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ABSTRACT 

Optimal control of nonlinear systems is in fact difficult since it requires the 

solution to the Hamilton-Jacobi-Bellman (HJB) equation which has no closed-form 

solution.  In contrast to offline and/or online iterative schemes for optimal control, this 

dissertation in the form of five papers focuses on the design of iteration free, online 

optimal adaptive controllers for nonlinear discrete and continuous-time systems whose 

dynamics are completely or partially unknown even when the states not measurable.  

Thus, in Paper I, motivated by homogeneous charge compression ignition (HCCI) 

engine dynamics, a neural network-based infinite horizon robust optimal controller is 

introduced for uncertain nonaffine nonlinear discrete-time systems. First, the nonaffine 

system is transformed into an affine-like representation while the resulting higher order 

terms are mitigated by using a robust term. The optimal adaptive controller for the affine-

like system solves HJB equation and identifies the system dynamics provided a target set 

point is given.  Since it is difficult to define the set point a priori in Paper II, an extremum 

seeking control loop is designed while maximizing an uncertain output function. 

On the other hand, Paper III focuses on the infinite horizon online optimal 

tracking control of known nonlinear continuous-time systems in strict feedback form by 

using state and output feedback by relaxing the initial admissible controller requirement. 

Paper IV applies the optimal controller from Paper III to an underactuated  helicopter 

attitude and position tracking problem.  In Paper V, the optimal control of nonlinear 

continuous-time systems in strict feedback form from Paper III is revisited by using state 

and output feedback when the internal dynamics are unknown.  Closed-loop stability is 

demonstrated for all the controller designs developed in this dissertation by using 

Lyapunov analysis.  
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1. INTRODUCTION 

1.1.BACKGROUND

Optimal control of nonlinear continuous and discrete-time systems is a subject of 

research for the past couple of decades [1][2]. Unlike Riccati-based solution to the linear 

systems, optimal control of nonlinear systems is a challenging problem since it involves 

the solution to the Hamilton- Jacobi-Bellman (HJB) equation, which does not have a 

closed-form solution [1][3].  

Several methods are introduced for the problem of nonlinear optimal control that 

can be categorized as offline [4] and online [5]. In the offline schemes, the controller is 

tuned a priori whereas the online approaches try to approximate the value function by 

using the Bellman equation while simultaneously guaranteeing the stability of the closed- 

loop system. This dissertation aims to establish novel online optimal adaptive schemes 

for certain classes of nonlinear discrete-time and continuous-time systems whose 

dynamics are completely or partially unknown.    

In the literature, numerous methodologies are employed to find a control scheme 

that minimizes the Bellman error. For the first time, the idea of searching a compact set 

for the best possible trajectory and the corresponding optimal controller was introduced 

in [2]. In [6], it is shown that a nonlinear controller is able to optimize a particular cost 

function that yields an inverse optimal control. Model predictive control is a different 

method to obtain finite-horizon optimal control [7]. Another approach that extends the 

results of linear optimal control theory to nonlinear systems is the state dependent Riccati 

equation (SDRE) [13]. However, the SDRE yields a sub-optimal solution. 
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By contrast, adaptive dynamic programming (ADP) is an approach where the 

solution to the HJB equation is found for generating the optimal control input in an 

approximate manner. These infinite horizon ADP schemes are based on either policy or 

value iteration. These schemes form the core of a methodology known by various names, 

such as approximate dynamic programming, neuro-dynamic programming, or 

reinforcement learning [8].  However the common theme among these methods is the 

iterative methodology for generating the policy or value function. 

In the policy iteration method, given an initial admissible control input and within 

a sampling interval, the objective is to iterate the policy until a solution is found that 

minimizes the cost function [10].  By contrast, in the value iteration-based schemes, an 

initial admissible control input is not needed [9].  On the other hand, Q-learning is 

a reinforcement learning technique that works by learning an action-value function that 

gives the expected utility of taking a given action in a given state and following a fixed 

policy thereafter. One of the advantages of Q-learning is that it is able to compare the 

expected utility of the available actions without requiring a model of the environment 

[11].

A class of reinforcement learning methods is based on the actor-critic structure 

[12], where an actor component applies an action or control policy while a critic 

component assesses the value of that action. Based on this assessment of the value, 

various schemes may be used to modify or improve the action in the sense that the new 

policy yields a value that is improved over the previous one.  

All of the above ADP methodologies are based on an iterative solution of either 

the policy or the value function. In the iteration based ADP schemes, it is normally 



3

assumed that sufficient number of iterations can be executed within a sampling interval 

for the purpose of the convergence of the value function or policy. An insufficient 

number of iterations within a sampling interval will result in the instability of these 

schemes.  Therefore, recently a new ADP framework is introduced without using an 

iterative approach for affine nonlinear discrete-time system [14] and later extended in 

[15] to affine nonlinear continuous-time systems. 

Beside online optimal control of systems, online optimization of them is also an 

interesting research topic [16]. In this case, instead of minimizing a cost function along 

the system trajectories (in optimal control systems), it is desired to maximize or minimize 

a performance function that potentially can impose some state constraints [17]. To this 

end, extremum seeking was introduced several decades ago and it is able to find the 

extremum of a unknown performance function in an adaptive manner [16]. The proof of 

the stability has been shown in the literature recently for different type of systems 

including linear, nonlinear, discrete, and continuous-time systems [18][19]. Nonetheless, 

there are some remaining systems on which the stability of the extremum seeking method 

is not yet examined. 

The next subsection presents an overview of the available online optimal 

approaches in the literature since the current dissertation establishes novel approaches in 

the field of online optimal adaptive control of nonlinear systems. 

1.2. OVERVIEW OF ONLINE OPTIMAL CONTROL METODOLOGIES 

It is well-known that for finding an optimal control scheme for nonlinear systems, 

a solution to the HJB equation based on the boundary conditions is desirable. This 

requires solving differential equations of the HJB equation by using the system dynamics 
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backward-in-time [1][3] which is very difficult to do so. For the case of linear systems, 

the HJB equation becomes the Riccati equation (RE) that is relatively much easier to 

solve. Instead of the Riccati equation, the algebraic Riccati equation (ARE) determines 

the solution to the infinite-horizon time-invariant linear quadratic regulator (LQR) as well 

as that of the infinite horizon time-invariant linear quadratic Gaussian control (LQG). 

Compared with the solution of the RE backward in time, the solution of the ARE is less 

time consuming and easier to solve in a forward-in-time manner, although it offers a 

suboptimal solution [3].  In addition, the ARE cannot be used for linear systems when the 

system dynamics are uncertain. Nonetheless, solving either the RE or HJB equation in 

real-time is still a very difficult problem to the control researchers. 

The suboptimal control of nonlinear systems can be achieved by assuming that the 

nonlinear dynamics has a linear state dependent representation given by 

( ) ( )x A x x B x u� 	� where x is the state vector andu  is the control input [26]. Then one can 

solve the state-dependent RE (SDRE). The iteration-based solution to the SDRE is shown 

to converge [27] and the existence of the solution is studied in [28]. 

In contrast to dynamic programming approaches that tend to solve the RE or HJB 

equation backward in time, reinforcement learning schemes try to find forward in time 

optimal solutions without needing the system dynamics [28]. Online policy iteration is a 

technique that uses an adaptive (or neural network) estimate of the value function and 

then iterates the applied policy on the system until it converges to a policy that minimizes 

the Bellman error.  

By using an initial admissible controller, policy iteration schemes evaluate the 

cost function by using the current value function and updates the value function until it 
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minimizes the cost function, then improves the policy [10]. By contrast, online value 

iteration schemes do not require an initial admissible controller.  For approximating the 

policy or value functions, onlinear approximators such as neural networks (NN) can be 

used. First for a given control policy, a least squares solution is obtained as the process of 

identifying the NN weights of the value function by iteration, and eventually the best 

solution is applied to generate the policy [9]. Both policy and value iteration based 

schemes yield optimal adaptive controllers. Moreover, such policy or value iteration 

based schemes can be implemented at two different time-scales since the control action in 

an inner loop occurs once a sampling interval whereas the performance is evaluated in an 

outer loop over a longer horizon, corresponding to the convergence time needed for the 

least square computation. 

In value function learning, one requires knowledge of the system dynamics. At a 

minimum, the input coupling matrix ( )g x for nonlinear affine system ( ( ) ( )x f x g x u� 	� )

or input matrix B in the case of linear system ( x Ax Bu� 	� ) is required. To avoid needing 

the system dynamics, Q-learning [29] based scheme can be applied. In this approach, by 

learning a quality function based on the input-output information of the system, the need 

for the system dynamics is relaxed. To identify the quality function, iterative-based 

schemes are also proposed [30]. 

As mentioned above, all the iterative optimal schemes have an inner and outer 

loop. The inner loop is a fast loop that yields the policy, value, or Q function while the 

outer loop by using the information of the inner loop stabilizes the closed loop system. 

These schemes have to be implemented as a two-time scale problem.  In fact, the stability 
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of the iterative framework relies on the assumption that sufficient number of iterations 

can be performed within an sampling interval in the outer loop. 

In summary, original iteration-based online optimal methods are intended to solve 

the HJB equation given the knowledge of the system dynamics.  When the system 

dynamics are uncertain, it is impossible to find the solution to the HJB equation. 

However, an alternative approach is to solve the value function directly as an unknown 

function in the HJB equation by using adaptive methods. This way, while the controller is 

generating a stabilizing control law it also adapts itself such that the applied control law 

solves the HJB equation simultaneously. While these approximate and iterative schemes 

generate optimal control in the forward in time manner, a large of iterations is needed for 

convergence of the approximate value function which is a major drawback. 

In [14], for discrete-time nonlinear systems, an online approximator is proposed 

to solve the HJB equation without policy iteration while the overall stability of the system 

is guaranteed. The same scheme is proposed for continuous time systems in [15] where a 

single online approximator (SOLA) is used to minimize the cost function estimation error 

while guaranteeing the overall stability of the closed loop system. 

Since the main theme of the work [14][15] is based on standard adaptive methods 

with iteration-free update laws, they can be easily developed to the cases where the 

system dynamics is unknown. This has been the motivation of the current dissertation. 

1.3.OVERVIEW OF EXTREMUM SEEKING OF NONLINEAR SYSTEMS 

In some control problems it is difficult to determine the best operating point that 

satisfies a predefined set of constraints and/or optimizes a performance function. In fact,  

stabilization of a system is not sufficient for a closed loop system when the performance 
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of the system varies in different operating points. Therefore, after stabilization, it might 

be desirable to have a method that is able to find an operating point that guarantees the 

best performance of the system. 

In a wide class of control problems, the operating point that optimizes the plant 

performance is unknown and requires to be found. On the other hand, the extremum point 

of the performance function may be uncertain due to the uncertainty in the plant 

parameters. Therefore, in the literature, self-optimization, extremum control, or 

extremum seeking approaches [16] are utilized for this purpose. 

Extremum seeking approach has been coined in 1922, a few decades before the 

introduction of linear adaptive methods. Since extremum seeking methods are adaptive 

against the performance function uncertainties, authors [18] tend to introduce them as the 

first adaptive control methods reported in the literature. This method has been widely 

applied to engineering systems as photovoltaic systems [20], soft landing of 

electromagnetic actuators [21], and PID controller tuning [22]. 

Extremum seeking can be applied to HCCI engines control system where it is 

required to maximize an efficiency function and keep the pressure rise rate (PRR) of the 

cylinder constrained. Since the engine dynamics are defined in a discrete-time manner 

[23], this dissertation is motivated to focus on extremum seeking stability of nonlinear 

discrete-time systems. The author in [19], considered a nonlinear plant represented as a 

cascade combination of linear dynamics and a static nonlinearity. Since this 

representation is not the case of engine dynamics representation, in this dissertation, we 

consider a nonlinear dynamical system with a nonlinear state-to-output performance 

mapping. 
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1.4.ORGANIZATION OF THE DISSERTATION 

In this dissertation, novel online optimal adaptive schemes are developed to 

control nonlinear discrete/continuous systems in an optimal manner while the knowledge 

of the system dynamics is fully or partially unknown. Moreover, due to application being 

the HCCI engines, a novel extremum seeking method is developed that is able to drive an 

optimally discrete-time nonlinear stabilized system to its optimized operating point. 

This dissertation is presented in the form of five papers and their relationship to 

one another is illustrated in the Figure 1.1 The common theme in the four of five papers 

is optimal adaptive control of nonlinear systems in affine or strict-feedback form, whose 

dynamics are not necessarily known while a persistent excitation condition is needed in 

order to learn the unknown cost function. The second chapter’s theme as mentioned 

above, is based on optimization of the system performance by seeking the best operating 

point. This is necessary for many optimal adaptive control problems when the operating 

point is not defined a priori. 

The first paper extends the iteration-free optimal adaptive control of affine work 

in [14] to solve the online optimal problem for the nonaffine nonlinear discrete time 

systems in input-output form with completely unknown system dynamics. First the 

nonaffine nonlinear system is transformed to an affine-like equivalent system in input-

output form with higher order terms. The NN identifier identifies the system dynamics of 

the affine nonlinear discrete-time system. The optimal control scheme subsequently 

provides an online optimal control law for the affine part of the system provided an initial 

admissible controller is given. In addition, a robust term is employed to mitigate the 

higher order terms. Finally, the control scheme is applied to a homogeneous charge 

compression ignition (HCCI) engine dynamics whose dynamics are represented as a 
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nonaffine nonlinear discrete-time system.  The dynamics of the HCCI engine changes 

with the fuel type. Lyapunov based uniformly ultimately bounded (UUB) stability of the 

overall closed-loop system is demonstrated. 

Fig 1.1 Dissertation outline 

By having the results of Paper I, we are able to stabilize an unknown nonafine 

system in optimal manner on any feasible operating point in an optimal manner. 

Nonetheless, this is not enough in several applications including the HCCI engine case 

where we require the engine to works in the most efficient operating point. With this 

motivation, Paper II takes the closed-loop dynamics from the first paper adds an outer 

loop that is able to find the extremum of a predefined performance function. In this 

Paper 1: H. Zargarzadeh, S. Jagannathan and J. 
Drallmeier, “Robust Optimal Control of Uncertain Nonaffine 
Multi-Input and Multi-Output Nonlinear Discrete-time 
Systems with Application to HCCI Engines”, Published in 
Int. J. of Adaptive Control and Signal Processing. 

Paper 3: H. Zargarzadeh, S. Jagannathan, “Adaptive Neural 
Network-based Optimal Control of Nonlinear Continuous-
time Systems in Strict Feedback Form”, Under review in the 
Int. J. of Adaptive Control and Signal Processing 

Paper 5: H. Zargarzadeh, T. Dierks, and S. Jagannathan, 
“Optimal Adaptive Control of Nonlinear Continuous-time 
Systems in Strict Feedback Form”, Under review in IEEE 
Transaction on Neural Networks. 

Paper 4: D. Nodland, H. Zargarzadeh, S. Jagannathan, 
“Neural Network-based Optimal Adaptive Output Feedback 
Control of a Helicopter UAV”, Revised and submitted to 
IEEE Transaction on Neural Networks. 

Paper 2: H. Zargarzadeh, S. Jagannathan and J. 
Drallmeier “A Discrete-Time Extremum Seeking Method 
with Application to Efficiency Optimization of HCCI 
Engines”, to be submitted to IEEE Transaction on Control 
System Technology. 
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fashion, the closed loop scheme takes a multiloop representation whose inner loop is the 

optimal adaptive NN-based control and the outer loop is the extremum seeking scheme 

that generates the setpoint for the inner loop. Since such systems representations render a 

singularly perturbed dynamics, the traditional proof of the stability is done in two steps. 

The first step is to show the stability of the outer loop using averaging analysis [24] with 

the assumption that the inner loop is fast enough to follow any desired set point with no 

delay. With the assumption that the state-to-output map has a unique extremum, we show 

that the proposed method is able to locally converge to the extremum point. In the second 

step, the stability of the overall dynamical system is examined using singular perturbation 

method for discrete-time nonlinear systems [25]. It is shown that the overall system is 

UUB stable in a neighborhood that can be arbitrarly small by choosing a proper 

extremum seeking parameters and large enough number of NN basis function vector. 

On the other hand, Paper III extends the work of [15] where an online optimal 

adaptive scheme is established to control multi-input and multi-output (MIMO) nonlinear 

continuous-time systems in strict feedback form with known dynamics, and without using 

policy/value iterations and initial admissible controller. Here, it was shown that the 

tracking problem of MIMO strict feedback systems can be solved as the optimal 

stabilization of the corresponding error dynamics if a proper feedforward term can be 

designed. Subsequently, state feedback control scheme is developed for the affine 

nonlinear continuous-time system that is expressed with tracking error. Next, the state 

feedback-based optimal adaptive control scheme is extended by using output feedback. 

Lyapunov analysis is utilized to demonstrate the UUB stability of the overall closed loop 

system. 
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Paper IV is an application of Paper III to an unmanned helicopter with 

underactuated dynamics in order to optimally track a desired position and orientation. 

Because of underactuated nonlinear dynamics, high-performance controller design for 

unmanned helicopters is a challenging problem. This paper introduces a NN based 

optimal controller by using output feedback for trajectory tracking with out using an 

initial admissible controller but considering the dynamics are known. The output-

feedback control system employs the backstepping methodology, using kinematic and 

dynamic controllers and a NN observer to generate the tracking control law based on 

output measurements. The online approximator-based dynamic controller learns the 

infinite-horizon cost function in continuous time and calculates the corresponding 

optimal control input in order to stabilize the corresponding error dynamics.  A UUB 

stability is included based on Lyapunov approach. 

In Paper V, the internal dynamics of the nonlinear continuous-time systems in 

strict feedback form are considered unknown and an adaptive scheme is utilized not only 

to approximate the cost function but also the unknown internal dynamics. The Lyapunov 

based stability analysis indicates that the tracking error converges to zero using the 

proposed optimal adaptive controller provided the cost function and the known dynamics 

are represented as linear in the unknown parameters, The unknown parameters of the cost 

function and the internal dynamics converge to their true values under a persistency of 

excitation condition on the input signals. Finally, the results are extended to the output 

feedback control of strict feedback systems. 

1.5.CONTRIBUTION OF THE DISSERTATION 

The main objective of this dissertation is to develop a suite of novel optimal 

adaptive control schemes for a class of nonlinear discrete/continuous-time systems when 
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the system dynamics are unknown or the system states are not necessarily measurable. 

Therefore, the proposed optimal adaptive control schemes can not only maintain the 

overall system stability but also they can adaptively learn the solution of the HJB 

equation. Once the nonlinear optimal controller is designed the system can be stabilized 

on any desired setpoint, although we may require the setpoint to be the optimum 

operating point in some applications. Therefore, motivated by HCCI engine performance 

optimization problem, an extremum seeking method is developed for nonlinear discrete-

time systems with unknown output functions. 

Optimal adaptive control for affine discrete-time systems with unknown internal 

dynamics is previously studied in [14], whereas the current work considers an unknown 

nonaffine discrete-time system in input output form with uncertain dynamics. Moreover, 

for the case of continuous-time systems, optimal adaptive control is derived when the 

internal dynamics are unknown in contrast to [31] where an iterative optimal approach 

and an initial admissible controller are needed. In contrast, the proposed schemes deal 

with partially unknown nonlinear continuous-time systems without using an iterative 

solution. 

The contributions of the Paper I include providing a suitable representation of 

unknown nonaffine systems that can be identified online using a single NN identifier. 

Then, an online optimal adaptive controller is introduced to control the affine part of the 

identified system dynamics. Since the bounds of the higher order residual terms of the 

nonaffine system are unknown, a novel robust auxiliary controller is introduced using 

singularly perturbation system theory in order to mitigate them and an overall 

boundedness of the closed-loop system is demonstrated. Finally, the control scheme is 
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applied to the HCCI engine to show a significant performance comparison with other 

traditional controllers. 

To the best knowledge of the author, the extremum seeking method is not studied 

in the literature in a generic case. In constrast to [19] where a nonlinear plant represented 

as a cascade combination of linear dynamics and a static nonlinearity, Paper II proposes a 

novel averaging methodology to prove the stability of  the reduced model [24] of the 

extremum seeking scheme in a general case. Then, a discrete-time version of the sigularly 

pertubed system theory from [25] is employed to prove the overall stability.

In Paper III, to the best knowledge of the authors, this was the first time an 

optimal adaptive control of strict-feedback nonlinear continuous-time systems was 

considered by using the state and output feedback control. A neural network-based 

controller is shown to provide a UUB of the closed-loop system while the actual adaptive 

control input approaches the optimal one.  An initial stabilizing controller is not required 

and value and policy iterations are not employed. Paper IV provides an application of 

optimal adaptive control of strict feedback control systems to an unmanned aerial vehicle 

(UAV) helicopter with underactuated dynamics. This paper introduces an optimal 

controller design via output feedback for trajectory tracking of a helicopter UAV using a 

NN observer while demonstrating the boundedness of the overall closed-loop system. 

Simulation results show the effectiveness of the proposed control design for trajectory 

tracking. The adaptive optimal control of nonlinear strict feedback continuous-time 

systems is examined by using state and output feedback in Paper V while the internal 

dynamics is unknown. Here value or policy iterations are not utilized and an initial 

admissible control is not required.  
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PAPER

I.  ROBUST OPTIMAL CONTROL OF UNCERTAIN NONAFFINE MULTI-

INPUT AND MULTI-OUTPUT NONLINEAR DISCRETE SYSTEMS WITH 

APPLICATION TO HCCI ENGINES 

H. Zargarzadeh, S. Jagannathan, and J. Drallmeier 

Abstract — Multi-input and multi-output (MIMO) optimal control of unknown 

nonaffine nonlinear discrete-time systems is a challenging problem due to the presence of 

control inputs inside the unknown nonlinearity. In this paper, the nonaffine nonlinear 

discrete-time system is transformed to an affine-like equivalent nonlinear discrete-time 

system in the input-output form. Next, a forward-in-time Hamilton-Jacobi-Bellman 

(HJB) equation-based optimal approach, without using value and policy iterations, is 

developed to control the affine-like nonlinear discrete-time system by using both neural 

networks (NN) as an online approximator and output measurements alone.  To overcome 

the need to know the control gain matrix in the optimal controller, a new online discrete-

time NN identifier is introduced.  The robustness of the overall closed loop system is 

shown via singularly perturbation analysis by using an additional auxiliary term to 

mitigate the higher-order terms. Lyapunov stability of the overall system, which includes 

the online identifier and robust control term, demonstrates that the closed-loop signals are 

bounded and the approximate control input approaches the optimal control signal with a 

bounded error. The proposed optimal control approach is applied to a cycle-by-cycle 

discrete-time representation of an experimentally validated homogeneous charge 

compression ignition (HCCI) fuel-flexible engine whose dynamics are modeled as 
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uncertain nonlinear, nonaffine, and MIMO discrete-time system. Simulation results are 

included to demonstrate the efficacy of the approach in presence of actuator disturbances. 

I. INTRODUCTION

Online optimal control of uncertain nonlinear systems is a challenging problem 

due to the difficulty of solving the Hamilton-Jacobi-Bellman (HJB) equation which does 

not have a closed-form solution. In addition, controlling a nonaffine nonlinear discrete-

time system in general is a major challenge due to the coupled nonlinear relationship 

between the states and the control input within the unknown nonlinearity. Recently, 

neural networks (NN) as online approximators have been successfully applied to learn the 

uncertain nonlinear system dynamics in an online fashion because of their universal 

function approximation property.  

The NN-based optimal control of affine nonlinear systems is now available in the 

literature either in continuous or discrete-time systems [1]-[4] by using HJB equation in 

forward-in-time manner via value and policy iterations. While [1] and [1] present offline 

based schemes, others [3] address optimal control in an online manner for affine 

nonlinear discrete-time systems. 

In [1] and [3] the input gain matrix1 (IGM) of the affine system is considered 

known while the internal system dynamics are considered unknown. The work in [5] 

introduces an adaptive dynamic programming (ADP)-based scheme for optimal control 

of unknown affine systems. The authors in [1] and [6] deal with online optimal control of 

affine nonlinear system whose input gain matrix (IGM) is considered known. Here in 

these works [1] and [6], the cost function is estimated through the HJB equation offline, 
                                                 
1 In a general form of discrete time affine systems i.e. ,  and are 

considered as internal dynamics and input gain matrix respectively. 

1 ( ( )) ( ( ))k kx f x k g x k u	 � 	 ( ( ))f x k ( ( ))g x k
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whereas the work in [3] estimates the cost function with an online NN based estimator 

while proving the overall convergence of the NN based controller.  In [6], convergence of 

the heuristic dynamic programming algorithm (HDP) via value and policy iterations is 

demonstrated and closed-loop stability is not shown. It is found that an insufficient 

number of iterations in the value and policy iteration-based optimal control schemes [3,6] 

will not only cause convergence issues but also instability. Therefore the optimal 

controller in [3] is developed without using value and policy iterations and closed-loop 

stability analysis is demonstrated.  However, all these methods [1-6] assume that the 

states of the system are measurable.  Unfortunately, in many practical applications, such 

as the proposed control of HCCI engines, states are not available which necessitates an 

output feedback based optimal control scheme. 

Therefore, this paper addresses forward-in-time based optimal control of 

unknown nonaffine MIMO discrete-time systems by transforming the nonaffine 

nonlinear discrete-time system into an affine-like equivalent system in the input-output 

form with higher order terms. The input-output form relaxes the need for state 

availability. Next, a NN identifier is proposed to learn the unknown IGM matrix online 

whose estimation is required in the optimal controller design. Next, in order to mitigate 

the modeling errors due to higher order terms, an auxiliary term is designed via fast 

dynamic inversion technique. The fast dynamic solver, along with the closed loop 

system, forms a singularly perturbed system whose stability is shown to be guaranteed. 

Thus this auxiliary term ensures robustness against modeling errors and reduces the 

ultimate bounds of the closed-loop system by mitigating the effect of higher order terms.  
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Subsequently, the forward-in-time approach similar to [3] is introduced to the 

generic unknown affine-like equivalent system by using output feedback without using 

value and policy iterations. Here, the value function and the control input are updated 

once a sampling interval. Using an initial stabilizing control, a NN online approximator 

(OLA) is tuned to learn the cost function which is subsequently utilized along with the 

estimated IGM to generate the optimal control input. The nonaffine nature of the system, 

online identifier and lack of system states complicate the stability analysis whereas the 

boundedness of all the closed-loop signals and the actual control input to the optimal 

value are demonstrated. The net result is the output feedback-based robust optimal 

controller design for nonaffine MIMO nonlinear discrete-time systems. 

Finally, the proposed optimal controller is applied to a homogeneous charge 

compression ignition (HCCI) engine which is a practical example of an unknown 

nonlinear MIMO discrete-time system with structural uncertainties due to variations in 

the fuel type or ambient operating conditions [12].  Compared to regular spark ignition 

(SI) engines, the HCCI engines have the advantage of increased thermal efficiency and 

low nitrous oxides, xNO , and particulate matter emissions [8]-[10].  The HCCI engines do 

not have an ignition system, and managing the combustion appears to be a challenging 

control problem. In other words, achieving and maintaining HCCI mode of operation in 

diverse operating situations requires an appropriate closed loop control strategy. The 

control approach should be optimal under a variety of fuel types which in turn imposes a 

variety of combustion chemical kinetics and that being unknown, necessitates an online 

learning feature for the controller. 
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Due to complex engine dynamics [11] and the presence of uncertainties, the 

HCCI engine dynamics in nonaffine form are transformed into the input-output form for 

control purposes. Numerical results show that the proposed NN-based robust optimal 

control scheme can successfully control the engine dynamics and is able to adaptively 

tune the initial admissible controller to attain an optimal controller online. The paper is 

organized as follows. 

The state space representation of the MIMO system dynamics are given in Section 

II. Section III introduces a system identification technique while Section IV establishes 

an overall robust online optimal control approach where the identified information of the 

system dynamics is used.  Here the robust term is utilized first to mitigate the higher 

order terms that appear as the result of transformation from nonaffine to affine nonlinear 

discrete-time system. Next it is shown, in this section, that any initial admissible 

controller can be tuned to an optimal online controller that minimizes a desired 

performance index. Section V introduces the experimentally validated representation of a 

HCCI engine and performance of the proposed online optimal controller. 

II. STATE SPACE REPRESENTATION OF THE OUTPUT CONTROL 

OF NONAFFINE SYSTEMS 

Consider a generic form of nonaffine system described by 

                                                 1 ( , )k k kx f x u	 �                                                     (1)                         

                                                 ( , )k k ky g x u�                                     (2) 

where m
k uu E � � , n

k xx E � � ,and k yy E � ��  represent the system input, 

states, and the outputs respectively, and ( )f � and ( )g � are assumed to be unknown 

continuous nonlinear functions with respect to kx and ku . The system representation (1) 
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indicates a multi-input and multi-output (MIMO) nonlinear discrete-time system whose 

output ky  is controlled through the input ku . Next, the following assumption is needed 

before we proceed. 

Assumption 1. The output function is a diffeomorphism with respect to a given ku

��. In other words, ( , )k kg x u is a one-to-one mapping between ky  and kx  for a given ku . 

Then, there exists a one-to-one function 1g � such that 

                                             
1( , )k k kx g y u��                                                         (3) 

Using (1) and (2), we 

                 

1 1 1 1 1
1

1

( , ) ( ( , ), ) ( , , )

( ( , ), , )
k k k k k k k k k

k k k k

y g x u g f x u u h x u u
h g y u u u
	 	 	 	 	

�
	

� � �

�
                        (4) 

In other words, ( , )k kg x u is a one-to-one mapping between ky  and kx  for a g ku

iven. Then, there exists a one-to-one function 1g � such that 

                                       
1( , )k k kx g y u��                                                               (5) 

Using (1) and (2), we have 

1
1 1 1 1 1 1( , ) ( ( , ), ) ( , , ) ( ( , ), , )k k k k k k k k k k k k ky g x u g f x u u h x u u h g y u u u�
	 	 	 	 	 	� � � �    (6) 

Now, assume that the overall controller is designed such that the system input 

increment, denoted by ku� , is generated. This implies that the system input and the 

controller output are connected such that 1k k ku u u	 � 	� . Using (1) and (3) we can 

express the system dynamics as 

1 ( , , )k k k ky h y u u	 � �  

or 
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� �� �1
1 ( ( , ), , ) ( , )

TT T
k k k k k k k k k kX u u h g y u u u u H X u�
	 � 	 � 	 � � �                     (7) 

where 1 ( )T m
k k kX u y 	
	 � � �� . By applying the Taylor series expansion, 

equation (4) can be expanded as [12]  

                           
        

                    

1 0

0

( , ) ( ) ( , ) |

1 ( ( , ) ) |
2

k

k

k k k k k k u k
k

k k k u k
k k

X H X u H X H X u u
u

H X u u u
u u

	 � �

� �

�
� � � 	 � �

��

� �
	 � � � 	

�� ��
�

              (8) 

where 

      ( , )k kO X u� 0( ) ( )k kF X H X� , 1 0( ) ( , ) |
kk k k u

k

F X H X u
u � �

�
� �
��

, … 

Moreover, represents the higher order terms of the Taylor series expansion, , and 

q� denoting the number of terms considered in the control design. Also, it is clear that 

0( )i kF X� is denoted as ( )kH X  in (8). Moreover, i
ku� denotes a vector whose elements 

include all possible ith multiplication of the elements of ku� . For example 

2 (1) (1), (1) (2),..., (1) ( ), (2) (2)
,

, (2) (3),..., (2) ( ),..., ( ) ( )
k k k k k k k k

k
k k k k k k

u u u u u u m u u
u

u u u u m u m u m
� � � � � � � �� �

� � � �� � � � � �� �
               (9)

 

with 2 ( 1)/2m m
ku � 	� � . Typically, for practical systems, the higher order terms,

( , )k kO X u� , can be considered small and negligible due to uniform convergence of 

Taylor series when ( , )k kH X u� is differentiable [12]. In the sequel, we denote 

( , )k kO X u� by kO  for the sake of simplicity. Therefore, the unknown affine-like system 

representation of (1) takes the following input-output form as 

0
( ) ( , ),   1q i

i k k k ki
F X u O X u q

�
� � 	 � ��
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1 ( ) ( )k k k k kX F X G X u O	 � 	 � 	 , (10)

where 0( ) ( )k kF X F X� is the internal dynamics and 1( ) ( )k kG X F X� being the 

input gain matrix (IGM). 

In this paper, the robust optimal control scheme for the affine-like system (10) in 

the input-output form is introduced which requires ( )kG X and the higher order terms kO  

to be known while the information on internal dynamics, ( )kF X , is not required [3] [5].  

In order to overcome the need for the IGM and the higher order terms, a new online NN 

identifier is introduced in the next section.  Subsequently, the robust optimal control 

scheme is designed by using two terms one for robustness and the second for optimality 

as presented in Section IV. 

III. ONLINE NN-BASED IDENTIFIER 

The objective of this section is to introduce a novel NN-based identifier for (5) 

when the system inputs and outputs are given. The NN-based identifier is novel in the 

sense that it can directly identify ( )kF X , IGM, and kO by using a single NN and without 

using system states.  There are several approaches for identification of either affine or 

nonaffine nonlinear systems by using offline methods [1],[7],[13],[22],[23] whereas the 

proposed identifier works online.   

Assume that a stabilizing input is applied to the system(10), the following 

expression can be used for approximation of the system (10) at the instant k in a compact 

set as 

                          1 1 1 1( , )T
k k k k kX X u W U �� � � �� � � � 	 .                                         (11)                         
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where
( )

1 1( , ) p m
k kX u � 	
� �� �  �� , ( )p mW � 	 �� , kU� � ( )(1 1 )T T m

ku 	�  �� � , 

m
k�

	 �� , 1 1( , )k k MX u� �� � � � , 1 1 1( , )k k k MX u U� � �� � � � being the bounded NN 

activation function and k� is the estimation error satisfying k M� �� [17]. Moreover, the 

following bound m kU U� � holds due to the presence of constant values in the input 

vector in fact
0k

m k u
U U

� �
� � . 

It should be noted that the identification scheme has the advantage of identifying

( )kF X , ( )kG X , and kO separately and online. By identifying separately, we mean that the 

identifier has only one NN, whereas the identification is complete, ( )kF X , ( )kG X , and

kO can be distinguished without any further algebraic operations. Select ( , )T
k kX u� � �

� �( ) , ( , ) , ( )T T T
F k O k k G kX X u X� � � � and � �, ,

TT T T
F O GW W W W� for convenience.  

Therefore, from (10) and (11) we have 

Now, by considering kU� in (10) we have 

1 ( ) ( ) ( , ) .T T T
k F F k G G k k O O k k kX W X W X u W X u �	 � � 	 � � 	 � � 	 (12) 

Our goal next is to identify the NN weight matrix W  denoted here as

� �ˆ ˆ ˆ ˆ, ,
TT T T

k F O GW W W W� by estimating the state vector kX with ˆ
kX  where 

1 1 1
ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( , )T T T T

k k k k F F k G G k k O O k kX X u W U W X W X u W X u� � �� � � � � � 	 � � 	 � �  ,          

                             
ˆ ˆˆ ( ) ( ) ( , )k k k k kF X G X u O X u� 	 � 	 �                                        (13) 

Therefore, 

                1 1
ˆ ˆ ˆˆ ( ) ( ) ( )k k k k k k k kX F X G X u G X O e 	 	� 	 � 	 � 	 	 � .                           (14) 
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where the identification error is defined as 

                              

                                         1 1 1 1 1( , )T
k k k k kX u W U �� � � � �� � � � 	�                                       (15) 

 Define the update law for the actual NN weights ˆ
kW as 

                        � �2
1 1 1 1 1

ˆ ˆ ( , ) 1T
k k k k k k kW W E X u U U!� � � � �� 	 � � � � 	� ,                (16) 

where 

                                         
( ) ( )( ) m m

k kE diag e 	 � 	�  � �� � � ,                                       (17)                         

with 0! � being the design parameter or NN learning rate and ˆ 0kW � . The error 

dynamics in weight update law are written as 

                  � �2
1 1 1 1 1( , ) 1 .T

k k k k k k kW W E X u U U!� � � � �� � � � � � 	� � �                       (18) 

Now, by considering kU� in (10) we have 

1 ( ) ( ) ( , ) .T T T
k F F k G G k k O O k k kX W X W X u W X u �	 � � 	 � � 	 � � 	 (19) 

It should be noted that if the identification error ke� and weight estimation error

k F
W� converges, the identification of ( )kF X , ( )kG X , and kO is complete. Therefore, the 

following theorem can be stated to show the boundedness of the identification and the 

NN weight estimation errors.  Here we will use k�  instead of ( , )k kX u� � for the sake of 

brevity. 

Theorem 1: Assume that the proposed identifier in (11) with the update law in 

(18) is used to identify the system (16) and the design parameter is chosen as 0 !� �

� �2 2 2 2 2
m32 4 .m M M MU � � 	� �  Then the identification error ke� and the NN weight 

1 1 1 1 1
ˆ ˆ( , ) ( )T

k k k k k k k ke X X X u W W U �� � � � �� � � � � � � 	�
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estimation errors kW� are uniformly ultimately bounded (UUB) [7] and converge to a basin 

of attraction with the bounds given by k BW W��  or k Be e�� where 

                  

� �
" #� �

22 22

2 2 2 2 2 2
m

2
1

4 8 4
M MM

B M
M m M M M

e
U U

!
�

! !

� 	 ��
	 	

� � � � 	�
	                      (20) 

or 

                   

                     
� �

� �� �
22 22

2 2 2 2 2
m

2
1

4 8 4
M MM

M
M m M MU

!
�

! !

� 	 ��
	 	 	

� � � � 	�
.                            (21) 

 
Proof. Define " #2 T T

I k k k kV e e tr W W!� 	 � �� �  as a Lyapunov candidate function. The 

first difference can be written as 

                " #2 2
1 1 1 1

T T T
I k k k k k kV e e e e tr W W! !	 	 	 	� � � 	 � �� � � � " #T

k ktr W W� � �
 

        
� �" #22 2

1 1 12 ( ) 1T T T
k k k k k k k k ke e e e tr U X E W U! ! !	 	 	� � 	 � � � � 	� �� � � �

 

                          
2

1 1{ ( ) ( ) }T T T
k k k k k ktr U X E E X U! 	 		 � � � �� �  .                                (22) 

Using the fact that ( ) ( )tr ABC tr CAB� , (22) can be simplified as  

        

                     � �22 2 2 22
1 ( ) 1k k k kFF

E X U U! 		 � � � 	�
 

From (17) and using the equation (15) we can write 

                   � �2 2 ( )
TT T

I k k k k k kV e e X W U! ! �� � � 	 � � 	 ��� �
 

     
� � � �" #22 2 2( ) 1 ( ) 1T

k k k k k k k kX W U O X U U�� � 	 	 	 � � � 	�
 

� � � �" #2 2 2 2 2 3
m2 2 8 4B M M M m M MM M MW U� ! !� 	 � � � � � � 	�	

" # � �22 2
1 1 12 ( ) 1T T T

I k k k k k k k k kV e e e e tr X E W U U! ! !	 	 	� � � 	 � � � � 	� �� � � �
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                              � �22 2 22 ( ) 1 .k k k kX W U U!� � � � 	�                             (23)

 Now, after simplifying the inequality(23), the first difference can be expressed as 

               � �22 2 22 2 ( ) 1T
I k k k k k kV e e X W U U! !� � � � � � � 	�� �

 

                

                               � �22 ( ) 1 .k k k k kX W U U! �	 � � � 	�                                         (24)

      

Using the fact that � �22 2 1 1 4k kU U� � 	 � , m� � ( )k MX� �� , and 

( )m kU U X� , we can simplify the above inequality to the following form given by 

                       

                                � � " #2 2 2 22 1 4 .M M M k M MW! ! � ! �	 	 � � 	 	��
                            

 

(25) 

Here, in order for the first difference to be less than zero, design parameter ! has 

to be selected satisfying " #2 2 2 2
m2 1 / 4 0m M MU !� � 	 � 	� �  which implies that

 

                                 � �2 2 2 2
m0 32 4 .m M MU!� � � 	� �                                        (26) 

Now, completing the squares in (25) we get
 

           

" #� �
� � " #� �

2 2 2 2 2
m

22 2 2 2 2 2 2
m

{ 2 1 4

1 2 {4 2 1 4 }}

T
I k k m M M k

M M M m M M

V e e U W

U

! ! !

� ! ! !

� � � � � � � 	�

� 	 � � � � � 	�

�� �

     

         � � " #� �22 2 2 2 2 2 2 2
m{ 2 4 2 1 4M M M m M M MU! ! !	 � 	 � � � � � � 	�

 

� �" #22 ( ) 1T
k k k k ktr X W U U! �� � � � 	�

� �

22 2 2 2 2
2

22

( ) ( )
1

2 ( ) 1

k k k k k k

k k k k k

X W U X U

X W U U

�
!

�

$ %� �� � 	 � �& &� �	 	' (� �	 � � & &� 	� �) *

�

�

" #� � 22 2 2 2 2
m2 1 4T

I k k m M M kV e e U W! ! !� � � 	 � � 	 � 	� �� �
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                                            " #2 2 21 4 } .M M! �	 	�                                                 (27) 

Now, 0IV� � implies that k Be e��  or k BW W�� which demonstrates UUB of the 

identifier with the bounds given by (14) and (15).        �                                                                 

IV. NN-BASED FORWARD IN TIME OPTIMAL REGULATOR 

After identifying the IGM and higher order terms online, the next step is to 

optimally stabilize the affine-like system by using the identifier and to guarantee that the 

closed-loop remains stable in the neighborhood around the origin while ensuring that the 

actual control input is bounded and close to the optimal control input.   

To this end, the affine representation of (5) is considered with the cost function 

( )J k  such that 

                      10
( ) ( ) ( , ) ( )k k k ki

J X r k i r X u J X+
	�

� 	 � � 	�                                (28) 

where ( , ) ( ) T
k k k k kr X u Q X u R u� � 	 � � with ( ) 0kQ X , , (0) 0Q � , and m mR ��  as 

a positive definite matrix. In the sequel, we will denote ( )kJ X by kJ  for the sake of 

simplicity. Next the following definition is needed in order to proceed. 

Definition 1: [14]  A control ku�  is admissible with respect to the infinite horizon 

cost function (28) on a compact set - provided the control action ku� is a) continuous on

- , b) stabilizes (1) on - with 0| 0
kk Xu �� � , and c) makes 0( )J X finite (upper bounded) 

for all 0X - . 

The objective is to minimize kJ  by starting with an admissible control law and 

modifying it with respect to the system dynamics so that the estimated cost function and 
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control input converge to the optimal cost function *
kJ  and control law *

ku�  respectively. 

By applying the stationarity condition [14] to (28) we have 

1 1 1

1

( , ) 2 0
T

k k k k k k
k

k k k k k

J r X u J X JR u
u u u u X

	 	 	

	

� �� � � � � �
� 	 � � 	 �� ��� �� �� �� �� �

....................�/0�.

Using (29) and (14) we can write 

 
* *

* 1 11 1 1

1 1

ˆ1 1ˆ ( )
2 2

T

T k k k k
k k

k k k k

J O e Ju R G X R
X u u X

� �	 	 	

	 	

� �� � � �
� � � � 	� �� �� �� �� �� �

�
       (30) 

Remark 1: Solving (30) is not possible in general since the second term in (30) on 

the right hand side is also a function of ku� . Therefore, we need to mitigate this term 

before trying to solve the optimal controller. Moreover, in the previous section, we have 

proven that the NN identifier will keep the identification error bounded regardless of ku�

. This implies that 1ke 	� , in the system dynamics (14), plays the role of a bounded 

disturbance that eventually converges to a reasonable bound which could be small due to 

evolution of the identifier over time. Therefore, by temporarily ignoring the identification 

error, in the next subsection we will try to mitigate the higher order terms, ˆ
kO , by 

designing a robust term. Subsequently, by assuming that kO  is mitigated, we will show in 

Subsection B that optimal controller * 1 *
1 10.5 ( )T

k k k ku R G X J X�
	 	� � � � � of the affine 

system 1 ( ) ( )k k k kX F X G X u	 � 	 �  can stabilize (10). 

Thus in order to mitigate the higher order term, the design of an auxiliary term, 

k �  , is required for robustness in addition to the optimal controller term 

ˆk k ku u  � � � 	� .                                                (31) 
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where ˆku� is a NN estimation of *
ku� . The next subsections are dedicated to the 

design the update laws of k �  and ˆku�  along with the assessment of the overall system 

stability.  First the design of the robust optimal controller is introduced. 

A. Affinization of Nonaffine Systems Using Singular Perturbation 

In order to minimize the effect of the higher order terms kO  and to ensure 

robustness, we design an auxiliary term. Nonetheless, in equation (10), ( )kF X , ( )kG X , 

( )kO X  are not known.  However, using (15), we have 1 1 1
ˆ

k k kX X e	 	 	� 	 � . Now, using 

(14) and rewriting the system dynamics in terms of identified variables as 

1 1
ˆ ˆˆ ( ) ( )k k k k k kX F X G X u O e	 	� 	 � 	 	 � . (32) 

Using (31) the above equation can be expressed as 

1 1
ˆ ˆ ˆˆ ˆ( ) ( ) ( )k k k k k k k kX F X G X u G X O e 	 	� 	 � 	 � 	 	 � . (33) 

Now our aim, is to design ku�  such that the affine system 

1
ˆˆ ˆ( ) ( )k k k kX F X G X u	 � 	 �  minimizes the cost function (28) while the robust term k �  

mitigates the higher order term such that ˆ ˆ( ) 0k k kG X O � 	 � . In other words, the design 

of the robust optimal controller for the system (8) is equivalent to designing a controller 

for (30). Therefore, this subsection is dedicated to derive k � whereas the next subsection 

will deal with the optimal controller design. 

It is desired to find a solution to k � namely k � that solves the following 

equation   

                            � �ˆ ˆ ˆ( ) , 0,k k k k k kG X O X u  � 	 � 	 � �                                      (34) 



 

 

32

provided a solution exists for (34). Assume that k � is going to be updated such 

that it converges to the solution of (34) i.e. k � . To this effect we define an error 

dynamics as 

                     � �ˆ ˆ ˆ( ) ,k k k k k k kG X O X u�   � � 	 � 	 � ,                                           (35) 

where k�  is the estimation error in equation (34) caused by k � .  Our aim is to 

design the dynamics of the robust controller term k �  such that 2 22
1k k�� ! �	 �  for 

1�! � that means k �  converge to k � . In other words, k� has to be exponentially stable. 

Moreover, it should converge faster than the optimal controller for the sake of robustness. 

Now, consider the following update law for k � as 

                                           1k k k  1 	� � � 	 ,                                                    (36) 

which makes (35) to have the following form 

                            

                   � � � �1 1 1 1
ˆ ˆ ˆ( ) , .k k k k k k k kG X O X u 1  1 �	 	 	 	� 	 	 � 	 � 	 �                (37) 

By using Taylor series first order approximation we can write 

                                    

                   � � � �1 1 1 1
ˆ ˆˆ ˆ, , .

ˆk k k k k k k
k

O X u O X u
u

  1 	 	 	 	

�
� 	� 	 � 	�

��
                  (38) 

Equation (38) is valid since the convergence of the outputs to a certain 

neighborhood of the operation point, which is the origin, is guaranteed by the proposed 

optimal controller which is presented in the next subsection. Equation (37) can be written 

as  

� �1 1 1 1 1
ˆ ˆ ˆ( ) ,k k k k kG X O X u  	 	 	 	 	� 	 � 	� �

� �1 1
ˆ ˆ,k k k kO X u  1 	 	� 	� 	 2
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                     � �1 1 1 1
ˆ ˆ ˆ( ) , .k k k k k kG X O X u  �	 	 	 		 � 	 � 	 � �                                  (39) 

We desire to have the left hand side of the equation (39) equal to k�! � , where �!

is the rate of convergence of the fast dynamics which is known as �  in continuous-time 

singularly perturbed systems. Therefore, using pseudo-inversion to calculate the desired 

k1 yields 

                                          � � � �1 ,k A k B k� �1 �� �                                                (40) 

with 

                 
� � � �" #1 1 1

ˆ ˆ ˆ ˆ( ) ,k k k k kA k G X O X u u�  	 	 	� 	 � � 	 � ��
, 

                
� � � �" #1 1 1

ˆ ˆ ˆ( ) , ,k k k k k kB k G X O X u� �  ! �	 	 	� � 	 � 	 � �
 

And 

                                                        0 1�!� � .                                                   (41) 

Remark 2: It is clear that by having an invertible A� , 1k k�� ! �	 � holds. 

However, in the case when A� is not invertible, 1k k� �	 � may not hold and therefore, 

the robust term should be chosen as 0k1 �  which means a solution may not exist and 

converting the system into affine form fails. In the sequel, we assume A� is invertible and 

therefore there exists 1L� � such that 

                                         1k k kL�� � �	 � � � .                                              (42) 

Remark 3: When (34) holds, the identified higher order term ˆ
kO  gets mitigated 

and therefore the overall system behaves as an affine system. For guaranteeing the 

� �" #1 1 1
ˆ ˆ ˆ ˆ( ) ,k k k k k kG X O X u u 1 	 	 		 � � 	� ��
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existence of solution for k �  the implicit function theorem requires 1
ˆ ( )kG X 	 	

� �1 1
ˆ ˆ ˆ,k k k kO X u u 	 	� � 	 � ��  to be invertible. Therefore, the invertability of A�  is an 

inevitable condition. To the best knowledge of the authors, the only work on converting a 

nonaffine system [21] into an affine-like equivalent, requires the same assumption. 

Consequently, under the locally invertible assumption of A� , the robust controller (40) 

improves the convergence by mitigating the modeling errors due to higher order terms of 

the Taylor series expansion so that the optimal controller can be used for the affine 

system.  

Therefore, we consider the following representation of a discrete singularly 

perturbed robust controller 

                          � � � �1
1k k k k A k B k� �  1  �
	� � � 	 � � � ,                                 (43)                         

for which an online robust optimal controller will be designed in the sequel. 

Remark 4: For convergence of k �  to the solution of (34) ( k k  � 3� ), it is 

required that system dynamics (33) be stable. Therefore, as will be mentioned later, it is 

necessary that ku� to be initialized to an admissible controller and remain admissible 

while we are update it towards an optimal solution. 

Now, the system dynamics represented in (33) can be represented by using (35) as  

1 1
ˆˆ ˆ( ) ( )k k k k k kX F X G X u e�	 	� 	 � 	 	 � ,                                (44) 

where ˆku�  is going to be designed in the next subsections B and C. So far, we 

demonstrated the stability of k� and ke� . In the next subsections it will be observed that the 

overall system kX , k�  , and ke� will also be stable in the closed loop form. Moreover, 
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simultaneously, the estimation of the cost function ( )kJ X will converge close to its 

optimal value forcing ˆku�  to converge to the optimal solution ( *ˆk ku u� 3 � ). 

B. Cost Function Approximation for Optimal Regulator Design 

The objective of the optimal control law is to stabilize the system (10) while 

minimizing the cost-function (28).  The cost function (28) will be approximated by an 

OLA and written as 

                               
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T

k k k kJ k J X X k4 4� �5 �5  ,                         (45)  

where ˆ( )J k represents an approximated value of the original cost function ( )J k , 

ˆ
k5  is the vector of actual parameter vector for the target OLA parameter vector,5 , and 

:
1( ) { ( )}Lk k4 4� �  is set of activation functions which are each chosen to be basis sets and 

thus are linearly independent. The basis function should satisfy (0) 04 � for 0x � with

nx6 . Selection of ( )4 7  in this way ensures (0) 0J � can be satisfied [16].  For 

convenience, define the error in the cost function as 

                         
ˆ ˆ( ) ( 1) ( ) ( 1)T T

c k ke k r k k k4 4� � 	5 �5 �                                       (46) 

whose dynamics are given by 

                        � �1
ˆ( 1) ( ) ( 1) ( )T

c ke k r k k k4 4		 � 	5 	 � .                                     (47)  

Next, we define an auxiliary cost error vector as 

                         
1 (1 )ˆ( ) ( 1) ( 1)T j

c kE k Y k X k � 	� � 	5 � 6                                (48) 

where ( 1) [ ( 1) ( 2) ... ( 1 )]Y k r k r k r k j� � � � � �  and ( 1)X k � �

[ ( ) ( 1) ... ( )]k k k j4 4 4� � � � �  with ( ) ( ) ( 1)k k k4 4 4� � � �  , 0 1j k� � � N  and 

N  being the set of natural real numbers.  It is useful to observe that (48) can be rewritten 
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as ( ) [ ( | ) ( | 1) ( | )]c c c cE k e k k e k k e k k j� � ��   where the notation ( | 1)ce k k �  means 

the cost error ( 1)ce k �  re-evaluated at time .. using the actual cost parameter matrix ˆ T
k5 .  

The dynamics of the auxiliary vector (48) are formed similar to (47) and revealed to be 

                                     1
ˆ( 1) ( ) ( )T T T

c kE k Y k X k 		 � 	 5                                       (49) 

Examining the error dynamics in (49), it is observed that they closely resemble a 

nonlinear discrete-time system with 1
ˆ

k	5  being the control input, and ( )Y k and ( )X k

being nonlinear vector fields. To proceed, the following technical results are needed. 

Now define the cost function OLA parameter update to be 

                         � � � �1

1
ˆ ( ) ( ) ( ) ( ) ( )T T T

k c cX k X k X k E k Y k!
�

	5 � �                          (50) 

where 0 1c!� � , and substituting (50) into (49) reveals 

                                             ( 1) ( )T T
c c cE k E k!	 � .                                              (51) 

Remark 5:  It is interesting to observe that the parameter update law (50) 

resembles the least squares update rule commonly used in offline ADP [6] and [15]; 

however, instead of summing over a mesh of training points, the update (50) represents a 

sum over the system’s time history stored in ( )cE k .  Thus, the update (50) uses data 

collected in real time instead of data formed offline.   

Remark 6: As a result of Lemma 1, the matrix ( ) ( )TX k X k is invertible provided

( ) 0X k 8 which can be viewed as a persistency of excitation (PE) condition. Observing 

the definition of the cost function (28) and OLA approximation (45), it is evident that 

both become zero only when 0kX � .  To ensure the PE condition, an output 

measurement noise will be added to kX . 
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As a final step in the cost function OLA design, we define the parameter 

estimation error to be ˆ
k k5 �5�5� , and rewrite (28) using the ideal OLA representation 

                                          ( ) ( )T
k k cJ X X4 �� 5 	  (52) 

 revealing 1( ) ( )T
k cX k4 �	5 	 ( ) ( ) ( 1)T

k cr k X k4 �� 	5 	 	 which can be rewritten as 

( ) ( ) ( )T
k cr k X k4 �� �5 � ��  where ( ) ( 1) ( )c c ck k k� � �� � 	 � and 

1( ) ( ) ( )k k kX X X4 4 4	� � � .  Substituting ( )r k  into (47) as well as utilizing (46) and 

( 1) ( )c c ce k e k!	 �  from (51) yields 

                 1 ( )T
k kX4	5 �� ˆ( ( 1) ( 1)) ( )T

c k cr k k k! 4 �� � � 	5 � � �� .       (53) 

In a similar manner as ( )r k , we now form ( 1)r k � � 1( ) ( 1)T
k cX k4 ���5 � �� �  

and substitute this expression into (53), revealing 1( )T
k kX4 	� 5 ��

( ) ( 1)T
c k k c cX k! 4 ! �� 5 	 � �� ( )c k��� , and the OLA parameter estimation error 

dynamics are revealed to be 

           � � 1

1 1( ) ( ) ( ) ( ) ( )T T
k c k k k k k kX X X X X! 4 4 4 4 4

�

	 �5 � � � � � 5 	 �� �
 

                          � � 1
( ) ( ) ( ( 1) ( )).T

k k c c cX X k k4 4 ! � �
�

� � � � � �                           (54) 

Next, the boundedness of the cost function error (46) and OLA estimation error 

(54) is demonstrated in the following theorem. In order to proceed, the following 

definition is needed. 

Theorem 2 [3]: (Boundedness of the Cost OLA Errors). Let 0( )ku x be a fixed 

admissible control policy for the controllable system (10), and let the cost NN weight 

update law be given by (50). Then, given a positive constant c1  satisfying 0 1/ 2c1� � , 
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there exists positive constant, c!  given by 1/ 2c c! 1� � such that the critic NN weight 

estimation error (14) is uniformly ultimately bounded (UUB)  with ultimate bounds given 

by k F
b595 ��  for a positive constantb59 .                        � 

Remark 7: The results of Theorem 2 are drawn under the assumption of a fixed 

control policy or when the control input is not updated with time, and these results will 

aid in the proof of Theorem 2 where only an initial admissible control is required. 

Moreover, the estimation of the cost function presented in the above is a generic 

approach that does not depend on the system structure. This approach was used in [3] for 

an affine system while here it is employed for a nonaffine system. 

C. Estimation of the Optimal Feedback Control Signal 

The objective of this section is to find the control policy which minimizes the 

approximated cost function (45).  To begin the development of the feedback control 

policy, we define a NN to estimate (30) as 

                                 
* *( ) ( ) ( )T

k k k Au k u X X� �� � � � � 	 .                                   (55) 

Therefore, define an OLA approximation of (55) to be 

                                      
ˆˆ ˆ( ) ( ) ( )T

k k ku k u X X�� � � ��                                         (56) 

where ˆ( )u k� is introduced in (31) and ˆ
k� is the estimated value of the ideal 

parameter matrix �  and ( )� 7 denotes the linearly independent basis function.  

Next, the optimal control signal error is defined to be the difference between the 

feedback control applied to (10) and the optimal control signal, as  

              
ˆ( ) ( )T

a k ke k X�� � � �1 ˆ ˆ( ) ( ) / 2TT
k k kR G k X X4�	 � � 5  , and        (57) 
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1 2
1 1

2

( )1 ˆˆ ˆ( 1) ( ) ( 1)
2

T
T T k

a k k k
k

Xe k X R G k
X

4� � 	
	 	

	

� ��
	 � � 	 	 5� ��� �

 ,                  (58) 

where, as it is mentioned before, the ke� and k� are ignored in the equation (44). 

One should notice that the identifier error and the robust term errors are previously shown 

to be bounded and play the role of disturbance in the closed loop system. This is the 

reason that they are ignored in the design of the estimation error (57). Nonetheless, we 

will see that ke� and k�  will appear in the overall stability proof of the system. 

The proposed control OLA parameter update is defined to be 

                              1
ˆ ˆ ( ) ( ) ( ( ) ( ) 1)T T

k k a ak e k k k! � � �	� �� � 	                             (59) 

where 0 1a!� �  is a positive design parameter.  Substituting the parameter 

update (59) into (58) yields 

             

                            
1

2

2

ˆ ( )( 1) ˆ ( 1)
2

TT
k

c
k

XR G k k
X

4�
	

	

� ��	
	 5 	� ��� �

.                                  (60) 

Since the control policy ( ( ))u x k in (56) minimizes the cost function (28), from 

(30) we can write 

                             

                              
� � 1 2

2

( )1 ˆ1 ( 1)
2

T
T T k

k

Xk R G k
X

4� � 	

	

�
� 	 	 	 5

�
.                        (61) 

Subtracting (61) from (60) along with defining the control OLA parameter 

estimation error as ˆ
k k� �����  while recalling 1 1

ˆ
k k	 	� � ����  yields 

� � � �1 1
ˆ( 1) ( ) ( ) ( ) ( ) ( ) 1T T T

a k k a a ke k X e k k X k k� ! � � � �	 		 � � � 	

� �1

2

21 ˆ0 ( 1) ( 1)
2

T
cT

A
k

k
k R G k

X
�

� �

	

� 	
� 	 	 	 	

�
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                   � �1( 1) ( ) ( ) ( ) ( ) ( ) 1T T
a a a ke k e k k X k k! � � � �		 � � 	

 

                           

1

2

( 2)1 ˆ( 1) ( 1)
2

T c
A

k

kk R G k
X

�� �

	

� 	
� 	 � 	

�  

                      

1
2

1 1
2

ˆ ( )( 1) ( )
2

TT
Tk

k k k
k

XR G k X
X

4 �
�

	
	 	

	

�	
� 5 ��

�
��

                               
(62) 

As a final step, we form the parameter estimation error dynamics as 

                              
1

( )( )
( ) ( ) 1

T
a

k k a T

e kk
k k

! �
� �	� � � 	

	
� � .                                       (63) 

Remark 8: As mentioned before, in order to calculate ( )ae k in (57) and 

implement the OLA parameter update(59), knowledge of IGM is required while that of

( )F k is not. 

In the following theorem, it will be shown that by starting with an initial 

stabilizing control, the control OLA update (59)ensures all future control inputs are also 

admissible. The following corollary illustrates that for any admissible control policy, the 

system states as well as the cost and control approximator basis functions are bounded.   

Corollary 1:(Boundedness of OLA Basis Functions) [3].  Let ( )k: be any 

admissible control for the controllable system (10). Then, there exists a positive constant

0 0kX X �� such that 0 kX X,  for all 0k � . Moreover, there exists positive constants

0( )M x� �� and ( )M oX4 4�  such that || ( ) ||M kX� �,  and ( )M kX4 4,  for all 0k � . 

Now, we are ready to propose the main result which is the stability analysis of the 

optimal NN-based controller. 
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D. Convergence Proof 

Theorem 3 (Overall Stability Proof of the Robust Optimal Controller): Consider 

the nonlinear singularly perturbed discrete-time system rewritten as (44) and (43). 

Assume that the proposed online NN identifier is given by (11) with the weight update 

law shown in (16) is used to identify the affine-like system(10). Let the optimal control 

law proposed in (56) by using a NN is applied to the affine like representation of the 

nonaffine system (10) when 2 1 2u J! 1� � . Let the NN (45) is applied to estimate the 

cost function. Assume that there exist 1L� � so that (42) holds. Then the overall system 

(44) and (43) along with (36) is uniformly ultimate bounded and k � asymptotically 

exponentially converges to k � , where k � is the solution of (34).  In addition, the robust 

controller ˆk ku  � 	� converges to the robust optimal controller *
k ku  � 	 � in (30) with an 

arbitrarily small error. Moreover, the state error kX , the weight estimation error k�� , the 

cost function weight estimation error k5� , the identification error ke� , and NN weight 

estimation error kW�  for identifier are uniformly ultimately bounded i.e. k WW b�� ,

k XX b� , Ak b;; � , k ee b�� , k b55 �� , k b�� � . 

Proof- Consider the following Lyapunov function candidate  

                   ( ) ( ) ( ) ( , ) ( )k D k u k J k I k k kV V X V V V W e V �� 	 � 	 5 	 	� �� �  

      " # " # � �� �2 2
1 ,T T T T

D k k k k k k k k k kK X tr tr W W X e e4 ! ��� 	 � � 	 	 5 � 	 	� � � � � � �        (64) 

where DK 	�  and k k k�   � � �� . Therefore, the first difference of the 

Lyapunov function can be denoted as follows 

         ( ) ( ) ( ) ( ) ( )k D k u k J k I k kV V X V V V W V �� � � 	� � 	� 5 	� 	�� ��  .                  (65) 
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Due to complexity of kV� , we investigate the first difference of individual terms 

( )D kV X� , ( )u kV� �� , ( )J kV� 5� , ( )I kV W� � , and ( )kV �� . Then, the bounds that make 

0kV� �  will be calculated. 

DV� : Consider the positive definite and radially unbounded function 

( )D D kV k K X� and its first difference: 

      " #( 1) ( )D D D D k k k k k D kV V k V k K F G u O K X � � 	 � � 	 � 	 � 	 �
            

   � �2 2
1 1 1

ˆ ˆˆ ˆ 1T T
D k k k k u k k k k k kK F G G u e� ! � � �� � 	� 	 � 	 � 	 	 	� � D kK X� ,      (66) 

Considering that 1
ˆ T

k k��� resembles an admissible controller (if 1
ˆ

k�� is not updated 

but renders the input remains admissible), (66) can be rewritten as follows 

                                        

     � �� � � �2 2
1

ˆ1D u k k k Ak uk D k D kK G K K e! � � � � 		 	 ; 	 	 	 � ,                  (67) 

where 1
T

Ak k k��; � ��  and it is assumed that the following holds due to the initial 

input admissibility. 

                 
" # 1 1

ˆ ˆ
k̂ k k k k k k kF G u O e X L X 	 		 � 	 � 	 	 � ��                             (68) 

for the initial step with 1L � . Therefore, with the assumption o o
k M� �� , using 

(67) the first difference can be written as 

                              

                         1(1 2 )D u M uM D k D kK G K K e! � � ! 		 	 	 	 � ,                           (69) 

where the following fact is used 

(1 )D D kV K L X� � � �

(1 )D D k D u M AkV K L X K G!� � � � 	 ;
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� � 1
ˆ 2k k k k k k k k k D u M Ak D u M uM kG u G G u G u G u K G K G e! ! � 	� � 	 � � � 	 � � ; 	 	� �� � � � �

 

, and assuming MG being the upper bound on the gain matrix kG . 

( )u kV� �� : Consider " #( ) T
u k k kV tr� � � �� � � as a positive definite and radially 

unbounded function. The first difference of ( )u kV ��  can be expressed as follows 

           

                    

2
2 2

1( ) ( ) 2 ( )
1 1

k T T T
u a a u a k k

k k

e k e k e k
�

! ! �
� �

� 	 �
	 	

� ,                       (70) 

where                                             

                                 

                     
� � 1

1

1 ( )
2

T
T T T T k
k k k k K K k uk

k

G G
X
4� � �	

	

�
� �� 	 � 5 �5 	

�
�� � ,                        (71) 

with ˆ
k k kG G G� � � . Moreover, it is clear that  

                                     

*1

1

1
2

T
T T k
k k k k uk

k

G
X
4� �	

	

�
� 	 5 �

�
                                         (72) 

*1 1 1

1 1 1

1 1 1
2 2 2

T T T
T T T Tk k k

k k k K kk K k K k uk uk
k k k

u G G G
X X X
4 4 4� � �	 	 	

	 	 	

� � �
� � �� � 5 � 5 	 5 	 	

� � �
� �� � ��

 

where *
uk� is the estimation error of the desired optimal control law. It is shown in 

[3] that  

  

2 2

( ) ( )( ) {( ) ( )} { }
1 1

T T
T Tk a k a

u k k u k u k k
k k

e k e kV tr tr� �! !
� �

� � � � 	 � 	 � � �
	 	

� � � � �

*
1

1

1 ˆˆ ˆ
2

T T k
k k k k k uk

k

u G
X
4� �	

	

�
� � � 	 5 	 �

�
�

� �
222

2( ) 3 3
2( 1)

u
u k u Ak u A k u G k

M

V G! ! ! !
�

� � � � � ; 	 � 5 	 �
	

�� �
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� � � �� �� �� �22 1 *

max5 4 ,u u u M M uk ukG R! ! ! 4 
 � ��9	 	 	 	                 (73)

where                                            

                    
� � � �� �� �21

max1 5 4 2A u M M uG R! 4 
 !�9� � 	 	

 

                    
� � � �� �� �21

max1 5 4 2G u M M uR! 4 
 !�9� � 	 5 	

 
( )J kV� 5� : In the work [3], it is shown that with ( )J kV 5 �� � �� �2

1
T
k kX4 �5 �� and the 

chosen update law we have 

                            
22 2

min( ) 2 2J k c k IMV 1 �� 5 � � � 5 	 �� � .                                       (74) 

( )I kV W� � : Negativeness of this term of (65) is already investigated in Theorem 1. 

With the fact that  

                               
2 2 22

k M k M kG W W� � � �� � �                                            (75) 

( )kV �� : As we designed this term, for each time step, it is guaranteed that (42) 

holds 

Now, we are ready to find the overall stability bounds. (27), (42), (69), (73), and 

(74), can be used to write 

       

           � �22 (1 )M M M k D k D k kW K L X K L�! ! � � �	 	 � � � � 	 ��

 
     � � � � 22 2

min2 3 3 2
2( 1)

u
u Ak D u M Ak J u A k SM

M

K G! ! ! 1 ! �
�

� � ; 	 ; 	 � � 	 � 5 	
	

�
        

(76) 

With  

" #� �" # 22 2 2 2 2 2
m2 1 4T

k k k u G M m M M kV e e U W! ! ! !� � � 	 � � 	 � � 	 � 	� �� �



 

 

45

                

          " #2 2 2 21 4 2 (1 2 )D u M uM M M IM D BK G K e! � ! � � !	 	 	� 	 � 	 	
                   (77) 

It is obvious that DK should be chosen such that 1DK L�� � . Therefore, kV�  is 

negative as long as the following is satisfied 

      kW ��

" #� �
� �
" #� �

2 2 2 2
2 m

22 2 2 2

2 2 2 2 2
m

8 4
2

4 2

2 2 2 1 4

m M M SM
M

M M
M SM u G M M M M

W
u G M m M M

U

b
U

! ! �
� !

� ! ! ! �

! ! !

� � 	 � 	� 	� ��
� 	 	� ��� � � � � 	 � �

�
� � 	 � � 	 � 	�

,or      (78) 

                                     (1 )k SM XX L b�� � � , or                                            (79) 

           

� �

� �

2 2 2
2

2

4 3 3
2( 1)

3 3
( 1)

SM u
D u M D u M u

M
Ak

u
u

M

K G K G
b

� !! ! !
�

! !
�

;

	 � �
	

; � �
�

	

, or                  (80) 

                                          k SM ee b� !� �� , or                                              (81) 

                                � �2
min2k SM u A c b� ! 1 55 � � � � �� , or                            (82) 

                                                

SM
k

DL K�

�� �
�

.                                                  (83) 

Therefore, the closed loop system is UUB with the bounds given by (78)-(83). 

One can observe the dependence of the convergence of the closed-loop system on the 

NNs learning rate parameters u! ,! ,and c! as well as the higher order terms. Although the 

convergence is guaranteed, finding proper learning rates for the best convergence rate is a 

challenge.           � 

� � � �� �� �� �22 1 *
max5 4SM u u u M M uk ukG R� ! ! ! 4 
 � ��9� 	 	 	
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Next, Figure 1 depicts the overall controller block diagram representation. 

Although the internal dynamics ( )kF X  is not required, the NN identifier generates an 

estimation of ( )kG X and kO . As mentioned before, the robust controller block in Fig. 1 is 

used to mitigate the effects of modeling errors in the form of higher order terms and to 

represent the closed-loop system as an affine system. The rest of the controller block 

diagram represents the proposed online optimal controller. Here value and policy 

iterations are not utilized. Instead, the cost function is updated once every sampling 

interval. The only requirement for having the overall closed loop system to be stable is an 

initial admissible controller which is shown in the block diagram as the initial value of

ˆ
k� . After tuning, the initial admissible controller will become robust optimal controller 

over time. 

V. APPLICATION TO THE HCCI ENGINE 

Low temperature combustion modes, such as Homogeneous Charge Compression 

Ignition (HCCI), represent a promising means to increase the efficiency and significantly 

reduce the emissions of internal combustion engines. Implementation and control are 

difficult, however, due to the dependence of the combustion event on chemical kinetics 

rather than an external trigger. In [11], the author outlined a nonlinear control-oriented 

model of a single cylinder HCCI engine, which is physically based on a five state which 

utilizes fully vaporized gasoline-type fuels, exhaust gas recirculation and intake air 

heating in order to achieve HCCI operation. The onset of combustion, which is vital for 

control, is modeled using an Arrhenius Reaction Rate expression which relates the 

combustion timing to both charge dilution and temperature.  
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Figure  1. The proposed controller block diagram representation. 
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This model is aimed at capturing the behavior of an engine thermodynamic cycle. 

The model is validated against experimental data from a single cylinder CI engine 

operating under HCCI conditions at two different fueling rates. Predicted combustion 

timing and peak in-cylinder pressure values from simulation agree very well with the 

experiment at both operating conditions. Once validated, trends in the model dynamics 

are investigated. The result is a discrete-time nonlinear control model which provides a 

platform for developing and validating various nonlinear control strategies. Figure 2 

depicts the laboratory HCCI engine whose operating data are used for deriving the model. 

HCCI engine dynamics in discrete-time is well-developed in [7] and it is given in (84) 

through (105) as a MIMO nonaffine nonlinear discrete-time. The system dynamics are 

derived from cycle-by-cycle information of the thermo-dynamical behavior of the engine. 

The model is represented as follows: 

 

  

                          2, 1 , , 1 , 1 4, 1 1 3,k i k egr k e k k u kc c c R N d! !� � � �< =� 	 	 �> ?                            (84)
 

                            

          � �
1

2, 1 , , 1 , 1 4, 1 1 3, 1, 23, 1 1( )k i k egr k e k k u k k kc c c R N T V Z dV
@

@! !
�

� � � �
< =	 	 � A �> ?  

# � �2, 1 , , 1 , 1 4, 1 1 3, 1, 2, , 1 , ,/ ( )k i k egr k e k k u k k k i k egr k e kd c c c R N c c c! ! ! !� � � � 	< =	 	 � A 	 	> ?      (85) 

                  � �18
1 0.0174533 [2.0677 10 0.0000351555 k

k
B� �

	� � � � �  

                  � �� � � � � �1
1 , 1 1, 1 , 1

180
0.992961373 1.16093521 ]SOC k k SOC kV V T

@
� C

�
	 	 	                       (86) 

, 1 ,0.091255843297i k in kT! 	 �

� � � �
1

2, 1 , , 1 , 1 4, 1 1 3, 1, 23, 1 1k i k egr k e k k u k k kc c c R N T V Z d V


@! !

�

� � � �
< =� 	 	 �> ?

"1, 1 1, , , , 2, , 1k k in k egr k e k egr k i kT c T c T c! ! D	 	� 	 	 �
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                          2, 1 , , 1 , 1 4, 1 1 3,k i k egr k e k k u kc c c R N d! !� � � �< =� 	 	 �> ?                            (87) 

                              

          � �
1

2, 1 , , 1 , 1 4, 1 1 3, 1, 23, 1 1( )k i k egr k e k k u k k kc c c R N T V Z dV
@

@! !
�

� � � �
< =	 	 � A �> ?  

# � �2, 1 , , 1 , 1 4, 1 1 3, 1, 2, , 1 , ,/ ( )k i k egr k e k k u k k k i k egr k e kd c c c R N c c c! ! ! !� � � � 	< =	 	 � A 	 	> ?     
 
(88) 

                � �18
1 0.0174533 [2.0677 10 0.0000351555 k

k
B� �

	� � � � �  

                � �� � � � � �1
1 , 1 1, 1 , 1

180
0.992961373 1.16093521 ]SOC k k SOC kV V T

@
� C

�
	 	 	                         (89) 

                         

          

                      � �� 1
a 1 c 1,k 1 1exp E V V T k IVC offset� � ��

	 	
< = 	 � 	 	> ?                            (90) 

  

� �� �
� �

1
3, 1 1, 1 2, 1 , , 1 , 1 1 2, 1 23, 1,

1, 1 4, 1

(

)

k k k i k egr k e k u k k k

k k ref

d c c c c R N V V T

c c T

@
! !

�

� � � � �

� �

� 	 	 	 �

� �
              (91) 

� � � � � �
� � � �

1 2 , , , 1 13,
1

2, 1 , 2 , 1 1

4 52.36 1 52.36
52.36 4 52.36 52.36

k k i k i k e k kk

k k i k k e k k

N
Z

N
B B ! ! ! B

B ! B ! B
� � � �

� � � �

	 	 	 	 	
� �

	 	 	 	 	
                 (92) 

                          1, 8 18, 2, 2,
11 41.36k k p p pC H R O R N R

c c c cB� 	 	                                (93) 

      
� �2, 1 1 12, 2 , 2, 2,

7 8 41.36 11 1k k p k p p k pCO P H O P N P O P
c c c c cB B B� � �� 	 	 	 �

      (94) 

, 1 ,0.091255843297i k in kT! 	 �

� � � �
1

2, 1 , , 1 , 1 4, 1 1 3, 1, 23, 1 1k i k egr k e k k u k k kc c c R N T V Z d V


@! !

�

� � � �
< =� 	 	 �> ?

"1, 1 1, , , , 2, , 1k k in k egr k e k egr k i kT c T c T c! ! D	 	� 	 	 �

� �� �

a b

th c u 2
23,k 1 a b

atmi,k 1 1

K � V R
PA 11 � 1 1k k

�
B B

	

	

	 �

� �� �� �� �� �� �< =� 	 � �> ?� �

� � � �
a b

1, 1
, 1 1 ,

1

52.36 4 52.36 52.36
V

k
k i k k e k k

T
B ! B ! B

	

	
	 �

� �
< =	 	 	 	 	 �� �> ?
� �
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� �, 2,

52.36egr k p kN E
c c B� 	                                           (95) 

                          � � � �3, 8 18 2,
1 11 1k k C H k p O P

c LHV cB � B� � 	 �                              (96) 

                         4, 2, 2 , 2,
7 8 41.36k k p k p pCO P H O P N P

c c c cB B� 	 	                             (97) 

            
� � � � � �� �2 2

23, 23, 23,[1 0.5 1 1 cos sin ]k c c k kV V r R R� �� 	 � � 	 � � �          (98) 

                 � �, 2 ,t k in d c u in kN P V V R T� 	 , 4 60f k k fN gpm MWC E�                   (99) 

                                     � �, , 1 52.36egr k e k kX ! B �� 	 A  

            � �� � � �� �1 , , 1 1 1{ 52.36 1 15 41.36 11 1 }k e k i k k kB ! ! B B� 	 � �	 	 	 	 	 �             (100) 

      , , ,egr k egr k t kN X N�  , , , 1 ,iegr k i k t kN N! 	�  , and , , , ,a k t k egr k iegr kN N N N� � �  

                                  , � �, ,fs k a k a s fN N MW FA MW�                                         (101) 

                                                 , ,k f k fs kN NB � A                                   (102) 

� �� �
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E V K �exp
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c
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� � �
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�

	
	 	 �
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                                                � �a b
c u 2 atmV R P 	 �  

     
� � � �" #� �a b

, 1 1 , 1, 1 152.36 4 52.36 52.36 Vk i k k e k k kTB ! B ! B
	

	 � 	< =	 	 	 	 	> ? (103) 

� �, 1 [1 0.5 1SOC k c cV V r	 � 	 � � � � � �� �2 2
, 1 , 11 cos sin ]SOC k SOC kR R� �	 		 � � �      (104)

                                            � �, 1 ,SOC k in soc kP P V V
@

�                                            (105) 
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Figure  2. Laboratory version of the HCCI engine. 
 

All the parameters are introduced in Table 1. In this model, it is assumed that 

7 16C H  is used as the engine fuel. The HCCI model inputs are the intake air-fuel mixture 

temperature ( )inT k  and the fuel rate ( )gpm k . The system outputs are assumed to be 

crank angle 23,k�  and 3,kP  peak pressure. The objective of controlling HCCI engines is 

usually to regulate the output while minimizing a given value function. 

By observing the system dynamics (84)-(105), it is clear that the system is 

nonaffine, MIMO and has uncertain dyanamics. Therefore, the proposed controller from 

the previous sections can be applied to the HCCI engine representation. In this section, 

some simulation results are provided to show the significance of the proposed approach. 

It is required to have an admissible controller O
ku� . Then, the update law (16), (36), (50), 

and (59) will converge to a optimal control signal *
ku� . The dispersion noise is injected to 

the system dynamics (as actuator and sensor noise) to provide persistence of excitation 

for the system identification and cost function estimation. 
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Now, we consider two different cases to observe the improvement made by the 

online near optimal controller. The first case is when (16), (36), (50), and (59) are not 

updated; and the second case is when they are updated and O
ku�  converges to *

ku� . Figure 

3 illustrates the convergence of the closed loop system with the two above cases when the 

set point is � � � �2
23, 3, 365 ,0.55 /k P CAD KN cm� � . Moreover, we investigate the index function 

(28) where 1Q �  and 1R � . This figure clearly shows that the trajectory selected by the 

online optimal controller is much shorter. 

             

Figure  3. Convergence of the closed loop system for � � � �2
23, 3, 365 ,0.55 /k P CAD KN cm� � with the 

initial admissable and suboptimal controllers.  

             

Figure  4.Convergence of � �kG X  
Assume that both of the controllers have been operating at steady state mode. 

Under this scenario, the estimation of � �kG X  is illustrated in Figure 4. Figure 5 makes a 
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comparison between the control inputs applied by the initial admissible and optimal 

controllers. Figure 5 shows that the optimal controller starts with a same behavior as that 

of the admissible controller, whereas after about 200 engine cycles, the control effort 

begins to decrease in magnitude when compared to the original admissible controller. 

This figure shows that the optimal controller spends significantly smaller control effort 

while keeping the system stable. 

The injected process and sensor noise will not allow the system to converge to its 

set point whereas the output variation at this set point can be viewed as the dispersion 

reduction ability. Figure 6 compares two controllers in terms of reduction in dispersion 

where 3,kP  is plotted versus 23,k� . Compared with the initial admissible controller, the 

optimal controller, after a transient behavior, shows significant smaller variation around 

the equilibrium point. 

 

Figure  5. Performance comparison of the initial admissible and the optimal controller. 
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Figure  6. Comparison of initial admissible and the suboptimal controllers. 

 

Figure  7. Comparison among open loop, admissible, and the sub-optimal controllers 
when the setpoint is ( , ): the controller switches from open-loop to 

admissible at k=400; then, to the sub-optimal controller at k=800. 
 

In another numerical experiment, we compare open loop, admissible, and the 

optimal controllers in terms of their cyclic dispersion reduction abilities. Over all 

numerical examinations k=0.008333s (the engine speed which is 188.49 rpm), 0.005! � , 

0.001u! � ,  2 2 4 3 6
1 1 2 2 1 1 2 2( ) { , , , , ,..., }kX x x x x x x x x4 � , ( )kX� � 16 32{1,...,1,sin( ),sin(2 ),..., tanh( ), tanh(2 ),...}X X X X ��

, � � 16 32{tanh( ), tanh(2 ),...}X x �� , 0.1�! � , and the initial admissible controller is chosen as  

�0.1× 23 23 3 3[( ),( )]T
d dP P� �� � .  

3P 0.55� 23 370� �
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To this end, we assume that initially the engine is considered to be running in the 

open-loop mode for 400 engine cycles, then it switches to an admissible controller for the 

same duration of run, and finally, to the optimal controller. Figure 7 shows the result of 

this experiment for set point 2
3 23( 0.55 , 365 )P KN cm CAD�� � . It is obvious that the 

optimal controller significantly reduces the dispersion when compared with the open-loop 

and the admissible controllers. We conclude from Figure 7 that the proposed controller 

shows the best results in terms of output dispersion reduction. 

VI. CONCLUSIONS 

This paper presents an online robust optimal control of unknown nonaffine 

nonlinear discrete-time systems by using inputs and outputs. The stability of the closed 

loop system is shown under the assumption that an admissible controller is available and 

it is updated until it converges to an optimal controller. The optimal controller includes 

three separate neural networks: 1) the cost approximation NN; 2) the optimal controller 

NN; 3) the NN identifier. Moreover, it is shown that we can mitigate the modeling errors 

due to higher order terms by using a robust term. The net result is the design of a robust 

optimal controller by using output feedback. As an application, the approach is applied to 

the MIMO nonaffine representation of an HCCI engine that is validated experimentally. 

The simulation results show a significant reduction in the cyclic dispersion when the 

robust optimal controller is utilized. 
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II. A DISCRETE-TIME EXTREMUM SEEKING METHOD COUPLED 

WITH OPTIMAL ADAPTIVE CONTROLLER FOR NONLINEAR 

DISCRETE TIME SYSTEMS WITH APPLICATION TO EFFICIENCY 

OPTIMIZATION OF HCCI ENGINES 

H. Zargarzadeh, Student Member, IEEE, S. Jagannathan, Senior Member, IEEE, 

and J. A. Drallmeier 

Abstract— Identifying an optimal set point is important for a number of control 

applications once a system is stabilized. This optimal set point is determined by finding 

the extremum of an output or performance function of an unknown nonlinear system.  

Therefore, this paper introduces an extremum seeking method with an optimal adaptive 

stabilizing controller for nonlinear nonaffine discrete-time systems. First, a novel 

averaging method is used for the nonlinear discrete-time system to show that the unique 

extremum points are stable equilibrium points. Then, a singular perturbation method in 

discrete-time is employed to show that the overall closed-loop system will dynamically 

converge to the extremum.  Finally, as an example, the proposed approach is applied to 

identify a set point which maximizes the performance for a generic linear multivariable 

system and in terms of efficiency of the HCCI engines which are represented by non-

affine dynamics with an uncertain output function. This approach is able to find an 

operating point that not only maximizes efficiency, but also minimizes the pressure rise 

rates of the cylinder due to engine operating constraints. 

1. INTRODUCTION

Identifying a suitable operating point by maximizing an output function, which is 

a function of system states or parameters, is of great importance for a nonlinear system 

besides controlling the system around it in a stable manner.  Given an output function and 

any associated constraints, it is always desirable to optimize the system performance by 

SUMMARY 
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choosing the best operating point. It is well known in the literature that optimal control is 

able to minimize a cost function in either direct [1] or inverse [2] manner, where a 

desired set point or trajectory is given beforehand. Nonetheless, in a wide class of control 

problems, the operating point that optimizes the plant performance is unknown and need 

to be identified online. In many cases, the extremum point of the output function of a 

nonlinear function is utilized to select this operating point and it may be unknown. 

Therefore, in the literature, self-optimization, extremum control, or extremum seeking 

approaches [16] are utilized for identifying a suitable operating set point. 

Extremum seeking word is coined in 1922, a few decades before the introduction 

of linear adaptive control methods. Since extremum seeking methods are adaptive against 

the performance function uncertainties, authors in [18] tend to introduce them as the first 

adaptive control method reported in the literature.  Since then, extremum seeking has 

been widely applied to engineering systems. For example, maximum power point 

tracking of photovoltaic systems [20], soft landing of electromagnetic actuators [8], PID 

tuning [9], thermoacoustic coolers [17] and so on are derived by using extremum seeking 

techniques or its variants. Moreover, extremum seeking has been considered in 

automotive applications such as antilock breaking system [11], combustion instability 

[12], and optimization of variable cam timing engine operation [14]. 

This paper considers the problem of extremum seeking of nonlinear discrete-time 

systems whose output function is uncertain. In order to address this issue, in [19], a 

nonlinear plant represented as a cascade combination of linear dynamics and a static 

nonlinearity is considered. In contrast, in this paper, a nonlinear dynamical system with a 

nonlinear state-to-output mapping is considered with an optimal adaptive stabilizing 
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controller in the inner loop. It is assumed that the closed loop system has a faster inner 

loop and a slower outer loop. The nonlinear discrete-time plant is stabilized by using the 

fast inner loop, whereas a slow extremum seeking outer loop is employed to find the 

optimum set point.  

We first show the stability of the outer loop using averaging analysis [15][24] 

provided the inner loop is fast enough to follow any desired set point which is considered 

a mild and customary assumption for extremum seeking methods [18] due to employing 

singular perturbation method [24] for the stability proof . By viewing the state-to-output 

map as a output or performance function, which has a unique extremum, it was shown 

that the proposed method is able to locally converge to this set point. The stability of the 

overall dynamical system is examined by using singular perturbation method for 

nonlinear discrete-time systems [25]. It is shown that the overall closed loop method 

converge to the optimum set point with a uniformly ultimately bounded (UUB) stability. 

To solve the problem, a nonlinear discrete-time system is considered which can 

be stabilized at any desired set point with UUB stability. This can be guaranteed by any 

controller e.g. a neural network (NN) based robust optimal adaptive controller [6]. Then 

the objective is to design an outer loop that is able to find the set point which renders an 

extremum for a predefined yet unknown function of the system states. It is shown that the 

set of inner and the outer loops will form a singularly perturbed system. The proof of the 

stability of the singular perturbed discrete-time systems is provided in [25] for 

asymptotically stable systems. In this paper, these results are extended to show that the 

overall nonlinear discrete-time system will remain UUB when the proposed nonlinear 
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extremum seeking method is applied to a system that is UUB. The proposed approach is 

verified initially on a nonlinear system. 

Low temperature combustion mode engines, such as Homogeneous Charge 

Compression Ignition (HCCI) engines, represent a promising trend to increase the 

efficiency and significantly reduce the emissions of internal combustion engines [2]. 

HCCI engines are one of the complicated mechanical nonlinear systems, due to the 

dependence of the combustion event on chemical kinetics rather than an external trigger 

and control of such systems becomes a challenge [6] due to uncertain engine dynamics.  

In [6], the authors considered the problem of optimally controlling the engine 

while the system dynamics is fully unknown, although the problem of choosing the best 

operating point that maximizes the performance is predetermined.  In fact, it is desired to 

find a suitable crank angle that maximizes a predefined performance function while the 

cylinder pressure rise rare (PRR) is kept below a safe threshold. By defining a suitable 

performance objective, the HCCI engine becomes a practical example for implementation 

of the extremum approach in discrete-time which is developed in this paper. Numerical 

results are shown on an experimentally validated engine model to verify the theoretical 

claims.  

In fact, we assume that an internal control loop is used from [6] to provide the 

ability of driving the nonlinear system to any desired setpoint. Then the proposed method 

is used to design an external control loop by extremum seeking in order to find the best 

set point that maximizes the performance function. 

The paper is organized as the following. After the introduction, Section II is 

dedicated to demonstrate the theoretical results to the stability of the proposed extremum 
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seeking method. Section III introduces the linear multivariable systems and HCCI 

engines and the problem of maximization of performance. Finally, Section IV provides 

results to numerically verify the results in the previous sections. 

2. A DISCRETE TIME EXTREMUM SEEKING  METHOD FOR 

NONLINEAR SYSTEMS 

Consider a general class of nonlinear discrete-time systems in the following 

representation provided by 

                                            
1 ( , )k k kx f x u	 �

                                                                     
 

                                                    ( )k ky h x� ,                                                        (1) 

where m
k uu E � � , n

k xx E � � ,and k yy E � �  represent the system input, states, 

and the outputs respectively, and ( )f � and ( )h � are assumed to be unknown continuous 

nonlinear functions with respect to kx and ku . We assume that there exist a stabilizing 

controller ( , ) m
k k k uu x E! ��  � �  such that  

                                         
1 ( , ( , ))k k k kx f x x! �	 � ,                                                 (2)                         

                                                     ( )k ky h x�                                                         (3) 

is uniformly ultimately bounded (UUB) with respect to the equilibrium point

( )k kx �� � where k� � is an adjustable or a design parameter. Without loss of generality, 

we assume that the state to output mapping can be represented as  

                                           
* * 2( ) ( )k kh x h x x� � � ,                                                (4)

where *
yh E is a unique extremum of the output function and *

xx E is the value for the 

system state that results in * *( )h x h� . The objective is to find *� such that * *( )x �� � . The 

following assumptions are necessary in order to proceed. 
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Assumption 1 [4]: There exists a smooth function : n3� � � such that

( , ( , )) 0k k kf x x! � � if and only if ( )kx �� � , that is, a unique equilibrium point can be 

found depending upon� .  

Assumption 2: For each�� , the equilibrium point ( )x �� � is UUB. 

Assumption 3: There exist *� � such that � � *'( ) 0h � �
� and *( ) ''( ) 0h � �
� , 

where the ( ) ( ( ))h h
� � 	 � �  denotes  the composition of ( )h � and ( )� � .

In Assumption 1, uniqueness of ( )kx �� � is required to guarantee the uniqueness 

of the system trajectory [18]. Assumption 2 provides the stability of the equilibrium point 

that is required since the objective is to find the equilibrium point which maximizes the 

output performance function. Assumption 3 is a standard assumption that guarantees the 

uniqueness of the extremum point of the output function. It should be noted that the 

extremum seeking method solely deals with the systems having unique extremum points. 

The property of (4) also justifies this assumption [18][19].  

The block diagram of the proposed extremum seeking approach is illustrated in 

Figure 1. To start, we write the system dynamics as  

                                   1
ˆ( , ( , sin( )))k k k kx f x x a k! � E	 � 	                                       (5) 

                                       � �1
ˆ ˆ sin( )k k k kb y k� � @ H E	 � � 	                                       (6) 

                                              1 (1 )k k kyH IH I	 � � � 	                                            (7) 

Now define *ˆ
k k� � �� �� and *( )k k hH H �� 	� 
 � .  The system dynamics are 

rewritten as 

                             
*

1 ( , ( , sin( )))k k k kx f x x a k! � � E	 � 	 	�                                     (8) 
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                        � �*
1 ( ) ( ) sin( )k k k kb h h x k� � @ H � E	 � � � 	� � � 
 �  (9)   

                        * *
1 ( ) ( ( )) ( )(1 )k k kh h h xH � I H � I	 � � � � � 	� �
 � 
 �                       (10) 

or 

                                
*

1 ( , ( , sin( )))k k k kx f x x a k! � � E	 � 	 	�                                (11) 

                           � �*
1 ( ) ( ) sin( )k k k kb h x h k� � @ H � E	 � � 	 �� � � 
 �                           (12)  

                               � �*
1 ( ) ( ) (1 )k k kh x hH IH � I	 � � � � 	� � 
 � .                              (13) 

The overall feedback system (11)-(13) has two time scales. The stabilized plant 

(11) dynamics are at a faster time scale, while the periodic perturbation and filter 

dynamics respectively in extremum seeking (12)(13) are at a slower time-scale 

[19][25][24]. 

1 ( , ) ( , ( , ))
( )

k k k k k k

k k

x f x u f x x
y h x

! �	 � �
�

sin( )b kE

1z
z I
�
	1z

@�
�

sin( )a kE

k̂�

k� ky

k ky H	

1kx 	
ku

( , )k k ku x! ��

 

    Figure. 1. Block diagram representation of the proposed extremum seeking scheme. 
 

The set of equations (12) and (13) constitute a dynamic system due to the 

extremum seeking outer loop. Now, using averaging analysis, it is necessary to show that 

the closed loop system is stable around the unique extremum point of (4) which is also a 
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stable equilibrium point of (2) when *�  is applied. The second aspect is to show that the 

closed loop is able to converge to the neighborhood close to the unique extremum using 

singular perturbation method [25][24]. 

In singularly perturbed systems, it is not always easy to determine whether or not 

the fast subsystem is fast enough or the slow subsystem is slow enough (pp.424, [24]). In 

fact, it is not always clear how to pick the design parameters for the closed loop in order 

to be considered slow or fast. However, in many applications, our knowledge of the 

system dynamics can help in the right choice if design parameters. Methods of selecting 

parameters are shown in Khalil (pp.423-429, [24]). 

2.1. Averaging Analysis 

Now, considering the state kx at its equilibrium point *( sin( ))k a k� � E	 	�� and 

substituting it in the slower dynamics given by (12)-(13) which forms the reduced system 

[24] as  

                           � �1 ( sin( )) sin( )k k k rb a� � @ H J � K K	 � � 	 	� � ��
                               

(14) 

                                  1 ( sin( ))(1 )k k r aH IH J � K I	 � � � 	 	�� � ,                               (15) 

where 

                     
* *( sin( )) ( sin( )) ( )r ka h a hJ � K � � K �	 � 	 	 �� �
� 
� .                     (16) 

Here, in the light of Assumption 3, it is obvious that (0) 0J � and (0) 0J9 � . 

Without loss of generalityE  can be represented as 2 nE C� with n� being a natural 

number. Then, by averaging (14) and (15) over n  sampling instants to get 

         
� �1 1 1

( sin( ))sin( ) sin( )n na a a
k k k ki i

b a i i i
n
@� � J � E E H E	 � �

� � 	 	� �� � � �   
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1

( sin( )) sin( )na a
k ki

b a i i
n
@� J � E E

�
� � 	�� �                                       (17) 

                       1 1

(1 ) ( sin( ))na a a
k k ki

a i
n
IH IH J � E	 �

	
� � � 	� �� �  .                              (18) 

Here, and in the sequel, the superscript “a” represents the parameter after 

averaging process. Obviously, an averaging equilibrium point of (17) and (18) can be 

represented as ,
1

a e a a
k k k� � �	� �� � � and ,

1
a e a a
k k kH H H	� �� � � . Obviously, from (17) and (18), the 

stability of this equilibrium point is guaranteed when the following conditions are 

satisfied:

                           
,

1
0 ( sin( ))sin( )n a e

ki
b a i i@ J � E E

�
� � 	� �                                     (19) 

                                  
, ,

1

1 ( sin( ))na e a e
k ki

a i
n

H J � E
�

� � 	� ��                                      (20) 

Now writing (19) and (20) to get 

                             
,

1

2 20 ( sin( )) sin( )n a e
ki

a i i
n n
C CJ �

�
� 	� �

                              
    (21) 

                                
, ,

1

1 2( sin( ))na e a e
k ki

a i
n n

CH J �
�

� � 	� ��                                     (22)  

It is obvious that the solution of (21) and (22) are only a function of a  as the 

magnitude of the sinusoidal perturbation sin( )a kE  in Figure 1. Therefore, by using 

Taylor series expansion, ,a e
k��  can be expressed as  

                                     
, 2 3 4

1 2 3 ( )a e
k b a b a b a O a� � 	 	 	�                                       (23) 

Therefore, 
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, 2 3
1 2

2 3
1 2

2 2( sin( )) ( ( ) sin( ))

2(0) (0)( ( ) sin( ))

a e
k a i b a b a O a a i

n n

b a b a O a a i
n

C CJ � J

CJ J

	 � 	 	 	

9� 	 	 	 	

�
 

                       

2 3 2 3
1 2

1 2(0)( ( ) sin( )) ( )
2

b a b a O a a i O a
n
CJ99	 	 	 	 	

               

                 

2 3 2 3
1 2

1 2(0)( ( ) sin( )) ( )
2

b a b a O a a i O a
n
CJ99� 	 	 	 	

 

.                        (24) 

Now, from (21) one can get 
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Obviously, 4( ) 0O a 2 when a is chosen small enough, and it is necessary that 

1 2 3 0b b b� � � in order to ensure (26) holds. Therefore, we conclude that the averaging 

equilibrium point for the system (17)-(18) can be represented as  

                                                , 4( ) 0a e
k O a� � 2�                                                   (27) 

                               , ,
1

1 2( sin( ))na e a e
k ki

a i
n n

CH J �
�

� � 	� ��   

                      4 2 3
1

1 2(0)( ( ) sin( )) ( )
2

n

i
O a a i O a

n n
CJ

�
99� � 	 ��  

                            
2

2 3
1

2(0) sin ( ) ( )
2

n

i

a i O a
n n

CJ
�

99� � 	�  .                                     (28) 

With 3n , , we can write 

                 2
1 1

1 1 1 1 1sin (2 / ) [ cos(4 / )]
2 2 2

n n

i i
i n i n

n n
C C

� �
� � �� � .                       (29) 

Similarly we have 

           4 2
1 1

1 1 1 3 3sin (2 / ) [1 cos(4 / )]
4 4 2 8

n n

i i
i n i n

n n
C C

� �
� � � � �� � . (30)          

Therefore, (27) and (28) imply that the equilibrium point of the system (17) and (18) can 

be represented as  

                                                , 4( ) 0a e
k O a� � 2�                                                   (31) 

and 

                                
2

, 3 2(0) ( ) ( ) 0
4

a e
k

a O a O aH J99� � 	 � 2� .                                (32) 

By choosing a properly small enough value for the amplitude a , the above 

analysis presents that the closed-loop reduced order system has a unique equilibrium 
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point arbitrarily close to the origin. The next step is to study the stability of this 

equilibrium point. Now, the Jacobian of (17) and (18) can be written as 

1

1

2 21 ( sin( ))sin( )

(1 ) 2( sin( ))

n

i
a
r

n

i

b a i i
n n nJ

a i
n n

@ C CJ

I CJ I

�

�

< =
F G

� F G
	F G� �F G> ?

�

�
which in 

turn can be expressed as 

                                           

1

2

1a
rJ

L
L I

< =
2 F G� �> ?

                                                      

(33) 

where 

 

                                    

3
4

1 1

2(0) sin ( )
6

n

i

a b i
n n

@ CL J
�

999� �                                        (34) 

                                2 2
2 1

(1 ) 2(0) sin ( )n

i
a i

n n
I CL J

�

	 99� �  .                                  (35) 

Using (29) and (30), (34) and (35) can be rewritten as  

                                              
3

1 (0) /16a bL @ J9992                                                 (36) 

and 

                                           
2

2 (1 ) (0) / 2aL I J992 	  .                                            (37) 

Hence, by using Jury’s method [18], the stability of (33) requires the following 

conditions to hold  

                           1 2 1 21,  0,  andL L I L L� � �  1 2 2( 1)L L I� �                            (38) 

Observing these conditions, the first condition can be satisfied by choosing small 

enough aandb . Moreover, since 1 0I � �  due to the stability of the linear filters in the 

outer loop of the block diagram shown in Figure 1, 1 2 0L L �  is sufficient to satisfy the 
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second and the third conditions from (38). Now, using (36), the following theorem is 

proven. 

Theorem 1. Consider the system described by (17) and (18) with the assumptions

(0) 0J � and (0) 0J9 � . Then there exist ,a a�and ,b b� such that ( , )a a a and 

( , )b b b makes conditions in (38) hold and the system (17)-(18) has a stable solution 

,a e
k�� and ,a e

kH�  with period 2C . In addition, this solution, from (27) and (28), satisfies 

                                     

, , 2|| [ ( ) ( )] || ( )a e a e T
k k O a� K H K �� � .                                       (39) 

Proof. It has been shown that (17) and (18) are stable under the condition (33) 

provided (38) holds with an appropriate choice of aandb . The bounds ( , )b b and ( , )a a

can be determined by expanding the left condition of (38) as  

                                   
51 1 (0) (0) 1

1 32
a bI @ J J

I
� 999 99� �
	

  .                                      (40) 

Finally, (39) holds due to (31) and (32).                               � 

This result shows that, under the assumption of the fast inner loop, the system is 

able to reach the desired point and the proposed extremum seeking method makes the 

closed loop system to converge to a neighborhood which is bounded by 2( )O a . Moreover, 

this bound can be arbitrarily approach the origin by choosing a to be small enough.  

Once we demonstrated that the equilibrium point is stable, we need to show that 

the closed-loop system will converge to this point from any initial condition. To this end, 

we will use singular perturbation analysis in the next subsection. 

2.2. Singular Perturbation Analysis  

Now, consider the full system depicted in Figure 1 whose state space 

representation is given in (11)-(13). Without loss of generality, we assume thatb a4�  
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with4 � . This shows that, by choosing 0a � , (11) will represent the boundary layer 

[24] and (12) and (13) will represent the reduced model. For the sake of brevity, we 

denote kK E� and represent the system (12)-(13) as  

                                              1 ( , , )k k kz G x zK	 � ,                                                 (41) 

with ( , )k k kz � H� � � . Theorem 1 shows that there exists a periodic stable solution 2
rz C

such that  

                                
2 2 2

1( ) ( , ( , ), ( ))r k r k r kz G L z zC C CK K K K	 �                                     (42) 

is stable, where � �2 *( , ) sinr kL z aCK � � K� 	 	�� . In order to make the system as a 

singularly perturbed representation, we shift the state z as 

                                                 
2 ( )k k r kz z z C K� �� ,                                                (43) 

By using (39), can represent the singular perturbed representation as 

                                                1 ( , , )k k kz G x zK	 � �� �                                                 (44) 

                                             1 ( , ( , , ))k k kx F x x z! K	 � � �                                           (45) 

where  

                      
2 2( , , ) ( , , ) ( , ( , ), ( ))k k k k r k r kG x z G x z G L z zC CK K K K K� �� �                      (46) 

               ( , , )kF x zK �� � * 2 2( , ( , ( ) ( ) sin( )))k k k r r

z

f x x aC C! � � � K � K K	 � 	 	
�

� � �
���� .           (47) 

In Theorem 1, it was shown that this equilibrium point is stable with properly 

chosen value for aandb a4� . Moreover, as demonstrated previously if 0a 3 then the 

solution to the fast dynamics (47) will converge to a dynamics that is called quasi-steady

state model represented by  

                                           
2

0
( , ( ))k r a

x L z z CK K
�

� 	�  .                                          (48) 
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and the reduced model [24] 

                        
2 2

, 1( ) ( , ( , ( )), ( ))r k r r r rz G L z z z zC CK K K K K	 � 	 	�� � �                                (49) 

has an equilibrium point at the origin. Now consider the boundary layer model 

[19][24] as  

                            
2

, 1 ,( ) ( , ( , ( )), )b k b k r rx F x L z z zCK K K K	 � 	 	 �� � �  

                                    � � � �, ,( , ( , ))b k b kf x x� ! � �	 	� �  ,                                   (50) 

where * sina� � � K� 	 	� should be considered as a parameter independent of k . 

Since we assumed that � �x �� � is a locally stable point, bx is also stable. The following 

assumptions are needed in order to proceed. 

Assumption 4: Assume that there exists a : nV 	3� � , which is positive definite 

on n
xD M � , and in addition, radially unbounded when n

xD � � . Moreover, there exists a 

function ( ) : nxB 	3� � that is locally positive definite on xD  such that  

                      � � � �
0

( , ( , , )) ( )k k k ka
V F x x z V x x! K B

�
� � �� �       k xx DN  .             (51) 

Assumption 5: Assume that there exists a 2:W 	3� � that is a positive definite on 

2
zD M � , and in addition, radially unbounded for 2

zD � � . Moreover, there exists

2( ) :zO 	3� � that is locally positive definite on zD  such that  

                      � � � �1 ( )f f
k k kV z V z zO	 � � �� � �                xx DN  ,                              (52) 

where the superscript (f) signifies the fast part of the dynamics. 

Existence of V and W are not strong assumptions due to the stability of the 

reduced (12)-(13) and boundary systems (11) by using the converse Lyapunov theorems 

[19]. 



 

 

73

Assumption 6: Consider the reduced model (49) and boundary layer (50).  Assume 

that there exists real numbers i
 , {1,2,...,6}i � satisfying the following inequalities  

(a) � � � �0
( , ( , , )) ( , ( , , ))k k k k a

V F x x z V F x x z! K ! K
�

�� �� �  1 2( ) ( )k kx a z
B 
 O� 	 �         (53) 

(b) � � � �1 3 4( , , ) ( ) ( )f
k k k k kW G x z W z x a zK 
 B 
 O	� � 	� � � �                                            (54) 

(c) � � � � 5 6( ) ( )f
k k k kW z W z x z
 B 
O� � 	� � .                                                            (55) 

The above inequalities determine the permissible interaction between the slow 

and fast dynamics.  Next the following theorem is stated. 

Theorem 2. Consider the singularly perturbed nonlinear system whose boundary 

layer is represented in (45) when 0a � and the reduced model is given by (44) with the 

Assumptions 1-6 hold. Assume that the boundary layer (45) with 0a �  is locally 

uniformly ultimately bounded stable for any �̂ � i.e. it is guaranteed that, with 0a � , 

kx uniformly converges to a bound ˆ( )xb � in a neighborhood xD . Moreover, let the fast 

part of the dynamics (44) represented by f
kz� be stable under the Assumption 5 as proven in 

Theorem 1. Then, when 1 3 5 1
 
 
	 	 � , the overall extremum seeking system (5)-(7) is 

UUB such that kx converges to *x and�̂  converges to *�  with bounds being xb and b�

respectively. 

Proof. It is enough to choose v V W� 	 as the Lyapunov candidate that is a 

positive definite function on x zD D D� �  based on the Assumptions 4 and 5. Therefore, 

the forward difference can be written as 

v V W� � � 	 �

                     [ ( , ( , , )), ( , , ), ] [ , , ]k k k k k kv F x x z G x z a v x z a! K K� ��� � � �                           (56) 
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By some simple computation and under Assumptions 4-6, (56) along the closed 

loop system trajectory can be written as 

                      
� � � �

� � � � � � � �
0

1

( , ( , , )) ( , ( , , ))

( , , )

k k k k a

f f
k k k k k

v V F x x z V F x x z

W G x z W z W z W z

! K ! K

K
�

	

� � �

	 � 	 �

� �� �

� � � �
    

Now using (53)-(55) we have 

               1 3 5 6 2 4(1 ) ( ) (1 ) ( ) 0k kv x a a z
 
 
 B 
 
 
 O� � � � � � � � � � ��  

                ( , )k k x zx z D DN  �� and 6 2 4(1 ) / ( )ma a 
 
 
� � 		 .  (57) 

The inequality (57) implies that there exists a neighborhood x z x zb b D D� M � such 

that for ( , )k k x zx z b bN  �� the inequality holds. Therefore, kx  will converge to the bound 

of xb and kz�  will converge to the bound of zb which means   ��  will be upper bounded by

b� .        �   

2.3. Inner Loop Stabilizer Design 

As mentioned in (2)-(3), ku is stabilizing and we relied on this assumption 

throughout the subsections A and B. Now, the question might be how to design such a 

controller for nonaffine systems. Depending upon the application, different classes of 

controller are proposed in the literature [20][20] for nonaffine systems. In the work [6], a 

robust optimal adaptive controller is proposed for controlling nonaffine systems. 

In paper [6], the nonaffine nonlinear discrete-time system is transformed to an 

affine-like equivalent nonlinear discrete-time system in the input-output form. Next, a 

forward-in-time Hamilton-Jacobi-Bellman (HJB) equation-based optimal approach, 

without using value and policy iterations, is developed to control the affine-like nonlinear 

discrete-time system by using both neural networks (NN) as an online approximator and 
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output measurements alone.  To overcome the need to know the control gain matrix in the 

optimal controller, a new online discrete-time NN identifier is introduced.  The 

robustness of the overall closed loop system is shown via singularly perturbation analysis 

by using an additional auxiliary term to mitigate the higher-order terms. Lyapunov 

stability of the overall system, which includes the online identifier and robust control 

term, demonstrates that the closed-loop signals are bounded and the approximate control 

input approaches the optimal control signal with a bounded error. in the following, the 

steps the algorithm of computing ku is provided, while the one can find the proof of the 

stability in [6]. 

Consider a generic form of nonaffine system (1). The system input and the 

controller output are connected such that 1k k ku u u	 � 	 � . Using (1) and (3) we can 

express the system dynamics as 

                                          1 ( , , )k k k ky h y u u	 � �  

or 

                  � �� �1
1 ( ( , ), , )

( , )

TT T
k k k k k k k k

k k

X u u h g y u u u u

H X u

�
	 � 	 � 	 �

� �
                        (58) 

where 1 ( )T m
k k kX u y 	
	 � � �� . By applying the Taylor series expansion, 

equation (58) can be expanded as   

                   

  

                                 

0
( ) ( , ),q i

i k k k ki
F X u O X u

�
� � 	 ��     (59) 

1 0

0

( , ) ( ) ( , ) |

1 ( ( , ) ) |
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k k k k k k u k
k

k k k u k
k k

X H X u H X H X u u
u

H X u u u
u u

	 � �

� �

�
� � � 	 � �
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� �
	 � � � 	

�� ��
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where 

                 0 ( ) ( )k kF X H X� , 1 0( ) ( , ) |
kk k k u

k

F X H X u
u � �

�
� �
��

, … 

Therefore, the unknown affine-like system representation of (1) takes the 

following input-output form as 

1 ( ) ( )k k k k kX F X G X u O	 � 	 � 	 , (60) 

where ( )
1 1( , ) p m

k kX u � 	
� �� �  �� , ( )p mW � 	 �� , kU� � ( )(1 1 )T T m

ku 	�  �� � , 

m
k�

	 �� , 1 1( , )k k MX u� �� � � � , 1 1 1( , )k k k MX u U� � �� � � � being the bounded NN 

activation function and k� is the estimation error satisfying k M� �� . Moreover, the 

following bound m kU U� � holds due to the presence of constant values in the input 

vector in fact
0k

m k u
U U

� �
� � . In order identify the NN weight matrix W  denoted here as

� �ˆ ˆ ˆ ˆ, ,
TT T T

k F O GW W W W� by estimating the state vector kX with ˆ
kX  where 

                        1 1 1
ˆ ˆ ˆ( , ) ( )T T

k k k k kF FX X u W U W X� � �� � � � � �  

                                
ˆ ˆ( ) ( , )T T

k k k kG G O OW X u W X u	 � � 	 � �  ,          

                               ˆ ˆˆ ( ) ( ) ( , )k k k k kF X G X u O X u� 	 � 	 �                                     (61) 

Therefore, 

                     1 1
ˆ ˆ ˆˆˆ ( ) ( ) ( )k k k k k k k kX F X G X u G X O e 	 	� 	 � 	 � 	 	 � .                      (62) 

where the identification error is defined as 

                    1 1 1 1 1
ˆ ˆ( , ) ( )T

k k k k k k k ke X X X u W W U �� � � � �� � � � � � � 	�              

                               1 1 1 1 1( , )T
k k k k kX u W U �� � � � �� � � � 	�                                        (63) 
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Define the update law for the actual NN weights ˆ
kW as 

                 � �2
1 1 1 1 1

ˆ ˆ ( , ) 1T
k k k k k k kW W E X u U U!� � � � �� 	 � � � � 	� ,                       (64) 

where 

                                       
( ) ( )( ) m m

k kE diag e 	 � 	�  � �� � � ,                                         (65)                        

with 0! � is a design parameter or NN learning rate. After identification of the unknown 

dynamics we design the optimal controller. Consider the cost function ( )J k  such that 

                        10
( ) ( ) ( , ) ( )k k k ki

J X r k i r X u J X+

	�
� 	 � � 	�                             (66) 

where ( , ) ( ) T
k k k k kr X u Q X u R u� � 	 � � with ( ) 0kQ X , , (0) 0Q � , and m mR ��  as 

a positive definite matrix. In the sequel, we will denote ( )kJ X by kJ  for the sake of 

simplicity. Next the following definition is needed in order to proceed. The objective is to 

minimize kJ  by starting with an admissible control law and modifying it with respect to 

the system dynamics so that the estimated cost function and control input converge to the 

optimal cost function *
kJ  and control law *

ku�  respectively. By applying the stationarity 

condition to (28) we have 

                                     
1( , )k k k k

k k k

J r X u J
u u u

	� � � �
� 	

�� �� ��
  

                               1 1

1

2 0
T

k k
k

k k

X JR u
u X
	 	

	

� �� �
� � 	 �� ��� �� �

                                            (67) 

Using (29) and (14) we can write 

         

* *
* 1 11 1 1

1 1

ˆ1 1ˆ ( )
2 2

T

T k k k k
k k

k k k k

J O e Ju R G X R
X u u X

� �	 	 	

	 	

� �� � � �
� � � � 	� �� �� �� �� �� �

�
.                     (68) 
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In order to mitigate the higher order term, the design of an auxiliary term, k �  , is 

required for robustness in addition to the optimal controller term 

                                                ˆk k ku u  � � � 	� .                                                 (69) 

update law for k � is chosen to be 

                                                1k k k  1 	� � � 	                                                (70) 

With the desired k1 as 

                                                 � � � �1 ,k A k B k� �1 �� �                                                          (71) 

with 

                       � � � �" #1 1 1
ˆ ˆ ˆ ˆ( ) ,k k k k kA k G X O X u u�  	 	 	� 	 � � 	 � �� , 

                    � � � �" #1 1 1
ˆ ˆ ˆ( ) , ,k k k k k kB k G X O X u� �  ! �	 	 	� � 	 � 	 � �  

and 0 1�!� � .                                                                                                    (72) 

The cost function (28) will be approximated by an OLA and written as 

                             
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T

k k k kJ k J X X k4 4� �5 �5  

where ˆ( )J k represents an approximated value of the original cost function ( )J k , 

ˆ
k5  is the vector of actual parameter vector for the target OLA parameter vector,5 , and 

:
1( ) { ( )}Lk k4 4� �  is set of activation functions which are each chosen to be basis sets and 

thus are linearly independent. Define the cost function OLA parameter update to be 

                         � � � �1

1
ˆ ( ) ( ) ( ) ( ) ( )T T T

k c cX k X k X k E k Y k!
�

	5 � �                         (73) 

where 0 1c!� � . Finally, we need to define the optimal feedback optimal policy. 

we define a NN to estimate (30) as 
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* *( ) ( ) ( )T

k k k Au k u X X� �� � � � � 	 .                                    (74) 

Therefore, define an OLA approximation of (55) to be 

                                     
ˆˆ ˆ( ) ( ) ( )T

k k ku k u X X�� � � � �                                        (75) 

where ˆ( )u k� is introduced in (31) and ˆ
k� is the estimated value of the ideal 

parameter matrix �  and ( )� 7 denotes the linearly independent basis function.  

Next, the optimal control signal error is defined to be the difference between the 

feedback control applied to (10) and the optimal control signal, as  

                                             
ˆ( ) ( )T

a k ke k X�� �  

                    � �1 ˆ ˆ( ) ( ) / 2TT
k k kR G k X X4�	 � � 5  , and                                         (76) 

              
1 2

1 1
2

( )1 ˆˆ ˆ( 1) ( ) ( 1)
2

T
T T k

a k k k
k

Xe k X R G k
X

4� � 	
	 	

	

� ��
	 � � 	 	 5� ��� �

 ,                 (77) 

One should notice that the identifier error and the robust term errors are 

previously shown to be bounded and play the role of disturbance in the closed loop 

system. This is the reason that they are ignored in the design of the estimation error (57). 

Nonetheless, we will see that ke� and k�  will appear in the overall stability proof of the 

system. The proposed control OLA parameter update is defined to be 

                           1
ˆ ˆ ( ) ( ) ( ( ) ( ) 1)T T

k k a ak e k k k! � � �	� �� � 	                               (78)  

where 0 1a!� �  is a positive design parameter. 

By now, the inner loop for generating the control law ku is complete. As we 

mentioned earlier the proof of the stability is provided in [6] and is omitted here for the 

sake of brevity. 
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The next section is devoted to demonstrate one of the applications of the proposed 

extremum seeking method in discrete-time in conjunction with a NN based optimal 

controller. Two examples are included one a linear multivariable system to illustrate the 

proposed scheme while the second one is the HCCI engine. 

3. SIMULATION RESULTS 

In this subsection we consider both a linear multivariable system a nonlinear 

nonaffine system and propose a NN based optimal controller proposed by the authors in 

[6]. 

3.1. Application to Nonlinear Multivariable Systems 

The system dynamics is represented as  

                   1

2

( 1)
( 1)

x k
x k

	< =
�F G	> ?

1 2 1 2 2

2 1 2 1 1

0.2sin ( ) 0.6 ( ) ( )(5 cos( ( ) ( )))
0.1cos ( ) 0.6 ( ) ( )(5 sin( ( ) ( )))

x k x k u k x k u k
x k x k u k x k u k

	 	 	< =
F G	 	 	> ?

.          (79) 

                                                    P Q1 2( ) ( ) T
k ky x k x k x� �                                            (80) 

Now, we define an unknown performance function 

                                                  2 2
1 2( ) ( 1) ( 2)eff k y y� � � � � ,                                       (81) 

to be maximized. Two separate extremum seeking controllers are used in order to 

generate the optimum elements of the setpoint 1 2[ ]d d dy y y� .  

 Figure 2 shows the block diagram for the extremum seeking closed loop block 

diagram representation. Each extremum seeking blocks has given the charge of 

maximizing the efficiency by seeking the optimum solution for 1
dy  and 2

dy  separately. In 

this figure, the initial admissible controller required in the proposed NN-based optimal 

controller [6] is chosen as " #( ) 0.05 ( ) ( ) ( 1)du k y k x k u k� � 	 � .  
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Figure. 2. The block diagram representation of the extremum seeking controller for the 
nonlinear MIMO Nonaffine system with the optimal controller being in the inner loop. 
 

Figure 3 shows the convergence of the closed loop system while the state initial 

conditions are chosen to be 1 2( , ) (0,0)d dy y �  and (0.1,0.1) . This figure illustrates the 

efficiency with respect to the outputs trajectory in a 3D manner. The figure shows that 

how the extremum seeking is able to maximize the efficiency function (81) by finding the 

optimum values for 1y and 2y assuming that the function is unknown.  Figure 4 also 

illustrates the output convergence with respect to time. In this case, the perturbation 

amplitude is taken as 0.05a b� � , the filter pole 0.1I � , and 2 /10E C� , and 10@ � .  
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Figure. 3. The nonlinear system trajectory (starting from the origin) versus the efficiency 
while it converges to the extremum point [1 2]d Ty � for two different initial state 

conditions. 
 

3.2. Application to HCCI Engine Performance Maximization 

Low temperature combustion (LTC) modes in homogeneous charge compression 

ignition (HCCI) engines represent a promising means to increase the efficiency and 

significantly reduce the emissions of internal combustion (IC) engines. Controlling such 

engines is difficult due to the dependence of the combustion event on chemical kinetics 

rather than an external trigger. In [11], the author outlined a nonlinear control-oriented 

model of a single cylinder HCCI engine, which is physically based on a five state 

thermodynamic cycle. This model is aimed at capturing the behavior of an engine which 

utilizes fully vaporized gasoline-type fuels, exhaust gas recirculation and intake air 

heating in order to achieve HCCI operation. The onset of combustion, which is vital for 

control, is modeled using an Arrhenius reaction rate expression which relates the 

combustion timing to both charge dilution and temperature. 
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The model is validated against experimental data from a single cylinder 

combustion ignition (CI) engine operating under HCCI conditions at two different fueling 

rates. Predicted combustion timing and peak in-cylinder pressure values from simulation 

agree very well with the experiments at both operating conditions. Once validated, trends 

in the model dynamics are investigated. The result is a discrete-time nonlinear control 

representation which provides a platform for developing and validating various nonlinear 

control strategies. 

Figure 5 depicts the block diagram representation of the HCCI engine whose 

operating data are obtained from the model. The system dynamics are derived from 

cycle-by-cycle information of the thermo-dynamical behavior of the engine and 

elaborately represented in [5]. The engine dynamics is represented as the nonaffine 

nonlinear systems, which makes the optimal control of the HCCI engine a challenging 

problem.  

                    
The authors in [6], has proposed an approach that provides a robust optimal 

controller that makes the closed loop system converge to an arbitrarily small bound in an 

optimal manner  while this bound is a function of the reconstruction error of the neural 

networks. Therefore, ˆ( )xb � is provided by [6] and used here and we only require to 

choose a proper a  for the purpose of extremum seeking. 
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Figure. 4. The output convergence of the plant output to the optimum point for two 

different initial state condition. 
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Figure. 5. The block diagram representation of the HCCI engine with the controller.  
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extremum seeking controller.  Figure 6 shows that there exist a peak for the engine 

efficiency when the crank angle changes for three different fuel injection rates namely 

{6,9,11}gpm �  where gpm  stands for grams per minute. On the other hand, it is desired 

that the peak pressure rise rate PRR be constrained to be less than 10bar/CAD due to the 

practical limitations of the engine where CAD is a unit (equal to one “ordinary” degree) 

used to measure the piston travel (position) e.g. to adjust ignition. When the piston is at 

its highest point, known as the top dead center, the crankshaft angle is at 0 crank angle 

degrees (CAD).  

Thus we choose the following function to be maximized 

                             2( 8)k k k ky S PRR eff� � � 	 , where                                         (82) 

                                           1  if   8k kS PRR� ,                                                  (83) 

                                          0  if   8k kS PRR� � .                                                 (84) 

In order to maximize (82), the keff should be kept as close as possible to its peak 

while meeting the kPRR  constraint towards 8bar/CAD. The reason that we chose 8 

instead of 10bar/CAD is to keep the engine in a safe margin from the dangerous values of 

the PRR. The proposed optimal adaptive NN controller along with extremum seeking 

feature is used to control the HCCI engine with the output function given by (58) through 

(60).                  

Figures 6 through 10 demonstrate the extremum seeking results for different 

values of the injected fuel rates {6,9,11} gpm while the fuel type is chosen to be UTG96. 

As it is obvious in these figures, the closed loop behavior is more scattered for the case of 

gmp=11 when compared to the other cases. The main reason is that the PRR is higher 
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than the threshold of 8bar/CAD. In fact, by 8kPRR , , 1kS �  holds which makes the 

magnitude of (82) to reduce which in turn increases the effect of the periodic signals 

injected for seeking the extremum. 

                   
Figure. 6. Crank angle versus efficiency plot illustrating a peak with varying intake 

temperature. 
 

           
Figure. 7. The crank angle convergence to the optimum. 
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Figure. 8. The intake temperature as the system input. 

               
Figure. 9. Maximization of engine efficiency by using the extremum seeking control for 

different fixed fuel rates. 

                  
Figure. 10. The PRR within the safe margin. 
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Figure. 11. The convergence of the crank angle to its optimal value by using fuel.  

 

For the next few experiments shown in Figures 11 through 14, the fuel rate is 

changed online to show that the proposed extremum seeking controller is able to find the 

suitable operating point even when there is a change in the operating condition during the 

control process. Figure 13 shows that the efficiency reduces when the gpm increases from 

11 to 13. The reason is that the PRR in this case tends to converge to a values higher than 

8. This makes 1kS �  which finally makes the extremum seeking to reduce the intake 

temperature and find a higher 23� (see Figure 11) that causes a lower efficiency value. 

                

Figure. 12. The intake temperature applied to the inner control loop when the fuel rate 
changes from 6 to 9 and to 11 gpm once every 4000 cycles. 
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Figure. 13. Engine efficiency when the fuel rate changes from 6 to 9 and 11 gpm once 

every 4000 cycles. 

                      
Figure. 14. The PRR convergence when the fuel rate changes sequentially with respect to 

Fig. 10. 

 
Figure. 15. Comparison of the return map of the pressure rise rate ( )PRR k for three cases: 

1) extremum seeking (both loops closed) 2) closed loop (outer loop open and the NN-
loop closed) 3) both loops open. 
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In another set of experiments, we study the cyclic dispersion resulting from 

controlling the HCCI engine by using open loop, closed loop without extremum seeking 

and with extremum seeking. In fact, as it is shown in Figure 5, that the proposed control 

approach for the closed loop system has an inner and outer loop. In the first case all the 

loops are closed which implies that extremum seeking is also considered. In the second 

case, the outer loop will be open which means that there is no extremum seeking and in 

the last case all the loops are open. The return map of the PRR and the crank angle 

23( )k�  of the engine are compared for the above three cases. A probing noise is added to 

the engine dynamics in order to compare the ability of the proposed controller to reduce 

the cyclic dispersion in any of the three cases. The fuel rate is chosen to be mpg=11. For 

the first case, the extremum seeking system will seek for the best operating point that 

maximizes the efficiency while keeping the pressure rise rate under 10bar/CAD. 

 
Figure. 16. Comparison of the return the map of the crank angle 23( )k�  for three cases: 

1) extremum seeking (both loops closed) 2) closed loop (outer loop open and the NN 
closed) 3) both loops open. 
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Figures 15 and 16 illustrate that the engine converges to an operating point due to 

the extremum seeking controller. This operating point is used as the target set point value 

in the following next two cases.  The return map of ( )PRR k  and 23�  are provided. For 

the applied operating point of the second case the NN controller will find a set value in 

terms of the intake air temperature to provide the desired output. As the third case, the 

steady state value of the second case is applied to the engine in an open loop manner and 

the results are provided in Figures 15 and 16.  From the figures, the reduction in cyclic 

dispersion for the closed-loop control is much better than the open loop case. On the 

other hand, the closed loop without the extremum control outer loop has a better 

performance when compared to the case that the extremum seeking algorithm acts as an 

outer loop.  

The higher dispersion observed in the case of extremum seeking is due to the 

periodic injection of signals to the system dynamics in order to find the extremum 

operating point.  In other words, the higher level of the cyclic dispersion is the price paid 

in order to find the extremum set point online. This aspect is observed when the fuel is 

varied from gpm=6 and gpm=11.  

Table I and Table II compare the coefficient of variation (COV) of the PRR and 

the crank angle in the three cases of open loop, closed loop, and extremum seeking. As 

mentioned above, the closed loop case has the best COV among the other cases, although 

neither the closed loop nor the open loop are able to find the best operating point. 

Therefore, a reasonable increase in COV will be tolerable when an optimal operating 

point can be found. In both tables I and II, the columns for the extremum seeking and 

closed loop data has a number in percentage within brackets which indicates that the 
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percentage improvement in COV when compared to the COV for the open loop case. 

These results indeed concur that the closed-loop controller performs best while the 

addition of extremum seeking feature presents a tradeoff between identifying the setpoint 

with the increase in cyclic dispersion. 

Table 1. Coefficient of variation for PRR and percentage of improvement comparing with 
the open loop case. 

gpm Extremum Seeking COV Closed Loop COV Open Loop COV 

6 1.6604(-11%) 1.3860 (-25%) 1.8686 

9 2.0325(-26%) 1.8491(-33%) 2.2770 

11 2.2091(-1%) 1.9338(-13%) 2.2345 

Table 2. Coefficient of variation for the crank angle and percentage of improvement 
comparing with the open loop case 

gpm Extremum Seeking COV Closed Loop COV Open Loop COV 

6 0.0904(-11%) 0.0809(-21%) 0.10243 

9 0.0890(-3%) 0.0741(-19%) 0.0915 

11 0.0900(-2%) 0.08723(-5%) 0.09207 

4. CONCLUSIONS 

An extremum seeking method is introduced in this paper to find the extremum of 

a performance function for nonlinear discrete time systems. We first introduced that the 

extremum of the closed loop system is stable using an innovative discrete averaging 

method, and then by utilizing the singular perturbation method, the overall system is 

demonstrated to remain stable. The proposed method is based on a slow outer loop to a 

nonlinear system which already has fast closed loop controller in the inner loop. The 

stability analysis shows that if a fast stabilizing closed loop controller is provided for a 

plant, the proposed extremum seeking outer loop is able to converge to the optimum set 

point with an error defined by the UUB. The method is also applied to the HCCI engine 

dynamics to verify the theoretical result on a practical mechanical system. The results 
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show that the method can successfully maximize the efficiency while keeping the 

pressure rise rate within constraints.  
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III. ADAPTIVE NEURAL NETWORK-BASED OPTIMAL CONTROL OF 

NONLINEAR CONTINUOUS-TIME SYSTEM IN STRICT 

FEEDBACK FORM 

Abstract— This paper focuses on neural network (NN) based optimal control of 

nonlinear continuous-time systems in strict feedback form. A single NN-based adaptive 

approach is designed to learn the infinite horizon continuous-time Hamilton-Jacobi-

Bellman (HJB) equation while the corresponding optimal control input that minimizes 

the HJB equation is calculated in a forward-in-time manner without using value and 

policy iterations. First, the optimal control problem is solved for a generic multi-input 

and multi-output (MIMO) nonlinear system with a state feedback approach. Then, the 

approach is extended to single input and single output (SISO) nonlinear system by using 

output feedback via a nonlinear observer. Lyapunov techniques are used to show that all 

signals are uniformly ultimately bounded (UUB) and that the approximated control 

signals approach the optimal control inputs with small bounded error for both the state 

and output feedback-based controller designs. In the absence of NN reconstruction errors, 

asymptotic convergence to the optimal control is demonstrated. Finally, simulation 

examples are provided to validate the theoretical results. 

Keywords- Online Nonlinear Optimal Control; Neural Network Control; Output 

Feedback Control; Strict Feedback Systems 

I. INTRODUCTION

The stabilization of nonlinear systems is now an established field [1]-[4].  Many 

control techniques are available for stabilization of nonlinear systems such as feedback 

linearization [5][1], sliding mode scheme [1], backstepping [5],  and online 

approximators (OLA’s)-based methods [2]-[3] for both continuous and discrete-time 
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systems. However, it is desirable that the control law not only stabilizes the system, but 

also minimizes a pre-defined cost function [6],[7],[8]. In other words, optimal control of 

nonlinear systems is preferred over other techniques that guarantee stability alone. 

It is well known that the optimal control of linear systems can be obtained by 

solving the well-known Riccati equation [8]. In contrast, the optimal control of nonlinear 

continuous or discrete-time systems is a much more challenging task that often requires 

solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation which does not have a 

closed-form solution. 

Therefore nonlinear optimal control has been addressed initially with an off-line 

and backward-in-time approach [9] similar to Riccati equation in linear systems. 

Subsequently, different online approximator-based controller designs, often referred to as 

adaptive critic designs (ACD), are presented in [10]-[13] which evolve forward-in-time to 

overcome the iterative offline methodology. The central theme in these works is that the 

optimal control law and HJB function are approximated by online parametric structures, 

such as NN’s in a forward-in-time manner using policy and value iterations. Although the 

techniques [10] are verified via simulations, the approximation errors are not considered 

and mathematical proofs of convergence are not offered. 

Recently, several online methods are introduced to solve the optimal control via 

continuous and discrete time HJB and Hamilton-Jacobi-Isaacs (HJI) equations in [10]-

[13].  In particular, [12], online policy iterations based on adaptive control and Q-learning 

[14] are developed to solve the continuous HJB and discrete HJI problems, respectively.  

Although, full knowledge of the system dynamics is not required, these methods [12] are 

applicable to linear systems and are based on value and policy iterations. While these 
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methods render stability, the number of iterations needed within a sampling interval for 

convergence is not known. In addition, these iterative schemes in general are not 

preferred for hardware implementation. 

In contrast, in [6], a single online approximator-based ACD technique is 

introduced for continuous-time nonlinear system in affine form since traditional ACD 

schemes require two approximators or NNs.  Lyapunov stability is included and policy 

and value iterations are not needed while computational complexity is reduced. Instead, 

value and policy are updated at each sampling interval thus making the scheme suitable 

for real-time control.  

It is important to note that all the ACD techniques [6],[11] address either 

continuous-time or discrete-time nonlinear systems in affine form. To the best knowledge 

of the authors, no known adaptive critic-based optimal control scheme is available for 

nonlinear systems in strict feedback form.  Different types of strict feedback systems are 

defined in the literature in [5]-[16] while control of such strict feedback nonlinear 

systems is considered by using backstepping scheme [5] without any optimality. Other 

papers focus on the unknown strict feedback system using NN-based schemes [15]-[16].  

More recently, the inverse optimal control of strict feedback systems is introduced 

in [7] when the dynamics are assumed known.  However, in the inverse optimal control  

problem, first the control law is designed, and then the associated cost function is 

identified for that control law in contrast with traditional optimal control where a control 

law is designed based on a given cost function. 

Therefore, in this paper, a novel optimal control scheme is introduced for a 

nonlinear continuous-time system in strict-feedback form when the system dynamics are 
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considered known.  The nonlinear system in strict feedback form is transformed into a 

nonlinear system in affine form by using the backstepping technique. Then a single 

online approximator (SOLA) is utilized to provide the cost function in forward-in-time 

manner.  Lyapunov theory is utilized to demonstrate the convergence of this approximate 

optimal control scheme for the overall nonlinear system while explicitly considering the 

approximation errors resulting from the use of the online approximator (OLA) in the 

backstepping approach.  

An initial stabilizing control is not required in contrast to [12] and the proposed 

scheme is developed forward-in-time in contrast with standard Riccati equation based 

backward-in-time solution. In addition, this scheme is developed without using value 

and/or policy iterations that are commonly found in ACD techniques [12], [13]. It is 

shown that the approximated control input approaches the optimal value over time. If the 

NN reconstruction errors become zero as in the case of traditional adaptive control, 

asymptotic stability is demonstrated. First, state-feedback based optimal design is 

considered and subsequently, an output feedback controller design is addressed. 

The paper is organized as follows. Section II is dedicated to the optimal control of 

a class of strict feedback nonlinear continuous-time systems by transforming the system 

to an equivalent nonlinear system in affine form. Section III introduces an online optimal 

stabilization scheme for affine systems. Next, Section IV develops the results to an 

observer based output control approach where the states can are not measured. Finally, 

Section V provides numerical results for the proposed optimal controller.  

In the next section, a solution to the optimal tracking control of nonlinear system 

in strict feedback form is introduced. 
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II. THE TRACKING PROBLEM FOR STRICT FEEDBACK SYSTEMS  

Consider the multi-input multi-output (MIMO) nonlinear continuous-time system 

in the absence of disturbances described by 

         � � � �1 1 1, ..., , ...,i i i i i ix f x x g x x x 	� 	�
 for    1 i N� �   and  2N ,                    (1) 

                              � � � �1 1, ..., ,...,N N N N Nx f x x g x x u� 	� ,                                      (2) 

                                                      1y x�
                                                        (3) 

where each m
ix 6 denotes a state vector, mu6 represents the input vector with 

� �1,..., m
i if x x 6 , and � �1,..., m m

i ig x x �6 being nonlinear smooth functions. Here, for the 

system(1), the next system state is treated as the virtual control input. Nonetheless, the 

system is going to be controlled through the control input u . The following assumption is 

needed before we proceed. 

Assumption 1. It is assumed that � �1, ..., 0i ig x x 8  (1 i N� � ) belongs to nR6 , 

and it is bounded above and below satisfying � �min 1 max|| , ..., ||i i
i i Fg g x x g� �  when the 

Frobenius norm is applied and where min
ig  and max

ig  are positive constants.  Besides, it is 

assumed that systems (1)-(2) is reachable. 

Under the above conditions given in the Assumption 1, the optimal control input 

for the nonlinear system (1)-(2) can be calculated [8] through a backstepping approach. 

In this case, the objective of our scheme is to design a controlleru in order to have 

the output y to track a desired trajectory 1dx in an optimal manner. To this end, by 

applying the backstepping approach [5], the system given by (1)-(2) tracks a predesigned 

trajectory � �2 ,...,d Ndx x . Now, we follow the steps in the standard backstepping scheme to 

attain the optimal scheme of the strict feedback systems.  
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To stabilize the tracking error, 1 1 1de x x� � , the backstepping approach will use N 

steps [1] which are presented next. 

Step.1: It is desired that 1x follow the smooth desired trajectory 1dx . Therefore, the 

first system dynamics of (1) can be rewritten as 

                

                                  � � � � � �*
1 1 1 1 2 1 1 2df e g x x g x e� 	 	  ,                                        (4) 

where virtual control input 2dx is chosen such that *
2 2 2

a
d d dx x x� 	 with the 

feedforward virtual control input 2
a
dx selected by solving  

                                � � � � � �1 1 1 1 1 2 1 1
a

d dx f x g x x f e� 	 	 �� .                                       (5) 

Moreover, *
2dx is going to be the optimal feedback control input.  Section III is 

devoted to show the existence of *
2dx  and its design. Inevitably, 2e cannot be zero due to 

dynamics of the second system of (1) and the desired output 1x  trajectory. Therefore, the 

next steps of the design procedure should handle this issue such that the last term of (4) 

gets cancelled by the next system dynamics in (1) by 2i � . Since the second step to the (

1N � ) step remains the same, we skip to the ith step. 

Step. i: In this step, we need an optimal controller for the system (1)-(3) such that 

0ie 3 . To this end, the system i in (1) can be rewritten as 

                     

� � � �
� �� �

1 1 ( 1)

1 1 1

,..., ,...,

,...,
i id i id i i i i i d

i i i i d

x x e x f x x g x x x

g x x x x
	

	 	

� � � � 	 	

	 �

� � � �

 

� � � � *
1 1 ( 1), ..., , ...,i i i i i df e e g x x x 	� 	 � � � �1 1 1 1 1 1,..., , ...,T

i i i i i ig x x e g x x e	 � � �	 � ,             (6) 

� � � � � �� �1 1 1 1 1 1 1 1 2 1 1 2 2d d d dx x e x f x g x x g x x x� � � � 	 	 	 �� � � �
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where idx is chosen such that *
( 1) ( 1) ( 1)

a
i d i d i dx x x	 	 	� 	 , with the virtual control input

( 1)
a
i dx 	  satisfying 

� � � �1 1 ( 1), ..., , ..., a
id i i i i i d ix f x x g x x x 	� 	 	� � � � �1 1 1 1 1, ..., , ...,T

i i i i if e e g x x e� � �� � .          

(7) 

As mentioned in the previous step, there exists an optimal solution for the virtual 

input *
( 1)i dx 	  which will be designed in the next section. Moreover, the third term of (6) 

inevitably shows up due to the design procedure, while the fourth term is deliberately 

added due to stability considerations. 

Step. N:  In this step, similar to the previous steps, the system input will be 

designed. To this end, the system (2) can be rewritten as 

                    � � � �1 1, ..., , ...,N Nd n Nd N N N ix x e x f x x g x x u� � � � 	 	� � � �  

                  � � � � *
1 1, ..., ,...,N N N Nf e e g x x u� 	 � �1 1 1,...,T

N N Ng x x e� �� ,                     (8) 

where idx is chosen such that * au u u� 	 , where the feedforward control  input au  

is selected from  

        � � � �1 1,..., , ..., a
Nd N N N Nx f x x g x x u� 	 	� � � � �1 1 1 1 1, ..., , ...,T

N N N N Nf e e g x x e� � �� �  ,     (9) 

As mentioned in the previous steps, there exists an optimal feedback control input 

*u  that will be designed in Section III. Now, we are ready to state the contribution of the 

current section in the following lemma. 

Lemma 1. Consider the tracking dynamics defined in (4), (6), and (8). Assume 

that the virtual and real control input vector P Q2d NdU x x u� �  is designed such that 

*aU U U� 	 where 2
a a a a

d NdU x x u< =� > ?� is the feedforward control input designed in 
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(5), (7), (9) and * * * *
2d NdU x x u< =� > ?� represent the feedback control input which 

optimally stabilizes the following system 

             
� �

� �

1 1 1 1 1
*

1 1

( ) 0

( ,..., ) 0 ,...,N N N N N

e f e g x
U

e f e e g x x

< =< = < =
F GF G F G� 	 F GF G F G
F GF G F G> ? > ? > ?

�
� � �
�

                      (10)

 

In this case, optimal control of (1) and (2) is equivalent to the optimal controller 

design for (10). In the other words, by applying *aU U U� 	  to the system (1) and (2), 

the system dynamics (1) and (2) is transformed into the error dynamic system given by 

(10). 

Proof. By choosing 1 / 2TJ E E� with 1
T T T

NE e e< =� > ?� as the Lyapunov 

candidate and taking derivative through the system dynamics (4), (6), (8) we have 

 

                      
� � � �

1

1 1 1 1 1 1
1 2

,..., ,...,
N N

T T T
i i i i i i i i

i i
e g x x e e g x x e

�

	 � � �
� �

	 �� � .                         (11) 

One may easily recognize that the last two terms of (11) cancel each other. 

Therefore, the existence of an optimal controller to make the other terms negative is 

sufficient enough. On the other hand, equation (11) without the last two terms resembles 

the stability of the system (10) which proves the desired result. 

III. OPTIMAL TRAJECTORY AND CONTROL INPUT DESIGN 

Due to Lemma 1, the objective of this section to optimally stabilize the system 

(10). It is desired to design the optimal control vector defined by * * *
2 ,..., ,d Ndx x u< => ?  such 

that the tracking error � �1,..., Ne e is stable while minimizing the cost function 

� � � �� � � � � �� �
1

* *
1 1 1 ( 1) 1 1

1
,..., ,..., ,..., ,...,

N
T T T

i i i i i i d N N N N N
i

J E E e f e e g x x x e f e e g x x u
�

	
�

� � 	 	 	�� �
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*( ( ), ( ))

t
V r E U dK K K

+
� S ,                                   (12) 

where P Q1,...,
T

NE e e� , * * * *
2 ,..., ,

T

d NdU x x u< =� > ? , and P Q1,..., Nx x X� . In(12), 

* * *( , ) ( ) Tr E U Q E U RU� 	 , ( ) 0Q E , is the positive semidefinite penalty on the states, 

and 0 M MR �� 6 is a positive definite matrix with M mN� . 

Equation (10) demonstrates that the optimal control of nonlinear system in strict 

feedback form can be transformed into solving optimal control of affine nonlinear system 

in the error domain. Now, consider the optimal stabilization problem for an affine type 

system in the error domain 

                                           
*( ) ( )E F E G X U� 	� ,                                               (13) 

where � � � � � �1 1 1,...,
TT T

N Nf e f e e F E< = �> ?� and � �G X �  

� � � �1 1 1,..., ,...,N Ndiag g x g x x< => ? .  It is desired that E  converges to zero while the cost 

function (12) is minimized.  

      Moving on, the control input *U is required to be designed such that the 

cost function (12) is finite. We define the Hamiltonian for the cost function (11) with an 

associated admissible control input U to be [8] 

                      � �( , ) ( , ) ( ) ( ) ( )T
EH E U r E U V E F E G X U� 	 	 ,                             (14) 

where ( )EV E is the gradient of the ( )V E with respect to E . In the sequel, we will 

use the same terminology for denoting gradient of functions i.e. for any function ( )OR , 

( )O OR means gradient of ( )OR with respect to O . It is well-known that the optimal 

trajectory *U that minimizes the cost function (12) also minimizes the Hamiltonian(14); 
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therefore, the optimal control is found by using the stationarity condition 

( , ) / 0H E U U� � �  and revealed to be [8] 

                                    � �* 1 *( ) ( ) / 2T
EU E R G X V E�� � .                                      (15) 

By substituting the optimal control (15) into the Hamiltonian (14) while observing 

( , ) 0H E U �  reveals the HJB equation and the necessary and sufficient condition for 

optimal control to be [8]  

              
� � � � � � � �11( ) ( ) ( ) 0

4
TT T

E E EQ E V E F X V E G X R G X V E�	 � �                (16) 

with *(0) 0V � .  For linear systems, equation (16) yields the standard algebraic 

Riccati equation (ARE) [8]. Before proceeding, the following technical lemma is 

required. 

Lemma 2 [6].  Given the nonlinear system (13) with associated cost function (12) 

and optimal control (15), let ( )J E be a continuously differentiable, radially unbounded 

Lyapunov candidate such that ( ) ( )T
EJ E J E E� �� �  � �( ) ( ) ( ) 0T

EJ E F E G X U	 � where 

( )T
EJ E  is the radially unbounded partial derivative of ( )TJ E .   Moreover, let ( )Q E be a 

positive definite matrix satisfying ( ) 0Q E � only if 0E �  and � �min maxQ Q E Q� � for 

min maxED D� �  for positive constants minQ , maxQ , minD  and maxD .  In addition, let ( )Q E

satisfy lim ( )
E

Q E
3+

� + as well as 

                           
* * * *( ) ( , ) ( )T T

E EV Q E J r E u Q E U RU� � 	 .                                (17) 

Then, the following relation holds 

                                
*( ( ) ( ) ) ( )T T

E E EJ F E G E U J Q E J	 � � .                                   (18) 
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Proof:  When the optimal control (15) is applied to the nonlinear system(13), the 

cost function (12) becomes a Lyapunov function rendering 

       � �� �* * * * * *( ) ( ) ( ) ( ) ( )T T T
E EV E V E E V E F E G x U Q E U RU� � 	 � � �� �              (19) 

From (15), after manipulation and substitution of (17), equation (19) is rewritten 

as 

                    

                        * * 1 * *( ) ( ) ( )T T
E E E E E EV V V V Q E J Q E J�� � � �

                                      
(20) 

Now, multiply both sides of (20) by T
EJ yields the desired relationship in(18).                        

   � 

In [13], the closed-loop dynamics *( ) ( )F E G E U	  is required to satisfy a 

Lipschitz condition such that *( ) ( )F E G X U K	 �  for a constant K .   In contrast, the 

optimal closed loop dynamics are assumed to be upper bounded by a function of the 

system states in this work such that 

                                       
*( ) ( ) ( )F E G X U E1	 � .                                          (21) 

The generalized bound ( )E1 is taken as *4( ) EE K J1 � in this work where EJ

can be selected to satisfy general bounds and *K is a constant.   For example, if 

1( )E K E1 �  for a constant 1K , then it can be shown that selecting (5/2)( ) ( ) / 5TJ E E E�  

with (3/2)( ) ( )T T
EJ E E E E� satisfies the bound.  The assumption of a time-varying upper 

bound in (13) is a less stringent assumption than the constant upper bound required in 

[13]. The next section develops an approach for optimally stabilize the affine system 

which is required for optimal tracking of original strict feedback systems. 

* * * 1 * * *( ) ( ) ( ) ( ( ) )T T
E E EF E G X U V V V Q E U RU�	 � � 	
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Moving on, we rewrite the cost function (11) using an OLA representation as  

                                          ( ) ( ) ( )TV E E EB ��� 	 ,                                             (22) 

where L�6 is the constant target OLA vector, ( ) : n LEB 6 36 is a linearly 

independent basis vector which satisfies (0) 0B � , and ( )E� is the OLA reconstruction 

error.  The target OLA vector and reconstruction errors are assumed to be upper bounded 

according to M� � �  and ( ) ME� �� , respectively [3].  In addition, it will be assumed 

that the gradient of the OLA reconstruction error with respect to E is upper bounded 

according to ( ) / ( )E ME E E� � � 9� � � T � . The gradient of the OLA cost function (22) is 

written as 

                          ( ) / ( ) ( ) ( )T
E E EV E E V E E EB �� � � � T �	T .                             (23) 

Now, using (23), the optimal control (14) and HJB equation (16) are rewritten as 

           
* 11( ) ( ) ( )

2
T T

EU E R G E EB�� � T �  11 ( ) ( )
2

T
ER G X E��� T

       
                 (24) 

and 

*( , ) ( ) ( ) ( )T
EH E Q E E F EB� � 	� T   1 ( ) ( ) 0

4
T T

E E HJBE D EB B �� � T T �	 �   (25) 

where 1( ) ( ) 0TD G E R G E�� �  is bounded such that min maxD D D� � for known 

constants minD  and maxD ,  and 

            
11( ( ) ( ) ( ) ( ( ) ))

2
T T T

HJB E E EF E G X R G X E� � B ��� T � T �	T
 

1 *1 ( ) ( ) ( ( ) ( ) )
4

T T T
E E EG X R G X F E G X U� � ��	 T T � T 	

1
4

T
E ED� �	 T T       (26)
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is the residual error due to the OLA reconstruction error.  Asserting the bounds 

for the optimal closed-loop dynamics (21) along with the boundedness of ( )G X and E�T , 

the residual error HJB� is bounded above on a compact set according to

2
max( )HJB M ME D� � 1 �9 9� 	 .  In addition, it has been shown [13] that by increasing the 

dimension of the basis vector ( )EB in the case of a single-layer NN, the OLA 

reconstruction error decreases.   

Moving on, the OLA estimate of (11) is now written as 

                                                 
ˆ ˆ( ) ( )TV E EB� �

                                                 (27) 

where �̂ is the OLA estimate of the target parameter vector� .  Similarly, the 

estimate of the optimal control (14) is written in terms of �̂ as 

                                     
* 11ˆ ˆ( ) ( )

2
T T

EU R G X EB�� � T � .                                       (28) 

It is shown [6] that an initial stabilizing control is not required to implement the 

proposed SOLA-based scheme in contrast to [11] and [13], which require initial control 

policies to be stabilizing. In fact, the proposed OLA parameter tuning law described next 

ensures that the system states remain bounded and that (28) will become admissible. 

Now, using (22), the approximate Hamiltonian can be written as 

          1ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )
4

T T T
E E EH E Q E E F E E D EB B B� � 	 � T � � T T � .              (29) 

Observing the definition of the OLA approximation of the cost function (27) and 

the Hamiltonian function (29), it is evident that both become zero when 0E � .  Thus, 

once the system states have converged to zero, the cost function approximation can no 

longer be updated.  This can be viewed as a persistency of excitation (PE) requirement 
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for the inputs to the cost function OLA [11], [13].  That is, the system states must be 

persistently exiting long enough for the OLA to learn the optimal cost function. 

Recalling the HJB equation shown in (16), the OLA estimate �̂  should be tuned 

to minimize ˆ ˆ( , )H E � .  However, tuning to minimize ˆ ˆ( , )H E � alone does not ensure the 

stability of the nonlinear system (13) during the OLA learning process.  Therefore, the 

proposed OLA tuning algorithm is designed to minimize (29) while considering the 

stability of (13) and written as 

1 2

ˆ 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( 1) 4

T T T
E E ET Q E E F E E D E4! B B B

4 4
� �� � � 	� T � � T T �� �	 � �

�

  

                        
12ˆ( , ) ( ) ( ) ( ) ( )

2
T

E EE u E g E R G X J E! B �	- T                                 (30) 

where
ˆˆ ( ) ( ) ( ) / 2T

E E EF E E D E4 B B B� T �T T � , 1 0! � and 2 0! � are design 

constants, ( )EJ E is described in Lemma 1, and the operator ˆ( , )E U- is given by 

            

T T
E

1

0    if    ( ) ( )( ( )
ˆ ˆ( , )               ( ) ( ) ( ) / 2) 0

1    otherwise

E

T T
E

J E E J E F E

E U G X R G X EB�

$ �
&&- � � T � �'
&
&)

�

.                     (31)  

The first term in (31) is the portion of the tuning law which seeks to minimize 

(29) and was derived using a normalized gradient descent scheme with the auxiliary HJB 

error defined as 

                                           
2ˆ ˆ( , ) / 2HJBE H E� � .                                          (32) 

Meanwhile, the second term in the OLA tuning law (30) is included to ensure the 

system states remain bounded while the SOLA scheme learns the optimal cost function.  

The form of the operator shown in (31) was selected based on the Lyapunov’s sufficient 
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condition for stability (i.e. if ( ) 0J E � and ( ) ( ) 0T
EJ E J E E� �� � , then the states E are 

stable).  From the definition of the operator in (31), the second term in (30) is removed 

when the nonlinear system (13) exhibits stable behavior, and learning the HJB cost 

function becomes the primary objective of the OLA update (30).  In contrast, when the 

system (13) exhibits signs of instability (i.e. ( ) 0T
EJ E E ,� ), the second term of (30) is 

activated and tunes the OLA parameter estimates until the nonlinear system (13) exhibits 

stable behavior. 

Moving on, we now form the dynamics of the OLA parameter estimation error

ˆ� � ���� .  Observing ( ) ( ) ( ) ( ) ( ) / 4T T T
E E E HJBQ E E F E E D EB B B �� �� T 	� T T � � from 

(24), the approximate HJB equation (29) can be rewritten in terms of ��  as 

              

1ˆ ˆ( , ) ( ) ( ) ( ) ( )
2

T T T
E E EH E E F E E D EB B B� � �� T 	 � T T �� �

   

                                         
1 ( ) ( )
4

T T
E E HJBE D EB B �� � T T ��� � .                              (33) 

Next, observing ˆ� � �����  and 

*ˆ ( )( / 2) ( ) ( ) / 2T
E E E EE E D E D E4 B � B B� T 	 T 	T T �� � where * ( )E F E�� *( )G X U	 , the 

error dynamics of (20) are written as 

              

*1
2

( ) ( )( )
2 2

T
E E E

E
D E D EE E! � B BB

 
� �T T T �� �� � � T 	 	 �� �� �

� �� �

��� �

 
          

* 1( ) ( ) ( )
2 4

T T TE
E E E HJB

DE E E D E�B B B �� T �� �� T 	 	 � T T �	� �� �
� �� �

� � � �
 

                        
12ˆ( , ) ( ) ( ) ( ) ( )

2
T

E EE U E G X R G X J E! B ��- T                              (34) 
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where ˆ ˆ( 1)T 4 4� 	 .  Next, the stability of the SOLA-based adaptive scheme for 

optimal control is examined along with the stability of the nonlinear system (13). 

Theorem 1: (SOLA-based Optimal Control Scheme).  Given the nonlinear system 

(4), (6), and (8) with the target HJB equation (16), and let the tuning law for the SOLA be 

given by (30).  Then, there exists computable positive constants JEb  and b�  such that the 

OLA approximation error �� and ( )EJ E  are uniformly ultimately bounded (UUB) [3] 

for all 0t t T, 	 with ultimate bounds given ( )E JEJ E b�  and b�� �� . Further, under 

OLA reconstruction errors, 1
ˆ

rV V �U � �  and *
2

ˆ
rU U �� �  for small positive constants

1r� and 2r� , respectively. Where, � �4
1/b H � V� � and � �*

1 2 min 1 2( ) /JEb x K!H � ! ! V� �� . 

With 2V chosen such that *
2 min 1 2 0x K! ! V� �� . 

Proof. See appendix.     � 

Next, the stability of the SOLA-based optimal control scheme can be examined 

when there are no OLA reconstruction errors as would be the case when standard 

adaptive control techniques [2] are utilized. In other words, when a NN is replaced with a 

standard linear in the unknown parameter (LIP) adaptive control, the parameter 

estimation errors and the states are globally asymptotically stable according to Corollary 

1. 

Corollary 1:(Ideal SOLA-based Optimal Control Scheme Convergence).  Let the 

hypothesis of Theorem 1 holds in the absence of OLA reconstruction errors.  Then, the 

OLA approximation error vector�� and system states E are globally asymptotically stable 

(GAS) and  V̂ V U3  and *Û U3 . 



 

 

111

Proof: please refer to [6].   � 

Remark: It is shown in [17] that when the number of neurons in the hidden layer 

is chosen sufficiently large, the NN reconstruction error converges to zero.  Alternatively, 

this error term is zero when a standard adaptive control is used. 

The block diagram of the proposed state feedback-based optimal control scheme 

is shown in Fig. 1 where no value and policy iterations are utilized. Only the value 

function and control input are updated at the sampling interval. 

IV. OBSERVATION BASED OUTPUT FEEDBACK CONTROL 

Practically, the states are not measurable in a vast class of nonlinear systems. In 

this section, we consider the control problem of strict feedback control of the system (2)-

(3) where if (.) and ig (.) are known, whereas the state vector is not measured and only the 

output ( )y h x� is given. The multi-input multi-output (MIMO) feedback control of strict 

feedback systems will have to mitigate several challenges and will be relegated for a 

future publication. For example, selecting different outputs can change the relative degree 

of the system which in turn can complicate the process of the controller design. 

Therefore, we consider the system (1)-(3) to a single-input and single-output (SISO) case. 

This problem is still difficult as no known output feedback-based optimal control scheme 

is available in the forward-in-time manner for nonlinear systems, although recently for 

linear systems some results are achieved [17]. Now, assume that (1)-(3) is represented in  
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� � � �1 1 1,..., ,...,i i i i i ix f x x g x x x 	� 	�

� � � �1 1,..., ,...,N N N N Nx f x x g x x u� 	�

1 i N� �

� � � � � �1 1 1 1 1 1 12
a

d dx f x g x x f e� 	 	 ��

� � � �1 1 ( 1),..., ,..., a
id i i i i i d ix f x x g x x x 	� 	 	�

� � � �1 1 1 1 1,..., ,...,T
i i i i if e e g x x e� � �� �

� � � �1 1,..., ,..., a
Nd N N N Nx f x x g x x u� 	 	�

� � � �1 1 1 1 1,..., ,...,T
N N N N Nf e e g x x e� � �� �

� �* 1 *( ) ( ) / 2T
EU E R G X V E�� �

ˆ ˆ( ) ( )TV E EB� �

1 2

ˆ( ) ( ) ( )ˆˆ 1 ˆ ˆˆ ˆ( 1) ( ) ( )
4

T
E

T T T
E E

Q E E F E

E D E

B4!
4 4 B B

� �	� T
� �� � � � �	 � � T T �� �
� �

�

12ˆ( , ) ( ) ( ) ( ) ( )
2

T
E EE u E g E R G X J E!
B �	- T

� �1,..., ix x

� �1 ,...,d Ndx x

-

*u

au

u

1                   
(Desired Trajectory)

d dy x�

 
Figure 1. Block diagram of the state feedback-based optimal controller. 

a SISO representation i.e. ix 6andu6 . It is shown [5] that, in this case, there 

exists a mapping 1 1( ,..., ) ( ,..., )N Nx x� � �� �W  that transforms the system (1)-(3) into a 

new state space representation as  

                                                 � �1 2 1 y� � E� 	�
 

                                                  � �2 3 2 y� � E� 	�
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                                                              �  

                                               � �1 1N N N y� � E� �� 	�
 

                                               � � ( )N N y b y u� E V� 	�
 

                                                       1 ( )y h x�� �                                                 (35) 

where ( )i yE 6  are known functions of the output. The transformation Wexists 

only when the relative degree of (1)-(3) (in SISO case) is equal to N . To overcome the 

need for states measurement, define the observer dynamics as  

                                       
ˆ ˆ ˆ( ) ( ) ( )A k y y y b y u� � E V� 	 � 	 	�

                            

                                                            
ˆˆ Ty c ��                                                    (36) 

where 

1

0 1
0 ( )

0
,   ,   ,   ( )

0
0 0 ( )

1 0 n

I y
A b c y

y

E
E

E

< = < =
< = < =F G F G
F G F GF G F G� � � �F G F GF G F G
F G F GF G F G> ? > ?

> ? > ?

�
� � �

�
�

. 

Therefore, with T
oA A kc� � being Hurwitz, we conclude that the closed-loop 

observer dynamics can decay exponentially to the origin. Therefore, by defining 

ˆ� � �� �� the observer error dynamics takes the following form.  

                                                      oA� ���� � .                                                       (37) 

Now, we apply the same back stepping approach of previous section with the 

assumption that i� for 2,...,i N� are not measured but estimated using the observer(36). 

By following the Steps 1 through N, we get 
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� �

� �

1 1 1
*

1

1 0ˆ ˆ
0

1 0
ˆ ˆ

0 0 ( )NN

e e
U A

ee y

E
�

E
V

< =< = < = F GF G F G F G� 	 	F G F G F GF G F G F G> ?> ? > ?

�
�

� � �� �
�

� �  

                                        � � � � *
1̂e y U AE �� 	X 	 �  ,                                           (38) 

with ˆ
î i ide � �� � that implies 1 1̂ de e y y� � � since 1 1

ˆ y� �� � . Moreover, the 

desired trajectory (feedforward controller) is designed as follows: 

                                      

1 1 2 1 1

( 1) 1

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

a
d d

a
id i i di i i i

y y e

y e e

B � E

� B � E	 �

� 	 	 �

� 	 	 � �

�
�

�

�  

                                 1ˆ ˆ( ) ( ) ( )a
Nd N N N Ny b y u e e� E V E �� 	 	 � �� .                          (39) 

Equations (39) are identical to the equations derived for the steps 1 to N in 

Section II unless we used the system output y  and the estimated states �̂ (by the 

observer) instead of the real value of � . This is the reason that an estimation error term 

A��  appear in error dynamics (38). Moreover, in (39) * * *
1 2 *d NdU u� �< =� > ?� . 

Theorem 2 will show that the state estimation error ˆ� � �� �� is guaranteed to be 

bounded which is necessary for the overall stability of the closed loop system. Using 

* * *
1 1 1 1 1

ˆ ˆ( , ) ( ) Tr E U Q E U R U� 	 , where P Q1
ˆ ˆ ˆ,..., T

NE e e� the target HJB equation takes the 

following form 

           
� � � � � � � � � �1

ˆ ˆ1 1 1 11 1

1ˆ ˆ ˆ ˆ( ) ( ) 0
4

TT T
E E EQ E V E e V E B y R B y V EE �	 � � .                  (40) 
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with P Q1
ˆ T

NE e e� � , *
1 1

ˆ( ( ), ( ))
t

V r E U dK K K
+

� S  
as the cost function, 1

N NR �6

with 1 0R � since 1m � , and 1
ˆ( )Q E  is a positive semidefinite function of Ê . Therefore, 

the optimal controller for this case can be represented as follows: 

                                   
� �* 1 *

ˆ1 1 1

1ˆ ˆ( ) ( )
2

T

EU E R y V E�� � X .                                         (41) 

Now, consider an OLA representation as 

                                        1 1 1 1
ˆ ˆ ˆ( ) ( ) ( )TV E E EB �� � 	 ,                                            (42) 

with 1
ˆ( )E�  as the estimation error and update law as 

1
ˆ ˆ ˆ1 1 1 1 1 1 1 1 12

1 1

ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( 1) 4

T T T
T E E EQ E E y E D E4@ B E B B

4 4
� �� � � 	� T � � T T �� �	 � �

�

 

                     
� � � �12

ˆ ˆ1 1 1 1 1
ˆ ˆ ˆ ˆ( , ) ( ) ( )

2
T

E EE U E y R y J E@ B �	- T X X                                (43) 

with 

              

� �T T
ˆ 1 11E

1
ˆ1 1 1

ˆˆ ˆ ˆ0    if    ( ) ( )(
ˆ ˆ ˆ ˆ( , )               ( ) ( ) ( ) / 2) 0

1    otherwise

E

T T
E

J E E J E e

E U B y R B y E

E

B�

$ �&
&- � � T � �'
&
&)

�

.                  (44) 

Here, 1
ˆ( )J E is a positive definite radially unbounded function of Ê , 1 2, 0@ @ � are 

real design parameters, 1� is the target parameter and 1
ˆ( )EB the basis function for the 

estimation of 1
ˆ( )V E . Moreover, 

                          � �ˆ ˆ ˆ1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ ( ) ( ) / 2T

E E Ee E D E4 B E B B� T �T T � ,                            (45) 

with 
1

1 1( ) ( ) 0TD B y R B y�� �  where 1min 1 1max|| ||D D D� � . It is finally assumed that 

� � *
1 1ˆ ( )e B y UE 	  *4

ˆ1 1( ) || ||EE K J1� � with
*
1 0K � . 
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We can now introduce Theorem 2 under the case where the states are not 

measured while the output is only available. 

Theorem 2: (Output Feedback SOLA-based Optimal Control Scheme).  Assume 

that the states of the nonlinear system (1) through (3) are not measurable while the output 

is only available with 1m � . Assume also that ix  are transformed using P Q1, ..., Nx xW  to�  

which forms the system dynamics into (35). Given the nonlinear system (35), the 

observer (36) and the target HJB equation (40), and let the tuning law for the SOLA be 

given by (43) with the cost function estimation 1 1 1
ˆ ˆ ˆ ˆ( ) ( )TV E EB� � . Then, there exists 

computable positive constants 1JEb  , 1b �  , and 1b �  such that the OLA approximation error 

1 1 1
ˆ� � � ��� , ˆ1

ˆ|| ( ) ||EJ E  , and ��  are UUB for all 0t t T, 	 with ultimate bounds given 

ˆ 11
ˆ|| ( ) || JEEJ E b�  , 1 1|| || b �� �� , and 1|| || b �� �� . Further, under OLA reconstruction errors, 

*
1 1 1

ˆ|| || rV V �� �  and *
1 1 2

ˆ|| || rU U �� �  for small positive constants 1r� and 2r� , respectively 

where � �4
1 1 1/b H � K� � , � �*

1 1 1 2 min 1 2 1
ˆ( ) /JEb E K@ H � @ @ K� �� , and b� �

1
1 1 1 min( ) / T @ H � 
�

provided *
2 1 2 1 min

ˆ/ /K E@ @ K� � where 1 1 1ˆ ˆ( 1)T 4 4� 	 . In addition, T
o oT A P PA� � 	  with P

and T being an arbitrary positive definite matrix and minT
 being the minimum eigenvalue 

of T . 

Proof. See the appendix.       � 
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� � � �1 1 1,..., ,...,i i i i i ix f x x g x x x 	� 	�

� � � �1 1,..., ,...,N N N N Nx f x x g x x u� 	�

1 i N� �

1 1 1 12
ˆ ˆ( ) ( )a

d dy y eE � E� 	 	 ��

( 1) 1
ˆ ˆ ˆ ˆ( ) ( )a
id i i di i i iy e e� E � E	 �� 	 	 � ��

1
ˆ ˆ ˆ( ) ( ) ( )a
Nd N N N Ny b y u e e� E V E �� 	 	 � ��

� �* 1 *
1 1

ˆ ˆ( ) ( ) / 2T
EU E R B y V E�� �

1 1
ˆ ˆ ˆ( ) ( )TV E EB� �

ˆ1 1 1
1

1 1 2
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Figure 2. Block diagram the proposed output feedback controller. 

 

The block diagram of the proposed output feedback-based optimal control scheme 

is shown below where no value and policy iterations are utilized. Only the value function 

and control input are updated at the sampling interval. The interesting point of this 

approach is now revealed in this diagram: the observer is observing the transformed 
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parameters � when it is applied to the real system. This means that by guaranteeing the 

existence of ( )XW , the user does not need the system model to the form of (35). 

V. SIMULATION RESULTS 

In this section, first a MIMO system is considered and a state feedback optimal 

approach is designed and verified in simulation. Subsequently, the output feedback-based 

optimal scheme is evaluated in another example. 

A. MIMO Online Optimal Control 

Consider the following nonlinear system in the form of (1)-(2) respectively as 

       1

2

2
1 01 251 1 0 3tan (5 ) 42 1 1 222 2(1 25 )1

x
x z

x
zx x x x

x

C

< =
F G< = � �< =F GF G � 	 � �F G� ��F GF G � 	 � 	 > ? � �� �> ? F G� � 	F G> ?

�

�
            

(46) 

              
� �

2
2 1

1 1 2 1
2

2 2 2 1 1 1

1 04 2
13 2 0 1 cos
2

zz z x x
u

z z x x z x

< =	< =� 	 �< = F G� 	F GF G F G� 	 � 	 	> ? > ? F G> ?

�
�

                      (47)  

Using the HJB cost function (3) with ( ) TQ x E E� and 1R � , the basis vector for 

the SOLA-based scheme implementation was selected as 

2 2 2 1 3
1 2 1 2 1 2 1 1 1( ) tan (5 )e e e e e e e e eE x x x x x x x x xB �<� >  

2 2 2 1 3
1 2 1 2 1 2 1 1 1tan (5 )

T

e e e e e e e e ez z z z z z z z z� =? while the tuning parameters were selected as 

1 200! � and 2 0.01! � . Moreover, 1 1 1e dx x x� � , 2 2 2e dx x x� � , 1 1 1e dz z z� � , and 

2 2 2e dz z z� � .  The initial conditions of the system states were taken as 

P Q1 2 1 2 [2 2 2 2]T Tx x z z � � while all NN weights were initialized to zero. That 

is, no initial stabilizing control was utilized for implementation of this online design for 
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the nonlinear system. Moreover, it is desired that the output track 

P Qsin( / 50) sin( / 40) T
dX t t� as the desired trajectory. 

    

Figure 3. The evolution of NN weights with time. 

 
Figure 4. The convergence of system outputs to the desired trajectory. 

 

Fig 3 depicts the evolution of the OLA weights during the online learning.  

Starting from zero, the weights of the online OLA are tuned to learn the optimal cost 

function. The system output ( 1 2[ , ]TX x x� ) are shown in Fig. 4, and noise is added to 

each state to ensure the persistency of excitation condition (PE) condition is satisfied.  

After 150 seconds, the PE condition was no longer required and was thus removed. Fig. 5 
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depicts the stability of the internal system states ( 1 2[ , ]Tz z z� ).Fig. 6 shows the control 

input to the system *Û .  

 

Figure 5. The convergence of the internal system states. 

 

Figure 6. The actual control input to the system
*Û . 

 

Figure 7. Approximation of the Hamiltonian. 
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Finally, in the case of Figs. 3 through 6, Fig. 7 demonstrates the estimated 

Hamiltonian in equation (29). To demonstrate the importance of the secondary term in 

the tuning law in (30), the online OLA design is attempted with ˆ( , ) 0x u- � .  That is, the 

learning algorithm only seeks to minimize the auxiliary HJB residual (32) and does not 

consider system stability.  Fig. 8 shows the results of not considering the nonlinear 

system’s stability while learning the optimal HJB function.  From this figure, it is clear 

that the system state quickly escape to infinity, and the SOLA-based controller fails to 

learn the HJB function.  Thus, the importance of the secondary term in (30) which 

ensures the stability of the system is revealed. 

B. Observer Based Online Optimal Control Output Feedback Control 

Consider the following nonlinear system in the form of (1)-(2) respectively as 

                       

2

2

51tan (5 ) 4
2 2(1 25 )

xx x x x z
x

C� ��� � 	 � 	 	� � 	� �
�                              (48) 

                                  
� �2 12 1 cos

2
z x x x u$ %� � 	 	' (

) *
� .                                          (49) 

                                                          y x� ,                                                        (50) 

which is in the form of system (35). Here, we repeat the experiment of the part (a) 

with the assumption that z is not measurable. Using the HJB cost function (3) with 

( ) TQ x E E� and 1R � ,the basis vector for the SOLA-based scheme implementation was 

selected as 2 3 2 1( ) tan (5 )e e e e eE x x x x xB �<� >
2 2 1 3tan (5 )

T

e e e e ez z z z z� =? while the tuning 

parameters were selected as 1 200! � , 2 0.01! � , and 1
min 0.04T


� � .Moreover, 

e dx x x� � , ˆe dz z z� � , and 0.1oA � . The initial conditions of the system states were 

taken as P Q P Q2 2T Tx z � � while all NN weights were initialized to zero.  That is, no 
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initial stabilizing control was utilized for implementation of this online design for the 

nonlinear system. Moreover, it is desired that the output track sin( / 50)dx t� as the 

desired trajectory. 

 

Figure 8. The system output without the OLA update. 

 

Figure 9. output 1� , the observed output 1̂� , and desired trajectory. 
The simulation results are given in Figs. 9 and 10. In these figures the 

convergence of 1̂�  and 2�̂  to 1�  and 2�  are depicted. We can check from (A.12) and 

(A.14) that by properly choosing minT
 , the upper bound of || ||�� can be arbitrarily 

adjusted as small as desired.  Therefore, after a transient response time (about 100 

seconds), the observed state �̂ is equal to � and the online optimal controller can rely on 
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the observed value instead of the real value. Therefore, after removing the PE condition, 

the tracking error convergences to a uniformly ultimate bounded region close enough to 

the origin. 

 

Figure 10. System output 2� , observed output 2�̂ , and desired trajectory. 
 

VI. CONCLUSIONS 

This work proposed an optimal scheme for stabilizing nonlinear MIMO strict 

feedback systems using a single OLA to solve the Hamilton Jacobi-Bellman equation 

forward-in-time. In the presence of known dynamics, the regulation problem was 

undertaken. Then, by using a backstepping approach, the control input to the system is 

derived. Moreover, as a practical application, this scheme is developed to the optimal 

output feedback of SISO systems. A nonlinear observer is designed in order to estimate 

the unknown states in the output feedback case. UUB stability of the overall system is 

guaranteed in the presence of OLA approximation error. Simulation results were also 
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provided to verify the theoretical conjectures. Future work is to extend the results of the 

output feedback case of SISO to MIMO systems. 

APPENDIX 

Proof of Theorem 1. Consider the following positive definite Lyapunov candidate 

                                    
� �2 1 2

1 1( )
2 2

T T T
HJBJ J E E E! !� 	 � � � 	� �� � � �                            (A.1) 

whose first derivate with respect to time is given by 

                          HJBJ ��  2 1 2( )T T T
EJ E E EE! !	� � � 	� �� �� � � � � �                             (A.2) 

where 1( )J E  is given in Lemma 1 and 1 ( )EJ E E�  . One can easily find out that 

Equation (A.2), along the system trajectories (4), (6), and (8) is equal to HJBJ�  along the 

system (13) and (34). Therefore the optimal tracking problem of (4), (6), (8) is reduced to 

optimal stabilization of the system (13). 

To begin the proof of the overall stability, observe that if 0E � , then 

/ 2T
HJBJ � � �� �  with 0HJBJ �� , and the parameter estimation error �� remains constant and 

bounded [3].  On the other hand, to successfully accomplish the online learned objective, 

the states are required to satisfy 0E � . Therefore, the remainder of this proof considers 

the case of 0E �  (i.e. online learning is being performed).  Then, substituting the 

nonlinear dynamics (13) with control input (28) applied along with the OLA estimation 

error dynamics (34) into (31) reveals 
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Next, completing the squares with respect to ( ) ( )T T
E EE D EB B� T T �� �  and 

*( ) / 2T
x Ex E DB �� T 	 T� �  and taking the upper bound yields 

� �1
2

ˆ( ) ( ) ( ) ( ) ( ) / 2T T T
HJB E EJ J E F E G X R G X E! B�� � T ��

12ˆ( , ) ( ) ( ) ( ) ( )
2

T T T
E Ex U E G x R G x J x! B ��- � T�  

2
4 22 *1 1

min2 2

4( ) ( )
32 2

T T E
E E

DE D E E! ! �B B
  

T
� � T 	 � T 	� � �

 

Now, completing the square with respect 
2

( )T
E EB� T� renders 

              

1
2

12

4
4 2 * 21 1 1

min2 2 2 2
min

1 ˆ( ) ( ) ( ) ( ) ( )
2

ˆ( , ) ( ) ( ) ( ) ( )
2

256 3( ) .
64 2 2

T T T
HJB E E

T T T
E E

T E
E HJB

J J E F E G X R G X E

E U E G X R G X J E

DE D E
D

! B

! B

! ! � !B �
   

�

�

� �� � T �� �
� �

�- � T

T
� � T 	 	 	

�

�

� �
 

Next, observing the bound in (21) and applying the Cauchy-Schwarz inequality, 

HJBJ� is upper bounded according to 

� �

1
2

2
2*1 1

2 2

*1
2

*1
2

1
2

1 ˆ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( )
2 8

3
( ) ( ) ( )

24

( )
2

2

T T T
HJB E E

T T TE
E E E

T T TE
E E E

T E
E HJB

J J E F E G X R G X E

DE E E D E

DE E E D E

D
E E

! B

! � !
B B B

  
! �

B B B
 
! �

B �
 
!
 

�� �� � T �� �
� �

� �T� �� � T 	 � � T T �� �� �
� �� �

T� �� � T 	 � T T �� �
� �

T� �� � T 	� �
� �

�

�

� � � �

� � � �

� �

�

12
1 1

( ) ( )

ˆ( , ) ( ) ( ) ( ) ( ).
2

T T
E E HJB

T T T
E E

E D E

E u E G X R G x J x

B B �

!
B �

� T T �
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�

�

2
12
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2 HJB! �
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1

2 1
1 ˆ( ) ( ) ( ) ( ) ( )
2

T T T
HJB E EJ J E F E G X R G X E! B�� �� � T �� �

� �
�

       

                       12
1

ˆ( , ) ( ) ( ) ( ) ( )
2

T T T
E EE U E G X R G X J E! B ��- � T�  

                               

4 41 1 1
1 22 2 2( ) ( )E! ! !V H � V 1

   
� � 	 	�                                 (A.3) 

with
4 2

1 min min / 64DV B� T , 
2

2 min1024 / 3 / 2DV � 	 , and 

4 4 2 4 4 2
max min max( ) 64 ' / 3( ) / 2M M MD D DH � � � �9 9� 	 	 , and min0 ( )EB B� T � T  is ensured by 

0E � for a constant minBT . Now, the cases of ˆ( , ) 0E U- � and ˆ( , ) 1E U- � will be 

considered. 

Case 1. For ˆ( , ) 0E U- � , the first term in (A.3) is less than zero by the definition 

of the operator in (31).  Recalling *4( ) EE K J1 �  and observing 21/ 1 � , (A.3) is 

rewritten as 

              
� � 4* 1 1

2 min 1 2 12 2

( )( )HJB EJ E K J E ! V H �! ! V !
  

� � � � � 	� � �
        

           (A.4) 

and (A.4) is less than zero provided *
2 1 2 min/ /K x! ! V� � and the following 

inequalities hold 

                       

� �*
1 2 min 1 2 0

4
1 0

( ) ( ) / or

( ) / .

E JEJ E x K b

b

!H � ! ! V

H � V �

� � �

� � �

�

�
                (A.5) 

Note that 0E � and the operator (26) ensure the existence of a constant minE�

satisfying min0 E E� �� � .  According to standard Lyapunov extensions [3], the 

inequalities above guarantee that HJBJ� is less than zero outside of a compact set.  Thus, 
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( )EJ E  as well as the OLA parameter estimation error ��  remain bounded for the case

ˆ( , ) 0E U- � .  Recalling the Lyapunov candidate ( )EJ E is radially unbounded and 

continuously differentiable (Lemma 1), the boundedness of ( )EJ E  implies the 

boundedness of the system states, E . 

Case 2. Next, consider the case of ˆ( , ) 1E U- � which implies the OLA based input 

(28) may not stabilizing.  To begin, add and subtract 2 1 ( ) ( ( ) ) / 2T T
E E EJ E D E! B �T �	T   to 

(A.3) to get 

                       
� �

2 1

2
1

4 41 1 1
1 22 2 2

2
2 1 1

1( ) ( ) ( ( ) )
2

( )
2

( ) ( )

( ) ( ) ( ) * ( )
2

T T
HJB E E E

T
E E

T

T T
E E E

J J E F E D E

J E D

E

J x F E G X U J E D

! B �

! �

! ! !V H � V 1
   

!! �

� �� � T �	T� �
� �

	 T

� � 	 	

� 	 	 T

�

�

 

                         

4 *1 1 1
1 2 12 2 2( ) .EK J! ! !V H � V

   
� � 	 	�

 

Next, using Lemma 2 and recalling the boundedness of D, HJBJ�  is rewritten as 

� � 42 * 2 1
2 min 1 2 max 1 2 2 1 12

1
2

( ) / 2 / ( ) ( )

( )

HJB E M EJ Q J E D K J E !! ! � ! V !  V
 

! H �
 

9� � 	 	 � �

	

� �

 

where 0MinQ �  satisfies ( )MinQ Q E� and is ensured by the condition 0E � .  As a final 

step, complete the square with respect to 2
1 ( )EJ E to reveal 

422 1 1
min 1 12 2( ) ( )

2HJB EJ Q J E! ! !V H �
  

� � � � 	� �   
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2

2 2 2 *22 1
max 24

min 2 min4 MD K
Q Q
! !� V

!  
9	 	                                     (A.6) 

and 0HJBJ �� provided the following inequalities hold 

                          
2 2 2

1 max min( ) / (2 ) andE M JEJ x D Q b� 9 9� � . 

                        
2 *24

1 1 2 1 2 min( ) / / ( )K Q bH � V ! V V ! �� � 	 ��                            (A.7) 

According to standard Lyapunov extensions [3], the inequalities in (A.7) 

guarantee that HJBJ� is less than zero outside of a compact set.  Thus, ( )EJ E  as well as 

the OLA parameter estimation error estimation errors, ��  , remain bounded for the case

ˆ( , ) 1E U- � . Recalling the Lyapunov candidate ( )EJ E is a radially unbounded and 

continuously differentiable (Lemma 1), the boundedness of ( )EJ E  implies the 

boundedness of the system states, E .   

The overall bounds for the cases ˆ( , ) 0E U- � and ˆ( , ) 1E U- � are then given by 

( )E JEJ E b�  and b�� ��  for computable positive constants 0 1max( , )JE JE JEb b b�  and 

0 1max( , )b b b� � �� .  Note that 0Jxb  and 1b� in (A.5) and (A.7), respectively, can be 

reduced through appropriate selection of 1!  and 2! . To complete the proof, subtract  

(22) , (27) and (28) from (23) to reveal 

             
1 1

ˆ*( ) ( ) ( ) ( )
1 1ˆ* ( ) ( ) ( ) ( )
2 2

T

T T T
E E

V E V E x x

U U R G X X R G X E

B �

B �� �

� � � 	

� � � T �� T

�

�
. 
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Next, observing that the boundedness of the system states ensures the existence of 

positive constants MB and MB9 such that MB B� and E MB B9T � , respectively, and taking 

norm and the limit as t 3 + when ˆ( , ) 0E U- � reveals 

                            1
ˆ* ( ) M M M rV V E bB � B � ��� � � 	 � 	 ��

      

               
1 1max max

2
ˆ*( ) ( ) ( ) ( ) .

2 2M M M M rU x U x R G b R g
 
B � �� �
� 9 9� � 	 �

              � 

Proof of Theorem 2. Consider the following positive definite Lyapunov candidate 

                                 
1 2 1 1 1

1 1ˆ( )
2 2

T T
HJBJ J E P@ � �� 	 � � 	 � �� �                                 (A.8) 

whose first derivative with respect to time is given by 

                         1HJBJ ��
 2 1 1 1

ˆ ˆ( )T T T T
EJ E E P P@ � � � �	 � � 	 	� � �� � � � �� �

 

                                      2 1 1
ˆ ˆ ( )T T TEE A P PA@ � �� 	� � 	 	� �� � �� �                                (A.9) 

where 1
ˆ( )J E  and 1

ˆ( )EJ E  are given in Lemma 1. With the same steps as of 

Theorem 1 we get 

             � �1
1 2 1 1 1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) / 2T T T
HJB E EJ J E e B y R y E@ E B�� � X T ��

 

41 22 1
ˆ ˆ ˆ1 1 1 1 1 min21

1

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )
2 32

T T T T
E E Ey U E y R y J E E D@ @B B

 
��- � T X X � � T� �  

              

2 ˆ1* 2 21 1
1 12 2

1 1

4 3ˆ ˆ( ) ||| ||
2 2

T TE
E HJB

D
E E T

�@ @B � � �
  

T
	 � T 	 	 �� �� ��

. 

Now, completing the square with respect 2ˆ|| ( ) ||T
E EB� T� renders 

       
1

ˆ1 2 1 1 1 1 1
1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2

T T T T
HJB E EJ T J E e B y R B y E� � @ E B�� �� � 	 � T �� �

� �
�� ��
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1

ˆ2 1 1 1 1 1
1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2

T T T
E EJ E e B y R B y E@ E B�� �	 � T �� �

� �
   

                   
12

ˆ ˆ1 1 1 1 1
ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )

2
T T T

E E
E U E B y R B y J E@ B ��- � T�

 

       

4
4 2 * 21 1 1 1

ˆ1 1 1min2 2 2 2
1 1 1min 1

256 3ˆ ˆ( ) .
64 2 2

T E
HJBE

DE D E
D

@ @ � @B �
   

T
� � T 	 	 	��

 

Next, observing the bound � � � � *
1 1 1 1

ˆ|| || ( )e y U EB 1	X �    which is similar to (21) 

and applying the Cauchy-Schwarz inequality, HJBJ� is upper bounded according to 

                

1
ˆ1 2 1 1 1 1 1

12
ˆ ˆ1 1 1 1 1

1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2

ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( )
2

T T T
HJB E E

T T T
E E

J J E e y R y E

E U E B y R y J E

@ E B

@ B

�

�

� �� � X X T �� �
� �

�- � T X

�

�
 

                      

4 41 1 1
1 1 1 2 12 2 2

1 1 1

ˆ( ) ( ) TE T@ @ @K H � K 1 � �
   

� � 	 	 � �� �� ,                         (A.10) 

with
4 2

1 1min 1min / 64DK B� T , 
2

2 1min1024 / 3 / 2DK � 	 , and 

4 4 2 4 4 2
1 1max 1 1min 1 1 1max( ) 64 ' / 3( ) / 2M M MD D DH � � � �9 9� 	 	 	 , and 1min 1

ˆ0 || ( ) ||EB B� T � T  is ensured 

by ˆ|| || 0E � for a constant 1minBT . Now, the cases of 1 1
ˆ ˆ( , ) 0E U- � and 1 1

ˆ ˆ( , ) 1E U- � will 

be considered. 

Case 1. For 1 1
ˆ ˆ( , ) 0E U- � , the first term in (A.10) is less than zero by the 

definition of the operator in (31).  Recalling *4
ˆ1 1 1

ˆ( ) || ||EE K J1 �  and observing

2
1||1 / || 1 � , (A.10) is rewritten as 

  
� � 4* 1

2 min 1 2 1 1 12 2
1 1

1ˆ ˆ( ) ( )T
HJB EJ T E K J E @� � @ @ K K @ H �

  
� � � � � � 	�� �� � � ,           (A.11) 
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and (A.11) is less than zero provided *
2 1 2 1 min

ˆ/ /K E@ @ K� � and the following 

inequalities hold 

                       � �*
ˆ 1 1 2 min 1 2 1 1 01

ˆˆ|| ( ) || ( ) / , orJEEJ E E K b@ H � @ @ K� � ��
 

                                       
4

1 1 1 1 0|| || ( ) / ,  bH � K �� � ��
or 

                                       
1

1 1 1 min 1( ) / T b ��  @ H � 
�� ��                                  (A.12) 

Case 2. Next, consider the case of 1 1
ˆ ˆ( , ) 1E U- � which implies the OLA based 

input * 1
ˆ1 1 1 1

ˆ ˆ ˆ( ) ( ) / 2T T
EU R y EB�� � X T �  may not stabilizing.  To begin, add and subtract 

2 1
ˆ ˆ( ) ( ( ) ) / 2T T

E E EJ E D E! B �T � 	T   to (A.10) to get 

              
ˆ ˆ ˆ2 11

1ˆ ˆ( ) ( ) ( ( ) )
2

T T T
HJB E E EJ T J E e D E� � ! E B �� �� � 	 � T �	T� �

� �
�� ��

 

         
   

4 42 1 1 1
ˆ1 1 1 1 12 2 2

1 1 1

ˆ ˆ( ) || || ( ) ( )
2

T T
E EJ E D E! @ @ @� K H � 1

   
	 T � � 	 	�

    

           
� �*

ˆ ˆ2 1 1 2 1 11
ˆ( ) ( ) ( ) ( ) / 2T T T
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4 *1 1 1
ˆ1 1 2 12 2 2 1

1 1 1
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Next, using Lemma 2 and recalling the boundedness of D, 1HJBJ�  is rewritten as 

2
ˆ1 2 min 1

*
41max 1 2 1 1 1 1

ˆ2 1 12 2 21
2 1 1 1

ˆ|| ( ) ||

( )ˆ|| ( ) || || ||
2

T
HJB E

M
E

J T Q J E

D K J E

� � @

� @ K @ @ H �@ K
@    

� � �

9� �
	 	 � � 	� �

� �

�� ��

�
where 1 0minQ �  

satisfies 1 1
ˆ|| ( ) ||minQ Q E� and is ensured by the condition ˆ|| || 0E � .  As a final step, 

complete the square with respect to 2
1

ˆ|| ( ) ||EJ E to reveal 
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2
2 2 2 *22 1

1max 1 24
1min 2 1 1min4 MD K

Q Q
@ @� K

@  
9	 	

                               (A.13) 

and 0HJBJ �� provided the following inequalities hold 

                                

2 2
1max 1

1 12
1min

ˆ|| ( ) ||
2

M
E JE

DJ E b
Q
� 9 9� �

, or 

                          

2 *21 141 2 1
1 1 2 1min

( )|| || K b
Q

H � @ K
K K @ �9� � 	 ��

, or 

                         

2 *21 12 2 1
min 1 1 2 1min

( )1|| ||
T

K b
Q �

H � @� K

 K K @

9� 	 �� .                           (A.14) 

According to standard Lyapunov extensions [3], the inequalities in (A.14) 

guarantee that 1HJBJ� is less than zero outside of a compact set.  Thus, 1
ˆ|| ( ) ||EJ E  as well as 

the OLA parameter estimation error estimation error 1|| ||��  remain bounded for the case

1 1
ˆ ˆ( , ) 1E U- � . Recalling the Lyapunov candidate 1

ˆ( )EJ E is a radially unbounded and 

continuously differentiable (Lemma 1), the boundedness of 1
ˆ|| ( ) ||EJ E  implies the 

boundedness of the states ˆ|| ||E .   

The overall bounds for the cases 1 1
ˆ ˆ( , ) 0E U- � and 1 1

ˆ ˆ( , ) 1E U- � are given by 

1 1
ˆ|| ( ) ||E JEJ E b�  and 1 1|| || b �� ��

 for computable positive constants 1 1 0 1 1max( , )JE JE JEb b b�  

and 1 1 0 1 1max( , )b b b� � �� .  Note that 1 0Jxb  and 1 1b � in (A.12) and (A.14), respectively, can 

be reduced through appropriate selection of 1@  and 2@ . To complete the proof, subtract 

(22) , (27) and (28) from (23) to get 

2 42 1 1
ˆ1 1min 1 1 12 21

1 1

ˆ|| ( ) || || || ( )
2

T
HJB EJ Q Q J E! @ @� � K H �

  
� � � � � 	�� �� �
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*
1 1 1 1 1

* 1 1
ˆ ˆ1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
1 1ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2

T

T T T
E E

V E V E E x

U U R y E R y E

B �

B �� �

� � � 	

� � � X T � � X T

�

�
. 

Next, observing that the boundedness of the system states ensures the existence of 

positive constants 1MB and 1MB9 such that 1 1|| || MB B� and ˆ 1 1||| || MEB B9T � , respectively, and 

taking norm and the limit as t 3+ when 1 1
ˆ( , ) 0E U- � reveals  

*
1 1 1 1 1 1 1 1

ˆ ˆ|| || || |||| ( ) || M M M rV V E bB � B � ��� � � 	 � 	 ��
            

* 1 1max
1 1 max 1 1 1 1 1 1 2

1ˆ|| ( ) ( ) || ( ) ( ) .
2 2M M M M rU x U x R b R

 B � �� �

� 9 9� � X 	 X �
           � 
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IV. NEURAL NETWORK-BASED OPTIMAL ADAPTIVE OUTPUT 

FEEDBACK CONTROL OF A HELICOPTER UAV 

 

Abstract— Helicopter unmanned aerial vehicles (UAV) are widely used for both 

military and civilian operations. Because the helicopter UAVs are underactuated 

nonlinear mechanical systems, high-performance controller design for them presents a 

challenge. This paper introduces an optimal controller design via output feedback for 

trajectory tracking of a helicopter UAV using a neural network (NN). The output-

feedback control system utilizes the backstepping methodology, employing kinematic 

and dynamic controllers and a NN observer. The online approximator-based dynamic 

controller learns the infinite-horizon Hamilton-Jacobi-Bellman (HJB) equation in 

continuous time and calculates the corresponding optimal control input by minimizing a 

cost function forward-in-time without using value and policy iterations. Optimal tracking 

is accomplished by using a single NN utilized for cost function approximation. The 

overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, 

simulation results are provided to demonstrate the effectiveness of the proposed control 

design for trajectory tracking. 

Index Terms— Hamilton-Jacobi-Bellman equation, helicopter UAV, neural 

network (NN), nonlinear optimal control. 

1. INTRODUCTION

Helicopter unmanned aerial vehicles (UAVs) are autonomous rotorcraft and due 

to their versatility and maneuverability, they are invaluable for applications where human 

intervention may be restricted. For unmanned helicopter control [1], it is essential to 

produce moments and forces on the UAV to position the helicopter such that the desired 

SUMMARY 
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regulated state is achieved, and to control the helicopter's velocity, position, and 

orientation such that it tracks a desired trajectory. The dynamics of the helicopter UAV 

are not only nonlinear, but are also coupled with each other and underactuated, which 

makes the control design challenging. Both inputs and dynamics are coupled on a 

helicopter, particularly as a result of the swashplate mechanical linkages and the torques 

created by drag against the rotors. In other words, a helicopter has six degrees of freedom 

(DOF) which must be controlled with only four control inputs in order to manipulate the 

thrust and the three rotational torques. 

   In order to develop the controllers for such helicopters, Koo and Sastry [1] have 

utilized an approximate linearization-based control [1] that transforms the system into 

linear form. Mettler et al. [2] have introduced a model for the helicopter independent of 

an accompanying control scheme [2]. Hovakimyan et al. [3] have implemented an output 

feedback control scheme with a neural network (NN)-based controller using feedback 

linearization [3]. Johnson and Kannan [4] have employed an inner and outer loop control 

using pseudo-control hedging [4], and Ahmed et al. [5] have introduced a backstepping-

based controller for the helicopter [5]. Frazzoli [6] and Mahoney [7] have both generated 

control schemes for Lyapunov-based control of helicopter UAVs. However, none of 

these works [1]-[7] presents an optimal control scheme for the underactuated unmanned 

helicopter.  

   Optimal control of a linear system minimizing a quadratic cost function can be 

achieved by solving the Riccati equation [8]. In contrast, the optimal control of nonlinear 

systems often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation, 

which does not have a closed-form solution. 
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 Therefore, Enns and Si [9] have used neural network dynamic programming 

(NDP)-based optimal control of a helicopter UAV [9] using offline training and value 

and policy iterations. Lee et al. [10] introduced a robust command augmentation system 

using a NN, but inversion errors can lead to problems [10]. 

   Since value and policy iteration-based optimal schemes are not suitable for 

hardware implementation, in the recent NDP literature, Dierks and Jagannathan [11] 

introduced an optimal regulation and tracking controller for nonlinear discrete-time 

systems in affine form. Here, the discrete-time HJB equation is solved online and 

forward-in-time. An online approximator (OLA) is tuned to learn the HJB equation, with 

a second OLA utilized to minimize the cost function [11]. Dierks and Jagannathan [12] 

have extended this NDP scheme to continuous-time systems in affine form by using a 

single online approximator (SOLA) [12]. However, such NDP-based optimal control 

schemes are not available to nonlinear systems in strict feedback form which use 

backstepping technique. 

   Therefore, a SOLA-based scheme for the optimal tracking control of a 

helicopter's nonlinear continuous-time feedback system is considered in this paper via a 

backstepping approach. A kinematic controller generates the desired velocities. The 

dynamic controller learns the continuous-time HJB equation and then calculates the 

corresponding optimal control input by minimizing a cost function forward-in-time by 

assuming known system dynamics. A single NN is used for approximating the cost 

function with the NN weights tuned online. A NN observer is employed to obtain the 

states from the outputs. By selecting suitable NN weight update laws, Lyapunov analysis 

is utilized to demonstrate the stability of the closed-loop system. It is shown that the 
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approximated control input approaches the optimal control input over time. Simulation 

results are included for both hovering and following a desired maneuver. 

   The main contribution of this paper includes the development of an optimal 

controller for tracking a trajectory of an unmanned underactuated helicopter, forward in 

time and without using value and policy iterations, where the helicopter system is 

expressed in strict feedback form appropriate for backstepping control. The controller 

tuning is independent of the trajectory. A NN-based OLA is utilized to approximate the 

cost function and the overall stability is guaranteed.  

The optimal controller has been previously developed for affine nonlinear systems 

by using state feedback [11]-[12], but has not yet been developed for strict feedback 

system such as a rotary-wing aircraft. This optimal controller in [11]-[12] required that

( ) 0f V � for 0V � . However, since the dynamics are transformed into tracking error form, 

this condition is met. In addition, the proposed controller uses output feedback by using 

an observer [14] similar to that used for a quadrotor [14], but the present application to a 

helicopter is novel, and is not accompanied by the virtual and kinematic controllers 

employed in [14]. The proposed effort extends the work of [7], [12], and [14], from the 

fields of helicopter, optimal, and quadrotor control, respectively and adds a closed-loop 

stability proof that is involved yet demonstrating the convergence of the output feedback 

controller. 

2. HELICOPTER DYNAMICS MODEL 

Consider the helicopter shown in Figure 1 with six degrees of freedom (DOF) 

defined in the inertial coordinate frame  aQ , where its position coordinates are given by 

P Q ax y z Q �   and its orientation described as yaw, pitch, and roll, respectively, is 
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given by Euler angles P Q aQY � O� �  .  The equations of motion are expressed in 

the body fixed frame bQ  which is associated with the helicopter's center of mass. The bx-

axis is defined parallel to the helicopter's direction of travel and the by-axis is defined 

perpendicular to the helicopter's direction of travel, while the bz-axis is defined as 

projecting orthogonally downwards from the xy-plane of the helicopter. The dynamics of 

the helicopter is given by the Newton-Euler equation in the body fixed coordinate system 

and can be written as in [7] but in the form provided in [14] as 

                             � �
3 1

3 1
2

( )0
0 d

v G R
M S U

N
E K

E

�

�

< =< = < =
� 	 	 	 	F GF G F G

> ? > ?> ?

�
�                     

(1)  

where the mass-inertia matrix M  is defined as                        

" # 6 6 M diag mI �� �� , m�  is a positive scalar denoting the mass of the helicopter, 

3 3I ��  is the identity matrix, 3 3���  is the positive-definite inertia matrix, 

� � 3 10
T

S E E E�< =� � �> ?� , 3 1
2N ��  represents the nonlinear aerodynamic effects,  

� � 3 1
3G R mge �� �  represents the gravity vector with g  the gravitational acceleration, 

and 1 2

TT T
d d dK K K< =� > ?  represents unknown bounded disturbances such that d MK K�  for 

all time t , with MK  a known positive constant. Also, 3 1
x y zv v v v �< =� > ? �  and 

3 1
x y zE E E E �< =� > ? �  represent the translational velocity and angular velocity 

vectors, respectively. The kinematics of the helicopter are given by   

                                            Rv ��                                                         (2) 

 and  

                                        1T E�� ��                                                         (3) 
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Figure 1. Helicopter orientation representation. 
   The translational rotation matrix used to relate a vector in body fixed frame to 

the inertial coordinate frame is defined as [14] 

                    

� �
c c s s c c s c s c s s

R c s s s s c c c s s s c
s s c c c

� Y O � Y O Y O � Y O Y

� Y O � Y O Y O � Y O Y

� O � O �

< =� 	
F G� � 	 �F G
F G�> ?  

with maxF
R R�  for a known constant maxR   and 1 TR R� � , where s7  and c7  

denote the � �sin 7  and � �cos 7  functions, respectively. The transformation matrix from 

the angular velocity to the derivative of the orientation is given by 

                             

� �
0

1 0
s c

T c c c s
c

c s s s c

O O

� O � O
�

� � O � O

< =
F G� � �F G
F G> ?  

and is bounded according to maxF
T T�  for a known constant maxT , provided 

2 2C O C� � �  and 2 2C � C� � �  such that the helicopter trajectory does not pass 

through any singularities [1], with t7  used to represent � �tan 7 . Throughout this work, 

|| ||7  denotes a Euclidean norm and F
7  denotes a Frobenius norm. Note also that � ��  

denotes the vector cross product. The nonlinear aerodynamic effects taken into 
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consideration for modeling of the helicopter are given by 2 3 2M TN Q e Q e� � , with MQ  

and TQ   aerodynamic constants for which values are given in the simulation section, and 

originally found in [7]. Note that 1e , 2e , and 3e  are unit vectors directed along the x-, y-, 

and z-axes, respectively, in the inertial reference frame. The vector 6 1U ��  is given by 

3 3
13

3 1
211 22 33

3

0
0 ([   ])

b

u
wE

U
wdiag p p p
w

�

�

< =
F G< = F G� F G F G> ? F G
> ?

, where the control vector 

P Q1 2 3vu u w w w� , with u  providing the thrust in the z-direction, 1 2,w w  and 3w  

providing the rotational torques in the x-, y-, and z-directions, respectively, iip  positive 

definite constants that make up a gain array, and 3 [0 01 ]TbE � . Defining the new 

augmented variables 6 1[  ]  T T TX  �� � �  and 6 1[  ]  T T TV v E �� � , (1) can be rewritten in 

a form suitable for backstepping as  

                                       X AV L� 	�                                                         (4) 

                                   1( )V f V M U�� 	�
                                                    (5) 

where 1 3 1
2( ) ( ( ) [0  ] )Tf V M S GE� �� 	 	�  with 1 3 1 6 1( )[ 0 ]  G M G R� � �� � , and 

6 1  L ��  is the bounded sensor measurement noise such that ML L�  for a known 

constant ML . Equation (5) is in the body reference frame, while equation (4) is in the 

earth reference frame. Note that these last two equations take the form 

1 1 1 1 1 2

2 2 2 2 2

( ) ( )
( ) ( )

x f x g x x
x f x g x u

L� 	 	
� 	

�
�  
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with 1 1( ) 0.f x �  This system is a candidate for backstepping control [13]. The 

dynamic controller operates in the body reference frame, with equation (4) necessary to 

bring these results back to the earth reference frame. Also,  � �1 6 6A diag R T � �< =� > ? � . 

Writing  explicitly, ( )f V  yields   

01 0 0 0 0 0 0 0
00 1 0 0 0 0 0 0
00 0 1 0 0 0 0

( )
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

x x xx

y y yy T

z Mz z z

m
m

m mg
f V

Q
Q

E E
E E

E E

� �< =< = < = < =
� �F GF G F G F G
� �F GF G F G F G
� �F GF G F G F G
� �� 	 	F GF G F G F G� �� �F GF G F G F G
� �F GF G F G F G� � �� �F GF G F G F G� �F G � � F GF G > ?> ? > ?> ?� �

��
��

� �  

In this section, the dynamic model of the helicopter with six degrees of freedom 

has been presented. The control methodology is addressed next. 

3. MOETHODOLOGY

The overall control objective for the unmanned helicopter is to track a desired trajectory

( )dX t  and a desired heading (yaw) while maintaining stable flight. Full knowledge of the 

helicopter states is required to achieve the control objective which is in practice not 

possible. Therefore, a NN observer is designed to estimate the states from the outputs.  

This output feedback control scheme consists of a kinematic controller to generate the 

desired velocity for the dynamic controller, a virtual controller and an optimal controller.  

First the kinematic controller is introduced and subsequently, the observer design is 

given. 

3.1.Kinematic Controller 

   To design the kinematic controller for the unmanned helicopter, define the position 

tracking error as  

                                                               1 d1   � �                                                          (6) 

The observer’s velocity estimate v̂  from Section III.3.2 may be used to obtain the desired 

velocity, dv  as in [7] 
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1
1ˆdv v
m
1� �  

Note that the  notation � �7̂  is used to denote an estimate. In addition, it is important to 

note that there exist desired trajectories which may reach unstable operating regions as 

the orientation about the x- and y- axes approaches 2CZ . It is possible to avoid these 

singularities by redefining Euler angles or with an alternative approach employing 

quaternions, but there are still physical constraints to be considered. In other words, if the 

main rotor blades move into a plane perpendicular to the ground, the helicopter becomes 

unstable. This is a consequence of the physical limitations of helicopters. Therefore, 

trajectories requiring that these orientations be maintained should not be assigned to the 

helicopter.

3.2.Observer Design 

   The following section extends the work in [14] by Dierks and Jagannathan to a 

helicopter system. An observer is used to estimate the system states based on the system 

model and outputs. The helicopter states to be estimated are given by V  with the 

observer’s estimate of these states given by V̂  and the state estimation error given by 

ˆV V V� �� . The output is X , with the integrated observer’s estimate of the output given 

by X̂ , and the error between the actual output and the integrated observer’s estimate of 

the output given by X� , with ˆX X X� �� . 

    The observer is NN-based, and functions by estimating the output and comparing the 

estimate to the actual output. Referring back to (4) and (5), if A  and L  are known, then 

X  may be easily obtained by integrating X� , and rearranging and solving yields V . But 

since X  is known, A  may be accurately obtained, meaning that L  and the NN 

reconstruction error are the only sources of error in determining V .  

     To begin, a NN basis vector ox  is selected such that ˆ ˆˆ 1
TT T

ox X V X< =� > ?
� , with 

the NN estimate of � �1
T T

o o o o of W V x4 �� 	  given by � �1
ˆ ˆ ˆT T
o o o of W V x4� . The NN 

reconstruction error o�  is bounded such that o Mo� �� , with Mo�  a known constant. For 

this neural network estimate, � �4 7  represents the activation function and oW  and oV  are 
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the weights, with ˆ
oW  an estimate of oW , which has an upper bound o MoF

W W� . 

Similarly to the estimates of the states and outputs and their errors, the observer weight 

error is defined such that ˆ
o o oW W W� �� .  

    The NN estimate is then used to calculate the observer’s estimate of the states as 

                                                          
1

1 2
ˆˆ
o oZ f K A X�� 	� �

                                                   (7) 

which is promptly used in addition to the output error to calculate the estimate of the 

output by using the dynamic equation 

                                                      1
ˆ ˆ

oX AZ K X� 	� �                                                   (8) 

At this point, the states may be estimated as 

                                                         
1

3
ˆ ˆ

oV Z K A X�� 	 �
                                                     (9) 

The weight update law is then used to update the weights as below 

                                              � � 1
ˆ ˆT T

o o o o o o oW F V x X F W4 [� �� �
                                          

(10)

with 0T
o oF F� �  and 1 0o[ �  tunable gains. The observer NN weights are randomly 

initialized. The observer error dynamics are 

                                                   

1 3

1 1
3 1 2

1
3

( )
ˆ( ( ) )

( )

o o

T
o o o o

T
o

X AV K K X

Z f A K A X f K A X

A K A X

L
� �

�

� � � 	

� 	 � � �

� �

�� � �
� �� � �

� �
                      (11) 

and the observer estimation error dynamics are given by 

                        
1

3 1 2 3 1 3 1( ( )) T
o o o o o oV K V f A K K K K X A X L�� � 	 � � � � 	� �� � � �                   (12) 

with 1L  a vector of positive constants containing a number of error terms. In (11), note 

that 1A��  denotes the derivative of 1A�  rather than the inverse of A� . In addition, positive 

gains 1 2 3, ,o o oK K K  are selected such that 1 3o oK K� , 3 12o o oK N [� , and 

� �2 3 1 3o o o oK K K K� � , where oN  is the number of hidden layer neurons. These equations 

are useful for proving Theorem 1, which is now introduced. 

   Theorem 1 [14] (Boundedness of observer estimation errors). Given the observer 

defined in (7), (8), and (9), with NN weight update law as given in (10), then there are 

positive gains 1 2 3, ,o o oK K K  for which 1 3o oK K� , 3 12o o oK N [� , � �2 3 1 3o o o oK K K K� � , 
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where oN  is the number of hidden layer neurons, such that the observer estimation error 

X� , as well as V�  and oW�  are UUB, with bounds 

1 3

2 o

o o

X
K K

H
�

�
� or 3

12
o o

o
o

K NV H
[

� �
� �� �

� �
� or 12o o oF

W H [��  

In addition, selecting the values of 1 2 3, ,o o oK K K  and 1o[  allows the bound on the errors 

to be made arbitrarily small. 

3.3.Virtual Controller 

The next step is to design the virtual controller, which is used to obtain the virtual 

control ouput or desired input 1 2 3[    ]T
d d d du w w w�� . The steps given here follow the 

approach taken in [7]. This process is performed by first defining a set of error terms. The 

first, 1 d1   � � , was introduced with the kinematic controller. The second error term to 

be minimized is 2̂ ˆ( )dm v v1 � � , with 2̂1  a velocity tracking error that incorporates the 

helicopter’s mass. The third and fourth errors to be considered are 3 dY Y� ��  and 

4 dY Y� �� �� , with dY  the desired heading, which consider the error in the helicopter’s 

heading and the rate at which this error is changing. A fifth error term considers the error 

in the thrust and may be expressed as 

                            
3 3 2 1 3

1ˆ ˆ ( )dmge mv R e
m

1 1 1 �� � 	 	 � ��                               (13) 

with all of the variables in (13) as previously defined. For convenience, a term  

2 3 3 2 1
1ˆ ˆ ˆ( )d d

dY mge mv
dt m

1 1 1 1� 	 	 � 	 	�
 

is introduced prior to the final error term necessary for this development, allowing 

this final error term to be written as 

4 3 3
ˆ ˆ( ( ) ( ) ( ) )dY R e R skew e1 � � E� � � 	 ��
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The choice of these particular error terms is analyzed in further detail in [7]. 

Selecting   

                       3 3

3 4 3

( ) ( ) ( )
ˆ ˆ ˆ2 ( ) ( )

d

d

R e R skew e w

Y R skew e1 1 E

� �

�

� � �

� 	 	 � �

� �
� �                               (14) 

to be solved for control of the main rotor thrust, pitch, and roll, and the following 

equation 

                                        3 4dY Y� � ��� �� � �                                                    (15) 

to be solved for control of the yaw [7], a solution for both equations is given by 

                                  

1
1

2

3 3 4

0 0
0 0 ( )

0 0 1
ˆ ˆˆ( 2 ( ) ( ) )

d
T

d

d

w
w R

Y R skew e

�
�

�

� E 1 1

�
< = < =
F G F G� � �F G F G
F G F G> ? > ?

� � 	 	

�
�
�

��

                  (16) 

from which 1dw� , 2dw� , and ��  may be obtained (with ��  obtained recursively). 

This solution was obtained by making use of the property

3 3 3( ) ( )d d dskew e w e w skew w e� � � �� � � , and rearranging and rewriting (14). Defining the 

relationship between the angular velocity and the orientation (from Section 2) as  

              1

0
1 ˆ ˆ0

cos( )

s c
c c c s T

c s s s c

O O

� O � O

� � O � O

E E
�

�

� �
� �

� � � �� �
� �
� �

�                               (17) 

it is now possible to rearrange (5) in terms of Ê�  and set ˆ dwE �� � , while 

considering only the virtual control inputs.  Doing this yields 

                    
1 1 1 1

3 2ˆ ˆd M T de ew Q PQ wE E� � � �� � � 	 	�� � � � � � . 
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Taking the derivative of (17), rearranging, and considering only the yaw (first 

element in orientation vector) results in 

                1 1
1 2 3

1ˆ ( )T
d de T TT s w c w

c O O
�

Y E� �� � 	 	�� � � �                               (18) 

     Then, employing both (15) and (18) and rearranging allows 3dw�  to be obtained 

as 

                       

1 1
3 4 3 1 2ˆ( )T

d dd

scw e T TT w
c c

O�

O �

EY � �� � � 	 �� � ��� � �                               (19) 

Now the real inputs are obtained. To do this, first restate a portion of the 

dynamics to obtain dw  from (5) as  

1
3 2ˆ ˆ( )d d M Tw P w Q e Q eE E�� 	 � � 	�� �  with 11 22 33([   ] )TP diag p p p�  a set of 

gains, and then obtain �  by double-integrating from � ���� �
 by using the value that has 

just been obtained for �� . Combining the preceding results allows one to obtain the 

feedforward portion of the control input as 

                              1 2 3[    ]T
d d d du w w w��                                           (20) 

from the values that have just been obtained for � , 1dw , 2dw , and 3dw . Proof that 

the inputs generated by these equations assures convergence is provided in the Appendix. 

3.4.Hamilton-Jacobi-Bellman Equation 

In this section, based on the information provided by the kinematic controller, the 

optimal control input is designed to ensure that the unmanned helicopter system in (1) 

tracks a desired trajectory ( )dX t  in an optimal manner. This work extends that of [12] to 

output feedback control. For optimal tracking, the desired dynamics are defined as  

                                      *( )d d vV f V gu� 	�                                           (21) 
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where 6 1( )df V ��  is the internal dynamics of the helicopter system rewritten in 

terms of the desired state 6 1 dV �� , g  is  bounded satisfying min F maxg g g� � , and 

* 6 1 vu ��  is the desired control input corresponding to the desired states. For reference, g  

is provided here explicitly as
3 3

1 3
3 1

11 22 33

0
0 ([   ])

bE
g M

diag p p p

�
�

�

< =
� F G

> ? .
 

Under these conditions, the optimal control input for the unmanned helicopter 

system given in (21) can be determined [8]. Next, the state tracking error is defined as  

                                                    ˆ
de V V� �                                                       (22) 

Now, taking the derivative of (22), considering the estimated dynamics 

ˆ ˆ( ) vV f V gu� 	� , and including (21), the tracking error dynamics in (22) can be written as  

                                � �ˆ( ) v d e ee f V gu V f e gu� 	 � � 	��                               (23) 

where ˆ( ) ( ) ( )e df e f V f V� �  and *
e v vu u u� � . The dynamics ( )ef e  and g  are 

assumed to be known throughout this paper; however, this assumption may be relaxed if 

the uncertainties are estimated online using NNs. It is important to note that for the 

tracking error dynamics (23) with 0e � , there exists a unique equilibrium point 

(solution) to ( ) 0ef e �  on the compact set � � ���	 with � �0 0ef e � � [12].  In this 

section, based on the information provided by the kinematic controller, the optimal 

control input is designed to ensure that the unmanned helicopter system in (1) tracks a 

desired trajectory ( )dX t  in an optimal manner. This work extends that of [12] to output 

feedback control. For optimal tracking, the desired dynamics are defined  with

� �0 0ef e � � [12].  In other words, when the system dynamics are converted into the 
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tracking error form given by (23), the origin becomes the unique equilibrium point.

( ) 0ef e �  

In order to control (23) in an optimal manner, the control policy  should be sel

( ( )) ( ( ), ( ))T et
W e t r e u dK K K

+
� S eu ected such that it minimizes the cost function given by  

                           ( , ) ( , ) ( )( ( ) )T
T e e Te e eH e u r e u W e f e gu� 	 	                               (24) 

where ( ( ), ( )) ( ) T
e e er e u Q e u BuK K � 	  and  is the penalty on the states, with 

6 6 B ��  a positive semi-definite matrix. After this, the Hamiltonian for the HJB tracking 

problem is defined in terms of the cost function as  

                           ( , ) ( , ) ( )( ( ) )T
T e e Te e eH e u r e u W e f e gu� 	 	                               (25) 

where ( )TeW e  is the gradient of ( )TW e  with respect to . Now, applying 

stationarity condition ( , ) / 0e eH e u u� � � , the optimal control input is found to be  

                                           * 1 *( ) ( ) / 2T
e Teu e B g W e�� �                                           (26) 

with * 4( )eu e � . Substituting the optimal control input from (26) into the 

Hamiltonian (25) generates the HJB equation for the tracking problem as  

                     * * 1 *0 ( ) ( ) ( ) ( ) ( ) / 4T T T
e Te e Te TeQ e W e f e W e gB g W e�� 	 �                         (27) 

with *(0)TW . The control input must be selected such that the cost function in (24) 

is finite, and it is assumed that there is an admissible controller [12]. At this point, 

Lemma 1 is introduced. 

 Lemma 1 (Boundedness of system state errors) [12]. Given the unmanned 

helicopter system with cost function (24) and optimal control input (26), let 1( )J e  be a 

continuously differentiable, radially unbounded Lyapunov candidate function such that 
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*
1 1 1( ) ( ) ( )( ( ) ) 0T T

e e e eJ e J e e J e f e gu� � 	 �� �  with 1 ( )eJ e  the partial derivative of 1( )J e . In 

addition, let 6 6( )  Q e ��  be a positive definite matrix satisfying ( ) 0Q e �  only if 

0e �  and ( )min maxQ Q e Q� �  for min maxe e e� �  for positive constants minQ , maxQ , 

mine , and maxe . Also, let ( )Q e  satisfy lim ( )
e

Q e
3+

� + as well as  

                              
* * * *

1( )   ( , )  ( )T T
e ee e eW Q e J r e u Q e u Bu� � 	                                    (28) 

then the following relation is true 

                                    
*

1 1 1( ( ) ) ( )T T
e e e e eJ f e gu J Q e J	 � �                               (29) 

Proof for Lemma 1 is provided in the Appendix.  

       Next, it is apparent that an expression including the optimally augmented 

control input in (26) can be written as  

                                       
1 * ( ) / 2T

V d Teu u B g W e�� �                                           (30) 

with the desired feedforward control input du  obtained from the virtual controller 

(20) in the previous section. Next, the SOLA is introduced. 

3.5.Single Online Approximator (SOLA)-Based Optimal Control of Helicopter 

Usually, in adaptive-critic based techniques, two OLAs [12] are used for optimal 

control, with one used to approximate the cost function while the other is used to generate 

the control action. In this paper, the adaptive critic for optimal control of a helicopter is 

realized online using a single OLA. For the SOLA to learn the cost function, the cost 

function is rewritten using the OLA representation as  

                                              ( ) ( )TW e e �� \ 5 	                                           (31) 

where  \  is the constant target OLA vector, ( )e5  is a linearly independent basis 

vector that satisfies ( ) 0e5 � , and �  is the OLA reconstruction error. The basis vector 
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used in this case is the same as in the previous section. The target OLA vector and 

reconstruction errors are assumed to be upper bounded according to M\ � \  and 

M� �� , respectively [14]. The gradient of the OLA cost function in (31) is written as  

                                ( ) / ( ) ( )T
e e eW e e W e e �� � � � T 5 \ 	T                             (32) 

Using (32), the optimal control input in (26) and the HJB equation in (27) can be 

written as  

                               

* 1 1

*

( ) / 2 / 2

( , ) ( ) ( ) ( )

( ) ( ) / 4 0

T T T
e e e

T
e e

T T
e e HJB

u B g e B g

H e Q e e f e
e C e

�

�

� �� � T 5 \ � T

\ � 	\ T 5

�\ T 5 T 5 \ 	 �

                              (33) 

where 1 0TC gB g�� �  is bounded such that min maxC C C� �  for known constants 

minC  and maxC  and 

               
*

1 1( ( ) ( ( ) ))  
2 4

1( ( ) )
4

T T T
HJB e e e e e e

T T
e e e e e

f e C e C

f e gu C

� � � � �

� � �

T � T 5 \ 	T 	 T T

� T 	 	 T T

�

 

is the OLA reconstruction error. The OLA estimate of (31) is  

                                               
ˆ ˆ( ) ( )TW e e� \ 5                                           (34) 

with \̂  the OLA estimate of the target vector \ . In the same way, the estimate 

for the optimal control input based on (33) in terms of \̂  can be expressed as  

                                          * 1 ˆˆ ( ) / 2T T
e eu B g e�� � T 5 \                                            (35)      

The overall control input 

                                       *ˆ ˆV d eu u u� 	                                                        (36) 

is therefore now based on the NN estimate. 
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   Lyapunov analysis performed in the appendix shows that the estimated control 

inputs approach the optimal control inputs with a bounded error. Employing (33) and (34)

, the approximate Hamiltonian may now be written as  

   *ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) / 4T T T
e e e eH e Q e e f e e C e\ � 	\ T 5 �\ T 5 T 5 \                           (37) 

Considering the definition of the OLA approximation of the cost function (34) 

and the Hamiltonian function (37), it is clear that both converge to zero when 0e � . 

Consequently, once the system state errors have converged to zero, the cost function 

approximation is no longer updated [14]. Recollecting the HJB equation in (25), the OLA 

estimate \̂  should be tuned to minimize *ˆ ˆ( , )H e \ . However, merely tuning \̂  to 

minimize *ˆ ˆ( , )H e \  does not ensure the stability of the nonlinear helicopter system during 

the OLA learning process. 

   Therefore, the OLA tuning algorithm [12] is designed to minimize (37) while 

considering the system stability and is given below   

               

1 2

*
2 1

ˆ
ˆ ˆ( ( ) ( ) ( )ˆ ˆ( 1)

ˆ ˆ ˆ( ) ( ) / 4) ( , )0.5 ( ) ( )

T
e eT

T T
e e e e e

Q e e f e

e C e e u e CJ e

V!
V V

!

\ � � 	\ T 5
	

�\ T 5 T 5 \ 	- T 5

�
                  (38) 

where 
ˆ ˆ( ) ( ) ( ) ( ) / 2T

e e e ee f e e C eV �T 5 �T 5 T 5 \ , 1 0! �  and 2 0! �  are design 

constants, 1 ( )eJ e  is defined in Lemma 1, and the operator 
*ˆ( , )ee u-  is given by  

                      

1 1
* 1

if   ( ) ( )
0

ˆˆ( , ) ( ( ) ( ) / 2)  0
1 otherwise

T T
e e

T T
e e e

J e e J e
e u f e gB g e�

$ �
&

- � ' � T 5 \ �
&
)

�
                            (39) 

Note that the weight update law is different than that in [12] as it is based on the 

observer’s estimate of the states, rather than on the actual states themselves. The first 
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term in (38) is the portion of the tuning law which minimizes (37) and is derived using a 

normalized gradient descent scheme with the auxiliary HJB error defined as below  

                                         * 2ˆ ˆ( ( , )) / 2HJBE H e� \                                           (40) 

The second term in the OLA tuning law in (38) ensures that the system states 

remain bounded while the SOLA scheme learns the optimal cost function. 

   The dynamics of the OLA parameter estimation error is considered as ˆ\ � \ �\�

. Since this yields         

( ) ( ) ( ) ( ) ( ) / 4T T T
e e e e HJBQ e e f e e C e �� �\ T 5 	\ T 5 T 5 \ �  from (33), the 

approximate HJB equation in (37) can be expressed in terms of \�  as  

                    

1ˆ ˆ( , ) ( ) ( ) ( ) ( )
2

1 ( ) ( )
4

T T T
e e e e

T T
e e HJB

H e e f e e C e

e C e �

\ � �\ T 5 	 \ T 5 T 5 \

� \ T 5 T 5 \�

� �

� �
                     (41) 

Then, since ˆ\ � \���  and *ˆ ( )( / 2) ( ) ( ) / 2T
e e e ee e C e C eV ��T 5 	 T 	T 5 T 5 \�� , where 

( )e ee f e gu� 	� , the error dynamics of (38) are  

            

*1
12

1

*
1

( ) ( )( )
2 2

( ) ( )( )
2 2

T
e e e

e

T T
T e e e

e HJB

C e C ee e

C e C ee e

�!
 

� �

� �T T 5 T 5 \� �\ � T 5 	 	� �� �
� �� �

� �T \ T 5 T 5 \� �\ T 5 	 	 	� �� �
� �� �

��� �

� �� �
 

                           * 12
1ˆ( , ) ( ) ( )

2
T

e e ee u e gB g J e! ��- T 5                                (42) 

where 1
ˆ ˆ( 1)T V V� 	 . Next, it is necessary to examine the stability of the SOLA-

based adaptive scheme for optimal control along with the stability of the helicopter 

system. 
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3.6.Stability Analysis 

The proofs to be introduced shortly are built on the basis of [7] and [12]. It is 

found that the control input consists of a predetermined feedforward term and an optimal 

feedback term that is a function of the gradient of the optimal cost function. In order to 

implement the optimal control in (24), the SOLA-based control law is used to learn the 

optimal feedback tracking control after necessary modifications, such that the OLA 

tuning algorithm is able to minimize the Hamiltonian while maintaining the stability of 

the helicopter system. 

   Lemma 1 has been introduced already and gives the boundedness of 1|| ||eJ  and 

therefore the system state errors,. First, however, a definition is needed. 

   Definition: An equilibrium point ee  is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS � �  such that for every 0   e S  there exists a 

bound D  and time 0( , )T D e  such that ( )   ee t e D� �  for all 0t t T, 	 . 

   This definition will be used for Theorem 2, which will be provided shortly. 

Lemma 2 is now provided because it provides a stability condition needed for the proof 

for Theorem 2. Theorem 2 establishes the feedforward term stability and the stability of 

the entire resulting system. 

   Lemma 2 [12] (Stability condition). Consider the affine system given by (4) and 

(5) under no disturbances and with known system dynamics, and with the smooth cost 

function given[12] in (24). If the applied control input is optimal, then the closed-loop 

system is asymptotically stable. 

   Theorem 2 (Overall system stability). Given the unmanned helicopter system 

with target HJB equation (27), let the tuning law for the SOLA be given by (38), and let 
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the feedforward control input be as in (20). Then there exist constants Jeb  and b\  such 

that the OLA approximation error  \� and 1 ( )eJ e  are UUB for all 0t t T, 	  with 

ultimate bounds given by 1 ( )e JeJ e b�  and b\\ �� . Further, OLA weight estimation 

error satisfy *
1

ˆ
rW W �� �  and corresponding control input is bounded * *

2ˆv rvu u �� �  

for small constants 1r�  and 2r� .  

Note that a logical extension of Theorem 2 is that because * *
2ˆv rvu u �� � , it is 

also the case that 3rd VV �� � , for a positive constant 3r� . This is true because the 

system has known dynamics, with the optimal control input *
vu  generating the desired 

states dV , and the neural-network-based estimate of the optimal control input *ˆvu  

generating the actual states V . Proof is provided in the appendix. 

 

Figure 2. Output feedback control scheme. 



 

 

157

In Figure 2, the entire NN-based output feedback control scheme for optimal 

tracking of the desired trajectory by the helicopter is illustrated. Note that the dynamic 

controller is comprised of the items within the dashed boundary. This output feedback 

control scheme consists of a kinematic controller to generate the desired velocity for the 

dynamic controller, a virtual controller to provide a feedforward term du , an optimal 

controller to generate the NN-based optimal feedback term *ˆeu , and an observer to 

estimate the states. Summing the control terms from the virtual and optimal (SOLA-

based) controllers yields the NN-based control input for the helicopter dynamics ˆvu , 

which is an estimate of the desired control input vu . 

4. SIMULATION RESULTS 

All simulations are performed in Simulink and demonstrate the performance of 

the proposed control scheme when the helicopter is hovering, landing, and tracking 

trajectories. The simulations take into account the aerodynamic features presented as part 

of the helicopter model earlier in this paper.  

The constants used for simulation are 
29.8 /g m s� , 9.6m kg� , 

([1.1 1.1 1.1] )Tp diag� 2([0.4 0.56 0.29] ) ·Tdiag kg m�� , 1 100! � , 2 1! � , 1.2tl m�  (x-axis 

dimension from the helicopter's center of gravity to the tail rotor), 0.27ml m� , 0.002MQ � , 

and 0.0002TQ � . The optimal controller used seven hidden layer neurons for all 

simulations in this section, with gains ([0.10.10.10.001] )TB diag� . The basis function 

is �
��  �� �� ��
� ��

� ���
��� � ���
���� ����
�������
�����
� 

2 3( ) [1 sin( ) sin(2 ) tanh( ) tanh(2 )]i i i i i i ie e e e e e e e5 �  for �  ���. 
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The basis function was augmented with a '1' for 1,1( )e5  �	�	
�� to aid the 

convergence rate. All NN weights are initialized to zero except for the observer’s 

weights, which are randomly initialized. The observer NN uses five hidden layer neurons, 

with gains 1 22oK � , 2 121oK � , and 3 11oK � , 10oF �  and 1 1o[ � , and a basis function as 

previously given.  A disturbance is added between 39 and 40 seconds. The disturbance is 

a fast ramp to simulate a gust of wind, is applied to the position in three dimensions, and 

is expressed mathematically as 1.6( 39)p p t� 	 � . 

 

Figure 3. 3-D perspective of position during a take-off and circular maneuver. 

 

Figure 4. Helicopter position vs. time for the case of hovering. 



 

 

159

Figure 3 demonstrates the helicopter's ability to follow a trajectory in two 

dimensions while hovering. The desired trajectory is defined as ( , , )d d dx y z �

0.01 0.01(5(1 )sin(0.025 ),5(1 )cos(0.025 ),50)t te t e t� �� �  in meters. The figure shows that the 

helicopter can take off and follow the desired circular trajectory after a transient response. 

Figure 4 shows the actual and desired trajectories with respect to time during hovering.  

As expected, they track the target values despite the bounded disturbance. 

 

Figure 5. Observer state estimation errors during take-off and hover operation. 

 

Figure 6. Observer output estimation error during take-off and hover maneuver. 
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Figure 7. Cost function weights with respect to take-off and hover maneuver. 
 

Figures 5 and 6 depict the observer performance for tracking the system states and 

system outputs respectively. These figures show that the observer errors converge near 

zero. Figures 7 and 8 depict the optimal controller weights and the control inputs 

respectively while Figure 9 shows the cumulative cost.  

In other words, Figures 7 through 9 show the boundedness of the cost function 

weights, control input, and the cost function, as claimed in the Theorem. Finally, Figure 

10 illustrates the Hamiltonian computed with respect to (37). The figure shows that the 

cost function is successfully estimated as the Hamiltonian converges to zero. This 

numerically proves that the designed controller has an optimal behavior after 20 seconds 

of starting the maneuver. 
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Figure 8. Control inputs applied to the helicopter with respect to Figure 3. 

 

Figure 9. Cumulative cost to the maneuver of Figure 3. 

 

Figure 10. the Hamiltonian with respect to Figure 3 computed using (37). 
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Figure 11. 3-D perspective of position and orientation during landing. 

                

Figure 12. 3-D perspective of position during landing maneuver. 
 

Figure 11 provides a 3-D view of the helicopter landing, showing both the 

position and the orientation throughout the maneuver. In Figure 12, a 3-D view of this 

landing maneuver is provided where the desired trajectory is plotted versus the helicopter 

position. It is well known that the process of landing has its own difficulties for any 

aircraft. This is why a trajectory is prescribed for landing instead of directly having a set 

point on the origin. This assures that the helicopter will smoothly land without any risk of 

crash. 
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5. CONCLUSIONS 

A NN-based optimal control law has been proposed which uses a single online 

approximator for optimal regulation and tracking control of an unmanned helicopter with 

known dynamics having a dynamic model in strict-feedback form. The SOLA-based 

adaptive approach is designed to learn the infinite horizon continuous-time HJB equation, 

and the corresponding optimal control input that minimizes the HJB equation is 

calculated forward-in-time.  

A feedforward controller has been introduced to compensate for the helicopter's 

weight and requirement for rotor thrust when in hover, and to permit trajectory tracking. 

Furthermore, it has been shown that the estimated control input approaches the target 

optimal control input with a small bounded error. A kinematic control structure has been 

used to obtain the desired velocity such that the desired position is achieved. A NN-based 

observer has been employed for obtaining the states from the outputs. The stability of the 

system has been analyzed, and simulation results confirm that the unmanned helicopter is 

capable of regulation and trajectory tracking. 

APPENDIX 

Proof of Lemma 1: Applying the optimal control input to an affine nonlinear 

system, the cost function becomes  

            
* * * * * *( ) ( ) ( )( ( ) ) ( )T T T

e e e e e e eW e W e e W e f e gu Q e u uB� � 	 � � �� �  

Since 
* * * *

1( ) ( , ) ( )T T
e e e e e e eW Q e J r e u Q e u uB� � 	    

one may obtain  

                      

* * * 1 * * *

* * 1 * *
1 1

( ( ) ) ( ) ( ( ) )

( ) ( ) ( )

T T
e e e e e e e e

T T
e e e e e e e e

f e gu W W W Q e u Bu
W W W W Q e J Q e J

�

�

	 � � 	 �

� � �  

from which one then has  
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*
1 1 1( ( ) ) ( )T T
e e e e e eJ f e gu J Q e J	 � �  

concluding the proof for Lemma 1. �  

Proof for Lemma 2: see reference [12]. 

Proof of Theorem 2: First, begin with the positive definite Lyapunov function 

candidate              

" #

2 1 1 1 2 2 3 3

3 3 4 4 4 4

1

ˆ ˆ ˆ ˆ( ) / 2 2 2
ˆ ˆ2 2 2

0 5

2

2 2

.

T T T T

T T T T T

T
o o o

J J e

X X V V

tr W F W

! 1 1 1 1 1 1

1 1
�

� 	 \

	 	

	

\ 	 	 	

	 	 	 � �

�

� �

� �

�

� � � �

 

The proof may then be divided into steps, with the first part of the Lyapunov 

function candidate considered first. 

Step 1: Consider the optimal control Lyapunov function candidate 

2 1( ) / 2T
HJBJ J e!� 	\ \� � .  Differentiating, one obtains 2 1 ( )T T

HJB eJ J e e!� 	\ \�� � �� . With 1( )J e  

and 1 ( )eJ e  as previously given. If || || 0e � , ( ) / 2T
HJBJ e � \ \� � , ( ) 0HJBJ e �� , and || ||\�  

remains a bounded constant. For online learning, however, it is the case that || || 0e � . For 

convenience, define * *
1 ( )e ee f e gu� 	� . Then, using the affine nonlinear system, the optimal 

control input, and the tuning law's error dynamics along with the derivative of the 

Lyapunov candidate function HJBJ , one arrives at  

                       

� �
� �

1
2 1

2 * 2
1 1 1

2 2
1 1

ˆ( )( ( ) 0.5 ( ) )

( ( )( 0.5 ))

8 ( ( ) ( ) )

T T T
HJB e e e

T
e e

T T
e e

J J e f e gB g e

e e C

e C e

!

!  �

!  

�� � T 5 \

� \ T 5 	 T

� \ T 5 T 5 \

�

� �

� �
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� �
� �

*1
12

1

2 *
1 1 1

2
1 1

1
2 1

3 ( )( ) ( ) ( )
4 2

( )( 0.5 )

2 ( ) ( )

ˆ( , )0.5 ( ) ( )

T T Te
e e e

T
e e HJB

T T
e e HJB

T T T
e e e

Ce e e C e

e e C

e C e

e u e gB g J e

�!
 

!  � �

!  �

! �

T
� \ T 5 	 \ T 5 T 5 \

� \ T 5 	 T

� \ T 5 T 5 \

�- \ T 5

� � ��

� �

� �

�

                       (43) 

For convenience, all terms excluding the first and last in (43) are considered first, 

with this portion of HJBJ  given by 2J : 

                            

� �2 *
2 1 1 1

*
1

( ( )( 0.5 )

0.5 ( ) ( ))( ( )( 0.5 )

0.25 ( ) ( ) )

T
e e

T T
e e e e

T T
HJBe e

J e e C

e C e e e C

e C e

!  �

�

�

� � \ T 5 	 T

	 T 5 T 5 \ T 5 	 T

	 \ T 5 T 5 \	

� � �
� �

� �
                  (44) 

Multiplying through the T\�  term in (44) and expanding yields 

                

� �
� �
� �

� �
� �

2 * 2
2 1 1 1

2 2
1 1

2 *
1 1 1

2 *
1 1 1

2
1 1

( ( )( 0.5 ))

8 ( ( ) ( ) )

3 4 ( ( )( 0.5 ))

( ( ) ( ) )

( ( )( 0.5 ))

2 ( ( ) ( ) )

T
e e

T T
e e

T
e e

T T
e e

T
e e

T T
e

HJB

He JB

J e e C

e C e

e e C

e C e

e e C

e C e

!  

!  

!  

!  

!

�

�

�

 

�

�

� � \ T 5 	 T

� \ T 5 T 5 \

� \ T 5 	 T

\ T 5 T 5 \

� \ T 5 	 T

� \ T 5 T 5 \

� � �

� �

� �
� �

� �

� �

                   (45) 

Completing the squares with respect to *
1( )( 0.5 )T

e ee e C �\ T 5 	 T� �  and 

( ) ( )T T
e ee C e\ T 5 T 5 \� �  allows (45) to be rewritten as 

                        

� �
� � � �
� �

� �
� �
� �

2 * 2
2 1 1 1

2 2 2
1 1 1 1

2 *
1 1 1

2
1 1

2 * 2
1 1 1

2
1

2

2

1

2 ( ( )( 0.5 ))

16 ( ( ) ( ) )

3 4 ( ( )( 0.5 ))

( ( ) ( ) ) 2

2 ( ( )( 0.5 ) )

16 ( ( )

T
e e

T
HJ

T
e e

T
e e

T T
e e

T
e e

T

B

HJB

HJ

e

B

J e e C

e C e

e e C

e C e

e e C

e

�

�

�

!  

!  !  

!  

!  

!  

!  

�

� �

� � \ T 5 	 T

� \ T 5 T 5 \ 	

� \ T 5 	 T

\ T 5 T 5 \ 	

� \ T 5 	 T 	

� \ T 5

� � �

� �

� �

� �

� �

� 2( ) 4 )Je H B
TC e �T 5 \ 	�

                  (46) 
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Now, because the terms � �2 * 2
1 1 12 ( ( )( 0.5 ) )H B

T
e e Je e C � �!  � \ T 5 	 T 	� �  and  

� �2 2
1 116 ( ( ) ( ) 4 )HJ

T T
e e Be C e �!  � \ T 5 T 5 \	� �  are negative definite, they cannot 

cause instability and will therefore be neglected from the remainder of the analysis. 

Rewriting (46) without these two terms and completing the square with respect to 

( ) ( )T T
e ee C e\ T 5 T 5 \� �  results in 

           � � � �2 * 2 2 2
2 1 1 1 1 12 ( ( )( 0.5 )) 32 ( ( ) ( ) )T T T

e e e eJ e e C e C e�!  !  � � \ T 5 	 T � \ T 5 T 5 \� � � ��  

       � �2 * 2
1 1 18 (0.5 ( ) ( ) 6 ( )( 0.5 ))T T T

e e e ee C e e e C!  �� \ T 5 T 5 \ 	 \ T 5 	 T� � � �  

  � � � �2 * 2 2
1 1 1 1 1

29 2 ( ( )( 0.5 )) 3 2T
e e HJBe e C!  � �!  	 \ T 5 	 T 	� �       (47) 

Because the third term in (47) is negative semi-definite, it cannot cause instability 

and will therefore be neglected from the remainder of the analysis. In addition, the first 

and fourth terms in (47) are summed before rewriting (47) as  

                  

� �
� � � �

2 2
2 1 1

2 * 2 2
1 1 1 1

2
1

32 ( ( ) ( ) )

4 ( ( )( 0.5 )) 3 2 HJ

T T
e e

T
e e B

J e C e

e e C

!  

! �!  � 

� � \ T 5 T 5 \

	 \ T 5 	 T 	

� � �

� �
      (48) 

Taking bounds on (48) and completing the square with respect to 
2

( )T
e e\ T 5�  

results in 

                         

� � � �

� �

42 2 2
2 1 1 1 1 min

22
2 2*1 min

12 2
1 min

42 2 *
1 1 min 1

23 2 64 ( )

( ) 16 0.5
8

256 0.5

T
e

T
e

e

HJB

e

J e C

eC e C
C

C e C

!  !  

�
 

 

�

! �

!

� � \ T 5

� �\ T 5� �� � 	 T
� �
� �

	 	 T

� �

�
�

�

           (49) 

Because the third term in (49) is negative semi-definite, it cannot cause instability 

and will therefore be neglected from the remainder of the analysis. Rewriting (49) 
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� � � �
� �

42 2 2
2 1 1 1 1 min

42 2 *
1 1 mi 1

2

n

3 2 64 ( )

256 0.5

B
T

e

H eJJ e C

C e C

!  !

 

�

! �

 � � \ T 5

	 	 T

� �

�
   

         (50) 

Applying the Pythagorean Theorem, noting that '
M�  is an upper bound such that 

, and employing the relationship  with  

and with  a constant  allows (50) to be rewritten as 

 

 

                                                  (51) 

The last term in (51) may be rewritten as a result of the property that 

                                  
 as 

                                             (52) 

Making use of the fact that  and with  an upper bound on 

the OLA reconstruction error, (52) may be written as 

                                        
         (53) 

'
Me� �T � ' '2
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With , , and 

. Now, looking back at (43), it is necessary 

to consider the case  and :  

 

This result may be rewritten taking a bound on  as 

                           

Combining terms results in 

                              

This is negative definite provided that  and  

, or . 

    Next, it is necessary to consider the case  and :  

                         

                  (54) 

The term  is added and subtracted from (54) to 

obtain 

4 2
1 min min 64CV � 5 � �2

2 min2048 3 2CV � 	

� �� �'4 4 2 '4 '4 2
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                  (55) 

Now, using the relationship for  given in (29), taking the bounds on , 

, and  and the norm on  allows (55) to be rewritten as 

           

This last equation  may be rewritten as below 

                            

                                   

 
Lemma 2 yields  

                           

with . This is negative definite provided that 

 and . 

Therefore, , , and  are UUB. In addition, defining the bounds 
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and , with  denoting 

the maximum eigenvalues of . The second part of the Lyapunov candidate function is 

considered next. 

Step 2: Consider the feedforward control Lyapunov function candidate 

  with , , , 

and . It has been shown that this selection of Lyapunov candidate 

will guarantee stability in [7]. Applying elements integral to (20) gives the derivative of 

the Lyapunov function  

                       

so , which is an asymptotically stable result. To quickly review the 

elements in this stability analysis,  is used for the error in the tracking along with , 

 regulates the translational velocity,  and  take roll and pitch angles into 

consideration, and  and  are used for the error in the orientation (yaw) and 

corresponding angular velocity. 

Step 3: Consider the stability of the entire system. Combining 

                  

� �* 1 ' 1 '
max max max 2ˆ 1 2 ( ) ( )e e M M M ru u B g b B g
 
 � �� �

\� � 5 	 � 1
max ( )B
 �

1B�

1 2 3 4feedforwardJ S S S S� 	 	 	 1 1 10.5 TS 1 1� 2 2 2
ˆ ˆ0.5 TS 1 1� 3 3 3 3 3

ˆ ˆ0.5 0.5T TS 1 1� 	 � �

4 4 4 4 4
ˆ ˆ0.5 0.5T TS 1 1� 	 � �

� �

. . . .

1 2 3 4

1 1 2 2 3 3 4 4 3 3 4 4
ˆ ˆ ˆ ˆ ˆ ˆ1

feedforward

T T T T T T

J S S S S

m 1 1 1 1 1 1 1 1

� 	 	 	 �

� � � � � �

�

� � � �

0feedforwardJ ��

11 3�

2̂1 3̂1 4̂1

3� 4�

� �

" #

2 4
2 , 1 1 1

2
1

2 '2 2 2 *2
21 1 2

2 4
1 , 2 ,

1 1 2 2 3 3 4

1

4 3 3 4 4

|| ( ) || || ||
2

( )
(4 ) (

0.5 0.5 0.5

)
ˆ ˆ ˆ ˆ ˆ ˆ1

e min e
HJB feedforward

max M

e min e min

T T T T T T

o

T T T
o o o

Q J e
J J

C K
Q Q

m

J

X X V V tr W F W

! ! V
 

! �!H � ! V
 !  

1 1 1 1 1 1 1 1
�

\
	 � � �

	 	 	

� � � � � �

	

	 	 	

�� � �

� � �� � � � � �

� � � �



 

 

171

Lemma 1 and Lemma 2 will then ensure  given that  

                                
                              (56) 

and  

                         
                  (57) 

if , or  
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and 
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if . In addition, it is also necessary that 
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Then  provided that the conditions in (56) - (63) hold. 

Because the feedforward term is asymptotically stable, This result may be extended with 

the same bounds to the final control input such that  

         

In other words, the overall system is UUB with the bounds from (56) and (57), 

completing the proof.  

At this point, bounds have been provided showing the convergence of the state 

estimate to the true state, and the convergence of the true state to the desired state, which 

collectively result in the convergence of the estimated state to the desired state. 

 The dynamics presented at the beginning of the paper provide 

. However, this is a simplification of the real dynamics, which 

include an additional term such that , with  

.  This coupling term is relatively small, but the robustness against 

neglecting the term has been demonstrated using a nonlinear controller and is available 

for the interested reader in [7] for the case of state feedback. The case for output feedback 

is given below, following the approach given in [7]. Define 

as a vector of errors that have previously been introduced. The error dynamics for the 

complete system model remain as in [7]. The norms of the errors are described as 

. Differentiating the feedforward Lyapunov function, 

, with  a positive gain matrix. A set of variables is defined for 
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convenience and simplified notation, such that 

, , 

, , , 

, and , as well as 

, , , , and 

, , , , , 

, with . 

Bounding the small body forces results in 

               

where  corresponds to the offset between the main rotor shaft and the 

helicopter’s center of gravity. Next, it is necessary to determine the bound resulting in 

tracking with UUB stability. Defining , one may rewrite 

 as . Bounding (19) with 

the orientation constraints from Section 3.1 and the trajectory 

 and employing (16) yields an upper bound such that  
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It is also possible to upper-bound , , the main rotor thrust control input , 

, and the control input torques .  

Setting bounds , , and  such that , , and 

, with , , , and  positive constants and defining two 

bounds for the trajectory,  and  such that   

   

and 
 
with 

and

 
then if , 

the closed-loop system is locally UUB.  

Expressing part of this result mathematically, , , and 

, with . This locally UUB 

result may be obtained by guaranteeing that trajectory bounds  and  are positive, 

control input  is lower bounded, and the angular velocity  is upper bounded, which 

may be demonstrated by following an approach similar to that taken in [7]. The result is 

that these three requirements are satisfied for all time and the closed-loop system is 

locally UUB.                                       
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V. OPTIMAL ADAPTIVE CONTROL OF NONLINEAR CONTINUOUS-

TIME SYSTEMS IN STRICTFEEDBACK FORM WITH UNKNOWN 

INTERNAL DYNAMICS 

 

Abstract— This paper focuses on optimal adaptive control of nonlinear 

continuous-time systems in strict feedback form with uncertain internal dynamics. First, 

it is shown that the optimal tracking problem of strict feedback systems can be reduced to 

an optimal regulation problem by designing both feedforward and optimal adaptive 

feedback controllers which stabilize the tracking error dynamics of the affine nonlinear 

continuous-time system. Then, an optimal adaptive feedback scheme is introduced to 

estimate the infinite horizon cost or value function for affine nonlinear continuous-time 

systems with unknown internal dynamics. The optimal adaptive control input is then 

obtained by using the cost or value function estimation which is shown to minimize the 

Hamilton-Jacobi-Bellman (HJB) estimation error in a forward-in-time manner without 

using any value or policy iterations by assuming states are measurable. Simultaneously 

the unknown internal dynamics are also estimated separately. Finally, the optimal 

adaptive control scheme is revisited by using the output feedback. Simulation examples 

are provided to validate the theoretical results. 

Keywords- Online Nonlinear Optimal Control; Adaptive Control; Strict Feedback 

Systems; Output Feedback Control 

1. INTRODUCTION

Stabilization of nonlinear systems is now an established field [1]-[4].  Many 

control techniques such as feedback linearization [1][5], sliding mode [1], backstepping 

[5], adaptive control [2][5], and online approximators (OLA’s)-based methods [2]-[3] are 

SUMMARY 
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developed for stabilization of both continuous and discrete-time nonlinear systems. 

However, a controller should not only stabilize a nonlinear system but also minimize a 

prescribed performance index [6],[7],[8]. This problem becomes more challenging when 

the nonlinear system dynamics become partially uncertain [9][10]. 

It is well known that the optimal control of linear systems can be obtained by 

solving the Riccati equation [8]. In contrast, the optimal control of nonlinear continuous 

or discrete-time systems is a much more challenging task that usually requires the 

solution of the Hamilton-Jacobi-Bellman (HJB) equation which does not have a closed-

form solution. For the case of infinite horizon optimal control, linear systems require the 

algebraic Reccati (ARE) to be solve for once, whereas the nonlinear systems require the 

solution of the HJB equation in real-time [9]. These offline optimal schemes are usually 

impractical when the system dynamics are uncertain. Thus, online adaptive 

approximation-based optimal controller designs referred to as adaptive critic designs 

(ACD) [10]-[13] are introduced recently in the literature.  

The ACD techniques [11] tend to solve the optimal control forward-in-time by 

finding the solution to the HJB equation in an iterative manner via value or policy 

iterations instead of the offline methodology. Recently, state dependent Riccati equation 

(SDRE) [16] is also proposed to address optimal control in an iterative and numerical 

way by assuming the nonlinear system has a linear state dependent representation. Q-

learning is an alternate way to solve the optimal control [14][18] for discrete-state and 

continuous-time systems by using reinforcement learning without using system 

dynamics. In policy iteration based schemes, an initial admissible controller is normally 

needed. 
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In [6], a single online approximator-based ACD technique is introduced for 

continuous-time nonlinear system in affine form since traditional ACD schemes require 

two approximators such as neural networks (NNs).  Lyapunov stability is included and 

policy and value iterations are not needed while an initial admissible controller is not 

required. Instead, value function and policy are updated at each sampling interval for 

implementation. However, full knowledge of the system dynamics is needed [6].  

Several other online optimal methods are introduced to solve the optimal control 

of continuous and discrete time when the system dynamics are not fully known 

[10][11][14][13]. Although [12] does not require a full knowledge of the system 

dynamics, it is applicable to unknown linear systems. Continuing the work of [14], the 

work in [9] proposed an approach to control partially unknown nonlinear systems using 

iterative solution of HJB equation via policy iteration by requiring an initial admissible 

controller. While the recent iterative methods tend to offer closed loop stability, they 

require significant number of iterations for convergence [13] and consequently they are 

unsuitable for hardware implementation.  Besides, available ACD techniques [6][11] are 

available for nonlinear systems in affine form.  

In the recent literature, the optimal control of nonlinear strict feedback 

continuous-time systems [19] is introduced without using policy iterations when the 

system dynamics are known. Continuing the work of [19], the proposed current work 

tackles the optimal control of nonlinear continuous-time systems with unknown internal 

dynamics. The optimal control law and cost function are approximated by online 

parametric structures in a forward-in-time manner where the internal dynamics are also 
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identified using an adaptive scheme. Moreover, an initial admissible controller is not 

required and policy iterations are not utilized. 

In the nonlinear adaptive control literature, strict feedback nonlinear systems are 

represented in a variety of forms [5],[15]-[22] and their stability is studied using the 

standard backstepping scheme [1][5] without any optimality. In addition, in a few papers 

[4],[15]-[22] the control of such unknown strict feedback systems using neural network 

(NN)-based adaptive schemes is given.  More recently, the inverse optimal control of 

strict feedback systems is introduced in [7] when the dynamics are assumed to be known.  

However, in the inverse optimal control  problem, first the control law is designed, and 

then the associated cost function is identified for that control law in contrast with 

traditional optimal control schemes where a control law is designed based on a given cost 

function. 

In this paper, it is demonstrated that by using a feedforward controller, the 

optimal tracking problem of the partially unknown strict feedback systems is equivalent 

to optimally stabilizing an affine system expressed in the tracking error form. 

Subsequently, the optimal adaptive scheme is developed for affine nonlinear continuous-

time systems without needing the internal dynamics and policy or value iterations. It is 

shown that the proposed approach can estimate the optimal value or cost function which 

in turn becomes the solution to the HJB equation. The internal dynamics is also being 

estimated separately first by using linear in the unknown parameters (LIP) assumption.  

To relax the LIP, NN approximators are utilized subsequently.  Lyapunov theory is 

utilized to demonstrate the convergence of the adaptive optimal control scheme for the 

overall nonlinear system while explicitly considering the approximation errors resulting 
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from the use of the online approximator (OLA) in the backstepping approach. Finally, the 

optimal adaptive control of such systems by using output feedback is also introduced. 

In the proposed method, an initial stabilizing control is not required in contrast to 

[11] and the proposed scheme is developed forward-in-time whereas some original works 

have to have an offline solution to the system dynamics or the HJB equation [9]. In 

addition, this scheme is developed without using value and/or policy iterations which are 

commonly used in the available ACD techniques [12][13]. It is shown that the 

approximated control input approaches the optimal value over time when a linear in the 

unknown parameter adaptive control is utilized.  When a NN is utilized for value function 

estimation, it is shown that the convergence of the closed system will be only a function 

of its reconstruction error which converges to zero when a large number of neurons are 

selected. This is also an advantage over [22] that also uses a NN based adaptive approach 

without policy iteration, where the bounds do not converge to zero even if the 

reconstruction errors becomes zero. 

The paper is organized as follows. Section II demonstrates that the optimal 

control of a class of strict feedback nonlinear continuous-time systems is equivalent to 

optimally controlling error dynamics which is in affine form if a proper feedforward term 

is chosen. Section III introduces an online optimal stabilization scheme for affine 

nonlinear continuous-time systems with uncertain internal dynamics. Next, Section IV 

combines the results of the previous sections to a state feedback based optimal adaptive 

tracking control of strict-feedback systems. Section V presents the optimal adaptive 

tracking control of a class of strict-feedback nonlinear continuous-time systems in the 
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absence of state measurements. Finally, Section VI evaluates the theoretical results by 

some numerical examples. 

2. THE TRACKING PROBLEM FOR STRICT FEEDBACK SYSTEMS 

Consider the multi-input multi-output (MIMO) nonlinear continuous-time system 

in the absence of disturbances described by 

    for      and                      (1) 

   ,                                                                 (2) 

                                                    (3) 

where each denotes a state vector, represents the input vector with 

, and being nonlinear smooth functions. It is 

assumed that systems (1)-(2) is reachable while its internal dynamics, , can be 

represented as LIP as 

                                                                                           (4) 

where  and  with being unknown. Without loss of generality, it 

is assumed that . Under the LIP assumption, the internal dynamics are 

estimated as  where is the estimate of the target parameter vector

, and the estimation error is then given by 

    .               (5) 

The update law for will be designed based on Lyapunov stability analysis. 

Here for(1), the system state  is treated as the virtual control input. Nonetheless, the 
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overall system (1)-(3) is being controlled through the control input . The following 

assumption is needed before we proceed. 

Assumption 1. It is assumed that  ( ) belongs to , 

and it is bounded satisfying  where ||.|| is the Frobenius norm 

and  and  are positive constants.   

Under the Assumption 1, the optimal control input for the nonlinear system (1)-

(2) can be obtained [8] by using a backstepping approach. In other words, the objective of 

our scheme is to design an adaptive controller in order to have the output to track a 

desired trajectory in an optimal manner even when the internal dynamics, (.), are 

unknown. To this end, by applying the backstepping approach [5], the system given by 

(1)-(2) tracks a predesigned trajectory . Now, we follow the steps in the 

standard backstepping scheme to design the optimal adaptive scheme for strict-feedback 

systems.  

To stabilize the tracking error, , the backstepping approach will use N 

steps [1] which are presented next. 

Step.1: It is desired that to follow a smooth desired trajectory .  Therefore, 

define the tracking error . The system dynamics in (1) can be rewritten as 

              ,                   (6) 

With the assumption that is the estimate of , define the estimation 

error as . Then 
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                               ,                               (7) 

where virtual control input is chosen such that with being the 

optimal feedback control input and the feedforward virtual control input. The input

is selected by solving 

                     .                            (8) 

Here,  is denoted as for simplicity. In the right hand side 

(RHS) of (4), the effect of the third and the last terms are cancelled during Lyapunov 

stability proof. This can be accomplished by choosing a proper desired trajectory (and the 

corresponding virtual controller) in the next step. Section III is devoted to present the 

existence of the optimal feedback control input  and its design. Inevitably, cannot 

be zero due to dynamics of the second system of (1) and the desired output  trajectory.  

Since the second to the ( ) steps are quite similar, we skip to the ith step. 

Step. i: In this step, we need an optimal controller for the system (1)-(3) such that 

. To this end, the system in (1) can be rewritten as 

 

,  (9) 

where is chosen such that , with the virtual control input  

satisfying (similar to the step (7)) 
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                               .                                      (10) 

As mentioned in the previous step, there exists an optimal solution for the virtual 

input  which will be designed in the next section. Moreover, the third term of (6) 

inevitably shows up due to the design procedure, while the fourth term is deliberately 

added due to stability considerations. 

Step. N:  In this step, similar to the previous steps, the system input will be 

designed. To this end, the system (2) can be rewritten as 

                       

,            (11) 

where is chosen such that , with the feedforward control input  is 

selected from  

     ,       (12) 

The optimal feedback control input, , exists and will be designed in Section III. 

It is obvious that  is required only in the case that the knowledge of  (.) i.e. 

 is given. Therefore, should be estimated directly or indirectly [2] by using an 

adaptive scheme. Here, we use an indirect approach that estimates the internal dynamics 

by using a state estimator. Now, consider the following state estimator for the strict 

feedback system described by 

                                

                                        for      and                                                   (13) 
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,                 (14) 

where for are chosen as positive definite constant design matrices. Define 

the state estimation error as . Now, by subtracting the dynamics (13)-(14) from 

(1)-(2) yields the state estimation error dynamics as 

                   for      and                     (15) 

   The following lemma is stated in order to convert the strict-feedback system 

into an affine system. 

Lemma 1. Consider the tracking dynamics defined in (4), (6), and (8). Assume 

that the virtual and real control input vector  is designed such that 

where is the feedforward control input designed 

in (5), (7), (9) and represent the feedback control input which 

optimally stabilizes the system 

             

.                     (16)

 

In this case, optimal control of (1) and (2) is equivalent to the optimal controller 

design for (10) with  is being updated using 

                                         ,                                            (17) 

where  is a design parameter. In the other words, by applying  to the 

system (1) and (2), the system dynamics (1) and (2) are transformed into the error system 

given by (10). 
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Proof. By choosing with , 

 and  as the Lyapunov candidate.  Taking the 

derivative and evaluating the system dynamics (4), (6), (8) along the desired trajectory 

we have 

       

        

       

                            

                                                                                        (18) 

From (11) one can easily recognize that if the optimal controller  is stabilizing 

then the first term in the RHS of equation (17) becomes negative and therefore  

becomes negative semidefinite which implies that the closed-loop signals are bounded. 

This in turn guarantees the tracking error and the state estimation error  go to zero as 

time approaches infinity using Barbalat’s Lemma [4]. Moreover, convergence of  

implies that will converge to zero based on (15). Therefore, if the input is 

persistently exciting,  will not be zero while  will converge to zero over time 
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which implies that  will converge to  provided  optimally stabilizes the affine 

system.    � 

Remark 1: In fact, this lemma shows that by properly selecting the feedforward 

term for strict feedback systems, the optimal tracking control problem reduces to 

optimally stabilizing the nonlinear continuous-time systems in affine form described 

by(10).  However, the unknown parameters, , requires a state estimator (4) (or 

observer) though the states are measurable. 

Remark 2: It is possible to choose  instead of (15) to relax the state 

estimator (13)-(14). Then, by choosing , it can be shown that the 

first derivative of the Lyapunov function candidate becomes 

          .                   (19) 

By selecting the feedback control input optimally, the affine system can be 

stabilized and the error E approaches to zero asymptotically with the parameter 

estimation error bounded.  However, it is not possible to show that  will converge to . 

Therefore, direct method of estimating may not be suitable. 

The next step is to design in equation (11) that stabilizes the system(10) in an 

optimal manner. Since (10) is a nonlinear continuous-time system in affine form, the next 

section will focus on designing an optimal adaptive controller that stabilizes a generic 

affine nonlinear continuous-time system. This will provide the necessary optimal 

stabilizing term in (10) and (11) that makes  negative semidefinite. 
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3. OPTIMAL ADAPTIVE CONTROL OF AFFINE SYSTEMS WITH 

UNKNOWN INTERNAL DYNAMICS 

Consider the nonlinear continuous-time system in affine form in the absence of 

disturbances described by 

                                              ,                                                 (20) 

where represent the system states, , are nonlinear smooth 

functions with satisfying , and  is the control input.  

Without loss of generality, assume that the system is controllable,  a unique 

equilibrium point on with .  Under these conditions, the optimal control 

input for the nonlinear system (1) can be calculated [8].  Additionally, the internal 

dynamics is considered unknown whereas expressed as LIP i.e. it can be represented 

as  

                                               ,                                                      (21) 

with being a smooth regression function and as an unknown parameter 

vector. Here the control coefficient matrix, , is a known function throughout the 

development of this paper. 

Remark 3: It is important to mention that (20) is a more generic affine 

representation of (10). As we mentioned in Section II, our aim is design an optimal 

adaptive controller to stabilize (10). Therefore, this section will focus of optimal 

stabilization of affine continuous-time system (20). Next section will use these results to 

the particular case of (10). 

The infinite horizon cost function for (20) is given by 

                                        ,                                         (22) 
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where , is the positive semi-definite penalty on the 

states, and is a positive definite matrix.  Selecting the state penalty to be 

positive definite ensures that variations in any direction of the state affects the cost

 (Lewis and Syrmos, 1995).  Moving on, the control input is required to be 

selected such that the cost function (22) is finite; or must be admissible [11].  

      Next, we define the Hamiltonian for the cost function (22) with an associated 

admissible control input to be 

                            ,                                (23) 

where is the gradient of the with respect to .  It is well known that the 

optimal control input  that minimizes the cost function (22) also minimizes the 

Hamiltonian (23); therefore, the optimal control is found by using the stationary 

condition  and revealed to be  

                                       .                                           (24) 

Substituting the optimal control (24) into the Hamiltonian (23) while observing 

 reveals the HJB equation and the necessary and sufficient condition for 

optimal control to be 

                                  (25) 

with .  It is clear from (19) that the optimal control can be generated by 

solving the cost or value function through the HJB equation (20).  For linear systems, 

equation (25) yields the standard algebraic Riccati equation (ARE) [8]. 
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Lemma 2 [6].  Given the nonlinear system (20) with associated cost function (22) 

and optimal control (24), let be a continuously differentiable, radially unbounded 

Lyapunov candidate such that  where 

 is the partial derivative of the radially unbounded with respect to .   

Moreover, let be a positive definite matrix satisfying only if  

and for  for positive constants , ,  and 

.  In addition, let satisfy as well as 

                             .                               (26) 

Then, the following relation holds 

                                   .                                 (27) 

Proof:  is referred to [6]. 

In [14], the closed loop dynamics  are required to satisfy a Lipschitz 

condition such that  for a constant .   In contrast in this work, the 

optimal closed loop dynamics are assumed to be upper bounded by a function of the 

system states such that 

                                          .                                             (28) 

The generalized bound  in this work is taken as  to satisfy 

general bounds with is a constant. The assumption of a time-varying upper bound in 

(28) is a less stringent assumption than the constant upper bound required in [14].  
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To begin the development, we rewrite the cost function (22) using an 

approximator representation as  

                                          ,                                               (29) 

where is the constant target vector, is a linearly independent basis 

vector which satisfies , and is the reconstruction error. The target vector and 

reconstruction errors are assumed to be upper bounded according to  and 

, respectively [3].  In addition, it will be assumed that the gradient of the 

reconstruction error with respect to is upper bounded according to 

 [22]. The gradient of the cost function (29) is written as 

                                .                             (30) 

Similar to standard adaptive control literature [2], it will be assumed that the 

reconstruction error  is negligible, although Corollary 1 will show that with a 

bounded  the closed loop system will still stay stable but bounded. Now, using (30), 

the optimal control (24) and HJB function (25) are rewritten as 

                                                                              (31) 

and 

                            (32) 

where  is bounded such that for known 

constants  and . Moving on, the estimate of (18) is now written as 

                                                                                                     (33) 
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where is the OLA estimate of the target parameter vector .  Similarly, the 

estimate of the optimal control (20) is written in terms of as 

                                    .                                           (34) 

In the development of this work, it will be shown that an initial stabilizing control 

is not required to implement the proposed optimal adaptive scheme in contrast to [11][14] 

which require initial control policies to be stabilizing.  Moreover, Lyapunov theory will 

show that the estimated optimal control input (34) approaches the real optimal control 

input (24) with the evolution of time.  The proposed optimal adaptive parameter tuning 

law described next ensures that the system states remain bounded and that (34) will 

become admissible. 

Now, using (33) and (34), the approximate Hamiltonian can be written as 

                                   (35) 

Remark 3: Observing the definition of the approximation of the cost function (33) 

and the estimation of Hamiltonian function (35), it is evident that both become zero when

.  Thus, once the system states have converged to zero, the cost function 

approximation can no longer be updated.  This can be viewed as a persistency of 

excitation (PE) requirement for the inputs to the cost function OLA.  That is, the system 

states must be persistently exiting long enough for the OLA to learn the optimal cost 

function. 

Recalling the HJB equation shown in (25), the estimate  should be tuned to 

minimize .  However, tuning to minimize alone does not ensure the 

stability of the nonlinear system (20) during adaptation.  Therefore, the proposed tuning 
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algorithm is designed to minimize (35) while considering the stability of (20) and written 

as 

       

                                                       
(36) 

where is the estimate of the internal dynamics with  being the 

estimate of . Moreover, , and are 

design constants. The indicator function used to determine the stability condition 

of the closed system and it is defined as follows 

       

.                (37)  

Here, is a positive definite radially unbounded function of . The first term 

in (36) is the portion of the tuning law which seeks to minimize (35) and was derived 

using a normalized gradient descent scheme with the auxiliary HJB error defined as 

                                                                                                 (38) 

  Meanwhile, the second term in the tuning law (36) is included as it is required 

for the process of stability proof. The first portion of the tuning law in (36) utilizes 

 instead of the traditional used for normalization.  This 

modification was also utilized in [6][14] for the critic update.  However, the update is 

different from the critic update proposed in [14] since online approximators are utilized 

in [14] whereas only a single network is used in this work to generate the optimal 
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controller. Moreover, the work in [6] uses a single NN for estimating the optimal input 

whereas the update law is in switching form and internal dynamics  is assumed to be 

known. 

Moving on, the dynamics of the parameter estimation error is given by  . 

From (32), it can be observed that 

                                                (39) 

The approximate HJB equation (35) can be rewritten in terms of  as 

.        (40) 

Observing  and  where

 the error dynamics of (36) can be written as: 

                         

             

                             ,                                (41) 

where  and  and  (39) is used to substitute the value of 

. The update law for estimation of the internal dynamics is chosen as

                                                                                                         (42)

which appears to be similar to the update law (17) with a state estimator given by 

                                                                   (43) 
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where the state estimation error is defined as  and  as a positive 

definite matrix. Moreover,  and  will be denoted as the maximum and the 

minimum singular values of  respectively. And therefore, the state estimation error 

dynamics are given by 

                                     .                                         (44) 

Next, the stability of the optimal adaptive scheme is examined along with the 

stability of the nonlinear system (20).  

      Theorem 1: (Overall Stability Proof of the Optimal Adaptive Scheme).  

Consider the nonlinear system (20) with the cost function and internal dynamics are 

provided by a LIP adaptive system.  Let the cost function parameter estimation update 

law be given by (36) and the adaptation gains/parameters are chosen such that 

                                                    

                                

                                                                                       (45) 

hold. Then, the state vector  and the state estimation error uniformly converge 

to zero in the large while the cost function and state estimation parameters are bounded.  

Moreover, the cost function parameter errors  and the internal dynamics parameter 

errors  converge to zero provided the input is persistently exciting which also means 

that  and . 

Proof:  See the appendix. 
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Next when a NN is utilized to estimate the cost function instead of a standard LIP 

adaptive system, the cost function reconstruction error is not equal to zero. The 

following corollary provides the convergence bounds of the closed-loop system. 

Definition 2 (Lewis et al., 1999):  An equilibrium point is said to be uniformly 

ultimately bounded (UUB) if there exists a compact set so that for all there 

exists a bound and a time in terval  such that for all .  

Corollary 1: (Overall Stability Proof of NN-based Optimal Adaptive Scheme).  

Given the nonlinear system (20) with the target HJB equation (25), let the cost function 

parameter estimation update law be given by (36) and the update law parameters are 

chosen such that for any , , and  (45) holds. Then, there exists positive 

constants,  ,  , and such that the cost function parameter error , the state , and 

the internal dynamics parameter error are UUB for all with ultimate bounds 

given  ,and . Further, as gets smaller ( ) by choosing more 

appropriate NN basis function and making the number of neurons larger, the convergence 

bounds gets smaller i.e.  and  consequently. 

    Proof:  See appendix. 

       It is worth mentioning that compared with [22], Theorem 1 and Corollary 1 

represent a more powerful result since the convergence bounds approach to zero with 

while they do not in [22].  In the following section, we extend the above design 

scheme to optimal adaptive control of strict feedback systems with unknown internal 

dynamics. 

( )� D

eD

nS 6� 0 SD 

B ( , )oT B D ( ) et BD D� � Ttt 	, 0

2 0! � 0p � 0q �

xb b� fb �� D


� Ttt 	, 0

bDD � b�� ��
HJB� 0HJB� 3

ˆV VU 3 Ĵ JU3
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4. OPTIMAL TRAJECTORY AND CONTROL INPUT DESIGN 

Due to Lemma 1, the objective of this section is to optimally make the tracking 

error in (10) to converge to zero. It is desired to design the optimal control vector 

defined by  such that the tracking error is stable while 

minimizing the cost function 

                                    ,                                               (46) 

where , , and . In (12), 

, is the positive semi-definite penalty on the states, and 

is a positive definite matrix with .since the size of is times 

that of .

Next, consider the optimal stabilization problem from for an affine system (17) in 

the error domain 

                                          ,                                                (47) 

where and  

.  It is desired that  converges to zero while the cost 

function (12) is minimized.  

Moving on, the control input needs to be designed such that the cost function 

(12) will be finite. We define the Hamiltonian for the cost function (11) with an 

associated admissible control input to be [8] 

                      ,                             (48) 
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where is the gradient of the with respect to . In the sequel, we will 

use the same terminology for denoting gradient of functions i.e. for any function , 

means gradient of with respect to . It is well-known that the optimal 

trajectory that minimizes the cost function (12) also minimizes the Hamiltonian (14); 

therefore, the optimal control is found by using the stationarity condition 

 and revealed to be [8] 

                                 .                                          (49) 

By substituting the optimal control (15) into the Hamiltonian (14) while observing 

 reveals the HJB equation and the necessary and sufficient condition for 

optimal control to be [8] 

           
   ,              (50)

 

with .  For linear systems, equation (16) yields the standard algebraic Riccati 

equation (ARE) [8]. Before proceeding, the following technical lemma is required. 

Lemma 2 [6].  Given the nonlinear system (13) with associated cost function (12) 

and optimal control (15), let be a continuously differentiable, radially unbounded 

Lyapunov candidate such that  where 

 is the radially unbounded partial derivative of .   Moreover, let be a 

positive definite matrix satisfying only if  and 

for  for positive constants , ,  and .  In addition, let 

satisfy as well as 
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                          .                                (51) 

Then, the following relation holds 

                                .                                   (52) 

Proof:  When the optimal control (15) is applied to the nonlinear system(13), the 

cost function (12) becomes a Lyapunov function rendering 

                    (53) 

From (15), after manipulation and substitution of (17), equation (19) is rewritten 

as 

                

                   
                                (54)

 

Now, multiply both sides of (20) by yields the desired relationship in (18).             � 

The generalized bound is taken as in this work where

can be selected to satisfy general bounds and is a constant.   For example, if 

 for a constant , then it can be shown that selecting  

with satisfies the bound.  The assumption of a time-varying upper 

bound in (13) is a less stringent assumption than the constant upper bound required in 

[13]. The next section develops an approach for optimally stabilize the affine system 

which is required for optimal tracking of original strict feedback systems. 

Moving on, we rewrite the cost function (11) using an OLA representation as  
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where is the constant target OLA vector, is a linearly 

independent basis vector which satisfies . It has been shown [13] that by 

increasing the dimension of the regression vector , the OLA reconstruction error 

decreases . It is assumed that the cost function can be represented by (22) with

 i.e. it is LIP in . The target OLA vector is assumed to be bounded above 

according to  [3].  The gradient of the OLA cost function (22) is written as 

                                .                                       (56) 

Now, using (23), the optimal control (14) and HJB equation (16) are rewritten as 

                                                                        (57) 

and 

          ,    (58) 

where  is bounded such that for known constants 

and . Moving on, the estimate of (11) is now written as 

                                                   ,                                              (59) 

where is the estimate of the target parameter vector .  Similarly, the estimate of the 

optimal control (14) is written in terms of as 

                                  .                                          (60) 
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proposed scheme in contrast to [11] and [13], which require initial control policies to be 
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stabilizing. In fact, the proposed OLA parameter tuning law described next ensures that 

the system states remain bounded and that (28) will become admissible. 

Now, using (22), the approximate Hamiltonian can be written as 

            .            (61) 

Observing the definition of cost function estimation (27) and the Hamiltonian 

function (29), it is evident that both become zero when .  Thus, once the system 

states have converged to zero, the cost function estimation can no longer be updated.  

This can be viewed as a persistency of excitation (PE) requirement for the inputs to the 

cost function estimator [11], [13].  That is, the system states must be exiting long enough 

for the OLA to learn the optimal cost function. 

Recalling the HJB equation in (16), the OLA estimate  should be tuned to 

minimize .  However, tuning to minimize alone does not ensure the 

stability of the nonlinear system (13) during the adaptation process.  Therefore, the 

proposed tuning algorithm is designed to minimize (29) while considering the stability of 

(13) and written as 

 

                                                                   (62) 

where , and are design 

constants, is a Lyapunov function described in Lemma 2. Th term used to 

determine the stability condition of the closed system and it is defined as 

1ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )
4

T T T
E E EH E Q E E F E E D EB B B� � 	� T � � T T �

0E �

�̂

ˆ ˆ( , )H E � ˆ ˆ( , )H E �

1 2

ˆ 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ˆ( 1) 4

T T T
E E ET Q E E F E E D E4V B B B

4 4
� �� � � 	� T � � T T �� �	 � �

�

2
1

ˆ( , ) ( ) ( ) ( )
2

T
E E EE U E D E J EV B B	 - T T

ˆˆ ( ) ( ) ( ) / 2T
E E EF E E D E4 B B B� T �T T � 1 0V � 2 0V �

1( )J E ˆ( , )E U-



 

 

203

       

.            (63)  

where is a Lyapunov function whose derivative with respect to is denoted 

by . The first term in (30) is the portion of the tuning law which seeks to minimize 

(29) and was derived using a normalized gradient descent scheme with the auxiliary HJB 

error defined as 

                                             .                                              (64) 

Meanwhile, the second term in the parameter tuning law (30) is included as it is 

required in the process of Lyapunov-based stability proof of the overall closed loop 

system. Moving on, we now form the dynamics of the cost function parameter estimation 

error .  Observing from 

(24), the approximate HJB equation (29) can be rewritten in terms of  as 
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Next, observing  and where

, the error dynamics of (20) are written as 
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where .  Next, the stability of the optimal adaptive control scheme is 

examined along with the stability of the nonlinear system (13). As the next step an 

identifier is also required and represented in section II equations (13)-(14).  

Theorem 2: (Stability of Optimal Adaptive Control Scheme with Partially 

Unknown Dynamics).  Given the nonlinear system (4), (6), and (8) with the target HJB 

equation (16), and let the tuning law for the internal dynamics and the cost function 

estimation be given by (17) and (30) respectively.  Then, when the design parameter is 

selected as 

                                          

                                

                                        ,                                             (67) 

Then the closed loop system is globally uniformly stable such that the tracking 

error , the internal dynamics parameter error , and cost function parameter error

converge to zero which also implies that and . 

Proof. See the appendix.       � 

The block diagram of the proposed state feedback-based optimal adaptive control 

scheme is shown in Figure 1 where value or policy iterations are not utilized. Only the 

value function and control inputs are updated once per sampling interval. 
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Figure 1. The block diagram of the proposed optimal adaptive with a state feedback 
approach. 

 

5. OBSERVER BASED OUTPUT FEEDBACK CONTROL 

Practically, the states are not measurable in a vast class of nonlinear systems. In 

this section, we consider the control problem of strict feedback control of the system (2)-

(3) where (.) is unknown in parameters and (.) is known, whereas the state vector is 

not measured and only the output is given. The multi-input multi-output 

(MIMO) feedback control of strict feedback systems will have to mitigate several 

challenges and will be relegated for a future publication. For example, selecting different 
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outputs can change the relative degree of the system which in turn can complicate the 

process of the controller design. Therefore, we consider the system (1)-(3) to a single-

input and single-output (SISO) case. This problem is still difficult as no known output 

feedback-based optimal control scheme is available in the forward-in-time manner for 

nonlinear systems, although recently for linear systems some results are achieved [17]. 

Now, assume that (1)-(3) is represented in a SISO representation i.e. and . It 

is shown in [5] that, in this case, there exists a mapping  that 

transforms the system (1)-(3) into a new state space representation as  

                                                                                                                 

                                                

                                                

                                               

                                               

                                                                                                       (68) 

where  are unknown nonlinear functions of the output that can be 

represented as LIP functions in the following form 

                                              .                                                    (69) 

with  is a given regression vector and  being the unknown parameters 

with respect to . The transformation exists only when the relative degree of (1)-

(3) is equal to (in SISO case).  Assume that  is an estimation to , 

ix 6 u6

1 1( ,..., ) ( ,..., )N Nx x� � �� �W

� �1 2 1 y� � E� 	�

� �2 3 2 y� � E� 	�

�

� �1 1N N N y� � E� �� 	�

� � ( )N N y b y u� E V� 	�

1 ( )y h x�� �

( )i yE 6

( ) ( )i iy yE � � ;

( )y� i;

( )i yE W

N ˆ
i; i;



 

 

207

, and with  to be the estimation of 

.  To overcome the need for state availability, define the observer dynamics as  

                                          

                                                                               (70)
 

where 

                  , 

with being Hurwitz,  as a scalar constant ,  is the estimated 

tracking error. By defining , the observer error dynamics takes the following 

form  

                                        ,                                            (71) 

with  being the solution of the Lyapunov function where 

. Now, the same backstepping approach of Section II can be applied with the assumption 
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with that implies since . With the 

assumption that  is an estimation to , we have  and 

. The desired trajectory for the feedforward controller is 

designed as  

                      

 

                      .                                    (73) 

Equation (39) is identical to the equations derived for the Steps 1 to N in Section 

II by using the system output  and the estimated states (by the observer) instead of 

the real value of . As a consequence, an estimation error term  appears in error 

dynamics (38). Additionally, in (38) . Moreover, the update 

law for unknown internal function parameters  is given as 
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with , 
 

as the cost function, 

with since , and  is a positive semi-definite function of . 

Therefore, the optimal controller for this case can be represented as  

                                  .                                         (76) 

Now, consider an adaptive representation as 

                                            ,                                                   (77) 

and update law as 
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The indicator function is defined as follows 
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Lemma 2. Consider the tracking dynamics defined in (4), (6), and (8). Assume 

that the virtual and real control input vector  is designed such 

that where 
 
being the feedforward control input 

is designed in (39) and  represents the optimal feedback 

control input which stabilizes the following system 

                         .                                (81)

 

In this case, optimal control of (35) is equivalent to the optimal controller design 

(81) under the condition that  is being updated using the update (74). In the other 

words, by applying to the system (35), the system dynamics (35) is 

transformed into the error dynamic system given by (81).  
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with as the Lyapunov 

candidate, taking derivative and evaluating the system dynamics (37),(38), and (74), we 
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One may easily recognize that from (82), the existence of an optimal controller to 

make the first term of the RHS of the equation is sufficient to stabilize (81) and send  

to zero. This implies that by optimally stabilizing (81), the first term of the RHS of (82) 

gets negative and also converge to zero, therefore the stability of (35) is equivalent that 

of (81) and convergence of .                          � 

We can now introduce Theorem 2 under the case where the states are not 

measured while the output is only available. 

Theorem 3: (Output Feedback Optimal Adaptive Control Scheme).  Assume that 

the states of the nonlinear system (1) through (3) are not measurable while the output is 

only available with . Assume also that  are transformed using  to  

which converts the system dynamics into (35). Consider the nonlinear system (35), the 

observer (36), the target HJB equation (40), the unknown parameter update law (74), and 

the tuning law for cost function estimation (43) with 

                                      

                                     

                                    .                                                                    (83)                         

The closed system tracking error and the observer error  are asymptotically 

stable and the cost function parameter estimation error converges to zero (

and ) if the input is persistently exciting. 
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The block diagram of the proposed output feedback-based optimal control scheme 

is shown in Figure 2 where value and policy iterations are not utilized. Only the value 

function and control input are updated at the sampling interval. The interesting point of 

this approach is now revealed in this figure where the observer is providing the 

parameters when it is applied to the real system. This means that by guaranteeing the 

existence of , the user does not need the system representation (35). 

               

Figure 2. The block diagram of the proposed optimal adaptive with an output feedback 
approach. 
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6. NUMERICAL RESULTS 

In this section, first a MIMO system is considered and a state feedback optimal 

approach is designed and verified in simulation. Subsequently, the output feedback-based 

optimal scheme is evaluated in another example. 

6.1. Optimal Adaptive Control of a MIMO Affine System with Unknown Internal 

Dynamics 

Consider an affine system represented as follows 

                           with 

         and  

                                                                                            (84) 

where are the states of the system, is assumed to be an unknown 

function, and is given to the control scheme. The basis function for the estimation of 

is chosen as and therefore . The cost 

function estimation basis function is chosen as 

and therefore, . It is assumed 

that the system is initiated on and it is going to be optimally stabilized 

to the zero while the internal dynamics is unknown. Moreover, it is obvious that finding 
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The control scheme of section III is applied to the system (84) using MATLAB. It 

is obvious that the plant (84) is unstable and therefore, not only the controller should 

optimally stabilize the system, it should also be able to learn the unknown internal 

dynamics . Figure 3 shows the convergence of the states of the system and Figure 4 

illustrates the applied control inputs with respect to the state trajectory of the Figure 1. 

Figures 5 and 6 illustrate the convergence of the weights of the cost function and the 

internal dynamics . Finally, Figure 7 show that the Hamiltonian converges in 

a short time and therefore, after about 0.5 seconds, the applied control signal is optimal. 

 

Figure 3. Convergence of the states with the optimal adaptive scheme. 

 

Figure 4. The applied control input. 
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Figure 5. Convergence of the cost function weights ( )t� . 

 

Figure 6. Convergence of the internal dynamics estimation weights . 

 

Figure 7. Hamiltonian convergence. 
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  with   

                                           and                                                       (85) 

with  and 

                                                                     (86) 

Using the cost function (12) with and , the basis vector for the 

SOLA-based scheme implementation is selected as 

 

where, , , 

, and . Moreover, it is obvious that finding is difficult, 

therefore, in order to make (67) hold, we choose , , . In this case 

, , and work properly.  The initial conditions of the system 

states were taken as while all NN weights were 

initialized to zero. That is, no initial stabilizing control was utilized for implementation of 

this online design for the nonlinear system. Furthermore, it is desired that the output track 

as the desired trajectory. 

Figures 8 and 9 illustrate the closed loop behavior while tracking the desired 
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seconds to make the tracking error asymptotically zero. Reminding that the system (85) is 

unstable and the system tends to diverge if enough energy is not applied, having a longer 

period of time to make tracking error go to zero becomes inevitable where the optimal 

controller tries to spend less energy. In Figure 10, the desired trajectory is designed as a 

virtual controller to make the output track the desired output. Convergence of the 

unknown weights of the cost function  is illustrated in the Figure 11. Figures 12 and 13 

represent the convergence of the unknown parameters of estimated functions and 

 respectively. Observing the Figure 14, one can realize that the Hamiltonian in 

(14) converges to zero after 50 seconds that implies that the cost function is well 

estimated and the applied control input is optimal. Finally, Figure 15 shows the control 

input applied to the system that can be represented as .  

 

Figure 8. Performance of the output feedback optimal adaptive controller with a desired 
trajectory . 

�̂

1̂ ( )f x

2̂ ( , )f x z

*ˆ ˆ aU U	

0 100 200 300 400 500
-2

-1

0

1

2

time (s)

x1d

x2d
x1(t)

x2(t)

[sin( / 50),sin( / 40)]T
dX t t�



 

 

218

 

Figure 9. Tracking performance of the virtual controller . 

 

Figure 10. Tracking error. 

 

Figure 11. The cost function parameter convergence. 
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Figure 12. Parameter convergence  

 

Figure 13. Parameter convergence  

 

Figure 14. Hamiltonian Convergence . 
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Figure 15. The control input with *ˆ ˆ aU U	 . 
6.3.Observer Based Online Optimal Control Output Feedback Control 

Consider the following nonlinear system in the form of (1)-(3) respectively as 

                                                         (87) 
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were selected as and . Moreover, , , and 
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Figures 16 and 17 illustrate the state convergence trajectory comparing with their 

desired and observed values. The results show that the tracking errors converge to zero 

after a transient behavior. Figure 16 illustrates the convergence of the cost function 

estimation parameters . The internal dynamics estimated parameters  and  are 

shown in Figure 19 both together. The Hamiltonian estimation error in (40) is depicted in 

Figure 20 that shows the optimal scheme is able to optimally navigate the tracking system 

after 20 seconds of convergence. Finally the applied control input is given in the Figure 

21. 

 

Figure 16. Trajectory along with its desired and observed values. 

 

Figure 17. Trajectory along with its desired and observed values. 
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Figure 18. The cost function parameter estimation . 

 

Figure 19. The internal dynamics parameter estimation . 

 

Figure 20. The Hamiltonian estimation error convergence. 
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Figure 21. The applied control input . 
 

7. CONCLUSIONS 

This work proposes an adaptive optimal scheme for stabilizing nonlinear MIMO 

systems for affine and strict feedback nonlinear continuous-time systems with unknown 

internal dynamics. An adaptive approximator is proposed to solve the Hamilton Jacobi-

Bellman equation forward-in-time while the other unknown dynamics/states of the 

system are estimated by state estimator with adaptive elements. Using Lyapunov 

theorem, this work shows that the problem of online optimal tracking of affine/strict 

feedback systems can be divided to two steps: a) finding a feedforward tracking 

controller that is required for all of the tracking problems; and b) designing an optimal 

controller that optimally stabilizes the tracking error dynamics. Furthermore, it is shown 

that the problem is solvable while internal dynamics and the states of system are 

unknown. Numerical results demonstrate  the approach to unstable plants whose optimal 

stabilization/tracking is more challenging. 

APPENDIX 

Proof of Theorem 1. The Lyapunov function chosen for the stability proof is given as 
the following: 
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                          (A.1) 

By taking the derivative we have: 

                                      .                            (A.2) 
Now, by applying the system and error dynamics of (20), (41), and (42) we have: 
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           (A.3) 

Due to the linear system given by equation (44), one can easily conclude 

that . Moreover we know that , where and 

are the minimum and maximum singular value of the matrix . Thus, 

                                                               (A.4) 

Therefore, by also applying the Cauchy Schwarz inequality yields  
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.                           (A.5) 

Now, again applying the Cauchy Schwarz inequality to obtain 

                

 

                                 
                              (A.6) 

Now, by applying Cauchy Schwartz again 
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                             (A.7) 

Now we can write: 
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Now, we consider the two cases where and . For the case 
 we have: 

                 
 

       
(A.9) 

That implies under the conditions 
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For the case that we have: 

                                     
 

     
(A.11) 

Therefore we have [6] 
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                                 .                           
(A.13) 

The results for the case  imply that the closed loop system converges 

to a compact set given by the bounds in (A.13). Moreover, these bounds can be arbitrary 

made small by choosing proper design parameters , , , and . Therefore if 

occurs, the closed loop system converges to an arbitrary small bound where 

 holds and therefore  and  will converge to zero by under the case PE 

condition. When that occurs, the state optimally converges to zero.        � 

 
Proof of Corollary 1. The proof is similar to the proof of theorem 1 except it is 

assumed that . It can be easily show that by the same Lyapunov function chosen 

as (A.1) we have:  
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[6]. The inequality (A.14) implies that under the conditions of (A.10), and the case 
the closed loop system converges to the following bounds 
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For the case of , we have 
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That implies the closed loop will converge to the following bounds 
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    (A.21) 

Therefore, The overall bounds for the cases and are then 

given by , , and . As it is 

mentioned in the hypothesis, by  becoming small, the convergence bounds become 

smaller for the case of , although for the case of , the controller 

makes the system to converge in the bound where and therefore by  

the cost function estimation and the estimated optimal controller will converge to their 

ideal values.              � 

Proof of Theorem 2. The Lyapunov function chosen for the stability proof is 

chosen as the following: 

                                  
                         (A.22) 

where, same as Lemma 2,  is chosen to be for the sake of simplicity.  

First taking the derivative with respect to time to get 
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One can easily find out that equation (A.2), along the system trajectories (4), (6), 

and (8) is equal to  along the system (13) and (34). Therefore, the optimal tracking 

problem of (4), (6), (8) is reduced to optimal stabilization of the system (13). 
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To begin the proof of the overall stability, observe that if , then 

 with , and the parameter estimation error  remains constant 

and bounded [3].  On the other hand, to successfully accomplish the online learned 

objective, the states are required to satisfy . Therefore, the remainder of this proof 

considers the case of  (i.e. online learning is being performed).  Then, substituting 

the nonlinear dynamics (13) with control input (28) applied along with the weight 

estimation error dynamics (34) into (31) reveals (by following the similar steps of the 

theorem 1 proof): 
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That implies under the conditions 
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For the case that we have: 
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That implies converges in a bound such that 
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.  
(A.29) 

The results for the case  imply that the closed loop system converges a 

compact set bounded by the bounds given in (A.29). Moreover, these bounds can be 

arbitrary made small by choosing proper design parameters , , , and . Therefore 

if occurs, the closed loop system converges to an arbitrary small bound where 

 holds and therefore  and  will converge to zero provided the input 

satisfied the PE condition. When that occurs, the state optimally converges to zero.     � 

Proof of Theorem 3. Consider the following positive definite Lyapunov candidate 

                                                   
(A.30) 

where  similar to Theorem 1. Using the result of Lemma 2 and Theorem 1 
(A.3) we have: 
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By following the similar steps of the Theorem 1 proof, for the case  we have 

                         
 

         
(A.32) 

That implies under the conditions 
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For the case that we have: 

                             
 

      
(A.34) 

Therefore we have [6]: 
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That implies converges in a bound such that 
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(A.36)

 

The results for the case  imply that the closed loop system converges 

a compact set bounded by the bounds given in (A.36). Moreover, these bounds can be 

arbitrary made small by choosing proper design parameters , , , and . Therefore 

if occurs, the closed loop system converges to an arbitrary small bound 

where  holds and therefore  and  will converge provided the input 

satisfies the PE condition holds. When that occurs, the state optimally converges to 

zero. Since the estimation parameter error  also converges to zero, the tracking error 

 will converge to zero.  � 
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SECTION
2. CONCLUSIONS AND FUTURE WORK 

In this dissertation, the adaptive dynamics programming (ADP) based suite of 

optimal adaptive control schemes are developed for a class of nonlinear discrete and 

continuous time systems when the plant dynamics are partially or completely unknown. 

Moreover, in the case of discrete-time nonlinear systems, an extremum seeking method is 

developed to drive a closed loop system toward a setpoint that provides the best 

performance. This dissertation establishes the fact that it is possible to simultaneously 

stabilize an unknown nonlinear system while the control law is adaptively tuned to satisfy 

the Hamilton Jacobi Bellman (HJB) equation. The main advantage of the proposed work 

is that it is iteration free since proposed adaptive update laws are only updated once a 

sampling interval without needing a faster inner loop. The second advantage being that 

the system dynamics are not needed while in some cases an initial stabilizing controller is 

not needed. 

2.1.  COCLUSIONS

For the case of unknown nonlinear discrete systems, Paper 1 provides a NN-based 

optimal adaptive control scheme for a nonaffine nonlinear discrete-time system in input-

output while the system dynamics are fully unknown. The control law relaxed the policy 

or value iteration. The nonaffine representation in the input-output form allows the new 

identifier to identify the system dynamics by using a single NN while separating the 

internal dynamics, the input gain matrix, and the higher order residual terms. The NN 

optimal controller is able to stabilize the affine part of the identified system when the 

higher order terms are bounded. The auxiliary control law derived using singular 

CONCLUSIONS
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perturbation theory indeed helps in the stability of the overall closed-loop system by 

mitigating the higher order terms. The closed loop Lyapunov based stability proof 

guarantees that the overall system is uniformly ultimately bounded (UUB) and therefore 

the proposed controller is optimal with a bounded error. Finally, the scheme is 

successfully validated on a HCCI engine model which is a realistic physical example of 

unknown nonlinear nonaffine systems. 

The second paper develops a new extremum seeking method for nonlinear 

discrete-time systems with unknown performance output function. The proposed 

extremum seeking scheme plays the role of an outer loop that seeks for unique extremum 

(optimum) operating set point. The stability analysis is presented in two steps: first via 

averaging analysis and then singularly perturbed systems analysis, showing UUB 

stability with an arbitrarily small bound provided the plant is stabilized in an UUB 

manner. The proposed method is applied to the HCCI engine model that is stabilized 

using the controller proposed in paper 1. The simulation results show that the proposed 

method not only maximizes the performance but also is able to satisfy a constraint such 

as peak pressure rise rate for HCCI engines. 

The third paper is based on optimal tracking online control of MIMO continuous 

time strict feedback systems in the form of state and output feedback control. The novel 

proposed feedforward control scheme reduces the problem to optimally controlling the 

closed loop tracking error dynamics in affine form. In fact it is shown that a suitable 

backstepping controller is able to provide an error dynamics which has an affine 

representation. For the affine representation of the error dynamics, the single online 

approximator (SOLA) based optimal online scheme guarantees the solution to the HJB 

I
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equation if the system is persistently excited and therefore the corresponding controller 

converges to the optimal one. No admissible initial controller is required in the control 

scheme due to the novel update law and the control approach is relaxed from iterative 

based solutions. The proposed optimal output feedback control scheme for strict feedback 

systems is shown to provide guaranteed stability while rendering optimality. The overall 

Lyapunov based stability proof shows the closed loop system will remain bounded with a 

bound which gets arbitrarily small if the dimension of the basis function vector utilized 

for approximating the cost function is high enough. 

The fourth paper is an application of the second paper to one of the most 

challenging problem of underactuated mechanical system. Unmanned aerial vehicle 

(UAV) helicopters are underactuated systems whose dynamics represent a strict feedback 

form system. The designed NN based output feedback based  optimal tracking controller 

is able to achieve aggressive maneuvers which is a significant contribution compared to 

the available results in the literature. In the absence of state vector, a NN observer 

generates the states while an OLA based online controller learns the solution to the HJB 

equation. The backstepping feedforward controller is able to compensate the helicopter’s 

weight and the rotor thrust requirement for hovering. The Lyapunov stability analysis and 

simulation results show the unmanned helicopter is capable of tracking a desired 

trajectory in an optimal manner with bounded error.  

The fifth paper continues the work of Paper 3 by proposing an optimal adaptive 

controlling scheme for affine/strict feedback systems whose internal dynamics are 

unknown. The feedforward backstepping controller scheme converts the strict feedback 

system to the problem of optimally stabilizing the tracking error dynamics in affine form. 

The fifth paper continues the work of Paper  III  by  proposing an optimal adaptive
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The closed-loop stability is demonstrated even when the internal dynamics are unknown. 

Next, the observer-based output feedback control scheme generates optimal control input 

while minimizing a cost function and relaxing the admissible control input.  It is 

demonstrated that the proposed adaptive update laws can force the tracking errors to zero.

Simulation results concur the theoretical results developed in the paper. 

 2.2. FUTURE WORK 

As part of future work, the optimal adaptive controller for the nonaffine nonlinear 

discrete-time system can be redesigned by using multiple models without using value and 

policy iterations. Multiple model approach allows optimal adaptive controllers for plants 

whose dynamics change significantly with the state or input such as the case of a change 

in fuel-type for the HCCI engine. Optimal control of such systems can be challenging due 

to switching behavior of the dynamics. 

Furthermore, there are several potential areas that can be pursued. In the field of 

optimal adaptive control of unknown systems, the problem of finite horizon optimal 

control is still a completely new ground. Finite horizon optimal control is based on 

minimizing the index function in a finite interval which renders a more complicated 

problem in terms of the solution to the cost function in online manner restricted with the 

terminal conditions. A simple extension to the finite horizon problem is when the control 

inputs have constraints as every actuator has physical limits. 

 Optimal control of strict feedback systems can be attacked by a variety of cost 

functions. The cost function chosen in the current dissertation penalizes the tracking error 

derived by proposing a spatial type of feedforward controller. The problem becomes 

more difficult if the tracking error and the control input are solely penalized. It is also an 

interesting problem to assume the input gain matrix is also unknown. Moreover, optimal 
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control of strict feedback system with input and state constraints is not yet addressed. 

Optimal tracking control of UAV vehicles is very important due to the limitation of 

control input with mobility. Therefore, the hardware implementation of the proposed 

optimal controller on UAVs will also be an interesting work for the future. 
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