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ABSTRACT 
 
For many decades the analysis of earth retaining structures under dynamic or seismic conditions has been carried out by means of 
standard limit equilibrium (Coulomb, M-O) or elastic methods (Wood, Veletsos and Younan). 
These approaches are simplified, as they make use of considerable approximations which are often applicable only under particular 
conditions. A different and perhaps more realistic approach is possible using established computer codes, which integrate numerically 
the governing equations of the soil and wall media. Since these problems may involve significant levels of strain in the backfill, 
material non-linearity should be taken into account to realistically simulate the response of the system. In the herein-reported study, a 
parametric analysis is carried out through the finite-difference code FLAC 5.0. 
Starting from simple cases involving elastic response, and moving gradually towards more realistic conditions, salient features of the 
dynamic wall-soil interaction problem are addressed. The case of non-linear hysteretic behaviour of soil and flexibility of wall is 
considered at a second stage. Results indicate that with increasing levels of acceleration, there is a clear transition from elastic 
behaviour (in which the aforementioned V-Y type methods are applicable), to plastic behaviour in which M-O methods are thought to 
be more suitable under pseudo-static conditions. The results of the parametric analyses are reported in terms of pertinent normalized 
parameters, to provide a general framework for the assessment of wall-soil dynamic interaction under strong seismic excitation. 
 
 
INTRODUCTION 
 
Analysis and design of earth retaining structures under seismic 
conditions poses a challenging problem, as the mechanics of 
wall-soil interaction are not well understood. Dynamic soil-
structure interaction effects are dominant and should be taken 
into account in the assessment and quantification of the 
problem. 
Analysis procedures can be roughly classified into two main 
groups: pseudo-static limit equilibrium approaches based on 
the well-known Mononobe and Okabe solution (Mononobe 
and Matsuo [1929], Okabe [1926]) and its variants, and elastic 
approaches following the seminal works by Wood [1973], 
Arias et al. [1981] and, more recently, Veletsos and Younan 
[1994, 1997]. 
The first group of methods is essentially an extension of 
Coulomb’s classical solution, including additional inertial 
forces due to seismic shaking. The method has been 
extensively studied and modified (Seed and Whitman [1970], 
Richards and Elms [1979]), and it is widely used for the 
analysis and design of both rigid and flexible structures, 
regardless of the actual amount of wall displacement associated  

with the formation of a failure surface. 
Ways to account for wall flexibility have been developed in the 
realm of the second group of methods, leading to certain 
closed-form solutions for visco-elastic soil (Wood [1973], Arias 
et al. [1981]). These solutions are often considered unduly 
conservative, as the kinematical constraint associated with a 
rigid wall generates pressures twice as large as those predicted 
by the M-O formula. Recent work by Veletsos and Younan 
[1994, 1997] has shown a significant reduction of pressures 
with increasing wall flexibility and/or base compliance. 
Notwithstanding the theoretical significance and practical 
appeal of the above methods, they can both be criticized for 
making use of considerable approximations, which are 
applicable only under particular conditions. A different and 
perhaps more realistic approach is possible using established 
numerical methods, which aim at integrating in space and time 
the governing differential equations of the soil and wall media. 
Since these problems may involve significant levels of strain in 
the backfill, material non-linearity should be taken into account 
to realistically simulate the response of the system. In the 
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herein-reported study, a parametric analysis is carried out by 
means of the finite-difference code FLAC.  
Starting from simple elastic analyses and progressing to more 
realistic cases, salient features of dynamic wall-soil interaction 
problem are addressed. Two basic systems have been analyzed 
under both pseudo-static and dynamic conditions: a 
homogenous elastic backfill retained by a vertical cantilever 
wall, and a vertically inhomogeneous backfill, characterized by 
a parabolic or exponential variation of soil stiffness with depth. 
In the first case, walls varying from rigid to flexible, with or 
without rotational base compliance, are simulated. In the 
second case, the effect of soil inhomogeneity is investigated for 
a wide class of walls and soil configurations. 
Moving towards more realistic conditions, the case of flexible 
vertical cantilever wall retaining a horizontal layer of 
inhomogeneous backfill, obeying an elastic-plastic Mohr-
Coulomb criterion, is analyzed. The excitation consists of a 
single-cycle sinusoidal pulse with a given amplitude and 
frequency applied at the bottom of the model. 
The results of the parametric analyses are reported in terms of 
pertinent normalized parameters, to provide a general 
framework for the assessment of soil-wall dynamic interaction 
under strong seismic excitation. 
 
 
ELASTIC PROBLEM 
 
In this section, the models used for the simulation of the elastic 
problem for both homogeneous and inhomogeneous soil, and 
corresponding results are reported. Results have been 
compared, whenever possible, with available closed-form 
solutions. 
 
 
Homogeneous Case 
 
The system consists of  a semi-infinite layer of visco-elastic 
material of height H retained along one of its vertical 
boundaries by a uniform flexible cantilever retaining wall 
restrained by a rotational spring of stiffness Rθ at its base. The 
system is excited by a harmonic horizontal motion, as shown in 
fig. 1. 
The properties of the soil are: 
 

• Mass density:   ρ  
• Shear modulus:   G 
• Poisson’s ratio:   ν 
• Material damping factor:  β 

 
The properties of the wall are: 
 

• Thickness:   tw  
• Mass per unit surface area:  µw 
• Young’s modulus:  Ew 
• Poisson’s ratio   νw 
• Material damping factor:  βw 

 

 
 

Fig. 1.  Elastic model 
 

The relevant parameters for a parametric analysis are the 
relative flexibility between wall and retained soil dw, defined by: 
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and the relative flexibility between rotational base constraint 
and retained soil dθ , defined by: 
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The elastic soil is characterized by uniform shear wave velocity            
Vs = 100 m/s and mass density ρ = 1.8 Mg/m3, therefore           
G = 18 MPa. Furthermore, Poisson’s ratio is assumed to be       
ν = 1/3 and the material damping factor β = 5%. The grid 
dimensions are (0.5 x 0.5 m). 
The height of the wall is H = 8 m and it is discretized by means 
of beam elements of unit longitudinal dimension and thickness 
tw = 0.20 m. The mass per unit of surface area is assumed        
µw = 2.5 Mg/m2. It’s worthwhile to mention that V-Y solution 
was obtained based on the assumption of a massless wall. The 
Young’s modulus of the wall can be linked to the other 
parameters using equations (1) and (2) (as already done by 
Psarropoulos et al. [2005]): 
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The values of dw assumed here are 0 (for rigid wall), 1, 5 and 
40; the values of dθ are 0 (for a fixed base wall), 0.5, 1 and 5. 
The interface between the soil and the wall was selected as 
bonded in order to permit a comparative study against available 
closed-form solutions (see fig. 2). 
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When the frequency of excitation, ω, is very low compared to 
the fundamental frequency of the soil layer, ω1, the excitation 
will be referred to as ‘static’, a term which should not be 
confused with that normally used to represent the effects of 
gravity forces. To avoid possible confusion, in the ensuing the 
term pseudo-static loading will be used. In this case it’s more 
convenient to replace the excitation with a set of horizontal 

body forces equal to ( ) gg AtX ⋅=⋅ ρρ
max

)(&&  applied to all grid 

nodes, as shown in fig. 2. 
 

 
Fig. 2. Pseudo-Static seismic loading via equivalent body 

forces in wall and soil 
 
To achieve convergence of the model, the pseudo-static load 
was applied gradually in several steps. 
The results are normalized according to the following factors: 

• Horizontal pressures: 
 

Hg

st
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     (5) 

 
 where gAgg /=α  is the maximum horizontal ground 

acceleration expressed in g, γ  = ρ g is the unit weight 
of the soil; 

• Base shear: 
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• Base moment: 
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• Effective height: 
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which defines the point of application of the resultant 
force, measured from the base of the wall; 
 

• Wall displacements: 
 

2

 

H

Gw

gγα
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Notice that the results reported in the ensuing encompass 
exclusively horizontal shaking, i.e. to determine the complete 
state of stress, the initial stresses due to gravity loads should be 
added. 
Figure 3 shows the heightwise distribution of the horizontal 
pressures on the wall, determined by V-Y, as function of 
relative wall flexibility (fig. 3a), and relative base flexibility 
(fig. 3b) (η = y / H is the normalized height). Results of analyses 
with FLAC have been compared with same simulations with 
the FEM code PLAXIS. Figures 4 and 5 show, respectively, the 
case of fixed base wall and rigid wall; PLAXIS results are 
displayed with solid line, whereas FLAC results are depicted 
with dots. 
The numerical results are in a very good agreement with the 
results obtained by V-Y, except from the upper part of the wall 
where some discrepancies are visible. Similar features were 
also observed by Wood [1973] and Psarropoulos et al. [2005], 
and are probably to the assumption of complete bonding, as 
well as that of soil homogeneity, which implies finite soil 
stiffness not to vanish near the top of wall. 
 
 

 

Fig. 3. Wall pressures for different wall and base flexibilities 
according to Veletsos and Younan [1997] 

 
It’s observed that both for large relative wall and base 
flexibilities, tensile stresses are developing near the top of the 
wall, clearly stated as a limit of elastic solutions by V-Y, since 
these tensile stresses can cause de-bonding in case they exceed 
the value of initial compressive stresses due to gravity. 
Figures from 6 to 8 show the variation of normalized base shear 
(Vb), effective height (h) and top displacements (w) for different 
dw and dθ , whereas solid lines indicate the corresponding 
closed-form solution results. An excellent agreement is 
observed, except  for  the case of rigid walls, where the 
aforementioned numerical problems play a slightly more 
important role. 
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Fig. 4. Wall pressures for a fixed base wall (dθ = 0) 

 
Note, however, the large reduction in terms of base shear due 
to both wall and base flexibility, as analytically proved by     
V-Y, and numerically confirmed by these analyses. 
It can be also observed that for the effective height a very good 
agreement with Seed and Whitman [1970] modification of M-O 
method (0.6 H) is visible for rigid walls, whereas for flexible 
walls only a reasonable agreement can be found with the 
Rankine distribution (1/3 H), the reason being the large tensile 
stresses near the top that are “lowering” the effective height. 
The comparison for top displacements is once again very good 
but a little deviation from analytical results is observed, 
especially for flexible walls or walls with flexible base. 
Similar results are found for the dynamic case for which, as 
analytically shown by Veletsos and Younan [1994, 1997], and 
numerically by Psarropoulos et al. [2005], the dynamic 
quantities are the product of the corresponding ‘static’ ones by 
an appropriate amplification or deamplification factor. 
 
 
Inhomogeneous Case 
 
The assumption of soil homogeneity, which is practically 
unrealistic, is one of main limitations of the analyses discussed 
in the previous section. Indeed, in reality, the soil modulus is 
likely to increase with depth, that is with confining pressure. 
Under this assumption V-Y have analyzed the case of a rigid 
wall elastically constrained against rotation at the base, from a 
‘static’ point of view. As proposed by Veletsos and Younan 
[1994] the inhomogeneity is expressed through a parabolic 
variation of shear modulus with depth (see fig. 9): 
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in which G0 is the value of shear modulus at the base of the 
horizontal soil layer.  
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Fig. 5. Wall pressures for a rigid wall (dw = 0) 
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Fig. 6. Normalized base shear for different dw and dθ 
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Fig. 7. Normalized effective height for different dw and dθ 
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Fig. 8. Wall displacements for different dw and dθ 

 
The numerical analyses reported herein are limited to a wall 
with flexibility (dw) fixed at the base (dθ = 0), therefore only 
the case of rigid wall can be compared with analytical results. 
The main parameter of the problem is, again, the relative 
flexibility of the wall and retained soil, defined by: 
 

w

av
w D

HG
d

3

=    (11) 

 
where Gav is the average value of shear modulus, for this case 
equal to 2/3 G0. 
The soil stratum considered has an average shear wave velocity 
Vs,av = 100 m/s while the others soil parameters have been 
maintained to allow a comparative study with the case of 
homogeneous soil. 
The properties of the wall are the same, except its Young’s 
modulus, obtained using relation (4), by substituting G with 
Gav. The values of dw taken into account are 0 (rigid wall), 1, 5 
and 40. 
A comparison of pressures for the case of rigid wall is shown 
in fig. 10: good agreement is observed, except, again for the 
upper part of the wall, where a value of pressure different from 
zero is observed, whereas the pressures should be null, as in 
the solution by V-Y. This is due to the shear modulus near the 
top, which in the numerical analysis assumes a finite value, as 
well as the assumption of complete bonding. 
In general, the assumption of soil inhomogeineity is 
responsible for a sensible reduction of stresses. 
This is clearly shown in figures 11 and 12, where pressures and 
bending moments for different wall flexibilities are presented 
together with corresponding values for the homogeneous case. 
The reduction is higher for the case of a rigid wall than for a 
flexible wall, especially in terms of bending moments, and this 
is due to the fact that for flexible walls both compressive and 
tensile stresses are lower. The reduction of tensile stresses for 
flexible walls (dw = 40) is another important effect arising from 
the assumption of soil inhomogeneity. Indeed now tensile 
stresses are practically  not  influent  in  the  overall  behaviour, 

 

Fig. 9. Different soil inhomogeneities taken into account 
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Fig. 10. Parabolic law: comparison of wall pressures                
for a rigid wall (dw = 0) 

(modified from Veletsos and Younan [1994])  
 
and a more realistic simulation of the interaction phenomenon 
is achieved. 
In order to explore in more detail the role of soil 
inhomogeneity, an exponential variation of shear modulus with 
depth has been taken into account, according to the expression: 
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Fig. 11. Parabolic law: wall pressures for different dw 

 
in which: 

• G0 is again the shear modulus at the base of the layer 
• ζ = z / H = 1 – η  is the normalized depth  
• n is a soil inhomogeneity exponent (fig. 9): 

-  n = 0 represents the case of homogenous soil 
-  n = 1 the case of linear variation with depth. 
 

The exponent n has been assumed equal to 0.2, 0.5, 0.7 (fig. 9): 
particularly important is the case n = 0.5 which reproduces the 
observed increase of G in loose coarse grained soils. 
Figure 13 shows the distribution of horizontal pressures on the 
wall, for different degrees of soil inhomogeneity (n) and wall 
flexibilities (dw). The case of homogeneous soil as well as the 
parabolic case considered by Veletsos and Younan (V-Y), are 
also reported. 
Evidently as soil inhomogeneity increases, the horizontal 
stresses on the wall decrease, the reduction being more 
important for rigid walls. As in the case of parabolic variation, 
a reduction of tensile stresses on the upper part is observed, 
especially for high values of n. 
The reduction of stresses transferred from the soil to the wall, 
results in a reduction of internal forces, as shown in fig. 14 for 
base shear. The continuous  lines  show closed-form solutions 
for the homogenous case. As can be seen, there is an almost 
constant reduction of base shear with dw, whereas a consistent 
reduction of base moment for rigid walls can be shown, as 
already seen in fig. 12. 
In terms of effective height (fig. 15) these different reductions            
produce a reduction for rigid walls (around 0.5÷0.6 H, which is  
close to Seed and Whitman [1970] suggestion) whereas an 
increase is observed for flexible walls (clearly due to the 
reduction of tensile stresses on the upper part), moving towards 
the Rankine value (H / 3). 
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Fig. 12. Parabolic law: bending moments for different dw 

 
The simple assumption of soil inhomogeneity implies a 
reduction of internal forces in the wall, and therefore a more 
realistic simulation of the interaction between soil and retaining 
structure. Similar observations have been made by Psarropoulos 
et al. [2005]. 
As for the homogeneous case, dynamic results are omitted, as 
they are similar to the corresponding ‘static’ ones, since elastic 
behaviour has been assumed in this part of the analysis. In the 
following a more realistic non-linear elastic-plastic interaction 
simulation is attempted. 
 
 
NON-LINEAR ELASTIC-PLASTIC PROBLEM 
 
Since soil-wall interaction may involve significant levels of 
strain in the backfill, material  non-linearity should be 
accounted for to realistically simulate the response (Callisto and 
Soccodato [2007]). Several studies have been carried out to 
assess, approximately, the main features of non-linear dynamic 
soil-wall interaction, but there is a lack of rigorous analyses. In 
the following, results of a series of parametric fully non-linear 
analyses will be presented, and a generalization of the results 
will be made, to provide a general framework for understanding 
complexities associated with the problem. 
 
 
Description of the Model 
 
The proposed model (fig. 16) is essentially a “box” in which a 
pair of vertical flexible cantilever walls, at a relative distance of 
10 H, retains a horizontal layer of inhomogeneous soil. The 
material obeys an elastic-plastic Mohr-Coulomb criterion 
coupled with hysteretic damping, resulting from a strain-
dependent modulus decay law. 
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Fig. 14. Effects of soil inhomogeneity on base shear 
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Fig. 16. Model proposed for non-linear analyses 

 

The excitation ( gg aX =&& ) is a full cycle sinusoidal acceleration 

pulse with given amplitude and frequency applied at the 
bottom of the model. 
The fundamental parameters of the problem are: 

• shearing resistance angle:              φ’ = 35° 
• relative soil-wall flexibility:           dw = 40 
• peak base acceleration:                  Ag = (0.05 ÷ 0.35) g 
• normalized excitation frequency:  ω /ω1 = 1 ÷ 3 

 
The soil inhomogeneity is expressed via the exponential law 
(eqn. (12)) with  n = 0.5, G0 = 112.5 MPa (Vs,0 = 250 m/s,         
ρ = 1.8 Mg/m3, ν = 1/3). The modulus decay law G(γ) / Gmax 
adopted for the soil (fig. 17), simulates the sand (upper range) 
law proposed by Seed and Idriss [1970]: the application of 
Masing rules automatically defines hysteretic damping of the 
soil β(γ) (where γ  is the shear strain). As it may be seen, FLAC 
largely overestimates the damping ratio after approximately     
γ = 0.3-0.4 %, but this was not the case in the performed 
analyses. A small amount of stiffness-proportional Rayleigh 
damping (0.5%) was added, since hysteretic damping provides 
almost no energy dissipation at very low cyclic strain levels, 
which may be unrealistic. 
The wall height is H = 8 m and the wall is discretized by means 
of beam elements of unit longitudinal dimension and thickness 
tw ≅  0.73 m. The wall material is supposed to be concrete, 
with mass per unit of surface area µw = 2.5 Mg/m2, Young 
modulus Ew = 28.5 GPa and Poisson’s ratio νw = 0.2. 
The fundamental frequency of the soil is only an estimate, 
since there is no closed form solution for an inhomogeneous 
soil with an exponential increase of shear modulus with depth. 
Trials were conducted to identify this frequency in elastic 
domain, although for non-linear soil these values are valid only 
for small strain level. 
The computational steps were the following: 

1. model the gravitational (initial) condition 
2. model the pseudo-static condition (ω ≈ 0) and 

dynamic condition. 
In the first step the gravity was applied to the model and the 
initial stresses were imposed to be the geostatic: zgyy   ρσ = ,  
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Fig. 17. Comparison between FLAC and Seed and Idriss 
[1970] modulus and damping ratio decay law for sands 

 

yyzzxx K σσσ ⋅== 0 , where K0 = 1 – sin φ’ (Jaky, 1944) is the 

coefficient of earth pressure at rest. 
 
 
Gravitational and Pseudo-Static Loading 
 
Figure 18 shows the distribution of horizontal pressures behind 
the wall after gravitational loading, normalized to horizontal 
pressures at rest. Due to the large wall flexibility (dw = 40), for 
a large part the soil behind the wall is close to plastic 
conditions, where Ka (active) conditions apply, whereas in the 
vicinity of the base (which is fixed against all movements) the 
pressures gradually move towards K0 (at rest) conditions. 
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Fig. 18. Wall pressures after gravitational loading 
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Following the gravitational phase the pseudo-static loading is 
applied. Figure 19 shows the distribution of pseudo-static 
pressures behind the wall (after subtracting gravitational 
pressures), as well as linear analyses results, shown in solid 
line. Very good  agreement with  M-O solution is found for all 
levels of ground acceleration taken into account. This is not 
surprising, since the model is now elastic-plastic and the 
loading is applied in a pseudo-static fashion. 
It’s interesting to notice that for low ag values there is a 
reasonable agreement between elastic and elastic-plastic 
results, whereas with increasing ag level this agreement is 
gradually lost (except for the lowest part of the wall where the 
fixity doesn’t allow plastic deformation to occur). Therefore, a 
transition is observed from elastic behaviour, in which V-Y 
type methods seem to be applicable, to plastic behaviour in 
which M-O methods are thought to be more suitable under 
pseudo-static conditions. This transition becomes more or less 
important depending on the ag imposed. 
In terms of bending moments (fig. 20), a good comparison 
between pseudo-static and application of M-O formula is 
observed, taking into account the inertial effect due to wall 
mass,  that  obviously  cannot   be  directly  accounted  for  into 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M-O formula. Indeed, simulations with zero wall mass (µw = 0) 
clearly point out this aspect. This was not so influent in elastic 
analyses because of the relatively small wall thickness tw, 
contrary to the present problem, for which a realistic concrete 
wall with a specific thickness has been simulated. 
Linear elastic results seem to provide a lower bound of elastic-
plastic results (neglecting wall mass contribution). This is 
attributed to the improved simulation of soil-wall interaction 
phenomenon. Indeed, in elastic analyses complete bonding  
between  soil  and wall was assumed, leading to formation of 
tensile stresses near the top of wall. In the elastic-plastic case, 
Mohr-Coulomb criterion doesn’t allow the tensile stresses to 
exceed the gravitational compressive stresses (see fig. 19, for  
ag = 0.05 g, where tensile stresses do not exceed yet the 
gravitational compressive stresses, shown in fig. 18). As a 
result, an increase in stresses near the top of wall and in 
associated internal forces in the wall (shear and bending 
moment) is observed. 
Therefore, the common thinking that considering elastic 
solutions is conservative does not apply for this case, mainly 
due to the large wall flexibility assumed. 
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Fig. 19. Pseudo-static wall pressures for different acceleration levels 
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Fig. 20. Base moment due to pseudo-static loading 
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Dynamic Loading 
 
Some preliminary analyses were conducted to check the 
response of the hysteretic model in FLAC. For this purpose, 
the dynamic behaviour of two soil elements located at                    
ξ = x / L = 0.5 (i.e. on the centerline of the model), respectively 
at 3 and 6 m from the model base, was monitored. Single 
pulses with frequency equal to the fundamental, and 
acceleration levels from ag = 0.05 to 0.35 g were applied, 
including a special case of ag = 0.0001 g, representative of 
elastic conditions. The results are presented in the form of τ−γ  
curves in figures 21 and 22. 
At ag = 0.05 g (fig. 22), the behaviour is elastic, but some 
hysteretic damping is appearing, and the two soil elements 
show different damping since are subjected to different shear 
strain. When the acceleration is larger this damping is clearly 
increasing. When the base acceleration level becomes very 
high (i.e. above 0.15 g) plastic effects are observed, coherently  
with  the  hypothesis  of  elastic-plastic  model:  for 0.25 g  and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.35 g large plastic deformations are observed, and this plastic 
behaviour is also taking part in energy dissipation adding up 
extra damping to the hysteretic component. 
Normalized pressures due to horizontal shaking decrease for 
increasing excitation, as shown in fig. 23, where corresponding 
elastic results are reported with a black solid line. This results 
in a reduction of internal forces acting on the structure, as 
shown in fig. 24. It’s clearly visible that for the elastic-plastic 
model there is a decay in terms of normalized bending moment 
with acceleration level. 
The elastic case is below the elastic-plastic case for the reasons 
discussed previously. Concerning the M-O formula, which 
cannot allow for any kind of dynamic effect, the results are well 
below elastic-plastic results. 
Total (gravitational + dynamic) base moments Mb,tot for all 
frequencies and acceleration levels are plotted in fig. 25. 
Horizontal line indicates the value of Mb,grav , that is the value of 
base moment for gravitational loading. 
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Fig. 22. Dynamic behaviour of soil for different acceleration levels 
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Fig. 23. Dynamic wall pressures at ω = ω1 
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Fig. 24. Base moment due to dynamic loading (ω = ω1) 

 
It is clear that with increasing acceleration level, the base 
moment is increasing, but soil non-linearity effects are clearly 
visible: as acceleration level increases the “fundamental 
frequency” of the system is decreasing, due to softening of the 
soil material. Furthermore, for large acceleration levels (ag / g 
= 0.35)  the curve is not so regular, which can be attributed to 
larger plasticity effects  in the soil.  As  frequency  increases, 
base moment tends to move towards the gravitational value, 
since dynamic effects become less important. 
It is instructive to introduce an amplification factor (fig. 26): 
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where Mb,pst is the total base moment for pseudo-static loading. 
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Fig. 25. Total base moment for different ag / g and ω / ω1 
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Fig. 26. Amplification factor for different ag / g and ω / ω1 
 
Analysing fig. 26 the following conclusions can be drawn: 
 
- as acceleration level is increasing, AF(Mb) is decreasing due to 

hysteretic damping and plasticity effects; 
- as acceleration level is increasing, the “fundamental frequen-

cy” of the system is decreasing, due to soil softening; 
- as excitation frequency is increasing there is deamplification 

(dynamic bending moment is lower than pseudo-static 
moment). 

 
The effective height of the resultant dynamic force is located in 
the region of (0.3÷0.4) H as shown in fig. 27, hence in 
agreement with Rankine theory (1/3 H), and below EC8 part 5 
[2004] suggestion (0.5 H) or Seed and Whitman [1970] 
suggestion (0.6 H).  
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Fig. 27. Effective height for different ag / g and ω / ω1 
 
 
FINAL REMARKS 
 
Results of a series of numerical analyses with the finite-
difference code FLAC presented in the present paper have 
demonstrated limits of applicability of both limit equilibrium 
and elastic methods in the computation of pressures behind 
rigid and flexible structures. The assumption of soil non-
linearity has shown aspects that cannot be accounted for by 
means of these simplified approaches. 
Improvements in elastic analyses have been achieved by means 
of the simple assumption of soil inhomogeneity, as already 
noted by Veletsos and Younan [1994, 1997], and Psarropoulos 
et al. [2005]: (1) a consistent reduction of internal forces acting 
on the structure is observed for rigid walls, and (2) tensile 
stresses near the top of wall for large wall flexibility or base 
compliance are reduced. 
Elastic-plastic analyses for flexible walls have shown several 
important features: (1) dynamic amplification is important for 
excitation frequency between one and two times the 
fundamental of the soil layer, therefore the simple pseudo-
static assumption of M-O method results in a underestimation 
of effects; (2) non-linearity implies decrease of the resonant 
frequency of the layer, as well as the important effect of 
reduction of dynamic amplification effects with increasing 
acceleration level, a beneficial effect which is impossible to 
take into account by means of M-O and V-Y methods. 
In general, with the obtained informations non-linear dynamic 
soil-wall interaction effects for flexible walls are clarified, and 
a more comprehensive and innovative approach for analysis 
and design of earth retaining structures can be developed. 
Current research is devoted to comparison of outcomes with 
available experimental findings, analysis of effects of real 
accelerograms, as well as the assumption of a plastic hinge at 
wall base, possibly leading to development of a performance 
based approach for the analysis of cantilever retaining walls. 
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