 

for every ~, p £ Q, every auto morphism is continuous with 

respect to the norm topology for Q. 

Exam~e b• An example of a semi linear transformation 

on a linear space L over Q is scalar multiplication. 

For if TA is defined by TA (x) = X•~ , then T~ is 

additive and TA (x•O() = (x•cc ).)\ = (X•A )•(A-1 •«·>-) 

= T" (x)·cx·. 
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One very impo~tant prope~ty or a semi-linear 

transformation T is that it is always homogeneous with 

respect to real scalars. Thus, any semi-linear transformation 

in always a real-linear transformation. 

Let L1 : be a linear space over Q and S(L1 ) the class 

of all semi-linear transformations of L1 into L1 • Then 

the .folloWing is t~e. 

Theorem 1. The class S(Ll) is a semi-group with respect 

to the operation of composition and S(L1 ) 

possesses an identity. 
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2. Continuous Linear Transformations. 

In the following F will denote either Q or c. 

Definition Let 11 , 12 be normed linear spaces over F 

with norms 11111 , 11112 respectively. LetT 

be a linear transformation of 11 into L2• 

T is called continuous if for every sequence 

{ xn} from 11 such that Xn -+ x, T(~) -+ T(x). 

The following theorem gives some equivalent conditions 

for a transformation to be continuous. The theorem is 

stated only for additive, real homogeneous transformations 

but since any linear (or even semi-linear in the case of 

linear spaces over Q) transformation satisfies these 

conditions, the theorem is quite general. 

Also, since any linear space over F is also a linear 

space over Re, the usual proof suffices (Simmons, 1963) and 

therefore will not be given. 

Theorem 1. Let 11 , 12 be normed linear spaces (with 

respective norms "H1 and 11112 ) over F. Let 

T be a real linear transformation of L1 into 

1 2 • Then the following are equivalent. 

(i) T is continuous. 

(ii) T is continuous at the zero vector. 
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(iii) There exists a real number KT that 

l!T(x) 11 2 ~ KT II x 11 1 for all x ~ L1 • 

(iv) If' sl = {X I llxlll ~ 1 J then T(Sl) is 

bounded in L2 • 

3. The Topological Structure or R*(L). 

In the usual complex linear space case the collection 

or all linear transf'ormations on a linear space form a 

complex algebra. Since the linear spaces under con

sideration here are one sided spaces over non-commutative 

division algebras this will no longer hold. However, the 

collection or linear transformation on such spaces forms 

an interesting structure as will now be shown. 

Let R(L) be the linear transformations of L into L. 

For T1 , T2 E R(L) define (T1+T2 ) (x) = T1 (x) + T2 (x) and 

CT1 •T2)(x) = T1 CT2(x)). Then R(L) is a ring with respect 

to the operations of+ and •• It's clear that R(L) is an 

associative ring but it may be non-commutative. 

Definition Let R*(L) be the subset of R(L) that consists 

of all bounded linear transformations on L. 

For each T £ R*(L) define liT II 
* 

= sup II T(x) II • 
1\xll=l 
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It's clear that R* is a subring o~ R and it will be 

shown that R* is actually a topological ring. That is, 

the operations o~ multiplication and addition are continuous. 

Theorem 1. The real valued ~unction \\ \\* has the 

~ollowing properties. 

(i) liT II ~ 
* 

0 and n T II = 0 i~:f T is the 
* 

0-trans~ormation. 

(ii) UT1+T2 ll * ~ UT1 11 * + IIT2 11 *~or all 

T1 ,T2 E R*. 

Proo~. (i) ~ollows ~rom the ~act that )ITX II ~ 0 ~or all 

x £Land IITKII = 0 i~~ Tx = 0. (ii) ~ollows 

~rom the inequality I) T1 (x) + T2 (x) II~ IIT1 (x) II 
+ IIT2 (x) II ~or all x E L. 

A metric can now be defined in R* if one defines 

f>CT1 ,T2 ) = IIT1 -T2 1l * ~or any pair T1 , T2 E R*. This 

induces a metric topology on R* and moreover with this 

topology R* is a topological ring. 

Proo~. II T1· T2 ll * = sup ( T1 (T2 {x)) } 

lfxtr=l 

II T1· T2 11 * ~ sup{ II T1 11 * UT2 (x)lt} 

IIXII=l 



\IT111 sup { IJT2 (x)ll) = \1 T1 \l * I\T2 1l *' 
* IIXII=l 

Theorem 2. Multiplication and addition are continuous 

operations in the topology of R*. 

Proof. That addition is continuous follows immediately 

from the inequality HT1 +T 2 1l *~ liT111* + IIT211* 

Let ( Tnl 

lim Tn = T and 
n->co 

I 
and { Tn) be sequences from R* such that 

• I I 
llm Tn = T • (The limits here are to be 

n-ho 

interpreted as til'* limits.) 

From Lemma 1 and the triangle inequality for 

follows that 

llT 
n 

\IT II 
n * 

From this it is clear that lim T •T 1 -- T•T 1 • 
n n n 

n ''* it 

It will now be shown that if L is a complete metric 

space with respect to the metric f(x,y) = II x-yll then 

R* is complete in its metric. 

Lenuna 2. If { Tn} is a Cauchy sequence in R* then 

{ Tn(x)} is a Cauchy sequence in L for any x fL. 
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Proof. Let { Tn} be a Cauchy sequence in R*. Then 

I\ Tn ( x) - Tm ( x) 1J = II ( T - T ) ( x) II $ II T - T II II x 1J 
n m n m * 

and clearly { Tn(x)} will be a Cauchy sequence 

in L. 

Theorem 3. The metric space R* is complete whenever L 

is complete. 

Proof. Let { TnJ be a Cauchy sequence in R*. Then 

by Lemma 2 { Tn (x)} is a Cauchy sequence in L 

.for each x f L. But since L is complete there 

exists a y £ L such that y = lim Tn(x). Hence, 
n~ ... 

define T(x) = y = lim Tn(x). Since each of Tn 
n.-.12) 

are linear transformations it is clear that T E R. 

It must be shown that T E R* and that { Tn} converges 

to T in the metric .for R*. 

To show that T is bounded, the fact that { Tn} is 

"Cauchy" will be used. There exists an integer N0 such 

that liT -T 11 < 1 for all n,m > N0 • But it .follows .from 
n m * 

this that t\ T II ~ 1 + II T II and hence for each x t: L, 
n * m * 

II T (x) II ~ (1 + liT II ) ll xU .for all n,m > N0 • Using 
n m * 

the continuity of the norm it follows that 

IIT(x)ll S (1 + liT II ) Uxll for all m c N0 • 
m * 

T is bounded and a member of R*. 

Since liT -T II = 
n * 

sup (IITn (x) - T(x) II} 
IIXll=l 

Therefore, 
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it's clear from the definition ofT as the 1\ II limit of 

the sequence Tn (x) that Tn--.. T in "''* limit. 

c. Linear Functionals, the Hahn Banach Theorem, and the 

Conjugate Space. 

1. The Soukhamlinov Theorem and its Consequences. 

Unless stated otherwise, all linear spaces in this 

section will be right spaces over the real Quaternions. 

Definition A mapping f: L -. Q where L is right linear 

space is a linear functional if 

(a) f(x+y) = f(x) + f(y) 

(b) f(x·~ ) = f(x)·~ • 

The set of all linear functionals on L is 

denoted by L#. 

The set L# can be made into a left linear space over 

Q as follows. Define (f+g)(x) = f(x) + g(x) when f,g ! L# 

and ( >t •f) (x) = ). f(x). It is easily verified that with 

these operations L# is a left linear space over Q. 

It is because of the non-commutative properties of Q 

that L# must be a left linear space rather than a right 

space. For if one defines (f·~ )(x) = f(x)•A , then 

(f•A )(x-p) = f(x·p-)·~ == :f(x);.Y·A # f(x)~;Lf= (f.;\ )(x);M. 

Thus, under such multiplication L# is not necessarily 

closed. 
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# 
The question now arises as to whether L is void 

or trivial, since f(x) : 0 V x ~ L is a linear functional. 

The answer to this question as well as to questions about 
# the nature of certain subspaces of L follows from a 

theorem due to Sukhomlinov, (Sukhomlinov, 1938). It is 

known as the Hahn-Banach Theorem for the case of real and 

complex linear spaces. 

Lemma 1. Let f be a linear functional on a linear space L 

over Q. Then there exists a real valued, real linear 
3 

functional f 0 on L such that f(x) = r 0 Cx)e0 - L. f'0 (xe.)e. 
:t =1 ~ ~ 

for every x E L. 

Proof. Since f: L .-.-. Q, f can be expressed as follows. 
3 

For each x ~ L, f(x) : ~ fk(x)ek where the fk 
k:O 

are real valued linear functionals on L. 

Since f is linear, f(xej) = f(x)ej for j = 0,1,2,3. 

Hence, f(xe.) = i fk(xe.)ek =ct. fk(x)ek)ej. After 
J k=O J k=O 

a little algebra it follows that fj(x) = -f0 (xej) for 

3 
j : 1,2,3. Therefore, f(x) : f 0 (x)e0 - ~ f 0 CxeJ.)eJ .• 

. j=l 

Lemma 2. Let L be a linear space over Q. Let h be a 

real valued, real linear functional on L. Then the 

functional H(x) = h(xe0 )e0 - iZi h(xek)ek is linear 

on L. 
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Proof. It is clear from the properties of h that H is 

additive and homogeneous with respect to real 
3 

H(xe1 ) = h( [xe1l e0 ) e0 - L:. h( [x e11 ek) e 
k=l k 

scalars. 

and by the associative postulate for scalar multip-

lication this 

out 

the summation yields, 

H(xe1 ) = h(xe1 )e0 + h(xe0 )e1 - h(xe3)e2 + h(xe 2 )e3• 

But this last statement can be written as 

H(xe1 )=(h(xe0 )e0 -h(xe1 )e1-h(xe2 )e2-h(xe3 )e3)e1 , or 

H(xe1 ) = H(x)e1 • Similar computations yield 

H(xej) = H(x)ej for j = 2,3. Therefore His 

homogeneous with respect to scalars from Q and 

consequently H is linear. 

Theorem 1. (Soukhamlinov) Let L be a (right) linear 

space over Q and M a subspace of L. Suppose 

f is a linear functional whose domain is M 

and has the property lf(x)( ~ p(x) for all 

x E M where p is a real valued functional de

fined on all of L with the properties; 

(i) p(x) ~ o, (ii) p(x+y) ~ p(x) + p(y), and 

(iii) p(X·O() = p(x)\«\ • Then there exists an 

extension F of r to all of L with the property 

that I F(x~ \ $ p(x). 
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Proof. Since f is linear it follows from Lemma 1 that 

f(x) = f 0 (xe0 )e0 - ~ f 0 (xek)ek, where f 0 is a 
k~l 

real valued real linear functional on M. 

By hypothesis \f(x)\ ~ p(x) for all x t M and 

consequently f 0 (x) ~ p(x) for all x e M. The "real" 

Hahn-Banach Theorem can now be applied to fo to yield the 

existance of a real-linear functional F 0 which extends 

F0 to all of L with the property that F0 (x) ~ p(x) for 

all X E. L. 

Define the functional F on L as follows. 
3 

F(x) = F0 (xe0 )e0 - ~ F0 (xek)ek for all x f L. By Lemma 

2, F(x) is a linear functional. Moreover, for x E M 

F0 (xek) = f 0 (xek) fork= 0,1, ••• 3. Hence, F(x) = f(x) 

and therefore F is an extension of f. 

If F(x) = 0 for all x e: L then F(x) ~ p(x) 

Suppose that F is not identically zero. trivially. 

Let x e. L. Choose ~ f Q such 
F(x) 

that ~ = • Then 
lF(x) \ 

It now follows that 1~1 = 1 and F(x) = 
F(x)P. = F(x~) = 

I F(x)lf' • 

(F(x)l l'f41 2 = lF(x)\. Therefore F(x}:i ) 

is real and consequently F(xp. ) = F0(xp )e0 • But 

F0 (xp) !: p(xp. ) = p(x),p.l = p(x) • Using the fact that 

F(xp.) = I F(x) I it follows that I F(x) I ~ p(x). Since 

this is true for every x £ L the proof is complete. 
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Definition Let L be a normed linear space over F = Q or 

C. A linear f on L is called bounded if 

lf(x)l ~ kr IIXII for all x E L, where kr > 0 

and depends only on f. L* will denote the 

class of all bounded linear functionals on 

L. For f E L* the norm is defined to be 

ll fll = sup \f(x)l. 
UXII=l 

It follows easily from the analogous theorem for 

bounded linear transformations that a linear functional 

f on L is continuous iff its bounded. 

Corollary 1. Let M be a subspace of a normed linear space 

N, and f a bounded linear functional on M. Then f can be 

extended to a linear functional F defined on all of N 

such that II F II -: llf II • 

Proof. Define p(x) = llfll •llxll • Then lf(x)l ~ p(x) 

for all x E M. By Sukhamlinov's Theorem there 

exists a functional F that extends f and 

IF(x)l ~ p(x) = llfll • Uxl\ for all x £ L. 

It follows that IIFI\ = sup IF(x)\ ~ llfll, But 
ll Xll=l 

since F is an extension of f, II F 1\ ~ U f II • 

Corollary 2. If N is a normed linear space, x0 a non zero 

element of N, there exists a linear functional F on N such 

that F(x0 ) = ll x0 11 and liF II = 1. 
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Proof. Let M = \ x0cc.lcu.Q} and define f(x0 ·cc.) = Ol·Hx0 1\. 

Then f(x0 ) = II x0 \\ and llf If = 1. Now apply 

corollary 1. 

As remarked previously, the initial goal of this 

section was to answer the question of whether the space 

L# is non-trivial. The question can be answered affirmatively 

in the following sense. 

Theorem 2. Let L be a linear space over Q and L* the 

class of continuous linear functional on L. 

Then L* is not trivial. 

Proof. Let x E L and x I 0. Let M = { X·« \ c<.c Q } • Then 

M is a subspace of L. Define the functional f on L 

as follows. 

f(x·~) = llxll~. Clearly f is a bounded linear 

functional on M. By corollary l,f can be extended 

to a functional F defined on all of L without change 

of norm. Hence F E L*. 

The next application of the Sukhamlinov Theorem is 

related to the separation of convex sets in linear spaces. 

Definition A subset K of a linear space L over Q is convex 

for every pair of real numbers 01.,p , for 

which ~+~ = 1, x~ + yp t K for all x,y E K. 
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Definition A subset K of L has an internal point if 

for each y E. L there exists an E > 0 such 

that x + Y« £ K for lcxl ~£ • 

Definition Let L be a linear space over Q and f a functional 

on L. The functional f separates the subsets 

M, N of L if there exists a real constant c 

such that t(f(M)) ~ c and t(f(N)) ~ c. 

Here t(f(x)) = f(x) + f(x). 

The following theorem is well known for real and 

complex linear spaces (Dunford & Schwartz, 1958). Only 

the case for real spaces will be needed. 

Theorem 3. Let M and N be disjoint convex subsets of a 

linear space L (over Re), and let M have an 

internal point. Then there exists a non zero 

linear functional which separates M and N. 

This Theorem can be extended to the case of 

linear spaces over Q as follows. 

Theorem 4. Let M and N be disjoint convex subsets of a 

linear space L over Q, and let M have an in

ternal point. Then there exists a non zero 

linear functional which separates M and N. 
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Proof. L may be regarded as a linear space over Re and 

consequently by the preceeding theorem there 

exists a functional f on L such that 

(a) f(x+y) = f(x) + f(y) 

(b) f(x.C(.) = f(x).u for ~ real. Moreover there 

exists a real constant c such that f(M) ~ c 

while f(N) ~ c. 

As in the proof of the Sukhamlinov Theorem, define 

the functional 
3 . 

F(x) = f(xe0 )e0 - L f(xek)ek. Th~s is a 
k=l 

linear functional and F separates M and N. 

2. The Canonical Embedding of a linear space L over Q in 

(L*)*. 

If L is any right linear space over Q then L* is a 

left space over Q. The conjugate of L* denoted by L** 

will now be considered. 

Clearly, L** must again be ar~t space over Q. The 

question naturally arises as to how L** and L are related. 

As in the case for real and complex spaces every 

x £ L gives rise to an element Fx in L**· The mapping is 

given by x_. Fx where Fx(f) = f(x) for any f £ L*. 

Clearly Fx is linear. 



The norm on L** is defined as follows: 

IIF II :=sup { IFx(f)l} = sup { \f(x)L}. From this 
X llfll=l II fll=l 

it follows that IIFx tl ~ sup { \lf H • \\ x \1 } = \\ x \1 • 
ll fll= 1 

But by corollary 2 of the Sukhamlinov Theorem it follows 

that II Fx ll ~ ll x \1 and consequently \\ Fx \\ = \\ x \l. 

Therefore, the mapping of L into L** is norm preserving. 

The Mapping J: L -+ L** given by J(x) = Fx is a linear 

mapping. For if x,y e L, J(x+y) = Fx+y and if f E L*, 

Fx+y (:f) = :r(x+y) = f(x) + f(y) = Fx(f) + FY (:r) => J(x+y) 

= J(x) + J(y). Also, for A. E Q and x £ L, J(xA) •f 

= FXA (f) = f(x,>..) = f(x)).. =[J(x)A)•f. Consequently, 

J is linear and by the preceeding remarks it is an isometry. 



D. Linear Functionals on Linear Spaces over c. 

Definition Let L be a linear space over c. A functional 

f: L --. C is called linear if 

(i) f(x+y) = f(x) + f(y), 

(ii) f(xa) ~ f(x)•a for all x,y E Land a £ c. 

If (i) holds and (ii) hold for all a ~ D 

where D is a subalgebra of c, then f is 

called D-linear. 

It should be noted at this point that L#, the class 

of all linear functionals on L, does not form a linear 

space over C. It will become a linear space over Re 

under the usual pointwise definitions of addition and 

scalar multiplication. 

The reason that L# is not a linear space over C appears 

to be a direct result of the fact that C is not an 

associative algebra. If scalar multiplication is defined 

in the usual manner, that is, (a.f)(x) = a•f(x), then 

since the associator (a,f(x),b) is not zero in general, 

such a mapping will not yield a homogeneous functional. 

The fact that L# is not a linear space over C eliminates 

the possibility of embedding L in L**· Therefore, some of 

the structure theorems for normed linear spaces over Q 

(or K) will not carry over. 
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In the following, some results about linear 

functionals on linear spaces over C will be given and 

finally an extension theorem analogous to the Soukhamlinov 

Theorem will be proven. 

Lemma 1. Let L be a linear space over C and f an additive 

functional on L to c. If f is real valued and homogeneous 

on LR then f is linear on L. 

Proof. Recall that [x,a,b] = 0 Y x E LR' a,b E c. 
For xe LR f(xa) = f(x)a. From the 

a linear space over c, for x £ L, x 

axioms for 
7 

- L xkek 
k=O 

where the xk E LR. Now consider for example f(xe1 ). 
7 

Since x =L: xkek, xe1 can be written as 
k=O 

7 
xe1 =) xk(eke1 ). Hence, 

k=O 

xel =-xl eo+x0el+x3e2-x2e3+x,ey.-x4-e5+x6e7-x7e6. 

It follows that 

f(xe1 )=-f(x1 )e0+f(x0 )e1+f(x3)e2-f<x2)e3+f(x5)ey. 

- f(x4 )e5+f(x6 )e7-f(x7)e6• But if f is real 

valued on LR 

f(xe1 )=[f(x0 )e0+f(x1 )e1+f(x2)e2+f(x3 )e3+f(x4)e4 
+ f(x5 )e5+f(x6 )e6+f(x7)e7Je1• Or, 

7 
f(xe ) = f(~ xkek)e1 = f(x)e1 • Using the same 

1 k=O 

methods it can be shown that f(xe3) = f(x)ej for 



j ~ 1,2, ••• 7. Therefore, f is homogeneous and 

consequently linear. 

Lemma 2. Let L be a linear space over c. Let f be a 

real valued, real linear functional on L such that 

f(xej) = 0 whenever x E LR and j # 0. Then the functional 

7 
F(x) = f(x) e0 - L f(xe.) e. is linear on L. 

j=l J J 

Proof. It follows immediately from the properties of f 

that F is additive and real homogeneous. Let 

X E: L • 
R 

Since x ~ LR' (xe1 )ej = x(e1ej). Thus, 

F(xe1 ) = f(xe1 ) - ~ f(x(e1ej))ej. This equation 
j=l 

can be written as 

F(xe1 ) = f(xe1 )+f(xe0 )e1 -f(xe3 )e2+f(xe2 )e3-fCxe5)e4 

+ f(xe4 )e5+f(xe7)e6-f(xe6)e7• 

But then 

F(xe1 ) = \'_ f(xe0) e0-f(xe1 )e1 -:r(xe2)e2-f(xe3)e3 

- f(xe4 )e4-rCxe5)e5-fCxe6 )e6-rCxe7)e7 ] e1 • 

That is, F(xe1 ) = F(x)el• Agai~using the same 
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technique, it can be shown that F(xej) = F(x)ej 

for 1 = 2,3, ••• ,7 and x £ LR. Therefore, F is 

homogeneous on LR. 

Since f(xe.) = 0 for j~, and x £ L , F is real valued 
J R 

on LR. But then it follows from Lemma 1 that F is linear. 

Lemma 3. Let L be a linear space over c. If f is a linear 

functional on L, then for every x £ LR (f(x),ej,ek) = 0 

for all j, k. 

Proof. Let x E LR. Then (xej)ek = x(ejek) for all j, k. 

Hence, f((xej)ek) = f(x(ejek)). But since f is 

homogeneous f(x(ejek)) = f(x)(ejek) and f(xej)ek 

= [f(x)ej] ek. Therefore, f(x)(ejek) = [f(x)ejl ek. 

Lemma 4. Let L be a linear space over C and let f be a 

linear functional on L. Then there exists a real valued, 

real linear functional f 0 on L such that f(x) = f 0 (x)e0 

7 
- ~ f 0 (xej)ej for each x E L. Also, r 0 (xej) = 0 for 

J~l 

each x E LR. 

Proof. Since f takes its value in C and f is linear, 

f(x) can be written as f(x) = f 0 (x)e0 +~ 
~1 

where the fj are real valued, real linear 

runctionals on L. By hypothesis f(xa) = f(x)a 

for all a£ c. Thus, f(xej) = f(x)ej for j=0,1,2, ••• ,7. 
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7 
~ ( ~ fk(x)ek)e1 • From this last equation, it follows 

k=l 

that f 1 (x) = -f0 Cxe1 ). Similar computations yield 

Also, from lemma 3 and the fact f is linear it follows that 

f 0 (xe.) = O.when x £ 1R. . J 

With these lemmas the main result of this section 

can be proven. The statement of the theorem is almost 

the same as the Soukhamlinov Theorem for linear spaces 

over Q. However, there are some critical differences and 

these will be pointed out. 

Theorem 1. Let 1 be a linear space over C and p a functional 

defined on L with the properties, 

(i) p(x+y) ~ p(x) + p(y) 

(ii) p(x) ~ 0 

(iii) p(xa) = p(x)•lal for all x,y E 1, and a E c. 

Let M be a subspace of 1 and f a linear functional 

defined on M such that lf(x)l~ p(x) for all 

x f M. Then there exists a functional F that 

extends f to all of L such that 
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(1) F(x+y) = F(x) + F(y) 

( 2) F(x.a) ·- F(x)a .for a e:. Re 

(3) F(x•a) = F(x)a .for x E. LR and a £ C 

(l;-) \ F(x) I s p(x) for all x E LR 

Proof. From Lemma l;- there exists a real-valued, real 

linear .functional f 0 defined on M such that 

f(x) = .r0 (x)e0 --~ f 0 Cxej)ej .for all x E M and 
J=l 

.r0 (xej) = 0 whenever, x E MR and j = 1,2, ••• ,7. 

Since l.f(x)l ~ p(x) .for all x EM it is clear 

that .r0 (x) ~ p(x) "for all x E. M. The Hahn-Banach 

Theorem can now be applied to yield the existence of 

real-linear functional Fo which extends f 0 to all of L 

with the property that F 0 (x) !: p (x) .for all x E L. 

Define the functional F on L as .folows. 

7 
F(x) = F0 (x)e0 - ~F0(xej)ej for all x E L. From the 

j=l 
proof o.f Lemma 2 it is clear that F is additive, real 

homogeneous, and F(xa) = F(x)a for all x E LR and a £ c. 
Moreover, for x EM, F0(xej) = .r0 Cxej) .for j = 0,1,2 ••• ,7. 
Hence F(x) = .f(x) whenever x E M. 

If F(x) = 0 .for x E L then \F(x)\ ~ p(x) trivially. 

Suppose that F(x) # o. Let x e LR and choose a e C such 

that a= F(x) • Then tal= land F{x) = lF(x)Ja. 
lF(x) \ 
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It now follows that F(xa) = F(x) a = I F(x)l l a\ 2 = I F(x) 1. 

Therefore, F (xa) is real and consequently F(xa) -- F 0 (xa). 

But F0 Cxa) ~ p(xa) = p(x) l a 1 = p(x). Hence 

IF(x) I ~ p(x). Since this is true for any x L LR, the 

proof is complete. 

The differences between this Theorem and the 

Soukhamlinov Theorem are clear now. The extended functional 

is not homogeneous on all of L. Moreover, it is bounded 

by p only on Ln. These facts weaken the result considerably. 

E. Banach Spaces over Q(and C) and Function Algebras 

1. Definition and Examples 

In the following, unless stated otherwise, F 

will denote either Q or c. 

Definition A normed linear space L over F with norm 

is called a Banach space if L is a complete 

metric space relative to the metric p<x,y) = llx-yll 

p 
Example 1. Consider the linear space LQ [ o, 2IT] • It has 

already been noted that this space is a normed linear 
2 1 

space with respect to the norm I \f \1 P = l J I fl P 1 P • 
0 

In view of the following theorem L~ ( 0,21Tl is a Banach 

space. 
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Theorem 1. 
p 

The LQ [ 0,2TT] space (p >, 1) is complete. 

Proof. Let { :rn} be a Cauchy sequence . LP 
~n Q• For 

each n, .fn can be written as :rn =t f .~e. 
nJ J 

where the fnj e. Lte for each j. j=O 

From Minkowski' s inequality ll f+g II ~ llf II + llg IJ , 
p p p 

it follows that each of the sequences { :rnj J 
p 

j = 0,1,2,3 are Cauchy sequences in LRe• But 
p 

from the completeness of' LRe (Royden, 1969) there 
p 

exists function :rj j = 0,1,2,3 in LRe such that 

1111- lim f . :-:: fj. Applying the Minkowski inequality 
'P n nJ 

again it follows that the function f = ~ fjej is 

in LP and II If- lim fn = f. Therefore, j;.:O 
Q P n 

L~ is complete. 

Example 2. Let X be a topological space and consider the 

class of :runction on X with values in F. Each function f 

nF 
has a representation of' the form f = ) f jej where the f j 

j=O 

are real valued functions on X and Dp = 3 or 7 depending 

on whether F = Q or c. 

Let B(X,F) be .the class of all bounded functions 

on X with values in F (that is, for each f E B(X,F) there 

exists a real number N·· such that I f(x) I ~ N where l denotes 

the norm (topological) of' F). I.f (f+g) (x) = .f(x) + g(x) 
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and (f. cc ) (x) :: f(x) • ex , then B(X,F) is a linear space 

over F. 

If for each f E B(X,F) II f I I ::: sup I f(x) l , 
u X£ X 

then B(X,F) becomes a normed linear space over F. More

over, B(X,F) is a Banach space with this norm. 

Theorem 2. B(X,F) is complete in the norm II llu. 

Proof. Let f fn} be a Cauchy sequence from B(X,F). 

Then given any E > o, there exists an integer 

N(f) such that llf - f ll < £ n m u for all n,m ~ N(~). 

But it then follows that for all x ~ X that 

I fn (x) fm (x) I < e: and thus t fn (x)} is a Cauchy 

sequence in F. By the completeness of F there 

exists f(x) E F given by f(x) = lim f (x). Since 
n n 

each fn is bounded it follows that f is bounded 

and therefore in B(X,F). That is, B(X,F) is 

complete. 

Definition Let X be a Topological Space. A function 

f: X _. F is continuous at x0 £ X if given 

any € > 0 there exists a neighborhood N(x0 ) 

such that lf(x) - f(x0 )1<E for all x E N(x0 ). 
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Exam~le 3. Let C(X,F) be the subset of B(X,F) consisting 

of bounded continuous functions on X. Then C(X,F) is 

also a linear space over F. Using the normed defined 

on B(X,F), C(X,F) is a nor.med linear space. It will 

now be shown that C(X,F) is a closed subspace of the 

complete (metric) space B(X,F) and therefore complete. 

Theorem 3. C(X,F) is a closed subspace of B(X,F). 

Proof. Let f e C(X,F) • Then given E > 0 there exists 

r 0 £ C(X,F) such that llf - fo \\u < F-f3. Let 

x E X. From the continuity of f 0 there exists 
I 

a neighborhood N(x) such that for all x e N(x), 

( f(x 1 ) - f(x) \ < Ef3. Consequently, 

l f(x' )-f(x) \~ I f(x 1 )-f0 (x 1 )I+ lf0 (x' )-f0 (x) l 
. . f 

+ 'f(:x) - f 0 (x)\ <f. for all x f. N(x). Since £ 

and x were arbitrary f is continuous on X and 

C(X,F) = C(X,F)-. 

Corollary C(X,F) is a Banach Space over F. 

2. The Function Algebras C(X,F) 

Let F be a Cayley-Dickson algebra over Re 

dimension n. Each a £ F can be expressed as a 

of 
n-1 

==L_ 
j=O 

where the aj E Re and ej are the basis elements of F. 

a.e. 
J J 
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A norm can be defined in F if for each a E F, 

r n-1 211/2 
\a\ = l ~ aj • Using the completeness of the 

j=O 
Reals it is not hard to show that F becomes an 

n-dimensional Banach space over Re. 

Definition Let X be a topological space. A function 

f from X to F is continuous at x0 E X if' 

for any E > 0 there exists a neighborhood 

N(x0 ; e ) such that for all x E N(x0 ; £ ) 

\f(x0 ) - f(x) I <E:. 

Let X be a topological space. C(X,F) will denote 

the class of all bounded continuous F-valued functions 

on X. C(X,F) becomes an algebra over Re if the operations 

are defined pointwise. C(X,F) becomes a normed algebra 

if for each f e: C(X,F) \\ f \1 u = sup \ f(x) \. Using 
XEX 

essentially the same proof as in Theorem 3 or the previous 

section C(X,F) can be shown to be complete.- with respect 

to this norm. Since II f• g If ~ \\r \I II g llu the operations u u 
are continuous and hence C(X,F) is a topological algebra. 

Since F is finite dimensional every f E C(X,F) has 

a representation of the form f = 
n-1 
L. f .e. where the rj 
j:::O J J 

are real valued functions on X and the ej are the basis 

elements of F. Moreover~ it is clear that f E C(X,F) 
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iff fj ~ C(X,Re) for each j. 

The algebra C(X,F) has an involution "-" defined 
by f(x) = f(x) where "-" is the involution in F. Since 
f f(x) I = I f(x) I = lf(x) \ for each f E C(X,F) and x £ X 
it follows that "-" is a continuous operation in C(X,F). 

In general, C(X,F) will be neither commutative nor 
associative. Also, C(X,F) will be infinite dimensional 
for general X. Therefore, C(X,F) is a non-associative 
analog of a Banach Algebra. It appears that no one has 
studied structures of this type to date. 

An analog of the Stone-Weierstrass Theorem will 
now be given for algebras of the type C(X,F), where F 

is any finite dimensional Cayley-Dickson algebra over Re. 

Definition Let A be an algebra of functions defined on 
a topological space X to a Cayley-Dickson 
algebra F. Then A separates points (in X) 

if to each pair of points x,y in X there 

exists an element f ~A such that f(x) I f(y). 

The following is well known (Simmons, 1963). 

Theorem ~. Let X be a compact Hausdorff space, and let A 
be a closed subalgebra of C(X,Re) which separates 
points and contains a non-zero constant function. 
Then A = C(X,Re). 
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To generalize this theorem let F be any Cayley

Dickson algebra of dimension n over Re. Let X be any 

topological space. As noted previously, the class C(X,F) 

is an algebra. Any 

as f(x) = f 0 (x)e0 + 

function f E 
n-1 L fi(x)ei 
i=l 

for each j. Each element of 

defined by f(x) = f 0 (x)e0 -

f E. 

n-1 
~ 
i=l 

C(X,F) can be represented 

where the fj E C(X,Re) 

C(X,F) has a conjugate 

:fi(x)ei. 

Theorem 5. Let X be a compact Hausdorff space, and let A 

be a closed subalgebra of C(X,F) which separates 

points and contains the constant functions 

and f E A~ f E A. 'llben A = C(X,F). 

Proof. Let ARe denote the class of all real valued functions 

in C(X,F). Clearly ARe is a closed subalgebra of 

C(X,F). Moreover if f E C(X,F), f(x) = f 0 (x) 

n-1 
+) fi(x)ei and fiE C(X,Re) for each i. Con-

i=l 

sequently, if ARe = C(X,Re) then it follows that 

A = C(X,F). 

To show that ARe = C(X,Re) it must first be shown 

that ARe separates points. Let x,y be any two distinct 

points in X. Since A separates points there exists 

:r E C(X,F) such that f(x) i :f(y). But f(x) = f 0 (x)e0 

n-1 
+ ~ fi(x)e1 and consequently fj(x) i :fj(y) for at least 

i=l 



one value of j. Since fk E ARe for each k it follows 

that ARe separates points. Now to show ARe contains 

58 

at least one non zero constant function, let f be any 

non zero constant function of A. The function f•f E ARe 

and is a (real valued) non zero constant function. 

Applying the preceding theorem it follows that 

ARe = C(X,Re). Therefore A = C(X,F). 

F. Open Mapping, Closed Graph, and Uniform Boundness 

Theorems. 

Let L be a Banach space over the field F where 

F is either Q or c. Then L is also a real linear space. 

If T is a linear transformation of the linear space 11 

into the linear space 12 then T is clearly a real-linear 

transformation of 11 into L2• Hence, the following theorems 

(Simmons, 1963) are true, since their proofs depends 

only on the fact that transformations are real homogeneous 

and additive. 

Theorem 1. (Open Mapping Theorem) 

A continuous linear transformation T of a Banach 

space L1 over F on to Banach space L2 over F is an open 

mapping. 
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Corollary. If L1 , L2 are Banach spaces over F and T 

is a one to one continuous linear transformation from 

L1 onto L2 , then T has a continuous inverse. 

Proof. 
-1 

Let 0 be open, L1 =Range (T ), then 

(T-l)-1 (0) = T(O) is open in L2 = Domain (T-1). 

Theorem 2. (Closed Graph Theorem) 

Let 11 , L2 be Banach spaces over F and T a linear 

transformation of L1 into 12• If 

then T(x) = y, i.e. the graph of T is closed. 

Theorem 3. (Uniform Boundness Theorem) 

Let 11 be a Banach space over F and 1 2 a normed linear 

space over F. If { Ti} is a non-empty set of continuous 

linear transformation of 11 into 12 with the property 

that (Ti(x)} is a bounded subset of 12 'rl x £ 11 , then 

{\\Till} is a bounded subset of Re. 

Theorem 4. A non-empty subset X of linear space 1 over 

Q is bounded iff f(X) is a bounded subset of Q V f E L*. 

2. The Conjugate of a Linear Transformation in 1 over Q. 

Let L be a.normed linear space over Q and 

suppose T is a linear transformation of L into L. 
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Define a mapping T#: L# __..... L# as follows: 

Given f E L#, let (T#f)(x) = f(Tx) V x l L. 

T# is a linear transformation. For f 1,f2 E L# 

and oe1 , cx2 E. Q , then 

= ~l f 1 (Tx)+ ~2f2 (Tx) 

= [0(1 · T#(f1 )] (x)+ [cx2 -T#(f2 )] (x). 

To show that T# is actually a map of L# into L# 

consider the following 

(T#r) (xoc) = f(T(xoc)) = f(T(x)oc) = f(T(x) )C)( = (Tf(x))oc. 

and T#f(x1+x2 ) = f(T(x1+x2)) = f(T(x1 ) + T(x2)) 

= f(T(x1 )) + f(T(x2 )) = T:(x1 ) + T#f(x2 ). 

The question now arises as to when T# maps L* into 

L*. 

Theorem 1. T#(L*) c L* iff T is continuous. 

Proof. T is continuous ~ T(S) is bounded 

~ f(T(S)) is bounded V f t: L* 

¢:::> T#f ( S) is bounded "' f f L* ¢:::;> T# f E L* V f E L* 

Now let T be a continuous linear transformation on L. 



By the preceding theorem T(L*) c T(L*). Therefore, 

the conjugate T* of T is defined by T* = T#l 
L* 
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If R(L), R(L*) denote the rings of bounded linear 

transformations on L and L* respectively then the mapping 

T -? T* is a norm preserving map of the ring R(L) into 

R(L*). 

The conjugate of an operator has the following 

properties. 

(a) 

(b) (T ·T )* = T * • T * 
1 2 2 1 

G. Linear Functionals as Differentials of a Norm. 

In the following, only linear spaces L over F = Q 

will be treated. This section contains a slight extension 

of the work of R. C. James (James, R. c., 1951). 

Definition The differential of the norm in a Banach space 

B(over Q or subfields of Q) at a point x 0 B 

is defined by 

D ( x ; y) = 1 im II xo+ yt II - II xo II 
0 t 0 t 

provided the limt exists. 

Lemma 1. If L is a right linear space over Q and f £ L# 
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then f has the following form, 

f(~) = f 0 (x)e0 - f 0 (xe1 )e1 - f 0 (xe2 ) - f 0 (xe3) 

where 

f 0 (x) == tt [ f(x)] = t [ f(x) + f(x) ]. 

Lemma 2. D + (x;y) = lim l:l (x,t,y) exist for each 
t o; 

x,y £ B, where ·~(x,t,y) = IIX+yt tl- llxll • 
t 

Proof. Let t 1 > t 2 "> 0 and consider the difference 

Since 

and 

== t 2 llx+yt1ll -t1 ttx+yt211 +(t1-t2 ) Uxll 

tlt2 

it follows that ~(x,t1 ,y) - 6(x,t2 ,y) ~ 0 whenever 

t 1 ) t 2 7 0. Hence, for decreasing t, the function is 

non-increasing. Also, 

l(x+;ytl\- Uxll 9 
6 (x,t,y) = t 

IIXII -t llyll- llXI\ 

t 
~ -lly\1 
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and consequently 6 is bounded below. If 

D+ (X ; y) = 1 im 6. (X, t , y) and D (X ; y) ; lim ~ (X, t , y) 
t-+ o+ - t ...... o-

it is clear from the preceding remarks that both of these 

limits exist. 

Lemma 3. Suppose B is a real Banach space and f E B*. 

Furthermore, suppose there exists x 0 E B for which 

f(x0 ) = II f II ll x 0 l \ • Then for every y e B 

Proof. For any t > 0 f(x0 -t_ yt) ~ llf H · llx0 ~ yt II or 

f ( x 0 ) + f ( y) t ~ l I f II I l x 0 + yt II • But 

f(x0 ) -- 11 f II ·llx0 1\ so 

llf H·llx0 ll ":!: f(y)t ~ llfll·llx0 + ytll and finally 

this can be expressed as 

'!: f c y) t ~ " f \\ [ II x0 t yt ll - 1 1 xd 1] • 

Recalling the definition of ~(x,t,y) it is clear 

that 1 I f I I !:::. ( x 0 , - t , y) ~ f ( Y) ~ II f II ~ ( x 0 , t , y) 

and on taking the limit as t-+ o+ this expression 

yields tlf 11 D_(x0 ;y) ~ f(y) !f llf 11 D+Cx0 ;y). 



Def'inition 

6l.f. 

The norm 11 11 11 11 in a Banach space B (over Q) 

is differentiable at x 0 E B if 

. liXo+yt 11-IIXolf 
11m t 
t 0 

exists for every y E B. 

From Lemma 3 and the preceding def'initions the following 

Theorem is clear. 

Theorem 1. Let B be a real Banach space and f' E B*. If' 

there exists x0 e B such that f(x0 ) = II :r II· II x 0 11 

and D(x0 ;y) exists, then for y E B 

f' ( y) = I I f II · D ( x0 ; y) • 

Theorem 2 •. If D(x0 ;y) exists for x 0 E B, then D(x0 ; ) is 

in B* with IID(x0 ; )ll=land D(x0 ;x0 ) = 11 x 0 H 

Proof'. \-
\_\x_0_+_y_t_l_l _-_l_lx_0_n_, ... 4: \nx0 11 + Jlytll - llxofl j I .A< x 0 , t, y) I = t 

which implies 

l6<xo,t,y) 

llyll· 

for all y I 0 and consequently 

t 6 < xo, t 'Y) I 
lim --~~- ~ 1 => lln<x0 ; ) H ~· 1. 
t 0 liYH 
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But D(x0 ;x0 ) = lim (l+~-l ) ll x0 \\ = II x0 11 
t 0 

and consequently IID(x0 ; )II= 1. It has been shown 

then that DCx0 ;) is a bounded functional of its 

second argument and it will be sufficient to show 

that D(x0 ; ) is additive to prove that it is a 

member of B*. 

To do this consider the following: 

DCx0 ;y+z) - D(x0 ;y) - D(x0 ;z) 

11 x0 + c y+ z) t u + 11 x0 - yt 11 + 11 x0- z t II -3 II Xo I I = lim 
t-+0 t 

But 

Since the expression is decreasing as t _. 0 the 

limit must be zero and therefore D(x0 ; ) is additive. 

As a consequence of these Theorems the following is true. 
(a) if the norm of the Banach space B(over R ) is 

differentiable at each x E B 

(b) and given any f E B•theorem exists x0 E B for which 

f < x0 ) = " f \ \ 11 x0 ll • 

Then for every yE B f(y) = l\ f II D(x0 ;y). Therefore 

for such Banach spaces (over Re) there is a representation 
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for the bounded linear functionals on B. 

There is a class of Banach spaces for which (b) 

always holds. These are known as uniformly convex spaces. 

Definition A Banach space (over Q or subfield of Q) is 

uniformly convex if given any E > 0 there 

exists a 6 > 0 such that rt x+y ll < 2 - & 

whenever II x ll = II y II = 1 and II x-y \I>£ • 

Theorem 3. If the norm in a uniformly convex Banach Space 

B (over Re) is differentiable at each non-zero 

element of B, then for every f E B* there 

exists a unique xf E B such that 

llxfll = 1 and f(y) = Ufll D(xf;y) for all 

y £ B. 

Remark. If it can be shown that for every f E B* there 

exists a unique xf £ B with llxfl \ -== 1 and f(xf) = ll f II 
then the conclusion will follow from Theorems 1, 2. 

Proof. Since the II f l\ = sup l f(x) l there exists a 
IJXII=l 

a sequence { x} with llx II = 1 for every n n n 
and lim f(~) = llfll. By hypothesis B is uniformly 

n 

convex so for any E > 0 a 6 > 0 can be chosen such 

that for all llx II = II yll = 1 

I I x-yl I >£ * flx+yfl < 2 -6. Now choose an N such 



now 
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that r(~) > l\fll (1- ~)when n > N. If 

n,m > N f(Xn+Xm) = r(~) +f(xm) > 2 II r II (1 - ~) 

= II f ll ( 2 - 6 ) • 

But by definition of \\fl I , r(Xn_+Xro) ~ II f II ll xn+xmll • 

Hence, II :xn+Xln II > 2 - 6 and by uniform convexity 

II x -x I I < f • Therefore, \ x__} is a Cauchy Sequence n m --n 
and since B is complete, there exists x0 E B such 

that lim X :::: xo· But f is continuous, and con-
n n 

sequently lim f(x ) :::: II f ll = f(x0 ) and it is clear 
n n 

that II x01l = 1. 

From this Theorem the rollowing important Corollary can 

be derived. 

Corollary. Let B be a (right) Banach Space over Q which 

is unirormly convex. Suppose the norm is differentiable 

for each x E B. Then for each F £ B* there exists a 

unique xF in B for which 

where F 0 (x) = it (F(x)) and y is any element or B. 

Proof. Fo is a bounded real linear functional on the Banach 

B which is also a Banach space· over R. By Lemma 1 
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3 
F(y) = F0 (y) - ~ F0 (yei)ei. But by Theorem 3 

i=l 
there exists some xF E B such that 

F0(y) = l\F0 l\ • D(xF;y) for ally E B. 

The question now arises as to whether there exist any 

uniformly convex Banach spaces over Q. The answer is yes, 

and examples of such spaces will be given in a later 

section. 
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V. Hilbert Spaces over Q 

A. Definitions and a Fundamental Theorem. 

Definition Let L be a (right) linear space over Q. L 

will be called an inner product space if 

there exists a function ( , ) ; L x L ~ Q 

with the properties 

(a) (x,y+z) = (x,y) + (x,z) 

(b) Cx,yO() = (x,y)oc 

(c) (x,y) = (y,x) 

(d) (x,x) > 0 X f. 0 

It follows immediately from these results that 

(e) (x+y,z) = (x,z) + (y,z) and 

(f) (x o< ,y) = Ci(x,y) 

The next lemma is known (Teichmllller, 1938). The 
following proof is due to Penico (Penico, 1968). 

Lemma 1. (CBS inequality). 

If x,y are any two elements of L then 

tcx,y)l~ 
t t (x,x) (y,y) • 

Proof. If x or y is the 0-vector the result is clear. 
Suppose now that neither x nor y is o. Then 
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0 ~ (x+yoc , x+y~ ) (y,y) = (x,x) (y,y) - (x,y) (y,x) 

+ [ Cx,y) + (y,y)ocll (y,x) + y,y) «1 

for any « a Q. Choose ~ such that the product 

of square brackets vanish. It then follows that 
(x,y)(y,x) ~ (x,x)(y,y) and the result of the 

theorem is clear. 

,.., + ;:;; <_ l- ';, 1t ,_ \ 0( I • Lemma 2. If oc is any quaternion then ..... .... ...... - ' 

Theorem 1. Any inner product space L over Q is a normed 

Proof. 

space. 

Define II X II 
t = (x,x) for x E L. By direct 

calculation it follows that tlxll ~ 0 iff x = 0 

and llxcdl = ll:x: 11-loc.l • To show that the triangle 
inequality holds, Lemmas 1, 2 must be used. 

2 llx+y II -- (x+y,x+y) = (x,x) + (x,y) + (y,x) + (y,y) 

= tlx tJ 2 + Cx,y) + Cx,y) + lly11 2 

llx+yll 2 ~ 1\xl\ 2 + 2 \(x,y)\ + llyll 2 (Lemma 2). 

or Hx+y\\ 2 ' llxll 2 + 2 ·llxll· llyt1 + llyll 2 (Lemma 3). 

\\ x+y 1\ ~ nx 1\ + 11 y ll • 

These results show that any inner product space is a 
normed space and consequently a metric topological space. 
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If (1,( , )) is complete with respect to the metric 
defined by p<x,y) = llx-ylt then L will be called a 
Hilbert Space, (or Wach' s Space, see Teichmuller , ) • 

Example 2 It has been noted previously that LQ [ 0,21T1 
is a Banach space over Q when the norm is defined by 

2TT t 
\If tl 2 :::- ( 5 \f\2) • An inner product can be introduced 

0 

2 
into LQ ( o, 2TI] 

2 
as follows; for f, g c Lq ( o, 2 Til define 

2TT 
(f, g) = S f.· g. It is readily verified that ( , ) satisfies 

0 
the properties of an inner product. Moreover, since 

21T 
(f ,f) = s f· f = 

0 
a Hilbert Space. 

2TI f I f\ 2 = llf II~ , L~ [ 0,2TT] is actually 
0 

It should be remarked at this point that the important 
inequality given in Lemma 1 is valid in much more general 
circumstances. In particular the inequality is true for 
a class of modules over the general (real) Cayley-Dickson 
Algebras (Penico, 1968). 

As in the case of linear spaces over the Real or 
Complex field the structure of inner product and in particular 
Hilbert spaces yields a much richer theory. 



Theorem 2. (Parallelogram Law). 

Let L be an inner product space over Q. 

then llx+yll 2 + lfx-yll 2 = 2 llx \12 + 2 

Proof. Direct Computation. 
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The question that now arises is; given a Banach space 
over Q, when is it a Hilbert ~pace? The answer to the 
question was given by Jordan & Von Neumann for the case 
of complex Banach spaces in 1937. The result is given in 
the following Theorem. 

Theorem 3. (Jordan-Von Neumann). 

If B is a complex Banach space whose norm satisfies the 

parallelogram. law then B is a Hilbert Space. 

It happens that in the case of Banach spaces over Q 
that the above theorem remains valid as will now be shown. 

Theorem 4. If B is a Banach space over Q whose norm satisfies 
the parallelogram. law then there exists an inner product 

(,)in B such that (x,x) = llxll 2 (i.e. B is a Hilbert 

Space). 

Proof. From theorem 3 it is known that the function 

(x,y)R = t ( tlx+yll 2 - llx-yll 2 ] defines a real 

inner product on B. 
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3 
Define: Cx,y) = Cx,y)R - ~ (x,yei)Rei for x,y E B. 

i=l 
Now it must be verified that ( , ) satisfies the postulates 

for an inner product. 

3 
(i) (x,y+z) = (x,y+z)R - L Cx, (y+z)ek)Rek 

k=l 
3 3 

(x,y+z) = (x,y)R + (x,z)R -L, (x,yek)Rek -) Cx,.zek~ ek 
k=l k=l 

(x,y+z) = (x,y) + (x,z). In this argument the 

additivity of ( , ) has been used. 

3 2 2 (iii) (x,y) = t L_ llx+yekll - llx-yekl( 
k=O 

but fork f o, (x,yek)R = ~ [ l\x+yekll 2 - llx-yekll 2 1 

and (x,y.ek)R = 1; [II (y-xek)ek\1 2 - \l(y+xek)(-ek) 11 2 ) 

(x,yek)R = -~ l \l(y+xek) II 2 - IICy-xek) \\ 2 ] 

or (x,yek)R = - (y,xek)R. 

3 Now, (x,y) = (x,y)R + ~ (x,yek)Rek 
k=l 

(x,y) = (x,y)R - t ek (x,yek)R 
k=l 

But ( , )R is real and symmetric 

3 
(x,y) = (y,x)R - 2__ - (x,yek)Rek. Using the 

k=l 
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3 
(x,y) = (y,x)R- ~ (y,xek)Rek = (y,x). 

k=l 

(ii) To show that (x,yoc) = (x,y)o<. consider the f'ollowing 

- (x,yel e3)Re3 

(x,ye1 ) = (x,ye1 )R + (x,y)Rel - (x,ye3 )Re2 + (x,ye2 )Re3 

(x,ye1 ) = [ (x, y)R - (x,ye1 )Rel - (x, ye2 )Re2 

By similar computations, it can be shown that 

(x,ye ) = (x,y)e. f'or j = 2,3. 
j J 

Since any quaternion o( can be written as ex. = t oci ei 
i=O 

where the ~i are real and since ( , )R is additive and 

real homogeneous it f'ollows that f'or any 

ot, (x,yGt ) = (x,y)« • 

3 
(iv) (x,x) = (x,x)R - L_ (x,xek)Rek 

k=l 
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But Cx,xek)R ::: t [ Jlx+xekl l 2 - IJx-xek II 2 ) 

II t ( ll+ekl 2 -
2 2 ::: 11-ek l ] · \l x ll 

11 ::: t ( (l+ek) (l+ek) - ( 1-ek) (1-ek) ] fix 11 2 

~ [ (l+ek) (1-ek) ( 1-ek) ( l+ek)] ·llx ll 
2 

" ::: 

(x,xek)R = 0 for k = 1,2,3. 

Hence, (x,x) = Cx,x)R = \\xll 2 and therefore 

Cx,x) ·> 0 x I o. 
This completes the proof of the theorem. 

Theorem 5. If L is an inner product space over Q then 

3 2 
4(x,y) = L ( llx+yek II - where 

i:-:::0 

llx 11 2 = Cx,X). 

Proof. 

For k = o, II x+yek I I 2 - llx-yek tl 2 = C x+y ,x+y) - ( x-y ,x-y) 

" 

II 

" 

" 

= (x,x) +(y,x) + (x,y) + Cy,y) 

- (x,x) + Cy,x) + (x,y):- (Y,Y) 

= 2 (y,x) + 2 (x.,y} 



for k#O, 

II 

3 
Hence, L 

k=O 

3 
L 
k=O 

II 
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[(x+yek,x+yek)-(x-yek,x-yek)] ek 

= ((x,x)+ek(y,x)+(x,y)ek+(y,y))ek 

(-(x,x)+ek(y,x)+(x,y)ek-(y,y))ek 

= 2ek(y,x)ek-2(x,y) 

= -2(x,y) 2ek(y,x)ek 

(llx+yekll 2 - II x-yek112)ek = 2(y,x) + 2(x,y) 

- 2(x,y) - 2e1 (y,x) 

- 2(x,y) - 2e2(y,x)e2 
- 2(x,y) - 2e3(y,x)e3 

2(y,x) - ~(x,y) 

- 2e1 (y,x)e1 - 2e2(y,x)e2 
- 2e3(y,x)e3 

= ~(y,x) - ~(x,y)-2 [-2(y,x)] 

= ~(y,x) 
3 2 2 -Hence, ~(x,y) = L. (Jix+yekll - llx-yekll )ek. This 

k=O 

completes the proo~ o~ the theorem. 
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B. Orthogonality in Hilbert Spaces Over Q. 

1. Orthoganality and the Projection Theorem. 

Definition Let H be a Hilbert space over Q. Two elements 

x,y of H are called orthogonal if (x,y) = o • 

Definition Let s be subset of H. .l any Then S is defined 

to be s.l. = \ Yl (x,y) = 0 .for every x E s} • 
(Sl).l will be written s·u. 

The .following are easy consequences of these definitions. 

.L. .l { 0} S .l is a subspace (a) {o} = H and H = . of H. ' 
(b) sn s.l.c; {o} 

(c) sl 82 
J. .1 c => 82 c sl 

(d) s.l is a closed subspace of H. 

It is a well known result (Simmons, 1963) that .for 

Hilbert spaces over the complex field that if M is any 

closed subspace of H then H = Mm M.L.. This result is true 

.for Hilbert spaces over Q as will now be shown. That this 

result is true seems to have been recognized .first by Jauch 

and his collaborators. 

Definition A subset K of a linear space L over Q is convex 

i:f given any x,y & k then x(l- ~ ) + XA £. K 

:for all real ,numbers 0 ~ A ~ 1. 
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The next two lemmas are known results ~or real and 

complex Hilbert spaces (Simmons, 1963). Their results 

can be carried over directly to the case of Hilbert spaces 

over Q since their proof depends only on the ~act that the 

space is a Real Hilbert Space. 

Lemma 1. A closed convex subset K of a Hilbert space over 

Q contains a unique element of smallest norm. 

Lemma 2. Let M be a closed subspace of Hilbert 

space H over Q. Let x E H - M and d the distance from x to 

M. Then there exists a unique element y' E M such that 

d = II x-y' II • 

The following theorem is a very important result which 

will be needed not only ~or establishing the primary result 

of this section but will also be needed to establish the 

Riesz representation theorem. 

The theorem is a well known result (Simmons) for 

complex Hilbert spaces and the proof ~or Hilbert spaces 

over Q is almost the same. However, it will be given for 

completeness since it is scalar dependent. 

Theorem 1. If M is a proper closed subspace of a Hilbert 

space H over Q, then there exists a non-zero 

element z E H such that z 1 M. 
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Proof. Let x ~ M and d = inf ll x-y\1 (the distance from x 
Y• M 

to M). By Lemma 2 there exists y' e: M such that 

IIX-y 1 11 = d. Define z 1 = x-y 1 • Clearly z''/0 

since d > 0. To show that z 1 .L M let o< £ Q and 

y E M. Then II z 1 -yCKll == II x-(y 1 +yot )\\ ~ d = \l z'll • 

From this it follows that rJ z '-y II 2 - ll z 1 II 2 ~ o. 
Using the definition of It II this can be written as; 

(z 1 -ycx ,z 1 -yoc) - (z 1 ,z 1 ) ~ o, 

or 

- ex < y, z 1 ) - < z 1 , y) oc + '~ 12 11 y 11 2 ~ o. 

Now let 0( = (J( z 1 , y) where (3 is any real number. 

Then, 

Now let a= l(z 1 ,y)l 2 , b = llyll 2 • This last equation 

becomes 

2 -2pa + j9 ab = a(flb-2) ~ 0 

for all p ~ Re. If a ') 0 then this last inequality 

will be false if ~ is taken sufficiently small and 

positive. Hence, a must be zero and consequently 

z I _l Y• 
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The rundamental results or this section can be 

summarized in the rollowing two theorems. The second 

is known as the projection theorem, in case or complex 

Hilbert spaces. Now that the previous theorem has been 

given, it's conclusions may be used to prove th~ next 

two theorems in exactly the same manner as in the case 

of complex Hilbert spaces. For this reason, their 

proors will not be given. 

Theorem 2. Ir M and N are closed linear subspaces or a 

Hilbert space over Q such that M i N, then 

the subspace M + N is closed. 

Theorem 3. If M is closed linear subspace of a Hilbert 
.l space Hover Q, then M@ M =H. 

The signiricance of these results lie first in the 

ract that they insure the existence or projections in any 

Hilbert space over Q. 

The second important result that these Theorems 

yield is related to the lattice structure or the collection 

M or closed subspaces or H. The collection M is ordered 

by the inclusion relation and the lattice operations V , A 

are derined by 

(a) M A N = M t1 N 

(b) M v N = ( M U N ]- • 
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The fact that M forms a lattice is well known (Birkhoff 

and Von-Neumann 1936, Jauch 1963, Varadarajan 1969). The 
last Theorem implies the lattice M is complemented (Birkhoff 
1936). This is a very important result forthe structure of 
Quantum Mechanics (Jauch 1963, Birkhoff-Von-Neumann 1937). 

2. Orthonormal Sets in H. 

Definition Let A be an index set and {xi} i£4 a 

subset of a Hilbert space H. {xi} . will 
~r 1\. 

called an orthonormal set if (xi,xj) = oij. 

Some of the results on orthonormal sets in Hilbert 

spaces over Q to be presented in this section are due to 

Teichmuller (Teichmuller 1938). The first theorem is of 

fundamental importance for the rest of the development. 

be 

Theorem 1. Let be a finite orthonormal set 

in a Hilbert space H (over Q). If x E H, then 

(a) ~ l<x,xi)f 2 ~ llxll 2 (Bessel's inequality) 
i=l 

n 
(b) X - L xi (xi ,x) l. X for each j. 

j 
1=1 

n 
x1 (xi ,x) II 2 Proof. If X r; H, then 0 ~ II X - L or 

i=l 
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n n 
0 ~ (x-) xi(xi,x), x - L xj(xj,x)) 

i=l j=l 

0 ~ II x II 2 - t.1 (xi,x) 12 - } n \ (xi,x) \ 2 + ')n (~i;xjXx:j·,x) 
i=l i=l i=l 

Using the orthonormality of the x. it follows that 
~ 

2 n 2 n 2 
0 ~ llxll ._ 2 L \<x1 ,x)l + ') \<x1 ,x)\ , 

i=l i=l 

or 2 n 2 
O$llxll -L,\<x1 ,x)l and (a) follows. 

i=l 

n 
To show (b) consider (x- ~ x1 (xi,x),x.). 

i=l J 

n 
= (x,x.) - ) (xi ,x) (x. ,x.) = o. 

J i=l ~ J 

Theorem 2. If {xi}. is an orthonormal set in a Hilbert 
1Eh. 

Proo.f. 

Space H, and if x E H, then the set Si 

= { x1) (x,xi)2 -1 o} is either empty or countable. 

For each positive integer n, let 
2 

sn = {xil l<x,xi)l 2 > ll~ll • Then, sn can contain 
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at most n-1 elements for otherwise Besse~s 

inequality would be contradicted. The conclusion 

follows from the fact that s = u sn. 
n=l 

Using this result, Bessel's inequality and the other 

result of Theorem 1 can be generalized to arbitrary 

orthonormal sets in H. The proofs given for complex 

spaces may be carried over directly and will not be given. 

Definition An orthonormal set {xi} i~A in H is complete 

if it is maximal in the partially ordered set of 

all orthonormal sets for H. This class is 

ordered by inclusion. 

The following Theorem was proven for Hilbert Spaces 

over Q by Teichmuller. 

Theorem 3. Every non-zero Hilbert space over Q contains a 

complete orthonormal set. 

Complete orthonormal sets in Hilbert Spaces over Q 
possess the same properties of such sets in complex Hilbert 

spaces. In particular the following theorem is valid. 

Theorem 4. Let H be a Hilbert space over Q, and let 

{x } be an orthonormal set in H. The i ir.A 
following conditions are equivalent. 
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(a) { x } is complete. 
i i£A 

(c) i~ x E H, then x = L: xi(xi,x) 

(d) 2 -' '2 i~ x E H, then II xll = L (xi ,x) (Parseval's 

Relation) 

2 
An Orthonormal set ~or LQ(o,2TTl. 

2 
Let LQ [ 0, 2TT] denote the Hilbert space o~ Q-valued 

2TT 2 
~unctions on [ 0,2Tf] ~or which l 1~1 <co • Recall that 

0 

the inner product ~or this space is given by 

2TT 
<~,g) = s ~g 2TI ] 

dx and the norm is 11~1\ = [ f 1~1 2 t . 
0 0 

To give an example o~ an orthonormal set '~or 

L~ [ o, 2TT) let I be any quaternion ~or which I 2 == -1, 

and define exp(Ix) = cos x + I sin x (x £ Re). Then the 

set \ exp( Inx)} n = O,-tl,!;2,.... has the :following 

properties: 

2TT 
~ exp(-Imx)exp(Inx) = [

o nlm 

2TT n = m 

0 
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fexp( Inx) 1 n ,. Therefore, the set of functions _ o,~l,t2, ••• 
~2TT 

2 
is an orthonormal set for LQ l o, 2TI]. 

C. H* and the Riesz-Representation Theorem. 

If H is a Hilbert Space over Q then H* denotes the 

class of continuous linear functional on H. If y E H 

then fy(x) = (y,x) is clearly a linear functional on H. 

Moreover, it follows from the Cauchy-Bunyakowski-Schwartz 

inequality that f is a bounded linear ~ctional and y 
consequently fy E H* for each y E H. 

Since I fy(x) I = I (y,x)l ' lly II II x II it folows that 

ll f y l I ~ II y II • If y = 0 then II f y II = 0 = II y II • If 

y -1 o, ll fy ll = sup { I fy(x) ll II x II = 1 and therefore 

llfyll~lfy<Y·IIyll-l) = I<Y,Y·IIYll-1 )1 = llyl\. 

It follows then that the mapping J(y) = f is a norm pre-
y 

serving map of H into H*. In the next Theorem it will be 

shown that mapping J is actually a mapping of H onto H*. 

This very important result is known as the Riesz-Representation 

Theorem in the case of complex Hilbert Spaces. 

Theorem (Riesz). Let H be a Hilbert space over Q and 

f E H*. There then exists a unique y E H such that 

f(x) = (y,x) for all x E H. 
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Proo~. It is clear ~rom the properties of the inner 

product that if y exists it is unique. If f is 

identically zero on H then y may be chosen to be 

0 (the null vector). 

Now assume ~ I 0. Then the null space o~ 

~, N(~) = { x \ f(x) = 0} is a closed subspace o~ H. 

Theorem 1.1 can be employed to yield the existence of 

a vector y0 £ H such that y0 l N(~). It will now be shown 

that Yo~ will meet the requirements o~ the Theorem i~ ~ is 

properly chosen. Clearly, if y = Yo« then for any 

x £ N(f), f(x) = 0 and (y,x) = 0. Hence, y satisfies the 

condition ~or x E N(f). To determine the proper scalar« , 

consider the case x = y. Then f(y0)= (yOO(,y0 ) = «X.\ly0 \l2 

so CX::: f(y0 ) lly011- 2 • From the projection Theorem it is 

known that each x E H can be expressed as x = x• + y0~ 

for x' E N(f) and some P E Q. Now, f(x) = f(x'+y0 p) 

= ~(x•) + f(y0 ),.,. But sincex' EN(~); f(x') = (y,x') and 

by the choice o~ ~ , f(y0 ) = (y,y0 ) it ~ollows that 

f(x) = (y,x') + (y,y0 )" = (y ,x'+y0 ~ ). This is true 

~or any x E H and the theorem is proven. 

This Theorem will have a great deal of importance in 

the treatment o~ operators on H. In particular, it is one of 

the most important o~ the structure theorems ~or Hilbert 

Spaces over Q. 
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Every Hilbert Space is a reflexive Banach 
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VI. Operators On Hilbert Spaces Over Q 

A. Existence of Adjoints 

Let T be a bounded linear transformation on H. Let 

y e Hand define the functional f(x) = (y,Tx). f(x) is 

clearly a bounded linear functional on H. Using the Riesz

Representation Theorem, it follows that there exists a unique 

z E H such that f(x) = (z,x) for every x £ H. The vector 

z clearly depends on the y chosen initially. To emphasize 
* this, z will be written as z = Ty. Where T* is a mapping 

defined on H. The mapping T* is unique by virtue of the 

properties of the inner product ( , ). 

It will now be shown that the mapping T* is actually 

a bounded linear transformation on H. Let x,y,z E H 

then ( T * ( y+ z) , x) = ( y+ z, Tx) = ( y, Tx) + ( z , Tx) • 

Hence, (T*(y+z),x) = (T*y,x) + (T*z,x) = (T*y+T*z,x) 

and therefore T*(y+z) = T*(x) + T*(z). If 0( E Q, y E H 

then (T*(yoc ),x) = (ycx ,Tx) = Ci(T*y,x) = ((T*y)cx ,x). 

Since this last statement is true for every x,y E H and 

every DtEQ it follows that T*(y«) = T*(y)~. Therefore 

T* is a linear transformation. Now to show T* is bounded. 

Let y E H, then 

IIT*y tl 2= (T*y,T*y) = (TT*y,y)' \1 T(T*y) \\·\\y)\. 



Since T is bounded; II T*y II 2 f II T II H T*y II II y II and 

consequently II T*y II~ II T II II y II for all y E H. Therefore, 

T* is bounded. 

Just as in the case of complex Hilbert Spaces 

(Simmons 1963) the following theorem is true and the 

proof carries over directly from the complex case. 

Theorem 1. The adjoint operation T ~ T* has the following 

properties: 

(a) (T +T )* * * = Tl + T2 
1 2 

(b) (T •T )* = T * • T * 
1 2 2 1 

(c) T** = T 

(d) II T* II = II T ll 

(e) II T *T II = II T 11 2 

It should be noted that one important conclusion 

usually added to the above theorem for complex spaces is 

not stated. It is the statement that for any Scalar 
' 

and bounded linear operator T, (~·T)* = ~·T*. 

The reason for this is that the class of bounded linear 

operators on a Hilbert space over Q is not (in general) a 

linear space over Q. That is, ~T is not a linear operator 

under any suitable definition. This is due to the fact 

that Q is a non-commutative ring. The lack of this powerful 

result will cause many difficulties in the spectral theory 
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of linear operators in Hilbert spaces over Q. 

It should be remarked however that in finite dimensional 

(right) spaces over Q the class of linear transformation is 

a left space over Q. The reason for this is that every 

linear transformation on such a space is representable 

by a matrix with quaternion entries. Therefore if T 

is a linear operator, ~'Q, ~·T may be identified with 

It should be noted at this point that certain classes 
2 

of operators on LQ [ o, 2TT] can be considered as linear 

spaces over Q. For example, consider the transformation 

K •u = 2TT 2 ] f k(x,t)u(t)dt where u E LQ (0,2Tf and k(x,t) 

0 

is a Lebesque integrable function over the rectangle 

[0,2rT] x [ 0,2TI] and k(x,t) has values in Q. K will 

be called an integral operator on L~ ( 0,2Til. If K1 ,K2 

are two such operators then (K1+K2 )u will be defined as 

K1u + K u. Scalar multiplication will be defined by; 
2 21T . 

( cc· K)u = )
0 

ex· k(x, t )u( t )dt for any « r. Q. Under these 

operations the class of integral operators on L~ form a 

left space over Q. 

Example 1. Formal calculation of the adjoint for an 

integral operator on L~ ( 0,211]. Let Ku = s2'Ilk<x,t)u(t)dt. 

0 
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2Tl (2IT 
(ku,v) = S ( ) k(x,t)u(t)dt J v(x)dx 

0 0 

2TT IIT 
= f u(t) k(x,t)dt u(x)dx 

0 0 

2Tr 2Tr 

··- f u(x) [ f k(t,x) v(t)dt] dx 

0 0 

2TT 
= (u,k*v) • Thus, K*v -- f K(t,x) v(t)dt. 

0 

Example 2. Formal calculation of the adjoint for an un-
2 bounded operator. Let LA [a, b) be the subspace of LQla,b] 

consisting of all functions that are absolutely continuous 

and have the addition property that f(a) = f(b) = 0 

for every f E LA. Let Dt be the operator defined by 

. d 
Dt f(t) = ~ f(tJ. 

dt 

Now let ot E Q and consider ( ( cx.Dt )f, g). 

f cxslt: g dt = J dt 
a 

b r ~; Ci g dt. But 
a 



~('f.i g] = ~t (fii).g + (f·cx) * so 

( L f) oc · g = L [ f «] g - f oc ~ • Hence, 
dt dt dt 

b 

= I. ~t (f i . g) -

a 

b f f ii 
a 

£g 
dt • 
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The 

b 

first integral vanishes so ((cx·Dt)f,g) = I f(-«~t g)dt. 
a 

Hence, (( «·Dt)f,g)=(f,(- ~·Dt)g). That is (o<·Dt)*=- &·Dt. 

Now if oc + (;' == t(oc) = o, it follows that ( CX·Dt)*=( « Dt). 

It should be noted that the operator ~·Dt is unbounded on 

LA(a, b] • 

Theorem 2. Let H be an inner product over Q and let 

T be a linear transformation on H. 

Then t ek [ (T(x+yek) ,x+yek)-(T(x-yek) ,x-yek)] 

k=O 
= 8(Ty,x) - 4(y,Tx) 

Proof. For k = 0,1,2,3 

(T(x+yek) ,x+yek)= ( Tx,x)+( Tx,y) ek+ek(Ty,x)+ek(T y,y) ek 
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Hence, 

3 
= 2 l ek(Tx,y)ek + 8(Ty,x) 

k==O 

= 2(-2 (Tx,y)) + 8(Ty,x) 

= 8(Ty,x) lt(Tx,y) 

= 8(Ty,x) lt (y,Tx) 

Corollary. If H is an inner product space over Q and T is 

an operator such that (Ty,x) = (y,Tx) for every x,y E H 

3 
then (Ty,x) = t 2__ ek [ (T(x+yek),x+yek) - (T(x-yek),x-yek)] • 

k=O 

Corollary. If H is an inner product space over Q and T 

is an operator on H such that (Ty,y) = 0 for all y E H 

then T = o. 

Proof. From Theorem 2 it follows that 8(Ty,x) - lt(y,Tx) = 0 

and 8(Tx,y) - lt(x,Ty) = 0 for every x,y E H. But: 



then 2(Ty,x) = (y,Tx) and (y,Tx) = t(Ty,x) which implies 

2(Tx,y) = tCTx,y). Thus T = o. 

It is worth noting that this corollary is not true 

in the case of real inner product spaces. The technique 

used in the proof of this corollary is due to Penico. 

B. Bilinear and Hermitian Bilinear Forms On Linear Spaces 

Over Q. 

In this section certain results about Bilinear (or 

sesquilinear) forms on linear spaces over Q will be 

developed. These results will be used for certain aspects 

of spectral theory. 

Definition 

Definition 

Let L be a linear space over Q. A functional 

~ defined on L X L to Q will be called bilinear 

(or sesquilinear) if 

(a) <t>Cx+y,z) = <t><x,z) + ct>Cy,z) 

<t><x,y+z) = cf>(x,y) + cj>(x,z) 

(b) '(x oc ,y) = cc t\>(x,y) 

~(x,y « ) = cj>(x,y)ct 

If 4> is 
,. 

a bilinear functional it>Cx) will be 
A 

defined as +<x) = +<x,x). A bilinear functional 

will be called Hermitian if +<x,y) = +Cy,x). 

It follows that if +<x,y) is Hermitian, then 

+<x,x) = +<x,x) and therefore i is real. 
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Theorem 1. If ~ is a Hermitian bilinear functional on L 

"' ~ 
Proof. ~(x+yek) - ~(x-yek) = f(x+yek,x+yek) - '(x-yek,x-yek) 

but ~(x+yek,x+yek)=~(x,x)+ek ~(y,x)+~(x,y)ek+ek ;cy,y)ek 

and ~(x-yek,x-yek)=~(x,x)-ek ~(y,x)-~(x,y)ek+ek +<y,y)ek 

Hence, $<x+yek)-;(x-yek)=2ek +<y,x)+2t(x,y)ek. 
A ;!\ 

For k=O, ~(x+yek) - ~(x-yek) = 24>(y,x) +2+(x,y) 
,.. A 

and for kiO, ek(~(x+yek)-~(x-yek)] =24>Cy,x)+2ek+<x,y). 

3 A .A 

It follows that, L ek( ~(x+yek) -~(x-yek)] =2<J>(y,x)+2~(x,y) 
k=O 

+2~(y,x)+2e1~<x,y)e1 
+2~(y,x)+2e2~<x,y)e2 
+2<J>(y,x)+2e3~(x,y)e3 • 

eJ$<x+yek)-$(x-yek)] =8~(y,x)+2[-2 if)(x,y)] 

Taking the 

conjugate of both sides yields, 

+<x,y) 

Corollary. If two Hermitian Bilinear ~ctionals ~and~ 
"" "' have the property that 4> = "'' then + ="'I • 
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A bilinear runctional is bounded iff there 

exists a real number ~> 0 such that 

14>Cx:,y) I !: I)( \IX ll II y \\ • If <\> is a bounded 
linear functional, the norm of ~ is defined 
by 114> II = sup \ ~ ( x' Y) l . 

xf.O llx\111 yll 
y/.0 

The induced quadratic form is said to be bounded if 
there exists a real number ~ > 0 such that 

~(x) ~ or-llx 11 2 for all x. 
,.. 

If ~ is bounded, ,.. 
II~ 1\ = sup I cj>(x) \ 
· x~O llx 11 

If ~ is a bilinear functional then 

I~Cx1 ,y1 )- 4><x2 ,y2 )1 = I~Cx1-x2 ,y1-y2 )1. If~ is bounded, 
\~Cx1 ,y1 ) - ~(x2 ,y2 )l~ cc llx1 -x21l ·II y1 -y2(\ and clearly is 

continuous. Using essentially the same technique as for the 
case of linear functionals the converse of this last statement 
can also be shown to be true. Hence, the following theorem 
can be given. 

Theorem 2. A bilinear functional ~ is continuous iff it is 
A bounded. Also, the associated quadratic form ~ is 

continuous iff it is bounded. 

,.. 
The boundedness of ~ and ~ are related through the 

following theorem. 



97 

Theorem 3. 
,.. 

The quadratic ~orm ~ associated with the 

bilinear ~unctional ~ is bounded i~~ ~ is 
• ;!.\ 

bounded. Moreover, ~~ ~'~ are bounded the 

~ollowing relation holds. II~ II ~ II~ II ~ 4 II$ II • 

Proo~. I~ ~ is bounded there exists a real number o< > 0 

such that I ~(x,y)l ~«II x II II yll and consequently 
,.. 2 ,.. 

I ~(x) I ~ 0(· II x II ~or all x. Thus cJ> is bounded. 

1 I~ 't' is bounded, then 

A 3 2 2 
l~<x,y)( ~ J: li<J>H L ( llx+yekll + llx-yekll ) 

k=O 
2 2 2 2 

but, II x+yekll + II x-yekll = 2 II xll + 2 II yll for all x,y. 

There~ore, I ~(x,y)J ~ t II~ II 8(1txll2 +llyll2 ) 

= 2 II~ II Olxll2+ Jlyll2 ) ~ 114>11 ~ 4 11~11. 

I~ ~ is a Hermitian bilinear ~ctional the relation 
,.. 

between lief> II and U<P If is even stronger. In particular, 

the following is true. 

Theorem 4. I~ ~ is a bounded Hermitian bilinear functional, 
A 

then II ~ ll = 114 II • 

Proof. In the preceding theorem, it has been shown that 
A ] ~ X~y r X-y f1 + r1 ~ 11~ II • For any !,y, t[~<x,y) = '( )-'P( 2 ) • 

Hence, lt[~<x,y)]l~ ~~ (llx+yll2 + llx-yll2 ), or 

I t[+<x,y)] I~ t II~ II (1Jxll2 + llyll2 ) frowm which 

it follows that t(+<x,y)] ~ o • Now let 
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x,y be any two vectors and oc a quaternion with 

led: 1 and l~(x,y)l 

cl><x,ycx ) = l~(x,y)l 

= '(x,y)« • Then it rollows that 
,.. 

= I t [ cl> ( x, Y« 11 I ~ II ~ II • This 

inequality establishes the theorem. 

The preceding theorms on bilinear £unctionals will 

now be applied to yield an important theorem pertaining 

to bounded linear operators on a Hilbert space over Q. 

Theorem 5. Let H be a Hilbert space over Q and A a bounded 

linear operator on H. Ir + is defined by 

+<x,y) = (Ax,y) then ' is a bounded bilinear 

functional and II+ \1 :::: IIA II • If, conversely, 

~ is a bounded bilinear functional, then there 

exists a unique bounded linear operator A such 

that ~(x,y) = (A·x,y). 

Proof. If A is a bounded linear operator on H, then 

~(x,y) = (Ax,y) is a bilinear functional on H. 

l~<x,y)l = I (Ax,y) I '- HAII·II xl\ \\ yll for all 

x,y E H and consequently II' It~ llA\\ • But 

I lAx II 2 = (Ax,Ax) and (Ax,Ax) = '(x,Ax.) ' 

\1 cp II· II x II ·II Ax II , from which, I I Ax II ~ II' ll · II x II 

and· hence II A l\ ~ II <f,ll • These two inequalities 

establish that tl All= II~ II • 
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Now suppose that ~ is a bounded bilinear functional 

on H. The functional rx(y) = ~(x,y) is a bounded linear 

functional of H. By the Riesz-Representation theorem 

there exists a unique z E H for which fx(y) = (z,y) 

for all y E H. Since z clearly depends on x, z will be 

written as z = Ax. 

It will now be shown that the transformation defined 

by z = Ax is actually a bounded linear transformation 

on H. 

A is additive: . (A(x1+x2 ) ,y) = ct><x1+x2,y) = +<x1 ,y) + "'<x2,y) 

= (Axl,y) + (Ax2,y) 

= (Axl+Ax2,y) 

and consequently, A(xl+x2 ) = Ax1+Ax2 

A is homogeneous: (A(x e<. ) ,y) = ct><x or. ,y) = 'i~(x,y) 

= ; (Ax,y) = ( (Ax)ot ,y) 

-:=) A(x 0() = (Ax)oc • 

A is bounded: llAx l l 2 = (Ax,Ax) = +<x,Ax) ~ II~ II· II X II ·I lAx II 

from which it follows that llAxll ~ ll~H·Ilxll for all x. 

Therefore, A is bounded. 

This last result establishes the theorem. 

:193941 
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VII. Spectral Representations 

A. Self-adjoint And Normal Operators. 

In this section elementary properties of self-adjoint 

and normal operators will be investigated. 

Definition 

Definition 

Let A be a bounded linear transformation 

(operator) on H. A will be called 

(a) Self adjoint if A = A* 

(b) Normal if A A* = A*A. 

If A is any linear operator on H and x E H 

(x/0) for which Ax = XA for some ~ ~ Q 

then x is an eigenvector of A and }\ the 

eigenvalue of A corresponding to x. 

The case of self-adjoint operators will first be 

considered. 

Theorem 1. The eigenvalues of a self-adjoint operator are 

real. 

Proof. Suppose Ax = X!A- • Then (Ax,x) = (XJL- ,x) and 

(Ax,x) = (x,Ax) = (x,x_p-). Consequently, 

~(x,x) = (x,x)~ and since (x,x) is real, 

(p-JA)(x,x) = 0 from which it follows that r<=p-. 
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Theorem 2. The eigenvectors corresponding to distinct 

eigenvalues are orthogonal. 

Proo~. Suppose Ax = XA and Ay = YJA With A I }A- • 

Hence, X(x,y) = (x,y)~ since >.., JL are real. 

But then ().. - r-) (x,y) = 0 and since >-=Fr-, (x,y) = o. 

The previous twotheorems are well know results ~or the 

case o~ complex linear spaces and these results are also 

known ~or linear spaces over Q. {Teichmuller, 1938; Jauch, 1963). 

The results analogous to the above theorems will now 

be considered ~or the case of normal operators. It will 

be shown that there is a major di~~erence in the context 

of the theorems for normal operators and this is due to 

the lack o~ commutativity o~ the quaternions. 

First it should be noted that if Ax == XJA where A 

is a normal opera tor, then A(x C( ) = (x f4 )oC = (x o< ) ( 0(-l>. o<. ) • 

That is, the scalar multiple of an eigenvector with 

eigenvalue ~ of a normal operator is an eigenvector o~ A 

with eigenvalue oel,rc- oc. • Here, norrnali ty is not required • 

In view o~ this result, it is clear that given an 

"eigen pair" o~ a normal operator A, uncountably many 

"eigenpairs" o~ A can be constructed. This is not a good 
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situation but ~ortunately the eigenpairs can be separated 

into equivalence classes. 

Let ~(A) be the totality of eigenvalues of A. 

Given any two elements >.1 , >.2 E 1\. (A), then >.1 ,._ ~2 
iff for some f'- r. Q. It can be shown 

easily that -is an equivalence on A(A). If ~(A) 

denotes the class of all eigenvectors of A then any two 

elements x1 , x 2 f ~(A) are said to be equivalent if 

x1 = x 2·rx for some « £ Q. Clearly, equivalent eigenvectors 

correspond to equivalent eigenvalues. 

In order to use these concepts the following lemma 

will be needed. 

Lenuna 1. If Ax = x~ then A*x = x ~ when A is normal. 

Proof. 

2 - 2 ) ( - -) llAx-x,1-4U - IIA*X-XJA II =(Ax-XJ-C ,Ax-XJJ- - A*X-XfJ- ,A*x-xp. 

- (A *x, A *x) + (A *x, X f' ) + (X p. , A *x) 

- IJ-C-1 2 (x,x). 

Using the normality of A, this last expression can be written 

as: 



+ (x,Ax)JA + p. (Ax,:x) 
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2 
- ~<x,Ax) - II Ax II 

or II Ax-x.l" II 2 - llA*x-x J4 II 2 = [ (x,Ax), ,; ] + [}", (Ax,x)] , 

where [ , ] denotes the commutator bracket. Clearly 

now, if Ax ~ x~ the commutators on the right side of this 

last equation vanish identically. The theorem is then 

established. 

Recall that for the case of complex Hilbert spaces 

this lemma is a trivial corollary of the theorem on the 

properties of adjoints. In particular, it is a result of 

the fact that (~·Ax,y) = (x, ~ A*y) for any operator A. 

It has already been noted in a previous section why this 

result is not true for Hilbert Spaces over Q. 

The main result of this section can now be established. 

Theorem 3. If x1 and x2 are eigenvectors of a normal 

operator A corresponding to inequivalent eigenvalues 

then (x1 ,:x2 ) = O. 

Proof. (Ax1 ,x2) = ~l (x1 ,x2) = (x1 ,A*x2 ) = (xl' I 2 x 2 ). 

Hence, X1 <x1 ,x2 ) = (x1 ,x2 )X2 or equi~alently 

(x ,x )A ::: ~ (x ,x ). Now, if (x2,x1 ) # 0 then 
2 1 1 2 2 1 

A 1 = (x2 ,x1 ) -1 A 2 (x2 ,x1 ) which contradicts the hYPothesis 
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that ~l and A2 are inequivalent. Hence, (x1 ,x2 ) = o. 

That is, the inequivalent eigenvectos of a normal 

operator are orthogonal. 

B. The Spectral Theorems in Finite Dimensional Spaces. 

It is well known that a linear transformation 

(Jacobson, 1953) acting on a finite dimensional vector space 

over a division ring A can be represented by a matrix 

with entries from A . Thus, the eigenvalue problem 

Tx = x )A is equivalent to the matrix eigenvalue problem 

n L T.ij xj -- Xi!J- i ~ 1,2, ••• n. J. L. Brenner (Brenner, 1951) 

jc:l 

has shown, using a result of Eilenberg and Niven (Eilenberg,s., 

Niven, I., 19~~) that any nonsingular matrix (Aij) (with 

quaternion entries) has at least one eigenvalue. This is 

exactly what is needed to generalize the Theorems on spectral 

resolution of certain complex matrices to the case under 

consideration. 

The first case to be considered is that of a self-adjoint 

operator on a finite dimensional Hilbert space over Q. 

Theorem 1. Let H be a Hilbert space over Q of dimensionN. 

Let A be a self-adjoint operator on H. Then 

there exists a basis for H consisting of 

eigenvectors of A. 
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Proof. From the result of Brenner it follows that there 

exists at least one x 1 £ H and >. 1 e: Q for which 

Ax1 = x 1Al. If dim(H) = 1, the basis may be 

taken to be { x 1 It x 11l -l} • For the case 

dim( H) ) 1 induction will be used. 

The conclusion of the Theorem is assumed to be true 

for all spaces L of dim(L) < dim(H). Let M1 = lx11 
.l 

and then H = M1 €) M1 (by the projection Theorem). 

Clearly dim(M1 ) < dim(H). Since M1 is an invariant sub

space of A, M1 will be an invariant subspace of A* = A. 

Consider now the restriction A\M~ of A to M~. With 

A* = A and A*IM~ = A\M! it follows from the hypothesis 
1 1 n 

that M1 has a basis { xk} consisting of eigenvectors 
~1 .l 

of AIM~ • But AI~ is merely the restriction of A to M1 
1 1 

and consequently each eigenvector of A\M! is also an 

f xk} n J.·ls eigenvector of A. Therefore l a basis for H. 
~1 

This Theorem can be used to obtain a "spectral" 

representation for A. 
n 

If y E H, then y can be written as y = L__ xk(xk,y) 
k=l 

where the xk are eigenvectors of A. 



106 

n n 
Ay .. ( ~ xk(xk,y)) = L (Axk) (xk,y) = 

k=l 

n 
Since the )..k are real, Ay = L xk(x ,y) ~k. k=l k 

It is 

important to note that the xk need not be distinct. 

Define 

are valid. 

Proof. 

Then the following lemmas 

) ) x.(x.,x.)(xi,y) 
)..J.~Ak >. ::).. J J l. 

i k 

= 6 .. (x1. ,y) 
Jl. 

Hence, Pk2y= L x.(x.,y) = pky • 
\ :-.::A J J 
"'j k 

Lemma 2. 



Proof. 
~ 
L_ p y = 
k=l k. 

Proof. 

n n 
L_Pl?=L 
k=l k=l 

n 
= ~ xk(xk,y) = I·y. 

k=l 

x.(x.,y) 
~ ~ 

= L (x. ,x. Hx. ,y) 
>.=A. ~ ~ ~ 
i j 
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S .(x.,y) = 0 unless k= j. 
i:L· ~ 

Lemma 4. Pk is Self-adjoint for each k. 

Proof. Let x,y be any two vectors in H. Then 
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The operators Pk satisfy the usual requirement of 

projection operators on a complex linear space (Berberian, 

S. K., 1961) and will be refered to as orthogonal pro

jections. 

As noted before, for each y e. H, Ay can be written 

as Ay ~ ~ xk(xk,y) Ak· If one assumes that A has m 
k=l 

distinct eigenvalues Ay can be written as 

m m 
Ay .,., L: ( h xi,y)) ~j = L. (P.x) A. • If 

j:c:l i Aj j=l J J 

"j • P j (x) is defined as P j (x) · A j then Ay can be ex
m 

pressed as Ay = ) (Aj· Pj)(y). Since this is true for 
j=l 

every y E H then it makes sense to write A = 

is called the spectral representation of A. 

This 
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The main results o~ this section can now be summed 

up in the ~allowing Theorem. 

Theorem 2. Let A be a sel~-adjoint operator on a ~inite 

dimensional Hilbert space H. Then there exists distinct 

eigenvalues A , A , ••• ~ 
1 2 m 

P1 ,P2 , ••• ,Pm such that A= 

and orthogonal 
m > Aj • P j. 

j=l 

projections 

From the spectral representation of an operator it 

is easy to evaluate operations such as A2y. It is easy 
2 m 2 

to veri~y that A = ) ~j • P.. In general the following 
j::-=1 J 

is valid ~or Hermitian operators A. 

Corollary. Let p(t) be a polynomial in the variable t 

o~ degree n with real coef~icients. If p(A) denotes 
m 

the associated polynomial operator then p(A) = ~ p(~) Pj. 
J=l 

The cas·e o~ normal operators will now be considered. 

Some of the results of the previous section will carry 

over, but not all. It is the case of normal operators 

which brings out the difficulties arising from the ~act 

that the quaternions are not commutative. 
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Theorem 3. Let A be a normal operator on a Hilbert 

Space H over Q with dimension n. Then, there exists 

a basis for H consisting of eigenvectors of A. 

Proof. Brenner's result again yields the existence of 

at least one eigenpair {~,x1} for A. If 

dim( H) = 1, \ x1 · II x1 Jl -l } will suffice as a 

basis for H. If dim(H) > 1 an induction argument 

can be given. 

It will be assumed that the conclusion is true for 

all spaces L with dim(L) < d(H). Let t.\1 ,x1 } be an 

eigenpair of A. Define M1 = [ x1] • Then by the pro-
. .1. 

jection theorem, H = M1 ~ M1 • M1 is an invariant sub-
.L 

space of A and consequently M1 is an invariant subspace 

of A*. It has been shown that the eigenvectors of A 
J. 

are also eigenvectors of A* and it follows that M1 is an 

invariant subspace of (A*)* = A. The proof can now be 

completed by the corresponding argument for self-adjoint 

operators. 

It should be clear that the basis consists of 

inequivalent eigenvectors of A. 
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In view of this result, any y E H can be written 

n 
Hence, Ay = A( L xj (x. ,y)) or 

j==l J 

Contrary to 

the self-adjoint case, the Aj are not necessarily all 

real and consequently x. A.(x.,y) can't be written as 
J J J 

xj(xj,y)·Aj. This fact is critical. It means that 

the nature of the operator can't (in general) be explained 

by means of certain sums of projection operators. 

Therefore, the most that can be said (apparently) in this 

case is given in the following Theorem. 

Theorem 4. Let H be a finite dimensional Hilbert space 

of dimension over Q. Let A be a normal operator on H. 

Then there exists a collection of inequivalent orthogonal 

eigenvectors x 1 ,x2 , ••• ,xn and eigenvalues 

n 
of A such that Ay - L, xk Ak(~,y) for every y ~ H. 

k=l 

Corollary. If J is a positive integer then 

In general if p(t) is a polynomial 

of degree J with real coefficients then 
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c. Compact Self-adjoint Operators and Their Spectral 

Representation. 

In this section a spectral representation for a 

certain type of self-adjoint operator will be given. 

In particular compact operators will be studied. The 

first thing that must be considered is the existence of 

eigenvalues. 

In the section on Self-adjoint Bilinear forms the 

following theorem was proven. 

Theorem 1. If A is a bounded self-adjoint operator on 

Hand ~Cx,y) = (Ax,y), then~ is a bounded bilinear 

functional on H and 1\~ 1\ = ll A II • It was also proven 

that; 

Theorem 2. If ~ is a bounded self-adjoint, bilinear 

functional on H then 1\ ~II = 
,. A. 

H~\\ where ~(x) = ~(x,x). 

With the use of these two theorems the following 

important theorem can be proven. · 
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Theorem 3. If A is a self-adjoint operator on H then 

II A II = sup I CAx,x) I. 
llXII==-1 

Proof. Let <\>Cx,y) = (Ax,y) for every x,y £ H. Then 

by the first theorem 

theorem II+ ll = II ~ II 
Hence , II A ll = sup l 

II <I> II = II A II • By the second 

and II; II = sup I (Ax,x) I. 
II xll=1 

(Ax,x) 1. 
II xll=l 

Using this theorem, it will now be possible to show 

that eigenvalues exist for certain self-adjoint operators. 

Definition Let X,Y be normed linear spaces over F 

(where F = Re, K, Q). Suppose T is a linear 

operator with dom(T) = X and Range(T) = Y. 

Then T is compact if for each bounded sequence 

{ xn} from x, { Txn} contains a convergent 

subsequence in Y. This is equivalent to say

ing T takes bounded sets into compact sets. 
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The following two lemmas are well known results for 

compact operators on Hilbert spaces over Re and K. 

Their proofs can be easily carried over to the case of 

Q-Hilbert spaces and will not be given. (Berberian, s., 
1961). 

Lemma l. If S and T are compact then S + T is compact. 

Lemma 2. Any operator with finite dimensional range is 

compact. 

Definition 

b 

Let Ku = f K(x,t) u(t)dt be a bounded integral 

operator 
a 2 

on LQ [ a, b ] • If K( x, t) 

n 
L p (x) qk(t), with the pk and q being 
~lk k 

Q-valued functions such that 

b 

and r 1 pk(x)l 2dx < oo 
a ' 

then K(x,t) is called a separable kernel. In 

this case K will also be called a separable 

integral operator. 
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Example. Any separable kernel generates a compact 
2 

operator on L [a, b] • 

Proof. 

Ku = j 
a 

n 

Q 

b 

Ku ·- L pk(x)ak where ak == .J qk(t)u(t)dt. Hen<>e, the 
a k=l 

range of K is finite dimensional and therefore K is compact. 

Theorem 3. Let A be compact, self-adjoint and A ! 0. 

Then either II All or -1\ A\l is an eigenvalue of A and 

there exists an x for which I (Ax,x)l = llxl\. 

Proof. Since IIAII =sup I (Ax,x)l there exists a 
llxll=l 

sequence of vectors { xn} with ltxnll = 1 such 

that lim <.Axn,xn) = A with I~ I ::: II A II • But, 
n-+oo 

II Axn-XnA II 2 = (~-xn" ,Axn-~A ) = II~ H 2 

- 2(Axn,xn)A + A2• 

From this it follows that; 
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consequently, lim 1\ ~-xn>-11 2 ' 
.. n-+co 

lim ( IIA II 2 
, n-+110 

- 2(~,xn),\ + A 2 ] -= IIA II 2 - \. 2 
" , whence 

lim II ~-xn~ll 2 = o, from which lim (~-~A ) = o. 
n-co n~~ 

Since A is compact and ( xn} is a bounded sequence, 

{ Axn} must contain a convergent subsequence ( '} , 

where { X.nk} is the appropriate subsequence of { ~} • 

Moreover, with the fact that A! o, it is clear that 

{ Xnk} is convergent. Let x = lim xn then \\ x ll = 1 
k-.CIO k 

and lim AXnk = lim x.n ·A = (lim x.n ) ).. == x >. • 
k ....... co k-+oo k k-oo k 

But A is bounded and thus continuous so 

lim Axnk = A( lim x.n ) = Ax. --? Ax = x A. Therefore, 
k-.oo k-+oo k 

A has at least one eigenvalue and Al\xll 2 =A= I (Ax,x)\ 

= \lx.ll. 

Now that it is known that every compact self-adjoint 

operator on a Hilbert space H over Q has at least one 

eigenpair, the procedure used in the finite dimensional 

case will be used to generate a sequence of such eigenpairs. 

Let {~1 ,x1 } denote the eigenpair whose existence 

was demonstrated in the preceding theorems. Define H1 = H 

and H2 = { y I (x1 , y) = 0 } • H2 is an invariant subspace 
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2 
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symmetric operator. If AIH2 I o, the preceding theorem 

can be employed to AIH to assert the existence of 
2 

x 2 f H2 and ~2 £ Q such that A IH2 x 2 = x 2 · ,\ 2 , and 

again, I X2 \ = 1\ A I H2 II so I ..\ 21 ~ ( A11 • Continuing 

this process, a sequence of non-zero eigenvalues { >.n} 

and eigenvectors { xn} with \\xn\l = 1 for every n 

is obtained. In addition a sequence of subspaces \ Hk} 

of H is obtained where ~+l consists of the set of elements 

of Hk which are orthogonal to x1 ,x2 , ••• ,xk. 

\ ~ k 1 ~ I A k+ 1 I since I Ak \ = II A \ Hk J1 • 

For each k 

If AIH is :the zero operator the process stops. 
-"lll+l 

In this case the range of A, is given by range (A) = [ \ xk} ~ ]. 

n 
For if x E H, let yn = x - ) xk(xk,x). Then 

k=l 

n 
- L, <5'jk(xk,x) = (xj ,x) - (xj ,x) = o. 

k=l 

But this last 

result implies Yn ~ ~+l and since AIHn+l = o, 
n n 

Ay : o = A(x- L, ~(xk,x)), or Ax= L xk \(~,x) • 
. n ~1 k=l 
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n 
Thus, for each x, Ax = L, ~ I\ so range (A) is spanned 

k=l 

It will now be assumed that the process does not 

terminate. The process then yields an infinite sequence 

of eigenvalues { ,\k} , for which \ ).k \ .). \ Ak+l \ for 

k = 1,2, •••• One of the following cases must occur. 

(b) I .\kl ~ E for some E > 0 and for each K. 

Suppose (b) is true. Consider the sequence { Xn · A ~l} • 

The sequence is bounded, for 1\ x · ). -llf = 1\ x ll I~ -1(. 
n n n n 

Since A is compact, f A(~·A~1 )} = { xn( ~n · ,\-1 )} = { xn} ~ 
n 

must contain a convergence subsequence. But this can't be 
2 2 2 

since II ~-xn I I = II~ II + llxm II = 2. Therefore, 

if A is compact, lim ,\k = O. 
k-t>OO 

If the process does not terminate at some n let 

Then 

2 2 
so llYn II " II x II for each n. Since Yn E ~+1' 



I An+l I = IIAIH II 
--n+l 

it follows that II Ay. II 
.n 

~ J)tn+ll· II Ynl\!: I An+lf· II x 1\. Thus, lim A~tJ. .- o. 
n 

But Ayn c:: Ax = L, Axk(xk,x) which implies 
k=l 

Ax 
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Suppose that A is an eigenvalue of A cor~esponding 

to eigenvector x which does not occur in the ~~quence t~k} . 
Then :x: is orthogonal to every one

00
of the ~ since 

A is self-adjoint. But if Ax = L xk('l:t,:x) · .Xlt' AX : 0 
k:::::l 

which precludes it's being an eigenvalue. 

An eigenvalue can not occur infinitely often in the 

since lim Ak = o. 
k-+oo 

It is clear that if an eigenvalue ). 1~ rElpeated 

n times the corresponding eigenmanifold has Qi~ension n. 

These results can be summed up in the following 

theorem. 

Theorem 4. (Spectral Theorem for compact self-adjoint 

operators). Let A be a compact (non-zero) ~elf adjoint 

operator. Then there exists a sequence { ,\lC} of real 
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eigenvalues of A which may or may not be finite. If 

the sequence is infinite, limll kl = o. The expansion 
k--+00 

f)() 

Ax = L xk(~,x) Ak is valid for each x E H. Each 
k=l 

non-zero eigenvalue occurs in the sequence { ~ k} • The 

eigenmanifold corresponding to a particular Ai is finite 

dimensional and its dimension is exactly the number of 

times this particular eigenvalue is repeated in the sequence. 

D. Existence of Eigenvalues for Compact Normal Operators. 

To show that a compact normal operator on a Hilber 

Space over Q has eigenvalues, a generalization of method 

due to Bernau and Smithies (Bernau, s. J., and Smithies, 

F., 1963) will be used. It depends on the exponential 

representation of unit quaternions. 

Any quaternion q for which t q I = 1 can be written 

as q = cos 

= 1 

then cos e 

I = qlel+q2e2+q3 9 3 _ • Note thatlq0 l ~ lql = 1 and 

Vq~ + q~ + q~ 
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/ qi + q~ + q~ ~ lql: 1. Recalling the definition of 

re re 
e , then q ~ e • 

Definition Let T be a linear operator on a Hilbert 

space over Q. P<T) is defined as 

p ( T ) -- sup I ( Tx , x ) I . 
IIXIJ=l 

Lemma 1. Let X, e be real numbers, A I 0 and T a 

linear operator on H. If a1 , a2 are defined as 

-1 re re -1 Tx ). e , Tx · A· e - x · ). ) 

2 -219 2 then IITx II + e (T x,x) = t<G1 -G2 ). 

Proof. 
2 2re re 2 2re -1 G1 -- ( T x A e , Tx A e ) + ( T x ,.\ e ,x }. ) 

+ (Tx ).-1 e 19 ,Tx A e 16 ) + (Tx,\-1 e 19 ,x>.-1 ) 

using properties of the inner product G can be written as 

G1 = Xe-219(T2x, Tx)). e 19 + ..\e-219 <T 2x,x)A-l 

+ ,>t-1 e- 19<Tx,Tx)Ae 18 + .x-1 e -Ie(Tx,x) ,\ -l. 
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Hence, 
\ -2Ie 2 \ re -2re 2 

G l == 1\ e ( T X , Tx ) 1\ e + e ( T X , x) 

+ II Tx \\ 2 + ~-2 e-re ( Tx, x) 

An Analogous computation yields 

G2 = Ae-21e<T2x,Tx) A ere - e-2 re(T2x,x) - II Tx 11 2 

' + \-2 -re 
" e (Tx,x). 

Therefore t<G1 -G2 ) = t(2e-216(T2x,x) + 2 11Txll 2 ), 

1 -219 2 2 
or ~(G1-G2 ) = e (T x,x) + IITxll • 

Lemma 2. If' T is a linear operator on a Hilbert space over 

Q then llTx ll 2 + \(T2x,x) l ~ 2 p (T) II Tx 1111 x II f'or all 

X E H. 

Proof'. From the definition of' p<T) it is clear that 
2 

f'or every y E H I (Ty,y) I ~ p (T) II y II • If' y1 , y2 are 

defined as yl = Tx. A· ere + X ). -l' y2 = Tx A ei9 - X A -l 

then G1 = (Ty1 ,y2 ) and G2 = (Ty2 ,y2 ). Since 

IJTxll 2 + e-2Ie(T2x,x) = t<G1 -G2 ) it follows that 

IIITx 11 2 + e-216 <T2x,x)l ~ t< I<Tyl,yl)l + I (Ty2,y2) r ). 

This last inequality can be rewritten as 
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Recalling the definitions of y1 , y2 this last statement 

becomes 

\ II Tx If 2 + e-2 r 9 <T2x,x) I~ t f<T) [ IITx A ere + x ,\ -lu 2 

+ 11 Tx ~ ere - X A -l H 2 ] 

But for every pair of elements u,v of H 

llu+v 11 2 + llu-v11 2 = 2 Uull 2 + 21\v11 2 • Using this 

relation, 

IIITx II 2 + e-2 re(T2x,x) I ~ t p<T) ( 2 \1 Tx A ere II 2 

+ 2 II X ~ -ll\ 2 ] 

or I \lTx\\ 2 + e-2 r9(T2x,x)l~ p<T)[ A.2 11Txll 2 + ~- 2 nxt1 2 ]. 

Now choose e such that e-2 r9 (T2x,x) = I (T 2x,x) I 

and ~ such that }.. 2 I I Tx II = ll x \\ • Having done this 

the preceding inequality yields 

Lemma 3· Let T be a linear operator on H. Then 

(a) IITII ~ 2p(T) 

(b) p<T2 ) ~ (p(T)] 2 
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Proof. (a) follows immediately from the second lemma. 

To show that (b) is true let llx '' = 1 in the second 

lemma. Then \\Tx \\ 2 + I (T2x,x)1 ~ 2 p<T) \l Tx \1. 

F~om this it follows that 

IITx 11 2 - 2 p<T) II Tx II·+ rp<T)] 2 + I (T2:x.,x)l ~ [f<T) J 2 , 

0~ 

[liT~ II - p<T)] 2 + I (T2x,x) I~ [f(T)] 2 • Hence, 

I (T2~,x) I ~ [p<T)] 2 • But p<T2 ) == sup { I (T2x,x) I } 
II :X.H=l 

2 2 
so clearly f<T ) ~ (f(T)] • 

In the three preceding lemmas the normality of 

T was not required. Requiring now that T be normal, 

~ields the following theorem. 

Theo~em 1. Let T be a bounded normal operator on H, 

then I l T I l = p ( T). 

Proof. For each :x. e: H, I (Tx,x) I ~ It T ll·ll x112 so 

p<T) ~ II T II. Since T is normal IIT2:x.ll = IIT*Tx II. 

Therefore, IIT2 11 = tiT*T\1 = IITII 2 • By induction, 

if p = 2k, 1 t :follows that IITP ll :::: ll T 11 P. 

From le~a ~part (b) it follows that f.<TP) ~ [f<T)J P. 
Applying lemma~ part (a) 1\Til:::: IITPHl/p ~ 

~ (2 f(TP)) l/p' 2P {J(T); 
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letting k-+~ yields ItT II~ p<T). This inequality together 

with f(T) ~ II T II gives the desired inequality. 

The primary result of this section can now be 

obtained if T is assumed to be compact as well as normal. 

Theorem 2. Let T be a non-zero compact normal operator; 

then T has at least one non-zero eigenvalue. 

Proof. Since p<T) = II Ttl there exists a sequence { xn} 

from H such that 11 x II =1 and lim I (T~,x ) \ = II T II. 
n n-oo n 

It can be assume that lim (TXn,xn) = A where 
n~oo 

tAl= IITII # 0. (It may be necessary to take a subsequence 

here.) The sequence { xnJ is bounded and since T is 

compact it may be assumed that ( Txn} converges to 

some y £ H. That is y = lim Txn. But II Txn II ~ H T II 
n .... oo 

and consequently rtyll ~ II Til = 1~1 • From this observation 

it follows that liT~-~). II 2 = (TXn-~~ ,Txn-XnA ) • 

II Txn -xn~ II 2 = ( T~, Txn) - A ( Xn, TXn) - ( Txn, xn) A + X~ ( Xn, xn) • 

2 2 - - \ Whence, lim liTx -x ~II = II y II - AA - ~" 
n-+oo n n 

Since II Tx -x ). II 2 ~ 0 for every n it follows that 
n n 

lim l1 Tx -x ).ll 2 = 0 and consequently lim T~-XnA = 0 
n~~ n n n~~ 
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and II y \\ = I A l ) 0. Moreover, since Txn ~ y and h 1 o, 
-1 -1 lim x = lim Txn 'A = y A. • Whence, 

n_..co n n -+co 

Ty .... (lim Tx ) ). 
n~oo n 

:::: y>.. • That is A is an eigenvalue 

of T which is the desired result. 

Now that it has been shown that every compact normal 

operator on a Hilbert space over Q has at least one 

eigenvalue, the spectral theorem for compact normal 

operators can be proven using essentially the same tech

nique as for compact self-adjoint operators. Since 

the technique is the same the proof will not be carried 

out. However, there is a slight difference in the con

clusion. The theorem will now be stated and the difference 

pointed out • 

Theorem 3. Let A be a compact (non-zero) normal operator 

on a Hilbert Space H. Then there exists a sequence { /. k} 

of inequivalent eigenvalues of A which may or may not be 

infinite. If the sequence is infinite, lim ~ = O • 
.8.. k~OO 

The expansion Ax :::: l_ xk Ak(xk,x) is valid for each x E H. 
k=l 

Each non-zero eigenvalue occurs in the sequence { >.. k} • 

The eigenspa·ce corresponding to a particular ~i is finite 
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dimensional and its dimension is exactly the number or 

times this particular eigenvalue is repeated in the 

sequence. 

The only dirrerence between the conclusion or this 

theorem and theorem ~ of the preceding section is the 

ror.m or the representation ror Ax. Since the Ak are 

not necessarily real the product Ak(xk,x) can't be 

written as (xk,.x) X k. 

E. Bounded Hermitian Operators on Hilbert Spaces Over Q. 

In the usual treatments or the spectral theorem ror 

bounded Hermitian operators (Halmos, P., 1957, Larch, 1962, 

Bachman, G. and Narici, L., 1966). various techhiques 

are used to show that the spectrum of such an operator 

is non-void. Simmons (Simmons, G., 1963) shows via 

Banach algebra theory and complex function theory that 

any operator on a complex Hilbert space has a non void 

spectrum. The use or complex runction theory is not 

possible for the case of a Hilbert space over the Quaternions. 

In this section the spectrum or an operator on a 

Hilbert space over Q will be defined and it will be shown 

that, at least in the case of Hermitian operators, the 
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spectrum is non-void. The technique is a variation of 

that used by Halmos (Halmos, P., 1957) for complex Hilbert 

Space. 

Definition A bounded, additive, real homogeneous 

transformation on a Hilbert space H (over Q) 

has an inverse if there exists a bounded, 

additive, real homogeneous transformation B 

such that AB = BA = I, where I is the identity 

transformation on H. 

The following two theorems are very important and 

they are well known for linear operators on a complex 

Hilbert space (Ha1mos, P., 1957). Their proofs carry 

over immediately to the case of a Hilbert space over Q 

and will not be given. 

Theorem 1. If A is a bounded, additive, real homogeneous 

transformation on a Hilbert space H over Q and b is a 

positive real number such that \lAx U ~ b II x II for 

every x E H then the range of A is closed. 

Theorem 2. A bounded, additive, real homogeneous trans

formation A on a Hilbert space H over Q is invertible iff 

the range of A is dense in H and there exists a positive 

real number b such that II Ax II ~ b tlx II for every x t: H. 
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Let A be a bounded linear transformation on a 

Hilbert space H over Q. The spectrum S(A) 

is defined to be S(A) = { ~f.Q I A - A·I is 

not invertible • Here ( ..\ ·I)( X) = x A • 

Note that A - >.·I is a bounded, additive, 

real homogeneous transformation on H for 

every ~ E Q. 

Let A be a bounded linear transformation on 

a Hilbert space H over Q. The approximate 

point spectrum of A, AS(A) is defined as 

AS(A) = { ,\ f Q I 'V E.> o, 3 x such that 

II Ax-x .\ II< E \\ x \ \ • 

Theorem 3. If A is a bounded linear operator on a Hilbert 

space Hover Q then AS(A) c S(A). 

Proof. If ~ * S(A) then (A- >.·I) is invertible. Hence, 

llxll = lt(A- A·l)-1 (A- X·I)xll~ II (A- ,\·I)-1 11 ll (A- .l.·I)x II 
for every x E H. This implies II (A- X ·I)x II ~ E llx II 
with E= lf(A- A·I)-1 11-1 • Since this is true for every 

x E H, A i AS(A). The proof is complete. 

The following theorem is a weaker result than is 

usually obtained in the case of complex Hilbert space 

(Halmos, P., 1957). However, it will be sufficient for 

the purposes of this section. 
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Theorem 4. I~ A is a normal operator on a Hilbert space 

H over Q and ~ E AS(A) with A E Re then A E S(A). 

Proo~. Suppose A E Re and A • AS(A). Then the ~ollowing 

~acts are evident. 

(1) A A· I is linear 

(2) A- A·I is normal and (A- ~-I)*= A*- A·I 

( 3) II A - A· I \\ = 1\ A* - A· I \1 

Since A * AS(A) there exists a positive real number £ 

such that II Ay-y,\ ·u ~ E lly \1. But then tiA*y-yA II ~£II y 11. 

To show that A- A·I is invertible it is su~~icient 

(by Theorem 2) to show that the range o~ A- ~-I is 

dense. This can be done by showing that the orthogonal 

complement o~ the range o~ A- A· I is \0}. I~ 

((A,... X·I)x,y) = 0 ~or all x, then (x,(A*- ~·I)y) = 0 

~or all x. Hence A*y-y ~ = o. But since 

II (A*- ~-I)y II>,. E II y 11, y must be 0 and the proof is 

complete. 

Theorem 5. If A is a bounded linear transformation on H 

the S (A 2 ) = [ S (A)] 2 = f A 2 I ..\ t: S (A) } • 

Proo.f. I~ .\ E S(A) then A - ~·I is not invertible. But 

(A2- ~2. I)x = (A- A·I)(A + X·I)x = (A+ X·I)(A- ,\·I)x 
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and consequently A 2 - >..2· I == (A- )... I)·(A+ ~.I). From 

this representation it follows that A2 - )..~ I can not be 

invertible. For if there exists an operator B such that 

( 2 2 ) ( 2 2 A - X • I B == B ·A - X • I) == I then 

I = (A- ~·I) (A+ )..·I)B = B(A+ ,\·I) (A- X· I) and this implies 

A- A·I is invertible which is a contradiction. There

fore, A2 - >..2 · I is not invertible and )..2 E S(A2 ). From 

this it follows that [S(A)) 2 c S(A2). 

2 2 
If A~ S(A ) then A - ~·I is not jnvertible. Let y. 

be any quaternion such that 2 = ).. Then f' • 

(A2- X·I) = (A+ fl.· I) (A- fJ' ·I) = (A- ,....I) (A+ jJ-·I) and 

either p or -~ are in S(A). In either case 

A= CtfJ )2 t [ S(A)] 2 • Whence S(A2 ) C (S(A)] 2 and 

the proof is complete. 

Lemma 1. If A is a Hermitian operator on a Hilbert space 

over Q and A is a real number, then 

l I A 2x - x A 2 I I 2 = \I A 2 x II 2 - 2 ~ 2 II Ax II 2 . + A 4 II x I I 2 • 

Theorem 6. If A is a Hermitian operator on a Hilbert 

spaceoverQ, then:!: IIAIIEAS(A). 



Proof. Since l\ A H = sup II Ax \1 there exists a 
llxll:::l 
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sequence of unit vectors { ~} such that lim ll ~II = \l A 1\. 
n-+oo 

Setting ~ ~ II All and applying Lemma 1 it follows that 

\ l A 2xn -~ ,\ 2 11 2 ~ ( I I A II II Axn II ) 2 - 2 A 2 II Axn II 2 + A 4-. 

But then II A2xn-xnA 2 11 2~ A4- >-.2 II~\\ 2• Hence 

lim IIA2Xn-xn). 21\ = 0 and consequently IIAH 2 E AS(A2).. 
n-+oo 

By Theorem 5, !IIAII E AS(A). 

Corollary. If A is a Hermitian operator on a Hilbert 

space H over Q then the spectrum S(A) is non-void. 

Proof. By Theorem 3, AS(A) C S(A) and Theorem 6 implies 

~ II A II £ AS (A) c S (A) • 
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VIII. The Fourier Transrorm 

r 

A. The Fourier Transrorm in LQ (- oo , oo ) • 

In this section the derinition or a Fourier Transrorm 

ror runctions in LQ (- oo , oo ) will be given. In addition 

a theorem will be proven that gives conditions under 

which the inverse or the transrorm can be calculated. 

The treatment given here is a generalization or that 

given by Goldberg (Goldberg, R. R., 1961). 

Derinition 
r 

Let r E LQ. Let I be a rixed quaternion 

such that I 2 = -e0 • The Fourier Transr~rm 

is derined as f(x) = ~eixtr(t)dt. 
-oo 

~ r 
Proposition 1., f is bounded for each f E LQ. 

Proor. I r<x) f = 
()() J eixt f(t)dt 

-oo 

~ 

fJr<tll dt = llrll, 

~ I 

Proposition 2. f is continuous ror each r E LQ. 

Proor. r(x+h) - f(x) = j(~(ei(x+h)t- eixt)f(t)dt -,., 
A 

r(x+h) 
.... 
f(x) = foo eixt (eiht - l)f(t)dt 

-.o 

J f(x+h) - f(x) J ~ 
00 r leiht- ll fr(t)ldt 

-110 

Since leiht - 1 I· J f(t)l ~ 2Jf(t)l and 
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lim I eiht- 1/· I f(t)l = o, it follows from Lebesques 
h-+ 0 

A A Dominated Convergence Theorem that lim f(x+h) = f(x). 
h-+ 0 

I Theorem 1. If [ f } 
n is a sequence from LQ and 

llf -fll ~ n 1 
0 as n-oo , then lim fn (x) = f(x) 

n-oo 

uniformly on Re. 

Proof. For any x t Re, I f n ( x) - f ( x) I ~ II f n - f 11 1 • 

I 

Theorem 2. Let a,b be fixed real numbers. If f E LQ then 

(i) 
/'-....... -Iax ,... 
f(t+a) = e f(x) 
A ~........_ 
f(x +b) = eibt f(t) (ii) 

Theorem 3. (Riemann-Lebesque). 

I 

If f' f: LQ then lim 
x~ ± 

A 
f(x) = lim 

X + 

Proof. (1) 
1\ 

f(x) = S .. "" elxt f(t)dt, 
I(x+ n) Since e = 

(2) 
A 

-f(x) = 
soo e Ix( t+;;; 
-oo 

f(t)dt = 

00 

[ eixtf( t- JI)dt 
-oo X 

It follolfs that 

(3) 2f(x) = 
foo 

eixt(f(t) - f(t- ll))dt. 
-oo X 

Hence 



(4) 

( 5) 

Corollar:;z. 

Definition 
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00 

A 
2lf(x)l s lf(t) - f(t- R)fdt. 

-oo X 
Since f E ~ 

0() 

~)I dt J lim [J'Ir(t) - f(t- = o. The result 
X_. +oo 

- -lb 

follows from (3), (4)' and ( 5). 
co 

If f E Ll then lim f f(t) sin xt dt Q x-.. :teo 
-~ 

= lim 
x .... +oo 

00 Jl f(t) cos xt dt = o. 
-fJ(J 

A quaternion valued 

variation on [a, b] 

function f is of bounded 
n 

if supL_ r f(xk) -f(~-1 )I<
k=l 

where the supremum is taken over all partitions 

of [a, b] . 

It 1 s an easy consequence of the definition that a 
3 

Quaternion valu·ed function .f(x) = L .f (x)ek is of bounded 
k=O k 

variation on [a,b] if.f each of the real valued functions 

fk(x) are of bounded variation on [a, b] • 

The following is an easy consequence of the correspond

ing theorem for real valued function (Goldberg, R. R., 1961). 

Lemma 1. Let g be a quaternion valued function of bounded 

variation on [ o,d] for some d ~ o. Then 
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d 

lim 1 
R--..urr 

Jb g(t) si~ Rt dt = tg(O+). 

The following theorem gives as a corollary a condition 

for inversion the Fourier Transform. 

Theorem 4. ' If f e: LQ and f is of bounded variation in some 

neighborhood of a point u, then 

lim 
R-+DD 

1 
2TT 

R 

[ e-Iux f(x)dx = t(f(u+) + f(u-)). 

-R 

Proof. For any R > 0 let 

-2rr 

R 
e fxdx= f -Iux. "( ) 

-R 

L 
2Tr 

R I -Iux e dx 
"" r eixt f(t)dt. 

-R -co 

Since f E L~ and f is continuous the iterated integral is 

convergent and hence by the Tonelli-Hobson theorem 

(Royden, H. L., 1969) 

SR(u) .L 
R 

f -Ix(u-t) 
dx I~ f(t)dt. = 

R 
L J Now, 
21T 

-R 

1 
Hence, 21T 

2IT 
e 

-R 

e-Ix(u-t)dx -

-Ix(u-t) 
e dx 

-oo 

R R 
1 

Fa 
I J sin xfu-t ). - cos x(u-t)dx - --

21T 211 
-R 

sin R(u-t) 
= (u-t) • Making a change of 



variable SR(u) becomes 

J"'-1 
t [ f(u+t) 

0 
+ f(u-t)] sin Rt dt = 

I 
r1 ~ ~ J t-1 ( i'(u+t) + i'(u-t)] sin Rt dt 

0 

00 

I 2 == ! i t -l [ :r(u+t) + f(u-t)] sin Rt dt. 
TT d 
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A'>o and chosen such that f is of bounded variation in 

[u- ~ ,u+c5] • By Lemma 1, 

1 im I 1 = t [ f' ( U+ ) + f' ( U- ) ] • 
R-.oo 

-1[ ~ ' Since t f(u+t)+f(u-t~ELQ[S,oo) 

lim I = 0 by the Riemann-Lebesque Lemma. Hence, 
R-.oo 2 

lim S (u) == 1- [ f(u+) + :r(u-)] • 
R-+oo R 

Corollary. If in addition to the hypothesis of this theorem 

f is continuous at u, 

f(t) = fro -Ixt ,.. 
e f(x)dx. 

-oo 

B. 2 The Fourier Transform on LQ (- oo , oo ) • 

In this section the Fourier Transform will be extended 
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«» f eixt f'(t)dt. 

-oo 

The :following is a very important technical lemma. 

Lemma 1. For any real numb.ers E > 0 and a 

Proof'. 

00 

t 
Cf) 

2 
-a /4t e 

Iat 
e = cos at + I sin at 

dt --

2 
- ft 

co 2 f -E.t cos at e 
-(X) 

00 

dt + I 

2 

2 
at e- t dt 

But f cos at e dt = 2 J cos at 
0 

e- Et dt. The integral 
-c:o 

.on the right hand side is a well known integral. Hence 

- f t 2 t -a 2/4f: 
at e dt = (~) e 

00 f cos 
-Ill) 

• Since the :function 

2 
( ) - Et :r t = sin at e is an odd :function the integral 

2 
at e- E t dt = o. 
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The following lemmas will provide enough information 
r. 

to show the relation between the norms of f and f. 

()0 

Lemma 2. If f E L2 
Q 

and F(u) = [ fTtT f(t+u)dt 

then F(O) = llf'l/ 2 • 
2 

Lemma 3. If f' E L2 
Q and F(u) = 

F is continuous at u = o. 

- F(O) I ~ I J"' 
-tb 

Proof. I F(u) 

()() 

I F(u) - F(O) I .; [ I f(tl I I 

-oo 
the "CBS inequali ty 11 • 

-cO 

f~ f'(t) f(t+u)dt, then 

_()() 

f ( t) [ f ( t+u) - f ( t)] d t 

f(t+u) - f(t)ldt. But, by 

• 

IF(u)- F(O)I 2 ~ J""l f(t)/ 2 dt /; f(t+u)- f(tll 2 dt, 

-(10 - {)0 

By the continuity of the norm, it is clear that the right 

side of' the last equation approaches zero as u -+0 • Hence 

lim F(u) = F(O). 
u-+ 0 

Lemma 4. 

2 I F(u) I ~ 

If f' E L 2 and F(u) = 
Q 

J()O 

-()() 

fTtT f(t+u)dt, then 
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Proo~. Apply the CBS inequality. 
00 

1 2 f eixt Lemma 5. If f f LQ /'\ LQ and ~(x) = f(t)dt then 

-co 

CIO 2 f e-x In I i'<xl 12 dx = 
.. 2 

t Je-nu /4 ( rr n) F(u)du where 

co 

F(u) = I f(t) f(t+u)dt. 

-DO 

Proof. 
00 00 

I f(x) I 2 ""' ... f elxt f(t)dt J elxu = f(x) f(x) = f(u)du 

-o4 -~ 

oP CIJ 

I r<x) I 2 f f(t) 
-Ixt I eixu = e dt f(u)du. 

_..,. -oo 

Then, 

00 

-Ixt f Ixu e dt e f(u)du 

-co -.o 

Since ~ E L~, the iterated integral converges absolutely 

and the order of integration may be changed to yield; 

0111 2 f e-x /n 

-oo 

of) 00 2 

f f<xlf 2dx= J r(t)dt I e-x In 
-co - oo 

Ix(u-t)d e x 

00 s· ~(u)du. 
-t10 
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co 

S -x2!n Ix(u-t) ~- -n(t-u) 2 
Using the result of Lennna 1, e e dx=(rrn) e 4 . 

-CCI 
Hence, 

~ 2 

f -x /n I" \ 2 ..1. e f(x) dx=Crrn) 2 

-oo 

00 2 
[ 

-n(u-t) 
e 4-

-cb 

"" f "f(t1" f(u)dt du. 
-co 

Making a change of variable, this last statement can be 

written as 

(TT n)t f: -~ 
(]() If( t) f(t+u)dt du, 

-OCI -co 

pO 

and then if F(u) = j"f(t) f(t+u)dt, the proof is complete. 
-co 

co 

Corollary. If f E L~ n L~ and f(x) = f eixt f(t)dt 
-oO 

then = 21Tt [~e -u2 F(2n-t u)du 

-Db 

Q() 

where F(u) = S f(t) f(t+u)dt. 

-ou 

Proof'. -~ Make the change of' variable u-? 2n u in the 

result of' the preceding lemma. 



Theorem 1. Let f E L~ () L~. Then f E L~ and 

llfll 2 = C21T)tllf11 2• 

Proof. By the corollary to ~emma 5, 
~ 2 ~ J e-x /nl f(x) 12 dx = 2TT t [ e-u2 F( 2n -t u)du where 

-~ -~ 

DO 

F(u) = J f{t) f(t+u)dt. Consider the sequence 
-«! 

2 
gn(u) = e-u F(2n-t u). 

2 
gn(u) is dominated by e-u llrll ~. 

Applying Lebesques Dominated Convergence theorem to the 

sequence gn(u) yields 

The last integral is obtained using the results of Lemmas 2 

and 3. Applying Fatous theorem, 

00 00 2 (Ill 2 f. (f(x)l 2 dx = Jlim e-x /nlrCx)l 2dx ~ lim Je-x lnlrCx)f 2 dx. 
n~oo n~~ - oo _ _, -oo 

Hence, 
Q) J I f<xll 2dx' 

-ob 

11m e-x In I t(:x)f 2dx = 2rr II r II 2• foo 2 

n-ao 2 
-GO 



whence fir II 2 
2 

= 
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co 

f I f(x) 12dx * II f II;, which implies 
-co 

[

.CO 2 
Moreover, since lim e-x In I f(x)l 2 dx = 2 n 11 f II~' 

n-.oo 
-ro 

Lebesques Dominated Convergence theorem may be applied 
CD 

to yield f I f(x) I 2 = II r 1'1 ~ = 2 n II f II ~· This completes 
-oo 

the proof of the theorem. 

Theorem 2. 2 Let f E LQ. For N = 1,2, •••• , define fN by 

It I~ N 

It f > N 

I 2 .,.. 2 Then fN £ Lq n LQ and fN E LQ. Furthermore, the sequence 

2 is a Cauchy sequence in LQ. 

N 

Proof. For any fixed N, ::: J lf(t)ldt. 

By the CBS inequality, 

J..i,rN<tll dt ~ [{: 1 f(tll 2dt 
N J t f dt ~ 

-N 

-N 

It follows that fN ( L~. Since I fN(t) I ~ I f(t) I and 

• 
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f' E 2 
it's clear that f'N 2 I 

12 LQ' £ LQ. Thus, f'N £ LQ n Q 
" and by Theorem 1, f'N 

2 
Lq• The proof' of' the f'irst part 

of' the theorem is complete. 

To show that [ fN} 
can be applied to yield 

the def'inition of fN' 

2 
is an LQ Cauchy sequence, Theorem 1 
~ ~ 2 2 II fM-f'N II 2 = 21T II f'M-f'N II 2• Using 

fl fMJNfl ~ = 2TT I JM I :f(tll 2dt + j I :f(tll 2dtl. • Clearly, 

-N M 

lim llr -f II 2 = o. 
N-+oo n N 2 
M-.. co 

Since L~ is complete the limit of' a Cauchy sequence 

in L~ will always converge to an element of' L~. Theref'ore, 

the following def'inition makes sense. 

Def'inition 

Theorem 3. 

Proof. 

_·}i 

2 A 
For f' E LQ' f' is defined as 

,. ' 
· f(x) = 

N J e Ixt :f ( t) d t. 

-N 

2 (Parsevals Relation). If f E LQ' then 

11111 = (2TT )t llr It • 
2 2 

fN is defined as in Theorem 1. Then 



i~~ Jl fN-f-11 2 = o. But :for each N I tl f'N II 2 - II f' 11 2 ~ llrN-f' 1\ 2 • 

Hence, lim llrNII = llrll . But from the de:finition o:r 
N~ 2 2 

:rN' it is clear that limll:rNII = llr 11 2 • Since 
I 2 " N..,.. t 

fN E LQ n LQ' ll:rNII 2 = (2TT) llfNll 2 • There:fore, 

llr 11 2 =lim 11rN11 = (2TT)t limllfNII 2 = (2TT)tllrll. 
N-+oo 2 N-+co 2 

The proof is complete. 

It should be remarked that Theorem establishes 

the :fact that the Fourier Transform is nearly isometry of 

12 an to itself. Q 

c. The Inversion Theorem :for Functions in 1~(-w.oo) 
In this section sufficient conditions :for inversion 

of the Fourier Transform for functions in L~ will be given. 

An exact form :for the inverse transform will also be given. 

Lemma 1. 

11111~ = 
If' :r f L~ and f(x) = f( -x) then f E L~ and 

ll:rlf~. 

Joo - 2 I :f(x)f dx = 
-ou 

result'S :follow.:. 

J"' I f(t)l 2dt and the 

-oo 
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Lemma 2. If f' and 2 
and fM' g t: LQ gN are defined by 

= { :(x) 'X I ~ M { g(x) I X I ~ N 
f'M(x) 

lxl) M 
gN(x) = 0 

I X I > N 
0() 

f"'fM(x) f iM(x) "' then gN(x)dx = gN(x)dx. 
-oo -00 

Proof. For each M,N fM and gN are 
2 

in LQ. Thus, 

oQ 00 
A J elxt J eixt fM(x) = fM(t)dt and gN(x) = gN(t)dt 

-DC> -()() 

011 00 00 -

f J 1\ J eixt - "' ~(x)dx f'M(x) gN(x)dx -- fM(t)dt 
-oo -0'1 -oo 

01,) cO -

" J f fMCt)dt 
-Ixt gN(x)dx 11 = e 

-oo -cu 

II II 

00 0;) 

= J J fM(-t)dt e-Ixt gN(x)dx 

-oo -IN 

Hence, 

Jao ;M(x)~(x)dx = J,. fM(t) !"" erxt ~(x)dx dt. 
_., -oo -ao 
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CIO 

Finally, [ fM(x) ~(x)dx = f.fM(t) ~(t)dt. A change 

o~ variable yield the desired result. 

Corollarz 1. Iff and g < L~, Ji~ ~(x) g(x)dx= ~f(t)g(t)dt. 
-cO -cb 

ell 00 

Corollarz 2. If r, g • L~, f :r(t)g(t)dt = J icx)g(x)dx. 

-dl -OIJ 

Proof'. From Corollary 1, 
oo-

= J ;(x) g(x)dx. 

-~ -~ 

-
~ ~ A ~ 

However, ~(x) = ~(-x) ~ ~(-x) ; ~(x). 

Now the main theorem can be proven. It will yield 

the inversion theorem as a corollary. 

Theorem 1. 
2 ?s: 

Let ~ E LQ and let g = ~. Then ~ = 

Proo~. II~-!_ g fl 2 = 
2TT 2 

( (f - ~IT g)(f - ~IT g)dt. 
_Ojll 

00 

II~ _1:_ gll 2 = [1~1 2 
2TT 2 

-OCI 

00 

dt + 1 [ 'gt 2 dt 
(2TT) 2 -eo 

J~ f g dt + r ~ f dt). 

-eo -fi/J 
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Hence, 
oO 00 

II r- ~rr g II ~ = II r II ~ + ~2 II g II ~ - ~1l J r g d t + f r g d t l . 
-oo -o0 

Corollary 2 can now be applied to yield, 

1 1\ I 2 2 [oo "" foo lfV II f'- 2TT g I 2 = II f' , 2 + ~ II g If ~ - h ( ~ g d t + ~ g d t) • 
_ 4n -oo _ 011 

,v 

" But g = r, so 

be written as 

II f'- L g If~ = II f' II 22 + 1 
2 II -g II 22 - 1 II~ II 22 • From Lemma 1, 

2TT 41T TT 

,_ 2 "" 2 2 and f'rom Parsevals Theorem, II? 11 2 = llrll 2 = 2TI II rtt 2 • 

,.... 
A 

In addition II g II ~ = 2 n II g II ~· But g = f, so 

tl g II 2 = (4 rr) 2 11 f' II 2 • Therefore, 
2 2 

II r- .L gfl 2 = llrl1 2 + llrll 22 - 211rlf 2
2 = o. 

21T 2 2 

The proof' is complete. 

Corollary 1. (Inversion Theorem) 
N 

If f t L~ then f(t) = II 112 - ~~00 ~TT I 
-N 

-Ixt " e f(x)dx. 



~ 

Proof'. Let g = ?. Then by the preceding theorem 

f' ~,... 
'"" 2 1T g. Hence, 

f'(t)= 
N 

Ill\ - 1 im 21 TT S e Ix t g ( x) dx = 
2 N-+oo 

-N 

N 

11112 lim !___ 
N-+CCI 21T 

N f eixt 

-N 

N 

_, 
A 
f(x)dx. 

f'( t )= II 112- lim 12 f e Ixt ic -x)dx= 
N~oo IT 

. 1 f Ixtl'-11112- l~m - e f( -x)dx. 
N+oo 2TI 

-N -N 

Making a change of variable, 

N 

f(t) = 11112- lim ~ Tl 
N-.co 

I e -Ixt f(x)dx. 

-N 

2 
Corollary 2. Every f c LQ is the Fourier Transform of a 

2 
unique element in LQ. 

The results of this section are summarized in the 

following theorem. 

Theorem 2. 
2 A 2 

If f r LQ then there exists a function f e LQ 

such that 

" f' (x) = II II - lim 
2 N .. oo 

N 

I eixt f(t)dt 

-N 



:f'(t) 
= ""-2 

N 

limi.frr e- Ixt 
N-+• ] 

-N 
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:f'(x)dx and 

llf-11 2 = (2Tf )tIff,, 2. 
2 

Every f E: L can be 
Q 

A 2 expressed as :f' = g for a unique g e LQ. 
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IX. Hilbert Spaces over C 

In this section a ~ew elementary results about 

inner product spaces over C will be given. The definition 

o~ an inner product space over C is ~rom Goldstine and 

Horwitz (Goldstine, H. H., Horwitz, L. P., 1964). 

De~inition A linear space L over C is an inner product 

space i~ there exists a ~unction ( , ): 

L x L ~ C such that 

(i) (x,x) ~ 0 and (x,x) = 0 i~f X = 0 

(ii) (x, y+z) = (x,y) + (x, z) 

(iii) (x,xoc) = (x,x)O(; (x,ya) = (x,y)·a for a real. 

(iv) (x,y) = (y,x) 

(v) t [ (x,ycx )] = t [(x,y)oc) (t(a) 

It follows easily from the de~inition that 

(a) (x+y,z) ·- (x,z) + (y,z) 

(b) (x 0( ,x) = oc(x,x). 

= a+ a) 

It should be noted that one of the usual properties 

for an inner product is missing from the preceding 



152 

definition. It is not assumed that Cx,ya) ~ Cx,y)a 

for a £ c. The reason for this is that none of the 

canonical examples have this property and also it is 

not known to this author whether it is possible to 

construct a function on a linear space over C with 

properties (i) through (v) and the additional property 

that (x,ya) ~ (x,y)a for all x,y E L and a E c. 

Example 1. Let L = { Cx1 ,x2, ••• ,xn) \ xj £ C} with 

addition and scalar multiplication defined pointwise. 

An example of an inner product on this space is given by 

n 
(x,y) = ~ xj y. where x = Cx1 ,x2 , ••• ,xn) and 

j=l J 

Example 2. Let L be the class of C valued continuous 

functions defined on [a,b] , with the operations of 

addition and scalar multiplicated defined pointwise. 
b 

For f and g in L define (f,g) = J fTXJg(x)dx. 
a 

The very fact that the inner product is not 

homogeneous with respect to scalars seriously affects 
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the geometrical structure of Hilbert spaces over c. 
Moreover, It's clear that no linear functional can be 

represented by the inner product and hence the Riesz 

Representation Theorem is impossible. It's clear that 

if any satisfactory theory is desirable then certain 

other assumptions are necessary. 

It will now be shown that the inner product does 

give rise to a metric on the linear space. To do this, 

the following lemmas will be needed. 

Lemma 1. (x,ya) + (y,xa) = [Cx,y) + (y,x)J.a 

Proof. From (iii) of the definition (x+y), (x+y] a) 

= (x+y> ,:x+y)a. Hence, (x,xa) + (y,xa) + (x,ya) + (y,xa) 

+ (y,ya) == (x,x)a + (y,y)a + [ (x,y) + (y,x)] a. 

Lemma 2. (xa,ya) = a(x,y)a 

Proof. By Lemma 1, (x,ya) + (y,xa) = [<x,y) + (y,x)]·a. 

Replace x by xa in this result. Then it follows that 

(xa,ya) + (y,(xa)a) = [Cxa,y) + (y,xa)) a. Hence, 

(xa,ya) + (y,x) (aa) = t [ (y,xa)] a = t [ (y,x)a, by (v). 

This can be written as 

(xa,ya) + (y,x)(aa) = [Cy,x)a + a(y,x)) a and the result 

follows. 
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Corollary 1. (xa,xa) = a(x,x)a --- aa(x,x) = 1 a 12 (x,x). 

Lemma 3. (CBS inequality). 
t ..!. 

l Cx,y) \ ~ (x,x) (y,y) 2 for all x,y e 1. 

Proof. If either x or yare 0 then the inequality is true 

trivially. Let (y,y) = 1. Then for every choice of 

x E L and a t:. c 0 ~ ( x-ya , :x.-ya ) = ( x , :x.) - [ ( ya , x ) + ( x , ya ) J 
+ (ya,ya). 

Or, 0 ~ (x,:x.) - t [ (x,ya)] + I a\ 2 (y,y) = (x,x) 

- t [<x,y)a] + I a 12. 

Now choose a -·- (:x., y). It follows that 

0 (x,x) - [ (x,y) (x,y) + (:x.,y) (x,y)] + (x,y) (x,y). 

Hence, (x,y) (y,x) ~ (x,x) or equivalently I (x,y) I ~ (x,x) t. 

For any z ~ L with x I 0 it follows that 

l<x,z (z,z)-t)l~ (x,x)t and hence IC:x.,z)l ~ (x,x)t(z,z)t. 

Theorem 1. If 1 is an inner product space bver C with inne~ 

product ( , ) , then if II x II = (x,x) t, 1 becomes a normed 

linear space over c. 

Proof. If I ' X ' r 1 s defined by II X II = (X, X) t then 

II x II ~ 0 for all x and If x II = 0 iff x = 0 from the 



properties o~ the inner product. From Corollary 1 

\lxa\\ 2 = (xa,xa) == la\ 2Cx,x) = lat 2 11x\1 2 , so 

llxa ll == II x Ill a I. II x+y 11 2 == (x+y: ,x+y) = (x,x) 
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+ t [ (x,y)] + (y,y) = llx \\ 2 + t [ (x,y)] + llylt 2 • 

By Lemma 3 it ~ollows that t [(x,y)] ~ 2l<x,y) I 

~ 2\\xll·llyll. Hence, llx+ylf 2 !: ( 11x11 2 + 2llxlf.llyll 

+ lly I I 2 ) == ( ll xI I + II y II ) 2 and consequently 

It x+y II ~ II x II + II y II • 
7 

Lemma 4. I~ ~: L x L --+ c, .then ~(x,y) =L: 
j=O 

~. (x,y)y 
J 

and ~ 0 (X, Y) :: tt [ ~ (X, y) ] , ~ j (X, y) = -tt [ e j f (X' y)] • 

The ~ollowing is a generalization o~ the polarization 

identity which is well known ~or the case o~ complex 

linear spaces. 

Theorem (Polarization Identity). I~ L is an inner product 

space over C and 11 x II : Cx,x)t, then 

7 
~ (ej llx+yejl1 2 - ejllx- yejll 2 ) = 4(x,y) 
j~O 

Proo~. Let a be any real number. Then 



For a =tl, (x-yej,x-yej) = llx 11 2 :!: t L<x,y)ej] 

Then for j - 0,1,2, ••• ,7, 

e. II x+ye II 2 - ej II x-ye .11 2 = 2eJ.t [ (x,y)eJ.] • 
J j J . 
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2 
+ llyll • 

Therefore, 

7 2 
L ( e j II x+ye j II - e. II x-ye .11 2 ) = 2 

J J 

7 
) e.t [ (x,y)e. J . 

J J 
j::-,0 j=O 

Applying lemma ~ it follows that 

7 2 
L (ejllx+yejll -

2 
e . II x-ye . II ) -· 

J J 
j-0 

Definition A Hilbert space over C is a complete inner 

product space. 

Theorem 3. (Parallelogram law) 

Let L be an inner product space over c. If x,y E L then 

1\x+y \1 2 + llx-y 11 2 = 2 llx 11 2 + 21\y\\ 2• 

The following theorem is a generalization of the 

Jordan-Von Neumann theorem for complex linear spaces 

to case of inner product spaces over c. 

Theorem ~. If L is a Banach space over C with norm l\ II 

and \1 \1 satisfies the parallelogram law, there exists 

an inner product ·( , ) on L such that (x,x) = II x 11 2• 
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Proof. 

Define (x,y] c_~ tC \lx+y lf 2 _ 2 
II x-y II ) • 

7 
( x, y) = [ x, y ] e0 - ) l x, ye j ] e j 

j=l 

(i) clearly ( , ) is additive (since [,] is additive). 

( ii) (x,xej] -- II x+xej II 2 - llx-xej II 2 

= II X 11 2 [ I eo+e j 12 - r eo-e j ' 2 ] = 0 for j/0. 

Hence, (x,x) = (x,x] e0 = \lxl\ 2 • 

7 
(iii) (x,xen) = [x,xenJ e0 - ) [x,(xen)ej] ej 

j~l 

for nfiO, [x,xenJ -, 0. Also, [x,Cxen)ej1 

--· tC llx-(xe )e.ll 2 -llx-(xe )e.ll 2 ) 
n J n J 

[x,(xe )e.] -· ~(\\(xe +xe )e.\l 2 - \\(xe.-xe )e.lt 2 ) 
n J j n J J n J 

[x,(xen)ej] -· t< II x 11 2 ) [ (ej+en)(ej+en) 

- ( e . -e ) ( e . -en) ] 
J n J 

2 
r ( ) '1 1\~ll r e.e.+e e.+e e +e e -eje. 
lx, xen ejJ - L J J n J n n j n J 

+ enej+ejen-enen ] 



(iv) 

Hence 

(x,xe ) = 
n 
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2 
1\x \1 e = (x,x)e • 

n n 

2 
= t< \\ x+yek II - H x-yek \\ 2 ) 

= ,i( ll(xek+Y)ekl1 2 - \l<xek-y)ekll 2 ) 

[ x,yek] 

[x,yek] 

[ x,yek] 
2 2 

= .i ( \l y-xek II - \\ y+xek \1 ) = - [ y ,xek] 

7 
Now (x,y) = [x,y] e0 - ~ (x,yej] ej 

j=l 
7 

(x,y) = [y,x] + ) [x,yej] ej 
j=l 

7 
(x,y) = (y,x) - ) (y,xe.] ej = (y,x). 

j=l J 

(v) t [ (x,y)en] = (x,y)en + en (y,x) by definition 

7 
(x,y)en = [ x,y 1 en - ) [x,yej] (ejen) 

j=l 

7 
en(y,x) = (x,y) en- ~ [y,xe.] (enej). 

j=l J 



But f'rom ( iv), [y,xej] = - [ x,ye j 1 , so 

7 
en ( Y, x) = L x, y 1 en + L [ x, ye j 1 ( en e j ) • 

j=1 

For n I o, en = -e and hence, 
n 

7 
en(y,x) = - [x,y] e L [x,ye.] (e e.). 

n j=1 J n J 

Whence, 
7 
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= - l l x, ye j J · (e. e +e ej), or 
. 1 J n n 
J= 

= + 2 ( x, ye . ] S . = 2 [ x, ye 1 . 
J nJ n 

is , t ( ( x, y) e 1 -- 2 ( x, ye 1 • 
n n 

Now, t [Cx,ye )] = Cx,ye ) + (ye ,x). But 
n n n 

n 
Cx,yen) = [ x,yen] e0 - ~ (x, (yen)ej] ej 

n 

(yen,x) = [yen,x] - L [ye ,xe.}e • 
. 1 n J j 
J= 

That 

[x,(yen)ej] = -!( llx+(yen)ejll 2 - \\x-(yen)ejl\ 2 ). 

This can be rewritten as 
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Moreover, 

[yen,xej] == ~( \\yen+xej 11 2 - \lyen-xejU 2 ). 

Hence [x,(yen)ej] + [yen,xej] = 0. Therefore, 

2 l x,ye 1 n 

Since this is true for n = 0,1,2, ••• 7, it follows 

that t [<x,ya)] = t [<x,y)a] and consequently ( , ) 

has the properties of inner product space over c. 

Definition A normed linear space L over C with norm 

Theorem 

IIIIis called uniformly convex if to each e: > 0 

there exists ~(E) > 0 such that 

II x+y II ~ 2(1- cS(E)) when llx II = 1, II yll: 1 

and II x-yll ~E • 

An inner product space L over C is a uniformly 

convex normed linear space over c. 

2 2 2 2 
Proof. \1 x+y \1 = 2 II x II + 2 II y II - II x-y II from 

Theorem 3. If I I x II = II y II = 1, then II x+y II 2 

= 4 - ll x-y(l 2• Hence, II x+yll = 2 - [ 2 - (4- llx-yll 2)t] . 

If II X II = rr yll = 1 and 

II x+y" < 2(1~ o(E)) if. 

II x-y II )E then 

S (E ) = 2-(4- llx-yll 2 ) t . 
2 
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X. Conclusions and Suggestions for Further Study 

It is clear now that many of the results of functional 

analysis that are usually given for complex linear spaces 

are also true for linear spaces over the Quaternions. 

However, it appears that much less can be said for linear 

spaces over the Cayley numbers. This is due basically 

to the fact that scalar multiplication is not an associative 

operation. It seems to this author that more has to be 

done with specific examples of these spaces before a general 

theory can be developed. 

As a result of this study some interesting but un

resolved questions have arisen. 

In Chapter VII, Spectral Theorems for compact normal 

and compact self-adjoint operators on Hilbert Spaces over 

Q have been given. It is natural to ask if analogous 

theorems are true for arbitrary bounded self adjoint and 

normal operators. One of the first difficulties encountered 

in this problem is proving that the spectrum is non-void. 

It was shown in Chapter VII that the spectrum of a bounded 

self adjoint operator is non-empty, but the case for a 

normal operator is open. Even if this result is true for 

normal operators many difficulties remain and the approach 

one should take is not clear. 
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One of the more interesting structures encountered 

in this work is the algebra C(X,F), where F is a 

Cayley-Dickson Algebra of dimension n. C(X,F) possesses 

all of the usual properties of a real Banach algebra except 

it is not associative. The Stone-Weierstrass theorem 

was proven for this algebra but no other results were 

obtained. It appears that no one to date has made a 

study of algebras of this type and this might be an 

interesting though formidable task. 

In Chapter VIII a Fourier Transform for functions 

1 2 
in LQ (- oo , oo ) and LQ (-co , ao ) was studied. Many 

questions concerning this transformation were not con-

sidered. It would be very interesting if the results 
1 2 

of Chapter VIII could extend to LQ(G) and LQ(G) where G 

is a locally compact abelian group. It also appears 

that this transformation might have some application to 

Quaternion Quantum Mechanics. 
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