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ABSTRACT

Fundamentally, inherently observable events in Cyber-Physical Systems with

tight coupling between cyber and physical components can result in a confiden-

tiality violation. By observing how the physical elements react to cyber commands,

adversaries can identify critical links in the system and force the cyber control al-

gorithm to make erroneous decisions. Thus, there is a propensity for a breach in

confidentiality leading to further attacks on availability or integrity. Due to the

highly integrated nature of Cyber-Physical Systems, it is also extremely difficult

to map the system semantics into a security framework under existing security

models. The far-reaching objective of this research is to develop a science of self-

obfuscating systems based on the composition of simple building blocks. A model

of Nondeducibility composes the building blocks under Information Flow Secu-

rity Properties. To this end, this work presents fundamental theories on external

observability for basic regular networks and the novel concept of “event compensa-

tion” that can enforce Information Flow Security Properties at runtime.
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1. INTRODUCTION

Cyber-Physical Systems (CPSs) are pure physical systems (physical processes)

highly integrated with pure cyber components (computations) for the purpose of

providing better resource utilization, control, fault tolerance and performance [1].

The embedded computers and communication networks in such systems govern

both physical layer manifestations and the cyber layer computations, and affect

how these two major components interact with each other and the outside world

[2]. A CPS consists of a multitude of interacting distributed components, and, by

definition, has a tight coupling between the computing components of the system

and the physical components, underlying processes, and the governing policies

[3]. The physical layer of a CPS, most often, is involved in moving a certain com-

modity (such as water, power, or energy) through a physical medium. The cyber

components govern the movement of such elements using complex control algo-

rithms, scheduling mechanisms, and protection systems. Critical infrastructures,

as they advance, invariably become CPSs. These include commodity transporta-

tion and distribution systems (e.g. the national power distribution network, the

national gas distribution network), factory automation, smart houses, emergency

medical services, and intelligent highway systems.

A prominent feature of CPSs is that they have inherent external observability

(power, gas flows, cars move, planes fly etc.) which can result in a confidentiality

security violation. A direct consequence of this external observability is that sensi-

tive cyber control settings emerge to adverse external parties as observable physi-

cal changes. These turn out to be more than mere observations; a group of external

observers can deduce sensitive cyber information through a collaborative effort,

ultimately leading to a cyber control event confidentiality violation [4]. Once the

physical consequences of cyber actions are deduced, adversaries can cause coor-

dinated physical actions to force the system to respond in an unwanted manner

[5]. Out of the multitude of CPS research issues including discrete and contin-

uous dynamics, models for specification, design, control, reliability, and security,

this is a lesser-stressed yet emerging concern. The recently published NISTIR 7628
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Guidelines for Smart Grid Cyber Security [6], for example, highlights the heightened

potential for uncommon vulnerabilities in Smart Grid domain primarily due to its

complex interconnected nature. More interconnections means increased oppor-

tunities for exploit, attacks (denial of service, malicious injections, intrusion, or

hardware compromise), and confidentiality and privacy breaches. These systems

draw national interest due to how dependent society and the economy are on their

reliable functionality and operation.

Classically, security is organized into three principle categories. Confiden-

tiality is preventing unauthorized users and parties from accessing and/or dis-

closing protected resources; only authorized users can access resources with accor-

dance to their respective security clearances. Integrity is maintaining the authen-

ticity and the accuracy of resources. Availability is the ability to use resources

as desired in a usable form, in enough capacity and (for services) in a forward

progress state [7].

The far-reaching objective of this research is to develop a science of self-

obfuscating systems based on the composition of simple building blocks. A novel

concept called “event compensation” is proposed as the runtime enforcement mech-

anism of self-obfuscation. In this regard, this work proposes the Compensating

Events based Execution Monitoring Enforcement (CEEME) framework – a runtime

enforcement mechanism capable of enforcing Information Flow Security Proper-

ties (IFPs) and providing event confidentiality for CPSs.

The notion of information flow violation describes ways in which unintended

and unwanted information disclosures occur between two domain segregated user

groups, namely, a High-Level Domain (DH ) and a Low-Level Domain (DL). DH
usually has a secret to preserve that the DL subjects try to acquire. Information

flow is inexorably intertwined between and among cyber and physical compo-

nents in CPSs and preserving them is a challenging task. The proposed work

aims at integrating the information flow contained in physical commodity flows

with the information flow contained in the cyber components for a unified CPS

security model. The philosophy behind CEEME is to develop a security model

that unifies the cyber and physical aspects of security, specifically focused on the
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unique confidentiality vulnerabilities presented by CPSs, and a security mecha-

nism to mitigate such vulnerabilities. Information flow security provides such a

semantically-integrated model.

1.1. NEED AND CHALLENGES

The ability to uncover sensitive system internals has several ramifications.

Not only does it allow adversaries to identify the critical components of the system,

but coupled with the system semantics, it can be used to force the system into

erroneous states. Exploiting how the cyber components react to sensory readings

and how the physical network reacts to cyber commands can make the difference

between the sound operation of a CPS and potential sabotage.

The Stuxnet worm (W32.Stuxnet), first discovered in July 2010, is a rootkit

capable of modifying and injecting its own controller software into a specific range

of Siemens programmable logic controllers. Once injected onto a vulnerable host

controller, the worm is believed to be capable of manipulating the cyber and phys-

ical parts of the system. The worm reads and carefully changes particular process

control sensor signals to prevent the infected system from shutting down due to

abnormal behavior [8]. At the same time, it collects data on how the controller

operates and subverts the infected controller system. Stuxnet’s malicious opera-

tion was indistinguishable to the system operators from normal operation. From

an operational point of view, the controllers were doing what they were supposed

to be doing – receive and respond to process control sensor readings – only that

these were fake signals generated by the worm. The information flow violation due

to Stuxnet went undetected under existing security models. As of October 2010, an es-

timated 100,000 hosts in over 30,000 organizations from over 155 countries world-

wide were infected by Stuxnet [9].

Emerging specific security risks are best exemplified by future power systems

or “Smart Power Grid” systems [10,11] that result from using advanced technology

to manage power and energy more intelligently. These CPSs are more susceptible

to integrity violations than existing infrastructures [12]. Concern exists over even
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early phases of Smart Grid deployment; Smart Metering systems [13, 14] are vul-

nerable to sniffing attacks and internal threats resulting in malicious command in-

jection to home meters. More advanced Smart Grid systems, such as the FREEDM

ERC [10], have much greater security risks due to their increased complexity [15].

Physical observation of smart meters, power transmission lines [16–18], power

distribution lines, and usage patterns [19] can lead to overall CPS confidentiality

breaches.

The proposed work anticipates future significant vulnerabilities in CPSs and

proposes models and mitigation. By contrast, a great deal of existing critical in-

frastructure security work at the industrial and national lab level has been fo-

cussed on protecting cyber assets [20–26]. There is also recent work on intrusion

detection within the real-time systems community [27]. However, to semantically

integrate cyber security with physical security through information flow demands

a look back to fundamental principles. Rather than developing piecemeal solu-

tions by patching together different security aspects (cyber, network, physical), a

more fundamental approach would be to build a new theory block by block from

the bottom up.

1.2. CONTRIBUTIONS

This dissertation presents an event compensation based generalized frame-

work to enforce Information Flow Security Properties (IFPs) in CPSs. At the core

of this concept is a coordinated action-correction tuple called the “Compensating

Couple”. The idea is to compensate the observable effect of a system event (that

violates information flow) by pairing it with appropriate reaction events. By exe-

cuting a compensating couple in a timely and coordinated manner, the expected

net observable change is either insignificant in terms of deducing sensitive infor-

mation or equivalent to some other system characteristic. Thus, the objective is to

obfuscate the observable effects of a system. This is not to be confused with obfus-

cating actual physical actions, as no amount of compensation can prevent physical

observability. In this respect, the contributions of this work are to:

• Develop a semantic model to analyze confidentiality violation in CPSs. In

particular, the ability to deduce sensitive system settings using inherently
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observable changes is precisely characterized. A theory of information flow

security specifically geared towards preserving event confidentiality in CPSs

is also proposed

• Introduce a class of system properties called P–compensate properties which

are execution monitoring enforceable in CPSs. This extends the present un-

derstanding of enforceable security to the cyber-physical security domain

and sets the basis for a CPS security model by composing simple building

blocks into a more complex system

• Extend previous work on runtime enforceable policies by combining a pred-

icate mechanism with the ability to inject events. This is used in formally

developing an information flow based semantic enforcement mechanism for

CPSs

• Extend existing enforcement mechanisms beyond the safety property require-

ment by proposing an event compensation based security framework. This is

fundamentally a unification of cyber and physical security aspects through

the shared semantics of information flow

• Formally demonstrate the unique external observation based confidentiality

violations present in CPSs

1.3. THESIS ORGANIZATION

The rest of this document is organized as follows:

• Chapter 2 lists recent related work in computer security, information flow

analysis and runtime enforcement

• Chapter 3 presents the theory of external observability based confidentiality

violations as it applies for parallel and mix connected regular networks

• Chapter 4 presents the concept of “event compensation” including a formal

definition of the compensating events based execution monitoring enforce-

ment mechanism
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• Chapter 5 is on obfuscation in mix connected regular networks and the time

domain response of the compensating couple

• Chapter 6 is on System Behaviors based confidentiality model for CPSs

• Chapter 7 is on Replacement Solutions based confidentiality models for CPSs

• Chapter 8 presents the CEEME architecture including algorithms for the two

proposed confidentiality models

• Chapter 9 presents preliminary results from extending the CEEME architec-

ture to arbitrary networks with the standard IEEE 118-bus system taken as a

model

• Chapter 10 is the conclusion of the work presented and future directions
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2. RELATED WORK

System security has two main approaches: access control based methods and

information flow based methods. A significant amount of recent literature sug-

gests that access control is not going to be the direction for the next generation of

security mechanisms. This section examines information flow based security poli-

cies and mechanisms, their feasibility in meeting modern system security needs,

and enforceable security using information flow security policies.

2.1. ACCESS CONTROL VS. INFORMATION FLOW

The general security problem is to assure Confidentiality, Integrity and Avail-

ability. Traditional security models, such as HRU [28], Take-Grant [29], Bell-

Lapadula [30] and Biba [31], take an access control based approach to address

this problem. However, access control can only impose spatial restrictions on in-

formation and resources, and fails in preventing their propagation [32]. Moreover,

there isn’t a way to control how the data will be used after it has been read; access

control cannot prevent implicit and explicit information flows1.

The rationale behind information flow over access control as the preferred

approach to system security is explainable using a simple example as follows. Con-

sider a case where a DH user sets a global flag to indicate that he has access to a

certain sensitive piece of information. A DL user can simply notice this global flag

and determine that his accomplice in the DH has just accessed sensitive informa-

tion. This is an indirect violation of the *-property [33]; there is no direct “write-

down” violation, yet theDL user obtains sensitive information. Sound enforcement

of confidentiality using traditional access control mechanisms, thus, requires that

the access grants be given only to processes guaranteed not to leak or improperly

transmit sensitive information after read [32]. Unfortunately, there is no provi-

sion in access control based mechanisms to impose such a strong flow restriction.

Numerous authors have pointed out this fact, the inability of discretionary access

control methods to properly safeguard security, in their work [32, 34–40].

1Implicit information flows are a result of indirect transfer of information (implied or derived
knowledge) while the latter is a result of explicit transfers (variable assignment)
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The primary focus of information flow security is to prevent unintended DH
(secure/private/confidential) information disclosures to the DL (open/public) of

systems. A violation, in this model, is the ability to deduce DH information at rel-

atively inferior security clearances. The sensitivity of information and the “com-

munication” depend on how each process views other processes of the system.

Fundamental IFPs introduced over the years can characterize and capture these

flows. For this reason, information flow based security is better suited for en-

vironments with inherent observable changes, such as CPSs. Some of the most

prominent IFPs are, Noninterference [41], Noninference [42] and Nondeducibility

[43].

IFPs can be enforced using two main methods: static compile time enforce-

ment and dynamic runtime enforcement. In compile time enforcement, security

constraints and labels are attached to program objects using security annotations

[44]. The compilers use these annotations to ensure secure information flow at

compile time. Conceptually, runtime enforcement monitors a system during its

execution and evaluates whether it deviates from the set of pre-identified desired

behaviors or properties. This concept is also known as Execution Monitoring (EM)

enforceability. Execution monitors work by monitoring the computational steps of

an untrusted program and intervening whenever the execution is about to violate

the security policy being enforced [45]. Each of the intended behaviors (or forbid-

den behaviors) of the system are security invariants. These are evaluated based

upon a certain security predicate2. To facilitate this process, system executions are

modeled as state sequences. Transitions between states capture the changes to the

state variables.

While individual components of a system can preserve the desired security

invariant, their composition can lead to security violations. In most systems, se-

curity is not considered a functional requirement. As a consequence, the final

implementation often lacks the expected level of system security. Poor require-

ment analysis and design underspecification [46] are also main contributing fac-

tors. Covert channels can still exist even in well designed systems [47, 48]. Also,

2A predicate acts as a decision engine
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the incorporation of untrusted and often malicious hosts and users makes it even

harder to analyze confidentiality properties in modern systems [32].

2.2. PRELIMINARIES AND NOTATIONS

Some of the premier work on formally defining concurrent system executions

was done by Alpern and Schneider [49]. They introduced the concept of property

which, by definition, is a set of infinite state sequences known as executions. Lam-

port categorized system properties into two major classes: Safety and Liveness [50].

Informally, a safety property stipulates that “no bad thing” can happen during an

execution, and liveness is a “good thing” eventually happening. Backed by this

primary categorization, Schneider argued that only safety properties can be EM

enforced [51]. Further, his definition of EM enforceable mechanisms terminates

any execution which is about to violate the corresponding security predicate. The

initial argument was that every system property is either a safety property, a live-

ness property or the intersection[49]. However, McLean argued that possibilistic

properties, such as information flow security properties, are not preserved under

refinement and they are neither safety nor liveness properties [52]. This is simply

because these are sets of execution sets rather than execution sets [52, 53].

In an executing system3, two questions are critical: (i) what system behav-

iors are runtime enforceable and (ii) what are the appropriate measures to take

once a violation is detected. These are significant research questions given that

most existing enforcement mechanisms are not designed with the interconnected,

composite nature of modern systems in mind.

Let Σ∞ be the universe of all executions and Σ∗ ⊆ Σ∞ denote the set of system

executions. Each execution of this set σ ∗ = < σ0,σ1, . . . > ∈ Σ∗ is composed of a

sequence of global states σi ∈ σ ∗. The subscript i denotes the ith element of the

sequence. A particular global state σi is a snapshot of the system at some particular

point in execution, and consists of a set of system variables V . The universe of

system actions is the composition of input and output actions, i.e., Φ∞ = Φ́ ∪ Φ̄ .

The subset Φ́ ⊆ Φ∞ called input actions has the potential to influence one or more

system variables vi ∈ V and trigger state transitions. Upon a change to V , the

3The system is already “running/online/active” when runtime enforcement is considered



10

system assumes a new state. Thus, an execution σ ∗ ∈ Σ∗ can be represented as,

σ ∗ : σ0
φ1−−→ σ1 . . .σi−1

φi−−→ σi . . .

Note that the first action φ0 of each sequence is the null element which

leads the execution to the initial state σ0. Associated with each execution σ ∗ =

< σ0,σ1, . . . > is a sequence of actions (defined as a trace subsequently) φ∗ = <

φ1,φ2 . . . >∈ Φ∗. Here, Φ∗ represents the universe of action sequences. Elements

of Φ̄ cannot change V , but present a view of the system (effectively a view of V ) to

a particular security domain. Thus, a particular action sequence φ is not (neces-

sarily) exclusively comprised of input actions; φk ∈ Φ̄ =⇒ σi
φk−−→ σi

By definition, a property Γ ⊆ Σ∗ is a finite subset of executions. As an exam-

ple, consider the following definition of a safety property[49].

Definition 1 (Safety Property). A property Γ is a safety property if and only if,

∀(σ ∗ ∈ Σ∗) < Γ =⇒ (∃β ∈ Σ∗ : σ [. . . i]β < Γ )

In other words, no prefix of a valid execution can violate the safety property. For each

violation there exists a distinctly identifiable point at which it occurs. This is known as

the prefix-closed feature of safety properties. Once violated, the execution can no longer

be extended and the violation cannot be undone[54]. σ [. . . i] is the prefix of execution

σ ∗ up to step i.

Some classic examples for safety properties are starvation freedom, mutual

exclusion, partial correctness and first-come-first-serve [49]. A closely related con-

cept is the security policy. Technically, a security policy P is a generalized property,

defined over a characteristic predicate ℘̂. The membership of each element in P

is determined by ℘̂.

Definition 2 (Security Policy). A set of executions Π ⊆ Σ∞ satisfies a security policy

P if and only if,

P(Π) =⇒ ∀σ ∗ ∈Π : ℘̂(σ ∗)

In other words, a security policy is a property when each element of the property satisfies

the characteristic predicate of the policy[54].
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As an example, a security policy may require that each execution not disclose

a certain action before the ith step.

Definition 3 (Liveness Property). A property Γ is a liveness property if and only if,

∀σ ∗ ∈ Σ∗, ∃β ∈ Σ∞ : σ ∗β ∈ Γ

In other words, any finite system execution, irrespective of whether it violates the prop-

erty or not, can be extended by appending an infinite or finite sequence, resulting in an

execution satisfying the liveness property. Informally, liveness means “nothing irreme-

diably bad can happen” during an execution [54].

2.3. INFORMATION FLOW SECURITY PROPERTIES

Consider a system with two security clearances: a DH and a DL. In terms of

information flow security properties, the ability to deduce sensitive DH informa-

tion at DL is a security violation. The term deduce is a generalization for different

ways information flow security can be compromised. For example, a DL entity

might be allowed to notice that some DH activity is going on so long as they are

not able to identify it precisely. In another case, DL users might need to be kept

totally unaware of DH activities. As a result, there are different information flow

security properties defined for different information flow violations.

The “possibilistic” nature of information flow security properties is a formal-

ization of how an (potentially DL) observer with sufficient knowledge of the target

system can deduce confidential information. This is achieved by constructing (and

refining) the set of all possible system behaviors consistent with his set of obser-

vations. Mantel distinguished two dimensions of possibilistic security; that the

occurrence of a confidential event (i) does not increase possible observations and

(ii) does not decrease possible observations at lower clearance levels[55, 56]. It is

an information flow security violation if the target system increases or decreases

the possibility of observations after a DH activity.

Consider the operation of the target system as a nondeterministic state au-

tomata M = (D,Q, Φ́ ,δ,Q0). Q is the set of automata states, Φ́ is a set of input

actions/events, δ : Q × Φ́ → 2Q is the state transition function and Q0 ⊆ Q is
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the set of initial states of the automata. D is a set of security domains/clearances

traditionally, DH and DL.

Definition 4 (System Automata). The system automataM consists of 5-tuples (D,Q,-
Φ́ ,δ,Q0) where,

• Q is a set automaton states

• Q0 is a set of initial states for the automaton Q0 ⊆ Q

• Φ́ is a set of input symbols

• δ is the a state transition function δ :Q× Φ́→ 2Q

• D is the set of security domains

Only a subset of actions Φobs ∈ Φ∞ (irrespective of input/output distinction)

can be observed at any given security domain. Observations are mapped to secu-

rity domains through specific functions. These functions act as information ex-

tractors from the state space. The trace function ζ : Σ∗ → Φ∗ produces the action

sequence φ∗ ∈ Φ∗ associated with the execution σ ∗ ∈ Σ∗. Consequently, the trace

contains both “confidential” and “non-confidential” actions where only the latter

is meant to be observed at theDL. The projection function ρ : Φ∗×D→ Φobs∩Φ̄∗∩D
is a function which takes in a trace and a security domain as input and produces a

possible output sequence observable by the elements of D4. Lastly, the purge func-

tion π : Φ∗ ×D → Φ∗ −Φ∗D removes actions corresponding to a particular security

domain from a given trace.

According to Delgado et al., runtime monitoring of safety properties fall un-

der property type–specification languages whereas automata based runtime mon-

itoring is listed under language type–specification languages. They present a thor-

ough survey of recent literature on runtime monitoring and list a taxonomy on

common elements of monitoring systems: specification languages, monitor, op-

erational issues and event handler[57]. However, one major shortcoming of this

categorization is that EM mechanisms, which they identify under monitoring, are

separated from (safety) properties and automata.

4Some authors use the notation φ |Φ ′ , the trace resulting from removing all events not in Φ ′ ⊆
Φ∞, which is semantically equivalent to the projection function
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2.3.1. Noninterference Property. Noninterference states that the outputs

observable at DL stay the same even after removing all DH actions. Formally, this

is stated as follows:

∀σ ∗ ∈ Σ∗ : ζ(σ ∗) = φ∗ : ρ(φ∗,DL) = ρ(π(φ∗,DH ),DL) (1)

A system is considered Noninterference secure if the Equation (1) holds for

its executions. In general, Noninterference means that a variation of DH inputs

does not cause a variation in DL outputs[32]. This property is considered one of

the conceptually hardest to implement on most real world systems. If the value

of a public system variable depends on a private system variable, then for that

particular system, Noninterference does not hold[58].

2.3.2. Noninference Property. Noninference is a more general form of

Noninterference because it can be directly applied to nondeterministic systems

[52]. Here, a DL cannot deduce the fact that progress has been made in the DH
computation [59]. For each valid trace of the system, if the resulting trace of purg-

ingDH events is still valid inDL, then the system is considered Noninference secure.

Thus, Noninference is closed under π. Formally, this is stated as follows:

∀σ ∗ ∈ Σ∗ : ζ(σ ∗) = φ∗ : ζ−1(π(φ∗,DH )) ∈ Σ∗ (2)

In general, Noninference means that for every DL projection, there must be a

possible trace which yields the same projection with no DH event occurrence [59].

Noninference is equivalent to Noninterference for deterministic systems when DH
outputs cannot be generated without DH inputs [52]. However, inserting DH in-

puts can influence DL outputs.

2.3.3. Nondeducibility Property. Nondeducibility is the most relaxed

property out of the three information flow properties introduced. Nondeducibility

states that for eachDL projection there is more than one possible (DH ) trace. Thus,

for a Nondeducibility secure system, ρ needs to be a surjective relation for eachDL
observation. Formally. this is stated as follows:

∀φ∗ ∈ Φ∗, ∃ψ∗ ∈ Φ∗ | ψ∗ , φ∗ ∩ ρ(φ∗,DL) = ρ(ψ∗,DL) (3)
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2.4. RELATED WORK IN ENFORCEABLE SECURITY PROPERTIES

Information flow security policy enforcement is twofold: compile time en-

forcement and runtime enforcement. Mechanisms implemented under these two

methodologies attempt to mitigate both implicit and explicit information flow vi-

olations. Explicit information flow violations occur when confidential information

is directly (and possibly intentionally) passed to the public domain. In a certain

way, this characteristic is similar to that of trojan horse attacks. Implicit informa-

tion flows are comparatively passive in nature. The flow violations in this case

are a result of the structure and/or the interactions within the system. A good

example is a cyber-physical system with physically observable changes. Some of

the recent approaches to enforce information flow security are secure-type systems

[32, 34, 60], mechanisms based on petri nets [61–63], process algebra and program

logic [40,46,64–70], automata and predicates [38,51,55,56]. For the most part, these

are static compile time techniques. Here, preference is given to runtime enforce-

ment mechanisms since it is the main focus of this discussion. Other techniques

not explained in this work include computation slicing [71–73] and bisimulation

[68, 74–76].

2.4.1. Compile Time Enforcement Techniques. Security-type systems are

static information flow control mechanisms where a collection of typing rules de-

scribe what security type is assigned to each expression or statement in the pro-

gram [32]. A security label attached to each expression describes how each type

value (such as int, double) or the statement as a whole may be read or written.

This effectively enforces the information flow policy being used. For example, the

decentralized label model in [34] considers a label as the pair “owner:reader”. Each

owner of a resource or a data item has explicit power to restrict the set of read-

ers who can access the resource under his control. The compiler ensures that the

program does not violate information flow security by type checking each branch

of the program. An in depth survey by Sabelfeld and Myers identified four fu-

ture research directions in static information flow enforcement: (i) enriching the

expressiveness of the underlying programming language, (ii) exploring the impact
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of concurrency on security, (iii) analyzing covert channels, and iv. refining security

policies [32].

Petri nets thrive on the idea of reachability and were originally designed to

represent and analyze concurrent systems. Petri nets are a particular kind of a

directed graph with two types of nodes, “places” and “transitions”, and arcs con-

necting places to transitions. An augmented formalization of petri nets was pro-

posed by [62,63] that can model the security requirements of a system. The author

considered nodes as (input and output) channels and transitions as processes in

the system. Information present on a particular channel is represented by a to-

ken. Associated with each token is a security class. Processes communicate with

each other through channels by manipulating tokens, taking from one channel and

placing them in another. Here, a state is the location of all the tokens at a given

instance. The author characterized information flow secure systems by imposing

restrictions on how transitions interact with places and tokens. More specifically, a

petri net is information flow secure if the initial state and all subsequent changes,

i.e., receival, sending and modifications to the set of tokens along every path of

execution, are secure[63]. This work was later extended by [61] who proposed to

improve this technique with direct and efficient decision techniques.

Process algebraic methods, especially those involving Communicating Se-

quential Processes (CSP), are another language based approach used to define in-

formation flow security. Most of the recent work in this area attempts to extend

the “Hoare Logic”[77] with additional semantics to systematically express infor-

mation flow security requirements (see [40, 64]). A quantification of information

flow-based on CSP by Lowe [46] considers an information flow quantity as the

number of DH behaviors that are distinguishable from DL’s point of view. Several

other notable program logic based approaches involve assertions in combination

with operational and axiomatic semantics [65–68].

One prominent shortcoming of static information flow enforcement mecha-

nisms is that they tend to be too imprecise [78]. A static enforcer can reject a pro-

gram based on a partial analysis when the final outcome guarantees the enforced

policy. As an example, consider the sequential program, VH := VL;VL := VH with

two variables VH ∈ DH and VL ∈ DL respectively. A static enforcement mechanism,
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such as a security-type system, will reject this program considering the second

assignment to be an information flow from DH to DL even if it is not a violation.

2.4.2. Runtime Enforcement Techniques. The earliest threshold on EM

enforceable security policies was established in [51] by stating that only safety

properties can be enforced using a monitoring mechanism. The monitor in this

case, a büchi-like state automata called the security automata, enforces a certain

security policy by terminating the target when a security violation is detected. The

safety requirement, unfortunately, precludes many interesting security properties

from being EM enforced. Notably, flow-based security properties are not safety

properties [52, 79] and are not enforceable using Schneider’s security automata.

These properties are defined over sets of execution sets rather than execution sets

[52]. Thus, the decision to terminate an execution can not be purely based on a

detected violation on a single execution. This fundamental issue has lead to two

alternative classes of resolutions:

1. Extend the capability of the security automata using additional structures or

operations [38, 45, 55, 56, 80–82]

2. Develop monitors which can detect non-safety properties [54, 80, 83]

2.4.3. Extending Security Automata. Watanabe and Nagatou [38] extended

the security automata with an extra structure, an emulator. The input to this aug-

mented automata is the pair Iw : Φ ×Q instead of just Φ as in M. The emulator

checks to see if the outcome of each i ∈ Iw maintains the required security pred-

icate before allowing it to run on the target system. Thus, Φ∗ is refined only to

include policy preserving actions/events. The underlying concept behind their

extended security automata is the unwinding theorem [84]. The unwinding theo-

rem allows appending safe states to an valid execution one at a time. An execution

monitor explores possible next states of the security automata. However, for the

physical portion of the system, exploring the next state can lead to a side effect of

observable actions that cannot be undone if this next state is found to be unsafe.

Edit automata [80, 81, 85] empowers the basic security automata with ad-

ditional transformational powers: truncation, suppression, insertion. Truncation
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automata is quite similar to the security automata in [51]; it can only halt the ex-

ecution upon detection of a violation. Suppression automata, in addition to halt-

ing, can suppress individual actions without terminating the program outright.

Insertion automata can insert actions as necessary. An edit automata is the combi-

nation of these (suppression and insertion) individual automaton. Edit automata

can modify the behavior of the target execution during runtime in addition to

being able to interrupt it. Since there is a possibility that the action sequence re-

sulting from a state transition has injected events, the transition function for edit

automata is defined as follows: δ : Φ ×Q → 2Q ×Φ∗. The state space and the ca-

pability of edit automata was refined by [82] with their finite edit automata. A

process algebraic model of the truncation and edit automaton was later presented

by [69, 70].

A related concept to edit automata is program-rewriting [45]. Here, the un-

trusted program is transformed before execution to one which is incapable of vio-

lating the enforced security policy. The authors also characterize the class of poli-

cies enforceable with program-rewriting as the RW-enforceable policies and argue

that program-rewriting is a generalization of EM. The computational model used

to represent untrusted programs in program-rewriting is a 3-multi-tape Turing

machine called a program machine (PM). The three tapes of PM are, input tape

which contains information only available as the execution makes progress (ex.

user input, nondeterministic choice outcomes), work tape which is the read/write

area for the Turing machine, trace tape which records security relevant behavior

and can be observed by enforcement mechanism.

The space of EM enforceable policies is constrained by the capability of the

execution monitor. Work by [86] and [87] are focused on lightweight security

mechanisms for memory constrained systems. The Büchi-like security automata

technically has a full history of previously verified actions/events at its disposal

when making the next grant decision. [86] considered only a shallow history in his

Shallow History Automata (SHA) concept and proved that it can still express secu-

rity policies such as the chinese wall policy, low-water mark policy etc. His results

were also limited to prefix-closed safety type security policies and provided an

information based, fine-grained characterization of EM enforceable policies. The
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input to SHA is defined as Isha : 2Q×Q→ 2Q since current state transition depends

on a (finite) recent history of state transitions (effectively a trace). Bounded History

Automata (BHA) [87] are similar in concept to SHA except they provide a precise

characterization of the type of policies enforceable using memory constrained en-

forcement mechanisms.

2.4.4. Enforcing Non-safety Properties. An invalid execution σ̄ ∗, from

a safety property perspective, has some finite prefix σ̄ [. . . i] which invalidates the

security predicate, i.e., ¬℘̂(σ̄ [. . . i]) and ∀β ∈ Σ∞ : ¬℘̂(σ̄ [. . . i]β). However, an edit

automaton can inject finite length executions at point σ̄i in order to rectify the vi-

olation. By definition, a “corrected” execution of this form is not a safety property.

Ligatti et al. characterized such correctible properties as infinite renewal proper-

ties[54, 80, 83]. An infinite length execution with infinitely many invalid prefixes

still satisfies the renewal property as long as it has infinitely many valid prefixes.

As a result, every safety property is a renewable property with an infinitely long

valid prefix, and some, not all, liveness properties are also renewable properties

[83].

The above characterization of non-safety properties as renewable properties

allows them to be enforced using edit automata. An edit automata effectively can

expand any invalid execution by injecting corrections.

2.4.5. Flow-based Property Composition. McLean was the first to formally

propose a general theory of composition for flow-based confidentiality properties

[52,88]. He argued that these are closure properties and composable using a set of

trace constructors called Selective Interleaving Functions (SIFs). Further, he intro-

duced three external composition constructs: product, cascade and feedback. By

definition, a SIF takes two traces as arguments and returns a third trace. There is a

specific type criteria which describes how the resulting trace depends on argument

traces [59] (see [52, 88]).

However, the authors of [59,79] pointed out that McLean’s framework is lim-

ited in expressibility and restricted to the interleaving trace domain. More specif-

ically, [79] argued that SIFs cannot represent all security properties and require

a priori knowledge of compatible traces for the composition. As remedies, they

proposed a framework based on Low-Level Equivalence Set (LLES), which is a set
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of traces with the same DL projection. Also, they allowed their framework to be

input total so the need for a priori knowledge isn’t necessary anymore.

The LLES based framework, although is more expressive than SIFs, lacks the

general correspondence between closure conditions and security [55,59]. This cor-

respondence is critical for stepwise development of secure systems. He proposed

a rich library of security predicates and a generalized framework to express infor-

mation flow security properties based on the concept of the Basic Security Predi-

cate (BSP). The elegance of this framework lies in the fact that possibilistic security

properties can be represented as security predicates and every security predicate

is either a single BSP or the conjunction of several BSPs.
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3. THE OBSERVABILITY PROBLEM

Even with the best of security measures, the inherently observable events in

modern CPSs can lead to confidentiality violations. As a motivational example,

consider the subsection of a gas distribution infrastructure shown in Figure 3.1.

Here, three different distributors A,B and C use Intelligent Controllers (IQCs) to

control their respective sector of the pipeline. The pipeline network represents the

physical layer of the system. Physical Actuators (PAs) are used to change the flow

(write operation) on a particular pipeline sector and to acquire the state of the flow

(read operation). Each PA is connected to a Distributed Grid Intelligence (DGI) [15]

device, capable of controlling the PA and communicating with other DGIs. For

this discussion, the PA is considered a physical layer component that interfaces

with the cyber layer DGI. Similar interconnections can be found in water and

power distribution networks [17]. For the purpose of notational and graphing

convenience, consider IQCi ≡ Fi here onwards. Further, these two terms may be

used interchangeably.

If the amount of flow in pipe sector S is taken as ~fS , the steady state gas flow

of this system can be described in basic laws of fluid dynamics as follows:

~fA = ~fB + ~fC (4)

Whenever one distributor makes a local flow change, the other distributors

can observe physical changes in flow/pressure on their respective sectors. For ex-

ample, consider a case where DistributorB lowers the flow in sector B by an χ

amount – using PAB – dropping the flow in sector B to ~fB − χ ≡ χ↓~fB. Unless

DistributorA reacts accordingly, this DH change causes an observable DL flow in-

crease in pipe section C. To maintain the flow equilibrium of the system, one or

both of ~fA and ~fC needs to be adjusted. The space of possible aggregate adjust-

ments ∆~f is therefore one of the followings:
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∆~f =


χ↓~fA if PAA reacts

χ↑~fC if PAC reacts

χ↓1
~fA and χ

↑
2
~fC if both PAA and PAC react | χ1 −χ2 | = χ

The ↑ and ↓ superscripts indicate increase and decrease in flow, respectively.

In a situation where DistributorB and DistributorC are two rival companies, every

adjustment except χ↓~fA reveals some information about DistributorB’s action to

DistributorC . Note that there are several possible combinations for the last case of

∆~f .

Consider the security partitioning of the network in Figure 3.1. {DistributorA,

DistributorB} ∈ DH and {DistributorC} ∈ DL. By definition, DL<DH , meaning

information flow should be prohibited from DH to DL. Since PAB initiates the

first action, DistributorB is considered as a DH subject. The rivalry naturally

makes DistributorC a DL subject; DistributorC is not supposed to know about

Figure 3.1: A Subsection of the Gas Distribution Infrastructure as an abstract CPS
Model
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DistributorB’s actions5. For the sake of this discussion, DistributorA is considered

a DH subject.

Suppose at a particular instance in time, the state of the pipeline qk ∈ Q corre-

sponds to Equation (4). Consider the following trace initiated from qk in Equation

(5). The readS() represents a user S reading the flow (making an observation) at

PAS . The write↑/↓S (χ) operation represents a χ amount of increase(↑) or decrease(↓)
of flow applied to PAS . Both read and write actions are events, i.e., read,write ∈ Φ .

With respect to DistributorC , write↑/↓B (χ) < Φobs.

φ∗o = { readC(),write↓B(χ), readC(),write↓A(χ), readC() } (5)

Now consider the projection and purged projection outputs corresponding to

this trace as follows:

ρ(φ∗o,DL) = { ~fC ,χ↓~fC , ~fC } (6)

ρ(π(φ∗o, textDH ),DL) = { ~fC , ~fC , ~fC } (7)

According to the Equation (1), φ∗o violates Noninterference as the two out-

puts, Equations (6) and (7), are not equivalent. The definition of Noninterference

prevents DH subjects from interfering with what DL can observe. Yet, ρ(φ∗o,DL),

at minimum, reveals enough information to derive that some change has occurred

in the system; in a Noninterference secure setup, Equation (6) should equal to

{ ~fC , ~fC , ~fC}. The disparity between the Equations (6) and (7) is a direct consequence

of the information flow restriction explained by Sutherland [43].

This example also demonstrates why treating security in a disjoint fashion

fails. A pure cyber model such as an access control matrix would will have an entry

to indicate that the DistributorB is not accessible to the DistributorC . A confiden-

tiality based mechanism (such as the BLP model) would state that theDistributorC

should not read (actions of) DistributorB. Physical access to DistributorB’s facil-

ity can also be restricted to anyone associated with DistributorC . Also, in terms

of network security, DistributorB might already have instruments and software to

5The Russian-Ukranian gas crisis is an example of this type of system partition [89]
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prevent any form of network oriented attack. Nevertheless, none of these security

measures were able to prevent the confidential information leakage toDistributorC .

3.1. OBSERVABILITY ANALYSIS

The first phase of developing a confidentiality security model for CPSs is

to formally analyze the security violation of the system. The model CPS used in

this paper is the advanced power transmission bus network (Smart Power Grid)

augmented for reliability using intelligent, computer-controlled power electronics

devices under distributed computational control called Flexible AC Transmission

System (FACTS). A FACTS device is, by definition, an IQC. These devices enable

control of one or more parameters of AC transmission systems and are represen-

tative of the functionality of a wide range of Physical Actuators (PAs). FACTS

devices manage the operation of the grid in stressed cases to prevent failure and

to increase the overall fault tolerance of the network [90].

Observability is external observers’ ability to monitor/record/observe system

changes. Deducibility is the amount of sensitive internal system information a DL
observer(s) can derive from observed data. Deducibility of a single observer is

limited due to his narrow view of the system and differs from what a set of collab-

orative observers can deduce. Several key research issues related to observability

analysis are:

1. What is the minimum number of observers required to derive all the DH
changes in the system

2. What is the optimal placement of observers in a given network

Theoretically, the minimum number of observers and their placement in the

system is related to event confidentiality as follows6. The objective of the DL
observers is to develop a one-to-one correspondence (bijection) between DH ac-

tions and DL observations. This is achieved by identifying unique (collective) ob-

servation patterns for each sensitive DH action (secret). Once such patterns are

identified, the confidentiality of those actions become violated: DL observers can

6Note that in this discussion, the DL observers are considered adversaries to the system
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accurately determine what DH actions cause a particular observation pattern/se-

quence. This, from a Nondeducibility standpoint (refer Equation 3), is deducing

DH traces through DL projections. In other words, inferring secret information

from other public information [43].

The basic assumption made here is that the control settings and the FACTS

changes are sensitive DH information that should not be divulged to DL observers.

Uncovering such settings exposes the overall state, including its critical and po-

tentially weak links. The DL observers also gain power in figuring out how the

cyber algorithm responds to physical changes and vice versa. The resulting attack

model is closely similar to what the Stuxnet worm was alleged of attempting to

achieve [91], where it hijacks the system and performs malicious tasks.

The placement of observers is also significant since observations made from

some placements might end up being redundant from a deducibility perspective.

Additionally, there may exist DH actions that do not cause system wide observable

changes. Thus, strategic placement of observers is required to record unique obser-

vation patterns. The relationship between the deducibility and the observability is

a critical aspect of CPS security analysis.

Because of their ability to inject and/or absorb active and reactive power, the

cyber domain control decisions of the FACTS devices eventually manifest on the

physical domain as flow changes in the power lines. Prior work showed that an

external observer capable of measuring flow changes can deduce what the local

action was on a particular power line and infer the overall state of the system [16].

However, the minimum number of observers problem has not yet been addressed

as determining this number characterizes the confidentiality of the network.

Figure 3.2 is an experimental 20-bus power distribution network topology

including five parallel connected FACTS devices. This illustration emphasizes the

cyber-physical interaction and the physical layer observations found in a typical

CPS. The physical layer consists of transmission lines, generators, and PAs. The

cyber layer usually consists of a network of embedded computers, each capable

of controlling certain parameters of the physical layer7. For example, the FACTS

7In general, cyber algorithms are used to improve the overall stability, efficiency, reliability, and
performance of the underlying physical infrastructure
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device is a combination of a PA in the physical layer controlled by a DGI in the

cyber layer. Several FACTS devices controlled by a distributed maximum flow

algorithm [90] balance power flow in the event of a power line loss. Thus, the cyber

layer is a complex distributed algorithm manipulating the physical flow. External

observers (as in Figure 3.2) can monitor and record physical layer changes through

observation. Note that a single (virtual) source and sink architecture [90] is used

throughout the rest of this analysis.

Figure 3.2: The Conceptual View of the Experimental 20-bus Network Topology –
Cyber and Physical Elements with DL Observers

Most flow networks under cyber control behave and exhibit similar charac-

teristics to that of the smart power grid under FACTS control. Thus, in the rest

of this document, the term FACTS is replaced with IQC when introducing new

concepts, findings, and theories for generality.

3.1.1. Low-Level Domain (DL) Observation Matrix. A systematic and

accurate DL deduction requires a carefully recorded set of observations for each

DH action. A DL observation matrix is a comprehensive list of system traces corre-

sponding to each DH change of a particular system. Technically, each row repre-

sents a trace φ∗i = < φ1,φ2 . . . >∈ Φ∗ where φ1 ∈ Φ́∩DH is the DH input action re-

sulting in the corresponding output actions ∀j , 1 : φj ∈ Φ̄∩ DL. Thus, ρ(φ∗i ,DL) =
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{ φ2,φ3 . . . } is the projection and π(φ∗i ,DH ) = {φ1} is the DH trace. An upward

arrow associated with an IQC, Fx ↑, resembles an increase(tightening) of the con-

troller variable Fx while a downward arrow Fx ↓ resembles a decrease(loosening).

An arrow associated with an observer }x as in }x ↑ or }x ↓ represents an increase

or decrease in that particular observation respectively.

From Equation (3), a system is nondeducible secure if every DL projection

has multiple possible DH actions. In other words, assume a system where for each

DH input action there are two (or more) equivalent DL projections. Such a system

preserves the confidentiality of DH actions because DL users are unable to deduce

DH traces based on DL projections.

3.1.2. Parallel Connected Networks. In the most basic form of connectivity,

two IQCs are connected in parallel as in Figure 3.3. The corresponding DL obser-

vation matrix is given in Table 3.1. Note that all experimental power distribution

networks presented in this article were tested using a MATLABr Load Flow [92]

simulation and all corresponding DL observation matrices were constructed from

simulation results.

The experimental network topologies with arbitrary number of buses used

in the rest of this analysis are non-compliant to the standard IEEE test networks.

They are mostly used to show or prove concepts introduced in the body of this

work.

Lemma 1. [Partial Deducibility of Base Parallel Connected Networks] A base par-

allel network of two controllers preserves Nondeducibility of DH actions.

Proof. The 9-bus experimental test feeder in Figure 3.3 preserves Nondeducibility

ofDH actions since, as per the Equation (3), there are no unique projections present

in the corresponding DL observation matrix Table 3.1. For example, F1 ↓ and F2 ↑
both produce {↓,↑} as the corresponding DL projection.

The four possibleDH actions only result in two uniqueDL projections. Added

is the fact that, each DL projection has a inverse surjective relationship with the

DH actions. For example, consider the following traces: φ∗ = {F2 ↑,}1 ↑,}2 ↓} and
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Figure 3.3: 9-bus Tree Structured Test Feeder with Two Parallel Connected Intelli-
gent Controllers (IQCs)

Table 3.1: DL Observation Matrix for the 9-bus Tree Structured Test Feeder

DL Observation

DH Change }1 }2

F1 ↑ ↓ ↑
F2 ↑ ↑ ↓
F1 ↓ ↑ ↓
F2 ↓ ↓ ↑

ψ∗ = {F1 ↓,}1 ↑,}2 ↓}. Though ψ∗ , φ∗, their DL projections are equal, i.e.,

ρ(φ∗,DL) = ρ(ψ∗,DL) = {}1 ↑,}2 ↓}

Thus, according to Equation (3), the DL observers can’t fully deduce a DH action

of a base parallel connected controller network. However, the ability to narrow

down the possible DH actions to two results in a partial deducibility.

Lemma 2. [Deducibility of 3-way Parallel Connected Networks] A parallel network

of three controllers is fully deducible with three observers.

Proof. Consider the 11-bus test feeder in Figure 3.4 and the corresponding DL ob-

servation matrix in Table 3.2. Here, three IQCs are connected in parallel. From
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Figure 3.4: 11-bus Tree Structured Test Feeder with Three Parallel Connected
IQCs

Table 3.4, all three observers are required to fully deduce the network. Combined,

they can identify uniqueDL projections for each of the six possibleDH actions.

Lemma 3. [Minimum Number of Observers for Parallel Connected Networks] A

network of η parallel connected controllers can be fully deduced with a minimum of

η − 1 number of observers, where η ≥ 4.

Proof. This claim can be proven using mathematical induction as follows.

Base case: Consider the 13-bus test feeder with η = 4 parallel connected IQCs in

Figure 3.5 and the corresponding DL observation matrix in Table 3.3. Evidently,

any combination of three (η−1) observers can recognize unique DL projections for

each of the eight possible DH actions. Thus, the claim holds for the base case.

Inductive Hypothesis: Assume that a network of η parallel connected controllers

is fully deducible with η − 1 observers.

Inductive Step: Consider adding one more parallel branch to the η parallel net-

work. This naturally results in an additional observer who is capable of observing

the newly added branch. From the inductive hypothesis, the η parallel connected

network is fully deduced with η − 1 minimum observers. The additional new ob-

server results in a new minimum of (η − 1) + 1 = η observers. As a consequence, a

network of η + 1 parallel connected controllers can be fully deduced with a mini-

mum of η observers. Thus the claim holds for η + 1.
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Table 3.2: DL Observation Matrix for the 11-bus Tree Structured Test Feeder

DL Observation

DH Change }1 }2 }3

F1 ↑ ↓ ↑ ↑
F2 ↑ ↑ ↓ ↑
F3 ↑ ↑ ↑ ↓
F1 ↓ ↑ ↓ ↓
F2 ↓ ↓ ↑ ↓
F3 ↓ ↓ ↓ ↑

3.1.3. Mix Connected Networks. The next natural progression of system

connectivity is to consider additional levels of parallelism. In doing so, devices

in different levels exhibit series connectivity with each other while devices in the

same level exhibit parallel connectivity. From here onwards, such networks are

referred to as mix connected networks.

Figure 3.5: 13-bus Tree Structured Test Feeder with Four Parallel Connected IQCs
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Table 3.3: DL Observation Matrix for the 13-bus Tree Structured Test Feeder

DL Observation

DH Change }1 }2 }3 }4

F1 ↑ ↓ ↑ ↑ ↑
F2 ↑ ↑ ↓ ↑ ↑
F3 ↑ ↑ ↑ ↓ ↑
F4 ↑ ↑ ↑ ↑ ↓
F1 ↓ ↑ ↓ ↓ ↓
F2 ↓ ↓ ↑ ↓ ↓
F3 ↓ ↓ ↓ ↑ ↓
F4 ↓ ↓ ↓ ↓ ↑

Definition 5. [Mix Connected NetworkN = (F,})] A network of IQCs, F with a cor-

responding set of associated observers } is defined mix connected when the elements in

the network resemble both simple series and simple parallel connectivity relationships.

Mix connected networks exhibit the typical ancestry relationship found in

regular tree structures. Consider the 19-bus test feeder in Figure 3.6 of seven

mix connected controllers and the corresponding DL observation matrix in Table

3.4. Each subtree has a parent node in series with two child nodes connected

parallel to each other; in subtree #01 for example, F2 is in series with F4 and F5

while F4 and F5 are parallel to each other based on the flow direction (from source

bus 1 to sink bus 19). Consequently, controllers in the same level have a sibling

relationship while between levels they have a parent-child relationship. In terms of

connectivity, Figure 3.1 directly correlates any individual subtree in Figure 3.6.

Any subtree in Figure 3.6 represents the basic connectivity unit for a mix con-

nected network. The DL observation matrix for individual subtrees is presented in

Table 3.5. The deducibility of a basic mix connected network is similar to that of a

3-parallel connected network. Unique DL projections exist in Table 3.5 for each of

the six possibleDH actions. Therefore, a minimum combination of three observers

can fully deduce each subtree.

One key difference between the DL projections in Tables 3.2 and 3.5 is that

in the latter, there is a clear correlation between the parent and child observers,
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Figure 3.6: A 19-bus Tree Structured Test Network of Seven Mix Connected IQCs

Table 3.4: DL Observation Matrix for the 19-bus Mix Network in Figure 3.6

DL Observation

DH Change }1 }2 }3 }4 }5 }6 }7

F1 ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓
F2 ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↑
F3 ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓
F4 ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↑
F5 ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↑
F6 ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑
F7 ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓
F1 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
F2 ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↓
F3 ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↑
F4 ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↓
F5 ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓
F6 ↓ ↑ ↓ ↑ ↓ ↓ ↑ ↓
F7 ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑

and between sibling observers when an associated controller is making the change.

Definitions 6 and 7 generalize these behaviors for regular mix connected networks.
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Definition 6. [Inheritance through Replication] An observer }y inherits observer

}x through replication if the former mimics the observation of the latter in direction.

For example, if }x’s observation is }x ↓, an observer inheriting this change through

replication would produce }y ↓.

Definition 7. [Inheritance through Flipping] An observer }y inherits observer }x

through flipping if the former mimics the observation of the latter in opposite direction.

For example, if }x’s observation is }x ↓, an observer inheriting this change through flip

would produce }y ↑.

The two inheritance characteristics are common to all mix connected net-

works. They are primary indicators of series characteristics in a mix connected

network formalized in Theorem 1.

Table 3.5: DL Observation Matrix for Subtree #01/Subtree #02 in Figure 3.6

DL Observation

DH Change }2/}3 }4/}6 }5/}7

F2 ↑/F3 ↑ ↓ ↓ ↓
F4 ↑/F6 ↑ ↓ ↓ ↑
F5 ↑/F7 ↑ ↓ ↑ ↓
F2 ↓/F3 ↓ ↑ ↑ ↑
F4 ↓/F6 ↓ ↑ ↑ ↓
F5 ↓/F7 ↓ ↑ ↓ ↑

Theorem 1. [Series Characteristics ofMix Connected Networks] For mix connected

networks, series connected parent and child observers inherit through replication while

parallel connected siblings inherit through flipping.

Proof. Base case 01: Consider the basic mix network in subtree #01 in Figure 3.6

and the associated DL matrix in Table 3.5. The DH action F2 ↑ produces a DL
projection {}2 ↓,}4 ↓,}5 ↓}. Here the parent observation }2 ↓ is replicated in

both child observers. For F4 ↑ which results in the projection {}2 ↓,}4 ↓,}5 ↑},
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}4 ↓ (the observer associated with F4) is replicated in its parent observer as }2 ↓
but flipped in the sibling }5 ↑. This behavior is true for all the parent-child and

sibling relationship in Table 3.5

Base case 02: Consider the extended mix network in Figure 3.6 and the associated

DL matrix in Table 3.4. Here also, the parent node }1’s change forward propagates

to every child as a replication (see projections for }1 ↑ and }1 ↓). For }2 and }3,

replicated changes back propagates to the parent }1 and to the immediate children

(}2 := }4,}5 and }3 := }6,}7) while siblings see flipped changes; }2 ↑ =⇒ }3 ↓
and vice-versa. Thus, the claim holds for both base cases.

Inductive Hypothesis: Assume the claim holds for a mix connected network of η

number of controllers.

Inductive Step: There are two possibilities to add a new controller to the η mix

connected network (i). Add the η + 1 controller in series, or (ii). Add the η +

1 controller in parallel with an existing controllers. Either way, this new node

will inherit replicated changes from its immediate parent (or donate to immediate

children), or inherit flipped changes from one of his siblings. Thus the claim holds

for a η + 1 mix connected controllers.

3.1.4. Partial Deducibility of Parallel Connected Networks. While not

impossible, observing a large and complex network spread over a vast geographi-

cal area is hard. Any number of observers below the minimum requirement (refer

to Lemma (3)) will not be able to fully deduce the system, but can still partially

deduce some DH actions.

Consider the DL observation matrix in Table 3.6, corresponding to the 15-

bus parallel connected network in Figure 3.7. From Lemma (3), any combina-

tion of four observers can fully deduce all 10 DH traces. Examining Table 3.6

reveals that the observation on the line connected to the device making the change

is clearly different from the rest of the observations. As an example, in trace

< F1 ↑,}1 ↓,}2 ↑,}3 ↑,}4 ↑,}5 ↑> where F1 is causing the DH change, only }1 ↓
breaks the general trend; all other observations are ↑. This trend transpired to

higher order8 networks leads to the following theorem on partial deducibility in

parallel connected networks.

8Networks with additional parallel branches in an increasing order
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Theorem 2. [Partial Deducibility] For a network of η parallel connected controllers,

% : 3 ≤ % < (η − 1) number of observers can deduce % number of controllers.

Figure 3.7: An Experimental 15-bus Tree Structured Test Network with Five Par-
allel IQCs

Proof. Base case 01: η = 4,% (3 ≤ % < 3) = 3. From Lemma (2) a network of four

parallel connected controllers is fully deducible with three observers. Obviously,

these three observers can deduce three DH controllers. Thus, the claim holds for

base case 01.

Base case 02: η = 5,% (3 ≤ % < 4) = 3. From Lemma (2) a network of five parallel

connected controllers is fully deducible with four observers. Discarding one of these

observers prevent prevents the deduction of two controllers. Consider the observer

combination }1,}2,}3 from Table 3.6. These three observers can detect uniqueDL
projections for F1,F2 & F3 but F4 & F5 both produce {↑,↑,↑}. Similarly, any other

combination of three observers have the same difficulty of deducing all but two

DH controllers – three observers can deduce only three controllers for a network

of five parallel controllers. Thus, the claim holds for the base case 02.

Inductive Hypothesis: Assume the claim holds for a network of η parallel con-

nected controllers and 3 ≤ % < (η − 1) observers.
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Inductive Step: Consider a network of η + 1 parallel controllers after adding an

additional parallel branch to a η parallel network. From the inductive hypothesis,

3 ≤ % < η−1 observers can deduce % = 3,4, . . . , (η−2) controllers. From Lemma (2) a

network of η parallel connected controllers is fully deducible with η −1 observers.

In other words, η−1 observers can deduce η controllers in a η+1 parallel connected

controller network. This means that % = 3,4,5, . . . , (η − 1) observers can deduce

3 ≤ % < (η − 1) controllers in a η + 1 parallel connected controller network. Thus,

the claim holds for a network of η + 1 parallel connected controllers.

Table 3.6: The DL observation matrix for the Experimental 15-bus Tree Structured
Test Network with Five Parallel IQCs

DL Observation

DH Change }1 }2 }3 }4 }5

F1 ↑ ↓ ↑ ↑ ↑ ↑
F2 ↑ ↑ ↓ ↑ ↑ ↑
F3 ↑ ↑ ↑ ↓ ↑ ↑
F4 ↑ ↑ ↑ ↑ ↓ ↑
F5 ↑ ↑ ↑ ↑ ↑ ↓
F1 ↓ ↑ ↓ ↓ ↓ ↓
F2 ↓ ↓ ↑ ↓ ↓ ↓
F3 ↓ ↓ ↓ ↑ ↓ ↓
F4 ↓ ↓ ↓ ↓ ↑ ↓
F5 ↓ ↓ ↓ ↓ ↓ ↑

Combined, Lemma (2) and Theorem (2) define the total deducibility of a

parallel connected network of η controllers. One special case worth mentioning

in Table 3.3 is that any combination of two observers cannot deduce a single DH
action. Thus, Theorem (2) does not apply for η = 4 and % = 2. Yet, any combina-

tion of two observers can deduce one DH controller in a network of three parallel
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connected controllers. As an example, the observer combination }1,}2 from Table

3.2 can deduce F2; F2 ↑= {↑,↑} and F2 ↓= {↓,↓}, are both unique projections.

3.2. OBSERVATION MATRICES FOR MIX CONNECTED NETWORKS

A mere set of observations is not sufficient to develop an accurateDL observa-

tion matrix unless the observers determine the correlation between their observa-

tions and the corresponding DH action(s). The question becomes how to generate

theDL observation matrix for any given mix connected network without a rigorous

simulation. The answer lies in Theorem 1.

Theorem 1 provides a systematic approach to accurately derive a DL obser-

vation matrix by figuring out the overall topology of the system and identifying

series and parallel connectivity. Given a mix connected network N = (F,}) with

a set of IQCs F and associated observers }, Algorithm 1 [93] goes through each

controller’s DH change and assigns the corresponding observation to each element

in }. In essence, Algorithm 1 is generalizing the DL observation matrix, one trace

T at a time.

Consider the expanded experimental power distribution network in Figure

3.8. This 61-bus test feeder consists of fourteen IQCs arranged as a binary tree

structure with a depth of 3. Based on Theorem 1, a DL observation matrix for the

system in Figure 3.8 can be constructed using Algorithm 1.

First to be assigned is the observer associated with the controller making the

change (e.g. }3 for F3). Tightening a controller variable Fx ↑ results in a decrease in

flow }x ↓ on the observed line, and loosening Fx ↓ causes an increase in flow }x ↑.
This basically defines the generalized ¬ l notation; the negation of l is simply a

flip in observation direction defined as follows.

¬ l=

↓ if l ≡ ↑

↑ if l ≡ ↓

The functions P rocC(), P rocS(), and P rocP () are used to process child ob-

servers, sibling observers, and parent observers respectively. For an IQC Fx ∈ F,

all child node observers rooted at Fx inherit }x’s change through replication. This

is handled by function P rocC(). Siblings of Fx inherit through flipping, which is
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Algorithm 1: DL Observation Matrix Construction
input : A mix connected network N = (F,}) where F is the set of

controllers and } is the set of corresponding observers
output: An DL observation matrix M

begin
foreach f ∈ F do

foreach DH change l of f do
T := f l,}f ¬ l /* ¬ l is the negation of l */

/* fC is the set of all nodes in the subtree rooted at f .
Child nodes inherit through replication */

if fC , ∅ then
T ←−T

⋃
procC(fC , ¬ l)

end

/* fS is the set of all siblings of f . Siblings

inherit through flip */

if fS , ∅ then
foreach s ∈ fS do

T ←−T
⋃

procS(s, l)
end

end

/* fP is the parent node of f . Parent inherits

through replication */

if ∃ fP then
T ←−T

⋃
procP(fP , ¬ l)

end
M ←−M

⋃
T

end
end
Return M

end

handled by function P rocS(). Recursively, any remaining series connected par-

ents inherit through replication, siblings through flipping, and child nodes in-

herit through replication from their respective root. This is handled by function

P rocP ().
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Function ProcC(X,lX)
input : A set of child nodes X and a DH change lX
output: Projection of X
begin

Tc :=<>
foreach x ∈ X do

Tc←−Tc
⋃

}x lX
end
return Tc

end

Function ProcS(y,lY )
input : A sibling node y and a DH change ly
output: Projection of the subtree rooted at y
begin

Ts := }y lY
/* yC is the set of all nodes in subtree rooted at y */

if yC , ∅ then
Ts←−Ts

⋃
ProcC(yC , lY )

end
return Ts

end

As an example, consider F3 ↑ in Figure 3.8 as the DH change, forcing the

immediate and trivial consequence of }3 ↓. Through replication, all the child

nodes of the subtree rooted at F3 and the immediate parent observer }1, inherit

{}1 ↓,}7 ↓,}8 ↓}. Observer }4 who is the lone sibling of }3 inherits through

flipping (}4 ↑). The child nodes of the subtree rooted at F4 all inherit }4’s change

through replication: {}9 ↑,}10 ↑}. The sibling of }1 and all the child nodes in the

subtree rooted at F2 inherit the flip change of }1: {}2 ↑,}5 ↑,}6 ↑,}11 ↑,}12 ↑
,}13 ↑ and }14 ↑}.
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Function ProcP(z,lZ)
input : A parent node z and a DH change lX
output: Projection of z and his siblings
begin

Tp := }z lZ
if ∃ zP then /* zP is the parent of z */

Tp←−Tp
⋃

procP(zP , lZ)
else

return
end
if zS , ∅ then /* zS is the set of all siblings of z */

foreach s ∈ zS do
Tp←−Tp

⋃
ProcS(s, ¬ lZ)

end
end
return Tp

end

Table 3.7 is the DL observation matrix of the 61-bus mix connected network

in Figure 3.8, constructed using Algorithm 1. These projections were indepen-

dently verified using a MATLABr load flow simulation of the network.

3.3. COMPLEXITY ANALYSIS: OBSERVATION MATRIX

Theorem 3. For a mix connected network N = (F,}) where F is the set of controllers

and } is the set of corresponding observers such that | F | = n and | } | = m, the cost of

building the DL observation matrix is O(nm).

Proof. A change in Fi results in observable changes in all m observers. If the cost

of assigning a single observation is a > 0 where a is a constant, the total cost of

assigning all } is a ∗m. Each IQC has two different changes: Fi ↓ and Fi ↑. The

total number of times the assignment is carried out is 2 ∗ n. Thus, the total cost of

building the DL observation matrix is a ∗m ∗ n ∗ 2 = b ∗m ∗ n, where b is a constant,

b > 0, which is bound by O(nm).
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Figure 3.8: An Experimental 61-bus Network with Fourteen Mix Connected IQCs
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Table 3.7: The DL observation matrix for the Experimental 61-bus Mix Connected
Network with Fourteen Mix Connected IQCs

DL Observation

DH Change }1 }2 }3 }4 }5 }6 }7 }8 }9 }10 }11 }12 }13 }14

F1 ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑
F2 ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
F3 ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑
F4 ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑
F5 ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑
F6 ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓
F7 ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
F8 ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑
F9 ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑
F10 ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑
F11 ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑
F12 ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑
F13 ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑
F14 ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓
F1 ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
F2 ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑
F3 ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓
F4 ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓
F5 ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓
F6 ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑
F7 ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓
F8 ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓
F9 ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓
F10 ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓
F11 ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓
F12 ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓
F13 ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓
F14 ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑
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4. CEEME FRAMEWORK

To date, the prominent approach to enforcing security properties and policies

is to use a strict safety property [51] whose violation immediately terminates the

execution of the target application. Such an approach is not applicable in CPS

security analysis since the decision to terminate a cyber process is not sufficient to

prevent irremediable consequences in the physical layer; the system has already

failed and information flow restrictions have been violated. Also, strict use of

safety properties preclude IFPs from being enforced and monitored as IFPs are

defined outside the Alpern-Schneider framework [52].

Relaxing the safety property requirement empowers enforcement mechanisms

to take appropriate remedial actions at the point of violation [80] : (i) Inject cor-

rective actions [80, 94] or (ii) Backup the application to a previously verified safe

state. Either way, the modified execution must maintain the functional integrity

of the target system.

4.1. EVENT COMPENSATION

The concept behind event compensation is to insert corrective actions at the

point where an execution violates a certain security property while still maintain-

ing the functional integrity. In essence, this approach improves the EM security

automata [51] by combining it with an emulator [38] and the event insertion capa-

bility of the edit automata [80]. Consider the rearrangement of actions of trace φ∗o
(Equation 5) as a new trace φ∗r in Equation (8) below. The corresponding projection

and purged projection outputs are given in Equations (9) and (10) respectively.

φ∗r = { readC(),write↓B(χ),write↓A(χ), readC(), readC() } (8)

According to Equations (9) and (10), the rearrangement ofDH actions in trace

φ∗r has effectively prevented DL subjects from deducing DH information. Though

there wereDH changes in the system (write↓B(χ) andwrite↓A(χ)), these are no longer

visible to the DL. The system behaves as if nothing significant happened from an
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outside observer’s perspective. In other words, the observable effects of the DH
action write↓B(χ) has been compensated by the DH action write↓A(χ).

ρ(φ∗r ,DL) = { ~fC , ~fC , ~fC } (9)

ρ(π(φ∗r ,DH ),DL) = { ~fC , ~fC , ~fC } (10)

Event compensation formalizes the aforementioned rearrangement ofDH ac-

tions using an enforcement mechanism E. A potential candidate for E that can

accomplish this task needs to possess the following qualities:

• The ability to monitor the executions steps of a target system during runtime

and detect security property violations – Execution Monitoring

• The ability to identify the action(s) causing the violation – Safety Property

• The ability to calculate an appropriate corrective action (sequence) which

maintains functional integrity – Event Compensation

• The ability to execute the corrective actions in a timely coordinated manner

– Emulation and Enforcement

Definition 8. [Compensation Sequence] For some identifiable execution violation

point σj ∈ σ ∗, a compensation sequence ς ∈ Σ∗ is defined as a finite sequence of states

starting with σj which can compensate for σj for some property P .

σ [. . . i] σ [k . . .] = σ [. . . i] ς σ [k . . .]

where ς ∈ Σ∗,ς = σ [j . . .]

Consequently, associated with ς is a finite sequence of compensating actions

ϕ = < φcj ,φ
c
j+1, . . . ,φ

c
k > ∈ Φ

∗ corresponding to each state transition in ς. Thus, a

compensated execution takes the following form:

σ [. . . i]
φcj
−−→ σj

φcj+1
−−−−→ σj+1 . . .

φck−−→ σ [k . . .] (11)
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By definition, the first action of a compensating sequence, φj ≡ φcj , is the

action that violates the corresponding property P : φj leads the original execution

σ ∗ from the safe state σi to the violation point σj . All subsequent actions of the

compensating sequence < φcj+1, . . . ,φ
c
k > ∈ ϕ are actions E inserts to compensate

for the effects of φj .

Even in projection ρ(φ∗o,DL) (Equation 6), the value of ~fC returns to the start-

ing observation at the end of trace. But in contrast to the projection ρ(φ∗r ,DL)

(Equation 9), there is a brief time lapse between the first and the second DH action

when the information flow security is violated. Any DL observation made within

this period of vulnerability reveals the presence of DH activity.

Consider that a particular execution up to state σi , i.e., σ [. . . i], is prefix closed

and information flow secure. Prefix closed means that every prefix – every state

subsequence starting from the initial state – preserves the underlying security

property P . Inherently, the action sequence φ[. . . i] is also information flow se-

cure. The state transition σi
φj≡φcj
−−−−−→ σj violates P and takes σ ∗ to a information

flow vulnerable state σj . During ς the execution stays in this vulnerable state

and executes the corresponding ϕ. σ ∗ transits back to an information flow secure

state σk with the last action of φck ∈ ϕ. An abstract representation of this notion is

presented in Figure 4.1.

Event compensation is only applicable to executions which are eligible for

cleansing. Cleansing an execution allows it to extend beyond a violation point and

prevents it from being discarded. Cleansing, in general, can refer to mechanisms

that allow temporary but controlled lapse of property, roll back, or injection of

error correction actions. Edit automata [80], which can modify the behavior of an

execution during runtime (with suppression and injection), is a good example of

execution cleansing.

Definition 9. [Execution Cleansing] Execution cleansing refers to mechanisms which

make qualified system executions eligible for extension and prevent them from being

discarded.

Only a certain class of qualified executions can be extended in this manner.

Suppose there exists an execution σ with a distinctly identifiable violation point
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σj , a valid prefix [. . . i], and a projected postfix [k . . .]. The optimistic assumption is

that, in the absence of σj , the execution maintains property P . This is similar in

concept to the suppression operation introduced in [80]. Formally, this character-

istic can be denoted as:

σ = σ [. . . i] σj σ [k . . .]

and,

σ [. . . i] σ [k . . .] ∈ P (12)

Figure 4.1: A Brief Discrete Vulnerable Period in an Information Flow Secure En-
vironment

Executions similar in form to (12) are eligible for cleansing under E. Math-

ematically, this allows correction action(s) to be injected immediately after σj to

extend the execution. However, such an injection needs to compensate for the

effects of σj in order to maintain the desired property.

In addition, E must also maintain the functional requirements of the system.

By performing event compensation, E restores the system to an operational and
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information flow secure state. Such an optimistic view of the system is also a

liveness [49] feature.

4.2. P–COMPENSATE PROPERTY

Definition 10. [P–Compensate Property] A system is compensative with respect to

a property P if and only if, for some execution σ ∗ with an identifiable violation point σj ,

there exists a compensation sequence ς such that:

∃σ ∗, ς ∈ Σ∗ : σ ∗ < P =⇒ ¬℘̂(σ [. . . j])∩ ς = σ [j . . .]∩ σ [. . . i] ς σ [k . . .] ∈ P (13)

This work quantifies a compensating sequence as a single execution step –

a finite sequence of controlled state transitions. By doing so, E is empowered to

inject more than one correction action depending on the requirement and the spe-

cific property expected to maintain. Once an eligible execution is identified, a ϕ

is calculated to compensate for σj which can lead the overall system back to a safe

state with respect to the Information Flow Security Property (IFP) P . The com-

pensative feature of a system also indicates the ability to cleanse executions with

respect to some P .

As seen in Figure 4.1, there could be a momentarily lapse in the correspond-

ing security feature. However, the compensated execution as a whole still adheres

to the desired property P . The idea is that the system as a whole, not individual

operations, need to satisfy the required property [95].

4.3. COMPENSATING COUPLE

In the most basic form, ς consists of a single element and two associated

actions, i.e., | ϕ | = 2. This is formally defined as a compensating couple consisting

of a <action, correction>pair. With this, the system automata in Definition (4) can

be extended to a compensation automata Mc = (D,Q,ϕ,δ,W ,Q0) as follows. The

state spaceQ is now divided up into two sets: a set of information flow secure(safe)

statesW ⊆Q and a set of information flow vulnerable(unsafe) states V ⊆ Q.

Definition 11 (Compensation Automata). The compensation automataMc consists

of 6-tuples (D,Q,ϕ,δ,W ,Q0) where:
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• D is the set of security domains

• Q is a set automaton states

• ϕ ⊆ Φ́ is a subset of input symbols of the form < φcj ,φ
c
j+1 >: φcj ,φ

c
j+1 ∈ ϕ

• δ is the a state transition function δ :Q×ϕ→ 2Q specified under a predicate ℘̂()

• W is a set of final statesW ⊆Q

• Q0 is a set of initial states for the automaton Q0 ⊆ Q

The net effect of executing a compensating couple is, by definition, null with

respect to the particular IFP P of concern, i.e., φcj+1 −φ
c
j = 〈〉. The second action

of the pair φcj+1 – the correction – moves the state machine back to a IFP secure

operationally stable state (or back to the original configuration) while compensat-

ing for the IFP violating first action φcj . The predicate ℘̂() is used in validating that

each compensating transition adheres to the property P . This allows the automata

to maintain the P–compensating property during each “compensating” step of the

execution. Thus, the following condition holds for executions compensated in this

manner.

∀σj : ¬℘̂(σ [. . . i]
φj
−−→ σj[k . . .])∩∃ϕ =< φcj ,φ

c
j+1 >: φcj ≡ φj =⇒ ℘̂(σ [. . . i]

ϕ
−→ σk) (14)

However, the compensating action sequence ϕ steps through a sequence of

unsafe states before reaching a final safe state. The characteristic equation of a

compensated execution in Equation (8) steps through the unsafe states, σj ,σj+1, . . . ∈
V , before reaching the safe state σk ∈ W . As a matter of fact, the states in ς can

potentially violate property P , if an DL observation is made. Nevertheless, the ar-

gument is that ς is finite by definition and ϕ is executed in a timely and controlled

manner to avoid detection by DL subjects. Thus, the effect of the inherent security

vulnerability is temporary by nature.

The input symbol ϕ = < φcj ,φ
c
j+1 > toMc is the combination of the last state

transition command and the next state transition command under the read head

of the state machine. Initially, φcj = λ meaning, there is no input command at the
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very start. The state transition of φcj inMc takes the form qi
φcj
−−→ qj : qi ,qj ∈ Q. If

qj ∈W , thenφcj is the correction component of an earlier compensating couple. On

the other hand, if qj ∈ V , then φcj is the action component of a new compensating

couple.

The automaton starts in q0 ∈ Q0 and changes to the next state qj ∈ Q′ based

on the input symbol. The set of all possible next states is given as,

⋃
q∈Q′

δ(q,φcj )

δ is defined under a predicate ℘̂(). If q0 ∈ W , the predicate is comparatively

simple: the current input command φcj under the read head is the < action > com-

ponent of a new compensating couple. At this point E starts calculating a ϕ to

compensate φcj whileMc accepts φcj free falls to the next state qj ∈ V . On the other

hand if q0 ∈ V , half of a compensating couple has already executed. Thus, the

current command under the read head σj+1 is the < correction > component. Here,

℘̂() must ensure proper compensation and the set of possible next states is further

refined. The predicate can be formally represented as follows:

℘̂(qj) =

{qj | qj ∈ Q
′ ∧∃ϕ : ϕ =< φcj , . . . >} if q0 ∈W

{qj | qj ∈ Q′ ∧ qj ∈W ∧Dφcj ≡ Dφcj+1
∧φcj+1 −φ

c
j = 〈〉} if q0 ∈ V

When q0 ∈ V , ℘̂() must ensure that qj ∈ W . In addition, the security domain

D in which the next command is going to be executed needs to be equivalent to

the security domain of the previous command. This is a key attribute of event

compensation and is the only way to prevent subjects in other security domains

from deducing information. For example, when DL < DH , ∀φcj ∈ ϕ Dφcj = DH to

prevent information flow from DH to DL.
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If Q′ is not empty under ℘̂(qj), ϕ can be accepted as a valid state transition

command. This can be then passed to the physical system for execution9. When

φcj leavesMc in a vulnerable state, E ensures it reaches a safe state after the next

transition and prevents information flow between undesired security domains.

4.4. NOTES ON EVENT COMPENSATION

The compensating couple can be viewed as a request-reply message passing

between two subjects. For example, IQCi can request IQCj that it intends to exe-

cute a potentially IFP violating DH action φcj . IQCj can decide either to acknowl-

edge(reply) or ignore the request. If the request is acknowledged, IQCi executes

φcj ∈ ϕ and IQCj reacts with φcj+1 ∈ ϕ. This will ensure that the subjects outside

the protection domain of IQCi and IQCj are kept unaware of the changes. If the

request is ignored, IQCi can either commit to φcj and inject its own anti-action (the

reciprocal or the self undo action) as the correction or attempt to reestablish an

agreement after a predefined backup time.

In a purely cyber system, a compensating couple represents an event undo as

in a database transaction. This becomes an event complement in a pure physical

system. At most, a third party may be able to observe a sudden pulse as shown

in Figure 4.1. But such discrete pulses could have natural causes10. By minimiz-

ing the time lapse between the action and reaction, two parties can minimize the

period of vulnerability and the possibility of DL detection.

Event compensation makes sense in actual CPSs since actions (cyber or physi-

cal) that affect the equilibrium need to be followed by actions to maintain the over-

all system stability. An isolated state transition command is more prone to break

system equilibrium and potentially violate information flow security. Compensat-

ing couples maintain stability and functionality while preventing unauthorized

information flow disseminations outside a protection domain.

9Similar proposals have been made in [51] and [38]
10an air bubble or a clog in the pipeline, lighting striking a power transmission line etc.
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Traditional ESs, such as the security automata in [51], take a conservative

approach of enforcement where upon detecting a violation the execution is im-

mediately terminated. This is infeasible for CPSs. This work, on the other hand,

considers a more optimistic approach.

From a technical standpoint, event compensation can be used to enforce even

some of the stronger IFPs such as Noninterference and Noninference. In doing

so, the underlying predicate become too strict such that the proper functional in-

tegrity of the system may be compromised. An IFP such as Nondeducibility, which

is less stressful on the functional integrity of the system but powerful enough to

protect event confidentiality, is a better candidate for IFP enforcement in CPSs.
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5. OBFUSCATION THROUGH COMPENSATION

The concept behind event compensation is to inject corrective actions at the

point where a particular execution violates a certain security property. With re-

spect to the DH event confidentiality of the system, the existence of unique projec-

tions in the correspondingDL observation matrix is the security violation. Though

preventing the physical consequences of a cyber command is not possible within

laws of physics, coordinated execution of cyber commands can obfuscate DL ob-

servations and potentially eliminate unique DL projections.

5.1. SELF-OBFUSCATING NETWORKS

A network may present itself to be naturally obfuscated and yield certain

DH actions Nondeducibility secure. In the network depicted in Figure 3.8, for

example, theDH actions of the controllers F1 and F2 are Nondeducibility secure by

default as all four possible commands result in only two DL projections (compare

DL projections for {F1 ↑} against {F2 ↓} or {F1 ↓} against {F2 ↑} in Table 3.7).

This particular case of self-obfuscation is explainable using Lemma (3) and

Theorem (1). If the subtrees rooted at F1 and F2 are ignored, the remaining net-

work resembles a network of two parallel branches, similar in form to Figure

3.3. All observers in each subtree simply inherit the corresponding root observer

through replication (Theorem 1). Thus, they do not contribute to deducing actions

of F1 or F2 through their observations.

In general, every mix connected network including any sub network within

one can be analyzed as an rudimentary (parallel or mix) connectivity unit. Even

in their simplest form, not every network is Nondeducibility secure since not all

networks have the self-obfuscating feature. Even in the ones that are, not everyDH
action is obfuscated. This is where the proposed “event compensation” mechanism

makes a contribution.

Once committed, no amount of remedial actions can reverse the physical con-

sequences of a cyber action. Thus, backing up an execution to a previous safe state

(as opposed to terminating as in a safety property violation) to maintain a desired
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system property is not practically applicable to CPSs. This leaves inserting reme-

dial actions, in this case, compensating actions to enforcing (security) properties

at runtime.

5.2. OBFUSCATION THROUGH COMPENSATION

Consider a trace φ̆∗ (associated with an execution σ̆ ∗) with an identifiable

violation point φ̆i with respect to a property P . For this discussion, P is the prop-

erty of maintaining DH event confidentiality (a P–compensate property [96]) of

the CPS and φ̆i is a particular DH action with a potentially unique DL projection.

{F7 ↑} in Table 3.7 is an example φ̆i resulting in σ̆ ∗ < P . Event compensation in-

serts additional action(s) immediately after φ̆i such that the combined operation

of φ̆i and these additional actions lead the overall execution to a P–compensatable

secure state.

Event compensation can force-obfuscate DH actions through compensating

action sequences ϕ = < φcj ,φ
c
j+1, . . . ,φ

c
k > ∈ Φ

∗, in situations where self-obfuscation

is not present. A ϕ can force a particular DL projection not to be unique by match-

ing up a potentially DH event confidentiality violating action with appropriate

correction action(s). One way of doing this is to make sure that the modified pro-

jection is similar to (at least) one of the existing projections.

Consider the three traces taken from Table 3.7 in Equation (15) and the

corresponding DL projections in Equation (16). Note that except for observers

}3,}7 and }8, none of the other observers contribute towards deducibility, as they

make the same observation for each of the three DH actions.

φ̆∗1 = {F3 ↑,}1 ↓,}2 ↑,}3 ↓, · · · ,}7 ↓,}8 ↓, · · · ,}14 ↑}

φ̆∗2 = {F7 ↑,}1 ↓,}2 ↑,}3 ↓, · · · ,}7 ↓,}8 ↑, · · · ,}14 ↑}

φ̆∗3 = {F8 ↑,}1 ↓,}2 ↑,}3 ↓, · · · ,}7 ↑,}8 ↓, · · · ,}14 ↑} (15)

ρ(φ̆∗1,DL) = {↓,↑,↓,↑,↑,↑,↓,↓,↑,↑,↑,↑,↑,↑}

ρ(φ̆∗2,DL) = {↓,↑,↓,↑,↑,↑,↓,↑,↑,↑,↑,↑,↑,↑}

ρ(φ̆∗3,DL) = {↓,↑,↓,↑,↑,↑,↑,↓,↑,↑,↑,↑,↑,↑} (16)
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A ϕ including F3 and F7 can prevent }8 from making an observation and

force F3 ↑ and F7 ↑ to obfuscate each other. For example, consider φ̆i ≡ φcj = F7 ↑
and φcj+1 = F3 ↑. Thus, ϕ = < F7 ↑,F3 ↑>. The resulting projection is given in

Equation (17). A visual representation of the controller hierarchy abstraction of

the 61-bus experimental system (Figure 3.8) is shown in Figure 5.1.

ρ(ϕ,DL) = {↓,↑,↓,↑,↑,↑,↑,↔,↑,↑,↑,↑,↑,↑} (17)

Figure 5.1: A Visual Representation of IQCs 3 and 7 Compensating Observation 8
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Note that the symbol ↔ stands for no change in observation. Effectively,

F7 ↑ ∈ ϕ is the action while F3 ↑ ∈ ϕ is the correction in a compensating couple

[97].

5.3. THE TIME DOMAIN RESPONSE

The time domain response of the compensating couple ϕ = < F7 ↑,F3 ↑> for

observer }8 is shown in Figure 5.2. All three subfigures show the same time do-

main response with different time lapses (a time difference) between the action

and the correction. In other words, these are compensating couples with different

time lapses11.

For example, Figure 5.2(a) has a time lapse of two seconds. The wider the

time lapse, the longer the period of vulnerability of an information flow security

violation [97]. An output sample taken within this period would reveal the exis-

tence multiple DH actions.

However, it is possible to hide DH actions within the system dynamics by re-

ducing the time lapse of a compensating couple. The natural system dynamic

response is such that the observed outputs respond to any system change by os-

cillating for a brief period of time before reaching the next steady state. This is

evident in Figure 5.2(a) immediately after both action and the correction. The

impulse response in Figure 5.2(c) is a result of an instantaneous compensation –

a compensating couple with no time lapse. The instantaneous compensation has

effectively hidden the compensating couple ϕ = < F7 ↑,F3 ↑> within the system

dynamics as the impulse response does not reveal the existence of multiple DH
actions12.

Additionally, the response is Noninference secure as a DL observer cannot

distinguish whether the impulse response is due to some DH action sequence or

some other natural cause; a sudden surge of power also produce a similar impulse

response.

11The pulse response was first introduced at a conceptual level in [97]
12Conceivably, if the dynamics of the impulse can be predicted, frequency domain analysis by the

observer could still separate the two actions. Predicting this response would be extremely difficult,
however.
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In theory, it is possible to hide any number of DH actions within the system

dynamics by executing them as compensating actions, as long as such an execution

does not violate the operational limits of the system.

(a) Time Lapse 2.0sec (b) Time Lapse 0.5sec

(c) Time Lapse 0sec

Figure 5.2: Time Domain Response of the Compensating Couple ϕ = < F7 ↑,F3 ↑>
on Observer }8 with Different Time Lapses
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6. CONFIDENTIALITY MODELS FOR CPSs: PART I

Developing a CPS confidentiality model starts with defining a system invari-

ant on flow that accounts for both the commodity flow in the physical layer and

the information flow in the cyber layer. In other words, the control argument needs

to be tied to a flow argument of the system. What is attractive about this approach is

that its physical flow and the resulting observations can be controlled with cyber

commands with the intention of maintaining a particular system property such as

Nondeducibility.

In Chapter 3 the overall system operation was presented as a flow invariant

while segregating the actions that change the variables of the invariant into two

information flow security domains. Further, the confidentiality violation caused

by the inherent cyber-physical interaction was systematically analyzed for regular

parallel and mix connected networks by composing basic connectivity blocks into

larger and complex networks, resulting in a generalized set of theories that ex-

plain the relationship between connectivity and information flow violation. Two

important question arise from this analysis:

1. How to identify if a certain DH action causes an information violation

2. How to mitigate violations in a finite amount of time

Algorithm (1) provides a basis for an answer to the first question. This al-

gorithm systematically explores a given system and lists systemwide observations

pertaining to each DH change. Unique DL projection entries in the DL observa-

tion matrix generated using Algorithm (1) are potential information flow violating

DH system actions. For a runtime enforcement scheme, this information needs

to be readily available through preprocessing. DH actions corresponding to DL
projections that are not unique can be safely bypassed since they are, by defini-

tion, self-obfuscated (Section 5.1). However, there is a strong likelihood that most

entries in a DL observation matrix are unique to start with (ex. Table 3.7).

Alternatively, what if there was a way to make sure that each DH action is

nondeducible in the first place? In other words, obfuscate through compensation.
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As demonstrated in Section 5.2, two combined DH actions can potentially cancel

out and remove observations from appearing on certain lines in the final DL pro-

jection. Another perspective of this is that a “second action” cancels observations

caused by a “first action”. This is an instantiation of the compensating couple.

6.1. SYSTEM BEHAVIORS

The act of preventing observations caused by someDH action from propagat-

ing through the network using the second DH action is formally called “System

Behaviors” here onwards. The device that executes the first action is termed the

“change-origin” O and the device that executes the second action is termed the

“behavior-enforcer” B. Their settings are defined as “origin setting” and “enforcer

setting” respectively. In addition, there is a third element termed “target” T which

is the node with an incoming edge whose observation needs to be removed. De-

pending on the area of confinement and how the behavior is enforced, there are

four basic types of system behaviors:

1. Egress Blocking

2. Ingress Blocking

3. Routing

4. Redistribution

Definition 12. [System Behaviors for Mix Connected Networks] For a mix con-

nected network, a system behavior is defined as the act of preventing observations caused

by some DH change in the system from propagating through the rest of the network

through use of a second DH change. The device that commits the first change is termed

change-origin O while the second device is termed behavior-enforcer B. Their settings

are defined origin setting and enforcer setting respectively. The target T is the node

where the edge whose observation needs to be removed is an incoming edge. The corre-

sponding edge is the T -line.

Definition 13. [Enforcement of System Behaviors] For a mix connected network,

the enforcement of a system behavior is defined as the behavior-enforcer B using its



58

enforcer setting to remove observable changes caused by the origin setting in a target

line T -line.

For the rest of this analysis, consider IQCi ≡ Fi . These terms may be used

interchangeably. The four primary system behavior types are explained as follows.

6.1.1. Egress Blocking [BEb ]. The concept behind Egress Blocking is to

confine all observable changes within a subnetwork. Thus, the IQC acting as the

B prevents observable changes of an origin setting from propagating outside the

subnetwork rooted at the T where the T -line is an incoming edge (of T ). The key

attribute in Egress Blocking is that change-origin O is a member of the subtree rooted at

target node T . Thus, for Egress Blocking, the T and the B are the same.

Definition 14. [Egress Blocking System Behavior BEb ] A node “b” prevents a change

made by one of its descendants from leaving the subnetwork rooted at “b”. The changes

will be seen by all descendants of “b” but no one else in the system.

Figure 6.1 shows two examples for Egress Blocking applied on the network

shown in Figure 5.1. An Egress Block at IQC3, (F3) BEF3
, is shown in Figure 6.1(a).

Here, T is an immediate parent of the O . In Figure 6.1(b), O and T are separated

by two levels BEF1
. Once the block is applied, the rest of the network beyond the B

does not observe any changes in both these cases.

(a) BEF3
: Egress Blocking at IQC3 (b) BEF1

: Egress Blocking at IQC1

Figure 6.1: Egress Blocking System Behavior
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6.1.2. Ingress Blocking [BIb]. Ingress Blocking is similar in concept to

Egress Blocking except that the B ensures that no observable changes enter the

subnetwork rooted at the T . As was the case with Egress Blocking, both B and T

are the same node. The key attribute in Ingress Blocking is that change-origin O is not

a member of the subtree rooted at target node T . Two examples of Ingress Blocking

are given in Figure 6.2. In Figure 6.2(a), the IQC8 prevents observable changes of

its immediate parent IQC3 from entering its subtree. Thus, BIF8
is Ingress Block at

IQC8. In Figure 6.2(b), O and B have a two levels separation. Thus, for Ingress

Blocking, the T and the B are the same.

Definition 15. [Ingress Blocking System Behavior BIb] A node “b” prevents an exter-

nal change from entering its subsystem, where an external change is defined as a change

made by a non-descendent node. The changes will be hidden from all descendants of

“b”.

(a) BIF8
: Ingress Blocking at IQC8 (b) BIF4

: Ingress Blocking at IQC4

Figure 6.2: Ingress Blocking System Behavior

6.1.3. Routing [Rb,t]. The Routing system behavior differs from the two

blocking behaviors since the objective of B is to block observations from entering

a subnetwork other than its own. Thus, B and T are distinct nodes. The B acts

as a proxy Ingress Blocker at the T . However, in certain situations T can be O
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as well. Figure 6.3 shows three examples of the Routing system behavior. The key

attribute in Routing is that change-origin O is not a member of the subtree rooted at the

target node T and the enforcer B is in the subtree of one of the T ’s siblings subtree.

Definition 16. [Routing System Behavior Rb,t] A node “b” prevents an external

change from entering a subsystem rooted at “t” by routing the change through itself.

The change will be hidden from all children of “t” This behavior mimics the Ingress

Blocking behavior at the target.

(a) RF7,F8
: Routing IQC8 through IQC7 (b) RF7,F8

: Routing IQC8 through IQC7

(c) RF7,F4
: Routing IQC4 through IQC7

Figure 6.3: Routing System Behavior
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In Figure 6.3(a), O , B, and T are IQC3, IQC7, and IQC8 respectively. Here,

IQC7 absorbs IQC3’s changes on IQC8 by routing the change through itself. Defi-

nition 6, asserts that the subtree rooted at IQC8 will not have observable changes

when its root IQC8 has no observable change. This analysis also applies to Figure

6.3(b), except O is not an immediate parent of either B nor T . In both Figure

6.3(a) and Figure 6.3(b), B and T have a sibling relationship to each other. Figure

6.3(c) shows that the Routing system behavior can be applied even when B and T

are in one of O’s sibling’s subtree.

6.1.4. Redistribution [Db,t]. If Routing is a proxy Ingress Blocking, the

Redistribution system behavior is the proxy Egress Blocking. Two redistribu-

tion nodes can commit opposite changes that cancel-out observations at their first

shared ancestor. The key attribute in Redistribution is that both the behavior-enforcer

B and the change-origin O are members of the subtree rooted at the target T .

Consider Figure 6.4 which shows two cases of the Redistribution system be-

havior. Note in Figure 6.4(a), IQC7 and IQC8 make opposite changes that effec-

tively enforce a proxy Egress Block at their shared ancestor IQC3. The same anal-

ysis applies to 6.4(b) where F7 and IQC4 cancel observations beyond IQC1.

(a) DF7,F3
: Redistribution by IQC7 for

IQC3

(b) RF7,F3
: Redistribution by IQC7 for

IQC3

Figure 6.4: Redistribution System Behavior



62

Definition 17. [Redistribution System BehaviorDb,t] A node “b” makes an opposite

change in response to an origin change in one of its sibling’s subtree such that it nullifies

observations at the first shared ancestor “t”. This behavior mimics the Egress Blocking

behavior at the shared ancestor.

Note that in Figure 6.4(a), IQC8 becomes B when the O is IQC7 and vice

versa. Similarly, for Figure 6.4(b), IQC4 becomes the B when IQC7 is the O vice

versa.

6.2. SYSTEM BEHAVIORS AND NONDEDUCIBILITY

System behaviors provide an elegant method to obfuscate observations. This

approach removes the adversary’s ability to deduce two single action settings by

reducing the number of observations present in the final DL projection. The two

actions in a system behavior are interchangeable, meaning that the origin can be

replaced by B to produce the same set of DL observations. Thus, looking at the

residual observations, an adversary cannot distinguish either origin or the enforcer

as the actual system change. This effectively maintains the event confidentiality of

the two DH actions.

Theorem 4. [Nondeducible Settings in Egress Blocking and Redistribution] For

each change-enforcer combination in Egress Blocking system behavior in a mix-connected

network, there exists a nondeducible change-enforcer combination in Redistribution sys-

tem behavior and vice versa.

Theorem 5. [Nondeducible Settings in Ingress Blocking and Routing] For each

change-enforcer combination in Ingress Blocking system behavior in a mix-connected

network, there exists a nondeducible change-enforcer combination in Routing system

behavior and vice versa.

Proof. These two theorems can be proven using a flow invariant as follows. Con-

sider two sets of real value variables |P | = n, |Q| = m : n ≥ 1,m > 1 and their rela-

tionship as shown in Equation 18. For the purpose of this analysis, consider the
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sets P and Q as incoming and outgoing flows and their relationship preserves the

flow conservation rule at a particular vertex with no storage.

p1 + p2 + . . .+ pn = q1 + q2 + . . .+ qm (18)

Figure 3.1 is one such example with n = 1 and m = 2. Assume a ∆qi : qi ∈ Q
change in one of the right hand side variables in Equation (18). In response to this

change, one or more variables in the set P ∪Q − qi have to change13. Suppose the

strategy is not to let variables in the set P change their values. There are two meth-

ods of achieving this goal. The first one is by explicitly fixing the values in the set

P to their starting values. This forces variables in the set Q − qi to be reassigned.

The second method is to reassign values to the variables in Q− qi such that the set

P does not change. Since both these methods achieve the same final outcome, they

are equivalent by definition. With respect to system behaviors, Egress Blocking is

the method of explicitly fixing the values for set P while Redistribution is reassign-

ing values to set Q − qi . The change-origin is represented in ∆qi . The equivalence

relationship between the two behaviors results in the existence of duality in so-

lutions. Thus, each change-enforcer combination can be achieved by both system

behaviors resulting in a nondeducible secure setting.

Similarly, assume a ∆pj : pj ∈ P change in one of the left hand side variables

in Equation (18). In this case, consider the objective is to maintain the initial val-

ues for a subset of variables Q̂ ⊆Q. Again, there are two methods of achieving this

goal. The first method is to explicitly fix the values in the set Q̂. In other words,

this is the Ingress Blocking system behavior. The second method is by reassign-

ing values to the variables in set {Q ∪ P − (Q̂ ∪ pj)} such that the set Q̂ does not

change. This is achieved by the Routing system behavior. Using the same line of

reasoning as above, it can be shown that there is an equivalence relationship be-

tween the Ingress Blocking system behavior and the Routing system behavior. As

a consequence, each change-enforcer combination that can be achieved in Ingress

Blocking can be replicated using Routing and vice versa.

13If more than one variable is involved, the aggregate change must equal ∆qi
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As an example, consider the Egress Block BEF7
in Figure 6.1(a) and the Redis-

tribution DF7,F8
in Figure 6.4(a). As shown, the change-enforcer combinations for

these two system behaviors are ϕ1 = < F7 ↑,F3 ↓> and ϕ2 = < F7 ↑,F8 ↓>. For the

purpose of analysis, assume that the traces for each of these two system behaviors

are φ∗
BE

and φ∗D . Thus,

φ∗BE = {F7 ↑,F3 ↓,}7 ↑,}8 ↓}

φ∗D = {F7 ↑,F8 ↓,}7 ↑,}8 ↓}

A direct comparison between these two figures shows how the same origin-

enforcer combination can effectively control which subnetwork will see observa-

tions. Moreover, the DL projection for both φ∗
BE

and φ∗D are equivalent, i.e.,

ρ(φ∗BE ,DL) = ρ(φ∗D ,DL) = {}7 ↑,}8 ↓}

In other words the combinations ϕ1 = < F7 ↑,F3 ↓> and ϕ2 = < F7 ↑,F8 ↓> are

nondeducible. These are, by definition, compensating couples which by Definition

10 preserve the Nondeducibility-Compensate property. A similar analysis applies

for the case studies shown in Figures 6.1(b) an 6.4(b).

Consider the Ingress Block BIF8
in Figure 6.2(a) and the Routing RF7,F8

in Fig-

ure 6.3(a). The origin-enforcer combinations for BIF8
and RF7,F8

are ϕ3 = < F3 ↑
,F8 ↓> and ϕ4 = < F3 ↑,F7 ↑> respectively.

The corresponding traces φ∗
BI

and φ∗R can be listed as follows:

φ∗BI = {F3 ↑,F8 ↓,}1 ↑,}2 ↓,}3 ↑,}4 ↓,}5 ↓,}6 ↓,}7 ↑,}8↔,}9 ↓,}10 ↓, . . .}

φ∗R = {F3 ↑,F7 ↑,}1 ↑,}2 ↓,}3 ↑,}4 ↓,}5 ↓,}6 ↓,}7 ↑,}8↔,}9 ↓,}10 ↓, . . .}

Since, both these system behaviors prevent observations from entering the

subtree rooted at F8, they both produce the same DL projection. Thus, ϕ3 and ϕ4

are nondeducible.

ρ(φ∗BI ,DL) = ρ(φ∗R,DL) = {}1 ↑,}2 ↓,}3 ↑,}4 ↓,}5 ↓,}6 ↓,}7 ↑,}8↔,}9 ↓,}10 ↓, . . .}
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From an EM enforcement perspective, evaluating the uniqueness of aDL pro-

jection resulting from a system behavior at runtime is not an easy task. If the resid-

ual DL projection of a system behavior is unique, the purpose of using them in the

first place is lost. The projection in question needs to be compared against the

set of all possible simultaneous DH changes of the system to see if it matches the

existing projections. For a network of n controllable devices each with k different

changes, there are
(n

2
)
∗2k total DH change combinations, increasing preprocessing

requirements.

Corollary 1. [Nondeducible System Behaviors: Egress Blocking and Redistribu-

tion] Egress Blocking and Redistribution system behaviors are nondeducible equivalent.

Corollary 2. [Nondeducible System Behaviors: Ingress Blocking and Routing]

Ingress Blocking and Routing system behaviors are nondeducible equivalent.

Proof. Corollaries 1 and 2 are derived from Theorems 4 and 5 respectively. From

Theorem 4, there exists a nondeducible counter part in Redistribution system be-

havior for each action-enforcer combination in Egress Blocking system behavior.

This means that from a DL observation point of view, an Egress Blocking system

behavior enforcement cannot be distinguished from a Redistribution system be-

havior enforcement and vice versa. Thus, Egress Blocking and Redistribution sys-

tem behaviors are nondeducible equivalent. Ingress Blocking and Routing system

behaviors are also nondeducible equivalent. This can be proven using a similar

argument as above.

As a consequence of Corollaries (1) and (2), system behaviors are not required

to be checked for uniqueness in DL projections. For each residual observation of

a system behavior, there is an equivalent dual in another system behavior. This

duality in solutions preserves the event confidentiality of origin-enforcer combi-

nation.
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7. CONFIDENTIALITY MODELS FOR CPSs: PART II

As an alternative to the system behavior approach, there is a second method

to produce nondeducible DH settings in regular mix connected networks. This

method replaces the originalDH action, the setting of O in other words, with other

actions that meet the same functional requirements and produce the sameDL pro-

jection. In flow networks, the underlying objective of any DH action is to enforce

either a positive (increase flow) or a negative (decrease flow) flow constraint on a

certain set of edges. The same constraint can be achieved by enforcing flow val-

ues on other edges in such way that the intended amount of flow goes through the

initially selected set of edges.

7.1. REPLACEMENT SOLUTIONS

Definition 18. [UpstreamReplacement (RN)] The act of replacing aDH change with

its immediate parent and, if they exist, all its siblings is termed Upstream Replacement

(RN).

Definition 19. [Downstream Replacement (RH)] The act of replacing a DH change

with its immediate children is termed Downstream Replacement (RH).

Figure 7.1 shows two basic schemes to replace a single DH action for a mix

connected network. The two schemes are termed RN and RH respectively based

on the direction of the move in comparison to the flow direction. For example,

the original DH change was moved to the immediate parent and sibling couple

in Figure 7.1(a) to form an RN. In Figure 7.1(b), the original change location was

moved to the immediate children to form a RH. Both these schemes adhere to the

flow conservation rule.

Consider the line flows for IQCa, IQCb, and IQCc in Figure 7.1 as ~fa, ~fb, and ~fc

respectively. Based on the flow direction, the relationship between the flow values

at stable state can be stated as, ~fa = ~fb + ~fc. For the RN scheme in Figure7.1(a), Fc

enforcing ~fc is equivalent to Fa and Fb enforcing flow values ~fa and ~fb. The same

argument applies for the RH scheme in Figure 7.1(b). Thus, any flow value of
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the original line can be easily maintained using its replacement counterparts. In

theory, this would yield the same DL observation as the original change.

(a) Upstream Replacement (RN)

(b) Downstream Replacement (RH)

Figure 7.1: Single High-Level Domain (DH ) Action Replacement Schemes for Mix
Connected Networks

In the system behavior approach, the original DH action remains in the final

nondeducible DH action combination. In contrary, the replacement of solutions

will produce alternative DH action combinations that do not include the original

action. However, each replacement solution will produce the same DL projection

as the original action.

Theorem 6. [Nondeducibility of Replacement Solutions] Any replacement solution

of a DH change is nondeducible.

Proof. The proof of this theorem also follows a flow invariant argument. Consider

the earlier introduced Equation 18. Assume a ∆qi : qi ∈ Q change in one of the

right hand side variables. Thus, q̂i − qi = ∆qi (action). Due to flow conservation,

this change will excite all other variables in the equation to new values P̂ and

(Q̂−qi) (consequence). Now consider the converse of this assignment where P̂ and

(Q̂ − qi) force ∆qi in qi . If q̂i → P̂ ∪ (Q̂ − qi) is considered the original DH change,

the converse P̂ ∪ (Q̂ − qi) → q̂i is the RN. The flow values are equivalent in both
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cases and thus, will produce the same DL projection. Any subsequent recursive

application of RN will also produce the same DL projection. Thus, RN solutions

are nondeducible.

Assume ∀pi ∈ P : pi → p̂i for all incoming flows (R.H.S. variables) where

p̂i − pi = ∆pi . Such a change will consequently result in ∀qi ∈ Q : qi → q̂i . If

this transition P̂ → Q̂ is considered the original DH change, it’s converse Q̂ → P̂

becomes the RH. Both cases maintain the same flow values and the same DL pro-

jections. Similar to RN analysis above, any recursive application will also produce

the same DL projection. Thus, RH are also nondeducible.

Additionally, a RH of a RN and its converse are also nondeducible since any

combination of replacements will preserve the flow conversation property, flow

values, andDL projections. Thus, any replacement solution of aDH action is nond-

educible.

Consider the three states of the tree structured 31-bus test network shown

in Figure 7.2. Figure 7.2(a) is the initial state of the network before a line outage.

In Figure 7.2(b), the line between nodes 1-4 is removed as a line contingency. As

a result, the edges in the path 1→ 3→ 8→ 17,18→ 31 are overloaded. This is

illustrated with red colored edges in Figure 7.2(b).

To alleviate this outage, an IQC can be placed between nodes 1 and 3 to re-

strict flow. This is shown with a green edge in Figure 7.2(c). Here, the yellow

colored node numbered 0 is the swing bus. The orange colored nodes (nodes

1,2,5,7,9,11, and 13) are buses with attached generators and the light brown col-

ored nodes (nodes 15−31) are buses with attached loads. The function of the swing

bus is to absorb or release any additional power in the system14.

From an external observer’s perspective, the state transitions from initial

state to the outage state and outage state to the FACTS state both produce ob-

servable changes. In this analysis, the focus is on the latter transition since the

main cause of this set of observations is an action taken by an IQC. This is in fact

the specific DL projection that can potentially be used in deducibility.

14The rearrangement of certain nodes in subsequent figures is an unintentional side effect of
a limitation in the open source graphing tool “graphviz” http://www.graphviz.org/ used for
plotting.

http://www.graphviz.org/
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Figure 7.3 shows theDL observable changes of the FACTS state in comparison

to the outage state. Here, the edge label “U” denotes increase in flow (equivalent to

the ↑ notation used in earlier chapters) while the “D” denotes decrease (↓ notation).

Abiding to the Definition (6), all edges under the subtree rooted at node 1 have

decreased flow. The subtree rooted at node 2, which is the sibling of node 1, inherit

through flip (see Definition 7).

Figure 7.3: The IQC State of the Experimental 31-bus Tree Network with DL Ob-
servations Compared to the Outage State

Due to the behavior of the swing bus, the link between nodes 0 − 1 does not

abide by Definition (6). This is considered a special exception to the observation

inheritance rules (Definitions 6 and 7) for power distribution networks. Between

the outage state and the FACTS state, there are no observable changes in the sub-

network rooted at node 9 since this subnetwork is outside the control of the IQC

at edge 1 − 3. The outage at edge 1 − 4 caused the subtree rooted at node 4 to be

isolated from the rest of the network, which resulted in the lone generator at node

9 to become a pseudo source node for this subnetwork.
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Figure 7.4(a) is theRN of the IQC in Figure 7.3. Similarly, Figure 7.4(b) is the

RH of the same IQC placement. Note that in all three cases, the set of DL observa-

tions of the network stays the same. Just by looking at the set of DL observations,

an adversary is not able to deduce which set of IQC placements produced the DL
projection. Thus, from a Nondeducibility perspective, the two replacement solu-

tions preserve the event confidentiality of the original IQC placement and setting.

The two replacement schemes can be applied recursively to produce addi-

tional replacement solutions. For the IQC placement in Figure 7.2(c), there are 31

replacement solutions that yield the same DL observation. Most of these are theo-

retical solutions; the number of IQC devices involved in a particular replacement

solution increases as the distance from the original location increases.

(a) RN for Figure 7.2(c) (b) RH for Figure 7.2(c)

Figure 7.4: The Upstream Replacement (RN) and Downstream Replacement (RH)
Replacement Schemes for Figure 7.2(c)
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For practical purposes, it is not possible to place such a high number of IQC

devices. A more feasible option would be to bound the solution space to a cer-

tain number of hops from the original location and only consider solutions that

comprise of an agreeable number of IQCs.

7.2. CALCULATING REPLACEMENT SOLUTIONS

The total number of replacement solutions for a mix-connected regular net-

work with a given IQC placement depends on the original placement and how it

partitions the given network. Based on the direction of replacement, upstream

or downstream, the network gets partitioned into two subnetworks – the RH–tree

and theRN–tree. The replacement solutions from these two subtrees are mutually

exclusive, meaning that there does not exist a replacement solution that include

devices from both subnetworks at the same time. Thus, from the point of view

of generating replacement solutions, the RN–tree and the RH–tree are mutually

exclusive.

In its most basic form, the formula to calculate the total number of all possi-

ble replacement solutions for regular mix-connected network with a given original

placement (inclusive the original placement) takes the form:

totalsol = downtreamsol +upstreamsol + originalsol (19)

Calculating downtreamsol is relatively straightforward. For RHs, the total

number of replacement solutions is the sum of the total number of permutations in

each subtree rooted under the original placement multiplied by each other and the

original placement solution. For example, consider the basicRH tree with a single-

level in Figure 7.5(a). Here, each subtree under node 10 has a single permutation.

The total number of replacement solutions equal 1 ∗ 1 = 1. Added to this is the

original placement between nodes 5 − 10, which brings up the total number of

nondeducible solutions to 2.

This process can be recursively applied to trees with higher levels. For ex-

ample, in Figure 7.5(b), the two subtrees under node 3 form a single-level subtree

by themselves with 2 replacement solutions each. The immediate result of this is
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that the total number of replacement solutions under the subtree rooted at node 3

is 2 ∗ 2 = 4. Thus, the total number of replacement solutions for a two-level tree is

replacements+ original which is 4 + 1 = 5.

(a) Basic RH with a Single-Level Tree (b) Basic RH with a Two-Level Tree

Figure 7.5: Basic Downstream Replacement (RH) Schemes

The RH solution calculation method described above can be use to calculate

the RN solution count as follows. Consider each subtree rooted under each direct

ancestor of the original placement, i.e., parent, grandparent, great-grandparent,

etc., as aRH subtree under theRN–tree. The subtree rooted under the parent node

is considered the first RH–subtree of the RN–tree. The subtree rooted under the

grandparent is the second RH–subtree of the RN–tree. With this numbering scheme

in place, the total number of replacement solutions at the ith RH–subtree of the

RN–tree and beyond can be expressed as follows:

upstreamsoli = soli + soli ∗upstreamsoli+1
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Here, soli denotes the number of replacement solutions in the ith RH–subtree

of the RN–tree. The general form of equation to calculate the number of replace-

ment solutions in the RN tree can be expressed as follows:

upstreamsol = sol1 + sol1 ∗ (sol2 + sol2 ∗ (sol3 + sol3 ∗ (. . .)) . . .))) (20)

With these formulae in place, consider the network in Figure 7.2(c) with the

given IQC placement between nodes 1 − 3. The RH–subtree rooted at node 3 is a

two level tree equivalent to Figure 7.5(b). Thus, downstreamsol = 4. The first RH–

subtree of the RN–tree consists of the series parent edge between nodes 0− 1. The

second RH–subtree of the RN–tree is rooted at node 0. Consider the two subtree

rooted at node 2. Technically, this is a tree-level RH tree. These are two two-

level subtrees each carrying 5 replacement solutions. Thus, the total number of

replacement solutions under the subtree rooted at node 2 equals 5 ∗ 5 = 25. This

in series with the other possible replacement between nodes 0-2 adds up to being

26 different replacement solutions for the secondRH–subtree of theRN–tree w.r.t.

the original placement. Thus:

upstreamsol = (sol1 + sol1 ∗ (upstreamsol2)) = (1 + 1 ∗ (26) = 27

For the regular mix-connected network with the given placement between

nodes 1 − 3 as in Figure 7.2(c), the total number of all possible replacement solu-

tions equals:

totalsol = downtreamsol +upstreamsol + originalsol

= 4 + 27 + 1

= 32

Using the same formulae, it is possible to calculate the total number of re-

placement solutions for a given placement at any level. As examples, consider two

additional original placements for the same 31-bus tree structured test networks

shown in Figure 7.6.
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In Figure 7.6(a), the original IQC placement is between the nodes 4−9, which

is at level 2 of the tree rooted at node 0. According to the Equation (19), totalsol =

1 + (1 + 1 ∗ (5 + 5 ∗ (26))) + 1 = 138. In Figure 7.6(b), the original IQC placement is

between the nodes 7− 16, which is at level 3 of the tree rooted at node 0. For this

case, totalsol = 0 + (1 + 1 ∗ (2 + 2 ∗ (5 + 5 ∗ (26)))) + 1 = 274. These values were verified

using independent simulation results. More specifically, Algorithm 3 was used to

calculate the total number of solutions for all possible initial IQC placements in

the 31-bus tree structured test network shown in 7.2(a) and these calculated values

matched with values derived using Equation 19.

(a) Given IQC placement at level 2 (b) Given IQC placement at level 3

Figure 7.6: 31-bus Test Network with Given IQC placement at level 2 and 3

7.3. NOTES ON CALCULATING REPLACEMENT SOLUTIONS

In general, Equation 19 can be used to calculate the total number of replace-

ment solutions for any given regular mix-connected network with a given initial

placement. The number of subtrees in a branch and the number of replacement



76

solutions in each branch will affect the total number of solutions. Care must be

taken to consider all possible permutations and combinations when dealing with

trees that are not balanced or complete. Thus, a manual, by hand calculation may

be required.
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8. THE CEEME ARCHITECTURE

Building on the theoretical foundations introduced in the previous chap-

ters, this chapter introduces the architecture of CEEME as a runtime enforcement

scheme. The security property being enforced is the Nondeducibility IFP with

power transmission control using FACTS devices in a smart grid network. FACTS

devices are equivalent to IQCs for the smart grid network. This network is only a

specific example of the architecture. It can be expanded to other problems.

Figure 8.1 illustrates the CEEME control architecture highlighting the aug-

mentation of the existing control architecture with the use of a “Compensator”

module. As explained previously in Section 3.1, FACTS devices are used in the

smart power distribution network to control the overall power flow of the network

in stressed situations (e.g. cascading failure scenario) and to provide fault toler-

ance. In [90], a max-flow based solution was proposed to find the control values

for FACTS devices in such situations.

Figure 8.1: The Compensating Events based Execution Monitoring Enforcement
(CEEME) Architecture
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A brief explanation of max-flow and its utility in power transmission control

is as follows. A flow network G = (V ,E) is defined as a directed graph where

each edge (u,v) ∈ E has a nonnegative capacity c(u,v) ≥ 0. Given a flow network

with a single source s and a single sink t, the maximum-flow (max-flow) problem

is to find a flow s → t that is maximum [98]. Power transmission networks can

be modeled as a flow network with power flowing from generators (sources) to

loads (sinks). The vertices V represent buses of the power network and the edges

represent transmission lines.

When a line outage occurs, the power system attempts to sustain the original

power flow by forcing flow on the residual transmission lines. This can overload

other lines and lead to further outages causing a cascading failure [99]. Max-flow

can be used to calculate a feasible maximum flow for the network that does not

result in line overloads preventing potential cascading failures [90]. FACTS de-

vices can be used to ensure that the solution proposed by the max-flow algorithm

is enforced in the real network as a load flow (power flow) solution. Since the max-

flow algorithm was designed for a single source-single sink model, Armbruster et

al. [90] proposed the use of a virtual source and virtual sink that connects all

generators and loads together respectively.

In the existing architecture shown in the top left corner of Figure 8.1, an

instantiation of max-flow algorithm, denoted as the max-flow module, calculates a

feasible maximum flow solution when the system suffers an outage. The calculated

line values are sent back to the system to be enforced using the FACTS devices

that are in place. From an event confidentiality perspective, the confidentiality

violation occurs during this enforcement step if the actions proposed to FACTS

devices produce deducible DL observations.

In CEEME architecture, the outage is instead reported to the “compensator”

module, which generates Nondeducibility secure settings for the FACTS devices.

Although this specific example uses the smart grid as an example, the proposed

architecture could produce secure settings for any IQC. The compensator module

consists of several submodules – Max-Flow, System Behaviors, Replacement So-

lutions, Selection, and Feasibility. A description of each submodule is provided
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below. In addition, it is assumed that the compensator module keeps an up-to-

date flow network abstraction of the real system which is readily available to all

the submodules. It is also assumed that the network is densely deployed, meaning

there is a sufficient number of FACTS devices deployed in the network to control

any target edge, or a FACTS device exists on each edge.

Max-Flow The max-flow submodule performs the same function it handled in

the original architecture, except it sends the calculated solution the Behavior

Enforcer and Replacement Solutions submodules. The Compensator achieves

the functional requirement , which is to mitigate the overload, by ensuring

that there exists a feasible max-flow solution, irrespective whether there is a

Nondeducibility secure alternative solution. For this reason, the solution is

also reported to the Feasibility submodule.

System Behaviors When given the original placement of FACTS devices (as listed

in the solution proposed by the Max-Flow submodule) and a list of target

lines to prevent observations from occurring on, the Behavior Enforcer mod-

ule will generate a list of system behavior compliant alternative max-flow

solutions. The number of system behavior solutions depends on the place-

ment of the change-origin and the targets.

Deciding what lines should be hidden is outside the scope of the compen-

sator module. This decision would be made by a governing entity such as

an operator, a system supervisor, or an engineer and fed as an external input

to the System Behaviors submodule. In the absence of such external inter-

vention, the target line can be queried from a database of previously used

effective lines. With each alternative solution proposed, the System Behav-

iors module suggests where to place enforcers to complement the original

placements.

Replacement Solutions This module works in parallel with the Behavior Enforcer

module. Based on the location of the original placements and how it parti-

tions the flow network, the Replacement Solutions module will produce a

list of replacement solutions for a given proposed solution.Two external ar-

guments – minimum and maximum tree depth – can be provided as external
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inputs to bound the solution space and limit the number of additional FACTS

devices required enforce the alternative solutions.

Selection This is the most important submodule in terms of Nondeducibility se-

curity yet, by definition, a very loosely defined one. The idea here is to take

all possible alternative solutions generated from the System Behaviors and

the Replacement Solutions submodules and select one particular solution as

the final compensating couple nondeterministically.

If the selected solution comes from the Behavior Enforcer side, its enforce-

ment in the actual system will have a limited number of DL observations

present. From Theorem (4) and (5), this solution is nondeducible secure. If

the selected solution comes from the Replacement Solution side, it will have

the same DL projection as the originally proposed solution of the Max-Flow

module. From Theorem (6) any one of the replacement solutions is nonde-

ducible secure. This means that the output of the Selection submodule will

always produce a nondeducible solution – a compensating couple for Nond-

educibility IFP.

Feasibility The Feasibility module is an optional submodule that can be used to

handle sparsely deployed networks or to filter solutions that only include a

certain subset of deployed FACTS devices. The feasibility module uses the

knowledge of theDL observation matrix to determine if compensating couple

proposed by the Selection submodule meets the functional requirements in

terms of outage mitigation and the Nondeducibility security requirement in

terms of DL projection, in comparison to the original solution generated by

the Max-Flow submodule.

8.1. STANDARD OPERATIONAL PROCEDURE

The standard operational procedure of handling line outages and the corre-

sponding state transitions are shown in Figure 8.2. The system moves to what is

termed an outage state from the initial steady state following a line contingency. At

this point, max-flow intervenes to calculate a feasible maximum-flow solution for

the system and to see if the use of IQCs can mitigate the outage. A greedy scheme
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Figure 8.2: The Standard Operational Procedure of Max-Flow with CEEME Exten-
sion

is used to enforce the max-flow solution by setting IQCs with the max-flow values

as its setting on the most overloaded line, until the contingency is mitigated. If the

enforcement is successful, the system moves to a new state termed the FACTS state.

The current architecture stops at this point since the functional requirements are

met. But CEEME takes the system a step beyond to what is termed the compensate

state. In addition to meeting the functional requirement, the compensate state, if

it exists, provides event confidentiality for the IQC settings either through System

Behaviors or Replacement Solutions.

8.2. SYSTEM BEHAVIORS ALGORITHM

Enforcing Egress Blocking and Ingress Blocking is comparatively straightfor-

ward (using FACTS devices) since both these System Behaviors follow a simple

flow restriction argument. If the initial flow value (the flow value before the origin

setting) is known on the target line (the line which the enforcer is on), the enforcer

can set that value to prevent externally observable changes from occurring.

Routing and Redistribution however are slightly complex to enforce. Here,

the enforcer(s) acts on behalf of a separate target line(s). The enforcer needs to set

values in such a way so that the target line does not show observable changes. This

can be achieved using a max-flow argument.

The solution generated by a max-flow algorithm will attempt to maximize the total

flow from source to sink by saturating as much edges in the network as possible to their

full capacities without overloading any of them. Thus, the solution directly depends on

the edge capacities. However, for the same system, it is possible to artificially manipulate
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line capacities on selected lines to make max-flow think that those lines have already

reached their maximum capacity. In such a situation, max-flow will avoid these lines

during its calculation.

This works to the advantage when enforcing Routing and Redistribution be-

haviors. The strategy is to find out what the load flow value was on the target

line before the origin setting and artificially fix that value as the new “fake” capac-

ity, before feeding the flow network to the max-flow algorithm. The new solution

generated by max-flow, if one exists, will have the target line at its pre origin set-

ting value or fake capacity and a max-flow compliant flow values for the rest of

the edges, including the enforcer line. This basically is an alternative max-flow

solution for the flow network. The argument is that, by enforcing the enforcer set-

ting, the target line will naturally but prematurely, saturate at its flow value that it

had before origin setting was committed. Thus, yielding no externally observable

changes when transiting from outage state to the FACTS state.

Figure 8.3 is the program flow chart for the System Behaviors submodule.

The first step is to calculate the enforcer set using the origin setting, the target list,

and the current state of the flow network. The Function CalcEnf orcers(N ,T ,O)

listed below, which encompasses all key attributes of each system behavior in Sec-

tion 6.1 defines the logic to do this. To recap, the logic is as follows.

Consider Target, Change Origin, and Enforcer as T ,O , and B respectively.

If O is not an element of the subtree rooted at T i.e., Subtree(T ) < O , the case

is eligible for either Ingress Blocking BIb or Routing Rb,t system behavior. Rb,t is

possible when none of T ’s siblings carry O in their subtrees. In this situation, the

siblings become the B15. If this is not the case, then T becomes B to form BIb. If

O is an element of the subtree rooted at T i.e., Subtree(T ) ∈ O the case is eligible

for Egress Blocking BEb or Redistribution Da,b. For Da,b, all T ’s children who does

not include O in their respective subtrees can be used as B. Otherwise, BEb can be

used by taking T as B.

Once the list of Bs is calculated, the next step is to add them as constraints.

This will result in a modified flow network with artificial capacities in B lines.

15If additional solutions are required, any of these selected siblings can be replaced by all its
child nodes following Definition 19
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Figure 8.3: The Program Flow Chart for System Behaviors Submodule

Thus, network → network∗. Another round of max-flow calculation is done on

network∗ to generate the flow values for B.

Algorithm 2 listed below takes in a directed weighted flow network, a change-

origin, a target (list), and load flow values of the system before the first change (ori-

gin setting) occurred as input arguments and produce a system behavior compliant

max-flow solution. The Function CalcEnf orcers() is used to determine which sys-

tem behavior is appropriate and useful given a origin and a target. The Function

GetLFV al() is used to find the pre-origin setting load flow value of the incoming

line(s) for a given vertex. The Functions SetEdge() and GetEdge() are used to get

and set the edges respectively. The Function RunMaxFlow() produce a max-flow

solution for a directed weighted flow network given as its lone argument.

8.3. COMPLEXITY ANALYSIS: SYSTEM BEHAVIORS

Theorem 7. The cost of calculating the applicable system behavior for a given change

origin O and a target T in directed weighted flow network N = (V ,E) where V is a set

of vertices and E is a set of edges is O(| V | + | E |).
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Algorithm 2: Behavior Enforcement Algorithm
input : A directed weighted flow network N = (V ,E) where V is a set of

vertices and E is a set of edges, the pre-origin setting load flow
values of N LN , a change-origin O , a target T

output: A system behavior compliant max-flow solution S

B := CalcEnforcers(N ,T ,O) /* Calculate the enforcer set */

`N := N /* Make a copy the network for modifications */

foreach b ∈B do
/* Set the pre-origin setting flow value as the new

capacity for each enforcer line */

lf V al := GetLFVal(LN ,b)

edge := GetEdge( `N .E,b)
edge.capacity := lf V al

`N .E← SetEdge(N .E,b,edge)
end
S := RunMaxFlow( `N ) /* Calculate a max-flow solution for the

modified network */

return S

Proof. The problem of calculating the system behavior for a given O and a T can

be reduced to a tree search problem as follows. The objective is to find T ’s rela-

tion to O in terms of their placement. In other words, figuring out whose subtree

contains the other.

In the worst case, T could be the root of the representative tree of the net-

work while O is one of the leaf nodes. In this case, the search cost is | V | + | E |
since the algorithm must visit every node V and every edge E in the network.

8.4. REPLACEMENT SOLUTIONS ALGORITHM

Calculating all possible replacement solutions for a given initial placement

is naturally a recursive process. For any given placement on a regular structure,

there could exist either an RN or a RH or both. Each of these candidate solutions

can be further explored for additional solutions by applying replacement schemes

on individual enforcers in each candidate solution recursively.
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Figure 8.4 is the program flow chart for finding replacement solutions. The

candidate list is basically the elements of the most recent placement considered

for replacement. The idea is to recursively replace each enforcer B in every re-

placement solution found until there aren’t any more possible combinations left.

Every B partitions the network into two subnetworks. Thus, the recursive step

needs to be applied on both subtrees. The solution container accumulates replace-

ment solutions as the algorithm makes it way through the network. Avoidance list

is used to prevent replacement scheme from reconsidering placements that have

been already considered or found to be solutions in other combinations. Thus the

minimum (min) and maximum (max) depths define the upper and lower bounds

of the candidate search space. The height is zero at the root, the source node in

this case, and increase downwards as the tree grows.

Figure 8.4: The Program Flow Chart for Replacement Solutions Submodule
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CalcEnforcers(N ,T ,O)
input : A directed weighted flow network N = (V ,E) where V is a set of

vertices and E is a set of edges, the pre-origin setting load flow
values of N LN , a change-origin O , a target T

output: A set of enforcer nodes B

B := ∅
begin

/* If the origin is not a descendent of the subtree rooted

at target, consider either Routing or Ingress Blocking

system behavior */

if O < Subtree(T ) then
/* If none of the siblings of target include the origin

in their subtree, apply Routing system behavior at all

siblings of target */

if O < Subtree(T .siblings) then
foreach T .sibling do

B←B
⋃

T .sibling
end

else
/* If one of the siblings of the target does include

origin in its subtree, apply Ingress Blocking at the

target */

B←T

end
else

/* If the origin is a descendent of the subtree rooted

at target, consider either Redistribution or Egress

Blocking system behavior */

if ∃T .child : O ∈ Subtree(T .child) then
/* Apply Redistribution at child nodes of target

where the origin is not in any of their subtrees */

foreach T .child : O ∈ Subtree(T .child) do
B←B

⋃
T .child

end
else

/* Apply Egress Blocking at the target */

B←T

end
end
return Tp

end
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Before exploring the RN subtree, the candidate enforcer needs to be checked

against the min height to see if it is below the upper bound. It this test is suc-

cessful, B is replaced with its immediate RN (see Figure 7.1(a)). At this step the

recursion goes through the newly found candidate solution and replaces its com-

ponent enforcers one by one, and the B which lead to the new solution becomes

the avoidance set for the current iteration. In addition, the newly found candidate

solution is added to the list of solutions found up to this point as a valid replace-

ment solution.

If the upper bound depth check fails, the candidate is checked against the

lower bound, the max depth, and is used to find a RH replacement (see Figure

7.1(b)). If a valid solution is found, the solution container is updated with the new

solution, the original placement solution is marked as the avoidance set allowing

a recursion on the newly found RH solution.

The replacement solution finder algorithm is listed in Algorithm 3 below. A

directed weighted flow network, a solution list container which stores all possible

solutions, a list of candidate edges for which replacement solutions are looking, a

list of placement avoidance edges, a minimum placement depth, and a maximum

placement depth are passed to the algorithm. The placement avoidance list is

adopted to prevent getting edges selected repeatedly in different solutions. Speci-

fying a maximum and minimum placement depth makes the solution search space

smaller. Thus, solutions are searched bound to a given confined area.

Starting with the initial placement, which is first candidate solution, two re-

placement solutions, RN and RH are calculated if they lie within the max and min

depths. Functions Replaceupstream() and ReplaceDownstream are used for this

purpose respectively; These two functions behave the same way in terms of recur-

sion, but traverse opposite directions from the initial placement.

Having a nonempty result from Function ReplaceUpstream() consequent for

a recursive algorithm invocation. This newly found result becomes the candidate

list for the recursive call. In order to prevent traversing the tree downward, across

the edge which called the ReplaceUpstream(), the edge is added to the placement

avoidance list. This recursive process will traverse the tree upward from the orig-

inal edge up to the minimum and maximum level.
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Algorithm 3: Replacement Solution Finder Algorithm:
FindRepSolSet(N ,S ,EC ,ES ,Mind ,Maxd)

input : A directed weighted flow network N = (V ,E) where V is a set of
vertices and E is a set of edges, a solution list container S , a list of
candidate edges EC , a list of placement avoidance edges ES ,
minimum placement depth Mind , maximum placement depth
Maxd

output: A solution set of device placements S

begin
/* Try to replace each enforcer in every replacement

solution with both upstream and downstream replacements */

foreach ec ∈ EC do
/* Check height upper bound for upstream replacement */

if GetDepth(ec) > Mind then
/* Find an upstream replacement candidate. If a

valid one exists, add to solution container */

result← ReplaceUpstream(N ,ec,EC ,ES)
if result , ∅ and result <S then

/* Recurse on the candidate */

S ← FindRepSolSet(N ,S + result,result,ES +
ec,Mind ,Maxd)

end
end

/* Check height lower bound for downstream replacement

*/

if GetDepth(ec) < Maxd then
/* Find an downstream replacement candidate. If a

valid one exists, add to solution container */

result← ReplaceDownstream(N ,ec,EC ,ES)
if result , ∅ and result <S then

/* Recurse on the candidate */

S ← FindRepSolSet(N ,S + result,result,ES +
ec,Mind ,Maxd)

end
end

end

return S

end
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Function ReplaceUpstream(N ,T ,EC ,ES)
input : A directed weighted flow network N = (V ,E) where V is a set of

vertices and E is a set of edges, a target device to replace T , a list
of candidate edges EC , a list of placement avoidance edges ES

output: An Upstream Replacement solution candidate

begin
result← EC /* Start building a candidate with using the

target as a reference */

/* Add all parents of target not in the avoid list to the

candidate */

foreach T .parent do
if T .parent < ES then

result← result+ T .parent
end

end

/* Add all siblings of target not in the avoid list to the

candidate */

foreach T .sibling do
if T .sibling < ES then

result← result+ T .sibling
end

end

/* Check if this combination is already considered. If

not finalize the candidate by removing the target */

if result , EC then
result← result−T

else
/* If not unique combination is invalid */

result←∅
end

return result
end
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Function ReplaceDownstream(N ,T ,EC ,ES)
input : A directed weighted flow network N = (V ,E) where V is a set of

vertices and E is a set of edges, a target device to replace T , a list
of candidate edges EC , a list of placement avoidance edges ES

output: An Downstream Replacement solution candidate
begin

result← EC /* Start building a candidate with using the

target as a reference */

/* Add all children of target not in the avoid list to the

candidate */

foreach T .child do
if T .child < ES then

result← result+ T .child
end

end

/* Check if this combination is already considered. If

not finalize the candidate by removing the target */

if result , EC then
result← result−T

else
result←∅

end

return result
end
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Similarly, ReplaceDownstream() traverse the tree downward from the origi-

nal edge up to the maximum allowed level. As an observation, recursive callings of

ReplaceUpstream() may call both ReplaceUpstream() and ReplaceDownstream() at

the next level, while ReplaceDownstream() only calls ReplaceDownstream() in its

subsequent calls. This difference is clearly distinguishable in the function imple-

mentations forRN andRH listed below, where Function ReplaceUpstream() iterates

on both parents and siblings while Function ReplaceDownstream() iterates only on

its children. After the recursive step returns, all the remaining edges in the candi-

date list of the previous call continuous to follow the same procedure. The solu-

tion set that returns once the all the candidate in the first set has been considered

consists of all possible solutions under the constraints of the maximum-minimum

depth and placement avoidance set.

8.5. COMPLEXITY ANALYSIS: REPLACEMENT SOLUTIONS

Theorem 8. The cost of calculating all replacement solutions for a given initial place-

ment in a directed weighted flow network N = (V ,E) where V is a set of vertices and E

is a set of edges is O(E2).

Proof. Consider the height of the initial placement from the root as h, the height

of theRH–tree as hmax−h = hd , height of theRN–tree as h−hmin = hu . The root is at

height hmin while the leaf nodes are at height hmax. Thus, the total time complexity

of finding all replacement solutions with the initial placement at height h is,

T (h) =D(hd) +U (hu) (21)

where D(hd) is the time complexity of finding RH solutions and U (hu) is the

time complexity of finding RN solutions. For D(hd), a recurrence relation can be

written as follows:

D(hd) = k ·D(hd − 1) + c · f (hd) (22)

The cost of calculating RH solutions for a tree of height hd is the sum of

calculating the cost for the subtrees rooted at each of the k child nodes below the
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original placement plus the overhead involved in transforming the problem into

sub problems f (hd). The height of each child node is hd−1 thus, the cost associated

with each subtree is D(hd − 1). c > 0 is a constant. The recurrence in Equation (22)

can be solved using the recursion-tree method as follows:

D(hd) = k ·D(hd − 1) + c · f (hd)

= k · [k ·D(hd − 2) + f (hd − 1)] + c · f (hd)

= k2 ·D(hd − 2) + k1 · f (hd − 1) + c · f (hd)
...

= khd−1 ·D(1) + khd−2 · f (2) + khd−3 · f (3) + . . .+ c · f (hd) (23)

The cost of calculating replacement solutions at the base case D(1) = 1. Also,

k is a constant that is fixed for given topology. The amount of work done to trans-

form the problem into subproblems ∀0 ≤ i ≤ hd −2 : f (hd − i) is constant time O(1)

since to move from height hd to hd − 1, the original placement is moved to child

nodes. Thus, the Equation (23) can be reduced to the following form:

D(hd) = khd−1 + [1 + k + k2 + k3 + . . .+ khd−2]

D(hd) =
hd−1∑
i=0

ki

=
khd − 1
k − 1

(24)

ForU (hu), the total time complexity is the sum of calculatingRH solutions for

each of the RH–subtrees of the RN–tree. Each time the recursion moves a level up

the tree, there are (k − 1) siblings that are considered for RH. Thus, the recurrence

equation takes the following form:

U (hu) = (k − 1) ·D(hd) +U (hd + 1) + c′ · g(hu − (hu − 1))

= (k − 1) ·D(hd) +U (hd + 1) + c′ · g(1) (25)
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Using recursion-tree method, the recurrence in Equation (25) can be solved

as follows:

U (hu) = (k − 1) ·D(hd) +U (hd + 1) + c′ · g(1)

= (k − 1) ·D(hd) + (k − 1) ·D(hd + 1) +U (hd + 2) + c′ · g(2) + c′ · g(1)

= (k − 1) ·D(hd) + (k − 1) ·D(hd + 1) + . . .

+ (k − 1) ·D(hd + hu) + c′ · g(hu) + . . .+ c′ · g(1)
...

= (k − 1) ·
hu∑
j=0

D(hd + j) + c′ ·
hu∑
l=1

g(l) (26)

Here also, k − 1 is a constant that is fixed for given topology. c′ > 0 is also a

constant. the amount of work done to transform the problem into subproblems

∀1 ≤ l ≤ hu : g(l) is constant time O(1) since to move from height hd to hd + 1,

the original placement is moved to siblings and the immediate parent. Thus, the

Equation (26) can be reduced to the following form:

U (hu) = (k − 1) ·
hu∑
j=0

D(hd + j) + c′ ·
hu∑
l=1

g(l)

= (k − 1) ·
hu∑
j=0

D(hd + j) + c′ · hu (27)

The combination of Equation (24) and Equation (27), which is the total time

complexity T (h), is given in Equation 28. Note that hd + hu = hmax − hmin, which

is the height of the original tree that is searched for replacement solutions. hmax −
hmin ' lgk(E). (k −1) is a constant for a given topology and hu = hmax −hmin −hd . In

worse case scenario, hd = 0 and hu = hmax − hmin, which is bounded by lgk(E). For

k > 0, 1
k−1 < 1.
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T (h) =D(hd) +U (hu)

=
khd − 1
k − 1

+ (k − 1) ·
hu∑
j=0

D(hd + j) + c′ · hu

=
khd − 1
k − 1

+ (k − 1) ·
hu∑
j=0

khd+j − 1
k − 1

+ c′ · hu

=
khd − 1
k − 1

+
hu∑
j=0

khd+j − 1 + c′ · hu

=
khd − 1
k − 1

+
hu∑
j=0

khd+j −
hu∑
j=0

1 + c′ · hu

=
khd − 1
k − 1

+
hu∑
j=0

khd+j + (c′ − 1) · hu

=
khd − 1
k − 1

+
khd (khu+1 − 1)

k − 1
+ (c′ − 1) · hu

=
k · khd+hu − 1

k − 1
+ (c′ − 1) · hu

=
k · klgk(| E|)

k − 1
− 1
k − 1

+ (c′ − 1) · lgk(E)

=
k · klgk(| E|)

k − 1
+C · lgk(E)

=
k

k − 1
· | E | +C · lgk(E)

= C”· | E | +C · lgk(E)

=O(| E |) (28)

Thus, the total complexity in finding replacement solutions for a given tree

with E edges is bounded by O(E). However, this calculation has to be performed

over all ec ∈ EC , which in worst case, has all edges of the tree. Thus, the time

complexity of the replacement solution algorithm is bounded by O(E2).
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9. CEEME ON THE IEEE 118-BUS SYSTEM

As a proof of concept, this chapter presents the application of System Behav-

iors and Replacement Solutions schemes on several well studied cascading failure

scenarios in the standard IEEE 118-bus test system. At a conceptual level, the two

confidentiality models presented in this work should be applicable to irregular

structures with little to no modification since the flow conservation rule applies

to irregular flow networks the same way it applies to regular flow networks. Both

System Behaviors and Replacement Solutions models are based on a flow conser-

vation rule thus, a hypothesis can be made that System Behaviors and Replacement

Solutions are applicable for irregular networks. However, the algorithms that have

been proposed to calculate and them would require some modification before they

could be readily used. For that reason, CEEME in its present implementation can

not be directly applied to irregular structures.

Even though these standard test systems fall outside the regular structures

considered in this dissertation, techniques exist in literature to parse irregular

structures into regular series-parallel digraphs [100–102]. This is in fact the next

logical extension to this body of work – analyze irregular structures under com-

pensating events and IFPs. Even without doing a rigorous reduction, it is still

possible to identify mix connected flow networks within the 118-bus test network,

which was used in the analysis below.

Figure 9.1 shows the standard IEEE 118-bus test system16. A thorough cas-

cading failure scenarios analysis for this test system has been done in [103, 104].

Out of these, this work considers test cases 4− 5, 37− 39, and 47− 69.

Figure 9.2 is the flow network representation of the 118-bus system. Here,

the vertices (V ) and edges (E) represent buses and transmission lines respectively.

Buses with generators attached are represented in orange while buses with loads

attached are represented in Brown. The yellow colored node 69 is the swing bus

of the system. Dotted edges represent no power flow, Red colored edges repre-

sent overloaded lines, Green colored edges represent IQC controlled lines. Blue

16Image Source: Power Systems Test Case Archive http://www.ee.washington.edu/research/
pstca/

http://www.ee.washington.edu/research/pstca/
http://www.ee.washington.edu/research/pstca/
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colored edges with a label “U” represent an increase in flow in comparison to an-

other state as seen by a DL observer. Similarly, brown colored edges with a label

“D” represents a decrease in flow. A change in observation is considered anything

above a 1% difference in readings between states. This ensures a high resolution

in DL observability. For this system FACTS devices act as the IQCs.

9.1. LINE OUTAGE AT E4−5

Figure 9.3 shows the sequence of state transitions as the system goes through

the operational procedure listed in Section 8.1, following the line outage at e4−5.

Figure 9.3(a) is the outage state with e5−11 indicating a line overload. A greedy

FACTS placement on the overloaded line mitigates the overload [104] as shown

in Figure 9.3(b). The comparison is made against the outage state to show the DL
observations.

Due to the irregular connectivity, the DL observations of the initial FACTS

placement do not propagate through the network in the same manner regular net-

works17. However, the inheritance rules defined under Section 3.1.3 still hold. The

DL observation on e5−11 flips for the sibling e5−6 and replicates for e5−8. The main

source of power in this case is flowing from the generator at v10. However, between

the outage state and the FACTS state, the flow from the generator does not change.

As a result, the decrease in flow on e5−8 is attributed to the increase in flow in e8−30.

The excess power flow to v11 through the path v8→ v30→ v17→ v18→ v12→ v11

to meet its load demand.

Figure 9.3(c) shows the first RN of the FACTS device at e5−11. Except for a

flow decrease from v69 → v68 → v65, there are no DL observable changes in this

state in comparison to the FACTS state in Figure 9.3(b). What this means is that

the original placement shown in the FACTS state has at least one nondeducible

RN solution since both the original placement and its RN produce the same DL
projection.

However, theRH was not as successful in obfuscating the initial FACTS place-

ment as shown in Figure 9.3(d). Placing a FACTS on e4−11 is impossible it would

restrict the sink node at v4 from meeting its load demand. The unintended side

17Only the subnetworks withDL observations are shown in the subsequent figures of this chapter
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effect of placing a FACTS device on the only eligibleRH candidate at e11−13 caused

the initial overload to reappear. Not only that, there are a lot of DL observation

differences between the original placement and the RH.

Because the DL projection of the change-origin is limited to a subnetwork,

there are only a handful of meaningful targets for System Behaviors. e8−30 is one of

them. With v10 being the primary source, the relationship between the target and

the origin allows a Ingress Block at e8−30. This is illustrated in Figure 9.3(e) with a

comparison made against the outage state. The target, however, is in a critical path

between v10 → v11 and would not be able to hide all DL observations under the

subtree rooted at v30. Yet, there is a significant reduction in DL observations due

to BI30, especially in subnetworks that branch off the critical path such as v26→ v30

and v15→ v17.

A Redistribution at v6 with target at v5 is illustrated in Figure 9.3(f). The DL
projection of this state is very similar to that of BI30 in Figure 9.3(e), with only a

few exceptions, most notably, the subtree that spans out v26. The similarities in

these two states outweigh the differences by a considerable margin. Additionally,

there is still a considerable reduction in the overall number of DL observations

compared to the FACTS states. Interestingly enough, according to Theorems (4)

and (5), these are not System Behaviors from the same Nondeducibility family.

This observation not only reenforces the earlier hypothesis, but also hints at the

existence of a super family of nondeducible System Behaviors for irregular struc-

tures. Based on Theorem 4, a simple nondeducible counterpart for Redistribution

D6,5 would be Egress Blocking BE5 . It is highly likely that all three of these System

Behaviors will produce nondeducible solutions in irregular structures.

9.2. LINE OUTAGE AT E37−39

Figures 9.4 and 9.5 show the sequence of state transitions as the system goes

through the operational procedure following a line outage at e37−39. Figure 9.4(a) is

the outage state with e37−40 indicating a line overload. A greedy FACTS placement

on the overloaded line mitigates the overload [104] as shown in Figure 9.4(b). The

comparison is made against the outage state to show the DL observations.
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(a) Outage State (b) FACTS State

(c) RN (d) RH

(e) BI30 (f) D6,5

Figure 9.3: Line Outage e4−5 States
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Figure 9.4(c) shows the RN of the FACTS device at e37−40. In comparison

to the respective FACTS state in Figure 9.4(b), this replacement only has a small

number of DL observable changes. Even the ones that appear in Figure 9.4(c) are

miniscule in comparison to the outage state. Thus, the original placement shown

in the FACTS state has at least one nondeducible RN solution, which in turn pre-

serves event confidentiality and Nondeducibility IFP.

Similar to the line outage e4−5 case study above, theRH fails since the number

of DL observations significantly increased in comparison to the FACTS state. This

is shown in Figure 9.4(d). From a theoretical perspective, placing a FACTS device

on e39−40 is not possible since v39 is a sink node. As an alternative, the other paths

to v40 were restricted to try to mimic a RH. Unfortunately, this only resulted in

producing massive amounts of additional DL observations.

In Figure 9.4(e), an Egress Block at v38 (BE38) was considered. This produced

favorable results in one incoming path by removing all DL observations in e30−38,

e26−30, e25−26, e23−24. The node v38 is irregular by nature since there are two parent

nodes – v30 and v65. TheDL observations on the path through v65 however, did not

disappear as expected.

Figure 9.4(f) shows Ingress Block BI44 at v44. As expected, DL observations

in the path v45 → v44 → v43 were removed by this system behavior. In addition,

observations in the path v37 → v34 → v43 were also removed mimicking a D34,37.

This is another instance where the two mutually exclusive nondeducible system

behavior families for regular network overlap; Redistribution and Ingress Blocking

are from different nondeducible system behavior families. Another interesting

observation is that these two System Behaviors are on two different paths that lead

to a shared sink.

Figure 9.5(a) shows Ingress Block BI64 at v64. The expected outcome of this

blocking behavior is to remove the DL observations in the subtree rooted at v64.

This was successfully achieved as shown in the corresponding illustration. The

nondeducible counterpart of BI64, which is R66,64 also achieved the same goal with

very few discrepancies in DL projection. In comparison, most differences in DL
projection occur around v69.
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(a) Outage State (b) FACTS State

(c) RN (d) RH

(e) BE38 (f) BI44

Figure 9.4: Line Outage e37−39 States I



103

(a) BI64 (b) R66,64

(c) BE38 +BI44 (d) BE38 +BI44 +BI64

Figure 9.5: Line Outage e37−39 States II
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To the naked eye, it can be seen that the different System Behaviors elimi-

nate disjoint sets of DL observations. Two experiments were carried out to see if

composing System Behaviors can eliminate a larger set of observations. In the first

one, BE38 +BI44 were enforced together. The result of this composed system behavior

enforcement is shown in Figure 9.5(c). Interestingly, this did produce the intended

result. Figure 9.5(c) in comparison to Figures 9.4(e) and 9.4(f) is a good example

for this. Going a step further, a third system behavior BI64 was composed with the

BE38 +BI44 to produce BE38 +BI44 +BI64 as shown in Figure 9.5(d). Although the num-

ber of System Behaviors significantly reduced, restricting the flow in basically all

outgoing branches of v65 caused the original overload to reappear. Having said

that, it is encouraging to observe the possibility of composing System Behaviors to

achieve better results in terms of Nondeducibility and DL projection pruning.

9.3. LINE OUTAGE AT E47−69

Figure 9.6 shows the sequence of state transitions as the system goes through

the operational procedure following the line outage at e47−69. Figure 9.6(a) is the

outage state with e47−69 indicating a line overload. As noted in [104], the greedy

FACTS placement approach can not be directly applied in this case here since more

lines end up overloading. Max-flow assumes a lossless load flow system. The

actual power distribution system however, is not without losses in lines due to

reactive power. However setting values just below what max-flow suggested on

e65−66, e47−49, and , e48−49 will remove all overloads from the system [104]. This is

shown in Figure 9.6(b), which is compared against the outage state to show the DL
observations.

Figure 9.6(e) shows Ingress Block BI44 at v44. The expected outcome of this

blocking behavior is to remove the DL observations on the path v45 → v44 → v43,

which has been successfully achieved. Similar to the earlier analysis on Figure

9.4(f), additional DL observations on the path v37 → v34 → v43 have also disap-

peared.

The Ingress Block BI64 shown in Figure 9.6(c) not only removed all DL obser-

vations of the subtree rooted at v64 but also the ones of the subtree rooted at v66

with the exception of the v49−66 outbound branch. The nondeducible counterpart
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of BI64, which is R38,64 shown in Figure 9.6(d) also removed DL observations of the

subtree rooted at v64. However, the latter produced a line overload in e34,43 which

was mainly due to the flow decrease from v26→v38
that resulted in a flow increase

in the path v38→ v37→ v34→ v43.

A system behavior composition of BI44 + BI64 produced favorable results in

terms of further reducing the number of DL observation in comparison to enforc-

ing them individually. This is shown in Figure 9.6(f).
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(a) Outage State (b) FACTS State

(c) BI64 (d) R38,64

(e) BI44 (f) BI44 +BI64

Figure 9.6: Line Outage e47−69 States
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10. CONCLUSIONS AND FUTURE WORK

10.1. CONCLUSIONS

This research is driven by the desire to develop a fundamentally sound CPS

security framework that accounts for the inherent physical observability of cyber-

physical interactions, with a far-reaching objective of developing a science of self-

obfuscating systems based on the composition of simple building blocks. To this

end, the most important contribution of this dissertation is the development of

a foundation for a CPS security framework by taking IFP as a suitable medium.

Specific attention was given to DH event confidentiality violations, through DL
external observations. The problem was theoretically formulated and modeled as

a Nondeducibility security violation that arises due the inherent cyber-physical

interaction of the system.

Most, if not all, realistic CPS systems are irregular structures with complex

inter and intra connections. Analyzing and characterizing such systems is not

an easy feat by any means simply due to the complexity involved. From a secu-

rity standpoint, the lack of readily available established security models for such

systems only worsens the situation and demands a more fundamental bottom up

approach of building a theory. Thus, this work followed the natural progression

of system analysis of going from regular structures to irregular structures.

10.2. CHAPTER BY CHAPTER CONTRIBUTIONS

• There are different substructures even within regular structures based on

their connectivity – series, parallel, and mix (series-parallel) connected. In

Chapter 3, regular structures were analyzed for their inherent ability to leak

DH information to DL external observers in terms of violating the Nonde-

ducibility security property. This chapter:

– Expressed the physical flow of the system in terms of a system invariant

that describes both the commodity flow (physical) and the information

flow (cyber).
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– Analyzed event confidentiality violation in regular series, parallel, and

mix connected networks.

– Derived the minimum number of observers required for Parallel net-

works and extended it to mix connected networks.

– Derived theorems on series characteristics and partial deducibility of

mix connected networks.

– Defined an algorithm to construct a DL observation matrix for a given

mix connected network.

• The heart of this dissertation is Chapter 4 where the novel concepts of com-

pensating couple and its enforcement model the compensating automata are

formally defined. The key contribution of this chapter is the introduction

of the CEEME framework including its theoretical foundation. What makes

the proposed framework attractive is its ability to handle a wide variety of

properties, irrespective of their functional or non-functional (e.g. security)

nature through the newly defined P-compensate property. In this body of

work P was the Nondeducibility IFP.

• In Chapter 5, the self-obfuscation characteristics of mix-connected networks

were analyzed. The key contribution of this chapter is showing how com-

pensation can be used to force obfuscate observations in systems by combin-

ing multiple actions. Conceptually, this is a significant result as it naturally

provides the basis for implementing the compensating couple as a < action-

correction(s) >pair.

• Chapters 6 and 7 presented two confidentiality models for CPSs. In essence,

these are two ways of instantiating the compensating automata. The partic-

ular property that was enforced was the Nondeducibility-compensate prop-

erty for regular structures. They key contribution in 6 is the formulation of

System Behaviors while in Chapter 7 its the Replacement Solutions concept.
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• Chapter 8 assembled all the theoretical foundations introduced in this body

of work into an architecture that can be used to provide event confidential-

ity. In Chapter 9 the proposed architecture was compared against an exist-

ing architecture which is used to mitigate cascading failures in a smart grid

environment. Also provided are the algorithms to calculate replacement so-

lutions and System Behaviors for a given, possibly IFP violating, (Nonde-

ducibility security in this case), DH action.

10.3. ACHIEVED RESEARCH GOALS

Within the scope and time frame of this dissertation, three goals were set as

deliverables.

1. To develop Confidentiality Models for CPSs

2. To develop Information Flow architectures for CPSs

3. To develop EM enforceable event compensation for CPSs

10.3.1. Confidentiality Models. The first phase of developing a CPS confi-

dentiality model was to express the physical flow of the system in terms of a system

invariant that describes both the commodity and the information flows, which was

done in Chapter 3. In doing so, a generalized set of theories that explain the rela-

tionship between connectivity and information flow violation was also presented.

Along with confidentiality leakage analysis, an implementation of EM en-

forcing event confidentiality required algorithms that could identify possible com-

binations of event compensations within a finite amount of time. Algorithm (1)

fulfilled half of this objective by being able to identify possible candidate solutions

for regular networks. Algorithms (2) and (3) fulfilled the other half by providing

the ability to search the candidate space for suitable of compensating couples. This

was generalized into an integrated flow model that incorporates algorithmic infor-

mation flow with physical commodity flow with the CEEME framework in Chapter

8.
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10.3.2. Information Flow Architectures for CPSs. Once confidentiality

models were established, the next step was to develop an information flow secu-

rity based generalized framework for cyber-physical systems. The compensating

automata was proposed as the primary approach towards this goal and was later

materialized as a runtime enforcement mechanism in Chapter 8. This was done

by incorporating the current implementation of the max-flow based FACTS control

[105] in enforcing the Nondeducibility–compensate property for the smart power

grid.

10.3.3. EM Enforceable Event Compensation for CPSs. From an opera-

tional standpoint, the primary contribution of this work is on integrating cyber

control with distributed decision making for CPSs, while maintaining the func-

tional and information flow security requirements. By and large, cyber decisions

of a CPS can be due to economical reasons (energy management), functional rea-

sons (avoid cascading failures), control reasons (scheduling), or social reasons (re-

sponse to a natural disaster). Thus, the proposed concept of event compensation

must have the flexibility to address different needs of the system while being a

part of the overall distributed cyber algorithm. As an example, Chapter 9 showed

how the functional needs of a CPS can be still met while maintaining the event

confidentiality.

10.4. FUTURE WORK

There are many exciting ways to extend the work presented in this disserta-

tion. Some of the key areas of future research are enumerated as follows.

10.4.1. Theoretical Extensions. This is probably the most important and

obvious extension. Current theoretical basis only covers regular networks. For a

more thorough and comprehensive understanding of practical CPS, this necessar-

ily has to be extended to cover irregular structures. There are two approaches.

One is the use the same methodology as in this dissertation by considering sim-

ple building blocks to build complex interconnections. The other option is to

use series-parallel reduction techniques to reduce irregular networks into regu-

lar structures.
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By definition, the compensating automata is used to enforce P-compensate

property where P could be a multitude of other interesting system properties

such as reliability, stability, or even availability through fault tolerance. It would

be also interesting to see how the proposed event compensation based framework

could be used to enforce some of these other notable properties.

Another theoretical aspect not handled under the current work is the possi-

bility of multiple simultaneousDH actions and their effect on enforceability. There

is every possibility that the current single DH action confidentiality models would

hold well against multiple counterparts.

Currently, System Behaviors and Replacement Solutions are considered in

isolation. It would be interesting to see how they function when considered in

combinations. For example, questions such as how system behavior on replace-

ment solutions different from replacement solutions on system behaviors, or in

what situations can and should the combinations considered may are worth ex-

ploring. Chapter 9 provides certain amount of preliminary evidence of success for

such combinations.

10.4.2. Operational Limitations. Current work is based on a dense deploy-

ment18 of IQCs. A more practical approach would be to consider sparse deploy-

ment, meaning the number of IQCs available is less than the number of edges in

the network, or there are edges without smart control capability. Such a limitation

would naturally pave the way for partially nondeducible (or deducible) systems. It

would be interesting to determine an optimal placement strategy that maximizes

Nondeducibility under limited resources.

Another aspect would be optimal nondeducible solutions in system behav-

ior and replacement solution schemes. Hypothetical concepts such as partial up-

stream or downstream replacement schemes can be used to strengthen the pro-

posed CPS security model making it more practical.

10.4.3. Framework Improvement. The overhead associated with the com-

pensator module can be reduced by improving the Selection and Feasibility mod-

ules in the CEEME architecture with grid intelligence. In other words, a pervasive

18see Chapter 8 for a description
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approach to system engineering. Such improvements may be driven by economi-

cal, social, or resource availability reasons. In line with this extension is the run-

time analysis of the proposed work in a real CPS setup.

10.5. CONCLUDING REMARKS

It is the Author’s belief that the work in this dissertation will spearhead a

healthy discussion and a fresh push towards developing security models that ac-

count for all aspects of CPSs. By all means, the work in this dissertation does not

present a comprehensive CPS security model. Yet, it does serve as a first step-

ping stone towards a new CPS security paradigm that can be vastly improved with

further research, analysis, and understanding of CPS dynamics.
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