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Abstract

In this work certain aspects of Functional
Analysis are considered in the setting of linear
spaces over the division rings of the real Quaternions
and the real Cayley algebra.

The basic structure of Banach spaces over these
division rings and the rings of bounded operators on
these spaces is developed. Examples of finite and infinite
dimensional spaces over these division rings are given.
Questions concerning linear functionals, the Hahn-Banach
Theorem and Reflexivity are considered. The Stone-
Weierstrass Theorem is proven for functions with wvalues
in a real Cayley Dickson algebra of dimension n.

The concepts of inner product spaces and Hilbert
spaces over the Quaternions and the Cayley algebra are
developed. An extensive study of Hilbert spaces over the
Quaternions is carried out.

In the case of Hilbert spaces over the Quaternions,
the Riesz-Representation Theorem and the Jordan-von Neumann
Theorem are proven. In addition, spectral theorems for
both self-adjoint and normal operators are proven for
finite dimensional Hilbert spaces.

These results are extended to infinite dimensional

spaces for the cases of compact self-adjoint operators and
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compact normal operators. The spectrum of an
arbitrary bounded Hermitian operator on a Hilbert space
over the Quaternions is shown to be non-void.

A generalization of the Fourier Transform for
functions in L%‘(-oo s00) and LZ(-m , ) is given. The
Plancherel Theorem is proven for functions in Lg(-a>¢n ).

Finally, the Jordan-von Neumann theorem is proven for

a Hilbert space over the Cayley algebra.
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I. Introduction

Theoretical physics has been the source of some
of the most interesting and complex mathematical problems
of this century. Nowhere is this more evident than in
the discipline of Quantum Mechanics. It has been the
motivation for such fundamental theories as the theory
of Distributions and the theory of Non-associative
algebras to name only two.

Since its initial development, the mathematical
structure of Quantum Mechanics has been imbedded in
Complex Hilbert Spaces. But as early as 1936 (Birkhoff, G.
and von Neumann, J., 1936) it was conjectured that
Complex Hilbert Spaces might not be the most natural
'setting for the theory. This idea was largely ignored
by physicists and mathematicians alike for over 20 years.
However, in 1962, J. M. Jauch and his coworkers published
a paper in the Journal of Mathematical Physics on the
Foundations of Quaternion Quantum Mechanics. This paper
was followed by two others and was the impetus for much
of the research being done today. Numerous other physicists
have followed in their footsteps and among these are
G. Emch (Emch, G., 1963) and V. S. Varadarajan
(Varadarajan, V. S., 1968).



As a result of these investigations many questions
concerning the structure of Hilbert spaces over the
Quaternions have arisen. In addition, questions about
Hilbert spaces over other non-commutative and non-
associative scalars have also been raised.

Motivated by the work of Jauch, we have investigated
in this paper some of the aspects of Quaternionic Hilbert
spaces. Choosing not to restrict ourselves just to
Hilbert spaces over the Quaternions we have considered
questions of functional analysis in the setting of
linear spaces over the division rings of the real
Quaternions and the real Cayley numbers. In this study,
those theorems of elementary functional analysis which
depend primarily on the algebraic structure of the scalars
have been of primary interest. Therefore, most of the

generalizations are algebraic rather than topological.



II. Review of the Literature

0. Teichmiiller attributed the idea of a Hilbert space
over the division ring of real Quaternions to H. Wachs
in a paper dealing with theory of such spaces, in 1938
(Teichmiiller, O., 1938). According to Teichmiiller, Wachs
made the conjecture in 1934 that a theory of these spaces
could be developed. In his paper in 1938, which was his
Ph.D. dissertation at Goéttingen, Teichmiiller studied the

properties of these spaces and operators on then.

Teichmiullers definition of a Hilbert space over Q
required the axiom of separability. Among the topics
discussed were the following: The basic properties of a
Quaternion valued inner product, the proof of the Cauchy-
Schwartz inequality, the Riesz representation theorem,
the concept of dimension and the projection theorem.

In addition he defined the concept of a an imaginary
operator and discussed the "normal" form of such operators.
He defined T to be imaginary if T* = -T, T2 = -E where E
is the identity operator. Using the results of spectral
theory on real Hilbert spaces developed by Riesz, Rellich,
and von Neumann, Teichmiller proved the following theorem

which he called the fundamental theorem for normal operators.

Theorem Let N be a normal operator in a Wachsschen space
R. Then there exists operators A, B, TO and a subspace

Rl with the properties,



(a) A and B are self adjoint operators, B is non-
negative definite; Rl is the closed Hull of
the domain of B, TO is an imaginary operator
from Ry to Rl.

(b) Each spectral projector of A or B commutes with
N and N*; Rl reduces N and N*, and in Rl’ TO
commutes with N and N*,

(¢) If C is a bounded operator and C commutes with

N and N* then C commutes with A and B; Rl reduces

Cy and the restriction of C to R, commutes with

(d) N = A + TOB

In the same period that Teichmuller was doing his
work on Wachsschen spaces, E. H. Moore (Moore, E. H., 1935)
was studying finite and infinite dimensional spaces over
the real Quaternions. He introduced the concept of
Quaternion valued inner product and considered the question
of conoical forms and generalized inverses of matrices with

Quaternion entries.

Beginning in 1962 there was a series of three papers
by Jauch, Finklestein et. al., in the Journal of Mathe-
matical Physics (Finklestein, D., Jauch, J., Schiminovich,
S., and Speiser, D., 1962, 1963) in which the formulation

of the mathematical structure of Quantum Mechanics was



developed in the setting of a Hilbert space over the real

Quaternions. Their definition of a Hilbert space over

Q was essentially that of Teichmuller.

In the first paper the Cauchy Schwartz inequality
was proven and the results of the projection theorem were
used although it was not stated explicitly.. Their basic
consideration was to determine the appropriate analog
of the Schrodinger equation in the case under consideration.
A generalized version of Stone's Theorem and the representation
of semi-groups of operators on a Hilbert space was given
and the Schrodinger equation was obtained in the usual
way from this result. In addition, they also attempted
to assign a physical significance to the new symmetries
induced on the linear space by the automorphisms of the

Quaternions.

In the second paper they considered the representation
of compact groups by matrices with real Quaternion entries.
In addition to proving certain standard theorems about group
representations, they developed a criterion under which
such representations reduce over the skew field of real
Quaternions. The criterion was given in terms of the

Schur-Frobenius classification of groups.

The last paper in the series was primarily a con-

sideration of the physical consequences of the concept of



Q-covariance which is developed in this paper. In addition,
they show that in the case of a Hilbert space over the
Quaternions, the lattice of closed subspaces has a

symmetry group which is connected, whereas it is not for

the case of complex Hilbert space.

S. Natarajan and K. Viswanath (Natarajan, S. and
Viswanath, K., 1969) also considered the question of
Quaternionic group representations. They considered only
compact metric groups. A generalized Peter-Weyl Theorem
was proven and the problem of finding all irreducible
representations of an arbitrary compact metric group was
considered. It was shown that in the case of Abelian

groups that the representations are all one dimensional.

Emch, has studied the structure of a Quaternionic
Relativistic QuantumMechanics and the representations of
the Lorentz Group. (Emch, G. 1963). He utilized the

mathematical tools developed by Jauch and his co-workers.

Other Physicists have considered aspects of Quaternionic
QuantumMechanics. Bargmann has given a proof of Wigner's
Theorem on Symmetry Operations for the case of Quaternionic

Hilbert Space. (Bargmann, V. 1964),



The study of matrices with Quaternion entries has
relevance to this area of research since a linear
transformation on a finite dimensional linear space over
Q can be represented by a matrix with Quaternion entries.
Since 1936 there have been several papers on such matrices
but none of these have been framed in the context of

linear operators on linear spaces over the Quaternions.

One of the first works was by Wolf in 1936 (Wolf, L.,
1936). In this baper necessary and sufficient conditions
are given under which, for two matrices A and B, there
exists a nonsingular matrix S such that SAS™1 - B. The
criterion for non-singularity of Quaternion matrices is

that of Moore, (Moore, E. H., 1935).

The next paper in this area was by Lee in 1949,
(Lee, Ho C., 1949). 1In this work Lee considered the
elgenvalue problem for Quaternion matrices and the related
question of canonical forms. Using the symplectic rep-
resentation, Lee proved that an n x n matrix with real
Quaternion entries has 2n complex eigenvalues., The use-
fulness of this work is somewhat restricted by the fact
that Lee requires the eigenvalues to be complex and not

general Quaternions.



Using the results and methods of lLee, Wiegmann
(Wiegmann, N. A., 1955) obtained additional results
about canonical forms for matrices with Quaternion
entries. Among the topics considered were the Jordan
Canonical form, similarity for Quaternion matrices,
polar forms, and finally the concept of unitary

equivalence.,

In two later papers, Wiegmann (Wiegmann, N. A., 1955,
1956) determined the structure of unitary and orthogonal

matrices.

The most relevant result in the area of Quaternionic
matrices is due to J. L. Brenner (Brenner, J. L., 1951).
Brenner proved that every Quaternion matrix has at least
one eigenvalue. In the proof of this result, Brenner had
to appeal to a very important theorem due to Eilenberg
and Niven which is the Fundametal Theorem of algebra for
the Quaternions. (Eilenberg, S. and Niven, I., 194k4),.

One of the first papers in functional analysis dealing
with linear spaces over the Quaternions was by Soukhomlinov
(Soukhamlinov, G. A., 1938). In this paper Soukhomlinov
proved the analog of the Hahn-Banach theorem for linear

spaces over Q as well as the complexes.



A generalization of the Soukhamlinov theorem was
given by T. Ono (Ono, T., 1953). Ono proved the ex-
tension theorem for semi-linear functionals on linear spaces
over the Quaternions. A semi-linear functional f is add-
itive but f(x+a) = f(x).a' where a' is an automorphism

of a.

There have been numerous other generalizations of the
Hahn-Banach theorem. One of the more interesting was by
Harte (Harte, R. E., 1965). Harte proved an extension
theorem of the Hahn-Banach type for linear functionals,
on a linear space over a Banach algebra, which take their

values in the dual space of the algebra.

Another paper along these lines is by Bonsall and
Goldie (Bonsall, F. and Goldie, A., 1953). They proved
an extension theorem for linear functionals on linear
spaces over algebras which "represent their linear

functionals".

Numerous other generalizations in this area have
been given and among these are the papers by G. Vincent
Smith (Vincent-Smith, G., 1965), A. W. Ingleton (Ingleton,
A. W., 1952), and A. F, Monna (Monna, A. F., 1946).

The "Stone-Weierstrass Theorem" has been proven for

continuous Quaternion valued functions on a compact
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Hausdorff space by Holladay (Holladay, J. C., 1957).

One of the more interesting examples of a linear
space over the Quaternions was studied by Fueter in a
series of papers beginning in 1936, (Fueter, R., 1936).
Fueter defined the concept of an analytic function of
Quaternion variable. Although he did not base the
concept of analyticity on the derivative of a function,
he did obtain many results analogous to those of complex

function theory.

The first paper on linear spaces over Cayley numbers
was by Goldstine and Horwitz (Goldstine, H. H. and
Horwitz, L. P.). They gave a definition of a linear
space over Cayley numbers and defined an inner product with
values in the Cayley numbers. In addition to the usual
postulates for a real valued inner product, they assumed
that (1) (ax,x) = a(x,x), (ii) (ax,y) = a(x,y) for a real,
(ii1) (x,y) =(G,x) and (iv) Rel|(ax,y)] = Rela(x,y)].
Since this inner product is not homogeneous with respect
to general Cayley numbers they defined a new
product ( , ) given by (x,y) = Rel(x,y)}. Using the latter
inner product they reproved or simply stated many well
known results for real Hilbert spaces. Their definition
of a subspace was simply a real subspace. Using known

results from spectral theory in real Hilbert spaces they
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obtained a spectral resolution for elements of the

Cayley Operator group, a concept defined in the paper.

In a second paper Goldstine and Horwitz (Goldstine,
H. H., and Horwitz, L. P., 1966) study the concept of a
Hilbert space over a finite dimensional associative
algebra. The spectral resolution for a bounded Hermit-
ian operator is developed and theory of preceeding paper
is shown to be a special case of the theory in this

paper.

Horwitz and Biedenharn (Horwitz, L. P., and
Biedenharn, L. C., 1965) study the structure of a Quantum
Theory described by a Hilbert space over an arbitrary
associative algebra with a unit. They show that the
minimal ideals of the algebra play a role analagous to

the bases in a complex Hilbert space.

Saworotnow (Saworotnow, P. P., 1968) generalizes
the spaces studied by Horwitz and Biedenharn. Saworotnow
studies the concept of Hilbert modules, which is a module
over a real H* algebra. He shows that the scalars con-
sidered by Horwitz and Biedenharn are a special case of

an H* algebra and hence his theory is more general.



III. Definitions and Terminology

In this Chapter the basic definitions and termin-

ology that are to be used throughout this paper are given.
A, Rings and algebras

Definition A ring consists of a set R : {a,b,c,... ,}

together with two binary operations +,-. In
addition the following properties are satisfied.
(a) With respect to + R is an abelian group
with the neutral element denoted by O.
The element inverse to x £ R is denoted by
~X.

(b) For any three elements a, b, and ¢ in R

as(b+ec) a*b + asc

i

(b+c)-.a ba + ca.

H

Definition Let R be a ring. The commutator [a,b] of

any two elements of R is defined as [a,b]l = ab-ba.
The associator of any three elements of R is
defined as (a,b,cj = (able - a(be). If [,]
vanishes identically on R, R is commutative.

If ( 4 , ) vanishes identically on R, R is
associative.

Definition An algebra A over a field F is a ring which is

also a linear space over F and the following is

satisfied.



13

(a) oca = a*« Vae A, aeF

(b) (xea)+*b = a*(ab) Va,b € A, «eF

Definition Let A be an algebra over a field F. A is

called an algebra with involution if there
exists an operation "-" on A satisfying the

properties for all a,b € A and «c¢F,

(a+b) = a + b
a*b) = b * a

@ = a

x*a = o°a.

Throughout this paper, the various algebras discussed will

be assumed to have the reals as the underlying field.
B. The Real Quaternions and Real Cayley numbers.

1. algebraic aspects.

The Real Quaternions (Cayley numbers) form an
algebra over the real field of dimension 4(8). 1If
the basis elements are denoted by {eo,el,eg,e3}

({eo,el,ez,...,e7}) the multiplication table for

the algebra is given by:
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Quaternion algebra.

® 0 ©1 €2 ©;
eo eo el 62 63
2
1

el el -eo e3 -e
62 82 —63 —eo e

63 63 82 -el —eo

Cayley algebra.

eo el 32 63 64 85 86 87
eo eO el 62 63 84 es e6 67
el el -eo e3 —62 e5 —eu -e 66
82 62 -e —eo el e6 97 -e —85
63 63 e -el —eo 97 —86 95 —eh
eu eq —e5 —66 - —eo el 62 63
e5 65 eu -87 66 —el -eo -€ 82
€4 e6 e eu —es —62 63 -e --e1
87 67 -e 65 eh —93 -62 el —eo

From the multiplication table, it is clear that the
Quaternion algebra (Cayley algebra) is associative but
non-commutative (non-commutative and non-associative).

It is also clear that each algebra has a unit, eq.
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Each Quaternion (Cayley-number) "a'" can be expressed

3
as a = ageq + J_ aye, (a = agjey + i%_ ape,) where the
k=1 k=1
aj are real numbers. Each Quaternion (Cayley number)

"a" has an involution which is given by

- 3 -
a = ageq - Z:. ape; (a = agegy - Z%: akek).
k=1 k=1
The "trace" of a Quaternion (Cayley number) "a" is
deflned as t(a) a + a. It easily follows that if
a = agey + é;ﬁ aje, then 2aj = —t(eja) J = 1,243, and

2ao = a + a. Also, the following theorem can easily be
proven.
Theorem 1. If a is any Quaternion with a = aneq + S akek.
Then =1
(i) E exae, = -2a
3 —
(ii) > eaey = 2t(a).

k=0

The (algebraic) norm of any Quaternion (Cayley number)
— - 3 5
na" is defined by n(a) = aa = aa. Clearly, n(a) = (E:Zak)eo,
7 2 k=0
( n(a> = ( Z ak)eo)o
k=0
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Every Quaternion (Cayley number) "a'" possesses an
-1 -
inverse defined by a = & . As a consequence of the
Y n(a) i
existence of inverses the Quaternions (Cayley numbers)
form a non-commutative (non-commutative and non-

associative) division algebra. (Kurosh, 1960).

Although the Cayley algebra is non-associative it
does have the important property (XKurosh, 1960) that
(a,a,b) = (byaya) = O for any two Cayley numbers a,b.

In addition it can be shown that (a™1,a,b) = (a,a™1,b) = O.
Such algebras are called alternative. In fact, it turns
out that every alternative division ring is either
associative or an eight dimensional Cayley algebra over
its center. (The center is the subset of the algebra
which commutes and associates with every element in the
algebra. The center of the algebras considered in this

paper is always the reals.)

Theorem 2. Let a be any quaternion such that na) = 1.
Then there exists a real number © and a
quaternion I such that 12 = -eq and

a = cos © eg + sin © I,

Proof. Since a = aneo + aje; + a262 + a3e3 and

2 o2 2.1/2
(al+a2+a3)

2 -
a +a2+a2+a2 = 1, one can take © = tan
081tz 5
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(a§+a§+a§)l/2 )

and I to be I

Then it follows

easily that a

H

cos © eg + sin © I.

Corollary Any quaternion a can be written as
a = r(cos © ey + sin © I), where r, © are
2
real numbers, I a quaternion such that I = -eqn.

I, ©, r all depend on a.

Definition Let I be any quaternion such that I2 = =eqe
Let © be any real number, then eIe is defined
as eIe = cos © eq + sin © I. It is easily

©
verified that eI has the following properties.

) I1(67+6,)
(a) eIe1 e

I-©
(b) e = eo

Ie -I6
(e) e 1. e 1

@) ned = 1.

2. Topological properties.
Since both the Quaternions and the Cayley numbers
are algebras over the reals they are linear spaces over

the reals. Moreover, they are both finite dimensional.

The Quaternions and the Cayley numbers both form

normed linear spaces over the reals. If a is any
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Quaternion (Cayley number) the norm (topological) of

a is defined as lal = [n(a)l 172, 1t is easy to
verify that "} 1" satisfies the properties of a norm.
Using the completeness of the reals the following theorem

can easily be proven.

ITheorem 1. With respect to "1 1", the Quaternions

(Cayley numbers) form a Banach Space.

If a,b are any two Quaternions (Cayley numbers) then
(a,b) is defined to be (a,b) = #t(ab). It is elementary
to show that ( , ) has the property of a real inner
product. Moreover, since (a,a) = ¥t(aa) = lal® the

following is true.

Theorem 2. With respect to ( , ) the Quaternions (Cayley

numbers) form a real Hilbert Space.

C. The Real Cayley-Dickson algebras.

If A is an algebra over a field F of dimension
n, a new algebra B of dimension 2n can be constructed
over the same field by a process known as the Cayley-
Dickson process (Schafer, 1966). Algebras constructed
in this manner are called Cayley-Dickson algebras.
Although only the real field will be used in this
paper, it should be noted that the process is valid
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for arbitrary base field (Schafer, 1966) and more
generally for algebras over a commutative, associative

ring (Penico, 1968).

The process will now be described. Let A be
an algebra of dimension n over the reals with unit 1
and involution "-". Define B to be the set of all

ordered palrs (a;,a,) with a £ A,

1022
If b = (al,a2) is any element of B and o is any

real number, define ®&-b = (dea;,daeas). If b' = (a3,au)

is any other element of B then define b+b!' = (a1+a3,a2+a4)

and beb'! = (ala3+ﬂ-a4-§2,§lau+a3a2).where # is a real

number different from O. B now becomes an algebra

with respect to the operations of scalar multiplication,

+,*. The identity for B is the element (1,0).

Moreover, the sub-algebra B' = {(a,O)\ ae Al is

isomorphic to A. The element e = (0,1) is an

element of B with the property e2 = m(1,0) = pmel,

1 being the identity of B. If the elements of A are

identified with the elements of B' then every b € B

can be expressed as b = aj + ea,. Multiplication

is then given by (aj+eaj)(ajtea) = (a1a3+‘paq§2)

+ e(§1a4+a3a2). An involution can be defined in B

as follows: For bé¢ B, b = a; + ea,, define

= Ei - ead,. It is easily shown that - satisfies

the requirements of an involution.
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It can be shown (Schafer, 1966) that the new
algebra is alternative if and only if the initial

algebra is associative.

The Quaternions and Cayley numbers arise
naturally from this process. If the initial algebra-
A is the complex numbers and 4 1s taken to be «= -1,
the resulting algebra B is the algebra of real Quaternions.
If A is the real Quaternions and « is -1 then B is
the real Cayley algebra. Hereafter, the following

notations will be used for the various number systems.

Re - real numbers
XK - complex numbers
- Quaternions

Cayley numbers.

D. Linear Spaces Over the Real Quaternions.

Definition A (right) linear space over Q is an additive

abelian group in which there is defined an
operation of scalar multiplication by elements
of Q. Scalar multiplication is assumed to
obey the following laws for all x,y € L,

a,b € Q.

(i) (x+y)ea = x+a + ye-a (iv) Xeeq = X
(ii) x=(a+b) = x*a + X<b
(iii) =x-(a.b) = (xa)+b
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A left space is defined similarly. The
choice of scalar multiplication is more or

less arbitrary.

Example 1. Let L = { (xl,x2,...,xn)( X5 € Qy . 1r X,y
are any two elements of L with x = (xl,x2,...,xn) and

y = (yl’y2’.'.’yn) then Xeot = (Xl°¢,X2'u,...,Xn’°‘ )

X+ y= (xl+yl,x2+y2,...,xn+yn).

Example 2. Let X be any nonvoid set and F(X) the
collection of all Quaternion valued functions defined
on X, If f,g € F(X) then (fea )(x) = f(x)+* and
(f+g)(x) = f(x) + gx).

It should be noted that the fundamental theory of
finite dimensional linear spaces over associative division
algebras is well known (Jacobson, 1953). The definitions
of basis, dimension, subspace, etc. are exactly the same

as those in the complex case and will not be given here.
E. Linear Spaces Over the Real Cayley Algebra.

Definition A (right) linear space over the real Cayley
algebra is
(i) a right linear space over (Re)e,
(ii) L is closed with respect to a multiplication
on the right by elements of the Cayley

algebra.
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(iii) This scalar multiplication is assumed
to obey the following rules (for all
X,y € Ly, a,p e C).

(a) (x+y)e& = xeat + you
Xx(d+P) = Xe® + X-p
Xee, = X.

(b) Define [ x,u,p]
Then [x,%,& 1]

(xe0)p - x-(ap).

i

[X,Nﬁl,ﬂl = [X,u,«] = O.

(iv) There exists a non-trivial real subspace
Lp of L such that [x,x,8] = O for all
X & Lp and A,p € C.

(v) Every x € L can be expressed uniquely

7
as X = 2:% xjej where the xj £ LR and
J:

the ej are the Ca&ley basis elements.

Definition A Cayley-Subspace M of L is a real subspace

of L such that for every pair x,y € L and

every oatC, x + y £ L and x® € L,

Example 1. Let L ={ (x7,x ,...,xn)\ x. &€ C}. 1If x,y

2 J
are any two elements of L and & is any Cayley number then
define X + y = (Xl+yl,...,xanh) and Xeo = (Xi“,x2’u,.ooxnou).

With these definitions L is a linear space over the Cayley
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Numbers. I_.R in this case is the real subspace

Ly = {(xl,...,xn)l Xy € Re} .

Example 2. Let X be any nonvoid set and F(X) the
collection of all C valued functions defined on X. For
f,g € F(X) and «eC, define (f+g)(x) = f(x) + g(x) and
(fex )(x) = f(x)®« ., With these definitions F(X) is a
linear space over C. FR(X) is the real subspace of

F(X) consisting of real valued functions on X.
., Linear Transformations and Linear Functionals.

In the following, let F be either Q or C or a
subalgebra of Q@ or C.

Definition Let L, and L2 be (right) linear spaces over

1

F. A mapping T: Ll—> L2 is called

(i) additive if T(x+y) = T(x) + T(y) ¥ X,y ¢ L,
(ii) D homogeneous if T(xe.o ) = T(x)®* for
every o &eD where D is a subring of F.
(iii) F homogeneous if T(x-« ) = T(x)o VF,

(v) Linear if both (i) and (iii) hold.

Definition Let L be a linear space over F. A mapping

f: L -—» F is called a linear functional if
f(x+y) = £f(x) + £f(y) and f(x.x ) = f(x) &

for every x,y £ L, ael,



Examples of linear transformations and linear

functionals will be given in a later section.

Definition Let L be a linear space over F and T a
transformation of L into L. A subspace M
of L is called an invariant subspace if T is

T(M)C M.
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IV. Normed Linear Spaces over Q and C
A. Definitions and Examples.

In the following, F will denote either the real

Quaternions or Cayley numbers.

Definition A linear space over F is called a normed

linear space if there exists a function

l{ll: L — Re with the following properties.
(1) x>0 Vv x € L and |Ix|l = O iff x = O.

(ii) Hxeaxll =) xll<ikl V x € L and « e F.

(1 1 is the norm in F).
(iii) Hx+ylls Uxll + (yt v x,y € L.

As usual, if p is defined by p(x,y) = lix-yli,
then p is metric and the space is topologized

by this metric.
In view of the inequality |fixIl =y
¢ liIx-y!ll the norm !l llis a continuous real

valued function of its argument.
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Definition A linear space L over F with a topology T

is called a topological linear space if
addition and scalar multiplication are con-
- tinuous with respect to the topology on L.
Using the properties of the norm the following

theorem is easy to prove.

Theorem l. Any normed linear space L over F is a topolog-
ical space if the topology is defined by the
metric p(x,y) = W x-ylil .

1. Examples of Normed Linear spaces.

Example l. Let L be the linear space over F defined by
L= { (xl,...,xn)lxj ¢ F} with operations defined point-
2)1/2

n
wise. For any x € L, define |ixif = (3 Ix, |
k=1

It is easy to verify that this function satisfies the

properties of a norm.

Example 2. Let X be any topological space and B(X) consist
of the collection of all F-valued bounded functions on X.

(i.e. suplf(x)l<o for every f eBX).) For f ¢ B(X) define
xeX

HEN 4y = suplf(x)l. The set B(X) becomes a linear space
x X

over F if (f+g)(x) = f(x)+g(x) and (f.x )(x) = f(x).x .

With respect to ltuu, B(X) is a normed linear space over F,
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Example 3. Let L be the collection of all continuous F
valued functions defined on [a,b) . L is a linear space
over F if the operations are defined pointwise. L

b
becomes a normed linear space if for £f € L NWfll= j | £(x)]

a
Example 4., Consider the set [0,2W] with ordinary

Q

Lebesque measure. Any Quaternion valued function f on

[0,2™] can be expressed as f(x) = 2%: f. (x)e, where
k=0 k k

the fy are real valued functions on {o,om] .

3
Definition A Q-valued function f = 3 ~ fye, defined on

X=0

k

[o,211) is Lebesque-measurable iff each of

the fk are Lebesque measurable.

P
Definition Let P » O. Then LQ[_O,2H] is defined to be

the class of all measurable Q-valued functions defined on

[0,2T] such that IfjFP € L

Re

for all f € Lg[o,zn] . It

is clear that if f ¢ Lg then f*x is also in Lg for every
*€e€Q, Since \f+g|p$ Psi? + lglp). Lg is also

closed under addition. Therefore £he class LS[O,Zﬂ} is

a right linear space over Q.
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Definition For f ¢ Lg, l!f(lp is defined as

o 1/
NfuP:” :fnp) P
0

From the definition of ||| its easy to see that
fifee M, = (f 1, +lal. To show that Illl, satisfies the

other properties of a norm is non-trivial.

The proofs of the following two theorems carry over
from the usual proofs directly and will not be given

(Royden, 1969).

Theorem 2. (Holder, P > 1).

1
Let f ¢ Lp, g ¢ Lg where % + %T =1, and P > 1.

Then f-.g ¢ Lé and
ot om or

(1) {f f-glsf | feg | (ii)jnlf'g\stlHy§lng,
0 0 0

1

2
uii)lf‘f-g i, - Helly,
0

Theorem 3. (Minkowski).
p :
Let f,g ¢ LQ. Then \\f+g\lp < \\f!lp + \!g!lp.

Now if functions that are equal almost everywhere
P
are identified, the space LQ[O,ZNJ becomes a normed

linear space over Q.
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B. The Ring of Linear Transformations on a Normed

Linear Space over F.

l. Semi-linear Transformations.
The definition of a linear transformation has been
given in IIT. There is another type transformation

which proves to be important in later work.

Definition Let Ly, L, be linear spaces over Q. A
transformation T: Ll - L2 is called semi-

linear if

(1) T(x+y) = T(x) + T(y).
(11) T(x*« ) = T(x)®" where 'is an
automorphism of « .
It should be noted that every auto morphism of Q
is an inner auto. morphism. That is, o' = pap~l for some
p Q. (MacDuffee, 1940). Also, since IBag~1l=1x1
for every wyfp € Q, every auto morphism is continuous with

respect to the norm topology for Q.

Example l. An example of a semi linear transformation
on a linear space L over Q is scalar multiplication.
For if T, 1is defined by T, (X) = xeA , then T, 1is
additive and T, (xex ) = (xea )ex = (xeA )e(Alior)

= T, (x)..
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One very important property of a semi-linear
transformation T is that it is always homogeneous with
respect to real scalars. Thus, any semi-linear transformation

in always a real-linear transformation.

Let Ly. be a linear space over Q and S(Ll) the class
of all semi-linear transformations of Ll into Ll’ Then

the following is true.

Theorem 1. The class S(Lj) is a semi-group with respect
to the operation of composition and S(Ll)

possesses an identity.
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2. Continuous Linear Transformations.

In the following F will denote either Q or C.

Definition ILet L,, L, be normed linear spaces over F

with norms \l\h, Hlb respectively. Let T
be a linear transformation of Ll into L2.
T is called continuous if for every sequence

{ xnl from L, such that xp — x, T(x,) — T(x).

The following theorem gives‘some equivalent conditions
for a transformation to be continuous. The theorem is
stated only for additive, real homogeneous transformations
but since any linear (or even sémi-linear in the case of
linear spaces over Q) transformation satisfies these

conditions, the theorem is quite general.

Also, since any linear space over F is also a linear
space over Re, the usual proof suffices (Simmons, 1963) and

therefore will not be given.

Theorem 1. Let Ll, L2 be normed linear spaces (with
respective norms i) and |IH2) over F. Let
T be a real linear transformation of L1 into

L Then the following are equivalent.

2‘
(1) T is continuous.

(ii) T is continuous at the zero vector.
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(iii) There exists a real number Ky that

HT(x)!QZs KT!lxlll for all x ¢ L.

(iv) I8 ={ x| llxll; ¢ 1} then T(S,) is

bounded in L2.

3. The Topological Structure of R*(L).

In the usual complex linear space case the collection
of all linear transformations on a linear space form a
complex algebra. Since the linear spaces under con-
sideration here are one sided spaces over non-commutative
division algebras this will no longer hold. However, the
collection of linear transformation on such spaces forms

an interesting structure as will now be shown.

Let R(L) be the linear transformations of L into L.
For Ty, T, ¢ R(L) define (Ty+T,)(x) = T (x) + T,(x) and
(Tl'Tz)(x) = Tl(TZ(x)). Then R(L) is a ring with respect
to the operations of + and *. It's clear that R(L) is an

associative ring but it may be non-commutative.

Definition Let R*(L) be the subset of R(1L) that consists

of all bounded linear transformations on L.

For each T ¢ R*(L) define iiTli* = sup J\T(x))l.
N xll=
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It's clear that R¥ is a subring of R and it will be

shown that R* is actually a topological ring. That is,

the operations of multiplication and addition are continuous.

Theorem 1. The real valued function I, has the

following properties.

(1) HT It > 0 and NI, = O iff T is the
O-transformation.
(11) WT+T M0, ¢ NT W+ UT I for all
*
Tl,T2 £ R*,
Proof. (i) follows from the fact that X!l 5% O for all
x € L and lHTH = 0 iff ™ = 0. (ii) follows
from the inequality ITq(x) + T2(x)lls HTl(X)l!

+ l!TZ(X)!l for all x € L.

A metric can now be defined in R* if one defines
= - i € R*. i
P(TI’TZ) HT1 T2l(* for any pair Tl’ T2 R This
induces a metric topology on R* and moreover with this

topology R* is a topological ring.
Lemma 1. If T,, T, € R* then UTl'TZlI* < llTllS* lsztl*

Proof. HTl-T2t|* = sup { Tl(TZ(x))}
xif=1

ey 7,00, ¢ sup{ T , UT,GON]

nxn=1
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< T = ‘
ney TU, NI ﬁ&ﬁji“ Reoll) WM, W0
Theorem 2. Multiplication and addition are continuous

operations in the topology of R¥*.

Proof. That addition is continuous follows immediately

from the inequality T +T W < {lT M, + HTZH*

Let {_Tn} and {T;} be sequences from R* such that

lim Tn = T and 1lim Té = T'. (The limits here are to be
n-> oo N2«

interpreted as (I, limits.)
1 _ ' ! !
Wo, 1) - TeTl, = WT (T - T) + (T -T)T n ..

From Lemma 1 and the triangle inequality for n|& it

follows that

! ' - 1 ! H
Wp T - T-TH, ¢ Wr M, T =T o+ WD =T, WT .,

From this it is clear that lim Tn-T' = TeTt,
n n

Tt will now be shown that if L is a complete metric
space with respect to the metric P(x,y) = W x-yli then

R* is complete in its metric.

Lemma 2. If"{Tn} is a Cauchy sequence in R* then

{ Tn(x)} is a Cauchy sequence in L for any x ¢ L.
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Proof. Let {T_ } be a Cauchy sequence in R*. Then
i - = - £ -
Tn(x) T, (X1 H(Tn Tm)(x)ﬂ “Tn Tmil*llxu
and clearly {T,(x)} will be a Cauchy sequence

in L.

Theorem 3. The metric space R*¥ is complete whenever L

is complete.

Proof. Let { Tn} be a Cauchy sequence in R*., Then
by Lemma 2 {Tn(x)} is a Cauchy sequence in L
for each x ¢ L. But since L is complete there
exists a y ¢ L such that y = 1lim T (x). Hence,

n—>e
define T(x) = y = 1lim Tp(x). Since each of T,

n->oe
are linear transformations it is clear that T € R.
It must be shown that T € R* and that {,Tn} converges

to T in the metric for R*.

To show that T is bounded, the fact that {:Tn} is
"Cauchy" will be used. There exists an integer N5 such

that \lTn-Tml)*< 1l for all nym » N But it follows from

OC

this that WT H < 1 + HT_ Ul and hence for each x € L,
n % m ok

T (x)H € (1 + HTmll*)ilxll for all n,m > Ngo. Using

the continuity of the norm it follows that

HT(x)Il ¢ (1 + NTmli*)llxllfor all m € Ny. Therefore,

T is bounded and a member of R*.

Since HT -T I =  sup {HT. (x) - T(x)!
n * pxi=1 2 J
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it's clear from the definition of T as the 1 JJ 1limit of

the sequence Tn(x) that Tn-* T in i limit.

C. Linear Functionals, the Hahn Banach Theorem, and the

Conjugate Space.

1. The Soukhamlinov Theorem and its Consequences.
Unless stated otherwise, all linear spaces in this

section will be right spaces over the real Quaternions.

Definition A mapping f: L — Q where L is right linear

space is a linear functional if

(a) flx+y) = £(x) + £(y)

(b) flxem ) = F(X)ep .

The set of all linear functionals on L is

denoted by L#.

The set L# can be made into a left linear space over
Q as follows. Define (f+g)(x) = f(x) + g(x) when f,g ¢ L#
and ( A«f)(x) = Af(x). It is easily verified that with

these operations L# is a left linear space over Q.

It is because of the non-commutative properties of Q
that L# must be a left linear space rather than a right
space. For if one defines (f+A )(x) = f(x)+A , then
(£er M(xp) = £(xep)A = £IMA # £(XIAp = (£ )(xIM .
Thus, under such multiplication ¥ is not necessarily

closed.



37

The question now arises as to whether L# is wvoid
or trivial, since f(x) = OV xe L is a linear functional.
The answer to this question as well as to questions about
the nature of certain subspaces of L# follows from a
theorem due to Sukhomlinov, (Sukhomlinov, 1938). It is
known as the Hahn-Banach Theorem for the case of real and

complex linear spaces.

ILemma 1. Let f be a linear functional on a linear space L
over Q. Then there exists a real valued, real linear

3
functional f, on L such that £f(x) = fo(x)eo - g_l fo(xei)ei

for every x £ L.

Proof. Since f: L — Q, f can be expressed as follows.

3
For each x ¢ L, f(x) =3 f,(x)ey where the f,
k=0
are real valued linear functionals on L.

Since f is linear, f(xej) = f(x)ej for j = 0,1,2,3.

3

Hence, f(xej)::zfi fyﬂxej)ek = (s fk(x)ek)ej. After
k=0 k=0

a little algebra it follows that fj(x) = —fo(xej) for

3
j = 1,243. Therefore, f(x) = fo(x)eo - 2 : fo(xej)ej.
J:

Lemma 2. Let L be a linear space over Q. Let h be a

real valued, real linear functional on L. Then the

functional H(x) = h(xeo)eO - %ii h(xek)ek is linear

on L.
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It is clear from the properties of h that H is
additive and homogeneous with respect to real

3
scalars. H(xel) = h([xel]eo)eO - %;i h([x ei]ek)e

and by the associative postulate for scalar multip-

k

lication this can be written as H(x el)

3
= h(x(eleo)eO - g;é h(x (elek))ek. Writing out

the summation yields,
H(xel) = h(xel)eO + h(xeo)e1 - h(xe3)e2 + h(xe2)e3.
But this last statement can be written as

H(xe1)=(h(xeo)eo-h(xel)el-h(xez)ez—h(xe3)e Ye or

3771
H(xel) = H(x)e;. Similar computations yield
H(xe ) = H(x)e'j for j = 2,3. Therefore H is
J
homogeneous with respect to scalars from Q and

consequently H is linear.

Theorem 1. (Soukhamlinov) Let L be a (right) linear

space over Q and M a subspace of L. Suppose

f is a linear functional whose domain is M

and has the property If(x)! £ p(x) for all

x € M where p is a real valued functionél de-
fined on all of L with the properties;

(1) p(x)» 0, (ii) p(x+y) ¢ p(x) + p(y), and
(1i1) p(x-«) = p(x)ixl . Then there exists an
extension F of £ to all of L with the property

that |F(x)l¢ p(x).
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Proof. Since f is linear it follows from Lemma 1 that

f(x) = fo(xeo)eo - EEE fo(xek)ek, where f, is a
k=1
real valued real linear functional on M.

By hypothesis |f(x)l ¢ p(x) for all x ¢ M and
consequently fo(x) ¢ p(x) for all x € M. The "real"
Hahn-Banach Theorem can now be applied to fo to yield the
existance of a real-linear functional F, which extends
Fo to all of L with the property that Fo(x) € p(x) for
all x € L.

Define the functional F on L as follows.

3

F(x) = Fo(xeo)eo - 5:& Fo(xek)ek for all x € L. By Lemma
k=

2, F(x) is a linear functional. Moreover, for x ¢ M

Fo(xek) = fo(xe,) for k = 0,1,...3. Hence, F(x) = f(x)

and therefore F is an extension of f.

If F(x) = O for all x € L then F(x) = p(x)

trivially. Suppose that F is not identically zero.
F(x)

IFGoOL -
l#l = 1 and F(x) = |F(x)I# . It now follows that

Then

Let x&¢ L. Choose me€e Q@ such that M=

F(x)f = F(x@) = [F(x)I 14?2 = IF(x)|. Therefore F(xh )
is real and consequently F(xg ) = Folxm )eo. But
Folx@) ¢ p(xfg) = p(X)pl = p(x). Using the fact that

F(xg) = IF(x)l it follows that [F(x)l¢ p(x). Since

this is true for every x € L the proof is complete.
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Definition Let L be a normed linear space over F = Q or

C. A linear f on L is called bounded if

LE(x)1 ¢ ke ix1t for all x e L, where ko> O
and depends only on f. L* will denote the
class of all bounded linear functionals on
L. For £ &€ L* the norm is defined to be
Hflt = sup If(x)l.

itxn=1
It follows easily from the analogous theorem for
bounded linear transformations that a linear functional

f on L is continuous iff its bounded.

Corollary 1. Let M be a subspace of a normed linear space

N, and f a bounded linear functional on M. Then f can be
extended to a linear functional F defined on all of N
such that HFIl = Hfll .

Proof. Define p(x) = Hfli «lixit . Then If(x)l ¢ p(x)
for all x € M. By Sukhamlinov's Theorem there
exists a functional F that extends f and
IF(x)l € p(x) =ufi«nxilt for all x € L.

~

It follows that WFHW = sup |F(x)| ¢ Hfil , But
xi=1

since F is an extension of f, HFIl > Ufll.

Corollary 2. If N is a normed linear space, Xy @ non zero

element of N, there exists a linear functional F on N such

that F(xg) = Il xgll and IWFIl = 1.
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Proof. Let M = {xoutueq} and define f(xgy o) = o-lxqil .
Then f(xo) = !IxOH and Uflf = 1. Now apply

corollary 1.

As remarked previously, the initial goal of this
section was to answer the question of whether the space
L# is non-trivial. The question can be answered affirmatively

in the following sense.

Theorem 2. Let L be a linear space over Q and L* the
class of continuous linear functional on L.

Then 1L* is not trivial.

Proof. Let x € L and x # 0. Let M =§{ x«! ®eQ}. Then
M is a subspace of L. Define the functional f on L
as. follows.

f(x-%) = llxlia. Clearly f is a bounded linear
functional on M. By corollary 1,f can be extended
to a functional F defined on all of L without change

of norm. Hence F € L¥*,

The next application of the Sukhamlinov Theorem is

related to the separation of convex sets in linear spaces.

Definition A subset K of a linear space L over Q@ is convex
for every pair of real numbers «,p , for

which «+p =1, x&a + yp & K for all x,y € K.
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A subset K of L has an internal point if
for each y € L there exists an € > O such

that x + yx € X for ixl<e .

Let L be a linear space over Q@ and f a functional
on L, The functional f separates the subsets

My N of L if there exists a real constant c

such that t(f(M)) » c and t(f(N)) s c.

Here t(f(x)) = f(x) + T{x).

The following theorem is well known for real and

complex linear spaces (Dunford & Schwartz, 1958). Only

the case for real spaces will be needed.

Theorem 3.

Theorem 4.

Let M and N be disjoint convex subsets of a
linear space L (over Re), and let M have an
internal point. Then there exists a non zero
linear functional which separates M and N.
This Theorem can be extended to the case of

linear spaces over Q as follows.

Let M and N be disjoint convex subsets of a
linear space L over @, and let M have an in-
ternal point. Then there exists a non zero

linear functional which separates M and N.
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Proof. L may be regarded as a linear space over Rg and
consequently by the preceeding theorem there
exists a functional f on L such that
(a) fx+y) = f(x) + £(y)

(b) f(x-«)

f(x)« for « real. Moreover there
exists a real constant ¢ such that £(M) 2 ¢

while f(N) ¢ c.

As in the proof of the Sukhamlinov Theorem, define

. 3 i
the functional F(x) = f(xeo)eo -s f(xek)ek. This is a
k=1
linear functional and F separates M and N.

2. The Canonical Embedding of a linear space L over Q in
(L*)*,
If L is any right linear space over Q then L* is a
left space over Q. The conjugate of L* denoted by L¥**

will now be considered.

Clearly, L** must again be a right space over Q. The

question naturally arises as to how L** and L are related.

As in the case for real and complex spaces every
x ¢ L gives rise to an element F, in L**, The mapping is
given by x — F, where F, (f) = f(x) for any f & L*,

Clearly Fy is linear.
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The norm on L** is defined as follows:

Hr_Hl = sup {lFx(f)l} = sup { {f(x)l}. From this
x TESI WEh=1
it follows that HF, M < sup { Hfi-uxu} = uxu.
NEN=1

But by corollary 2 of the Sukhamlinov Theorem it follows
that |[Fxll > Hx |l and consequently WF \\ = wix\.
Therefore, the mapping of L into L** is norm preserving.
The Mapping J: L — L** given by J(xX) = F, is a linear
mapping. For if x,y € L, J(x+y) = Fy+y and if £ £ L¥,
Frey (£) = £lx+y) = £(x) + £(y) = Fu(f) + F (£)S I(x+y)

H

J(x) + J(y). Also, for A€ Q and x € L, J(xA)-f

i

Fy, (£) = fxa) = £(xIA =[J(x)A).f. Consequently,

J is linear and by the preceeding remarks it is an isometry.
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D. Linear Functionals on Linear Spaces over C.

Definition Let L be a linear space over C. A functional

f: L— C is called linear if

(1) flx+y) = £(x) + £(y),

(ii) f(xa) = f(x)-a for all x,y € L and a e C.
If (i) holds and (ii) hold for all a £ D
where D is a subalgebra of C, then f is

called D-1linear.

#

Tt should be noted at this point that 1", the class

of all linear functionals on L, does not form a linear
space over C. It will become a linear space over Re

under the usual pointwise definitions of addition and

scalar multiplication.

The reason that L# is not a linear space over C appears
to be a direct result of the fact that C is not an
associative algebra. If scalar multiplication is defined
in the usual manner, that is, (a.f)(x) = a*f(x), then
since the associator (a,f(x),b) is not zero in general,

such a mapping will not yield a homogeneous functional.

The fact that L# is not a linear space over C eliminates
the possibility of embedding L in L**, Therefore, some of

the structure theorems for normed linear spaces over Q

(or K) will not carry over.
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In the following, some results about linear
functionals on linear spaces over C will be given and
finally an extension theorem analogous to the Soukhamlinov

Theorem will be proven.

Lemma 1. Let L be a linear space over C and f an additive
functional on L to C. If f is real valued and homogeneous

on LR then £ is linear on L.

Proof. Recall that [x,a,b]l = OV x ¢ Lp, 8,b € C.

For xe Lp f(xa) = f(x)a. From the axioms for

7
a linear space over C, for x ¢ L, x = 5 Xyl
k=0
where the x) € Lp. Now consider for example fxeq).
7
Since x :E;% X, €, s X&) can be written as
A
xeq = %l_o x, (eye,). Hence,

xe1:-xleo+xoel+x3e2—x2e3+x5e4—x4e5+x6e7-x7e6.
It follows that
f(xel)=-f(x1)eo+f(xo)el+f(x3)ez—f(x2)e3+f(x5)eLf
- f(xu)e5+f(x6)e7—f(x7)e6. But if f is real
valued on LR
f(xel)r[f(xo)eo+f(x1)el+f(x2)82+f‘(x3)e3+f(x4)eL+
+ f(xs)e5+f(x6)e6+f(x7)e7]el. or,

7
f(xel) = f(zgg xkek)el = f(x)ey. Using the same

methods it can be shown that f(xej) = f(x)ej for
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consequently linear.
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and

Lemma 2. Let L be a linear space over C. Let f be a

real valued, real linear functional on L such that

f(xej) = O whenever X € LR

7
F(x) = £(x)ey - T _ f(xej)ej is linear on L.
J=1

Proof. It follows immediately from the properties

that F is additive and real homogeneous.

x & Lo. Then F(xe ) = f(xeyleq - E%: f((xel)ej)e..

j=1

Since x ¢ L (xel)ej = x(elej). Thus,

R,

and j # O. Then the functional

of T

Let

J

F(xel) = f(xel) - EE: f(x(elej))ej. This equation

J=1

can be written as

il

F(xel)
+ f(xe%)e5+f(xe7)e6-f(xeé)e7.

But then

f(xel)+f(xeo)el—f(xe3)e2+f(xe2)e3—f(xe5)e4

F(xel) = K‘f(xeo>eo-f(xel)el-f(xe2)e2-f(xe3)e3

- f(xeh)eu—f(xes)es-f(xe6)e6-f(xe7)e7] el.

That is, F(xel) = F(x)ej. Again, using the same
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technique, it can be shown that F(xej) = F(x)ej
for 1 = 243,...,7 and x ¢« LR’ Therefore, F is

homogeneous on LR.

Since f(xe.,) = O for J» and x ¢ LR, F is real valued

on LR.

Lemma 3.

But then it follows from Lemma 1 that F is linear.

Let L be a linear space over C. If f is a linear

functional on L, then for every x € Lg (f(x),ej,ek) =0

for all

Proof.

Lemma 4.

i, k.

Let x € L. Then (xej)ek = x(ejek) for all j, k.

Hence, f((xej)ek) = f(x(ejek)). But since f is
homogeneous f(x(ejek)) = f(x)(ejek) and f(xej)ek
= A[f(x)ej] e, - Therefore, f(x)(ejek) = [f(x)ejl ey .

Let L be a linear space over C and let f be a

linear functional on L. Then there exists a real valued,

real linear functional fy on L such that f(x) = fo(x)eo

7
- 2 fo(xe,)ej for each x € L. Also, fo(xej) = O for

=1

J

each x & LR'

Proof.

Since f takes its value in C and f is linear,

f(x) can be written as f(x) = fo(x)eO + %gﬁ fk(x)ek

where the fj are realyvalued, real linear

functionals on L. By hypothesis f(xa) = f(x)a
for all a & C. Thus, f(xey) = f(x)ej for 3=03152404447



49

Consgider f(xel). f(xel) = fo(xel)eo + Efi fk(xel)ek

= (

Me

fk(x)ek)el. From this last equation, it follows

d

1
that fl(x) = -fo(xel). Similar computations yield

=1
Also, from lemma 3 and the fact f is linear it follows that

7
fj(x) = -fo(xej). Therefore, f(x) = fo(x)eo -5 fo(xej)ej.

fo(xej) = O.when x € Lpe

With these lemmas the main result of this section
can be proven. The statement of the theorem is almost
the same as the Soukhamlinov Theorem for linear spaces
over Q. However, there are some critical differences and

these will be pointed out.

Theorem 1. Let L be a linear space over C and p a functional
defined on L with the properties,
(i) px+y) ¢ p(x) + p(y)
(ii) p(x) 2> O
(iii) p(xa) = p(x).lal for all x,y € L, and a € C.

Let M be a subspace of L and f a linear functional
defined on M such that |f(x)]g< p(x) for all
x € M. Then there exists a functional F that

extends £ to all of L such that
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(1) Flx+y) = F(x) + F(y)

(2) F(xe.a) = F(x)a for a € Re

(3) F(xea) = F(x)a for x € Lp and a € C
() 1F(x) s p(x) for all x € Ly

Proof. From Lemma 4 there exists a real-valued, real

linear functional fO defined on M such that

f(x) = folxdeq —,ZE: fo(xej)ej for all x € M and
J=1
fo(xej) = O whenever, x € Mp and J = 1,2,...,7.

Since If(x)l < p(x) for all x € M it is clear
that f,(x) < p(x).for all x € M. The Hahn-Banach
Theorem can now be applied to yield the existence of
real-linear functional Fn which extends fy to all of L

with the property that Fy(x) < p(x) for all x € L,
Define the functional F on L as folows.

Y4

F(x) = Fo(x)ey - Z::FO(Xej)ej for all x € L. From the
J=1

proof of Lemma 2 it is clear that F is additive, real

homogeneous, and F(xa) = F(x)a for all x € Lp and a € C,
Moreover, for x € M, Fo(xej) = fo(xej) for j = 0,1,2...,7.

Hence F(x) = f(x) whenever x € M.

If F(x) = O for x € L then I1F(x)\ £ p(x) trivially.
Suppose that F(x) # O. Let x € Ly and choose a € C such

that a = F(x) . Then lal = 1 and F(x) = |F(x)]a.
|F(x) |
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It now follows that F(xa) = F(x)a = lF(x)lla!z = | F(x)l.

Therefore, F(xa) is real and consequently F(xa) = Fo(xa).
But Fy(xa) € p(xa) = p(x)lal = p(x). Hence
IF(x)} ¢ p(x). Since this is true for any x € Ly, the

proof is complete.

The differences between this Theorem and the
Soukhamlinov Theorem are clear now. The extended functional
is not homogeneous on all of L. Moreover, it is bounded

by p only on Li. These facts weaken the result considerably.

E. Banach Spaces over Q(and C) and Function Algebras

1. Definition and Examples

In the following, unless stated otherwise, F

will denote either Q or C.

Definition A normed linear space L over F with norm
is called a Banach space if L is a complete

metric space relative to the metric p(x,y) = Jlx-y 1l

P
Example 1. Consider the linear space Ly [ 0,21 . It has

already been noted that this space is a normed linear

2 1
space with respect to the norm l\f\ip = l~ylflp} P,
0

In view of the following theorem Lg‘:O,2TT] is a Banach

space.



52

P
Theorem 1. The Lg[ 0,2T] space (p » 1) is complete.
Proof. Let { f } be a Cauchy sequence in Lg. For

each n, £, can be written as f = 2%: fnjej

where the f; € L%e for each j. J=0

From Minkowski's inequality Iif+g nps Hfl!p + Ngllp,
it follows that each of the sequencesp{:fnj}

j = 0,1,2,3 are Cauchy sequences in LRe’ But

from the completeness of Lp. (Royden, 1969) there
exists function f; J = 0,1,2,3 in Ly, such that
Hlb-%im fn. = fj. Applying the Minkowski inequality

J

again it follows that the function f = fjej is
j*:o

in Lg and Il H-1im £ = f. Therefore,
P n n

LP is complete.

Q
Example 2. Let X be a topological space and consider the

class of function on X with values in F. FEach function f

DF
has a representation of the form f = ) fjej where the fj
3=0

are real valued functions on X and np = 3 or 7 depending

on whether F = @ or C.

Let B(X,F) be the class of all bounded functions
on X with values in F (that is, for each f £ B(X,F) there
exists a real number N such that |£(x)|< N where | | denotes

the norm (topological) of F). If (f+g)(x)= f£(x) + g(x)
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and (f.« )(x) = f(x)-«, then B(X,F) is a linear space
over F.
If for each £ € B(X,F) lifll_ = sup If(x)],
u
x € X
then B(X,F) becomes a normed linear space over F. More-

over, B(X,F) is a Banach space with this norm.
Theorem 2. B(X,F) is complete in the norm Il “u‘

Proof. Let {fn} be a Cauchy sequence from B(X,F);
Then given any & >0, there exists an integer
N(g) such that Hf, - fmlLé € for all n,m > N(e).
But it then follows that for all x € X that
| £h(x) - £, (x)| <€ and thus {fn(x)} is a Cauchy
sequence in F. By the completeness of F there
exists f(x) € F given by f(x) = 1lim fn(x). Since
each f  is bounded it follows thaﬁ'f is bounded
and therefore in B(X,F). That is, B(X,F) is

complete.

Definition Let X be a Topological Space., A function
f: X — F is continuous at Xo € X if given
any €> O there exists a neighborhood N(x)

such that |[f(x) - f(xgl)l<€ for all x e N(xo).
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Example 3. Let C(X,F) be the subset of B(X,F) consisting
of bounded continuous functions on X. Then C(X,F) is
also a linear space ovér F. Using the normed defined

on B(X,F), C(X,F) is a normed linear space. It will

now be shown that C(X,F) is a closed subspace of the

complete (metric) space B(X,F) and therefore complete.
Theorem 3. C(X,F) is a closed subspace of B(X,F).

Proof. Let f € C(X,F) . Then given € >0 there exists
foi C(X,F) such that lUif - fOHu< €£€/3. Let

x € X. From the continuity of f_  there exists

a neighborhood N(x) such that fog all x € N(x),
[f(x') - £f(x)|l< £/3. Consequently,
LE(x")-£(x) s 1£(x")-fo(x") +1f5(x")-£5(x)1

+ 1 £(x) - f5(x)l<2 for all x' & N(x). Since €

and x were arbitrary £ is continuous on X and

C(X,F) = C(X,F).
Corollary C(X,F) is a Banach Space over F.

2, The Function Algebras C(X,F)
Let F be a Cayley-Dickson algebra over Re of

n-1
dimension n. Each a € F can be exXpressed as a = 2:: ajej
Jj=0

where the aj € Re and e:j are the basis elements of F.
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A norm can be defined in F if for each a € F,

n-1 o11/2
lal = { ] . Using the completeness of the

PR
J=0
Reals it is not hard to show that F becomes an

n-dimensional Banach space over Re.

Definition Let X be a topological space. A function
f from X to F is continuous at Xo € X if
for any € > O there exists a neighborhood
N(xg; € ) such that for all x e N(xp; € )
£ (xg) - £lx) <€,

Let X be a topological space. C(X,F) will denote
the class of all bounded continuous F-valued functions
on X. C(X,F) becomes an algebra over Re if the operations
are defined pointwise. C(X,F) becomes a normed algebra
if for each £ € C(X,F) fil, = ng,§f(X)\' Using
essentially the same proof as in Theorem 3 of the previous
section C(X,F) can be shown to be complete. with respect

to this norm. Since lifogl{u s UeHl VW gll, the operations

are continuous and hence C(X,F) is a topological algebra.
Since F is finite dimensional every f € C(X,F) has
n-1
i form f = f.e. where the [
a representation of the fo %Eb 53 3

are real valued functions on X and the e; are the basis

elements of F. Moreover; it is clear that f € C(X,F)
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iff £. € C(X,Re) for each j.

d

The algebra C(X,F) has an involution "-" defined
by f(x) = F(x) where "-" is the involution in F. Since
[T(x)] = ITX)) = If(x)| for each f € C(X,F) and x € X
it follows that "-" is a continuous operation in C(X,F).

In general, C(X,F) will be neither commutative nor
assoclative. Also, C(X,F) will be infinite dimensional
for general X. Therefore, C(X,F) is a non-associative
analog of a Banach Algebra. It appears that no one has

studied structures of this type to date.

An analog of the Stone-Weierstrass Theorem will
now be given for algebras of the type C(X,F), where F

is any finite dimensional Cayley-Dickson algebra over Re.

Definition Let A be an algebra of functions defined on
a topological space X to a Cayley-Dickson
algebra F. Then A separates points (in X)
if to each pair of points x,y in X there

exists an element f € A such that f(x) # f£(y).
The following is well known (Simmons, 1963).

Theorem 4., Let X be a compact Hausdorff space, and let A
be a closed subalgebra of C(X,Re) which separates
points and contains a non-zero constant function.

Then A = C(X,Re).
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To generalize this theorem let F be any Cayley-
Dickson algebra of dimension n over Re. Let X be any
topological space. As noted previously, the class C(X,F)

is an algebra. Any function f &€ C(X,F) can be represented
n-1
S fi(x)e; where the fy € C(X,Re)
i=1

for each j. Each element of f & C(X,F) has a conjugate

as f(x) = fo(x)eo +

. = n-1
defined by f(x) = fo(x)eo ~ 5= fi(x)ei.
i=1
Theorem 5. Let X be a compact Hausdorff space, and let A
be a closed subalgebra of C(X,F) which separates
points and contains the constant functions

and fe A=> T ¢ A. Then A = C(X,F).

Proof. Let ARe denote the class of all real valued functions
in C(X,F). Clearly Ap is a closed subalgebra of
C(X,F). Moreover if f & C(X,F), f(x) = fo(x)

n-1

+ S5 fi(x)ei and f, = C(X,Re) for each i. Con-
i=1

sequently, if A, = C(X,Re) then it follows that

A = C(X,F).

To show that A, = C(X,Re) it must first be shown

Re
that ARe separates points. Let x,y be any two distinct

points in X. Since A separates points there exists
f £ C(X,F) such that f(x) # £f(y). But f(x) = fy(xleq

n-1
+'Z fi(x)ei and consequently fj(x) # fj(y) for at least

i=1
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one value of J. Since fk € ARe for each k it follows

that ARe separates points. Now to show ARe contains
at least one non zero constant function, let f be any
non zero constant function of A. The function f-T € Apo
and is a (real valued) non zero constant function.
Applying the preceding theorem it follows that

Ap, = C(X,Re). Therefore A = C(X,F).

F. Open Mapping, Closed Graph, and Uniform Boundness
Theorems.
Let L be a Banach space over the field F where
F is either Q or C. Then L is also a real linear space.
If T is a linear transformation of the linear space Ll
into the linear space L2 then T is clearly a real-linear
transformation of Ll into L2. Hence, the following theorems

(Simmons, 1963) are true, since their proofs depends

only on the fact that transformations are real homogeneous

and additive.

Theorem 1. (Open Mapping Theorem)

A continuous linear transformation T of a Banach

space L1 over F on to Banach space L2 over F is an open

mapping.
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Corollary. If Ly, L, are Banach spaces over F and T
is a one to one continuous linear transformation from

Ly onto L,, then T has a continuous inverse.

-1
Proof. Let O be open, L; = Range (T ), then
(r1)71(0) = 1(0) is open in L, = Domain (T-1).

Theorem 2. (Closed Graph Theorem)
Let Ly, L, be Banach spaces over F and T a linear

transformation of Ll into L2. If

(a) xp — x in L,

(b) T(xn)-—» y € Lo
then T(x) = y, i.e. the graph of T is closed.

Theorem 3. (Uniform Boundness Theorem)

Let Ll be a Banach space over F and L2 a normed linear
space over F. If {Ti} is a non-empty set of continuous
linear transformation of L1 into L2 with the property
that {T;(x)} 1is a bounded subset of L, ¥V x & Ly, then

{&\Ti\!} is a bounded subset of Re.

Theorem 4. A non-empty subset X of linear space L over

Q is bounded iff f(X) isa bounded subset of Q V f & L*,

2., The Conjugate of a Linear Transformation in L over Q.
Let L be a normed linear space over Q and

suppose T is a linear transformation of L into L.
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Define a mapping T#: L#7——> L# as follows:

Given £ € 1¥, let (T7f)(x) = £(Tx) ¥V x ¢ L.
T# is a linear transformation. For fl’fg € L#

and oy, &, & Q, then

Do o9+ 0,01 () = (oqfy+ af,) (Tx)

1

oy £, (Tx)+ %yf(Tx)

lo - T (2] O+ [ 77 (£,)] ().

#

To show that T? is actually a map of L¥ into L

consider the following
(T#2) (xo) = £(T(xa)) = £(T(x)x) = £(T(x))x = [(TE(xNex,
and TPr(xp+x,) = £(T(x3+x,)) = £(T(x) + T(xp))

- £(T(xp)) + £(T(xy)) = Thixp) + T'e(xy).

#

The question now arises as to when T" maps L* into

L*.
Theorem l. T#(L*) c L* iff T is continuous.

Proof. T is continuous & T(S) is bounded
& £(T(8)) is bounded vV f e L*

«> TFe(S) 1is bounded V f & L* &> TV

fe L*vf g L*

Now let T be a continuous linear transformation on L.
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By the preceding theorem T(L*) < T(L*). Therefore,

the conjugate T* of T is defined by T* = T#| .
. 1%

If R(L), R(L*) denote the rings of bounded linear
transformations on L and L* respectively then the mapping
T — T* is a norm preserving map of the ring R(L) into

R(L*).

The conjugate of an operator has the following

properties.
* *
* =
(a) (T1+T2) Tl + T2
* *
. * = .
() (T4 T2) T, T

G. Linear Functionals as Differentials of a Norm.

In the following, only linear spaces L over F = Q
will be treated. This section contains a slight extension

of the work of R. C. James (James, R. C., 1951).

Definition The differential of the norm in a Banach space

B(over Q or subfields of Q) at a point Xy B

is defined by

- !
D(xo;y) - 1im Hxo+ytil Hxgpl
t O t

provided the limt exists.

Lemma 1. If L is a right linear space over Q and f ¢ L#
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then f has the following forn,

f(x) = fo(x)eo - fo(xel)el - fo(xez) - fo(xe3)

where

fo(x) =4t 0 £x) = 3[f(x) + (%) J.

Lemma 2. D 5 (x3y) = limo A (x,t,y) exist for each
t ™

X,y € By, where AOD(x,t,y) = lx+yt 1l - Hx i
t

Proof. Let tl>' t2'> O and consider the difference

o Hxrytall =t W x+yt 1l +(t -t,) Wx
D (Xytq,7)= B(Xyty) = 2 1 1 2 1772
tlt
2
Since
= - {1
l|xt2+yt1t2ﬂ thl xtl+xt2+yt2tl
A thl+ytlt2u - Hx(tl-tZ)H
and
llxt2+yt1t2H - th1+ytlt2H > -(tl-tg)\lx\\

it follows that A(x,tl,y) - A(x,t5,y) > O whenever

ty > t,7 0. Hence, for decreasing t, the function is

non-increasing. Also,

-t Uyll - ixit
Hx+yt il = Hxit Hx
A(x,t,y) = % /4 %

Y -yl
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and consequently A is bounded below. If

D, (x3y) = lim O (x,t,y) and D_(x3y) = lim _O(x,t,y)
t-»0 t-=0

it is clear from the preceding remarks that both of these

limits exist.

Lemma 3. Suppose B is a real Banach space and f € B*,
Furthermore, suppose there exists x5 € B for which

f(xo) = ULl xgll . Then for every y £ B

HEH D_(xo3y) € £(y) ¢ L1 D (x55¥).

Proof. For any t> O f(xo + yt) s UE Wellxy + gyt or
f(xo) + f(y)t ¢ llfl&l\xo + ytil . But
f(xo) = l(fl(%lxoli so
Ue -l 1+ £(y)t € WEllllxg + yt1l and finally
this can be expressed as
+ f(yjt < Hf‘\([llxo + ytll - lleH] .

Recalling the definition of & (x,t,y) it is clear
that U fH O (x5,-t,y) ¢ f(y) s I F HA(xgyt,y)
and on taking the limit as t— O this expression

yields Nfll D_(xo;y) < f(y) ¢ uf 1 D+(x0;y).
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Definition The norm " || 4" in a Banach space B (over Q)

is differentiable at XO € B if
NXAHTE H =X~

lim 0 0
t 0 t

exists for every y £ B.

From Lemma 3 and the preceding definitions the following

Theorem is clear.

Theorem 1. Let B be a real Banach space and f € B*, If
there exists x5 € B such that f(xo) = I flt%\xon
and D(x,3y) exists, then for y e B
£(y) = nfil- D(xg3y).

Theorem 2., If D(xo;y) exists for x4y € B, then D(XO; ) is

in B* with !ID(xy3 )!l=1and D(xo;xo) = llxoll
Wxatyt i = fixplt WX~ + Hytll = fixAll
Proof. |A(x ,t,y)l = © ,S‘ O O
0 t t
which implies
l[}(xo,t,y)l <1
Hyh -
for all y # O and consequently
A ,t,7) ]
1im ‘ o £ 1 ==>!ID(xO; yH e 1,

t O Hyn
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. 1+t-1
But D(xo;xo) = lim (l+§ i xO\l = !leH

t O

and consequently )lD(xO; YW= 1. It has been shown
then that D(xy3) is a bounded functional of its
second argument and it will be sufficient to show
that D(xo; ) is additive to prove that it is a
member of B*.

To do this consider the following:

D(xo;y+z) - D(xO;y) - D(xgy32)

Hxg+(y+2z)til + Nxo=-yt I+ Hxg-zti =311 x|
= 1im
t -0 t

But
on+(y+z)tH + Hx -yl + Hxy-ztlh -3 xgll > O,

Since the expression is decreasing as t — O the

limit must be zero and therefore D(xO; ) is additive.

As a consequence of these Theorems the following is true.
(a) if the norm of the Banach space B{over R ) is
differentiable at each x € B

(b) and given any f € B* theorem exists Xo € B for which

f(xo) = I(f\\ilon .

Then for every y€ B £f(y) = £l D(xO;y). Therefore

for such Banach spaces (over Re) there is a representation
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for the bounded linear functionals on B.

There is a class of Banach spaces for which (b)

always holds. These are known as uniformly convex spaces.

Definition A Banach space (over Q or subfield of Q) is

uniformly convex if given any € > O there
exists a 6> O such that Nx+yl¢ 2 -§

whenever I x Il = llyll =1 and |l x-yll>e .,

Theorem 3. If the norm in a uniformly convex Banach Space

B (over Re) is differentiable at each non-zero
element of B, then for every f € B* there

exists a unique X € B such that

Hxell = 1 and £(y) = {ifl] D(xp3y) for all
yEBo '
Remark. If it can be shown that for every f € B* there
exists a unique xp € B with Itxfl\ = 1 and f(xf) = It

then the conclusion will follow from Theorems 1, 2.

Proof.

Since the IHfll = sup | f(x)! there exists a

xi=1
a sequence { x } with Hx Il = 1 for every n
and lim f£(x,) = HIfll. By hypothesis B is uniformly

n

convex so for any € > O a 8> 0 can be chosen such
that for all lixU = lyll =1
Hx-yll € S [Ix+yll< 2 -§. Now choose an N such
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that f(x,) > Ifh (1 - %) whenn > N. If
} 5
n,m> N fx+x ) = £x,) +H(x ) > 20fil (1 - -2-)

Wi (2 -6).

4

But by definition of Wfll, flx +x ) € lif Hllxn+me .
Hence, Wxp+x 11> 2 -8 and by uniform convexity
|txn—xm\l<5 . Therefore, { x,} 1is a Cauchy Sequence
and since B i1s complete, there exists xo € B such

that 1lim Xn = Xge But f is continuous, and con-
n

sequently lim f(xn) = £l = f(xo) and it is clear
n

that llxoll = 1.

From this Theorem the following important Corollary can

now bte derived.

Corollary. Let B be a (right) Banach Space over Q which
is uniformly convex. Suppose the norm is differentiable

for each x € B, Then for each F € B¥* there exists a

unique Xp in B for which
F(y) = leOli[ D(xp3;y) - D(xpsye;leq - D(XF;yeZ)ez_D(xF;yeB)ei]
where Fo(x)== 4t (F(x)) and y is any element of B.

Proof. Fgy is a bounded real linear functional on the Banach

B which is also a Banach space over R, By Lemma 1
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F(y) = Foly) - > Fo(yei)ei. But by Theorem 3
i=1

there exists some Xp € B such that

3

Foly) = UUF I D(xp3y) for all y £ B.

The question now arises as to whether there exist any
uniformly convex Banach spaces over Q. The answer is yes,
and examples of such spaces will be given in a later

section.
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V. Hilbert Spaces over Q

A, Definitions and a Fundamental Theorem.

Definition TLet L be a (right) linear space over Q. L
will be called an inner product space if
there exists a function (, ); L x L — Q
with the properties

(a) (x,y+2z) (x,57) + (x,2)

i

() (Xyye) = (x,y)x

(e¢) (x,y) = (y,x)
(d) (x,x)>0 x # 0O

It follows immediately from these results that

(xy2) + (y,z) and

1

(e) (x+y,2)
(f) (x«,y)

H

q(x,y)

The next lemma is lmown (Teichmiller, 1938). The

following probf is due to Penico (Penico, 1968).

Lemma 1. (CBS inequality).

If x,y are any two elements of L then
%
I (x,7)1 ¢ (x,x) (y,y)% .

Proof. If x or y is the O-vector the result is clear.

Suppose now that neither x nor y is 0. Then
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0s (xtye, x+yx )(y,y) = (x,x) (y,y) - (x,y)(y,x)
+ [ &9 + &I (ryx) + v,7) &l

for any «€Q. Choose x such that the product
of square brackets vanish. It then follows that
(x,7)(y,x) ¢ (x,x)(y,y) and the result of the

theorem is clear.
_ _qd
Lemma 2. If « is any quaternion then o+ X s [*%}% - j«l .

Theorem 1. Any inner product space L over Q is a normed

space.
Proof. Define HxIl = (x,x)% for x ¢ L., By direct
calculation it follows that HxHl = O iff x = O
and Ilxul = llxllxl . To show that the triangle

inequality holds, Lemmas 1, 2 must be used.

(x+y,x+y) = (x,%) + (x,¥7) + (y,x) + (y,y)

it

2
Hx+y H

Hx 2 + (x,y) + (xX,y) + Hyll2
Itx+le2 < x4+ 2 b (x,7)l + Hyn 2 (Lemma 2).
2 2 )
Or Hx+yW < Hx¥U™ + 2 Hxil-ityd + Uyl (Lemma 3).

fLx+yll s ixt + Uyu.

These results show that any inner product space is a

normed space and consequently a metric topological space.
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Ir (L,( , )) is complete with respect to the metric
defined by"P(x,y) = ||X~=yif then L will be called s

Hilbert Space, (or Wach's Space, see Teichmuller .).

2
Example It has been noted previously that LQ[,O,zTT]

is a Banach space over Q when the norm is defined by

21 3
i H2 = ( ‘S I£12)°, An inner product can be introduced

0

2 2
into LQ L 0,271 as follows; for f,g ¢ Lo [ 0,2T] define

20
(f,g) = .y f-g. It is readily verified that ( s ) satisfies
0

the properties of an inner product. Moreover, since
2T 2
(£,f) = g ff= g
0 o)
a Hilbert Space.

it
2
112 = HfH2 , LS( 0,2TT] is actually

It should be remarked at this point that the important
inequality given in Lemma 1 is valid in much more general
circumstances. In particular the inequality is true for

a class of modules over the general (real) Cayley-Dickson

Algebras (Penico, 1968).

As in the case of linear spaces over the Real or
Complex field the structure of inner product and in particular

Hilbert spaces yields a much richer theory.
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Theorem 2. (Parallelogram Law).
Let L be an inner product space over Q. If X,y € L

then llx+yll2 + Hx-yll2 =2 Hx12+ 2 1§ yllz.
Proof. Direct Computation.

The question that now arises isj; given a Banach space
over Q, when is it a Hilbert space? The answer to the
question was given by Jordan & Von Neumann for the case
of complex Banach spaces in 1937. The result is given in

the following Theorem.

Theorem 3., (Jordan-Von Neumann).

If B is a complex Banach space whose norm satisfies the

parallelogram law then B is a Hilbert Space.

It happens that in the case of Banach spaces over Q

that the above theorem remains valid as will now be shown.

Theorem 4., If B is a Banach space over Q whose norm satisfies
the parallelogram law then there exists an inner product

( , ) in B such that (x,x) = Hx 12 (i.e. B is a Hilbert

Space).

Proof. From theorem 3 it is known that the funection
2
(x,y)R =-£[llx+yll2 - Nx-yll°] defines a real

inner product on B.
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3
Define: (x,y) = (x,y)g - S~ (x,ye;)ge; for x,y e B.
i=1
Now it must be verified that ( , ) satisfies the postulates

for an inner product.

3
(1) (x,y+2) = (x,y+2)g - (x,(y+z)ek)Rek
k=1
3 3
(x,y+2) = (x,5)p + (x,z)R -5 (x,yek)Rek -)‘(x,zek)R ey
k=1 k=1
(x,y+2) = (x,y) + (x42). In this argument the

additivity of ( , ) has been used.

LS P p)
(iii) (x,y) = Ty lxtye 11T - lix-ye, |

k=0

but for k # O, (x,yek)R = 7 [I\x+yekl|2 - llx-yekll2}
- 1 2 2}

and (x,y.-ek)R = & (ll(y-xek)ek\( - H(y+xek)(-ek)!|

2
(x,ye, )5 = -+ Lil(yexe D11T - W(y-xe )11 2]

1

or (x,yek)R - (y,xek)R.‘

Now, (X,y) = (x,y)R + 2%; (x,yek)Rek
=1
3
(X,Y) = (X,Y)R - Z ek X,yek R

k=1
But ( , )g is real and symmetric

3
TGy = (7yx)g - y_ - (x,yek)Rek. Using the
k=1
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that (x,yek)R = - (y,xek)R it follows that

3
(x,y) = (y,x)R - > (y,xek)Rek = (y,x).
k=1

(i1) To show that (x,yx) = (x,y)® consider the following

(x,yel) = (x,yel)R - (x,yel-e ) e, - (x,ye

17581 l-e2)Re2

- (x,yel-e3)Re3

(x,yel) (x,yel)R + (x,y)Re1 - (x,ye3)Re2 + (x,ye.)_e

2°R 3

i

(x,yel) [(x,y)R - (x,yel)Re1 - (x,yeZ)Re

2

- (x,yeB)Re3] eq

1

or (x,ye;) (x,y)el.

By similar computations, it can be shown that

(x,yej) = (x,y)ej for j= 2,3.
. . 3
Since any quaternion &« can be written as « = 5 %, e
i
i=0

where the ®; are real and since «, )R is additive and
real homogeneous it follows that for any
«, (x,ya ) = (x,y)x .

3
(iv)  (x,x) = (x,x)g - S (x,xek)Rek
‘ k=1
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But (x,xek)R = %'[Hx+xekl\2 - HX—xekH2 ]

2
kl

i

%’[\1+e - ll-ek\2]~\lxlt2

1

i

T (e (T - (1-e)TT=6 7 1hix 112

i

>
%-[(1+ek)(1-ek) - (1-e))(1+ey) 1lix I

O for k = 1,2,3.

1l

(x,xe, ) g
Hence, (x,x) = (x,x)R = 11x11° and therefore

(x,x)> 0 x # O.

This completes the proof of the theorem.

Theorem 5. If L is an inner product space over Q then

3 2 -

b(x,y) = z:: (llx+yekll - Hx—yekn 2)ek where
i=0

Hx 112 = (x,%).

Proof.

12

For k = 0, Il x+yey - Hx—yek5‘2 = (XY yX+Y) - (X=Y,X=¥)

!

" " = (X5X) +(¥yX) + (XyY) + (¥,¥)
= (XgX) +(yqx) + (Xy57) - (YY)
" n = 2 (¥yX) + 2 (%x,¥)
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for k#0,
(Hx+yekH2- Hx-yeku2)ek= [(x+yek,x+yek)-(x-yek,x—yek)] ey
" " = ((x,x)+_e'l_{(y,x)+(x,y)ek+(y,y))ek
(-(x,x)+ek(y,x)+(x,y)ek-(y,y))ek
= 2ek(y,x)ek—2(x,y)
= =2(x,y) - 2ek(y,x)ek
3

Hence, % (ﬂx+yekH2 -Wlx—yekﬂz)ek = 2(y,x) + 2(x,y)
k=0

2(x,y) - 2eq(y,x)
- 2(X,y) - 292(Y,X)62

2(x,y) ~ 2e3(y,x)e3

3
or > _ (Hx+yekll2 -lfx—yekn2)ek = 2(y,x) - 4(x,y)

k=0
- 2el(y,x)el - 2e2(y,x)e2

- 2e3(y,x)e3
2 2 =S
Ulxtyeyll” - lIx-yeyiT)ey =k (y,x)-4(x,7)-2 2 ey (y,x)e,
k=0 k=0
k(yyx) - H(x,y)-2 [-2(7%) ]
Y(y,x)

H

]

3 2 -
Hence, 4(x,y) = 3 (ix+ye, dl - llx-yekn2)ek. This
k=0

completes the proof of the theorem.
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7

Orthogonality in Hilbert Spaces Over Q.

1. Orthoganality and the Projection Theorem.

Definition Let H be a Hilbert space over Q. Two elements

X,y of H are called orthogonal if (x,y) = O.

e s 1
Definition Let S be any subset of H. Then S is defined

(a)
(b)
(e)
(d)

i

to be 87 = { y| (x,¥) = O for every x ¢ s} .
1.1

(87)" will be writtem S*!.

The following are easy consequences of these definitions.

1 i
{0} =Hand B'= {0} ; S” is a subspace of H.
< {o}
L i
S-llc S, = 82 c Sl
S is a closed subspace of H.

-

SN S

It is a well known result (Simmons, 1963) that for

Hilbert spaces over the complex field that if M is any

closed subspace of H then H = M @ Ml. This result is true

for Hilbert spaces over Q as will now be shown. That this

result is true seems to have been recognized first by Jauch

and his collaborators.

Definition

A subset K of a linear space L over Q is convex
if given any x,y € k then x(1->») + x) € K

for all real numbers O= A < 1,
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The next two lemmas are known results for real and
complex Hilbert spaces (Simmons, 1963). Their results
can be carried over directly to the case of Hilbert spaces
over Q since their proof depends only on the fact that the

space is a Real Hilbert Space.

Lemma l. A closed convex subset K of a Hilbert space over

Q contains a unique element of smallest norm.

Lemma 2. . .. Let M be a closed subspace of Hilbert
space H over Q. Let x€ H - M and 4 the distance from x to
M. Then there exists a unique element y' ¢ M such that

d = lHx-y'H .

The following theorem is a very important result which
will be needed not only for establishing the primary result
of this section but will also be needed to establish the

Riesz representation theorem.

The theorem is a well known result (Simmons) for
complex Hilbert spaces and the proof for Hilbert spaces
over Q is almost the same. However, it will be given for

completeness since it is scalar dependent.

Theorem 1. If M is a proper closed subspace of a Hilbert
space H over Q, then there exists a non-zero

element z € H such that z 1 M,
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Let x € Mand d = inf (| x-y{| (the distance from x
ye M

to M). By Lemma 2 there exists y'e M such that
lix-y't = d, Define z' = x-y'. Clearly z'#0

since 4 > O. To show that z'1 M let « & Q and

y € M. Then tliz'-yall = HWx-(y'+y« )W 2> 4 = {21} .

From this it follows that Mz'=yil 2 - \lz'|| 5 o,

Using the definition of il Il this can be written as;
(z'-yx yz2'-ya ) - (2',2z') > O,

or

- &(y,z') - (z',7)x + PlylZy oO.

Now let «= g(z',y) where p is any real number.

Then,
>
2plz, w1+ p2lz,»I2uyit2y o.
Now let a = I(z',y)1%, b =llylf °. This last equation
becomes

-2fa + ﬁzabz a(Bb-2) > 0O

for all peRe. If a > O then this last inequality
will be false if B 1is taken sufficiently small and

positive. Hence, a must be zero and consequently

z'L y.
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The fundamental results of this section can be
summarized in the following two theorems. The secord
is known as the projection theorem, in case of complex
Hilbert spaces. Now that the previous theorem has been
given, it's conclusions may be used to prove the next
two theorems in exactly the same manner as in the case
of complex Hilbert spaces. For this reason, their

proofs will not be given.

Theorem 2. If M and N are closed linear subspaces of a
Hilbert space over Q such that M 1 N, then

the subspace M + N is closed.

Theorem 3. If M is closed linear subspace of a Hilbert

space H over Q, then M® MY = H.

The significance of these results lie first in the
fact that they insure the existence of projections in any

Hilbert space over Q.

The second important result that these Theorems
yield is related to the lattice structure of the collection
M of closed subspaces of H. The collection M is ordered
by the inclusion relation and the lattice operations WV s N\
are defined by
(a) MAN
(b) MvN= [(MuN].

MON
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The fact that M forms a lattice is well known (Birkhoff

and Von-Neumann 1936, Jauch 1963, Varadarajan 1969). The
last Theorem implies the lattice M is complemented (Birkhoff
1936). This is a very important result for the structure of

Quantum Mechanics (Jauch 1963, Birkhoff-Von-Neumann 1937).

2. Orthonormal Sets in H.

Definition Let A be an index set and {xj} ,,, a
subset of a Hilbert space H. {x;}  will be
leNn

called an orthonormal set if (xi,xj) = Sij‘

Some of the results on orthonormal sets in Hilbert
spaces over Q to be presented in this section are due to

Teichmuller (Teichmuller 1938). The first theorem is of

fundamental importance for the rest of the development.

Theorem 1. Let X1 9XogeeeyXy be a finite orthonormal set

in a Hilbert space H (over Q). If x € H, then
(a) E l(x,xi)(2 < lxIl2 (Bessels inequality)
i=1

n
(b) x - z:: x.(xi,x)_L x for each j.

i=1 1 J

n
Proof. If x € H, thenO= llx -5  x;(x,,x)1 % or
i=1
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0 < (x-z_ x(xi,x),x—Lx(x 9X))
i=1 J=1

5 n » n 2 :
O s Mxll® = 5™ J(xy,x)° = 5 { (x5, + 5 (xi,.xXxi,ijxj,x)
i=1 i=1 -:—1-

[N

Using the orthonormality of the Xi it follows that

0 ¢ Hx“z : )__ \(xl,x) + )_ (xl,x)\2

o]

or 0¢ lixll? - f:'_\(xi,x)l2 and (a) follows.
i=1

n
To show (b) consider (x - 5 xi(xi,x),xj).
i=1

n
(x-:x(x X),x)-(xx) }__(x,x)(x,x)—o
i=1

Theorem 2., If {xi} ien is an orthonormal set in a Hilbert
Space H, and if x € H, then the set S;
r:{xil (x,xi)2 # O} is either empty or countable.

Proof. For each positive integer n, let

{xg) Wxyx 12> ﬁ%—L‘- . Then, S, can contain
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at most n-1 elements for otherwise Bessel's
inequality would be contradicted. The conclusion
follows from the fact that 8 = U s_.
n=1
Using this result, Bessel's inequality and the other
result of Theorem 1 can be generalized to arbitrary
orthonormal sets in H. The proofs given for complex

spaces may be carried over directly and will not be given.

Definition An orthonormal set {xi}itA in H is complete
if it is maximal in the partially ordered set of
all orthonormal sets for H. This class is

ordered by inclusion.

The following Theorem was proven for Hilbert Spaces

over Q by Teichmuller.

Theorem 3. Every non-zero Hilbert space over Q contains a

complete orthonormal set.

Complete orthonormal sets in Hilbert Spaces over Q
possess the same properties of such sets in complex Hilbert

spaces. In particular the following theorem is wvalid.

Theorem 4. Let H be a Hilbert space over Q, and let
{x.} be an orthonormal set in H. The
1" ieA

following conditions are equivalent.
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(a) {Xi}ieA is complete.

(B) x L{xs}; o=> x=0
(¢) if x € H, then x = ¢_ xi(xi,x)

2 —
(d) if x € H, then HxU" =) l(x4,x) 2 (Parseval's
Relation)

3. An Orthonormal set for LSRx2TT].

2
Let LQ [ 0,2TT] denote the Hilbert space of Q-valued

. . 21T 5
functions on [0,2T] for which IT{“<o0 . Recall that
0
the inner product for this space is given by

21 20 21 1
(fyg) = .f fg dx and the norm is Iifil = [ Ky } .
0O 0
To give an example of an orthonormal set :for
2

Ly [ 0,2T) let I be any quaternion for which ° = -1,
and define exp(Ix) = cos x + I sin x (x € Re). Then the
set {exp(Inx)} n = 0,+1,+2,..., has the following
properties:

21T O n#m
-g exp(-Imx)exp(Inx) = {

2 n =m
0
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exp ( Inx)
Nom

Therefore, the set of functions { .} n = 0y+1,y+2,...

. 2
is an orthonormal set for LQ[,O,ZTfL

C. H* and the Riesz-Representation Theorem.

If H is a Hilbert Space over Q@ then H* denotes the
class of continuous linear functional on H. If y ¢ H
then fy(x) = (y,x) is clearly a linear functional on H.
Moreover, it follows from the Cauchy-Bunyakowski-Schwartz
inequality that fy is a bounded linear functional and

consequently fy € H* for each y € H.

It

Since Ify(x)l I(y,x)) ¢ iyl x|l it folows that

nyllsllyil. If y = O then nfytt =0= Myll. If
y # 0, iﬂfyll = sup {Ify(x)l( Hx!l =1 and therefore
Itfyllzl fy(y.nyln‘l) = | (yyy-ul yu by = nyn.,

It follows then that the mapping J(y) = fy is a2 norm pre-

serving map of H into H*. In the next Theorem it will be

shown that mapping J is actually a mapping of H onto H*.

This very important resﬁlt is known as the Riesz-Representation

Theorem in the case of complex Hilbert Spaces.

Theorem (Riesz). Let H be a Hilbert space over Q and
f € H*, There then exists a unique y ¢ H such that

f(x) = (y4x) for all x € H.
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Proof. It is clear from the properties of the inner
product that if y exists it is unique. If f is
identically zero on H then y may be chosen to be

0 (the null vector).

Now assume f # O. Then the null space of
£, N(f) = { x| f(x) = O} is a closed subspace of H.
Theorem 1.1 can be employed to yield the existence of
a vector y, £ H such that y, L N(f). It will now be shown
that ygx will meet the requirements of the Theorem if &« is
properly chosen. Clearly, if y = ygx then for any
x € N(f), f(x) = O and (y,x) = O. Hence, y satisfies the
condition for x & N(f). To determine the proper scalar « ,

consider the case x = y. Then f(yb) = (36« ,YO) = 5‘\\370“2

so ®= f(yo)llyolf'z. From the projection Theorem it is
known that each x € H can be expressed as x = x' + yop
for x' € N(f) and some pB€Q. Now, f(x) = f(x'+ybp)

= f(x') + f(yO)P . But sincex!' eN(f); f(x') = (y,x') and
by the choice of x , f(y,) = (y,yo) it follows that

T(x) = (yux') + (y,yo)ﬁ = (y ,x'+yb/3). This is true

for any x € H and the theorem is proven.

This Theorem will have a great deal of importance in
the treatment of operators on H. In particular, it is one of

the most important of the structure theorems for Hilbert

Spaces over Q.
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Corollary Every Hilbert Space is a reflexive Banach

Space.
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VI. Operators On Hilbert Spaces Over Q
A. Existence of Adjoints

Let T be a bounded linear transformation on H. Let
y € H and define the functional f(x) = (y,Tx). f(x) is
clearly a bounded linear functional on H. Using the Riesz-
Representation Theorem, it follows that there exists a unique
z € H such that f(x) = (z,x) for every x € H, The vector
z clearly depends on the y chosen initially. To emphasize
this, z will be written as z = T;. Where T* is a mapping
defined on H. The mapping T* is unique by virtue of the

properties of the inner product ( , ).

It will now be shown that the mapping T* is actually
a bounded linear transformation on H. Let x,y,z € H
then (T*(y+2z),x) = (y+z,Tx) = (y,Tx) + (z,Tx).
Hence, (T*(y+z),x) = (T*y,x) + (T*z,x) = (T*y+T*z,x)
and therefore T*(y+z) = T*(x) + T*(z). If «xeQ, y € H
then (T*(y« ),x) = (yx ,Tx) = R(T*y,x) = ((T*y)x ,x).

Since this last statement is true for every x,y € H and
every o tQ it follows that T*(y« ) = T*(y)« . Therefore
T* is a linear transformation. Now to show T* is bounded.

Let y € Hy then

HT*y 11%= (T*y,T*y) = (TT*y,y) & HT(T*y) WUyl .
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Since T is bounded; N T*y 124 (I TH I T*y )l §yIl and
consequently HTxyll¢liTH N yII for all y ¢ H. Therefore,

T* is bounded.

Just as in the case of complex Hilbert Spaces
(Simmons 1963) the following theorem is true and the

proof carries over directly from the complex case.

Theorem l. The adjoint operation T — T* has the following
properties:

(a) (T1+T2)*

I
H
+
3

(b) (Tl-Tz)* = T . T

(e¢) T** =T
(@) Hoxit =1l
(e) WT*TI = HHTH2

It should be noted that one important conclusion
usually added to the above theorem for complex spaces is
not stated. It is the statement that for any Scalar ’

and bounded linear operator T, (o T)* = 'x.T*,

The reason for this is that the class of bounded linear
operators on a Hilbert space over Q is not (in general) a
linear space over Q. That is, «T is not a linear operator
under any suitable definition. This is due to the fact
that Q is a non-commutative ring. The lack of this powerful

result will cause many difficulties in the spectral theory
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of linear operators in Hilbert spaces over Q.

It should be remarked however thét in finife dimensional
(right) spaces over Q the class of linear transformation is
a left space over Q. The reason for this is that every
linear transformation on such a space is representable
by a matrix with quaternion entries. Therefore if T
is a linear operator, XtQ, &*T may be identified with

(“‘Tij).

It should be noted at this point that certain classes
2
of operators on LQ[ 0,2T] can be considered as linear
spaces over Q. For example, consider the transformation

i
K eu = ‘f k(x,t)u(t)dt where u € LS {0,2T] and  k(x,t)
0

is a Lebesque integrable function over the rectangle
[0,211] x[ 0,2T] and k(x,t) has values in Q. K will
be called an integral operator on LS‘:O,ZTTl. If Kq,K,
are two such operators then (K1+K2)u will be defined as
Klu + K2u. Scalar multiplication will be defined by;
(«K)u = SZEZk(x,t)u(t)dt for any «€Q. Under these
2

(o}
operations the class of integral operators on LQ form a

left space over Q.

Example 1. Formal calculation of the adjoint for an

integral operator on LS (0,2TT]. 1let Ku = Senk(x,t)u(t)dt;
0
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oT1 217
(ku,v) = S | g k(x,t)u(t)dt] v(x)dx

m 2w

2
-[. u(t) k(x,t)dt u(x)dx
0

210 21
= y T [ { K(E,x) v(t)dt | dx
0 0
21T
= (u,k*v) . Thus, K*v = ( K(t,x) v(t)dt.
0

Example 2. Formal calculation of the adjoint for an un-
bounded operator. Let LAL a,b] be the subspace of LS[a,b]
consisting of all functions that are absolutely continuous
and have the addition property that f(a) = f(b) = O

for every f € LA. Let Di be the operator defined by

D, £(t) = & re).
at

Now let «£Q and consider ((«.D, )f,g).

b __
af af =
xeD, )f = o == dt = - o dt. But
((2eDy)f,g) fdt g f g

a a
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d {-—-— d —

— L f g] = — (fx). g+ (f x) —

o P g ( ) it so
d_ 7 -4 [F& Fx 48

(dt flu g ~a—E[fo‘]g - f«x = - Hence,

b b
((«D)E,g8) = f 4Gz - [Ta . me
a a

t

b
first integral vanishes so ((%-Di)f,g) = f-f(-&g—— g)dt.
a

Hence, (( “-Dt)f,g):(f,(- «-D.)g). That is (& Dg)*=- &-Dy.

Now if

«+ « = t(x) = 0, it follows that («vat)*=(th).

It should be noted that the operator u-Dt is unbounded on
LAla,b] .

Theorem

Proof.

>, Let H be an inner product over Q and let
T be a linear transformation on H.
3
Then Z ek[ (T(x+yek) ,x+yek)-(T(x-yek) ,x-yek)]
k=0
= 8(Ty,x) - 4(y,Tx)

For k = 0,1,2,3

(T(x+yey) ,x+yek)=('l‘x,x)+ (Tx,¥y) ek+3k(Ty,x)+3k(T Ysyle,

and (T(x-yey) ,x-yek)=(Tx,x) —(Tx,y)ek-gk( Ty,x)+3k( Ty, ) eye
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Hence,

3
Z ey [ (T(x+yek),x+yek) - (T(x—yek),x-—yek) ]

k=0
3. -
= 2 2 ek.[ (Tx,y)e) + ek(Ty,x)]
3
= 2 y_ ek(Tx,y)ek + 8(Ty,x)
k=0

i

2(-2 (Tx,y)) + 8(Ty,x)

i

8(Ty,x) - 4(Tx,y)

8(Ty,x) - % (y,Tx)

Corollary. If H is an inner product space over Q and T is

an operator such that (Ty,x) = (y,Tx) for every x,y € H

then (Ty,x)

1

3

* 7 %k [ (T(x+yek),x+yek) - (T(x—yek),x-yek)] .
k=0 ,

Corollary. If H is an inner product space over Q and T

is an operator on H such that (Ty,y) = O for all y € H

then T = 0.

Proof. From Theorem 2 it follows that 8(Ty,x) - 4(y,Tx) = O
and 8(Tx,y) - 4(x,Ty) = O for every x,y £ H., But"
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then 2(Ty,x) = (y,Tx) and (y,Tx) = #(Ty,x) which implies
2(Tx,y) = $(Tx,y). Thus T = O.

It is worth noting that this corollary is not true
in the case of real inner product spaces. The technique

used in the proof of this corollary is due to Penico.

B. Bilinear and Hermitian Bilinear Forms On Linear Spaces

Over Q.

In this section certain results about Bilinear (or
sesquilinear) forms on linear spaces over Q will be
developed. These results will be used for certain aspects

of spectral theory.

Definition Let L be a linear space over Q. A functional
¢ defined on L X L to Q will be called bilinear

(or sesquilinear) if

¢(x,2) + ¢(y,2)

H

(a) ¢(x+y,2)

d(x,y+2z) = ¢(x,y) + $d(x,2)
(b)) ¢(xx,y) = & &(x,y)
(x,yx) = ¢(x,y)x

Definition If ¢ is a bilinear functional $(x) will be

defined as §(x) = ¢(x,x). A bilinear functional
will be called Hermitian if ¢(x,y) = ¢(y,x).

It follows that if ¢(x,y) is Hermitian, then
$(x,x) = ¢$(x,x) and therefore $ is real.
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Theorem 1. If ¢ is a Hermitian bilinear functional on L

3 . A A
then ¢(x,y) = + S ek‘:¢(x+yek) - ¢(x-yek)] .
k=0

Proof. @(x+yek) - @(x-yek) = ¢(x+yek,x+yek) - ¢(x-yek,x-yek)
but ¢(x+yek,x+ye )=¢(x, x)+€ ¢(y,x)+p(x,y)e +Ek ¢(y,y)e
and ¢(x-yek,x-yek) $(x, x)—ek $(y,x) - ¢(x,y)ek+ek ¢(y,y)e
Hence, ¢(x+ye ) - ¢(x -ye, )= 2ek ¢(y,x)+2¢(x,y)e .

For k=0, &(x+ye ) - ¢(x -vey) = 2¢(y,x) +2¢(x,y)

and for k#0, ek[¢(x+yek)-¢(x—yek)] =2¢(y,x )+2ek¢(x,y).

3 " R
It follows that, Z::ek[¢(x+yek)—¢(x-yeki]=2¢(y,x)+2¢(x,y)
k=0 +2¢(y,x)+291¢(x,y)el
+2¢(y,x)+2e2¢(x,y)e2
+2¢(y,x)+2e3¢(x,y)e3.
3 ~
Thus, z:: ekL$(x+yek)-¢(x—yek)] =8¢(y,x)+2[-2 F(x,¥7 J
k=0

3 /N A
or Ez: ekl¢(x+yek)-¢(x-yek)] =kd(y,x). Taking the
k=0
conjugate of both sides yields,

3 — A A
¢(x,y) = & 2:: ek£¢(x+yek) - ¢(x-yek)] .
k=0

Corollary. If two Hermitian Bilinear functionals ¢ and ¥
have the property that $ =Y then ¢ =V .
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Definition A bilinear functional is bounded iff there

exists a real number o3 O such that
1o(x, 7)1 sxlixlitl yW. If ¢ is a bounded

linear functional, the norm of ¢ is defined

by Ul = 19,30
yone 220 11l Ny
740

The induced quadratic form is said to be bounded if
there exists a real number « > O such that

$(x) ¢ «11x1? for all x. Ir § is bounded,

H$1\= sup Li&&ll
o xZ0 Hx Iy

If ¢ is a bilinear functional then
l¢(xl,yl) - ¢(x2,y2)l = l¢(x1~x2,yl-y2)l. If ¢ is bounded,
\¢(x1,y1) - ¢(x2,y2)lso(Hxl—x2H-llyl—y2H and clearly is
continuous. Using essentially the same technique as for the
case of linear functionals the converse of this last statement .

can also be shown to be true. Hence, the following theorem

can be given.

Theorem 2. A bilinear functional ¢ is continuous iff it is

bounded. Also, the associated quadratic form $ is

continuous iff it is bounded.

The boundedness of ¢ and $ are related through the

following theoremn.
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~

Theorem 3. The quadratic form ¢ associated with the
bilinear functional ¢ is bounded iff ¢ is
bounded. Moreover, if ¢,$ are bounded the

following relation holds. 1§l < gl < b IGN .

Proof. If ¢ is bounded there exists a real number «> O
such that [¢(x,y)l< « |l x|l ll yll and consequently
N A
[$(x)] ¢ a-xl° for all x. Thus ¢ is bounded.

If § is bounded, then

N 3 2 2
(x,y)1 ¢ é!l¢ltzgé Clixeye 11 © + lx-ye, [ )

but, ilx+yekH2 + Hx—yekll2 = 2|le2 + 2!lyN2 for all x,vy.
Therefore, [é(x,y)l< %ll$ll 8(1xII2 Iy I2)
=20 WxIPe nyi®)y = i s v il

If ¢ is a Hermitian bilinear functional the relation
between ¢l and H$ll is even stronger. In particular,

the following is true.

Theorem 4. If ¢ is a bounded Hermitian bilinear functional,

then ¢l = H§N.

Proof. In the preceding theorem, it has been shown that
VAl A A -
Nell < N . For any X7, t§(x,y)] = ¢(X;Y>-¢(X2Y>.
Hence, lt[¢(x,y)]‘$ ugl((nx+yH2 + x-yi?), or
[t[e(x, )]l + NN Ixh2 + y®) frowm which
it follows that t[4(x,y)] ¢ o . Now let
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X,y be any two vectors and « a quaternion with

Ixl= 1 and [$(x,y)I
d(x,yx ) = 1(x,y))

H

b(x,y)ot . Then it follows that
It [ ¢(x,y)1) ¢ UN . This

H

inequality establishes the theorem.

The preceding theorms on bilinear functionals will

now be applied to yield an important theorem pertaining

to bounded linear operators on a Hilbert space over Q.

Theorem 5. Let H be a Hilbert space over § and A a bounded

Proof.

linear operator on H. If ¢ is defined by
$(x,y) = (Ax,y) then ¢ is a bounded bilinear
functional and H#$W = UANl ., If, conversely,
¢ is a bounded bilinear functional, then there
exists a unique bounded linear operator A such

that $(x,y) = (A-x,y).

If A is a bounded linear operator on H, then
$(x,y) = (Ax,y) is a bilinear functional on H.
I (x,v)1 = | (ax,y) 1 ¢« HatlUxWW il ylI for all
X,y € H and consequently Il¢jl< HAIl, But
HAax 112 = (Ax,Ax) and (Ax,Ax) = ¢(x,Ax) €

He - Hxll-HAx{] , from which, [JAxIil< li¢H-lixll

and hence AWl <ll¢$ll . These two inequalities

establish that (A=l .
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Now suppose that ¢ is a bounded bilinear functional
on H. The functional fx(y) = ¢(x,y) is a bounded linear
functional of H. By the Riesz-Representation theorem
there exists a unique z € H for which fx(y) = (z,y)
for all y € H. Since z clearly depends on x, z will be

written as z = Ax.

It will now be shown that the transformation defined
by z = Ax is actually a bounded linear transformation

on H.

A is additive: (A(x1+x2),y) = o(x1+X%5,¥) = $(xq,¥) + d(x,5,¥)
= (Axl,y) + (Ax,,¥)
(Axl+Ax2,y)

and consequently, A(xl+x2) = Ax, +Ax,

d(xa ,y) X¢(x,y)
o (Ax,y) = ((Ax)& ,¥)

A is homogeneous: (A(x«),y)

H
i

A is bounded: IAx |12 = (Ax,Ax) = $(x,Ax) € Ul xU HAx |l
from which it follows that lHAx Il < il Hxil for all x.

Therefore, A is bounded.

This last result establishes the theoremn.

193941
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VII. Spectral Representations
A. Self-adjoint And Normal Operators.

In this section elementary properties of self-adjoint

and normal operators will be investigated.

Definition Let A be a bounded linear transformation

(operator) on H. A will be called
(a) Self adjoint if A = A*
(b) Normal if A A* = A*A,

Definition If A is any linear operator on H and x& H

(x#0) for which Ax = xA for some xé& Q
then x is an eigenvector of A and M the

eigenvalue of A corresponding to x.

The case of self-adjoint operators will first be

considered.

Theorem 1. The eigenvalues of a self-adjoint operator are

real.

Proof. Suppose Ax = x4« . Then (Ax,x) = (xp,x) and
(Ax,x) = (x,8x) = (x,xp). Consequently,
m(x,x) = (x,x)» and since (x,x) is real,

(- (x4x) = O from which it follows that M= .
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Theorem 2. The eigenvectors corresponding to distinct

eigenvalues are orthogonal.

Proof. Suppose AX = xA and Ay = y« with A#x.
Hence, M(x,y) = (xX,y)u since A,n are real.

But then (A - p)(x,y) = O and since MN#p, (x,y) = O.

The previous two theorems are well know results for the
case of complex linear spaces and these results are also

known for linear spaces over Q. (Teichmuller, 1938; Jauch, 1963).

The results analogous to the above theorems will now
be considered for the case of normal operators. It will
be shown that there is a major difference in the context
of the theorems for normal operators and this is due to

the lack of commutativity of the quaternions.

First it should be noted that if Ax = xp where A
is a normal operator, then A(xa ) = (xp)ld = (X« Yo A o).
That is, the scalar multiple of an eigenvector with
eigenvalue s of a normal operator is an eigenvector of A

with eigenvalue o?l//.o(. Here, normality is not required.

In view of this result, it is clear that given an
"eigen pair" of a normal operator A, uncountably many

"eigenpairs" of A can be constructed. This is not a good
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situation but fortunately the eigenpairs can be separated

into equivalence classes.

Let AC(A) be the totality of eigenvalues of A.
Given any two elements Ay, X, € A(A), then Mo~ >\2
iff Aq = ,u’l )\2/4 for some xeQ. It can be shown
easily that ~ is an equivalence on A(A). If £&(A)
denotes the class of all eigenvectors of A then any two

elements Xy9 X, € §(A) are said to be equivalent if

2

Xy = X0 for some «¢Q. Clearly, equivalent eigenvectors

correspond to equivalent eigenvalues.

In order to use these concepts the following lemma

will be needed.
Lemma 1. If Ax = xpm then A*x = x & when A is normal.
Proéf.
HAX-x uil 2o llA*x-x /& Il 2:(Ax—x;u g AX-X pt ) = (A*X-Xf& § A*X-XM)
HAx - pe 112- HA*x-xu |1 2:(AX,AX)—(Ax,x;4)—(xy,Ax)+ Imz(x,x)
~ (A%x, A*x)+(A%x,x m)+(x p,A%x)
- IMZ (x,x).

Using the normality of A, this last expression can be written

as:
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W ax-xphl® - WA%x-x £ 112 = Ax112 = (Axyx0p - mCx,Ax) - f1Ax 1]
+ (x,Ax)m + m(Ax,x)

or HA,X—X/M“2 - HA*x-x ,.THZ = [(x,ax), ] + [pM,(Ax,x)] ,
where [,1 denotes the commutator bracket. Clearly
now, if Ax = xp the commutators on the right side of this
last equation vanish identically. The theorem is then

established.

Recall that for the case of complex Hilbert spaces
this lemma is a trivial corollary of the theorem on the
properties of adjoints. In particular, 1t is a result of
the fact that (m-Ax,y) = (x, x A¥y) for any operator A.
It has already been noted in a previous section why this

result is not true for Hilbert Spaces over Q.

The main result of this section can now be established.

Theorem 3. If xq and x, are eigenvectors of a normal

operator A corresponding to inequivalent eigenvalues

then (Xl’XZ) = O.

Proof. (Axy,X,) = Ii (xl,xz) = (xl,A*xg) = (%9, X5 x2).
Hence, Al(xl,xz) = (xl,xz)A2 or equivalently
= X x ). Now, if (x_.,x ) # O then
(xz,xl)xl 2(x2, 1) ’ 57%q

= -1 which contradicts the hypothesis
M= (xpyx )7L (g%,
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that i i =
a Xl and Az are inequivalent. Hence, (x;,x,) = O.
That is, the inequivalent eigenvectos of a normal

operator are orthogonal.

B. The Spectral Theorems in Finite Dimensional Spaces.

It is well known that a linear transformation
(Jacobson, 1953) acting on a finite dimensional vector space
over a division ring A can be represented by a matrix
with entries from & . Thus, the eigenvalue problem
Tx = xm 1is equivalent to the matrix eigenvalue problem

2%: Tij xj = Xy M i= 1l,24e..n. J. L. Brenner (Brenner, 1951)
J=1

has shown, using a result of Eilenberg and Niven (Eilenberg, S.,
Niven, I., 194%4) that any nonsingular matrix (Aij) (with
quaternion entries) has at least one eigenvalue. This is
exactly what is needed to generalize the Theorems on spectral

resolution of certain complex matrices to the case under

consideration.

The first case to be considered is that of a self-adjoint

operator on a finite dimensional Hilbert space over Q.

Theorem 1. Let H be a Hilbert space over Q of dimension N~ .
Let A be a self-adjoint operator on H. Then

there exists a basis for H consisting of

eigenvectors of A.
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Proof. From the result of Brenner it follows that there
exists at least one xq € H and Al € Q for which
Axq = xqA7. If dim(H) = 1, the basis may be
taken to be {xl Hxlll '1} . For the case

dim(H) » 1 induction will be used.

The conclusion of the Theorem is assumed to be true
for all spaces L of dim(L) < dim(H). TLet M, = [xll
and then H = Ml ® Mi' (by the projection Theorem).

Clearly dim(Ml) < dim(H). Since Ml is an invariant sub-

space of A, M. will be an invariant subspace of A* = A,

1
n 1 .
Consider now the restriction Al M; of A to Ml’ With

A*¥ = A and A*(Mel = A\M‘L it follows from the hypothesis
1 1
that Ml has a basis {xk}n consisting of eigenvectors
k=1 L
of Al,+ . But A| 1 is merely the restriction of A to M;
My M
and consequently each eigenvector of AlMJl- is also an

n
k=1

eigenvector of A. Therefore {xk} is a basis for H.

This Theorem can be used to obtain a ‘'spectral'

representation for A.
n

If y € H, then y can be written as y = 2_ Xy (x5 7)
k=1

where the xk are eigenvectors of A.
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n n n
Ay = (X x (x,y)) = = (Ax)(x,y) = 1o x, A.( :
Y k=1 k k?Y k=l k k’Y k=1 Xk k xk,y)
n
Since the Ak are real, Ay = E;i xk(xk?yﬁ Xk? It is

important to note that the A, need not be distinct.

Yy = 2 X;(X;,¥). Then the following lemmas

M™ M

Define Pk

are valid.

LY

Lemma 1. P, = Pk

Proof. Pk(Pky) = A;;% xj(xj, Z;% x3(x4,5)).
Tk Ai"Ax

A=A

Pk(Pky) = }T:A Z__ xj(xj,xi)(xi,y)
J k ik
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n
I
Proof. 2 Py = Zn Py =Y ST m(xg,w

Lemma 3. PkP =0 k#]

p . P.v-=
roof Pat‘ Z xi(xi,y)

A7 Aj
P (P.y) = ) x. (X > x: (x.,¥))
k : — f M B —_ i ’
J Ay RV 1
= Z_'_A f‘- (%, 4%, ) (X, 35)
Tk 1T

P (Py) = 2 2
J- >\_>‘ .
"k 107

Lemma k4. Py is Self-adjoint for each k.

Proof. Let x,y be any two vectors in H. Then

P S x.(x,,%) Sk (xy,3)
- . = X -
K" )gﬁxk 8 R R k=1 i 4
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(Pxyy) = & 2 Tmowi(x, %) (530 -
NES J J 1
J

On the other hand, Py = 2 x. (xa,y), X = Ef: % (X3 9%

A

(X,Pky) = KXi,Xj(xi,Xj)(Xj’Y) = (pk)(,y).

2 2
A= 11

The operators Pk satisfy the usual requirement of
projection operators on a complex linear space (Berberian,
S. K., 1961) and will be refered to as orthogonal pro-

Jjections.

As noted before, for each y € H, Ay can be written

as Ay = > _ x (X45¥) A, . If one assumes that A has m
=1 kK k

distinct eigenvalues Ay can be written as

m m
Ay = Y (% xi,y)) A= 2 (P.x) A\, . If
71 ) J j=1 J

Xj- Pj(x) is defined as Pj(x)- Aj then Ay can be ex-

m
pressed as Ay = 2 (Xj' Pj)(y). Since this is true for
=1

m
every y € H then it makes sense to write A = E:: Ajch. This
J=1

is called the spectral representation of A.
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The main results of this section can now be summed

up in the following Theorem.

Theorem 2. Let A be a self-adjoint operator on a finite
dimensional Hilbert space H. Then there exists distinct
eigenvalues Al, AZ,... Am and orthogonal projections

pl7p2"°0,pm such that A = 2-_ Aj . pj'
=1

From the spectral representation of an operator it
is easy to evaluate operations such as Azy. It is easy

m
toc verify that A2 = 2:: X? e« P.. In general the following
=1

J
i=

is valid for Hermitian operators A.

Corollary. Let p(t) be a polynomial in the variable t

of degree n with real coefficients. If p(A) denotes

m
the associated polynomial operator then p(A) = S p(xj) Pj'
=1

The case of normal operators will now be considered.
Some of the results of the previous section will carry
over, but not all. It is the case of normal operators
which brings out the difficulties arising from the fact

that the quaternions are not commutative.
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Theorem 3. Let A be a normal operator on a Hilbert
Space H over Q with dimension n. Then, there exists

a basis for H consisting of eigenvectors of A.

Proof. Brenner's result again yields the existence of
at least one eigenpair {Al,xl} for A, If
dim(H) = 1, { X - 1 %11 71} will suffice as a
basis for H. If dim(H) > 1 an induction argument

can be given.

It will be assumed that the conclusion is true for
all spaces L with dim(L) < a(H). Let {Al,xl} be an
eigenpair of A. Define M, = [ x;] . Then by the pro-

jection theorem, H = MltD Mi. M1 is an invariant sub-
space of A and consequently Mi is an invariant subspace
of A*, It has been shown that the eigenvectors of A

are also eigenvectors of A* and it follows that MI is an
invariant subspace of (A*)* = A, The proof can now be
completed by the corresponding argument for self-adjoint

operators.

It should be clear that the basis consists of

inequivalent eigenvectors of A.
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In view of this result, any y € H can be written

n n
as y - E xj(xj,y). Hence, Ay = A( 2:: pd

(x_,¥7)) or
-1 =1 ’

J

n n

A - = ST . * 0 . .
y z (ij)(xj,y) 2__ X XJ(XJ y). Contrary to

j—l J:l
the self-adjoint case, the Aj are not necessarily all
real and consequently Xy Aj(xj,y) can't be written as
xj(xj,y)-kj. This fact is critical. It means that
the nature of the operator can't (in general) be explained
by means of certain sums of projection operators.
Therefore, the most that can be said (apparently) in this

case is given in the following Theorem.

Theorem 4. Let H be a finite dimensional Hilbert space

of dimension over Q. Let A be a normal operator on H.
Then there exists a collection of inequivalent orthogonal
eigenvectors Xj,X,,...,X, and elgenvalues Ao Ayyesey xn

n
of A such that Ay = Y _ Xy Xk(xk,y) for every y £ H.
k=1

Corollary. If J is a positive integer then

n
AJ = z:: Xy Xi(xk,y). In general if p(t) is a polynomial

Y k=1
of degree J with real coefficients then
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n
p(A)y = S %P ( Xk)(xk,y).
k=1

C. Compact Self-adjoint Operators and Their Spectral

Representation.

In this section a spectral representation for a
certain type of self-adjoint operator will be given.
In particular compact operators will be studied. The
first thing that must be considered is the existence of

eigenvalues.

In the section on Self-adjoint Bilinear forms the

following theorem was proven.

Theorem 1. If A is a bounded self-adjoint operator on
H and $(x,y) = (Ax,y), then ¢ is a bounded bilinear
functional on H and i = WAIl. It was also proven

that;

Theorem 2. If ¢ is a bounded self-adjoint, bilinear

functional on H then Il = g1l where d(x) = b(x,x).

With the use of these two theorems the following

important theorem can be proven.:
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Theorem 3. If A 1is a self-adjoint operator on H then

itatl = sup | (Ax,x)I.
Hxi=1

Proof. Let ¢(x,y) = (Ax,y) for every x,y € H. Then

by the first theorem ¢l = HAH. By the second
theorem ||$1l = I!@ll and H&ll = ﬁuﬁ | (Ax,x) 1.
xli=1
Hence, AU = sup | (Ax,x){.
lxli=1

Using this theorem, it will now be possible to show

that eigenvalues exist for certain self-adjoint operators.

Definition Let X,Y be normed linear spaces over F

(where F = Re, K, Q). Suppose T is a linear
operator with dom(T) = X and Range(T) = Y.
Then T is compact if for each bounded sequence
{x,} from X, {Tx } contains a convergent
subsequence in Y. This is equivalent to say-

ing T takes bounded sets into compact sets.
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The following two lemmas are well known results for
compact operators on Hilbert spaces over Re and K.
Their proofs can be easily carried over to the case of
Q-Hilbert spaces and will not be given. (Berberian, S.,

1961).
Lemma 1l. If S and T are compact then S + T is compact.

Lemma 2. Any operator with finite dimensional range is

compact.
b

Definition Let Ku = .( K(x,t) u(t)dt be a bounded integral
a

2
operator on LQ [a,b] . If K(x,t)
_n
, . q bei
%Eipk(x) qk(t), with the p, &n qk eing

Q-valued functions such that

b

b
5 la (t)lzdt<°o and y|p (x)} 2ax < oo ,
a k a ¥

then K(x,t) is called a separable kernel. In
this case K will also be called a separable

integral operator.
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Example. Any separable kernel generates a compact

2
operator on LQ [a,b].

Proof.

n n b
Ku = .F ( z:: pk(x) qk(t))u(t)dt =‘2:: pk(x) .( qk(t)u(t)dt
k=1 k=1 a

a

Ku

il

b
n
E:: pk(x)ak where a, = qk(t)u(t)dt. Hence, the
k=1 a

range of K is finite dimensional and therefore K is compact.

Theorem 3., Let A be compact, self-adjoint and A # O.

Then either HAWH or -1 All is an eigenvalue of A and
there exists an x for which | (Ax,x)| = {xil.
Proof. Since llAll = ?up | (Ax,x)| there exists a
Uxl=1
sequence of vectors { xn} with Hxgll = 1 such’
that lim (Axp,x ) =A with IM= llAll. But,
n—»oo0
> _ >

- 2(Axp,x A+ A°.
From this it follows that;

l\Axn—xn)\Hz‘ A2 - 2(Axp,xp)A 4+ A% and
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consequently, lim t\Axn-anll2 ¢ lim[ Han®
n—>o . n—>0

- 2(Axp,x )N + 221 .= Al - X'2, whence

lim |lAx_-x All 2 = 0, from which lim (Ax _-x X ) = O.

n—+o0 n n ? n-—>00 n n

Since A is compact and { xn} is a bounded sequence,
{Axn} ‘must contain a convergent subsequence {Axnk} ’
where {xnk} is the appropriate subsequence of {:xn} .
Moreover, with the fact that A# O, it is clear that

b4 is ¢ r t. Let = 1i t =
{ nk} onvergen et x kETw X, hen {lxIl =1
and lim Ax, = lim x,-» = (lim x_ )X = XX .

k—~»00 k k—o00 K k —» 00
But A is bounded and thus continuous so
lim Axnk = A(lim xnk) = Ax = Ax = xA. Therefore,
k—s00 k—»00
A has at least one eigenvalue and A‘\xllz = A= |(ax,x)|
= “ X H .

Now that it is known that évery compact self-adjoint
operator on a Hilbert space H over Q has at least one
eigenpair, the procedure used in the finite dimensional

case will be used to generate a sequence of such eigenpairs.

Let {Al,xl} denote the eigenpair whose existence
was demonstrated in the preceding theorems. Define H1 = H

and H2 = { y ‘(xl,y) = O} . H2 is an invariant subspace
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of A and the restriction 'AlH2 is also a compact
symmetric operator. If A|H2 # O, the preceding theorem
can be employed to A]H2 to assert the existence of

x_, ¢ H, and )\_ € Q such that A$H2 X, = X, A, and

2 2 2 2 2
again, I)‘2\ I\A)Hzﬂ so M2l < | Al! . Continuing

i

this process, a sequence of non-zero eigenvalues {)\n}

and eigenvectors {xn} with \\xn\l = 1 for every n

is obtained. In addition a sequence of subspaces {Hk}

of H is obtained where H consists of the set of elements

k+1
of Hk which are orthogonal to xl,xz,...,xk. For each k

BYRPAD Y since | M| = H1aj I .

If Al is the zero operator the process stops.
Hpea '

n
In this case the range of A, is given by range (A) = ka} l]'

n
For if x € H, let v, =X - %__1 xk(xk,x). Then

n
(xj,yn) = (xj,x) - (xj,xk)(xk,x) or (xj,yn) = (xj,x)
k=1
n -
-9 5jk(xk’X) = (xj,x) - (xj,x) = 0. But this last
k=1
result implies yn € H . and since A'Hn+1 = 0,

n n
Ay, = 0 = Alx - 3 X (xy,x)), or Ax = PR WO
k=1 k=1
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Thus, for each x, Ax =

by {Xk}j .

n
Xy Bk so range (A) is spanned
k=1

It will now be assumed that the process does not
terminate. The process then yields an infinite sequence
of eigenvalues {’\k} , for which \)\k\ > ‘)‘k+l\ for

k= 124000, One of the following cases must occur.

(a) 1im )‘k = 0
k—»o00

(b) Mk‘ y€ for some €>0 and for each X.

Suppose (b) is true. Consider the sequence {xn-)\;ll} .
The sequence is bounded, for llx_- A1l = lx 1 1)-1].
n n n n

Since A is compact, { AGx-AZD)} = {x( A, A= {= )
n

must contain a convergence subsequence. But this can't be
2
since me—xn||2= Hax 11+ llxy 112 = 2. Therefore,

if A is compact, lim A, = O.

k—roo
If the process does not terminate at some n let

2
%y (xysx).  Then Iy 112 = Nx1? - 5 | (xpy )12

Y. = X -
n =1

M) Erqu

2
so |lyyll “¢ IlxIl" for each n. Since y, € Hp,.qs
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VApep | = “Ah’mlu it follows that llay i

5’Am1L”Yﬁ‘$‘MHﬂ'“X”- Thus, lim Ay, = O.

ol
But Ayn = Ax = Z Axy {Xy,x) which implies

k=1
n [2.2] 20
Ax = ) Agq(x, ,x) = X A (X ,x) = 2 %X (x_,x) A,
-] X k %;% k "k "k? =i k' Tx? k

Suppose that A is an eigenvalue of A corresponding
to eigenvector x which does not occur in the sequence {Xk} .
Then x is orthogonal to every one of the Xk since

[
A is self-adjoint. But if Ax = E xk(xk,x)-)\k, Ax = O
k=1

which precludes it's being an eigenvalue.

An eigenvalue can not occur infinitely often in the

sequence {Xk} since lim )\, = O.
k
k—>00

It is clear that if an eigenvalue A 1is repeated

n times the corresponding eigenmanifold has dimension n.

These results can be summed up in the following

theoren.

Theorem 4. (Spectral Theorem for compact self-adjoint

operators). Let A be a compact (non-zero) self adjoint

operator. Then there exists a sequence '{Ak} of real
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eigenvalues of A which may or may not be finite. If

the sequence is infinite, limlA:kl = O. The expansion
k—>o0
[>2)
Ax = % l xk(xk,x) Ak:ls valid for each x € H., Each

non-zero eigenvalue occurs in the sequence {XI(} . The
eigenmanifold corresponding to a particular Ai is finite
dimensional and its dimension is exactly the number of

times this particular eigenvalue is repeated in the sequence.
D. Existence of Eigenvalues for Compact Normal Operators.

To show that a compact normal operator on a Hilber
Space over Q has eigenvalues, a generalization of method
due to Bernau and Smithies (Bernau, S. J., and Smithies,
F., 1963) will be used. It depends on the exponential

representation of unit quaternions.

Any quaternion q for which lgl = 1 can be written

as q = cos © + I sin 6. In particular if

2 2 2 2 _
Q = apep + qle1 + aye, + q3e3 and J'qo + ql + q2 + q3 = 1

2 2 2
then cos © = qp, sin © =\/*q1 + g, + q3 s and

q-e,+q.e.+q.,€e
I-= 1°179%7%3 3, . Note thathol < |al =1 and

VEZr
q; + a5 + 93
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V/qi + q; + a3 ¢ lgl = 1. Recalling the definition of

Ie Ie
e , theng=9¢e .

Definition Let T be a linear operator on a Hilbert

space over Q. [(T) is defined as

P(T) = sup | (tx,x)|.
' hxii=1

Lemma 1. Let X, © be real numbers, A# O and T a

linear operator on H. If Gl’ G2 are defined as

Ie -1
= (T%x 26218 © 7x A7t Ie, Tx A e + x A )

-1 I8 Ie -1
G2 = (T2x4ke216 - Tx A le s TX-A-e  -x-X )

-216, 2
then HNTx 11° + e™7°(1%,%) = $(6,-6)

Proof.
18 216 -1
6, = (1%x AeTO,mxhe™) + (T%xAe™ ,x A7)
-1 I8 -1
+ (Tx A"1eI® x A el ) + (1x A e XA )

using properties of the inner product G can be written as
- © - -
6, = M ?T0r%k, T Ae™ + Ae™2T0(12y,x)A71

-1 -I® -
+ Afle'Ie(Tx,Tx)AeIe + A te (Tx,x) A 1,
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Hence,

Me ~21Ie -2Ie, 2 y

Ie
G, = (T? x,Tx)Ae  + e (T7x,x

1

+ NTx 112 + A‘ze-Ie

(Tx,x)

An Analogous computation yields

G, = Ae-2Ie(T2x,Tx))\eIe - 2Ie(T2x x) - HlTx 1I°

-2 =10
+ NZeT (Tx,x).

Therefore %(Gl—GZ) = %(2e-2Ie(T2x,x) + 2 llTxllZ),

218, o

or $(Gy-Gy) = (T7%,x) + NTxIl=,

Lemma 2. If T is a linear operator on a Hilbert space over
2
Q then NTx U+ 1(r%,x)1 ¢ 2p (DI Tl x1l for all

X € H.

Proof. From the definition of P(T) 1t is clear that

for every y € H 1 (Ty,y) |« P(T)llyl( If y1, yo are
defined as y; = Tx A ef® + x A~ , Yy = Tx A el® - x 271
then G = (Tyq4¥5) and G, = (Ty,,¥,). Since

Tx 1?2 + e7218(1°%,x) = $(6;-G,) it follows that

T 112 + e72%r%%, 00 ¢ 3(HTyy,y 1+ H(Ty,y )l ).

This last inegquality can be rewritten as

lzx112 + &2 %x,0l € 3 pm iyl 2 + tiy, 1 2y,
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Recalling the definitions of Y1 Yo this last statement

becomes
‘ HTx 2 + e'zIG(T2x,x)I$ %P(T)[ Hex heT® & x A-1H 2

+ HTx)\eIe - xA’ll\zl

But for every pair of elements u,v of H

Husv 12 + Hlu-v N2 = Zl\uliz + 20yl 2, Using this

relation,
ITx 12 + e7210r2x,x) | ¢ 4 p(m) [ 21T x eTOU

s 2l A~ ]

or | NTx 112 + e 2T0(12x x)|¢ pm[ »® =2 + x2nxnu?l.

Now choose © such that e—zle(T2x,x) = | (T2x,x)l
and A such that ATz I = px . Having done this

the preceding inequality yields

Hrx 112+ J(T%%,x) 1 ¢ 2 p(m Nrx 1l Hxll

Lemma 3. Let T be a linear operator on H. Then

(a) Mzl < 2p(D)
(» pr?) < [p(m]
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Proof. (a) follows immediately from the second lemma.
To show that (b) is true let (lx !l = 1 in the second
2
lemma. Then WTxW2 + I(T xyx01 € 2{3(T)\|Tx\|.

From this it follows that
lex 12— 2 pm el + [P(D)] 2 v lrPxls [pm] 2

or
2
[lzxli - pe 3 ° + 1%, 0¢ [P0 12 Hence,

lr%e,x)1 ¢ [ T)]Z. But O(T9) = su | (T°%x,%) |
’ 3 P uxﬁzl{ 22

so clearly P(TZ) < [p(m)] 2,

In the three preceding lemmas the normality of
T was not required. Requiring now that T be normal,

yields the following theorem.

Theorem 1. Let T be a bounded normal operator on H,

then HHTIl = P(T).
Proof. For each x € H, | (Tx,x) 1 ¢ Tl 1lxll2 so
P(T)S- {[{ Tll. Since T is normal Hrex 1l = Hr*rx Il .
Therefore, HT2Il = WT*Til = (IT11%, By induction,

if p = 2k, it follows that IITPIl = WTHP,
From lemma 4 part (b) it follows that P(Tp) < [P(T)] P,

Applying lemma 4 part (a) N7l = (TP 1/P J
< [2 {J(TP))VP‘ 2P P(T);
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letting k—>oc0 yields U TI| g P(T). This inequality together
with fKIﬂ ¢ HNTIU gives the desired inequality.

The primary result of this section can now be

obtained if T is assumed to be compact as well as normal.

Theorem 2. Let T be a non-zero compact normal operator;

then T has at least one non-zero eigenvalue.

Proof. Since {D(T) = W THU there exists a sequence { xn}

from H such that llx |l =1 and lim | (Txn,xn)\ = IUTH,

Il ~»00

It can be assume that lim (Tx,,x,) = A where
n—>%
IXt= HTH # 0. (It may be necessary to take a subsequence

here.) The segquence {.xn} is bounded and since T is
compact it may be assumed that {Txn} converges to
lim  Tx,. But lTxpll ¢ T
n—»
and consequently Hyll¢ IITH =IAl . From this observation

i

some y ¢ H., That is y

N

it follows that NTxn-anllZ = (Txp,-x A ,Txn—an Je ]
llTxn-xnkllz = (Tx,Tx,) = A (xp,Txp) - (Txp,x,) A + AMxpyx ).

Whence, lim NTxn—xn)\H2 = Hyll2 =3A =2 XA

n—oo

= llyl2 - Al%¢ o.

Since “Txn-xn)" 2y O for every n it follows that
1im HTx -an|l2 = O and consequently lim Txn-xnx =0

n-» oo n n-»oo
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and Iyl =1Al> 0. Moreover, since TX,—> y and \# O,
lim x, = lim Txn)\°1 =y a L, Whence,
n—sco n —seo

Ty = (lim Txn)x = yA . That is A is an eigenvalue
n-»o0

of T which is the desired result.

Now that it has been shown that every compact normal
operator on a Hilbert space over Q has at least one
eigenvalue, the spectral theorem for compact normal
operators can be proven using essentially the same tech-
nigque as for compact self-adjoint operators. Since
the technique is the same the proof will not be carried
out. However, there is a slight difference in the con-

clusion. The theorem will now be stated and the difference

pointed out .

Theorem 3. Let A be a compact (non-zero) normal operator
on a Hilbert Space H. Then there exists a sequence {A]K}

of inequivalent eigenvalues of A which may or may not be

infinite. If the sequence is infinite, lim = 0.
e k—
The expansion Ax = 2__ Xy Ak(xk,x) is valid for each x € H.

k=1
Each non-zero eigenvalue occurs in the sequence '{Ak} .

The eigenspace corresponding to a particular M»; is finite
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dimensional and its dimension is exactly the number of
times this particular eigenvalue is repeated in the

sequence.

The only difference between the conclusion of this
theorem and theorem 4% of the preceding section is the
form of the representation for Ax. Since the Xk are
not necessarily real the product M (xxyx) can't be

written as (xk,jc) )\k'

E. Bounded Hermitian Operators on Hilbert Spaces Over Q.

In the usual treatments of the spectral theorem for
bounded Hermitian operators (Halmos, P., 1957, Lorch, 1962,
Bachman, G. and Narici, L., 1966). varidus techniques
are used to show that the spectrum of such an operator
is non-void. Simmons (Simmons, G., 1963) shows via
Banach algebra theory and complex function theory that
any operator on a complex Hilbert space has a non void
spectrum. The use of complex function theory is not

ﬁossible for the case of a Hilbert space over the Quaternions.

In this section the spectrum of an operator on a
Hilbert space over Q will be defined and it will be shown

that, at least in the case of Hermitian operators, the
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spectrum is non-void. The technique is a variation of
that used by Halmos (Halmos, P., 1957) for complex Hilbert

Space.

Definition A bounded, additive, real homogeneous

transformation on a Hilbert space H (over Q)
has an inverse 1f there exists a bounded,
additive, real homogeneous transformation B

such that AB = BA = I, where I is the identity

transformation on H.

The following two theorems are very important and
they are well known for linear operators on a complex
Hilbert space (Halmos, P., 1957). Their proofs carry

over immediately to the case of a Hilbert space over Q

and will not be given.

Theorem 1. If A is a bounded, additive, real homogeneous
transformation on a Hilbert space H over Q and b is a
positive real number such that WAx Il ) b Il x il for

every x ¢ H then the range of A is closed.

Theorem 2. A bounded, additive, real homogeneous trans-

formation A on a Hilbert space H over Q is invertible iff
the range of A is dense in H and there exists a positive

real number b such that IlAx 1l > blix|l for every x € H.
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Definition Let A be a bounded linear transformation on a
Hilbert space H over Q. The spectrum S(A4)
is defined to be S(4) = { heQl A - AT is
not invertible . Here (A-I)(x) = xA.
Note that A - NI is a bounded, additive,
real homogeneous transformation on H for

every M€ Q.

Definition Let A be a bounded linear transformation on
a Hilbert space H over Q. The approximate
point spectrum of A, AS(A) is defined as
As(a) = {de @lver0, 3 x such that
[l Az-x A H<cellx WL .

Theorem 3. If A is a bounded linear operator on a Hilbert
space H over Q@ then AS(A) € S(A).

Proof. If X ¢ S(A) then (A- XI) is invertible. Hence,

Hxll = Ha- »D™Ha- aDxlle - 4D - ADx
for every x € H. This implies I[I(A- N-Dx il > elixll
with €= [l(A- XI)'lll-l. Since this is true for every

Xx € Hy A § AS(A). The proof is complete.

The following theorem is a weaker result than is
usually obtained in the case of complex Hilbert space

(Halmos, P., 1957). However, it will be sufficient for

the purposes of this section.
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Theorem 4. If A is a normal operator on a Hilbert space

H over Q and A€ AS(A) with A& Re then Me S(A).

Proof. Suppose A € Re and )\ $AS(A). Then the following
facts are evident.

(1) A - X- I is linear

(2) A - A-I is normal and (A- A-I)* = A* - A.I

(3) HAa - XIll= Hax.- X1l
Since X t AS(A) there exists a positive real number €
such that [l Ay-yAllyellyl. But then {lA*y-yAllxellyli.
To show that A - M-I is invertible it is sufficient
(by Theorem 2) to show that the range of A - M-I is
dense. This can be done by showing that the orthogonal
complement of the range of A - A-I is {0} . 1If
((A- MI)x,y) = O for all x, then (x,(A*- X I)y) =0
for all x. Hence A*y-y A = O, But since
Ha*- A-Dyllyellyll, y must be O and the proof is

complete.

Theorem 5. If A is a bounded linear transformation on H

the s(a%) = [s(a)] 2= {13l des)}.
Proof. If A€ S(A) then A - \-I is not invertible. But

(A2 32. Dx = (A= A-D(A + M»Dx = (A & AI)(A = A-Ix
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and consequently A2 - M1 = (A- XN I)(A+ XI). From
this representation it follows that A% - 2. 1 can not be’
invertible. For if there exists an operator B such that
(A2 . I)B = B(A%- ¥ I) = I then

I = (A- NI)(A+ NI)B = B(A+ AI)(A- A'I) and this implies
A - A-I is invertible which is a contradiction. There-

fore, A2 - X I is not invertible and )2 ¢ S(AZ). From
2
this it follows that [S(a)1 2 ¢ s%).

If AE.S(AZ) then A% - M-I is not invertible. Let H
be any quaternion such that fxz = A . Then
(A%2 2D = (A+ peD(A- peI) = (A= e D(A+ D) and
either u or -au are in S(A). In either case
A= (202 € [s()] 2 wmence 5% ¢ [s(a)] % ana

the proof is complete.

Lemma 1. If A is a Hermitian operator on a Hilbert space

over @ and A is a real number, then

02 - 222112 = 122112 - 2 A21ax 2« Xrixli2

Theorem 6. If A is a Hermitian operator on a Hilbert

space over Q, then + |lAal] € AS(A).
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Proof. Since 1Al = sup || Ax|l there exists a
lixli=1
sequence of unit vectors {xn} such that 1im \lAx Il = {falf.
n—»o
Setting A = Il All and applying Lemma 1 it follows that

Wa2x-x 2 %11%¢ Clall il 32 - 2 A lax 112+ A%,
But then HAzxn-xn/\ 2% A= a2 HA.anZ. Hence

2
lim HAZXn-an 21Y = 0 and consequently A}~ ¢ AS(A2).,

n— 00

By Theorem 5, +|{All € AS(A).

Corollary. If A is a Hermitian operator on a Hilbert

space H over Q@ then the spectrum S(A) is non-void.

Proof. By Theorem 3, AS(A) C S(A) and Theorem 6 implies
+[1All € AS(A) c S(A).
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VIII. The Fourier Transform

1
A. The Fourier Transform in LQ(-oo, ).

In this section the definition of a Fourier Transform
for functions in Lé(—a:,m:) will be given. 1In addition
a theorem will be proven that gives conditions under
which the inverse of the transform can be calculated.
The treatment given here is a generalization of that

given by Goldberg (Goldberg, R. R., 1961).

Definition Let f & Lé. Let I be a fixed quaternion

such that 12 = ~e The Fourier Transform

O.

00
f of an f e Lé is defined as f(x) = J/eIth(t)dt.
-t0
Proposition 1. % is bounded for each f £ Lé.
o) 4
Proof. | f(x)| = f'eIXt £(t)at| < llf(t)ldt = ||zl
~ 00

A~ H
Proposition 2. f is continuous for each f € LQ.

J( (Tt IXbyoiiyay
-

i

Proof. f(x+h) - F(x)

H

f(x+h) - £(x) J. et (eTht _ 1)r(t)at
e

-

-I%(x+h) - fx)] € 1;"elht -1l £l at

Since Je™Pt _ 1 I;’f(t)ls 2j£(t)] and
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%imo | eIht _ 1]-] £(t)! = 0, it follows from Lebesques
-9

Dominated Convergence Theorem that lim f(x+h) = f(x).
h-» 0O

Theorem 1. If {fn} is a sequence from Lé and

e, - £ll,—= Oas nse , then iET«FH(X) = £(x)

uniformly on Re.

Proof. For any x ¢ Re, lfn(x) - f(x) ¢ \!fn - flll.

1
Theorem 2. Let a,b be fixed real numbers. If f € LQ then

NN - ~
(i) f(t+a) = e lax f(x)

A~
A

(11) F(x +b) = e P% £(t)
Theorem 3. (Riemann-Lebesque).

18]
If £ ¢ L! then 1im ?(x) = lim Jh eIXt £f(t)dt|= 0.
x + 2 o

Q X+ +
Proof. (1) %(x) = j— elXt f£(t)dat. Since eI(X+TT) = -eIx
[+ ]
A b((t'*‘-'-r) j‘w
(2) -f(x) = J- e X f(t)dt = eIth(t- I)dat
- 00 - 00 X

It follows that

j e XV (£(t) - £(t- ‘i‘?))dt. Hence

- 00

(3) 2f(x)
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o

CORPIEE'S] J I£(t) - f(t- D)]dt. Since f € L%
X

=00

oD
(5) 1im [f!f(t) - f(t - i—r)ldt} = 0. The result
)

Ko +°°

follows from (3), (&), and (5).

o0

Corollary. If f ¢ Lé then lim ff(t) sin xt dt

x> to  J_
oo
= lim jf(t) cos xt dt = O,
X too

Definition A quaternion valued function f is of bounded

n
variation on [a,b] if sup%-_lff(xk)-f(xk_l)ku

where the supremum is taken over all partitions

of [a,b] .

It's an easy consequence of the definition that a

3
Quaternion valued function f(x) = S~ fk(x)ek is of bounded
k=0

variation on [a,b] iff each of the real valued functions

£,.(x) are of bounded variation on [a,b].

The following is an easy consequence of the correspond-

ing theorem for real valued function (Goldberg, R.R., 1961).

Lemma 1. Let g be a quaternion valued function of bounded

variation on [O,d] for some d > O. Then
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4
]ﬁimw;ﬁ_ f g(t) -5-1—11—53 dt = +g(0+).
—
0

The following theorem gives as a corollary a condition

for inversion the Fourier Transform.

Theorem 4., If f ¢ L. and f is of bounded variation in some

Q

neighborhood of a point u, then

R
Tim i.;T f e TUX Pyyax = (£(ut) + £(u)).
=R

Proof. For any R > O let

R R 00
Sp(w) = -;—r-r fe"m Flx)ax = = f o~ TUX g4 f e Xt r(t)at.

Since £ € L' and f is continuous the iterated integral is

Q

convergent and hence by the Tonelli-Hobson theorem

(Royden, H. L., 1969)

R o<
- -t
Sp(u) = L f Ix(u-t) f £(t)dt.
-R - 00
R ( ) R I R
L -Ix(u~t _1l _ _ I . _t).
Now, Sp ‘( e = o= f cos x(u-t)dx 55 fs:mx(u t)
-R -R _ -R
1 A —mx(u-t) sin Ru-t) o . .
Hence, Eﬁ J’ e dx = (u-t) . aking a change o
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variable SR(u) becomes

oo

1 -1 .
Splu) = = .(5 [ f(u+t) + £(u-t)] sin Rt dt = I; + I,, where

-~
1}

d
L ft‘l[ f(urt) + £(u-t) ] sin Rt dt
T

I
2

i

00
1 ~('t—1 [ fCu+t) + f(u-t)] sin Rt dt.

d>0 and chosen such that f is of bounded variation in

[u-§ ju+§]. By Lemma 1,

. . -1 1
%%?w I [ fur) + f(u-)] . Since t [f(u+t)+f(u-tﬂsLQ[8,u>)

H

lim I O by the Riemann-Lebesque Lemma. Hence,

R—oo

lim SR(u) = % [flu+) + flu-)] .

R—oo

Corollary. If in addition to the hypothesis of this theorem

f is continuous at u,
00 -
£(t) = e~ Xt F(x)ax.

- 00

B, The Fourier Transform on LS(-«:,w ).

In this section the Fourier Transform will be extended



to LS(—-oo,oo ).

Definition

Q
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00
2 A
For fe Ly N Lg; £(x)2 f et £(t)at.

- 00

The following is a very important technical lemma.

Lemma 1. For any real numbers € > O and a
[ ] .l_ 2
2 2 £
f eTdt -8t at = () ea/)+
- 00
Proof. eIat = cos at + I sin at
© 2 00 Et2 00
Jr elat o=t 4 o yfﬁcos at e~ dt + I J[‘sin at e~ ¢
- - 00 - 00
% 2 o0 )
- &t -ttt .
But cos at e dt = 2 \/-cos at e dt. The integral
- 0

on the right hand side is a well known integral. Hence

w 2 % 2

- - 2
jr cos at e” * U dt - (F) e a /k . Since the function
- 00
2
£t

£f(t) = sin at e~
) 2

/.

-0

sin at e~

is an odd function the integral
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The following lemmas will provide enough information

to show the relation between the norms of ? and f.
o0

Lemma 2. If f € Lé and F(u) = ‘[~ f(t) f(t+u)dt
- o0

then F(0) = Ilin .

00
Lemma 3. If f ¢ LS and F(u) =(/ﬂ f(t) f(t+u)dt, then
- 00

F is continuous at u = O.

Proof. | F(u) - F(O)| =

f o [ £(t+u) - £(8)] at| .
- 00

00
| F(u) - F(O) | < f | £Ct) 1 | £(t+u) - £(t)ldt. But, by
-0

the "CBS inequality'.

00 o0
| F(w) - F(o)l2 < f Jf(t)12 dt f} f(t+u) - f(t)l2 dt.

-0 -0
By the continuity of the norm, it is clear that the right
side of the last equation approaches zero as u-»0 . Hence

lim F(u) = F(O).

u-» 0
7]
Lemma 4%, If f ¢ Lé and F(u) = f(t) f(t+u)dt, then

"
IF(w)]° < Clistt ).
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Proof. Apply the CBS inequality.

[
1 2 Ixt

Lemma 5. If £& Ly N Lg and f(x) = e f(t)dt then

-
o 2 -
-X /n 2 -nu )+
vf e [ F(x)]1° ax = (TTn)%. Jﬂe / F(u)du where
-0 -

F(u) = jf(tj f(t+u)dt.

Proof.
!’f(x)l2 - F(x) fx) = J,elxt f(t)dt febm f(u)du
2 2 Ixt - Ix
| %(x)‘ = ‘[‘thS e dt ~f~e v f(u)du.
', ] - 00

Then,

- 2/ A 2 ” 2/ i Ixt wau
‘( e X P xffax = fdx e x nf‘f(tj e T Uat je £(u)du
-t -l -0 -

Since f € Lé, the iterated integral converges absolutely

and the order of integration may be changed to yieldj

o0 o0

2 ol . 2 00
Jﬁe—x /. ’%(x)’2dx:~(f1t5dt j(e_x /n eIX(u-t)dx ‘[ f(u)du.
-0

- - - 00
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o0

2 T ) 1 2
Using the result of Lemma 1, e X /ne x(u-t dx:(n,n)'z*e—n(t—u)
-0
Hence,
SN o ,
(e-x /n(f‘(x)l 2dx=(T\'n)% fe-n(;i-t) ff(t? f(u)dt du.
-00 - ob - 00

Making a change of variable, this last statement can be

written as

2 © 2 ”
ﬁ-x /nl:‘f‘(x)‘ Yax = (wn)% Jg{%‘%— v(f(ﬂ f(t+u)dt du,
-0 -

- 00

ol
and then if F(u) = J‘ﬂtS f(t+u)dt, the proof is complete.

-]
co

1 I
Corollary. If f € LQ N LS and f‘(x) = ge xt f(t)dat

- 00
o 2 2
then fe’xz/nlﬁ(x)tgdt - on? (e_u F(Zn-% w)du
- - o
oD
where F(u) = y F(T) f(t+u)dt.
-0

Proof. Make the change of variable u - 2n" %y in the

result of the preceding lemma.
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Theorem 1. Let f ¢ L, N L2. Then f € L and

2
Q Q Q
~ %
Hf”2 = (217) “fHZ.

Proof. By the corollary to Lemma 5,

© 2 Y 2
JA e ™% /n’f(x)‘Z dx = 2TT% L[ﬂ e™¥ F(2n—% u)du where
-~ 00

- 00

o]
F(u) = ‘f~ f(t) f(t+u)dt. Consider the sequence

~o
—u2 -+ —u” 2
gn(u) = e F(2n™® u). g, (u) is dominated by e ||f|l2 .

Applying Lebesques Dominated Convergence theorem to the

sequence gn(u) yields

00 (-4

00
2
o 1lim f g,(u)du = o ® f 1im g (u)du = o fe'u Hfllg du.
' -0

n J, ) D

The last integral is obtained using the results of Lemmas 2

and 3. Applying Fatous theorem,

% © x2 2 ® _x2 A
f[%(x)l2 dx:flim e /M3 (x)] %ax ¢ 1im fe"‘ /n|2(x)]? ax.
- 00

Inn—>o00 Il—»o0
‘m -
Hence,
Y o0 2
A
f | $(x)1%ax ¢ 1im fe_x /n | 5¢x)l2ax = a1 |l £l 2
n-»o

.y, -
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o0
A 2 ~
whence [[F11° - | F(x)|%ax < Hfl\g, which implies

-
0o

A L2 x°/mya, 2 2
fe LQ. Moreover, since lim f e lf(x)[ dx = 21 llfllz,

n-—o | o
Lebesques Dominated Convergence theorem may be applied
o0
A A
to yield flf(x)lZ = Hff'lg

- o0

H

a2 |iell g. This completes

the proof of the theoren.

Theorem 2. Let f € LS. For N = 1,2y....4 define fy by

£ () :{f(t) ltl< N
0 Itt > N

Then £ € Lé N LS and f_¢ L°. Furthermore, the sequence

N N Q

{fN} is a Cauchy sequence in LS.
N

%
Proof. For any fixed N, f‘fN(t)fdt = f [ £(t) ] dt.
Yo N
By the CBS inequality,
© ' . , N % N
f!fN(t)ldt < j‘ [£(t)] “at fdt < “f”2(2N) <o
=% -N -N

It follows that fir € L. Since lfN(t)l < | £(£)| and
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2 . 2 1
£eLg, it's clearﬁthat fy € Tqe Thus, £ € Ly N LS
and by Theorem 1, fN LS. The proof of the first part

of the theorem is complete.

2
To show that {ij} is an LQ Cauchy sequence, Theorem 1
. . AoA 2 2
can be applied to yield I!fM-fNi!2 = 2Tr(|fM-fN||2. Using
the definition of £09
-M N
2 2 2
!‘fM&lelz = oW ‘(» [ £(£)] 2at + [ £(£)“at| . Clearly,
M

-N

1im lfr -f_|I2 = o.
Lim E N”z

M-» o

2
Since L. is complete the limit of a Cauchy sequence

Q

in Lé will always converge to an element of Lé. Therefore,

the following definition makes sense.

Definition For f € LS, T is defined as

N
F(x) = HIE - lim Jf o Xt f(t)dt.

N—>oo
-N

Theorem 3. (Parsevals Relation). If f € LS, then
e = cemucu .
2 2

Proof. For T € Lé f.. is defined as in Theorem 1. Then

N
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1im [f.-fll = 0. But f - -
lim 5y 5 or each N HfNH2 Hf“z‘sﬂi‘N f“2
. N A
Hence, lim HfNH = el ,+ But from the definition of
N-»o0 2
f.s it is clear that 11me H = |If II Since
£y & LQﬂ LQ, HfNH = (2rr> Hf Il ,. Therefore,

1K H2 = 1im Hf I (2rr)% lim |l £y - CmFusn .
N—>w 2 - N->eo 2 2

The proof is complete.

It should be remarked that Theorem establishes
the fact that the Fourier Transform is nearly isometry of

LS an to itself.

C. The Inversion Theorem for Functions in LS(«L&)
In this section sufficient conditions for inversion
. 2 .
of the Fourier Transform for functions in LQ will be given.

An exact form for the inverse transform will also be given.

Lemma 1. If T ¢ LS and T(x)= F(-x) then T e Lé and
~ 2 _ 2
llffl2 = ‘lfl|2.

Proof. ’?(x)l2 = | f(—x)lz = |f(-x)12. Hence,

o

«© -0
f ['f"(x)lzdx = f | £(-x)! %ax f | £t 2dt and the
-

- o0 - 00

1

results follow..
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2
Lemma 2. If f and g ¢ LQ and fM, gy are defined by

f(x) 1xl¢ M
fM(X) ) { x gN(x) ) gx) Ixlg< N
0 lxI Y M o) Ixl > N

- 00 - 00

oo __ - )
N\
then f fy(x) gN(x)dx = f fM(x) EN(x)dx.

2
Proof. For each M,N f) and gy are in Lq. Thus,

.0 [+
T = | e redat end gyt - f et gu(t)at
f fM(x) gN(x)dx = e fM(t)dt gN(x)dx
- 00

-od o

o oo
~ -Ixt
" L j [ fM(t)dte gN(x)dx
-0 -

0 L)
" " = f f fM(-t)dt e IXt gN(x)dx
- 00 -

Hence,

0 __ © ®
A
J §M<x)gN<x>ax= f £1,(t) f o Xt gy (x)ax dt.
-0
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0o - -]

Finally, Jﬂ ?ﬁ(x) gN(x)dx'= -(.fM(t) gN(t)dt. A change

-0 - 00

of variable yield the desired result.

[+ - .
2 Al
Corollary 1. If f and g € LQ’ J~ £(x) g(x)dx=-(*f(t)§(t)dt.

-~od -l

on 00

2 (- x
Corollary 2. 1If f, gt L, ff(t)é\(t)dt f T(x) g(x)dx.

-4 —)

i

Proof. From Corollary 1,

j’f(t)é(t)dtz f T g(x)dx.

-0 -0

2 z P X
However, f(x) = f(-x) = f(~x) = f(x).

Now the main theorem can be proven. It will yield
the inversion theorem as a corollary.

~
N
T

2 1l A
Theorem 1. Let f ¢ LQ and let g = £f. Then f = 5 8.

2 ~ 1
1 A _ F o_ l_~ A = A
Proof. }|f - Eﬁ-gl)2 = .f; (f S g)(f 2r‘g)dt.
o0 1 oo
e - ¢l - f\flzdt+ , f!éuzdt
= J. (2m? Lo
i (| Fgat+ £ £ at).
2T
- 00
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Hence,
5 o0 o0
S 2 1 2 —=a —_ A
I £- %?gug = Hell5 + G2HEH2 -%TT(,( T§ at +f T & dt).
—-00 -
Corollary 2 can now be applied to yield,
60 o
1 A 2 2 ~ ~
”f--é-ﬁgilz= Hell 2 —7,!A’(§-%—ﬁ(f?gdt+f £ g at).
- LT -0 - o0
X
But g = £, so
_ l A 2 _ 2 1 A 2 1 .4 2
“f -é-ﬁgnz- “f”2+-——2-”g”2—T-1-_ | £l< dat. This can
T
be written as
2 1 2 =n 2
[fe- L T 8“2 = Hfﬂg + ""'5”%”2 - %”f“z. From Lemma 1,
LT
and from Parsevals Theorem, H?HS = ”’f‘”; = 21 Hrll g.
In addition HgIN2 = 27 Hgng. But g = £, so
Ay 2 2 2
el 5 = k)=l S+ Therefore,
A~ 2 2 2 2
- = £ - 205l S = 0.
Il £ 2n.g“2 e S+ e lig el g
The proof is complete.
Corollary 1. (Inversion Theorem) N
= - e f(X)dX.
If f ¢ LQ then £(t) HH2 %I:-wa o e

-N
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Proof. Let g = %.

£ =+ 3.

Then by the preceding theorem
ST Hence,

f(t)= Hl%—%iﬁ'%?rjﬂ eIx g(x)dx= NH lim =—

b fx)ax.
_N -om
N N
N 1 Ixt a1 Ixta
£(t)= IIH2 %ig B e P(-x)dx= IHE %iﬁ ST e f(-x)dx.
~N

Making a change of variable,

. 1 -Ixt
f(t) = H”2 I]\i'ili 5T f f(x)dx.

2
Corollary 2. Every f € L

0 is the Fourier Transform of a

2
unique element in L

Q‘
The results of this section are summarized in the

following theorem.

A 2
Theorem 2., If f € LQ then there exists a function f € L
such that

N

PG00 = i - lim J-eI"t £(t)dt
2 N-oeo N
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N

£(t) = I - limsm e-IXt f(x)dx and
2 No>®

~ 1 2
| = m)2 .
ftril 5 (am) !lfllz Every f ¢ LQ can be

expressed as f = é for a unique g € LS.
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IX. Hilbert Spaces over C

In this section a few elementary results about
inner product spaces over C will be given. The definition
of an inner product space over C is from Goldstine and

Horwitz (Goldstine, H. H., Horwitz, L. P., 1964).

Definition A linear space L over C is an inner product

space if there exists a function ( , ):

L xL — C such that

(i) (x,x)» O and (x,x) = O iff x = O
(11) (x,y+z) = (x,y) + (x,2)
(iii) (x,xo) = (x,x)x; (x,ya) = (x,y)-a for a real.
(iv) (x,y) = (y,x)
(v) t[(x,yx)1 =t [(x,y)x) (t(a) = a+ a)

It follows easily from the definition that

(a) (xt+y,z) = (x,2) + (y,2)

x(x,x).

i

(b)  (xo,x)

It should be noted that one of the usual properties

for an inner product is missing from the preceding
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definition. It is not assumed that (x,ya) = (x,y)a
for a € C. The reason for this is that none of the
canonical examples have this property and also it is
not known to this author whether it is possible to
construct a function on a linear space over C with
properties (i) through}(v) and the additional property
that (x,ya) = (x,y)a for all x,y € L and a € C.

Example 1. Let L = { (xl,x2,...,xn)\ xj g C } with
addition and scalar multiplication defined pointwise.

An example of an inner product on this space is given by

n
(x,7) = S Xy y; where x = (X1 9%ppeees%,) and
i=1

Y = (y1s¥p9ese¥p)e

Example 2. Let L be the class of C valued continuous

functions defined on [a,b] , with the operations of

addition and scalar multiplicated defined pointwise.
b

For f and g in L define (f,g) = .f f(x)eg(x)dx.
a

The very fact that the inner product is not

homogeneous with respect to scalars seriously affects
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the geometrical structure of Hilbert spaces over C.
Moreover, It's clear that no linear functional can be
represented by the inner product and hence the Riesz
Representation Theorem is impossible. It's clear that
if any satisfactory theory is desirable then certain

other assumptions are necessary.

It will now be shown that the inner product does
give rise to a metric on the linear space. To do this,

the following lemmas will be needed.

Lemma 1. (x,ya) + (y,xa) = [(x,y) + (y,x)]-a

Proof. From (iii) of the definition (x+y), (x+yl a)
= (x+y. ,x+y)a. Hence, (x,xa) + (y,xa) + (x,ya) + (y,xa)

+ (y,ya) = (x,x)a + (yyy)a + [(x,y) + (y,x) ] a.

Lemma 2. (xa,ya) = a(x,y)a

Proof. By Lemma 1, (x,ya) + (y,xa) = L (x,y) + (y,x)]-a.
Replace x by xa in this result. Then it follows that
[(xg,y) + (y,xg)] a. Hence,

t [ (y,xa)]la =t [(y,x)a, by (v).

H

(xa,ya) + (y,(xa)a)

1]

(xa,ya) + (y,x)(aa)
This can be written as
(xa,ya) + (y,x)(aa) = [(y,x)E + a(y,x)] a and the result

follows.
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Corollary 1. (xa,xa) = a(x,x)a = aa(x,x) = lal2 (x,x).

Lemma 3. (CBS inequality).
i

1
| (x,7) | < (x,x)2 (y,y)° for all x,y € L.
Proof. If either x or y are O then the inequality is true
trivially. Let (y,y) = 1. Then for every choice of
[(ya,x)+(x,ya)]

x £ Land a £ C 0% (x-ya,x-ya) = (x,x)
+ (ya,ya).
Or, O ¢ (x,x) -t Lx,ya)l + lal? (y,y) = (x,x)
-t [(x,y)a] + lall,

Now choose a = (X,y). It follows that

0  (x,%) - Lx,)GGy) + (x,y)(ij?)] + (x,7)(X,¥).
x)%.

Hence, (X,y)(y,x) € (x,x) or equivalently [ (x,y) ! = (x,

For any z € L with x # O it follows that
LIENOLS

‘(x,z (z,z)—%)lé (x,x)% and hence |}(x,z)] ¢ (x,x)

Theorem 1. If L is an inner product space over C with innex

%
product ( , ), then if [Ix1l = (x,x)°, L becomes a normed
linear space over C.
Proof. If IixIl is defined by Hxit = (x,x)% then
ixil = 0 iff x = O from the

[Ix1l) O for all x and
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properties of the inner product. From Corollary 1

Hxall? = (xa,xa) = Ia\2(x,x) = 1al®ix 12, so
Hixall = {Ixllial. l|x+y!|2 = (x+y ,x+y) = (x,x)
+ t [ (x, )] + (y,y) = N2 + t L(x,»)1 + Hyl12.

By Lemma 3 it follows that t [(x,y)] ¢ 2l(x,y)l
< 2ilxll-llyll. Hence, !|x+yl|2$ Cux 2+ 210xiHiyll
+ Hy|!2) = (Hxll + 1t yll)2 and consegquently

x+yll ¢ Ux tl + 11 ylit.
7

Lemma 4. If f: L x L — C, then £(x,y) = » £,067)y
J=0

and f_(x,y) = 4t [f(x,»1, fj(x,y) = -4t [ejf_(x,y)] .

The following is a generalization of the polarization
identity which is well known for the case of complex

linear spaces.

Theorem (Polarization Identity). If L is an inper product

space over C and Ilx Il = (x,x)%, then

7

S (ej\l;<+.'>rta.n2 - e, llx - ye ll?) = ¥(Gy)
j=0 J J J

Proof. Let a be any real number. Then

2
(x+yeja,x+yeja) = (x,x) +at [(X,yej)] + (Yej,Yej)a .
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For a =t], (x-yej,x~yej) = Ux1° = t [(x,y)ej] + Ilyil2.
Then fOI‘ j = 0,1,2,0.0’7,
e. |l x+ye 112 - e.l]x-ye H2 = 2e.t [ (xyye. ] Theref

3 p 3 510 3 ’ 34 erefore,

7

L 2 2 7

> (ej||x+yej|l - ejllx-yej{i )=2 5 ejt [(x,y)ej] .
Jj=0 j=0

Applying lemma 4 it follows that

7 2 2 - —
ZL_(ej\!x+yejll - ejllx-yejll ) = 2-2(x,y) = W(x,y).
J-0

Definition A Hilbert space over C is a complete Inner

product space.

Theorem 3. (Parallelogram law)

Let L be an inner product space over C. If x,y € L then

l\x+y\I2 + Hx-y 12 = 2l!xl!2 + 2\ly\\2.

The following theorem is a generalization of the
Jordan-Von Neumann theorem for complex linear spaces

to case of inner product spaces over C.

Theorem 4., If L is a Banach space over C with norm I i|

and Il |l satisfies the parallelogram law, there exists

an inner product ( , ) on L such that (x,x) = |l x 112,
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Proof.

Define [x,y] = %(\!x+y|l2 - llx-yllz).
7
(x,5) = [x,y Jeg - S [x,yej] e
J=1
(1)  clearly ( , ) is additive (since [,] is additive).
(i1) [x,xej] = Hx+xejll2 - Hx-xejn2
2 2 2 .
= Hxl] [ leo+ejl - teo-ejl 1 = o ror j#o.
Hence, (x,x) = [ x,x] e, = Wx 2.
A
(111) (x,xe ) = [ x,xe ] € - 2_1 [x,(xen)ej] ej

for n#0, [x,xe ] - 0. Also, [x,(xen)ej]

) ‘ 2 2
= z(l(x—(xen)ejil -|fx—(xen)ejll )

- 2 — 2
[xa(xen)ej] = %(H(xej+xen)ej\( - H(xej-xen)ejli )

i

(x, (xe e, ] i x 112 [ (Brep)egre )

- (Ej-en)(ej—gh)]

il

2
ﬂ%:—u— [ T.e +e e, te e +€ e -e.e.

Kx,(xen)ej] J75in) mn jn J1J

+e.6. -€_€
+ enej eaen n®n
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.
l . 2
[x,(xan)ej] = UJZLL’C(enej) = - x|\l gnj
Hence
(x,xen) = |lx H2en = (x,x)en.
. ) 2 2
(iv) [x,yek] = +(Hx+ye, 1l - Hx-—yeki\ )

[x,ve,) = (NG e 112 - NGB -yl %)
[X,yek] = 2( Hy-xe Il 2. \\y+xek\|2) = - [y,xek]
7
You (57 = Tl e - 3 T
__ A
(x,y) = [¥ex1 + ) _ [_x,yej] e
=1
A
(x,y) = [y»x] - L [y,xe,] e, = (yyx).
j=1 J J

(v) t [(x,y)en] = (x,y)e, + 'én(y,x) by definition
7
(xyy)e = [xsyle, - Zi [x,yej] (ejen)
J

En(y,x) = [x,7) 'e'n - :L {y,xej] (Enej).
J:
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But from (iv), [y,xe;] = - [x,yej] , SO
_ _ 7
en(y,x) = =x,v] °n " ;Z;l Lx,vey] (-é-nej)'

For n # O, enp = e, and hence,
7
e (y,x) = - [xsv] e, - J:Zl [x,yej] (enej).
Whence, v
t (x,y)en] = - }J_:_i [x,yej] . (ejen+enej), or

t [(x,y)en] =+ 2{x,ye 1 Snj = 2 [x,yen] . That

is, t (_(x,y)en] = 2 [x,yen] .
Now, t [(x,yen)] = (x,yen) + (yen,x). But

n
(x,yen) = [x,yen] ey - JZI [x,(yen)ej] ey

n

(e, »x) = [_yen,xl - %[yen,xej]'ej.

[x,,(yen)ej] = -é(ll}(4~(3ren)ejll2 - \\x-(yen)ej\\z).

This can be rewritten as

2
[x,(yen)ej] = #(1l-xes+yep tl - - erj+yenH2).
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Moreover,

2 2
[yen,xej] = %(llyenfxejil - \lyen-xejﬂ ).
Hence [x,(yen)ej] + [yen,xej] = O. Therefore,

t [(x,yen)] = [x,yen:] + [yen,x] = 2 [.x,yen]

il

t [(x,y)en]

Since this is true for n = 0,1,2,...7, it follows
that t [ (x,ya)] =t [(x,y)a] and consequently ( , )

has the properties of inner product space over C.

Definition A normed linear space L over C with norm
[1{lis called uniformly convex if to each € > O
there exists 4(¢) > O such that
Wx+y H € 2(2- &€)) when MHx!l] =1, llyll=1

and |lx-yilye .

Theorem An inner product space L over C is a uniformly

convex normed linear space over C.

2 2 2
Proof. lx+yll " = 2Ux1Z + 21yl ° - Hx-y U from

Theorem 3. If lix}l = HHyl]l =1, then Nx+y 112

2
= b4 - l|X-y|$2. Hence, M x+yll = 2 -[2 - (4~ lix-yll )%] .
If Hxil = Hlyll=1 and [|Ix-yll>E then

S() = 2-(4- HX-Y||2)% .

Hx+y il < 2(1- §@) ir >



161

X. Conclusions and Suggestions for Further Study

It is clear now that many of the results of functional
analysis that are usually given for complex linear spaces
are also true for linear spaces over the Quaternions.
However, it appears that much less can be said for linear
spaces over the Cayley numbers. This is due basically
to the fact that scalar multiplication is not an associative
operation. It seems to this author that more has to be
done with specific examples of these spaces before a general
theory can be developed.

As a result of this study some interesting but un-
resolved questions have arisen.

In Chapter VII, Spectral Theorems for compact normal
and compact self-adjoint operators on Hilbert Spaces over
Q have been given. It is natural to ask if analogous
theorems are true for arbitrary bounded self adjoint and
normal operators. One of the first difficulties encountered
in this problem is proving that the spectrum is non-void.

It was shown in Chapter VII that the spectrum of a bounded
self adjoint operator is non-empty, but the case for a
normal operator is open. Even if this result is true for

normal operators many difficulties remain and the approach

one should take 1s not clear.
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One of the more interesting structures éncountered
in this work is the algebra C(X,F), where F is a
Cayley-Dickson Algebra of dimension n. C(X,F) possesses
all of the usual properties of a real Banach algebra except
it is not associative. The Stone-Weierétrass theorem
was proven for this algebra but no other results were
obtained. It appears that no one to date has made a
study of algebras of this type and this might be an
interesting though formidable task.

In Chapter VIII a Fourier Transform for functions
in Lé (-0 4y ) and Lé (- 40 ) was studied. Many
gquestions concerning this transformation were not con-
sidered. It would be very interesting if the results
of Chapter VIII could extend to Lé(G) and LS(G) where G
is a locally compact abelian group. It also appears

that this transformation might have some application to

Quaternion Quantum Mechanics.
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