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ABSTRACT 

The La1-xSrxMn1-yByO3 perovskite systems where B represents a 3d transition 

metal such as Cr, Fe, Co, Ni, Cu, and Zn, are of significant interest due to their large 

magnetoresistance, and electronic transport properties that change significantly, 

depending on values of x and which transition metal used.  Their applications in 

technology include cathodes for solid oxide fuel cells, resistance random access memory 

and catalysis. At certain doping concentrations on the B-site, metal-to-semiconductor or 

metal-to-insulator transitions coupled with colossal magnetoresistance occur, decreasing 

the resistivity (up to six orders of magnitude) upon the application of an external 

magnetic field.  The Curie and Neel transition temperatures, TC and TN respectively, can 

be modified depending on the amount of transition metal substitution.  In the parent 

system, ���������	���

� �	���
, at x=0.4, the maximum transition temperature ��

��� is 

reached in the La-based manganites.  

To better understand the structural and magnetic properties of the 3d transition 

metal substituted perovskite ���.����.
�	�.���

� �	�.


����
�
 , we studied the effects of 

replacing B with Cr and Ni atoms using x-ray and neutron diffraction and magnetic 

measurements.    Of these two 3d transition metals, Cr has the least occupied outer 

valence shells, (Ar) 3d54s1 and has the same t2g electronic configuration as Mn4+, while 

Ni has the most filled outer valence shells, (Ar) 3d84s2.  The configurations of these outer 

valence electrons play a substantial role in the resultant magnetic interactions as 

witnessed by the unexpected magnetic ordering differences observed in the Cr and Ni-

substituted systems. An extensive literature search indicated no previous neutron 

diffraction studies had been carried out for these two systems 
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1. INTRODUCTION AND BACKGROUND 

1.1 SHORT HISTORY OF PEROVSKITES 

Gustav Rose discovered CaTiO3 in the Ural Mountains in 1839 and named it 

Perovskite after the eminent Russian mineralogist, Count Lev Alexevich Von Perovski. 

Over the years, the term perovskite has now become associated with an atomic structure 

designated as ABX3 with A and B representing cations and X as anions.  In naturally 

occurring perovskites, ABX3 is referred to as ABO3 where O represents an oxygen atom.   

Manganese-based compounds of the AMnO3 structure are generally referred to as 

manganites and ideally crystallize in the cubic perovskite structure.  The broad features of 

these mixed-valence manganese-based perovskites were described for polycrystalline 

samples of La1-xCaxMnO3 by Jonker and Van Santen [1], Van Santen and Jonker [2] and 

Jonker [3] in the early 1950’s where they found TC to be a maximum ~370K in 

La0.7Sr0.3MnO3.  In 1951, Zener, [4] attributed the mechanism for observed conductivity 

to an eg electron hopping between Mn3+ and Mn4+ (Mn3+-O-Mn4+), and coined it “double 

exchange.”  In 1953 Wollan and Koehler [5] performed the first extensive neutron 

diffraction study on La1-xCaxMnO3 where they found coexistence of ferromagnetic and 

antiferromagnetic couplings, evidence of ionic ordering, and Mn3+-O-Mn3+ interactions to 

be anisotropic, being ferromagnetic in the (001) planes and antiferromagnetic along the c-

axis.  In 1954 Volger [6] was the first to describe magnetoresistance and other transport 

properties where he showed that the magnetoresistance of La0.8Sr0.2MnO3 is negative 

with a peak near the Curie temperature. More detailed theoretical studies were performed 

by Anderson and Hasegawa [7] and de Gennes [8].  In 1960 De Gennes [8] worked to 
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refine the theory of doubleexchange in canted magnetic perovskites.  In 1961, 

Goodenough, Wold, Arnott and Menyuk [9] studied La(Mn1-x-Mx)O3+∆ (M= Ni, Co and 

Ga), and characterized the magnetic couplings and ordering between the Mn3+/4+ and Ni, 

Co and Ga. They presented rules for 180˚ superexchange interactions and found 

ferromagnetic and antiferromagnetic Mn3+-O-Mn3+ interactions and evidence of ionic 

ordering.  In 1969 and 1970, Searle and Wang [10], Morrish et al. [11] and Leung et al. 

[12] studied single crystals of La1-xPbxMnO3 with 0.2 < x < 0.44. They found metallic 

conductivity below the Curie point (TC) and a large negative magnetoresistance of about 

20% at 1T in the vicinity of TC.  Searle and Wang [10] determined the �&'%) =
∆,

,'�)
=

	
-.�-/
-.

0100  where ρ0 and ρh are the resistivities in the absence and presence of a 

magnetic field respectively.  Magnetization values suggested that a fully spin-polarized d-

band is involved in the ferromagnetic ordering process. In 1970, Goodenough and 

Longho [13] published a significant compilation of data for compounds with the 

perovskite-structure in a Landoldt-Börnstein volume, and in 1972, Kubo and Ohata [14] 

provided a quantum mechanical interpretation of the DE mechanism. Interest in the 

perovskites waned until the mid-1990’s and the discovery of colossal magnetoresistance, 

magnetoresistance as large as 127,000% near 77K, by Jin et al. in 1994 [15].  In 1995, 

Millis et al. [16] provided theoretical evidence that the double exchange model could not 

fully explain the MR behavior and proposed Jahn-Teller phonons and polarons.   

In summary, manganite ground states are primarily determined by five 

contributions: (1) the kinetic energy of the eg-electrons, (2) the Hund coupling energy 

between the eg-electron spin and the localized t2gelectron spins, (3) the antiferromagnetic 

coupling between the nearest-neighbor t2g-electron spins, (4) the electron-phonon 
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coupling between the eg-electron spin and the local Jahn-Teller distortion, and (5) the 

Coulomb interaction among the eg-electrons. 

 

1.2 MANGANITE PEROVSKITE PROPERTIES 

Almost all the degrees of freedom known in solid state physics such as itinerant 

charges, localized spins, electronic orbitals and lattice vibrations are at work in these 

perovskite systems.  In a sense, manganites are ideal compounds for magnetic sensor 

devices, since the two possible primary ground states are metal and insulating. In general, 

the magnetoresistance effects peak at the carrier density separating the metallic phase 

from the insulating phase. These manganites show insulating states which can be 

paramagnetic, ferromagnetic, as well as antiferromagnetic.  Of particular interest in these 

manganites is that the transition from ferromagnetism to paramagnetism is accompanied 

by a significant increase in conductivity. Electronic phases in these perovskites include 

ferromagnetic, antiferromagnetic, antiferromagnetic-layered, ferromagnetic-layered, 

superconducting, semi-conducting, insulating, paramagnetic, ferrimagnetic, orbital-

ordered and charge-ordered, depending upon transition metal oxide dopant, values of x, 

y, and temperature.  In fact, typically the most relevant energy scale in these manganites 

is the temperature at which the magnetic ordering is observed.   

Substitution of divalent cations for trivalent cations on the A-site predominately 

alters the number of electrons in the 3d band (Mn3+ versus Mn4+) whereas substituting 

various 3d transition elements for Mn3+ on the B-site predominately alters the interatomic 

distances and bond angles. For instance, the electrical conductivity of LaMnO3 can be 

increased by substituting Sr2+ for La3+, creating Mn4+ and a hole in the eg 
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(32�3�43 , 32
63�73) band, promoting itinerant electrons that enable conductivity. It is 

well known that the magnetic properties of these mixed-valence manganites are strongly 

dependent on the Mn4+ content.  When the A-site is occupied by a trivalent atom such as 

La3+, the Mn is typically in the Mn3+ state, as in LaMnO3.  However, ionic composition 

depends on the firing temperature and preparation process.  For instance Wollan and 

Koehler [5] found 2% to 35% Mn4+ was found in LaMnO3 when fired in nitrogen at 

1400˚C and oxygen at 1100˚C respectively. These oxides become ferromagnetic at a 

critical value of Mn4+ and transition from an insulator to a metal around the 

ferromagnetic TC. In the metallic phase, the double exchange favors itinerant electron 

behavior, promoting conductivity.  However, this mechanism is opposed by the Jahn-

Teller distortion due to the presence of Mn3+. These manganites can exhibit unusually 

high resistivities, even in the metallic regime, and do not always obey the criteria for 

metallicity. These manganites also show charge-ordering, especially when the size of the 

A-site cations is small and the quantity of B-site Mn and transition metal dopant are 

equal. Charge ordering, if it occurs, is in the insulating phase, and the dominant exchange 

coupling thus is superexchange [17].  

While many of these effects were known much earlier, appreciation for, and 

interest in, the degree of sensitivity of these manganites to magnetic fields has increased 

in recent years due to works such as Jin et al., 1994 [15].  For instance, magnetic fields 

have been shown to suppress charge ordering in these manganites [18].  

Interests in these manganites include applications in technology and basic 

research aimed at understanding the origin of the large magnetoresistance. Giant 

magnetoresistance multilayer metallic films are an example of recent technological 
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applications.  They have a relatively large sensitivity to magnetic fields known as the 

spin-valve effect between spin-polarized metals that is reversible.  This effect has enabled 

new advances in the magnetic storage industry in the form of magnetoresistive read 

heads.   

 

1.3 CRYSTAL STRUCTURE 

The ideal perovskite structure is cubic (Figure 1-1) with the BO6 octahedra 

sharing their corners and the A cations occupying the 12-fold cavities created by the 8 

BO6 octahedra, or oxygen octahedra.  In La0.7Sr0.3MnO3, the electronic configurations of 

Mn3+ and Mn4+ are 3d4 and 3d3 respectively. Due to cation size mismatch on the A-site 

and the Jahn-Teller effect on the MnO6 octahedra, they have a slightly distorted cubic 

structure with the A cations having a 12-fold coordination with the O anions.  The 

perovskite structure is known to be very flexible and the A and B ions can include 

various ions such as La3+, Sr2+, Ba2+, Ca2+ on the A-site and Mn3+/4+, Ni3+, Cr3+, Fe3+, 

Co3+, Zn3+ to name a few on the B-site, leading to a large number of known compounds 

with perovskite structures. The valence and quantity of the B-site ions are highly 

influenced by the ionic radius and quantity of the A-site dopant. The perovskites studied 

in this dissertation have a rhombohedral structure (Figure 1-2), that is only slightly 

distorted from cubic (typically on the order of a few degrees from cubic). 
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Figure 1-1 The ideal, cubic structure of an ABO3-type manganese perovskite  with the A-
site typically filled by a La3+, Ca2+ or Sr2+ (large cation ions) and the B-site filled by Mn3+, 
Mn4+, Cr3+, Ni3+ or other small cation while the oxygen ions form an octahedron around 
the B-site cation. 

 

 

 

1.4 OCTAHEDRAL FIELD SPLITTING  

When a transition-metal ion is surrounded by 6 oxygen (negative) ions in an 

octahedral configuration such as the case of the perovskites, the five-fold degenerate 3d-

orbitals are split into two different energy groups, an upper doublet, 89:, and a lower 

triplet, ;9: Dunitz and Orgel 1957 [19]. This splitting is due to the influence of the cubic 

crystal field (Figure 1-1), or more simply, the electrostatic repulsion between the d 

electrons and the surrounding negative ions causes a splitting of the energy levels.  The 

89: orbitals (dx
2

-y
2, dz

2) align directly with the negative oxygen ions and are destabilized 

A (La, Sr) 

O 

B (Mn) 

A (La, Sr) 

O 

B (Mn) 

Figure 1-2 The rhombohedral (space group R3�� ) structure of 
a	La�.�Sr�.
MnO
 perovskite. 
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while the ;9
:orbitals (dxy, dxz and dyz) point in directions where the field is least (between 

the ions) and are therefore stable. As successive electrons are added into the d shell, they 

occupy the lowest available orbitals compatible with the total spin associated with the 

metal ion. In Mn3+, there are three ;9
:  orbitals in the high spin state (S = 2) and the 

remaining electron is excited into the 89
: orbital whose spin is parallel to the spins of ;9

: -

electrons of neighboring Mn-atoms due to strong Hund’s rule coupling.  However, in 

Mn4+, there are only three electrons in the 3d-shell, and all three ;9
: orbitals are filled with 

a single electron each, providing a total spin S =3/2. 

 

 

 

Mn3+ (3d4) Crystal Field splitting JT distortion 

10Dq ~ 1eV 

eg 

t2g 

dx
2

-y
2
 

dz
2
 

dxy 

dyz 

dxz 

ΔJT = 0.1eV  

O 

Mn 

Figure 1-3  Crystal field splitting of the d-level electrons and the additional 
splitting due to the Jahn Teller distortion. 



 8

1.5 JAHN TELLER DISTORTIONS 

The Jahn–Teller (JT) effect, named after Hermann Arthur Jahn and Edward Teller 

[20, 21], provides that orbital nonlinear spatially degenerate molecules cannot be stable, 

or, that any nonlinear molecule with a spatially degenerate electronic ground state will 

undergo a geometrical distortion that removes the degeneracy, lowering the overall 

energy of the molecule.  Stability exists when the configuration in which the electronic 

state is degenerate is linear (all nuclei lie on a straight line), or the system contains an odd 

number of electrons and the degeneracy is the twofold Kramer’s degeneracy [22], which 

cannot be removed by any changes in the electrostatic field.  Thus, Jahn and Teller have 

shown that in addition to the splitting of the 3d-orbitals under the influence of the cubic 

crystal field, there is another splitting of the 89:  orbital of a non-linear, orbitally 

degenerate atom, such as Mn3+ in the MnO6 octahedra, that is due to energy-lowering 

distortions. A distortion of the oxygen octahedron lowers the symmetry of the cubic 

crystal field, and lowers the energy of the atom.  This distortion proceeds until the extra 

stability gained by the distortion is just balanced by the energy required to stretch and 

compress the bonds. The magnitude of the Jahn-Teller distortions depend on the bonding 

or antibonding power of the degenerate electrons and, will vary between the different 

transition-metal ions according to their electronic configurations.  There are several types 

of Jahn-Teller distortions, including, cooperative static, dynamic, and local distortions.  

The cooperative static Jahn-Teller distortions are ones in which the distortion remains 

fixed and does not move, as when lattice structures are predominantly comprised of 

Mn3+.    In the perovskites, the Mn3+ ion is generally referred to as a Jahn-Teller ion 

where the splitting of Mn3+ electrons in the 89: orbital causes an elongation of the [MnO6] 
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octahedron that leads to an energy gain that is an order of magnitude lower ( ∆JT ≈ 0.1 

eV) than the energy difference between the 89
: and ;9

:levels. When a Mn3+ ion replaces a 

Mn3+ ion in the lattice, there is one additional electron introduced locally into the 89
:-orbit 

of one lattice site, resulting in a local Jahn-Teller distortion.  A polaron is formed when 

the 89
: electron hops from one Mn-site to the neighboring one such that the Mn3+ and 

Mn4+ ions switch places.  The effect of these distortions is to lower the symmetry of the 

cubic crystal field, thereby elongating or shortening the bonds and lowering the overall 

energy.  A dynamic Jahn-Teller distortion occurs when the distortion changes within the 

lattice over time.  The lattice distortions can be characterized by the Goldschmidt 

tolerance factor  

< =
〈&>〉 + &A

√2'〈&C〉 + &A)
 

where RA, RB and RO, are the average ionic radius of the A-site, B-site and 

oxygen ion respectively.12  For τ<0.96, the structure tends to be orthorhombic while for 

0.96<τ<1.0, the structure tends to be rhombohedral.  If τ=1.0, the structure is cubic.  

However, it is also well known that not all the bonds in the perovskites are ionic so the 

tolerance factor is used as a general guide, not a rule. 

Magnetic polarons are magnetically ordered clusters formed when an electron 

enters into a conduction band accompanied by a localized deformation, an electron with 

induced lattice polarization.  The reduction in energy by moving in a spatially localized 

level with the local deformation provides the mechanism allowing exchange between 

bound carriers and localized spins [23, 24, 25, 26].  Polarons have more mobility than 

ionic defects.  
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1.6 B-SITE SPIN CONFIGURATION AND HUNDS RULE 

The order in which electron sub-shells tend to be filled also determines the spin 

configuration of these free atoms and ions in their ground states.  This filling can be 

determined by applying Hund’s rule: every orbital in a subshell is singly occupied with 

one electron before any one orbital is doubly occupied, and all electrons in singly 

occupied orbitals have the same spin.  The origin of this rule lies in the mutual repulsion 

of electrons.  It is due to this repulsion, that the farther apart the electrons are, the lower 

the energy of the atom is.  Electrons in the same subshell with the same spin must have 

different mi values and accordingly, are described by wave functions whose spatial 

distributions are different.  Electrons with parallel spins are therefore more separated in 

space than they would be if they were paired off.  This arrangement, having less energy, 

is the more stable one.  In other words, spin and angular momentum can be couched 

using Hund’s rule as follows: 

(1) The total spin angular momentum, S= 
iS

i

m∑ such that no two electrons in an 

atom can occupy the same quantum state (each electron must have a different 

set of quantum numbers n, l, ml,and ms). 

(2) Total orbital angular momentum L = 
il

i

m∑  consistent with rule (1). 

(3) Total angular momentum J = L S−  for a shell less than half full and L S+  

for a shell more than half full. 

 

The above rules allow us to specify the spin configuration and spin only magnetic 

moment of the B-site metal ions. The degeneracy of the 3d-orbital in the 3d-transition 
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metal ions is lifted due to the crystal field generated by the surrounding ions.  Once the 

degeneracy is lifted, the resulting orbital angular momentum L equals zero.  Once the 

orbital angular momentum is quenched, the magnetic moments of 3d transition metals 

will stem predominately from the total spin angular momentum S.  

 

1.7 ELECTRONIC EXCHANGE AND ORDERING MECHANISMS 

The electronic exchange mechanisms in the manganese-based perovskites 

responsible for the magnetic, electronic and transport properties have predominately been 

attributed to double exchange [4] and ferromagnetic and antiferromagnetic 

superexchange [27].  In 1955, Goodenough and Loeb[28] proposed another exchange 

mechanism, semi-covalent exchange, where they argued that in the transition metals, the 

(n)d and (n+1)s orbitals differ very little in energy, allowing for the easy formation of 

covalent bonds, that by nature, involve orbital overlap.  However, this exchange 

mechanism has largely not been adopted.  To a lesser degree, physical and electronic 

interactions and ordering phenomena also shape the magnetic, electronic and transport 

properties, including charge ordering, orbital ordering, electron-phonon interactions and 

Jahn-Teller [21] distortions. The Mn atom has an [Ar]3d54s2 electron configuration.  

Therefore, the Mn4+ ion consists of three electrons, [Ar]3d3, with parallel spins in the 

degenerate t2g states  (Figure 1-3) of (3dxy, 3dyz, 3dzx) and empty eg orbitals, while the 

Mn3+ ion has an additional electron in one of the higher-energy degenerate eg states 

(Figure 1-3) of (32�3�43 , 32
63�73 ) that causes it to have a strong electron-phonon 

coupling as a Jahn-Teller ion.  Therefore, lattice distortions necessarily play an important 

role in determining the ground states and physical properties of the manganites [21]. 
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1.8 DOUBLE EXCHANGE INTERACTION  

The double exchange mechanism Zener [4], favors a ferromagnetic exchange of 

electrons between Mn3+ and Mn4+ using the oxygen ion as an intermediary, due to a 

strong Hund’s rule coupling (Figure 1-4).  This rule only allows parallel spins of the 

charge carriers to the local spin of neighboring atoms. Therefore, the charge carrier hops 

to a neighboring site without changing its spin. Zener described the double exchange 

mechanism as a double charge transfer via a Mn3+ (t3e1) - O2- (2#D
:) - Mn4+ (t3e0) bond 

whereby the e1 electron from Mn3+ displaces the like-spin O-2pσ electron to the empty e0 

orbital on the Mn4+ ion.  This mechanism is usually written as Mn3+-O-Mn4+ double 

exchange. Anderson and Hasagawa [7] in 1955 further described the double exchange as 

the effective hopping of an electron between Mn neighbors, involving the oxygen 2p-

orbital and the Mn 3d-orbitals (tpd). Theoreticians like Millis et al., 1995 [16] pointed out 

that the theoretical framework used within the double exchange mechanism does not hold 

up when examined quantitatively.  Instead, it is also necessary to consider the physics of 

a strong electron-phonon interaction arising from the Jahn-Teller splitting of the outer Mn 

d-level electrons.  Kubo and Ohata [14] later provided a full quantum mechanical 

interpretation for the double exchange mechanism. 
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Figure 1-4  Double exchange interaction between Mn3+ and Mn4+. As the arriving and 
departing electrons via the O-(2#D:) orbital must have the same spin orientation, 
ferromagnetic coupling occurs between Mn3+ and Mn4+ (small circle for the t2g orbitals, 
lobes for the eg orbitals, and arrows indicating electron spin direction. Empty eg orbitals 
are indicated by dotted lines). 

 

1.9 SUPEREXCHANGE INTERACTION  

Kramers [27] first suggested that it is possible to have an exchange spin-coupling 

between magnetic atoms via an intermediary, non-magnetic atom, giving rise to what is 

known as superexchange. In the perovskite system, the intermediary is the oxygen ion 

that lies between the two Mn ions.  Therefore, superexchange is an indirect spin-spin 

exchange process in poor conductors where the distance between the magnetic ions is 

large, prohibiting a direct exchange. The dipole-dipole exchange interaction is weaker 

than the superexchange interaction and the superexchange mechanism is the primary 

mechanism for the magnetism. The spin coupling takes place between two like-charged 

Mn3+ Mn4+ O2- 

dZ
2 

d x
2

-y
2 

pσ 
dZ

2 pσ 
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Mn-ions, for instance, two Mn3+ or two Mn4+ ions, via the O2- ion lying in between 

without any charge transfer (Figure 1-5).  

The orbitals in a pure ionic bond do not overlap. In reality there is some weak 

covalent bonding between the Mn and the O-atoms. Since this covalent bonding is weak, 

the perturbation of the electron movement is weak, causing the electrons to remain 

localized and resulting in a spin structure with an antiferromagnetic ordering of the 3d 

spins (Figure 1-5). However, this coupling can also be ferromagnetic. For realization of 

ferromagnetic coupling, the Goodenough-Kanamori [44, 45] rules must be implemented: 

(1) Strong antiferromagnetic exchange occurs when two like-cations with occupied d-

orbitals at neighboring sites overlap with the anion (oxygen) 2p-orbitals, (2) The 

exchange can be moderately ferromagnetic when one cation has occupied t2g orbitals and 

half-filled eg orbitals, while the other has occupied t2g orbitals but empty eg orbitals that 

overlap.  However this exchange is much weaker than in the antiferromagnetic case. 

 

 

 

 

 

 

1 

2 

O2- 

d x
2

-y
2 

dZ
2 dZ

2 pσ 

Mn4+ (or Mn3+) Mn4+ (or Mn3+) 

Figure 1-5 Antiferromagnetic superexchange interaction between two Mn3+(or 
Mn4+) ions with occupied overlapping orbitals with the  O 2p-orbitals (small 
circle for the t2g orbitals, lobes for the eg orbitals, and arrows indicating electron 
spin direction. Empty eg orbitals are indicated by dotted lines). 
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1.10 CHARGE ORDERING  

Upon doping, the manganite’s exhibit charge-ordering that is particularly 

pronounced when the ratios of Mn3+ to Mn4+ are rational fractions.  A charge-ordered 

condition exists when the interatomic long-range Coulomb interaction between the 

charge carriers overcomes the kinetic energy of these same carriers.  The condition can 

be a first or second-order condition and is most common in strongly correlated electron 

systems such as exist in the transition metal oxides. The condition exists when mobile d-

electrons are localized on certain sites, forming a regular ordered superlattice for specific 

occupancies of the d-band electrons, provided that the interelectronic Coulomb 

interaction is comparable with the conduction-electron bandwidth [29, 30, 31, 32]. For 

instance, a charge ordered insulating state can occur when electrons become localized 

within an antiferromagnetic insulating phase of a perovskite.  The manganites show 

charge-ordering mostly when the temperature is low and the value of the mixed cations is 

a rational fraction (e.g. the ratio of Mn3+ to Mn4+ is  
�

E
,
�

�
,
�

:
, F�	




�
 . Small displacements of 

the oxygen atoms accommodate the ordered cation lattice. The extra fourth d electrons 

can then localize on alternate manganese sites in a plane, favoring insulating behavior.   

 

1.11 SYNTHESIS 

Many perovskites are typically synthesized by solid state reactions that yield 

polycrystalline samples.  The precursors are usually simple binary oxides or pure 

elements.  Precursors are typically dried ahead of time in a warming oven or kept under 

vacuum in a dry environment, measured stoichiometrically, mixed and ground thoroughly 
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and pressed into pellets.  Once pressed into pellets, they are fired at temperatures 

sufficient for calcination (decomposition of any carbonates used in the precursors) for up 

to 48 hours.  Once cooled, the pellets are ground and mixed again, pressed into pellets 

and calcined for up to 48 additional hours.  This process is typically repeated several 

times to insure homogeneity of the polycrystalline samples.   The process is repeated one 

final time at a temperature sufficient to produce the desired solid-state reaction of the 

precursor elements to form the perovskite structure but at temperatures that do not 

produce a “melting” of the precursors.  These temperatures are usually relatively high and 

vary depending on the precursors and their respective melting temperatures but generally 

should not exceed the lowest precursor melting temperature (e.g. the perovskites studied 

in this thesis were fired at 1350C).  The desired effect is to achieve approximately a 90% 

or better solid-state reaction of all combined elements to produce the polycrystalline 

samples.  

 

1.12 NEUTRON DIFFRACTION 

Neutron diffraction is the only direct method whereby the magnetic structures of 

materials can be determined.  The neutron magnetic moment is about 1.9µΝ (nuclear 

magnetons) or about 10-3 µΒ (Bohr magneton = 9.273x10-21 erg). Neutrons behave as 

particles when they are created, as waves when they scatter, and as particles when they 

are detected.   

The neutron has a spin of one-half.  If the target atom or ion has a net spin, the 

interaction of the spin of the neutron with the spin of the nucleus of the target atom 

determines the scattering property of the neutron with the target atom.  This spin-spin 
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interaction leads both to coherent and incoherent scattering.  The coherent scattering 

produces diffraction effects while the incoherent scattering, is observed as general 

background noise.  In non-magnetic materials, the neutron scatters predominately off the 

nucleus, but does also interact with the electric charges in the nucleus.  However these 

latter interactions are extremely small being a factor of about 104 less than the nuclear 

scattering and are not further discussed in this dissertation. The size of the nucleus is very 

small compared to the size of the electron cloud and to the wavelength of neutrons.  Thus, 

in nonmagnetic materials, the amplitude of neutrons scattered off the nucleus will not 

depend on the scattering angle, thus providing a nearly straight line “form factor”.  The 

same is not true for neutrons scattering off magnetic materials because it is the unpaired 

electrons in the unfilled electron shells that provide the magnetic moment that interacts 

with the neutron magnetic moment. 

Neutrons penetrate deep into the material.  However, the penetrating ability of 

neutrons is countered by the fact that they are weakly scattered once they do penetrate.  

Neutron scattering can be elastic or inelastic with the total energy and momentum 

conserved during the process.  In the case of inelastic scattering, some of the energy from 

the neutron is absorbed by the nucleus of the target atom.   

Thermal neutrons from reactors are expensive and scarce but their scattering is a 

valuable tool for investigating many important features of matter.  Some of the most 

compelling advantages for using neutrons include: 

 

Neutrons are a bulk probe, only weakly absorbed except for B, Cd, Sm, Eu and 

Gd. 
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The wavelength of thermal neutrons is of the order of typical interatomic 

distances in solids and liquids. Therefore, diffraction effects are realized and information 

on the structure of the materials can be obtained. 

Neutrons are scattered by atomic nuclei (except for magnetic scattering) by very 

short range (~fm) forces, so the neutron form factor is nearly a straight line  as opposed to 

x-rays scattering from the extra-nuclear electrons, which is proportional to the atomic 

number Z.  

The neutron has a magnetic moment allowing it to be scattered by unpaired 

electrons via magnetic dipole interactions in magnetic atoms. This elastic scattering 

provides information about the magnetic moment and magnetic ordering of magnetic 

atoms. 

Neutron cross sections are isotope–dependent in a more or less random manner, 

allowing neutron scattering to not be dominated by the heavy atoms, as are x-rays. 

Thermal neutron energies are of the same order as that of many elementary 

excitations in condensed matter, causing significant changes in neutron energy and 

wavelengths when the neutron is inelastically scattered by the creation or annihilation of 

an excitation. 

The measurement of the scattered neutron requires the observation of the neutron 

interacting with another particle.  Therefore, neutron detection requires “detectors” to be 

made of materials such as boron, helium-3 or lithium that absorb neutrons strongly in 

order to produce ionizing radiation for measurement.  All neutron-diffraction data were 

collected at the MURR facility (Appendix B) using a position sensitive detector 

diffractometer with a neutron wavelength of λ = 1.479Å.  MURR houses a tank-type 
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nuclear research reactor, servicing the University of Missouri's Nuclear Science and 

Engineering Institute (NSEI) in Columbia (see Appendix B). 

 

1.13 RIETVELD METHOD 

Hugo Rietveld joined the group at the Reactor centrum Nederland (now 

Netherlands Energy Research Foundation ECN) in 1964 where the emphasis was on 

building a neutron powder diffractometer to study powder samples as no large, single 

crystals could be grown of the materials of interest at the time.  He presented a new 

method for analysis of data from powder samples at the Seventh Congress of the IUCR in 

Moscow in 1966.  However, little reaction was received until the full implementation of 

the method was published in 1969 and was not generally accepted until 1977.   It was his 

unselfish sharing of his methods that has enabled the great advances in the ability to 

extract detailed crystal structural information from powder diffraction data.  Instead of 

using the integrated intensities, the Rietveld method uses the individual intensities at each 

step, yi, of a step-scanned pattern as data. For constant wavelength data, these steps are 

usually steps in scattering angle, and the intensity yi at each step i in the pattern is usually 

measured by a diffractometer.  The least-squares method is used to obtain the best fit 

between the entire observed powder diffraction pattern taken as a whole and the entire 

calculated pattern based on simultaneously refined models of the crystal structures.  The 

powder diffraction pattern of any polycrystalline material may be thought of as a 

collection of individual reflection profiles.  Each of these profiles has a profile function, a 

peak height, a peak position, a breadth, and an integrated area which is proportional to the 
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Bragg intensity, IK (K stands for the Miller indices, h, k, l). This intensity is proportional 

to the square of the absolute value of the structure factor, |HI
:|: 

]exp[)](2exp[ jjjjj
j

jK WlzkyhxibNF −++=∑ π        

where:          

Nj is the occupancy of the jth atom. 

            bj is the scattering length of the jth atom. 

h, k, l are the Miller indices. 

xj, yj, and zj are the position parameters of the jth atom in the unit cell. 

Wj is the Debye-Waller factor, 2222 /sin8 λθπ sj uW = . 

2
su  is the root-mean-square thermal displacement of the jth atom parallel to 

the diffraction vector.  

 

The goal of the method is to find the best fit between the observed intensity and 

calculated intensity. The refinements have been proven to be robust and it has been found 

that the Rietveld method can do multiphase refinements accurately, including magnetic 

phases.  Parameters refined in multiphase analyses may be treated dependently or 

independently as separate phases 
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The Rietveld method  minimizes the residual, Sy: 

2)( cii
i

iy yyS −=∑ω                

where   ωi=1/yi 

  yi=observed intensity at the ith step 

  yci=calculated intensity at the ith step 

  and the sum is over all data points. 

For more information on the Rietveld method, see [34]. 

 
1.14 NEUTRON DIFFRACTION STUDY OF LAMNO3 

In LaMnO3, the four 3d electrons on the Mn3+ B-site share both the lower t2g band 

and the higher eg band (3d4:;:9

 89�). Due to the strong Hund coupling, all the spins are 

parallel on a given Mn site. The highly correlated electrons in the eg band create the large 

correlation gap above the Fermi energy.  A neutron diffraction study of the LaMnO3 

parent compound was reported by Carvajal et al in 1998 [35].  It was known by that time 

that this system is an antiferromagnetic insulator where orbital ordering is established via 

the cooperative Jahn-Teller effect breaking the degeneracy of the electronic configuration 

of Mn3+ ( ;:9

 89� ). They used two powder diffractometers at the Orphe´ Reactor at 

Laboratoire Le´on Brillouin in their study. They used the G4.2 diffractometer to study the 

crystal structure behavior as a function of temperature and the diffractometer 3T2 for 
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refining the crystal structure. They used the FullProf program and Rietveld method to 

analyze the experimental data.  Their powder samples of LaMnO3 were prepared by 

crushing single-crystal ingots grown by the floating zone method [36]. 

Caravajal et al [35] observed two transitions upon heating, one at T1=750 K and 

the second at T2=1010 K (Figure 1-6). Their neutron diffraction (Table 6.1) indicates that 

below T1 the unit cell is orthorhombic, while between T1 and T2 the reflections can be 

indexed either assuming a double cubic perovskite cell or an orthorhombic cell.  Above 

T2, the  

 

 

Figure 1-6 Cell parameters of LaMnO3 as a function of temperature from Carajaval et al 
[35]. 
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reflections are indexed using an &3��  rhombohedral cell.  They noted that in comparison 

to other studies at the time, a small amount of Mn4+ in the LaMnO3 system appeared to 

increase the c axis while diminishing the orthorhombic strain. They suggested the T1 

transition, while occurring with no change to the average crystallographic symmetry, 

could be attributed to the suppression of the cooperative Jahn-Teller effect (T1=TJT).  

Finally, they observed that at temperatures higher than TJT, the orbital ordering 

disappears, witnessed by a diminishing distortion in the MnO6 octahedra in transitioning 

from the O′ phase to the O phase. 

 

Table 1-1 Structural data for LaMnO3 (Pbmn) at three temperatures [35]. 

 300K 573K 798K 

a (Å) 5.5367 (1) 5.5520 (2)  5.5817 (3) 

b (Å) 5.7473 (1) 5.7269 (2) 5.5834 (2) 

c (Å) 7.6929 (2) 7.7365 (2) 7.8896 (4) 

 

 

1.15 SUBSTITUTION OF La BY Sr 

Sr doping introduces holes in the eg band near the Fermi energy, producing 

mobile holes and conduction by conversion of Mn3+ to Mn4+.  Asamitsu et al [37] 

provided evidence that the crystal structure of La1-xSrxMnO3 can, for a limited range of x, 

be switched-reversibly or irreversibly, depending on the temperature, by applying an 

external magnetic field.  The magnetic and transport properties of these manganites have 

been described with double exchange, super exchange, semicovalent exchange, Jahn-
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Teller distortions, and electron-phonon couplings. However, Millis et al [16] provided 

theoretical evidence that double exchange between Mn3+-O-Mn4+ could not account for 

discrepancies between calculated and observed resistivities.  Urushibara et al [38] studied 

melt-grown La1-xSrxMnO3 crystals (x≤0.6) using x-ray diffraction, magnetic and 

electrical measurements.  They found the lattice parameters a and b decrease while c 

increases with increasing Sr content within the orthorhombic phase (x<0.175). All the 

lattice parameters decreased with increasing Sr content in the rhombohedral phase 

(x>0.175) (Figure 1-7).  Their magnetic phase diagram for La1-xSrxMnO3 is provided in  

Figure 1-8.  They also produced an electronic phase diagram vs Sr content (Figure 6.3) 

where they noted the TC is max for x~0.4 (Figure 1-9).    

 

 

Figure 1-7 Lattice parameters for La1-xSrxMnO3 at room temperature from Urushibara et 
al [38]. 
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Figure 1-8 Magnetic phase diagram for La1-xSrxMnO3 from Urushibara et al [38].  Open 
circles and filled triangles are the Neel temperature (TN) and the TC temperatures 
respectively.  The abbreviations mean paramagnetic insulator (PI), paramagnetic metal 
(PM), spin-canted insulator (CNI), ferromagnetic insulator (FI), and ferromagnetic metal 
(FM). 
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Figure 1-9 Temperature dependence of resistivity for La1-xSrxMnO3 from Urishabara et al. 
[38] 

 

Martin and Shirane [39] studied the magnetic and nuclear structure of a single 

crystal of La0.7Sr0.3MnO3 using neutron diffraction.  They found the magnetic moment 

per Mn site to be µ~3.6µΒ.  The structure was nearly cubic with a=3.87+/-0.003 Å at 

room temperature, and the rhombohedral distortion in α was 90.46+/-0.03°.  The 

magnetic interactions were well explained by the double exchange hopping mechanism 

[40, 41, 42, 43].   
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2.1 ABSTRACT 

Magnetic and structural properties of La0.7Sr0.3Mn1-xCrxO3 (x=0.05, 0.10, 0.20, 

0.30, 0.40 and 0.50) have been studied using neutron and x-ray diffraction and magnetic 

measurements.  All samples are found to be of single phase.  At 12K, we find only 

ferromagnetic ordering for x<0.30 and coexisting ferromagnetic and antiferromagnetic 

domains for x≥0.30. Our magnetic data indicate temperature dependent ferromagnetic to 

paramagnetic, and likely antiferromagnetic to paramagnetic transitions.  We find no 

evidence of spin glass or cluster glass behavior, only long-range magnetic order with a 

transition to antiferromagnetic behavior beginning with x=0.30 and almost completely 

antiferromagnetic behavior at x=0.50. 
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2.2 INTRODUCTION 

There has been significant interest in the magnetic and electronic transport 

properties of manganese-based perovskite materials since the discovery of colossal 

magnetoresistance and the interesting magnetotransport properties of metallic-doped 

manganites [1, 2, 3, 4].  Studies of the parent manganite LaMnO3 indicate it to be a 

layered antiferromagnetic (AFM) charge transfer insulator [1, 2, 3, 4].  The Mn3+ and 

Mn4+ ions with electrons in orbitals t2g e1g, and t2g e0g respectively, are the primary 

mechanism for the double exchange interaction responsible for the layered magnetic 

interactions [5].  The three t2g electrons have a core spin of S=3/2 while the additional 

electron in the Mn3+ higher-energy eg state, causes the layered AFM behavior through 

intrinsic orbital interaction.   

Substituting a divalent alkaline-earth metal ion, such as Sr2+, on the A-site for the 

trivalent La3+ ions, creates holes and produces Mn4+ ions [2].  With Sr doping 

concentrations of about 30%, the LaSrMnO3 is a FM metal for temperature ≤   340K, has 

a Curie temperature (Tc) near 380K, and a magnetic moment per Mn atom of about 3.6 

µβ [6].   

 
Substituting Cr on the B-site, results in an AFM moment from the Cr3+-O-Cr3+ 

exchange mechanism similar to the Mn4+-O-Mn4+ exchange mechanism in the non Cr-

doped parent perovskites.  Magnetic and magnetoresistance measurements indicate that 

TC and the lattice parameter “a” decrease with increasing Cr doping and a temperature 

dependent ferromagnetic (FM) to paramagnetic (PM) transition occurs for all Cr 

concentrations.  Also, for Cr > 20%, an AFM insulating behavior is observed at room 
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temperature and below [7].  Oxygen non-stoichiometry, electronic structure, X-ray 

absorption spectra and FM resonance analyses find significant amounts of Cr3+ in La1-

xSrxMn1-yCryO3 but no significant amounts of other Cr ions [8, 9, 10].  Sun et al. have 

previously interpreted the separation between zero field-cooled and field-cooled magnetic 

measurements to indicate FM and AFM competition and cluster glass behavior [11, 12].  

Other studies have interpreted the magnetic behavior in terms of double-exchange, Jahn-

Teller distortions and polaron hopping [10, 13].  It has also been argued that double 

exchange alone cannot account for all the characteristics of these perovskites [13].   

 
In this study we examine the structural and magnetic properties of La0.7Sr0.3Mn1-

xCrxO3 perovskites (x=0.05, 0.10, 0.20, 0.30, 0.40 and 0.50) using X-ray diffraction at 

300K, neutron diffraction at 12K and 300K, and magnetic measurements.  To our 

knowledge, no neutron diffraction studies for these perovskite compositions have been 

performed.  

 

2.3 EXPERIMENTAL 

Polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 (x=0.05, 0.10, 0.20, 0.30, 0.40 

and 0.50) were prepared using a conventional solid-state reaction method in air. 

Appropriate amounts of high purity La2O3, SrCO3, MnO2, and Cr2O3 powders were 

weighed and mixed according to the desired stoichiometry for each sample. The samples 

were ground using a high-energy ball mill for 5 hours, pressed into pellets at 2000 psi and 

then fired at 1350 for 24 hours in air with a rapid quench in air upon removal from the 
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oven. All processes were performed in air, giving an oxygen-rich environment. After 24 

hours of cooling, the samples were re-ground, pressed and fired using the same process. 

 
Neutron-diffraction data were collected at the University Of Missouri Research 

Reactor (MURR) facility using a position sensitive detector diffractometer with a neutron 

wavelength of λ = 1.479Å. X-ray data were collected with an XPERT PRO 

diffractometer using a Cu Kα wavelength of λ = 1.5481Å. Powder diffraction data were 

refined using the FullProf suite of programs [14].  Magnetic measurements were 

performed at the University of Brasilia, Brasilia DF, Brazil using a vibrating sample 

magnetometer and a Quantum Design physical property measurement system (PPMS) 

with the AC magnetization (ACMS) option. 

 

2.4 RESULTS AND DISCUSSION 

Refinements of X-ray diffraction data indicate all samples are single-phase and 

crystallize in a rhombohedral structure (space group &3��).  The neutron diffraction data 

were initially refined without including any magnetic phases.  Temperature-dependent 

misfits in the refinements suggested the presence of magnetic scattering. A FM structure 

based on manganese magnetic moments aligned in the basal plane was then added in 

subsequent refinements.  For x≥0.30, the presence of an additional temperature-

dependent reflection not accounted for by the FM structure suggested the presence of 

AFM scattering. It was found that this peak could be fit with an A-type [2] layered AFM 

structure, using alternating FM moments on the manganese atoms parallel to the basal 

plane.   
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The AFM model alone was not sufficient to fit the x≥0.30 diffraction patterns. 

The only way to account for all of the magnetic reflections was to include both FM and 

AFM scattering in the refinements.  The coexisting magnetic scattering in the 12K 

neutron diffraction data for x=0.4 is illustrated in Figure 2-1. The arrows indicate three 

reflections that contain magnetic intensity. The peak labeled AFM can be fit only by 

including the layered AFM structure, and the two peaks labeled “FM+Crystal” can be 

best fit only by including the FM structure. An attempt was made to match the AFM peak 

with possible impurity phases but none were found. 

 
The results of our neutron diffraction refinements are presented in Table 2-1.  The 

samples with x = 0.05, 0.10, and 0.20 are FM at both 12K and 300K.  However, the 

magnetic scattering at 300K for x = 0.20 is extremely weak. AFM scattering is first 

observed for x = 0.30 at 12 K, and the AFM moment increases with increasing x. 

Ferromagnetic scattering is found in all samples at 12K.  Manganese magnetic moments 

are plotted in Figure 2 and indicate a transition from FM to AFM behavior is taking place 

with likely complicated phase dynamics at x=0.40.  Our refinements indicate a single 

crystal phase. 
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Figure 2-1 Neutron-diffraction pattern for La0.7Sr0.3Mn0.6Cr0.4O3 at 12K with nuclear 
phase refined. Vertical bars are Bragg peak positions. Arrows point to the AFM peak and 
two peaks that have FM and nuclear contributions.  The small peak just to the left of the 
AFM peak is due to a small impurity phase believed to be related to MnO. 

 

Visible in Figure 2-2 is an unexpected maximum FM moment observed in the 

x=0.4 sample.  This maximum may be due to an increase in the Mn3+-O-Mn3+ 

exchanges.  Also of interest, is the AFM moment increases more rapidly than the FM 

moment decreases between x=0.30 to x=0.40.   
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Table 2-1 Refined parameters; magnetic moment (µΒ), a(rhomb), cell volume and χ2 versus 
Cr content from neutron diffraction refinements.  The magnetic moments are calculated 
on the Mn atom occupational sites and represent magnetic moments per Mn site within 
the cell structure. 

 

 

 

Figure 2-2 Refined Ferromagnetic and Antiferromagnetic moments on Mn occupation 
site versus Cr content at 12K.  The magnetic moments are calculated on the Mn atom 
occupational sites and represent magnetic moments per Mn site within the cell structure. 

 
Our refinements are consistent with a model comprised of separate FM and AFM 

ordered domains.  Figure 2-3 is a plot of peak width as a function of scattering angle at 

12K. The peak widths are significantly greater for the x=0.40 sample.  An almost 

identical behavior is found for the room temperature peak widths.  One possible 

interpretation of the peak broadening is the coexistence of magnetically ordered FM and 

0.05 0.10 0.20 0.30 0.40 0.50
µµµµFM, Mn(µµµµββββ)))) 3.09 (.04) 2.83 (.04) 2.22 (.04) 1.67 (.05) 1.86 (.06) 0.68 (.14)

µµµµAFM, Mn(µµµµββββ)))) n/a n/a n/a 0.45 (.05) 1.15 (.03) 1.47 (.02)

a(rhomb) 5.491 5.4909 5.4873 5.4853 5.4789 5.4758

Cell Volume 347.51 347.331 346.586 346.317 345.462 344.516
χχχχ2 4.3 5.59 3.28 3.79 3.54 2.82

µµµµFM, Mn(µµµµββββ)))) 2.13 (.04) 1.71 (.05) 0.40 (.13) n/a 1.08 (.08) n/a

µµµµAFM, Mn(µµµµββββ)))) n/a n/a n/a n/a 0.22 (.10) 0.28 (.07)

a(rhomb) 5.498 5.499 5.494 5.491 5.486 5.4849

Cell Volume 349.485 349.353 348.366 347.943 347.104 346.871
χχχχ2 3.52 5.05 4.83 3.62 3.25 2.37
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AFM domains as previously observed in bi-layered LaSrMnO-based manganites [15, 16].  

Another possible explanation is the peak broadening could be indicating much smaller 

sizes of the FM and AFM domains. 

 

Figure 2-3 Peak width (U*tan2(θ)+V*tan(θ) + W)1/2 versus θ (half the scattering angle) 
for La0.7Sr0.3Mn1-xCrxO3. 

 

The unit cell volume and arhomb decrease with increasing Cr content as shown in 

Figure 2-4, and follow the same trend as found by Kallel et al. [7].  However, our arhomb 

values are slightly higher and decrease more slowly with Cr content. This could be due to 

our sintering process being carried out at a lower temperature; Wollan et al. [2] find a 

direct link between firing temperature and quantity of Mn4+ ions.  The unit cell volumes 

for 12K and 300K show similar behavior, except between x=0.4 to x=0.5, where a slight 

divergence is observed. 
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Figure 2-4 Crystal cell volume versus Chromium content for 12K and 300K. Cell volume 
decreases with increased Chromium content. 

 

Our magnetic measurements show FM behavior at all temperatures for x≤ 0.20 

and a reduction in Curie temperature with increasing Cr content for all samples (Figure 

2-5).  For x≥0.3, samples initially order in a FM configuration, but with decreasing 

temperature, a peak in the magnetization is observed, suggestive of a FM-AFM  
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Figure 2-5 Magnetic moment (zero-field-cooled) versus temperature for La0.7Sr0.3Mn1-

xCrxO3.  TC decreases as doping concentration of chromium is increased. 

 

transition.  This is seen in Figure 2-6, which also illustrates the onset temperature of the 

AFM transition that increases with increasing Cr content and narrows the existence range 

of the purely FM phase.  When combined with the neutron data, indications are the pure  
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Figure 2-6 Zero-field-cooled magnetization versus temperature for La0.7Sr0.3Mn1-xCrxO3.   
The arrows point to onsets of AFM behavior. 

 

FM phase only exists for x<0.30.  For x = 0.50, magnetic measurements indicate 

the FM phase may exist only over a very narrow temperature range while the neutron 

data indicate the FM moment is less than 25% of the initial value of 3.04µB for x=0.05. 

 
2.5 SUMMARY 

We have studied the structural and magnetic properties of La0.7Sr0.3Mn1-xCrxO3.  

All samples were of single phase with a rhombohedral structure (space group &3��).    We 

have  presented evidence for coexisting FM and AFM domains and complex magnetic 

behavior. The unit cell volume and arhomb decrease with increasing Cr content.  There 

was significant peak broadening for x=0.4, possibly indicating coexisting FM and AFM 

phases or smaller FM and AFM phases or both.  While magnetization measurements may 

leave some ambiguity about the nature of the low temperature state, the neutron 
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diffraction data clearly show ferromagnetism and antiferromagnetism co-exist over a 

significant composition range.  Since we find only a single crystallographic phase, it 

appears likely the two magnetic phases arise from introduction of charge separation in a 

chemically homogeneous matrix. 
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3.1 ABSTRACT 

We have studied the structural and magnetic properties of La0.7Sr0.3Mn1-

xNixO3 (x=0.05, 0.10, 0.20, 0.30, and 0.40) perovskites using x-ray and neutron 

diffraction and magnetic measurements. To our knowledge, there exists no neutron 

diffraction data available for this group of perovskite compositions.  Neutron (λ = 

1.479Å) and x-ray (λ = 1.5481Å; Cu Kα) powder diffraction indicate that for x≥0.1 all 

samples are two-phase with a rhombohedral perovskite structure (space group&3��) and a 

small amount of NiO (space group Fm3m).  Neutron diffraction data for the perovskite 

phase at 12K and 300K show ferromagnetic ordering for x ≤ 0.2 and antiferromagnetic 
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ordering for x = 0.4.  However, for x = 0.3, neutron diffraction data at 12K show 

coexisting ferromagnetic and antiferromagnetic ordering while at 300K no magnetic 

ordering is found. Magnetic measurements indicate that the Curie temperature decreases 

with increasing Ni content.  The NiO phase for all samples was found to have 

antiferromagnetic ordering at 12K and 300K.  The magnetic measurements are consistent 

with the neutron diffraction data and together indicate long-range magnetic ordering for 

samples at low temperature and transitions from ferromagnetic to paramagnetic to 

antiferromagnetic ordering for samples at room temperature.   

 

3.2 INTRODUCTION 

There continues to be significant interest in the magnetic and electronic transport 

properties of manganese-based perovskite materials.  In the earliest studies, complex 

ferromagnetic (FM) and antiferromagnetic (AFM) phases were found to exist, and more 

recently, colossal magnetoresistance and interesting magnetotransport properties have 

been discovered [1, 2, 3]. These mixed-valence perovskites have a myriad of applications 

that include cathodes for solid oxide fuel cells, catalysis and giant magneto-resistance 

materials [4, 5, 6].  The magnetic and transport properties of these manganites have been 

described using the double exchange mechanism of Mn3+-O-Mn4+, distorted perovskite 

structures caused by different ion sizes and electron-phonon coupling due to the Jahn-

Teller effect of the Mn3+ ion [7, 8, 9, 10].  The Mn3+ and Mn4+ ions with itinerant and 

localized electrons in orbitals t2g e1g, and t2g e0g respectively, are described by Zener as 

being the primary mechanism for the double exchange interaction responsible for the 

layered magnetic interactions [10].   
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Substituting a divalent alkaline-earth metal ion, such as Sr2+, on the A-site for the 

trivalent La3+ ions, creates holes and produces Mn4+ ions [2].  With Sr doping 

concentrations of about 30%, the LaSrMnO3 is a FM metal for temperatures ≤ 340K, with 

a Curie temperature near 380K, and a magnetic moment per Mn atom of about 3.6µΒ 

[11].  This is in good agreement with calculated values assuming complete spin 

alignment of magnetic moments of Mn ions, 4µΒ for Mn3+, with an outer electron 

configuration d4 (t3
2ge

1
g) and 3µΒ for Mn4+, with an outer electron configuration d3 

(t3
2ge

0
g)) which gives 3.7µΒ/formula unit [12].   

Electron paramagnetic resonance, XPS and X-ray absorption spectra 

measurements on the Ni ions in several different perovskites indicate the Ni ion is in the 

Ni2+ state (t6
2ge

2
g) [13, 14, 15, 16]. However, Goodenough et al. [17] find the Ni ions 

favor Ni3+ in the low spin state where the magnetic moment is only 1µβ. 

In this study we examine the structural and magnetic properties of La0.7Sr0.3Mn1-

xNixO3 perovskites (x=0.05, 0.10, 0.20, 0.30 and 0.40) using X-ray diffraction at 300K, 

neutron diffraction at 12K and 300K, and magnetic measurements.   

 

3.3 EXPERIMENTAL 

Polycrystalline samples of La0.7Sr0.3Mn1-xNixO3 (x=0.05, 0.10, 0.20, 0.30 and 

0.40) were prepared using a conventional solid-state reaction method in air. Appropriate 

amounts of high purity La2O3, SrCO3, MnO2, and Ni2O3 powders were weighed and 

mixed according to the desired stoichiometry for each sample. The samples were ground 

using a high energy ball mill for 5 hours, pressed into pellets at 10,000 psi and then fired 

at 1350˚ C for 24 hours in air with a rapid room-air quench upon removal from the oven. 
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All processes were performed in air, providing an oxygen-rich environment. After 24 

hours of cooling, the samples were re-ground, pressed and fired using the same process. 

Neutron-diffraction data were collected at the University of Missouri Research 

Reactor (MURR) facility using a position sensitive detector diffractometer with a neutron 

wavelength of λ = 1.479Å. X-ray data were collected with an XPERT PRO 

diffractometer using a Cu Kα wavelength of λ = 1.5481Å. Powder diffraction data were 

refined using the FullProf suite of programs [18].  Magnetic measurements were 

performed at the University of Brasilia, Brasilia DF, Brazil using a vibrating sample 

magnetometer and a Quantum Design physical property measurement system with the 

AC magnetization option. 

 

3.4 RESULTS AND DISCUSSION 

Neutron diffraction data indicate all samples crystallize in the rhombohedral 

structure (space group &3��).  All samples except for x=0.05 indicate a small amount of 

NiO (space group Fm3m) that increases with increasing Ni content.  The neutron 

diffraction data were initially refined using the perovskite &3�� structure.  Temperature-

dependent misfits in the refinements suggested the presence of magnetic scattering while 

additional misfits indicated a very small amount of impurity phase.  The impurity phase 

was fit using the NiO AFM model developed by Shull et al. [19].  The AFM phase for the 

NiO was fit using FM ordered sheets of Ni atoms with moments aligned along the cubic 

axis and stacked antiferromagnetically to the (111) plane [19].  

Neither the FM nor AFM model was sufficient to fit the x=0.30 diffraction 

patterns at 12k for the perovskite nuclear structure. The only way to account for all 
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magnetic reflections was to include both FM and AFM scattering in the refinements.  The 

coexisting magnetic scattering in the 12K neutron diffraction data for x=0.3 is illustrated 

in Figure 3-1. In the main figure, all phases are refined while in the insets, the AFM and 

FM moments are not refined.  The differences between refined and model solutions are 

indicated by the line at the bottom of the figure.  The arrows indicate the reflections that 

contain magnetic intensity. The peak labeled AFM can be fit only by including the 

layered AFM structure, and the peak labeled “FM+Nuclear” can be best fit only by 

including the FM structure.   It was found that the AFM peak could be fit with an A-type 

[3] layered AFM structure for the perovskite phase using FM moments on the manganese 

atoms parallel within the basal plane but antiparallel between planes.  For x=0.4, we find 

AFM moments for the perovskite structure at 12K and 300K.  We previously reported 

similar behavior in our studies on La0.7Sry0.3Mn1-xCrxO3 [20]. Our refinements are 

consistent with a model comprised of separate FM and AFM ordered phases. 
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Figure 3-1 Neutron-diffraction refinement of La0.7Sr0.3Mn0.7Ni0.3O3 sample.  The 
reflection markers below the plot are, in order, nuclear perovskite structure, FM followed 
by AFM for the perovskite structure, Ni nuclear structure and AFM on the Ni structure.  
Arrows indicate the AFM and FM peaks.  The insets show the regions around the small 
FM and AFM peaks. 

 
The peak widths increase with increased Ni content at 12K and 300K.  Similar 

behavior was found in our earlier work with La0.7Sr0.3Mn1-xCrxO3 [20].  Possible 

interpretations of the peak broadening include smaller grain sizes [21] but more likely is 

due to the coexistence of magnetically ordered FM and AFM domains as previously 

observed by Wollan et al. [2] using neutron diffraction studies of bi-layered LaCaMnO3. 

Sun et al. [22] and Wang et al. [13] have previously interpreted the separation between 

zero field-cooled and field-cooled magnetic measurements in Cr and Ni-doped 

La0.67Sr0.33MnO3 to indicate FM and AFM competition as cluster glass behavior.  

However, our neutron data confirm the presence of long range magnetic order as opposed 

to the short range order in cluster glass.   
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The results of our neutron diffraction refinements are presented in Table 3-1.  The 

samples with x=0.05, 0.10, and 0.20 are FM at both 12K and 300K with the magnetic 

scattering at 300K for x=0.20 extremely weak. According to Kramer’s super exchange 

rules [23, 24, 25], there are likely Ni3+-O-Mn4+ super exchange interactions that increase 

with increased Ni content.  XPS measurements are planned for future work.  AFM 

scattering is first observed for x=0.30 at 12K but is not observable at 300K.  However, 

AFM moments are observable for x=0.4 at 12K and 300K.  

 

Table 3-1  Refined parameters: magnetic moment (µΒ), a, c, volume and χ2
 versus Ni 

content from neutron-diffraction refinements. The magnetic moments are calculated on 
the Mn atom occupational sites and represent magnetic moments per Mn site within the 
cell structure.   

 
 
 

The unit cell volume and the lattice parameters decrease with increasing Ni 

content, and follow the same trend as found by Wang et al. [14] and Kuharuangrong et al. 

[21].  The Ni ion can exist in the Ni2+, Ni3+ low spin, Ni3+ high spin, and Ni4+ states with 

radii of 0.69 Å, 0.56 Å, 0.60 Å, 0.48 Å.  It is already well known that the Mn ions are 

likely to be in the Mn3+ low spin and Mn4+ states [2] with radii of 0.58 Å and 0.53 Å 

respectively. Our lattice parameters and magnetic refinements are consistent with the 

work of Goodenough et al. [17] and Sanchez et al. [26] where it is shown that the Ni ion 

prefers the Ni3+ low spin state in our doping ratios.  It should be noted that our refined 

0.05 0.10 0.20 0.30 0.40
µµµµFM, Mn(µµµµββββ)))) 3.34 (0.03) 3.14 (0.04) 2.96 (0.04) 1.97 (0.03) n/a

µµµµAFM, Mn(µµµµββββ)))) n/a n/a n/a 0.53 (0.05) 1.13 (0.03)

a 5.49 5.49 5.48 5.48 5.47

c 13.31 13.30 13.29 13.29 13.29

Cell Volume 347.96 (0.01) 347.37 (0.01) 345.88 (0.01) 344.81 (0.02) 342.75 (0.02)

χχχχ2 3.37 3.38 2.26 3.54 3.37

µµµµFM, Mn(µµµµββββ)))) 1.93 (0.03) 1.18 (0.04) 0.38 (.12) n/a n/a

µµµµAFM, Mn(µµµµββββ)))) n/a n/a n/a n/a 0.62 (.06)

a 5.50 5.50 5.49 5.48 5.47

c 13.35 13.34 13.32 13.31 13.29

Cell Volume 349.78 (0.02) 349.40 (.01) 347.74 (.02) 346.49 (.02) 344.69 (.03)

χχχχ2 2.82 5.05 4.83 3.62 3.25

300K

Ni Content

12K 
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stoichiometric values for the 30% doped sample indicates only 22% of the Ni goes into 

the perovskite structure, contributing to the lower than expected refined magnetic 

moment of 2.8µΒ/formula unit.  

Magnetic measurements indicate that TC decreases with increasing Ni doping and 

a temperature dependent FM to paramagnetic (PM) transition occurs for all Ni 

concentrations as observed in Figure 3-2 and confirmed by our colleagues at the 

University of Notre Dame. Our measured FM to PM transitions and magnetic moments 

are in good agreement with those of Hu et al. [27] and Wang et al. [13].    

Our magnetic measurements also show FM behavior at all temperatures for x≤ 

0.20 and a reduction in the Curie temperature with increasing Ni content for all samples.  

From x = 0.20 and 0.30, magnetic measurements show a large separation in the 

magnetization curves and for x=0.30 a long tail of magnetization that does not go to zero 

out to 300K.   It is worth recalling, the neutron data for x=0.30 show coexisting FM and 

AFM structure for the perovskite phase.  We believe the long tail is likely due to the NiO 

contaminant phase.   
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Figure 3-2 Magnetic moment versus temperature for all doping concentrations.  The 
Curie temp (TC) is observed to decrease with increasing Ni content. 

 

3.5 CONCLUSIONS 

We have studied the structural and magnetic properties of La0.7Sr0.3Mn1-xNixO3.  

Neutron powder diffraction refinements indicate for x >0.05 all samples are two-phase 

with a rhombohedral perovskite structure (space group &3��) and a small amount of NiO 

impurity phase (space group Fm3m) that increases with increasing Ni content.  We have 

presented evidence for coexisting FM and AFM domains and complex magnetic 

behavior. The unit cell volume and lattice parameters decrease with increasing Ni content 

in agreement with earlier studies [6, 14, 21].  There is increasing peak broadening and a 

transition from FM to FM + AFM to AFM behavior with increasing Ni content.  While 

magnetic measurements may leave some ambiguity about the nature of the low 
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temperature state, the neutron diffraction data clearly show that long range 

ferromagnetism and antiferromagnetism co-exist over a small composition range.  Since 

we find only a single crystallographic phase, it appears likely that the two magnetic 

phases arise from introduction of charge separation in a chemically homogeneous matrix.  
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4.1 ABSTRACT 

Structural and magnetic properties of La0.7Sr0.3Mn1-xCrxO3 (x=0.05, 0.1, 0.15, 

0.20, 0.25, 0.30, 0.40, 0.50 and 0.60) have been studied in order to determine the 

magnetic and structural influence of the substitution of Cr for Mn.  The data consist of 

neutron (λ = 1.479Å) and x-ray (λ = 1.5481Å; Cu Kα) powder diffraction and 

magnetization measurements.  We previously suggested these systems transition from 

ferromagnetic to antiferromagnetic ordering with the intermediate concentrations 

containing coexisting ferromagnetic and antiferromagnetic domains.  Upon further 

detailed examination, we find that the neutron data can be fit using a single, 
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homogeneous, long-range magnetically ordered state and compositionally-dependent 

charge ordering.  At low Cr concentrations, the Mn3+-O-Mn4+ double exchange 

dominates.  The substitution of Cr3+ drives the system towards an antiferromagnetic state 

by antiferromagnetic Cr3+-O-Mn4+ and Cr3+-O-Cr3+, and ferromagnetic Cr3+-O-Mn3+ 

superexchange interactions. Charge ordering at temperatures ≤ 100K is observed over a 

remarkably wide compositional range, producing a complex ferromagnetic state for 

0.2<x<0.45 and a ferrimagnetic state for x>0.45. The detailed behavior can be explained 

by a simple model describing the arrangement of the moments of the different species 

and by the effect of Cr3+ on its Mn near neighbors. 

 

4.2 INTRODUCTION 

The LaMnO3 perovskites continue to be of significant interest due to the complex, 

temperature dependent electronic and magnetic phases they exhibit.  A-site (La-site) and 

B-site (Mn-site) doping in these systems cause complex compositionally-dependent 

magnetic behavior.  These perovskites are known for the unusually large effect that an 

external magnetic field has on their ability to transport electricity and heat [1, 2] and 

interesting metallic-insulating transitions associated with the ferromagnetic to 

paramagnetic transition [3].  Applications of these mixed-valence perovskites include 

cathodes for solid oxide fuel cells, magnetic storage devices, magnetoresistive read 

heads, catalysts, collosal magnetoresistance (CMR), and giant magnetoresistence (GMR) 

materials [4, 5, 6].  The underlying mechanism of the magnetic and transport properties 

of these manganites have been described with double exchange, super exchange, 
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semicovalent exchange, Jahn-Teller distortions, and electron-phonon couplings [7, 8, 9, 

10, 11, 12, 14].  

LaMnO3 is antiferromagnetic at low temperatures with  TN~150K  [15], 

crystallizing in the orthorhombic space group Pbnm. Oxygen stoichiometry is extremely 

important, influencing the Jahn-Teller distorted oxygen octahedron surrounding the d4 

Mn3+ cation [16].  

Substituting divalent Sr2+ for the trivalent La3+ creates d-electron holes by 

oxidizing Mn3+ to Mn4+ as can be described by the formula ( ) −+
−

+++
−

2
3

3
1

423
1 OMnMnSrLa xxxx .  

The Curie temperature has been directly linked to the amount of Mn4+ present and can 

result in temperature-dependent ferromagnetic and antiferromagnetic couplings [17].  

Martin and Shirane [18] found La0.7Sr0.3MnO3 to be a ferromagnetic metal with TC ~ 

378K and a magnetic moment per Mn of about 3.6 µΒ.  This is in good agreement with 

the calculated value of 3.7µΒ/fu assuming complete spin alignment of the magnetic 

moments of the Mn ions, 4µΒ for Mn3+ and 3µΒ for Mn4+ [15].   

Previous studies substituting Cr on the B-site while substituting Sr2+ for La3+ on 

the A-site found the Cr ion to be Cr3+, leading to ( ) −+
−−

++++
−

2
3

3
1

3423
1 OMnCrMnSrLa yxyxxx  [19, 

20, 21, 22].  X-ray diffraction, magnetic and magnetoresistance measurements indicate 

that TC and the lattice parameter a decrease with increasing Cr content [22, 23].  

Concentrations of Cr<20% exhibit temperature-dependent metal to semiconductor 

transitions, whereas concentrations of Cr≥20% result in insulating behavior [23, 24].  The 

large separation in magnetization between field-cooled (MFC) and zero field-cooled 

(MZFC) magnetic measurements at low temperature have been ascribed to ferromagnetic 

and antiferromagnetic clusters or spin or cluster glass [25, 26].  The substitution of Cr3+ 
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results in antiferromagnetic Cr3+-O2--Cr3+ and Cr3+-O2--Mn4+ interactions and 

ferromagnetic Cr3+-O2--Mn3+ interactions as predicted by superexchange rules [20, 27].  

However, there remains some controversy as to the alignment between the 

ferromagnetically aligned Mn3+ (4µΒ) and Mn4+ (3µΒ) with Cr3+ (3µΒ).  For 

concentrations between 20% and 60%, magnetic order has been interpreted by others as 

coexisting inhomogeneous ferromagnetic and antiferromagnetic domains and spin glass 

[19, 20, 23, 26, 28, 29]. 

In this study, Mn is replaced in ( ) −+
−

++++ 2
3

3
7.0

34
3.0

2
3.0

3
7.0 OMnCrMnSrLa yy  with up to 60% 

Cr. Neutron diffraction, X-ray diffraction and magnetic measurements are used to study 

the nuclear and magnetic structure and magnetic properties of the Cr-substituted 

perovskite.  Cr3+ is electronically the same as Mn4+ but has an ionic radius (0.615Ǻ) 

slightly smaller than that of Mn3+ (0.656Ǻ) [30].  Therefore the unit cell parameters are 

expected to decrease with increasing Cr3+ content.   

 

4.3 EXPERIMENTAL 

Polycrystalline samples of   (0<x<0.6) were prepared by a conventional solid state 

reaction method in air. Appropriate amounts of high purity La2O3, SrCO3, MnO2, and 

Cr2O3 powders were weighed and mixed according to the desired stoichiometry for each 

sample. The samples were ground using a high energy ball mill for 5 hours, pressed into 

pellets at 10,000 psi and then fired at 1350C for 24 hours in air with a room-air quench 

upon removal from the oven.  After 24 hours of cooling, the samples were re-ground, 

pressed and fired using the same process. 
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Neutron-diffraction data were collected at 12K and 300K at the University of 

Missouri Research Reactor (MURR) facility using a position sensitive detector 

diffractometer with a neutron wavelength of λ = 1.479Å.  X-ray diffraction data were 

collected with an XPERT PRO diffractometer using a Cu Kα wavelength of λ = 

1.5481Å. Powder diffraction data were refined using the FullProf suite of programs [31].  

Magnetic measurements were performed at the University of Brasilia, Brasilia DF, Brazil 

using a vibrating sample magnetometer and a Quantum Design Physical Property 

Measurement System with the AC magnetization option.  

 

4.4 RESULTS AND DISCUSSION 

4.4.1 Neutron Diffraction Studies 

The refined neutron data are presented in Table 4-1.  The nominal and refined Cr 

contents for the ten samples as well as the concentration of the impurity phase MnCr2O4 

are provided.  The chromium and MnCr2O4 percentages are based upon the total intensity 

of the scattered neutrons.  For the remainder of this discussion, we will refer to the 

refined stoichiometries.  The lattice parameters decrease with increasing Cr content while 

the oxygen stoichiometry remains constant within one-sigma error estimates except for 

the x=0.411 sample where the oxygen content is lower than in the other samples.  At 

x=0.411, the Mn3+ and Mn4+ contents are approximately equal.  The refined magnetic 

moments are presented as µB-1 and µB-2, referring to the observed average magnetic 

moments in each layer of a doubled unit cell. For x<0.194, the samples are ferromagnets 

with magnetic moments that decrease with increasing Cr content.   Figure 4-1 shows the 
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neutron scattering (red dots) and refined neutron scattering (black line fit to red dots) for 

the combined nuclear and magnetic 

 

Table 4-1 Refined parameters: magnetic moment (µΒ), a, c, volume, χ2, and contaminant 
(MnCr2O4) phase versus nominal and refined Cr content. The magnetic moments are 
calculated on the Mn atom occupational sites and represent magnetic moments per Mn 
site within the cell structure.  The numbers in parentheses represent a 1-σ fit error in the 
last digit.  Columns labeled µB-1 and µB-2 are magnetic moments for each layer of the 
doubled unit cell. 

 
 

 

phases for the La0.7Sr0.3Mn0.952Cr0.048O3 sample.  The insets in Figure 4-1 show the 

observed and fitted data obtained with the best nuclear-only model (right) in which the 

misfits highlight the magnetic contributions that are fit with the best nuclear and 

magnetic models (left). This refinement is typical of the refinements for x<0.194.  The 

small peaks at ~17˚ and 35˚ are due to the presence of the MnCr2O4 impurity phase. 

Nominal 
Cr 

Content 
(%)

Refined 
Cr 

Content 
(%)

MnCr2O4 

Content 
(%)

µµµµΒΒΒΒ -1, Mn(µµµµββββ )))) µµµµΒΒΒΒ -2, Mn(µµµµββββ )))) a(Å) c( Å )
Cell 

Volume 

(Å)3
χχχχ2 O-2 Stoich

5 4.2 1.6 3.13  (3) 3.13  (3) 5.491  (0) 13.311  (0) 347.53  (2) 3.31 3.1  (1)

10 6.2 1.2 2.95  (4) 2.95  (4) 5.491  (0) 13.302  (0) 347.34  (2) 5.47 3.1  (1)

15 14.3 1.5 2.48  (4) 2.48  (4) 5.491  (0) 13.305  (0) 347.33  (2) 3.11 3.0  (0)

20 19.4 1.2 1.99 (7) 2.55 (8) 5.487  (0) 13.291  (0) 346.59  (1) 2.99 3.1  (1)

25 22.1 1.6 1.8 (1) 2.3 (1) 5.486  (0) 13.291  (0) 346.34  (2) 3.75 3.0  (0)

30 29.4 2.2 1.29  (5) 2.24  (6) 5.485  (0) 13.290  (0) 346.31  (2) 3.00 3.1  (1)

30 36.5 2.7 0.53  (6) 2.63  (7) 5.480  (0) 13.286  (0) 345.50  (2) 2.63 3.1  (1)

40 41.1 2.3 0.60  (6) 2.79  (7) 5.479  (0) 13.288  (0) 345.41  (2) 3.11 2.9  (1)

50 48.5 2.4 - 0.8 (1) 2.1  (1) 5.476  (0) 13.267  (0) 344.50  (1) 2.30 3.0  (0)

60 57.9 3.6 -1.7  (3) 2.2  (3) 5.470  (0) 13.264  (0) 343.62  (2) 3.80 2.9  (1)

5 4.8 1.6 2.16  (3) 2.16  (3) 5.498  (0) 13.349  (0) 349.50  (2) 2.85 3.1  (1)

10 6.2 1.2 1.65  (4) 1.65  (4) 5.499  (0) 13.342  (0) 349.35  (2) 4.58 3.1  (1)

15 14.3 1.5 0.64  (7) 0.64  (7) 5.497  (0) 13.339  (0) 349.03  (2) 2.86 3.0  (0)

20 19.4 1.2 0.5  (1) 0.4  (1) 5.494  (0) 13.327  (0) 348.37  (2) 4.68 3.1  (1)

25 22.1 1.6 0.00 0.00 5.494  (0) 13.332  (0) 348.46  (2) 2.88 3.1  (1)

30 29.4 2.2 0.00 0.00 5.491  (0) 13.326  (0) 347.94  (2) 2.57 3.1  (1)

30 36.5 2.7 0.00 0.00 5.487  (0) 13.325  (0) 347.38  (2) 2.65 3.0  (0)

40 41.1 2.3 0.00 0.00 5.486  (0) 13.318  (0) 347.07  (2) 3.05 2.8  (1)

50 48.5 2.4 0.00 0.00 5.485  (0) 13.314  (0) 346.87  (1) 2.09 3.1  (1)

60 57.9 3.6 0.00 0.00 5.477  (0) 13.305  (1) 345.68  (2) 3.22 2.9  (1)

300K

12K
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Figure 4-1 Neutron-diffraction refinement of the La0.7Sr0.3Mn0.952Cr0.048O3 sample at 12K.  
The reflection markers below the plot are, in order, nuclear perovskite structure and 
ferromagnetic perovskite structure.  The small peak intensities at ~17˚ and 35˚ are due to 
the MnCr2O4 phase.  The insets show the magnified regions around the (102) and the 
(104)  + (110) reflections prior to the addition of the magnetic phase (right) and after the 
magnetic phase (left) was added. 

   
 

At 12K for 0.194≤x≤0.411, we find the samples to be ferromagnets.  However, 

while the ferromagnetic intensities from the (104) + (110) reflections are still dominant, 

we find the emergence of intensity in two peaks that are not visible at high temperature 

and are inconsistent with a simple ferromagnetic solution.  These new peaks consist of 

one that has magnetic intensity only, the (003) + (011) reflections, and one that has 

nuclear and magnetic intensity, the (113) reflection.  Both of these peaks can be fit by 

doubling the unit cell along the c-axis and allowing unequal moments on the B1 and B2 

sites.  
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Figure 4-2 Neutron-diffraction refinement of the La0.7Sr0.3Mn0.421Cr0.579O3 sample at 

12K.  The Bragg reflection markers below the plot are, in order, nuclear perovskite 
structure, magnetic perovskite structure, MnCr2O4 nuclear structure and AFM MnCr2O4 
structure.  The insets show the magnified regions around the two magnetic peaks prior to 
the addition of the magnetic phase. 

 

 
At 12K, for x≥0.485 the magnetic peaks corresponding to the doubled unit cell 

along the c-axis, are now dominant whereas the ferromagnetic intensity from the (104) + 

(110) reflections is very weak (Figure 4-3c).  Using the same refinement technique as for 

the lower Cr-content samples, we find different moments in the B1 and B2 layers with 

antiparallel alignment.   Figure 2 shows the neutron scattering and refined neutron 

scattering solution for the La0.7Sr0.3Mn0.421Cr0.579O3 sample that contains the new low-

angle peaks observed in the x=0.411 and x=0.579 samples.  The insets in Figure 4-2 

show the observed and fitted data using the best nuclear-only model while the misfits 

highlight the magnetic contributions that are fit in the main graphic. The magnetic 

ordering had previously been fit with independent coexisting ferromagnetic and 
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antiferromagnetic phases [32].    However, we now have been able to fit all the magnetic 

peak intensities with one magnetic phase. Since the Mn and Cr concentrations on all B 

sites are equal, the refined unequal moments for this sample must arise through charge 

ordering, which creates higher and lower Mn4+ concentrations on the different layers. 

At 300K, for 0.048≤x≤0.194, we find ferromagnetic ordering that decreases with 

increasing Cr content, the average magnetic moments on the B1 and B2 sites being 

identical.  Figure 4-3 shows a comparison of the low-angle neutron refinements depicting 

the refined neutron scattering for three samples, x=0.048, 0.411, and 0.579.  The growth 

of the (003)+(011) reflection and the associated decrease of the (104)+(110) reflections 

with increasing Cr is easily seen.  
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Figure 4-3 Neutron-diffraction data for the (top) La0.7Sr0.3Mn0.942Cr0.048O3, (middle) 
La0.7Sr0.3Mn0.589Cr0.411O3, and (bottom) La0.7Sr0.3Mn0.421Cr0.579O3 samples.  Each data 
graphic contains two plots, one with the nuclear and magnetic phase refined and one with 
only the nuclear phase solved, offset by 2000 units (top and middle) and 3000 units 
(bottom).  The respective magnetic unit cells are to the right of each.   

 
 

Figure 4-4 shows the neutron scattering data at 300K subtracted from data 

collected at 12K.  The 300K-12K difference curve allows the elimination of all effects 

that are not temperature dependent.  The large positive and negative swings for the (202), 

(006) and (024) reflections are due to temperature-driven shifts in peak positions.  

Significant reductions in the ferromagnetic intensities of the (110) and (104) reflections 
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are observed in all samples with increasing Cr content.  The two new magnetic peaks, 

(113) and (003) + (011), are barely visible below x=0.365. Peak broadening is observed 

in all peaks for x=0.194, near the metal-to-insulator transition previously observed [23].  

All other peaks within the remaining samples appear sharp and consistent with long range 

magnetic order.  The peaks not annotated are associated with the MnCr2O4 contaminant 

phase. 

 
 

 
 

Figure 4-4 Intensity versus scattering angle of neutron scattering data collected at 300K 
subtracted from data collected at 12K for all Cr substituted concentrations.  Successive 

concentrations are offset by 200 counts. 

 
 
 

4.4.2 Magnetization Studies 

Zero field-cooled (MZFC) and field-cooled (MFC) magnetization measurements 

(Figure 4-5) indicate that TC decreases with increasing Cr content.  The TC’s and the 
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magnetic moments are in good agreement with those of Zhe et al [28] and Kallel et al. 

[23] for x<0.485.  However, Kallel et al. [23] find a much higher TC (~50K) for their 

x=0.50 sample than we find for the x=0.485 sample.  This difference may be due to 

sample preparation or Cr content (ours is refined).  When the samples are cooled in a 

zero-field environment and subsequently warmed to temperatures above TC at an applied 

field of 100 Oe, all samples exhibit sharp antiferromagnetic-like transitions below TC.  

Upon cooling in the same applied field, all samples exhibit softened transitions over 

larger temperature spans, at slightly higher temperatures, and larger magnetic moments 

per Mn site.  These antiferromagnetic-like transitions occur at successively higher 

temperatures with increasing Cr content; 16.9°, 25.8°, 54.4°, 85.1° and 115.4° for 

x=0.142, 0.194, 0.211, 0.287 and 0.413 respectively. These antiferromagnetic-like 

features are very sensitive to small applied fields and temperatures.  The x=0.064 sample 

exhibits the largest magnetic moments.  The x=0.064 and x=0.048 samples exhibit a 

small discontinuity in the MFC curves near 272K and 287K, respectively, while the 

x=0.064 sample exhibits the same discontinuity in the MZFC curve at 287K.  Similar 

behavior was observed by Sun et al. [25].  There is a significant separation in magnetic 

moments between the x = 0.142 to x=0.211 MZFC and MFC curves, possibly indicating a 

metal to insulator transition as observed by Kallel et al. [23].  The MZFC and MFC curves 

for x=0.413 exhibit a broad ferromagnetic to paramagnetic transition with no clear TC and 

a long tail of magnetization that does not go to zero out past 300K.  At this Cr 

concentration, the amounts of Mn3+ and Mn4+ are approximately equal.  The MZFC and 

MFC curves for x=0.485 indicate a significant change in magnetic behavior with the 
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largest difference in magnetization between the MZFC and MFC curves and a significantly 

lower TC. 

 

 

Figure 4-5 100 Oe zero field cooled (MZFC) and field cooled (MFC) measurements of 
magnetic moments vs temperature for all nickel concentrations.  The 0.194 and 0.211 are 
common to both for reference purposes.  The lower curve for each Cr concentration is the 
MZFC curve while the upper curve is the MFC. 

   

The magnetizations versus magnetic field curves at 5K are plotted in Figure 4-6.  For 

x<0.485, all samples demonstrate magnetization saturation at fields less than 25K Oe.  

However, for x=0.485, the system has not achieved saturation at a field greater than 75K 

Oe. It is at x=0.485 that a significant difference in MZFC and MZFC curves is observed 

along with a change in the underlying magnetic structure found from neutron 

refinements. The separation between x=0.143 and x=0.221 is likely witness to the onset 

of the metal to insulator transition [23], whereas the separation between x=0.411 and 

x=0.485 is attributed to the underlying layered magnetic structure switching from planes 

of parallel but unequal magnetic moments to planes of anti-parallel and unequal magnetic 

moments (ferrimagnetism). 
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Figure 4-6 Magnetic Field vs Magnetization at 12K for all Cr concentrations. 

 
 

4.4.3 Discussion 

At low Cr concentrations, the results can be modeled assuming that the Cr3+ ions 

may order antiferromagnetically to the ferromagnetically ordered Mn3+ and Mn4+ ions 

(Figure 4-7a) as suggested by Mahendiran et al. [33] and Zhao et al. [29], and as we 

found in our earlier study of La0.7Sr0.3Mn1-xNixO3 [34].  However, if this were the case, 

the net magnetic moment for the Cr substituted system would decrease with increased Cr 

content much more rapidly than observed.  Zhe et al [28] reported that the Cr3+ orders 

ferromagnetically with Mn3+ near neighbors when the system is in a ferromagnetic 

ground state, in agreement with Kanamori-Goodenough superexchange rules 

(ferromagnetic Mn3+-O-Cr3+) [27, 35].  Without additional effects of Cr, this would lead 

to a pure ferromagnet with only a small compositional dependence of the net moment 
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loss, due to the replacement of the 4µΒ Mn3+ by the 3µΒ Cr3+.  To explain the observed 

results, we must also consider the superexchange between Cr3+ and Mn4+, which is 

expected to be antiferromagnetic [1, 36].  The observed data for x<0.194 is fully 

explained assuming the spin of the Mn4+ ions which have one or more Cr3+ near 

neighbors will be flipped and align antiparallel to the Cr3+ and Mn3+ (Figure 4-7b).  The 

probability  

 

 

Figure 4-7 Possible magnetic ordering schemes:  a) Cr3+ replaces Mn3+ but with opposite 
spin, b) Cr3+ replaces Mn3+ with the same spin but causes Mn4+ near neighbors to flip 
spin, c) same as b but configured in a charge order ferromagnetic-layered configuration, d) 
same as b but in a charge ordered antiferromagnetic-layered configuration.  The “x” 
values represent Cr concentration. 

 

of this occurring increases rapidly with increasing Cr content and can be calculated using 

the binomial theorem, 

a) (0.7-X)Mn3+ 0.3Mn4+ (X)Cr3+

b) [1 – CAMn4+- XCr3+]Mn3+ CA (1-Px) Mn4+ CA (Px) Mn4+ (X)Cr3+

c) [1 – CAMn4+- XCr3+] Mn3+ CA (1-Px) Mn4+ CA (Px) Mn4+ (X)Cr3+

[1 – CBMn4+- XCr3+] Mn3+ CB (1-Px) Mn4+ CB (Px) Mn4+ (X)Cr3+

d) [1 – CAMn4+- XCr3+] Mn3+ CA (1-Px) Mn4+ CA (Px) Mn4+ (X)Cr3+

[1 – CBMn4+- XCr3+] Mn3+ CB (1-Px) Mn4+ CB (Px) Mn4+ (X)Cr3+

CB = 0.6 - CA = %Mn4+ ;     X = %Cr3+
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where n=(0-6) is the number of nearest neighbors, x=(0-6) is the field of nearest 

neighbor possibilities, p=% Cr and q=(1-p), to calculate the probability of having 0≤n≤6 

nearest Cr3+ neighbors on the B-site.  On this basis, we find the relative strengths of the 

exchange interactions to be, in order; Cr3+-O-Mn4+ antiferromagnetic superexchange, 

Cr3+-O-Mn4+ superexchange and  Mn3+-O-Mn4+ double exchange interactions.  The two 

superexchange interactions together, break the ferromagnetic alignment of the Mn3+ and 

Mn4+ moments.   

  As the Cr concentration reaches 0.194, the ordering scheme is modified by the 

appearance of charge ordering (at low temperature), which produces distinct B1 and  B2 

sites with different Mn3+ and Mn4+ concentrations.  This produces different magnetic 

moments in the two layers and accounts for the new reflection (011) + (003).  For 

x≤0.411, the overall interaction between these layers remains ferromagnetic (Figure 7c).  

In Figure 4-7b-d, Px represents the probability that there is at least one Cr3+ near 

neighbor, while 1-Px represents the probability there is no Cr3+ near neighbor.  The 

proposed alignment scheme at 12K for 0.048≤x≤0.143 is shown in Figure 4-7b, for 

0.194≤x<0.485 in Figure 4-7c and for 0.485≤x<0.585 in Figure 4-7d. 

To summarize, at low Cr concentration, the Cr3+ moment aligns parallel to the 

Mn3+ and Mn4+ moments, replacing Mn3+ in the oxygen octahedron.  At this low 

concentration, the quantity of Cr3+ ions is very small and the probability is high that Cr3+ 

will have four Mn3+ and two Mn4+ neighbors.  The dominance of the antiferromagnetic 

superexchange interaction between Cr3+-O-Mn4+, causes the two Mn4+ neighbors to flip 

their spin while the second strongest interaction, the ferromagnetic superexchange 
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between Cr3+-O-Mn3+, requires the moments on the Mn3+ neighbors to remain aligned 

with the Cr3+ moments.  The random dispersion of the Cr3+ ions provides for a general 

reduction of the ferromagnetic moment observed for x<0.194 where the metal to insulator 

transition is coincident with the onset of charge ordering that is as complete as the system 

will allow.  As the Cr concentration increases, the antiferromagnetic Cr3+-O-Cr3+ 

superexchange interaction becomes increasingly important and more probable, ultimately 

resulting in the reversing of the orientation between the B1 and B2 layers at x ≈ 0.45 and 

creating an overall antiferromagnetic stacking (Figure 4-7d).  However, the charge 

ordering, which persists to the limit of phase stability (x ≤ 0.7), leads to a non-zero net 

moment within an antiferromagnetic ordering, or ferrimagnetism.  For higher temperature 

the charge ordering is expected to disappear creating a pure antiferromagnetic structure, 

but neither the neutron nor magnetization data we have collected reliably define such a 

phase boundary.      

The results of refined and calculated magnetic moments and charge neutrality 

calculations are presented in Table 4-2.  Magnetic moments of 4µΒ for Mn3+, 3µΒ for 

Mn4+ and 3µΒ for Cr3+ are used.  Calculated magnetic moments are found by considering 

the probability that Mn4+ has no Cr3+ near neighbor, thereby resulting in ferromagnetic 

alignment of Mn3+ and Mn4+ (e.g. if Cr3+ only has Mn3+ near neighbors, the Cr3+ and 

Mn3+ will have a parallel alignment of moments).  Column 10 of Table 4-2 contains 

solutions based upon Cr3+ replacing Mn3+ with reversed magnetic moment.  At low 

doping, both produce similar solutions. However, there is a clear departure with increased 

Cr3+ content and the magnetic moments calculated using our model are in much better 

agreement with the measured values.  Columns 2 through 9 of Table 4-2 contain charge 
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calculations based on the differing Mn3+ and Mn4+ concentrations in the B1 and B2 

layers, derived from the fitted moments with column 9 containing the net charge 

calculated, demonstrating the degree of charge ordering in the doubled unit cells for 

x≥0.194.  We suggest the persistence of charge ordering may stem from the Cr3+ and 

Mn4+ having the same t2g electronic configurations.   

 

Table 4-2 Calculated and refined magnetic moments (at 12K) and charge neutrality for all 
Cr concentrations.  All columns except the last four are accounting for the charge while 
columns 9-11 present the calculated magnetic moments for comparisons to the final 
column that contains the refined magnetic moments. 

 
 

 

Wollan and Koehler [17] previously observed the additional intensity 

corresponding to a doubling of the unit cell and proposed that the system transitioned 

from a “C” type to a “CE” type structure.  Such ordering was originally proposed by 

Goodenough [14] as Jahn-Teller distorted or orbital ordering.  Wollan and Koehler 

Cr
3+ 

Content La + Sr - O % Mn
3+

% Mn
4+

% Cr
3+

Net 

charge

Cr
3+

 replaces 

Mn
3+

 with 

reversed spin                  

(+ + -)

Cr
3+

 is FM to 

Mn
3+

 and AFM 

to Mn
4+        

(+ - +)

Mag Mom 

12K 

Refined

Parent -3.300 0.700 2.100 0.300 1.200 3.60 3.60 ***

0.048 -3.300 0.652 1.956 0.300 1.200 0.048 0.144 0.000 3.36 3.18 3.13

0.062 -3.300 0.638 1.914 0.300 1.200 0.062 0.186 0.000 3.27 3.05 2.95

0.143 -3.300 0.557 1.671 0.300 1.200 0.143 0.429 0.000 2.70 2.46 2.48

.194   B1 -3.300 0.536 1.608 0.270 1.080 0.194 0.582 -0.030 2.37 2.36 2.55

.194   B2 -3.300 0.476 1.428 0.330 1.320 0.194 0.582 0.030 2.31 2.04 1.99

.211   B1 -3.300 0.509 1.527 0.270 1.080 0.221 0.663 -0.030 2.18 2.28 2.30

.211   B2 -3.300 0.449 1.347 0.330 1.320 0.221 0.663 0.030 2.12 1.95 1.80

.294    B1 -3.300 0.476 1.428 0.230 0.920 0.294 0.882 -0.070 1.71 2.28 2.24

.294    B2 -3.300 0.336 1.008 0.370 1.480 0.294 0.882 0.070 1.57 1.41 1.29

.365    B1 -3.300 0.495 1.485 0.140 0.560 0.365 1.095 -0.160 1.31 2.71 2.63

.365    B2 -3.300 0.175 0.525 0.460 1.840 0.365 1.095 0.160 0.99 0.61 0.53

.411    B1 -3.300 0.449 1.347 0.140 0.560 0.411 1.233 -0.160 0.98 2.65 2.79

.411    B2 -3.300 0.129 0.387 0.460 1.840 0.411 1.233 0.160 0.66 0.49 0.60

.485    B1 -3.300 0.325 0.975 0.190 0.760 0.485 1.455 -0.110 0.42 2.21 2.10

.485    B2 -3.300 0.105 0.315 0.410 1.640 0.485 1.455 0.110 -0.20 -0.69 -0.80

.579    B1 -3.300 0.085 0.255 0.330 1.320 0.585 1.755 0.030 -0.43 2.40 2.20

.579    B2 -3.300 0.145 0.435 0.270 1.080 0.585 1.755 -0.030 0.37 -1.53 -1.70

*Note - value from Martin & Shirane [19]
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proposed that excess Mn4+ ions from nonstoichiometric LaMnO3+&, would occupy the 

Mn3+ sites but with reversed spin.  In the Cr-substituted system, the Cr3+ ion is 

electronically the same as the Mn4+ ion, suggesting the possibility of additional Mn4+-like 

behavior.  Goodenough [14] additionally argued that if the Mn3+ and excess Mn4+ ions 

formed part of an ordered lattice, double exchange would be inhibited due to a lifting of 

the degeneracy of the Mn3+-O-Mn4+ with Mn4+-O-Mn3+, and the ordered state would 

exhibit high electrical resistivity.  Both are characteristics of the Cr-doped system for 

x>0.142 [23].   

On the basis of our refined neutron scattering data and magnetic measurements, a 

phase diagram is provided in Figure 4-8. The metal to semiconductor and metal to 

insulator transition boundaries are taken from Kallel et al. [23] and the TC of the parent 

compound is taken from Martin and Shirane [18]. The large orange-filled circles are our 

TC values extracted from MZFC magnetic measurements.  The hollow circles are the 

inflection points at temperatures well below TC, also extracted from MZFC magnetic 

measurements.  The small blue-filled circles, green-filled diamonds, red-filled diamonds, 

and pink-filled triangles stem from neutron refinements.  We suggest that the area 

encompassed by the line passing through the MZFC inflection points at temperatures less 

than TC, is the boundary of charge order, the peak of which occurs at x=0.413, the same 

value at which the quantities of Mn3+ and Mn4+ are approximately equal.  These are the 

same samples for which the neutron refinements at 12K showed a doubled unit cell. The 

onset of semiconductor behavior indicates the onset of localization of the charge carriers 

and associated with charge ordering. The transition between ferromagnetic metal to 

ferromagnetic semiconductor [23] correlates with the first appearance of an inflection 
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point at low temperatures in the MZFC curves.  The transition between a ferromagnetic 

semiconductor to a ferromagnetic insulator [23] at around x=0.19, correlates with a 

significant change in the slope of the boundary line between the charge ordered 

ferromagnetic region and the ferromagnetic insulator phases and the first observance of 

the new reflection (011) + (003) corresponding to a doubled unit cell along the c-axis in 

the neutron data.  We have also observed similar behavior in our study of the 

La0.7Sr0.3Mn1-xNixO3 system [submitted for publication] but occurring over a much 

reduced span of Ni content. 

 

 

Figure 4-8  Phase diagram depicting Temperature vs. Cr content.  Lines are provided as 
guides that fit the results from magnetic and neutron data.  The dotted line identifying the 
antiferromagnetic (AFM) boundary is drawn as a best estimate as we have no data 
collected at the temperatures necessary to clearly define this boundary.  The solid round 
blue-filled, triangular orange-filled, diamond green-filled and square red-filled data 
points are obtained from neutron scattering.  The large orange-filled round points are 
derived TC transitions from our magnetic data and the hollow circles are transition points 
below TC within our magnetic data. The magnetic phases are: ferromagnetic metal 
(FMM), ferromagnetic semiconductor (FMS), ferromagnetic insulator (FMI), charge 
ordered ferromagnetic (CO FM), charge ordered ferrimagnetic (CO FER), AFM, and 



 74

paramagnetic (PM). 

 
 

4.5 CONCLUSIONS 

We have studied the structural and magnetic properties of the La0.7Sr0.3Mn1-

xCrxO3 system and have presented an ordering schema that clarifies previous findings of 

the coexistence of ferromagnetism and antiferromagnetism in this system by accounting 

for both the ferromagnetic and antiferromagnetic couplings previously attributed to the 

Cr3+ ion with the Mn3+ and Mn4+ ions respectively.  We find that the introduction of Cr3+ 

causes Mn4+ to reverse spin, but not Mn3+, providing for a parallel alignment of Cr3+ and 

Mn3+ magnetic moments and an antiparallel alignment of Cr3+ and Mn4+ magnetic 

moments.  Neutron diffraction is the only experimental tool that can provide such a direct 

measurement of magnetic structure. 

Using neutron diffraction, we find: 
 
1) At 12K, the observed magnetic moments require that the Cr3+ ion replace 

the Mn3+ ion with the same magnetic moment, resulting in ferromagnetic  

Cr3+-O-Mn3+ and antiferromagnetic Cr3+-O-Mn4+ superexchange 

interactions, that cause the Mn4+ to reverse its magnetic moment and break 

the Mn4+-O-Mn3+ double exchange . The antiferromagnetic Cr3+-O-Mn4+ 

and Cr3+–O-Cr3+ superexchange drive the system toward an 

antiferromagnetic ordered system. 

2) At 12K, charge ordering accompanies the metal to insulator transition at 

x~0.19, causing the system to transition from a single ferromagnetic state to a 

layered, charge-ordered ferromagnetic state for x≥0.914, where the in-plane 
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moments are aligned and parallel while inter-plane moments are antiparallel.  

The system transitions to a charge ordered antiferromagnetic state at x ≤0.485, 

providing ferromagnetism.  

3) The magnetic unit cell at 12K for x<0.194 is ferromagnetic, with the itinerant 

electrons providing the metallic state. 

4) Tc decreases with increasing Cr content and drops below room temperature for 

x > 0.19.   

5) The lattice parameters and unit cell volume decrease with increasing Cr 

content while the oxygen content remains stoichiometric within error 

tolerances, requiring the chromium ion to be Cr3+
.  

6) All samples show a single perovskite phase and a small amount of a MnCr2O4 

impurity phase that tends to increase with increased Cr content.  

 

Using magnetization measurements, we find: 

1) The low temperature magnetization differences between the MZFC and MFC 

curves are due to competition between ferromagnetic Cr3+-O-Mn3+ and Mn3+-

O-Mn4+ interactions and antiferromagnetic Cr3+-O-Mn4+ interactions; the 

Mn3+-O-Mn3+ interactions being weakly ferromagnetic or antiferromagnetic, 

impacting the measured magnetic moments very little. 

2) The antiferromagnetic-like inflection points at temperatures much lower than 

TC in the MZFC and MFC magnetic measurements likely form the boundaries of 

charge ordering for the system.  The peak of this boundary occurs at x=0.413, 

the value at which the quantity of Mn3+ approximately equals the quantity of 
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Mn4+; the same value to which the MZFC and MFC curves contain a long 

magnetic tail that does not go to zero at temperatures >300K. 

3) The onset of metal to semiconductor behavior is coincident with the onset of 

charge ordering. 

4) The magnetization saturation separation between the x=0.14 and x=0.21 

correlates with the transition from the metal to insulator transition. 

5) Evidence that the onset of ferrimagnetism may be the cause of the separation 

between the x=0.406 and x=0.485 magnetization vs magnetic field.    

 

While magnetic measurements may leave some ambiguity about the nature of the 

low temperature state, the neutron-diffraction data clearly show that long range 

magnetism comprised of competing ferromagnetic and antiferromagnetic interactions 

between Mn3+, Mn4+ and Cr3+ occur over a large range of compositions. Further, while 

the neutron data can only give an average magnetic moment for each distinct site, the 

totality of these results indicate Cr is in the Cr3+state in the perovskite phase, in good 

agreement with previous work [1, 23, 24, 25, 27, 28].  The neutron data support the Cr3+-

O-Mn4+ antiferromagnetic superexchange and Cr3+-O-Mn3+ ferromagnetic superexchange 

mechanisms drive the magnetic behavior of this system. 

 

4.6 REFERENCES 

1. Jonker, G. H. and Van Santen, J. H., Physica, vol. 16, 337-349, (1950) 

2. Myron B. Salamon, Marcelo Jaime, Rev of Mod Phys, 73,583 (2001) 



 77

3. P. Schiffer, A. P. Ramirez, W. Bao, and S.W. Cheong, Phys. Rev. Lett., 75, 3336 

(1995) 

4. L. Brorovskikh, G. Mazo, E. Kemnitz, Solid State Sci, 5, 409-417 (2003) 

5. R.J.H. Voorhoeve, D.W. Johnson, J.P. Remeika, P.K. Gallagher, Science 195, 

827-833 (1977)  

6. J.T. Vaughey, J.R. Mawdsley, T.R. Krause, Mater Res Bul, 42, 1963-1968 (2007)  

7. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett., 74, 25, 5144 

(1995)  

8. A.J. Millis, Phys Rev. B 53, 8434 (1996)  

9. W. Archiald, J.-S. Zhou, J.B. Goodenough, Phys. Rev. B 53, 14445 (1996)  

10. Zener, C., Phys. Rev., vol. 82, 403-405 (1951) 

11. H. A. Kramers, Physica 1, 182 (1934) 

12. H. A. Jahn, E. Teller, Proceedings of the Royal Society of London. Series A, 

Mathematical and Physical Sciences, 161, 905, 220 (1937) 

13. J.B. Goodenough and A. L. Loeb, Phys Rev., 98, 2, 391 (1955) 

14. Goodenough J. B., Phys Rev, 100, 2, 564, (1955) 

15. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, 

Phys. Rev. B 51, 14 103 (1995) 

16. B.C. Tofield, W.R.Scott, J of Solid State Chem., 10, 183 (1974) 

17. Wollan, E. O., Koehler, W. C., Phys. Rev., vol. 100, 545-563, (1955) 

18. Martin, M., Shirane, G., Endoh, Y., Hirota, K., Moritomo, Y., Tokura, Phys. Rev., 

53  (21) 14285-14290 (1996) 

19. G. H. Jonker and J. H. Van Santen, Physica 19, 120 (1953) 



 78

20. G. H. Jonker, Physica 22, 707 (1956) 

21. Oishi, M., Yashiro, K., Sato, K, Mizusaki, J.,and Kawada, T., J. of Solid State 

Chem., 181, 3177 (2008) 

22. O.Z. Yanchevskii, A. G. Belous, A. I. Tovstolytkin, O. I. V’unov, D. A. Durilin, 

Inorg. Mat., 42, 10 1121 (2006) 

23. Kallel, N., Dhahri J., Zemni, S., Dhahri, E., Oumezzine M., Ghedira, M., and 

Vincent, H., Phys. Status Solidi, 184, 2, 319 (2001) 

24. N. Kallel, K. Frohlich, M. Oumezzine, M. Ghedira, H. Vincent and S. Pignard, 

Phys. Stat. Sol. 1, 7, 1649 (2004) 

25. Sun, Y., Tong, W., Xu, X, and Zhang, Y., Appl. Phys. Lett., 78, 5, 643 (2001) 

26. Li, W., Zhang, B., Lu, W., Sun, Y., and Zhang Y., J of Phys. and Chem. of Solids, 

68, 1749 (2007) 

27. J. B. Goodenough, A. Wold, R. Arnott, N. Menyuk, Phys Rev. 124, 373 (1961) 

28. Zhe Qu, Li Pi, Shun Tan, Simi Chen, Zekun Deng and Yuheng Zhang, Phys Rev 

B. 73, 1847 (2006) 

29. T. S. Zhao, W. X. Xianyu, B. H. Li and Z. N. Qian, J. of All. and Com. 459, 29 

(2008) 

30. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. 

Crystallogr. 32, 751 (1976). 

31. J. Rodriguez-Carvajal, FULLPROF 2K, Version 3.00, Laboratoire Leon 

Brillouin-JRC, 2004 



 79

32. Thomas F. Creel, Jinbo B. Yang, Mehmet Kahveci, Jagat Lamsal, Satish K. 

Malik, S. Quezado, B. W. Benapfl, H. Blackstead, O. A. Pringle, William B. 

Yelon and William J. James, IEEE Tran. on Mag., 46, 6, 1832 (2010) 

33. R. Mahendiran, M. Hervieu, A.Maignan, C. Martin, B. Raveau, Sol St Comm. 

114, 429 (2000) 

34. Thomas F. Creel, Jinbo B. Yang, Mehmet Kahveci, Jagat Lamsal, Satish K. 

Malik, S. Quezado, B. W. Benapfl, H. Blackstead, O. A. Pringle, William B. 

Yelon and William J. James, MRS Proceedings, 1327 , mrss11-1327-g08-02 

doi:10.1557/opl.2011.852 (2011) 

35. J. Kanamori, J. Phys. Chem. Solids, 10, 87  (1959) 

36. N. Kallel, Sami Kallel, Ahmed Hagaza, Mohamed Oumezzine, Physica B, 404,  

285 (2009) 

 



 80

5. STRUCTURAL AND MAGNETIC PROPERTIES OF La0.7Sr0.3Mn1-xNixO3 

(x≤0.4) 

 

Thomas F. Creel,1 Jinbo Yang,2 Mehmet Kahveci,3 Satish K. Malik,4 S. Quezado,4 O. A. 

Pringle,1 William B. Yelon,5 William J. James5 

 

1Department of Physics, Missouri University of Science and Technology, Rolla, MO, 

U.S.A. 

2State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and School 

of Physics, Peking University, Beijing  

3Department of Physics, University of Missouri, Columbia, MO, U.S.A  

4Departamento de Física Teórica e Experimental (DFTE), Universidade Federal do Rio 

Grande do Norte (UFRN), Natal, Brazil 

5Department of Chemistry and Graduate Center for Materials Research, Missouri 

University of Science and Technology, Rolla, MO, U.S.A. 

 

5.1 ABSTRACT  

We have studied the structural and magnetic properties of La0.7Sr0.3Mn1-xNixO3 

(x=0.05, 0.1, 0.20, 0.30 and 0.40) perovskites using x-ray and neutron diffraction and 

magnetic measurements.  Our data consist of neutron (λ = 1.479Å) and x-ray (λ = 

1.5481Å; Cu Kα) powder diffraction and magnetization measurements.  We previously 

suggested these systems transition from ferromagnetic to antiferromagnetic ordering with 

the intermediate concentrations containing coexisting domains of ferromagnetically and 
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antiferromagnetically ordered states.  Upon further detailed examination, we find that the 

samples are homogeneous and that neutron data can be fitted to a single long-range 

magnetically ordered state.  The compositional dependent changes are driven by a shift in 

the dominant near neighbor interaction from ferromagnetic to antiferromagnetic.  In the 

intermediate compositions, peaks previously identified as due to antiferromagnetic 

ordering, in fact arise from charge ordering while the system remains in a ferromagnetic 

state with the Ni moments antiparallel to the Mn moments.  This interpretation 

supersedes multiphase and spin glass models for these complex systems. 

 

5.2 INTRODUCTION 

Manganese-based perovskite materials continue to be of significant interest due to 

their wide ranging magnetic and electronic transport properties.  From undoped LaMnO3 

to A-site doped La1-xSrxMnO3 to A-site and B-site doped La1-xSrxMn1-yZyO3, these 

systems exhibit complex magnetic behavior, transitioning between ferromagnetic, 

paramagnetic and antiferromagnetic phases with little or no change in the underlying 

crystallographic structure.  These perovskites are known for the unusually large effect 

that an external magnetic field has on their ability to transport electricity and heat [1, 2] 

while other typical magnetic materials show little sensitivity to the same fields.  Prior to 

the study of these perovskites, only very “clean” metals with a large electronic mean free 

path in zero field and metallic multilayers were found to show large field effects on 

transport properties [1, 3, 4].  Applications of these mixed-valence perovskites include 

cathodes for solid oxide fuel cells, magnetic storage devices, magnetoresistive read 

heads, catalysts and collosal magnetoresistance (CMR) and giant magnetoresistence 
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(GMR) materials [5, 6, 7].  The magnetic and transport properties of these manganites 

have been described using double exchange, superexchange, semicovalent exchange, 

Jahn-Teller distortions, and electron-phonon coupling [8, 9, 10, 11, 12, 13, 14, 15].  

LaMnO3 is antiferromagnetically ordered at low temperatures (TN~150K) and is a 

charge gap insulator due to the large correlation energy of the d electrons in the eg band 

(dz
2, dx

2
-y

2) [16, 17].  Charge neutrality dictates that all the Mn ions are in the 3+ state.  

Wollan and Koehler [3] were able to produce Mn4+ in LaMnO3+δ by firing at different 

temperatures in an oxygen-rich environment.  They produced up to 20% Mn4+ at an 

1100C firing temperature in oxygen. 

Upon replacing trivalent La3+ by divalent Sr2+, Mn4+ is created as can be 

described by the formula ( ) −+
−

+++
−

2
3

3
1

423
1 OMnMnSrLa xxxx .   By substituting trivalent La3+ for 

divalent Sr2+ or Ca2+, Wollan and Koehler [3] were able to increase the Mn4+ 

concentration.  They found the Curie temperature (TC) to be directly linked to the amount 

of Mn4+ present and samples with 30% Mn4+ exhibited almost pure ferromagnetic 

ordering with approximately the full predicted ferromagnetic moment per atom.    For 

x~0.35, their samples were purely ferromagnetic whereas for x<0.25 and 0.40<x<0.5, 

their samples contained both ferromagnetic and antiferromagnetic phases. 

Martin and Shirane [18] determined TC for La0.7Sr0.3MnO3 to be 378.1K.  The 

system is a ferromagnetic metal for temperatures ≤  378.1K with a magnetic moment per 

B-site of about 3.6 µΒ.  Urushibara et al. [17] determined TC for La0.7Sr0.3MnO3  to be 

369K with a magnetic moment of 3.5µΒ when prepared in a 50/50 mixture of O2 and Ar.  

Their system was metallic for all temperatures.  Both [17, 18] magnetic moments are in 

good agreement with the calculated value of 3.7µΒ/formula unit assuming complete spin 
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alignment of the magnetic moments of the Mn ions, 4µΒ for Mn3+ and 3µΒ for Mn4+.  In 

the metallic region [17, 19, 20, 21], the dominant interaction between Mn3+ and Mn4+ is 

double exchange.  For the other transition metal pairs, the superexchange mechanism is 

dominant and antiferromagnetic.  A possible exception to this rule is the Mn3+-O2--Mn3+ 

superexchange interaction which may be either ferromagnetic or antiferromagnetic [3].  

While there is a body of research in the rare earth Ni-based perovskites (RNiO3) 

[22] that find Ni to be in the Ni3+ low spin state, there has been little study of the Ni-

substituted lanthanum-based perovskite, La1-ySryMn1-xNixO3 where 0 ≤y ≤0.3 and 0 ≤x ≤

0.4.  There remains some ambiguity regarding the state of the Ni ion, whether it is Ni2+ or 

Ni3+, whether the exchange interaction is ferromagnetic or antiferromagnetic, about the 

exchange mechanism (superexchange or double exchange) and the transport properties.  

In their study of La0.67Sr0.33Mn1-xNixO3, Wang et al. [23] found Ni to be in the Ni2+ state 

citing x-ray spectroscopy but providing no data.  They attributed their reduced volume 

and cell parameters to oxygen non-stoichiometry (Ni2+ is much larger than Mn3+).  They 

found for x=0.20, a broad temperature transition from ferromagnetic to paramagnetic 

behavior in their magnetization measurements which they attributed to spin glass states.  

Further, they found the metal-to-insulator transition to occur between x =0.15 and x=0.20 

with x=0.20 to be completely insulating, and with increased Ni content, a reduction of TC, 

cell parameters, volume and an increase in the temperature differences between TC and 

the metal-to-insulator transition.  In their study of La0.70Sr0.30Mn1-xNixO3, Feng et al. [24] 

found the metal-to-insulator transition occurring at x~0.20, with TC and magnetization 

decreasing with increasing Ni content.  They also found saturation magnetization values 

smaller than the calculated values assuming the Ni ion to be ferromagnetically coupled to 
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the Mn ions.  Wold et al. [25] found Ni ions in the Ni2+ and Ni3+ states in LaMn1-yNiyO3, 

with the Ni3+
 in the low spin state with a ferromagnetic Ni3+- O2--Mn3+ superexchange 

interaction. 

A possible resolution to these contradictions is to assume that the dominant 

interaction controlling the nickel ordering is the antiferromagnetic interaction between 

Mn4+-O2--Ni3+ rather than the ferromagnetic Ni3+-O2--Mn3+ interaction.  This 

interpretation arises from our neutron diffraction results and allows us to describe the 

magnetic behavior over the full compositional range. 

In this study, we replace Mn in La0.7Sr0.3MnO3 with up to 40% Ni and use neutron 

scattering, x-ray scattering and magnetic measurements to study the nuclear and magnetic 

structure and magnetic properties of the Ni-substituted perovskite. Neutron diffraction is 

uniquely appropriate to study the nuclear and magnetic structure of these perovskites due 

to the neutron magnetic scattering and the unique properties of the nuclear neutron 

scattering (including the negative Mn scattering length) which allows the crystal structure 

and the oxygen stoichiometry to be accurately determined. The possible oxidation states, 

electronic configuration, spin states, crystal radii and ionic radii of our constituent 

elements are listed in Table 5-1 [26]. The ionic radii point towards Ni being in the low-

spin Ni3+ state upon substitution of Ni for Mn in the perovskite structure. 
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Table 5-1 Crystal and Ionic radii from R. D. Shannon [26]. 

Ion Ox. State 

Elec. 

Config. Coord. # Spin State Crystal Rad (Ǻ) Ionic Rad (Ǻ) 

La+3  3 4d10 6   1.172 1.032 

Sr+2  2 4p6 6   1.320 1.18 

O-2 -2 2p6 6   1.260 1.4 

Mn+2 2 3d5 6 LS 0.810 0.67 

Mn+2 2 3d5 6 HS 0.970 0.83 

Mn+3 3 3d4 6 LS 0.720 0.58 

Mn+3 3 3d4 6 HS 0.785 0.645 

Mn+4 4 3d3 6   0.670 0.53 

Mn+7 7 3p6 6   0.600 0.46 

Ni+2 2 3d8 6   0.830 0.69 

Ni+3 3 3d7 6 LS 0.700 0.56 

Ni+3 3 3d7 6 HS 0.740 0.6 

Ni+4 4 3d6 6 LS 0.620 0.48 

 

5.3 EXPERIMENTAL 

Polycrystalline samples of La0.7Sr0.3Mn1-xNixO3 (0≤x≤0.4) were prepared using a 

conventional solid-state reaction method in air. Appropriate amounts of high purity 

La2O3, SrCO3, MnO2, and Ni2O3 powders were weighed and mixed according to the 

desired stoichiometry for each sample. The samples were ground using a high energy ball 

mill for 5 hours, pressed into pellets at 10,000 psi and then fired at 1350 C for 24 hours in 

air with a room-air quench upon removal from the oven.  After 24 hours of cooling, the 

samples were re-ground, pressed and fired using the same process. 

Neutron-diffraction data were collected at the University of Missouri Research 

Reactor (MURR) facility using a position sensitive detector diffractometer with a neutron 
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wavelength of λ = 1.479Å.  X-ray diffraction data were collected with an XPERT PRO 

diffractometer using a Cu Kα wavelength of λ = 1.5481Å. Powder diffraction data were 

refined using the FullProf suite of programs [27].  Magnetic measurements were 

performed at the University of Brasilia, Brasilia DF, Brazil using a vibrating sample 

magnetometer and a Quantum Design Physical Property Measurement System with the 

AC magnetization option.  

  

5.4 RESULTS AND DISCUSSION 

In our previous work on La0.7Sr0.3Mn1-xNixO3 [28], we reported that the system 

crystallizes in the rhombohedral perovskite structure.  At low nickel concentrations the 

system is a ferromagnetic metal while at high concentrations the system is an 

antiferromagnetic insulator.  In the intermediate regions we previously reported the 

coexistence of two magnetic phases.   

In this work, we provide a revised magnetic ordering schema based on further 

analysis of neutron-scattering data and magnetic measurements. At low Ni concentrations 

the system is comprised of ferromagnetic layers (Figure 5-1a) with the Ni3+ moments 

aligned  
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Figure 5-1 Magnetic unit cells for the perovskite.  Depicted magnetic unit cells are: a) 
ferromagnetic unit cell for 8% Ni, b) the ferromagnetic (unequal moment magnitudes) 
doubled unit cell containing B1 and B2 layers for 21% Ni and c) the antiferromagnetic 
unit cell containing B1 and B2 layers for 31% Ni.  The moment directions in the basal 
plane and labeling of B1 and B2 layers are arbitrary and chosen for convenience. 

 
 

antiferromagnetically to the Mn3+ and Mn4+ moments, causing a net reduction in the 

measured ferromagnetic moments as before.  However, with sufficient nickel, instead of 

random ferromagnetic and antiferromagnetic domains, charge ordering appears, leading 

to a ferromagnetic state with layers of unequal ferromagnetic moments (Figure 5-1b).  At 

high nickel concentrations, the interaction between adjacent planes is antiferromagnetic 

with the Mn4+ moments antiparallel to the Ni3+ and Mn3+ moments (Figure 5-1c).  Only 

peaks identified as due to antiferromagnetic ordering are observed in the neutron-

diffraction data.  Peaks consistent with ferromagnetic and antiferromagnetic states are 

observed and fitted with a single phase model.  

Refined neutron-diffraction data from the prepared stoichiometries of x = 0.05, 

0.10, 0.20, 0.30 and 0.40 result in values of x = 0.05, 0.08, 0.16, 0.21 and 0.31 with the 

presence of 0.26%, 1.65%, 3.63%, 7.31% and 8.89% of NiO impurity respectively.  The 

NiO percentages are derived from multiphase Rietveld refinements using the FullProf 
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code.  For the remainder of this discussion, we will refer to the refined stoichiometries.  

The neutron refinement results are presented in Table 5-2.  The atomic parameters (a, c 

and volume) decrease with increasing Ni content while the oxygen stoichiometry changes 

very little.  The decreasing cell parameters combined with the constant oxygen 

stoichiometry indicate Ni to be in the Ni3+ state.  If Ni were in the Ni2+ state, one would 

expect the volume to increase, given stoichiometric oxygen.   

 

  

Figure 5-2 Intensity versus scattering angle of neutron-scattering data collected at 300K 
subtracted from data collected at 12K for all Ni-substituted concentrations.  Successive 
concentrations are offset by 1000 counts. 

 
Figure 5-2 shows the neutron diffraction data at 300K subtracted from data 

collected at 12K.  This difference curve allows the elimination of all effects which are not 

temperature dependent.  The large positive and negative swings for the (202), (006) and 

(024) reflections are due to temperature-driven shifts in lattice parameters, causing a shift 
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in peak positions.  Significant reductions in the ferromagnetic intensities occur between 

x=0.16 and x=0.21.  The (012) and the combined (110) and (104) peaks contain both 

nuclear and ferromagnetic contributions to the intensities. The ferromagnetic contribution 

decreases steadily with increasing nickel content and disappears completely before 

x=0.31.  At x=0.31, a peak associated with a doubling of the unit cell along the c-axis 

with indices (101 + 003) is clearly visible.  In fact, this peak is barely visible at x=0.21.  

The peaks not annotated are associated with the NiO phase. 

At 12K, ferromagnetic ordering is found for 0.05≤x≤0.16.  The refined moment 

on the manganese site decreases with increasing nickel content.  The magnetic cell is 

pictured in Figure 5-1a.  At x=0.05, a magnetic moment of 3.27µΒ per B-site is obtained.  

This value is lower than that obtained for the parent perovskite La0.7Sr0.3MnO3 where 

Martin and Shirane [18] find 3.6µΒ per manganese site while Urushibara et al [17] find 

3.5µΒ per manganese site in a reduced oxygen atmosphere.  This behavior points to an 

antiferromagnetic alignment between the Ni3+ and the ferromagnetically aligned Mn3+ 

and Mn4+ moments at low concentrations. 
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Table 5-2 Refined parameters: magnetic moment (µΒ), a, c, volume, and χ2 versus refined 
Ni content from neutron-diffraction refinements. The magnetic moments are calculated 
on the Mn atom occupational sites and represent average magnetic moments per Mn site.  
The number in parenthesis represents the 1σ uncertainty in the last digit. 

 
 
   

Magnetic moments for Mn3+ (4µΒ) and Mn4+ (3µΒ) are reliably known from a 

large body of works.  However, the magnetic moment for the Ni3+ ion is not known in 

this system.   To determine the Ni3+ magnetic moment, we fit a straight line to the net 

moment between x=0 and x=0.16 while accounting for the reduction of the Mn3+ 

concentration.  For x=0 (parent compound), we use the value of 3.6µΒ from Martin and 

Shirane [18].  For the remaining points, we use our refined values.  This yields a Ni3+ 

moment of 1.54µΒ in reasonable agreement with the 1.73µΒ calculated by Goodenough 

and Loeb [14] for the Ni3+ square (dsp2) covalent bond.  It is closer to the 1µΒ spin only 

value of low spin Ni3+ than the spin only value of 3µΒ of high spin Ni3+.  The same results 

are seen in the RNiO3 [22]. 

At 12K for x=0.21, in addition to the ferromagnetic intensity observed on the 

(012) and the combined (110) + (104) peaks, we observe the emergence of a very small 

peak comprised of the (101) and (003) reflections that is only present at low temperature 

0.05 0.08 0.16 0.21 0.31

µµµµB-1, Mn(µµµµββββ )))) 3.27 (2) 3.15 (2) 2.91 (2) 1.67 (9) - 1.09 (3)

µµµµB-2, Mn(µµµµββββ )))) 3.27 (2) 3.15 (2) 2.91 (2) 2.59 (9) 1.09 (3)

a ( Å) 5.4941 (1) 5.4910 (1) 5.4831 (1) 5.4769 (2) 5.4650 (2)

c  ( Å ) 13.3110 (3) 13.3032 (3) 13.2841 (3) 13.2731 (5) 13.2511 (7)

Cell Vol  (Å ) 3 347.96 (1) 347.37 (1) 345.87 (1) 344.81 (2) 342.74 (2)

Oxygen Stoich 3.02 (2) 3.01 (2) 2.98 (2) 3.03 (3) 2.96 (3)

χχχχ2 3.22 3.38 2.27 2.74 2.79

µµµµFM, Mn(µµµµββββ )))) 1.91 (3) 1.25 (4) 0.3 (2) n/a n/a

µµµµAFM, Mn(µµµµββββ )))) n/a n/a n/a n/a 0.53 (6)

a  ( Å ) 5.5007 (1) 5.4988 (1) 5.4901 (1) 5.4821 (2) 5.4723 (2)

c  ( Å ) 13.3485 (4) 13.3435 (3) 13.3219 (4) 13.3121 (5) 13.2911 (7)

Cell Vol  (Å ) 3 349.78 (2) 349.41 (1) 347.75 (2) 346.48 (2) 344.69 (3)

Oxygen Stoich 3.02 (2) 3.01 (2) 2.98 (2) 3.03 (3) 2.96 (3)

χχχχ2 2.80 2.56 2.27 2.88 2.97

Ni Content

300K

12K 
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and therefore conclude that it is magnetic.  This implies a doubling of the unit cell in 

which the B-site is split into B1 and B2 layers (Figure 5-1b).  The insets in Figure 5-3 

show the observed and fitted data using the best nuclear-only model. The misfits 

highlight the magnetic contributions. This was previously explained by using a two phase 

model consisting of a small antiferromagnetic component in a ferromagnetic matrix [28]. 

Upon further study, we find no evidence of phase separation in the neutron data; all the 

peak widths and shapes are consistent with a single phase material.  If the system had 

separated into antiferromagnetic and ferromagnetic domains, we would expect to find 

different cell parameters yielding doubled peaks or causing peak broadening, if for no 

other reason than differing magnetostriction.  Therefore, we looked for an alternative 

single phase model where all the magnetic scattering can be fit with a single magnetic 

phase. This is accomplished by considering a charge ordered state in which the unit cell is 

doubled along the c-axis (Figure 5-1b, Table 5-3).  In this charge ordered state, all of the 

Mn4+ is assumed to be on the B2 layer, Ni3+ is distributed on both layers and Mn3+ 

accounts for the remaining sites on both layers.     
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Figure 5-3 Neutron-diffraction refinement of the La0.7Sr0.3Mn0.79Ni0.21O3 sample at 12K 
(refined stoichiometric Ni content).  The reflection markers below the plot are, in order, 
nuclear perovskite structure, ferromagnetic perovskite structure, NiO nuclear structure 
and AFM NiO structure.  The insets show the magnified regions around the small 
magnetic peaks prior to magnetic refinement. 

 
This is the most highly ordered configuration we can achieve with these cations.  

The net charge on the B1 and B2 layers is -0.30 and +0.30 respectively.  The intensity 

observed from the (101) and (003) reflections can be solved using a unit cell doubled 

along the c-axis, allowing the (0,0,0), (2/3,1/3,1/3) and (1/3,3/2,2/3) reflections to be 

estimated independently of the (0,0,1/2), (2/3,1/3,5/6) and (1/3,2/3,1/3) positions within 

the J1� space group, yielding different average moments in the B1 and B2 layers with 

parallel alignment.  The refined moments on the two layers are 2.59µB and 1.67µB, in 
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reasonable agreement with the moments calculated using our new model, 2.84µB 

(calculation goes as 0.79*4µB +0*3µB - 0.21*1.54µB) and 2.24µB.  

 
At 12K for x=0.31, we only find antiferromagnetic ordering.  The magnetic cell is 

depicted in Figure 5-1c. The fitted moment on the B-site is much lower than the moments 

observed in the lower-doped samples. The fitted moments can be modeled by assuming 

that the Ni3+ and Mn4+ moments are antiparallel while the Mn3+ and Ni3+ moments are 

parallel. The magnetic layers are antiferromagnetically stacked, supporting a 

ferromagnetic superexchange between Mn3+ and Ni3+ and an antiferromagnetic 

superexchange between Mn4+ and Ni3+ with the latter being dominant.   Agreement 

between observed and calculated moments is achieved assuming constant Mn3+, Mn4+ 

and Ni3+ moments at all x.  This implies that the system is long range ordered, 

eliminating the need for spin glass or cluster models.  The observed sharp diffraction 

peaks further support this conclusion. 

 

Table 5-3 Calculated and refined magnetic moments (at 12K) and charge neutrality 
calculation for all Ni concentrations.  All columns except the last two present charge 
neutrality calculations, the last two columns contain calculated and refined magnetic 
moments using 1.54µΒ for Ni. 

 
 

Ni 

Content

La + Sr - O 

Net charge
%

Mn
3+

 Net 

Charge
%

Mn
4+

 Net 

Charge
%

Ni
3+

 Net 

Charge

Total Net 

Charge

Mag Mom 

Calc (µβ) 

Mag Mom 

12K 

Refined

Parent -3.30 0.70 2.10 0.30 1.20 3.70 *3.6

0.05 -3.30 0.65 1.95 0.30 1.20 0.05 0.15 0.00 3.42 3.27

0.08 -3.30 0.62 1.86 0.30 1.20 0.08 0.24 0.00 3.26 3.15

0.16 -3.30 0.54 1.62 0.30 1.20 0.16 0.48 0.00 2.81 2.91

0.21-B1 -3.30 0.79 2.37 0.00 0.00 0.21 0.63 -0.30 2.84 2.59

0.21-B2 -3.30 0.19 0.57 0.60 2.40 0.21 0.63 0.30 2.24 1.67

0.31-B1 -3.30 0.39 1.17 0.30 1.20 0.31 0.93 0.00 1.14 1.09

0.31-B2 -3.30 0.39 1.17 0.30 1.20 0.31 0.93 0.00 -1.14 -1.09

*Note - value from Martin & Shirane [19]
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The results are summarized in Table 5-3 which gives the charge distribution and 

magnetic moments assuming stoichiometric oxygen.  Also included are the calculated 

magnetic moments using our new model described above, where the Ni magnetic 

moments align antiferromagnetically to the ferromagnetically aligned Mn moments for 

x<0.31.  At x=0.31, the system orders antiferromagnetically. 

The Curie temperature in the ferromagnetic region decreases steadily with 

increased Ni concentration and is less than 300K at x=0.21.  At x=0.31 the system is 

antiferromagnetic and TN exceeds room temperature.   

 Magnetization measurements (Figure 5-4) indicate that TC decreases with 

increasing Ni concentration.  There are differences between the zero field-cooled versus 

field-cooled magnetization (MZFC and MFC) below TC for all samples.  All samples except 

x=0.05 exhibit antiferromagnetic-like behavior below 50K.  For x=0.08 and x=0.16, both 

MZFC and MFC curves exhibit an antiferromagnetic-like transition at approximately 45K 

that increases in intensity with increased nickel content.  With the onset of charge 

ordering at x=0.21, a distinctive antiferromagnetic-like transition at approximately 10K is 

seen only in the MZFC curve.  The differences between MZFC and MFC curves have 

routinely been ascribed to spin glass, spin clusters or re-entrant spin glass [23, 24, 29].  

However, we believe that these differences are actually due to charge ordering and the 

complex competition between the Ni3+-O-Mn3+ ferromagnetic couplings and the Ni3+-O-

Mn4+ and Ni3+-O-Ni3+ antiferromagnetic couplings.  For x=0.08 and 0.16, the applied 

magnetic field coerces a magnified magnetic response while at x=0.21, it suppresses the 

weakly charge ordered state as was observed by Tomioka et al [31] in the Pr0.5Sr0.5MnO3 

system.       
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The TC’s and the magnetic moments are in good agreement with those of Hu et al. 

[30] and Wang et al. [23].  There is a significant separation between MZFC and MFC 

curves for x = 0.16 to 0.21, indicating a likely metal to insulator transition as observed by 

Feng et al [24] where they found this transition occurs near x=0.20.  In our model the 

metal to insulator transition is also accompanied by charge ordering.   

 
 

 

Figure 5-4 Zero field-cooled (MZFC) and 100 Oe field-cooled (MFC) measurements of 
magnetization vs temperature for all nickel concentrations. For each sample, the MZFC is 
the lower while the MFC is the upper segment of the curves.  The vertical lines are to 
guide the eye. 

 

The MZFC and MFC curves for x=0.16 exhibit a broad ferromagnetic to 

paramagnetic transition, which may be an indication of the imminent onset of charge 

ordering and metal to insulator transition.  The x=0.16 MZFC curve exhibits a transition to 
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an antiferromagnetic-like behavior below 50K while the MFC curve exhibits an 

antiferromagnetic-like behavior below 100K that is a function of temperature.  These 

MZFC and MFC curves exhibit complex magnetic ordering in conjunction with the 

presence of a small amount of NiO. Our data are in agreement with that of Feng et al [24] 

and suggest that the metal to insulator transition occurs over a finite temperature range 

between x=0.20 and x=0.31 and may also be associated with a change from charge 

ordering to antiferromagnetism.  In the MZFC and MFC curves for x=0.21 and x=0.31, 

there are long tails of magnetization that do not go to zero out to 300K with x=0.21 

spanning more than 125K while for x=0.31 the transition spans approximately 50K.  For 

x=0.21, these long magnetization tails are likely due to a combination of charge ordering, 

competition between the ferromagnetic couplings of Ni3+-Mn3+ moments and the 

antiferromagnetic couplings of the Ni3+-Mn4+ and Ni3+-Ni3+ moments and a small effect 

from NiO.  The amount of NiO for x=0.31 is larger than for x=0.21 but the x=0.31 

sample exhibits a smaller magnetic moment with a magnetic tail that spans a shorter 

temperature range. Therefore, although some of the magnetization tail may be attributed 

to the antiferromagnetic NiO, it is likely that the charge ordering and magnetic couplings 

have a larger influence.   For x=0.31 the long magnetization tail is likely due to NiO. 

 

 



 97

 

Figure 5-5 Magnetization vs. Magnetic Field at 12K for all Ni concentrations. 

     
 

The magnetizations versus magnetic field curves at 5K are plotted in Figure 5-5.  

For x=0.05, 0.08 and 0.16, the magnetization saturates to values of 90.8emu/g, 86.7 

emu/g and 77.5emu/g respectively.  However, for x=0.21 and 0.31, maximum values of 

49.29 emu/g and 20.42 emu/g are reached at a 9T field without complete saturation.  

These differences are likely additional indicators for the transition from ferromagnetic to 

antiferromagnetic interactions.  The separation between x=0.16 and x=0.21 is witness to 

the onset of charge ordering and the metal to insulator transition as discussed by Feng et 

al [24], whereas the separation between x=0.21 and x=0.31 is attributed to the onset of 

antiferromagnetic ordering. One should note that the magnetization versus magnetic field 

data for the x=0.31 sample indicates a very small residual ferromagnetic component that 

is too small (~5 emu/g) to be observed in our neutron diffraction data. 
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5.5 CONCLUSIONS 

We have studied the structural and magnetic properties of the La0.7Sr0.3Mn1-

xNixO3 system and have presented a new model that clearly accounts for the 

ferromagnetic and doubled-unit cell intensities observed.  Neutron-diffraction is the only 

experimental tool that can provide a direct measurement of magnetic structure, and to our 

knowledge, this is the first powder neutron-diffraction study of this system.   

Using neutron diffraction, we find: 

7) All samples show a single perovskite phase and a small amount of a NiO 

impurity phase that increases with increasing Ni content.   

8) At low Ni concentrations the system orders ferromagnetically while at high 

Ni concentration the system orders antiferromagnetically.  At intermediate 

composition, the system shows charge ordering with a ferromagnetic 

ground state.  For all compositions the neutron-diffraction data are fit with 

constant Ni3+, Mn3+ and Mn4+ moments, excluding the existence of spin 

glass or cluster glass behavior.  

9) The neutron-diffraction data clearly indicate that the antiferromagnetic 

coupling between Mn4+ and Ni3+ must be the driving force in this system.  

10) The nickel moments align antiferromagnetically to the ferromagnetically 

coupled Mn3+ and Mn4+ moments for x<0.31. At x=0.31 the 

antiferromagnetic coupling between Ni3+ and Mn4+ moments becomes 

dominant, leading to a long range antiferromagnetic state. 

11) The lattice parameters and unit cell volume decrease with increasing Ni 

content while the oxygen content remains stoichiometric within error 
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tolerances, requiring the nickel ion to be Ni3+
.  

12) The magnetic unit cell for x≥0.21 consists of a doubled nuclear cell along 

the c-axis. 

13) The likely exchange mechanism for Ni3+-O2—Mn3+ is double exchange 

whereas for Ni3+-O2--Mn4+ it is superexchange, accounting for the transition 

from charge ordering to antiferromagnetism as the Mn3+ concentration 

decreases.     

Using magnetization measurements, we find: 

6) Competition between the ferromagnetic couplings of Ni3+-Mn3+ moments 

and the antiferromagnetic couplings of Ni3+-Mn4+ and Ni3+-Ni3+ moments 

as evidenced by the long tails of magnetization in samples with higher Ni 

concentration and antiferromagnetic-like behavior at lower temperatures.  

7) Evidence of the imminent onset of charge ordering and metal to insulator 

transition in the x=0.16 sample from the broad ferromagnetic to 

paramagnetic transition, the separation between the x=0.16 and x=0.21 

magnetization and magnetic moments, and the temperature-dependent 

MZFC and MFC magnetization differences within the x=0.16 sample. 

8) Agreement between our magnetic model derived from the neutron data 

with earlier studies of the dramatic change in magnetic behavior between 

x=0.16 and x=0.21 and between x=0.21 and x=0.31.   

 

While magnetic measurements may leave some ambiguity about the nature of the 

low temperature state, the neutron-diffraction data clearly show that over a small range of 
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composition, long range magnetism comprised of competing ferromagnetic and 

antiferromagnetic interactions between Mn3+, Mn4+ and Ni3+ coupled with charge 

ordering leads to a doubled unit cell with a ferromagnetic ground state. 
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6. A COMPARATIVE REVIEW OF THE 3D TRANSITION METAL 

SUBSTITUTED MANGANITE PEROVSKITES 

6.1 BACKGROUND 

The properties exhibited by the Cr-substituted and Ni-substituted systems are as 

interesting as they are different.  It is informative to review and compare the results of the 

work presented within this dissertation with studies of other work on 3d-substituted 

systems, to include Cr, Fe, Co, Ni and Cu. Of these 3d transition metals, Cr3+ has the 

least occupied outer valence shells and has the same t2g electronic configuration as Mn4+, 

while Cu has the most filled outer valence shells. Table 6-1 Electronic configuration and 

neutron scattering lengths for the 3d transition elements compared in this summary.Table 

6-1 contains the electronic configuration of all these transition elements along with their 

neutron scattering lengths.  Of note is that the Cr atom base state is high spin, while the 

Cu atom prefers the low spin, both pulling one electron from the 4s shell to achieve the 

lowest energy state.  The filling of the d-shells in Mn through Ni progresses by filling the 

d-shell with the additional electron as one moves from left to right in the periodic table.  

The configurations of these outer valence electrons are at the core of the resultant 

magnetic interactions observed in these 3d-substituted systems. Neutron scattering 

lengths of the 3d elements are sufficiently different, especially considering the uniquely 

negative scattering length of Mn, that coupled with the neutron magnetic moment, 

provides neutron scattering the unique ability to accurately determine the nuclear and 

magnetic structure of these systems. The unique neutron scattering lengths of the 

elements also allows relatively small amounts of 3d elements to be accurately located 



 104

within the unit cell structure. In sections 6.2 through 6.5, results from other work are 

combined with data presented within this dissertation, and summarized.  

 

Table 6-1 Electronic configuration and neutron scattering lengths for the 3d transition 
elements compared in this summary. 

 Cr Mn Fe Co Ni Cu 

Electronic 

Config. 

(Ar)3d5 

4s1 

(Ar)3d5 

4s2 

(Ar)3d6 

4s2 

(Ar)3d7 

4s2 

(Ar)3d8 

4s2 

(Ar)3d10 

4s1 

Neutron 

Scattering 

Length (fm) 

3.635(7

) 

-3.73(2) 2.49(2) 10.3(1) 7.718(4) 5.680(5) 

Most Stable Cr3+ Mn2+ Fe2+/Fe3+ Co2+/3+ Ni2+ Cu2+ 

 

 

All six transition metal substituted La0.7Sr0.3Mn1-xMxO3 systems where M = Cr, 

Fe, Co, Ni, and Cu have a metal to insulator transition that occurs around x = 0.2.  This is 

the concentration that was interpreted as the onset of charge ordering within this 

dissertation.  Further, magnetization as a function of temperature for all systems 

indicated: 

• That relative differences between the magnetization saturation values 

show larger separation between concentrations that undergo transitions in 

magnetization and conductivity. 

• TC decreases with increasing transition metal content 
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• MZFC and MFC curves show transition points with antiferromagnetic 

characteristic well below TC that have been interpreted in this dissertation 

as TCO, the temperature at which charge ordering sets in. 

 

Neutron and x-ray refinements indicate: 

• Lattice parameters and cell volume decrease with increasing transition 

metal content. 

• Magnetic moments decrease with increasing transition metal content. 

• Unique neutron refinements were presented in this dissertation that 

interpret the unit cell reflections coincident with a doubling of the c-axis, 

are not antiferromagnetic reflections, but are instead, a consequence of the 

amount of charge ordering within each half of a c-axis doubled unit cell. 

 

6.2 SUBSTITUTION OF THE Mn B-SITE BY Cr 

The Cr-substituted manganite perovskites exhibit some of the highest TC’s of the 

manganite perovskite systems. The Cr3+ ion has the same electronic configuration as 

Mn4+, but replaces Mn3+ on the B-site, leaving the quantity of Mn4+ to be the same as the 

quantity of Sr2+ doped on the A-site in La�.�

�Sr�.


:�Mn�.

��'CrL
�Mn�.��L


� )O

:�.  Kallel et al. 

[1] studied structural, magnetic and electrical properties of La0.7Sr0.3Mn1-xCrxO3 using x-

ray diffraction, magnetic and electronic measurements.    All samples crystalized in the 

rhombohedral &3��  space group.  Their resistivity measurements indicate a metal to 

insulator transition at x~0.2.  (Figure 6-1) and their magnetization as a function of 
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temperature indicate TC decreases with increasing Cr content (Figure 6-2), in good 

agreement with the Cr-substituted system presented in this dissertation (chapter 4). 

 

 

Figure 6-1 Resistivity as a function of temperature from Kallel et al. [1]. 
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Figure 6-2 Magnetization as a function of temperature and plot of TC vs Cr concentration 
from Kallel et al. [1] 

 

6.3 SUBSTITUTION OF THE Mn B-SITE BY Fe 

Hernandez et al. [3] and Barandiaran et al. [4] studied La0.7Sr0.3Mn1-xFexO3 

(x≤0.3) by magnetization measurements and Mössbauer spectrometry.  They found TC 

decreased with increasing Fe and at 4.2K, all samples are ferromagnetic.  However, for 

x>0.1, the samples exhibited a combination of ferromagnetic and antiferromagnetic 

properties similar to those observed in the Cr-substituted systems (Figure 6-3).   They 

also found an increasing local distortion in the MnO3 octahedral sites with increasing Fe 

content, and for x≥0.2, magnetization saturation was not reached in their magnetization 

vs. magnetic field (Figure 6-4).   Their MZFC and MFC curves show similar behavior to the 

Cr-substituted systems but with significantly lower TC transitions (Figure 6-5). 
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Figure 6-3 Magnetic measurements vs Temperature for La0.7Sr0.3Mn1-xFexO3 from 
Barandiaran et al. [4]. 

 

 

Figure 6-4  Magnetization vs. magnetic field for La0.7Sr0.3Mn1-xFexO3 from Barandiaran 
et al. [4].  
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Figure 6-5 Field cooled and zero field cooled measurements for La0.7Sr0.3Mn1-xFexO3 
(x=0.05, 0.2 and 0.3) from Barandiaran et al. [4]. 

 

Tiwari et al. [5] studied La0.7Sr0.3Mn1-xFexO3 (x≤0.25) by x-ray diffraction, electrical 

resistivity, and tunneling conductance measurements.   They found Fe to be in the Fe3+ 

state and a semiconductor to insulator transition around x=0.2 (Figure 6-6).  Further, they 

suggested that the Fe3+ energy is high enough to prevent it from participating in electron 

hopping to the Mn3+ or Mn4+ ions, thus indicating the depletion of hopping electrons with 

increasing doping of Fe.  In the undoped sample (x=0), starting at the high temperatures, 
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resistivity first increases with decreasing temperature, exhibits a peak at T~Tc) and then 

decreases as T is further reduced below (see inset of Figure 6-6).  As the Fe concentration 

increases, the resistivity increases and the peak in resistivity moves to a lower T.  For 

x≤0.2 all the samples show a similar peak in resistivity, characteristic of a metal-

insulation transition, and the samples are metallic at lower temperatures. The x=0.25 

sample shows insulating behavior throughout the whole temperature range. 

 

 

 

Figure 6-6  Resistivity measurements as a function of temperature from Tiwari et al. [5]. 

 

 

6.4 SUBSTITUTION OF THE Mn B-SITE BY Co 

Srikiran et al. [6] studied structural and magnetic properties of La0.7Sr0.3Co1-

xMnxO3 (x=0.1, 0.5, 0.75 and 0.9) by neutron diffraction and magnetic measurements.  
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Their samples were prepared by the solid state method and crystalized in the 

rhombohedral &3�� space group.  Magnetic moments from magnetic measurements of 0.4, 

0.81, 2.6 and 3.25 µΒ for x=0.1, 0.5, 0.75 and 0.9 respectively, was in good agreement 

with their neutron data.   

Their magnetization as a function of magnetic field (Figure 6-7) indicate 

saturation was not reached in samples with x>0.1 and decreased with increasing Co 

content.  TC decreases with increasing Co content and there is evidence of 

antiferromagnetic-like transitions well below TC for x≤0.5, similar to that observed in the 

other transition metal systems (Figure 6-8). 

 

Figure 6-7  Magnetization as a function of magnetic field from Srikiran et al. [6] 
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Figure 6-8  Magnetization as a function of Temperature from Srikiran et al. [6]. 

  

Zhao et al. [7] studied La0.7Sr0.3Mn1-xCoxO3 (0 ≤ x ≤ 0.5) by x-ray powder 

diffraction and magnetic measurements.  Their samples were prepared by the solid state 

method and crystalized in the &3�� space group.  Magnetization decreased with increasing 

Co content, 5.70, 5.48, 3.45, 2.67, and 0.00 for x=0, 0.01, 0.10, 0.20, 0.30, and 0.5 

respectively  For x≥0.3, the paramagnetic metal to ferromagnetic metal transition 

disappears and the temperature dependence of the resistivity follows semiconducting 

behavior with another transition to insulating behavior at x=0.5 (Figure 6-9).  For 

samples with x=0.1 and 0.3, magnetoresistance effects are enhanced as compared with 

the undoped parent.  However, for x=0.5, the magnetoresistance effect is suppressed.  For 

x≥0.3, hysteresis is observed in the magnetization vs magnetic field measurements 

(Figure 6-10). 
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Figure 6-9  Resistivity as a function of temperature from Zhao et al. [7]. 

 

 

 

Figure 6-10  Magnetization as a function of magnetic field from Zhao et al. [7]. 
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6.5 SUBSTITUTION OF THE Mn B-SITE BY Ni 

 

The Ni-substituted system has been reported as having Ni in the Ni2+ and Ni3+ 

states [8, 9].  In this dissertation, we presented data for the La0.7Sr0.3MnO3 system where 

Mn was replaced with up to 40% Ni and analyzed with neutron scattering, x-ray 

scattering and magnetic measurements to determine the nuclear and magnetic structure 

and magnetic properties of this Ni-substituted perovskite.  The atomic parameters (a, c 

and volume) decrease with increasing Ni content while the oxygen stoichiometry changes 

very little.  The decreasing cell parameters combined with the constant oxygen 

stoichiometry indicate Ni to be in the Ni3+ state.  If Ni were in the Ni2+ state, one would 

expect the volume to increase, given stoichiometric oxygen.  The replacement of Mn3+ by 

Ni3+ drives the system from a ferromagnet to an antiferromagnet.  Neutron data for low 

Ni concentrations indicate the system is ferromagnetic with the Ni3+ moments aligned 

antiferromagnetically to the Mn3+ and Mn4+ moments, causing a net reduction in the 

measured ferromagnetic moments.  This is unlike the Cr-substituted system where the 

Cr3+ aligned ferromagnetically to Mn3+ and antiferromagnetically to Mn4+.  At x=0.21, 

the neutron data (Chapter 5) indicate unequal but aligned magnetic moments, providing 

for a charge ordered ferromagnet.  For x≥0.31, the interaction between adjacent planes 

(Chapter 5) changes to antiferromagnetic where the Ni3+ moments are antiparallel to the 

Mn3+ and Mn4+ moments.  These last two results are similar to those observed in the Cr-

substituted system, except they occur over a much narrower range of transition metal 

content; likely due to the nearly complete d-shell electrons.  As the Ni concentration 

grows, the antiferromagnetic Ni3+-O-Ni3+ superexchange interaction becomes 
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increasingly important and more probable, ultimately resulting in the reversing of the 

orientation between the B1 and B2 layers at x ≥ 0.31, creating an antiferromagnetic 

system.   

Feng et al. [10] studied La0.7Sr0.3Mn1-xNixO3 (x = 0.05, 0.10, 0.15, 0.18, 0.20, 

0.25, 0.30, and 0.40).  They find a metal to insulator transition near x=0.20 (Figure 6-11), 

a Ni concentration coincident with the reported (Chapter 5) onset of charge ordering, also 

an insulating state. Their magnetization as a function of temperature with several 

different magnetic fields applied, are presented in Figure 6-12.  The arrow and vertical 

line indicate TC and resistivity peak, respectively. For x≤0.05, the metal to insulator 

transition occurs near TC.  However, for 0.1≤x≤0.2, the peak in resistivity occurs at a 

temperature well below TC, and decreases in temperature with increasing Ni content.  No 

resistivity peak is observed for x≥0.20, indicating insulating behavior only. 

 

Figure 6-11  Resistivity as a function of temperature from Feng et al. [10] 
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Figure 6-12  Magnetization (M) as a function of temperature from Feng et al. 

[10]. 

 

6.6 SUBSTITUTION OF THE Mn B-SITE BY Cu 

Kim et al. [11] studied La0.7Sr0.3Mn1-xCuxO3 (0 ≤  x ≤  0.20) by neutron 

diffraction, magnetic measurements and magnetoresistance measurements.  They 

prepared their samples using the conventional solid state reaction method and all samples 

crystalized in the rhombohedral structure, 3R c  space-group. Table 6-2 contains the 

structural and magnetic parameters from the neutron refinements.  This system shows no 

sign of antiferromagnetic couplings between Cu3+ and Mn ions. The x = 0.15 sample 

shows evidence of both copper ions, Cu3+ and Cu2+, unlike the other transition metal-

substituted systems.  This will affect the exchange mechanisms and magnetic interactions 

in this system and is observed through the reduction in ferromagnetic moments with 
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increased Cu content.  This indicates a likely reduction in the Mn3+-O-Mn4+ 

ferromagnetic double exchange interactions, a direct result of the reduction in Mn3+ ions.    

The field cooled (MFC) and zero field cooled (MZFC) magnetization versus 

temperature measurements are provided in Figure 6-13.  The TC decreases with increased 

Cu3+ content.  While the signature separation between the MZFC and MFC curves is 

present, the complex curves observed in the other 3d-substituted systems is only weakly 

observable in the x=0.15 sample and only in the MZFC curves.  This indicates there may 

be antiferromagnetic ordering up to 50K that is too small to be observable within the 

resolution of the neutron diffraction analysis. 

Electric resistivity versus temperature from Kim et al. [11] for La0.7Sr0.3Mn1-

xFexO3 with (x = 0.10, 0.15, and 0.20) samples are shown in Figure 6-14. An applied 

magnetic field suppresses the resistivity of all samples over the entire temperature range.  

For x≤0.10, conducting behavior is observed that decreases with increased temperatures. 

All samples show a similar peak in resistivity, characteristic of a metal-insulation 

transition, and the samples are metallic at lower temperatures. A metal-to-insulator 

transition occurs 0.15<x<0.20  and the system is a strong insulator at x=0.20.   
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Table 6-2  Refined parameters for La0.7Sr0.3Mn1-xCuxO3, 3R c  space-group, at room 
temperature and 10K from Kim et al. [11].  Numbers in parentheses are statistical error.  
A and c are the unit cell parameters, V is the volume, M is the magnetic moment, 2χ  is 
[Rwp/Rexp]

2 where Rwp is the residual error of the weighted profile. The magnetic 
moments of the x 0 15≥ .  samples at RT are not refined. 

 

Composition (x) 0.00 0.05 0.10 0.15 0.20 

T = 300K 

a ( Å )  5.5038(2)  5.5003(2)  5.4987(2)  5.4982(2)  5.4941(2)  

c ( Å )  13.3552(5)  13.3387(4)  13.3341(5)  13.3304(6)  13.3180(6)  

V ( 3
Å )  350.351(18)  349.473(17)  349.153(18)  348.990(22)  348.152(24)  

Bµ  2.512(28)  1.975(30)  1.411(101)  -  -   

2χ  (% )  2.81  2.69  2.91  4.89  5.36   

T = 10K 

a ( Å )  5.4812(1)  5.4845(1)  5.4823(1)  5.4858(1)  5.4855(2)  

c ( Å )  13.2759(3)  13.2797(4)  13.2737(4)  13.2718(4)  13.2637(4)   

V ( 3
Å )  345.415(13)  345.931(16)  345.504(17)  345.897(17)  345.642(17)  

Bµ  3.445(24)  3.327(27)  3.160  2.272(50)  0.727(93)   

2χ  (% )  3.18  2.76  3.30  2.67  2.82   
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Figure 6-13  Zero field-cooled (MZFC) and 50 Oe field-cooled  (MFC)  measurements of 
magnetization vs temperature for all Cu concentrations for La0.7Sr0.3Mn1-xCuxO3 (x = 
0.05, 0.10, 0.15)  from Kim et al. [11]. 
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Figure 6-14  Electric resistivity versus temperature for La0.7Sr0.3Mn1-xCuxO3 (x = 0.10(a), 
0.15(b), 0.20(c)) in applied magnetic field H = 0, 1, 3, 5T from Kim et al. [11]. 

 

6.7 SUMMARY AND CONCLUSIONS 

Of the six transition metal-substituted systems, the Cr-based system presented 

some of the most interesting magnetic properties, followed by the Ni-based system and, 

finally, the Cu-based system.  All systems exhibit layered magnetic behavior, a reduction 

in ferromagnetism with increasing transition metal content, complex magnetic 

interactions well below TC, and a metal to insulator transition around x~0.2 (a value also 
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near the percolation threshold described in many works of around x~0.16).  Looking 

across the unpaired valence electrons of the eight different transition metal ions, Cr3+ 

(Ar)3d34s0 , Mn3+ (Ar)3d44s0 , Mn4+ (Ar)3d34s0 , Fe3+ (Ar)3d54s0 , Co3+ (Ar)3d64s0 , Ni3+ 

(Ar)3d74s0 , Cu3+ (Ar)3d84s0,   all of the 3d transition metal-substituted systems indicate 

the metal ions replace Mn3+ in a like-ionic state except for the Cu-substituted system 

where Cu2+ and Cu3+ (dominant species) were both observed.  Copper has the highest 

atomic number with nearly full s and d-shells, and therefore, is more likely to not give up 

electrons to participate in magnetic interactions.  On the other hand, Cr has the lowest 

atomic number and prefers to exist in the high spin state ((Ar)3d54s1), with Cr3+ having 

three unpaired electrons to participate in magnetic interactions.  As noted above, the Cr3+, 

Mn3+, Mn4+, Fe3+, Co3+ Ni3+ and Cu3+ transition metal ions have 3, 4, 3, 5, 6, 7 and 8 d-

electrons respectively.  The five-fold d-orbital degeneracy is split by the cubic 

environment into two terms, ;9: and 89:. The ;9:-level contains three electrons that form 

the so-called “t-core”. The last two d-electrons (89:-electron) are well separated in energy 

and form a loosely bound state (see Fig. 1.2). The double degnerate 89: electrons play a 

key role in magnetization, conducting and other properties of manganites. The Hund’s 

rule requires that the three d-electrons forming the ;9: -level have the same spin-

orientation, and due to strong Coulombic forces, results in the localization of the 

;9:electrons that have a total spin of S = 3/2. The 89: electrons are also affected by the 

same strong Hund’s interaction. Therefore, their spin must be polarized along the same 

direction as for the ;9: electrons. The Mn4+ ion can lose its 89: electron, thereby creating a 

hole that is spread over the unit cell and shared by six near neighbor transition metal ions.  

In low concentrations, localization of this hole provides the formation of local polarons 
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and an insulating state.  With the addition of more holes from the substituted transition 

metal ions, conducting and ferromagnetic states appear. As the temperature is increased, 

TC is reached and the respective systems make the transition to the paramagnetic state, 

accompanied by a much higher resistivity. There appears then, to be a correlation 

between the electronic properties and magnetization.  

As discussed in Chapter 1, Zener presented the double exchange mechanism as a 

means to describe the movement of electrons in these systems.  The double exchange 

mechanism is one whereby the oxygen ion mediates a transfer of an electron between the 

Mn3+ ion and the Mn4+ ion as described by Mn3+ -O- Mn4+. Thus, another 89:-electron, 

initially localized, can become mobile and promote conduction. However, as was noted 

above, the 89:-electron is spin-polarized because of the Hund’s rule with its respective ;9: 

electrons. The total spin of a complete ;9:  core is equal to S=3/2, but their mutual 

orientations may be different for differerent sites. Relative orientation of spins of the 89:-

electrons and any “vacant” ;9: electrons are important, as the hopping is forbidden if the 

spin directions are the same. This hopping provides an increase in the ground state kinetic 

energy of the ferromagnetically ordered system (all spins are polarized along one 

direction) but lies below the paramagnetic state (witnessed by the temperature 

dependency of TC). As a result, the ;9:  electrons become ferromagnetically coupled, 

favoring the hopping of the 89: -electrons (spin polarized conduction) and linking the 

electronic and magnetic behavior of these systems.  The behavior of each of these 

systems is then governed mainly by the quantity, or lack thereof, of mobile, unpaired 

electrons in the doubly dengenerate 89:  band with orientation constrained by the ;9: 

electrons. 



 123

The Cr and Ni systems (from this dissertation) at low temperature suggest 

transitions with increased transition metal content from ferromagnetic to unequal but 

aligned magnetic moments within a doubled c-axis unit cell.  The Cr-substituted system 

follows with another transition to unequal and anti-aligned magnetic moments within the 

same c-axis doubled unit cell, forming a ferrimagnet.  However, the Ni system transitions 

from unequal but aligned magnetic moments within the c-axis doubled unit cell to to an 

antiferromagnet while the Cr system never fully achieves this transition. The Cr3+ 

moment aligns parallel to the Mn3+ and Mn4+ moments, replacing Mn3+ in the oxygen 

octahedron but ordering antiferromagnetically to Mn4+ while ordering feromagnetically 

to Mn3+.  This ordering appears to be unique to the Cr-based system.  This level of 

analysis was not performed on the Fe, Co and Cu systems, but is recommended.  Near the 

metal to insulator transition for the Ni and Cr systems, the magnetic data exhibited 

transition points with antiferromagnetic character well below TC.  Charge ordering is well 

known in these manganites, with the clearest evidence when the amounts of disparate 

charges are equal (e.g. Mn3+=Mn4+).  Other studies have confirmed that charge ordering 

exists outside these equivalent quantities and have suggested there may be “nodal” 

compositions such as x=1/4 or x=1/8.  Our data for the Ni and Cr systems strongly 

suggest the onset of charge ordering occurs coincident with the metal to insulator 

transition, and not only at specific nodal quantities.  We suggest this type of ordering is 

highly likely in the remaining transition metal-substituted systems, but that additional 

analysis with neutron data is needed.  Further, the ionic species that has consistently been 

replaced by the 3d transition metal ions within these systems are the Mn3+ ions.  The 

Mn3+ ion is a Jahn-Teller distorted ion with an unpaired outer eg electron that provides for 
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conductivity.  It is this eg ion coupled with the ionic size constraints of the system that 

governs the magnetic and electronic properties of these systems.   
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APPENDIX A: PROPERTIES OF NEUTRONS AND X-RAYS 

X-rays and neutrons are both routinely used to study nuclear structure of 

materials.  Some properties of x-rays, neutrons and electrons are provided in Table 1.  X-

rays are electromagnetic radiation with wavelengths on the order of 1Å (10-10m) and 

wavelengths between 0.5 and 2.5Å are typically used in crystallography. The x-ray 

wavelength used in this thesis is that of the K-shell of copper, Kα = 1.54 Å.  X-rays 

interact with the electronic charge, and hence heavy atoms with many electrons (such as 

mercury) scatter x-rays much more efficiently than light atoms such as oxygen or 

hydrogen with just a few electrons.  Therefore, x-rays cannot be used to determine the 

position of these atoms.   

 

 

 Neutron X-rays Electron 

Mass Mn = 

1.675x10-27kg 

0 (rest mass) Me = 9.109 

x 10-31 kg (rest 

mass) 

Charge 0 0 e 

Spin S = ½ 1 S = ½ 

Magnetic 

Dipole Moment 

∗ µn = (-

eħ)/(2mn)gnsn = -

1.913µn 

0 ∗ µe = (-

eħ)/(2me)gese 

Energy E = E=mc2=hf=h E = 
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(ħ2k2)/(2mn) c/λ=pc (ħ2k2)/2me) 

Energy ~5meV to 

100meV for thermal 

neutrons 

~1KeV to 

10KeV 

~ 511KeV 

(using the rest mass) 

Coulomb 

Interaction 

No Yes 

 

Yes 

Mag. 

Dipole-Dipole 

Interaction 

Yes Yes Yes 

Strong-

force (nuclear) 

interaction 

Yes No No 

Table 1:  Properties of neutrons, x-rays and electrons where k=2π/λ, gn = 3.826, ge 

= 2.0.   

 

Neutrons have no charge  and do not experience the coulomb interaction, but do 

have a magnetic moment and penetrate deep into the atom, scattering off the nucleus and, 

for magnetic materials, off unpaired electrons.  Thus, neutrons are considered a bulk 

probe, well suited for low-energy excitations such as lattice vibrations and spin waves 

with energies in the meV range.   

Neutrons from a nuclear reactor operating at temperature T will come into thermal 

equilibrium with the reactor cooling pool before being allowed to escape with a root-

mean-square velocity v given by  
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(1/2)mv2=(3/2)kT, 

 

where k is boltzmann’s constant.  They will also have a Maxwellian flux 

distribution (Figure 2) of 

 

 φ(v) ∝ N:8
'�
O
3PQ

3

RST
)
, 

 

where φ(v) is the number of neutrons through a unit area per second. 

 

 Figure (2) 

 

 

 

Therefore, it follows that 

 

λ2=h2/(3mkT). 
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Using this formula, neutrons at equilibrium temperatures of 0˚C and 100˚C have 

wavelengths of 1.55 Å and 1.33 Å respectively.  

 

Wave Nature of Neutrons 

The scattering cross-section (
UD

UV
) of the nucleus is equivalent to the effective area 

presented by the nucleus to the passing neutron or, 

 

$ =
AWX9YZ[9	\W77][X	Y^	_\�XX]7]U	[]WX7Y[_

Z[\ZU][X	[]WX7Y[	^`W�
, so that 

 

UD

UV
 = # of neutrons scattered into a solid angle element dΩ per unit time 

 

For a single nucleus, the size is very small compared to the wavelength of the 

neutron and it can be considered as a point scatterer such that 

 

UD

UV
 = │b│2, 

 

and the total cross section will be 

 

σ = a
UD

UV
2Ω = 4πb2.   
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Thus, the cross section, σ, is an area while b is the scattering length as if the 

scattering length were half the radius of the nucleus as seen by the neutron.    

A plane wave of neutrons can be described by a wave function 

 

Ψ(r)=(1/√Y)e(ik
i
▪x), 

 

where Y is the normalization constant, c̅ is the neutron wave vector with wave-

number  k=2π/λ, the magnitude of the wave vector. When the wave of neutrons hits the 

nucleus of the atom, the scattering will be spherically symmetric such that the scattered 

wave function can be written as 

 

Ψ=(-b/r)e(ik
i
▪x), 

 

where b is defined as the scattering length and has both an imaginary and real 

component.   

  

b ≡ α+iβ. 

 

However, the imaginary component is only important for materials that have a 

high neutron absorption coefficient such as boron or cadmium.  Therefore, the necessary 

component for this thesis will be the real component, leading to 

 

Ψ= e(ikz) - (-b/r)e(ikr). 
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The spherical wavefronts of the scattered neutron are represented in Figure 2 as 

circles spreading out from the nucleus while the incoming wavefronts are depicted as the 

vertical lines and represent the nodes of the wave (the points at which the phase e ∙ �. 

 

Figure 2 – A neutron in the form of a plane wave is scattered by a single fixed 

nucleus.  The scattered wave 
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APPENDIX B: NEUTRON SCATTERING COLLECTION FACILITIES 

University of Missouri Research Reactor (MURR) 

 

All neutron-diffraction data were collected at the MURR facility (Figure 2) using 

a position sensitive detector diffractometer with a neutron wavelength of λ = 1.479Å.  

MURR houses a tank-type nuclear research reactor, servicing the University of 

Missouri's Nuclear Science and Engineering Institute (NSEI) in Columbia. As of March 

2012, the MURR is the highest power university research reactor in the U.S., providing 

10 megawatts of thermal output. The first small angle neutron scattering (SANS) 

spectrometer in the U.S. was installed in 1980. The power of neutron scattering comes 

from the unique neutron properties, such as charge neutrality (allowing relatively deep 

penetration of materials), a magnetic moment (allowing investigation of magnetic 

properties at the microscopic level), and a high probability for interacting with light 

elements such as hydrogen that can’t be observed with x-ray scattering techniques 

(allowing investigation of organic materials). The powder diffractometer is located within 

the MURR facility at beam port D. The design of this diffractometer is different from 

other conventional constant wavelength diffractometers.  In conventional diffractometers, 

the neutrons are ran through Söller collimators to align the directions of the neutrons 

(scattering vector Q=2ksinθ is constant since k and θ are fixed) and then ran through a 

crystal monochromator to select the wavelengths of neutrons.  One such diffractometer is 

the ECHIDNA powder diffractometer at the Open-pool (OPAL) Australian lightwater 

reactor.  At OPAL, directions of the incoming and outgoing wave vector, Q=2dSin(θ), 

are chosen by two Söller Collimators.  The monochromator is comprised of slabs of 
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germanium crystals inclined towards each other in order to focus down the Bragg 

reflected beam.  A secondary collimator can optionally be placed in the monochromated 

beam between the monochromator and the sample, increasing the resolution of the 

instrument.   

In contrast, the MURR diffractometer incoming monochromatic beam is chosen 

by a double focusing bent perfect silicon crystal monochromator. Compared with the 

conventional diffractometer, the intensity of the neutrons reflected by the monochromator 

at MURR is higher and, due to the low scattering power of the silicon monochromator for 

fast neutrons and its low incoherent scattering, have reduced background intensity. Also, 

conventional diffractometers use multi-detectors whereas the MURR diffractometer uses 

five linear, position sensitive detectors, located 160 cm away from the sample position, 

measuring the intensity in 20° (2θ) segments. The detectors can be incrementally moved, 

usually in 0.5˚ steps, to cover the entire scattering angle, often 5°-105° (2θ).  Each 

detector consists of linear positive sensitive proportional chamber(outer wall is the 

cathode) made of stainless steel tubing one inch in diameter and 24 inches long, located 

in a moveable neutron shield assembly.  A spring-tensioned, 8kΩ resistance wire is 

connected between the two ends of the tube, forming the anode.  Each detector, in tube-

form, contains a 2:1 ratio of helium and argon gas, with about 5% carbon-dioxide gas.   

  



 133

Figure 2 – University of Missouri Research Reactor (MURR) Beam Port Floor 

Layout of Instrument Facilities.  Beam port D provides the neutrons for the High 

Resolution Powder Diffractometer. 

 

 

At the MURR diffractometer, the background intensity of neutrons is reduced by 

the oscillating collimator placed in front of the detectors and behind the sample. This 

collimator allows only the neutrons scattered from the sample to reach the detectors, 

greatly reducing the amount of neutrons scattered from atoms in the background. The 

amount of sample required for the neutron diffraction measurement is about one gram 

and is held in a small Vanadium sample holder, a tube about 3 inches long and 3 
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millimeters in diameter.  The tube is loaded in the sample exchanger and rotates about the 

long axis to average out any preferred orientations.  The neutron diffraction measurement 

can be performed in the temperature range from 10K to 450K (300K without the furnace 

room).  The low temperature is achieved using a cryogenic closed cycle refrigerator.  
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APPENDIX C: IONIC CONFIGURATION OF Cr-SUBSTITUTED La0.7Sr0.3MnO3 

 

To find the ionic configuration of Cr doped La0.7Sr0.3MnO3, let α  be the amount 

of oxidized Cr3+ and subsequently, the amount of reduced Mn3+ on the same site.  The 

ionic formulation is then, 

3 2 3 4 3 2
0 7 0 3 0 7 0 3 3( )( )La Sr Mn Mn Cr Oα α

+ + + + + −

. . . − .   

Applying charge balance on this expression we find;  

3(0 7) 2(0 3) 3(0 7 ) 4(0 3) 3 6 0α α. + . + . − + . + − = ,  

2.1 0.6 2.1 3 1.2 3 0α α+ + − + + = ,  

 

 

 

The complication that is often incurred is that oxygen stoichiometry is often hard 

to maintain in these compounds, leaving instead, 
�/�h
:�   in lieu of 


:�.  The excess or 

reduced amount of oxygen then will modify the amount of oxidized 3d transition 

element.  Although the ionic radius of the different transition elements can be considered 

when trying to determine which ion of which element is present, more often it is required 

to determine which ions are present through experimentation.  
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