
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

23 Jun 2015 

Real Time Mission Planning Real Time Mission Planning 

Emad William Saad 

Stefan Richard Bieniawski 

Paul Edward Riley Pigg 

John Lyle Vian 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/ele_comeng_facwork/1974 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Recommended Citation Recommended Citation 
E. W. Saad et al., "Real Time Mission Planning," U.S. Patents, Jun 2015. 

This Patent is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in 
Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork/1974
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

qMP! (10) International Publication Number
(43) International Publication Date r

/1 A
17 November 2011 (17.11.2011) W A

(51) International Patent Classification: Not classified Columbia, Missouri 65202 (US). WUNSCH, II, Donald
C. [US/US]; 11916 Forest Lake Drive, Rolla, Missouri

(21) International Application Number:
65401 (US).

PCT/US201 1/032459
(74) Agents: FIELDS, Kevin G et al; The Boeing Company,

(22) International Filing Date: P.O. Box 25 15, MC 110-SD54, Seal Beach, California
14 April 201 1 (14.04.201 1) 90740-15 15 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

12/780,621 14 May 2010 (14.05.2010) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(71) Applicant (for all designated States except US): THE HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

BOEING COMPANY [US/US]; 100 North Riverside KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

Plaza, Chicago, Illinois 60606-2016 (US). ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,

(72) Inventors; and SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(75) Inventors/ Applicants (for US only): SAAD, Emad W . TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[US/US]; 2214 Elma Avenue Northeast, Renton, Wash
ington 98059 (US). BIENIAWSKI, Stefan R. [US/US]; (84) Designated States (unless otherwise indicated, for every

1941 Edgemont Place West, Seattle, Washington 98199 kind of regional protection available): ARIPO (BW, GH,

(US). PIGG, Paul E. [US/US]; 343 1 Pestalozzi Street, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

Apartment A, St. Louis, Missouri 63 118 (US). VIAN, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

John L. [US/US]; 1301 North 36th Street, Renton, Wash TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

ington 98056-1553 (US). ROBINETTE, Paul M . EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,[US/US]; 2304 Whitegate Drive, Apartment 2F,

[Continued on next page]

(54) Title: REAL TIME MISSION PLANNING

(57) Abstract: The different advantageous embodiments
provide a system comprising a number of computers, a
graphical user interface, first program code stored on the
computer, and second program code stored on the comput
er. The graphical user interface is executed by a computer
in the number of computers. The computer is configured to
run the first program code to define a mission using a num
ber of mission elements. The computer is configured to run
the second program code to generate instructions for a
number of assets to execute the mission and monitor the
number of assets during execution of the mission.

<



w o 2011/142933 A : llll I I I I 11III II I 11III I I III II III I I I II

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — as to the applicant's entitlement to claim the priority of
GW, ML, MR, NE, SN, TD, TG). the earlier application (Rule 4.17(Hi))

Declarations under Rule 4.17: Published:
— as to the identity of the inventor (Rule 4.1 7(i)) — without international search report and to be republished
— as to applicant's entitlement to apply for and be granted upon receipt of that report (Rule 48.2(g))

a patent (Rule 4.1 7(H))



REAL TIME MISSION PLANNING

BACKGROUND INFORMATION

The present disclosure relates generally to missions and,

in particular, to a method and system for mission planning.

Still more particularly, the present disclosure provides a

method and system for defining, executing, and modifying a

mission in real-time.

Mission planning involves various resources and tasks that

come together to form a mission. Different resources may be

deployed for different tasks that make up a mission, for

example. Complex missions must be manually scripted to manage

multiple resources and multiple tasks for a single mission, and

cannot be changed during execution of the mission.

Missions are typically scripted manually and completed

offline before the missions are run by a computer system. Many

of these current systems are specific to a single mission type,

such as an area search mission for example. The existing

solutions are not practical for dynamic applications where

missions need to be created and modified on the fly. Once

execution of the mission begins, the mission cannot be modified

during execution.

Therefore, it would be advantageous to have a method and

apparatus that addresses one or more of the issues discussed

above .

SUMMARY

The different advantageous embodiments provide a system

comprising a number of computers, a graphical user interface,

first program code stored on the computer, and second program

code stored on the computer. The graphical user interface is

executed by a computer in the number of computers . The computer

is configured to run the first program code to define a mission

using a number of mission elements. The computer is configured



to run the second program code to generate instructions for a

number of assets to execute the mission and monitor the number

of assets during execution of the mission.

The different advantageous embodiments further provide a

method for mission planning. A computer receives a user

definition of a mission. A mission script is generated using

the user definition and a number of mission elements. The

number of mission elements is assigned to a number of assets.

Execution of the number of mission elements by the number of

assets is controlled. The number of assets executing the

mission is monitored.

The different advantageous embodiments further provide

computer program product for mission planning comprising a

computer recordable storage medium and program code stored on

the computer recordable storage medium. The program code

receives a user definition of a mission, generates a mission

script using the user definition and a number of mission

elements, assigns the number of mission elements to a number of

assets, generates instructions for the number of assets to

execute the mission using the number of mission elements, and

monitors the number of assets executing the mission.

The features, functions, and advantages can be achieved

independently in various embodiments of the present disclosure

or may be combined in yet other embodiments in which further

details can be seen with reference to the following description

and drawings .

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the

advantageous embodiments are set forth in the appended claims.

The advantageous embodiments, however, as well as a preferred

mode of use, further objectives and advantages thereof, will

best be understood by reference to the following detailed

description of an advantageous embodiment of the present



disclosure when read in conjunction with the accompanying

drawings, wherein:

Figure 1 is an illustration of a network planning

environment in which an advantageous embodiment may be

implemented ;

Figure 2 is an illustration of a data processing system in

accordance with an advantageous embodiment;

Figure 3 is an illustration of a mission planning

environment in accordance with an advantageous embodiment;

Figure 4 is an illustration of a mission planner client in

accordance with an advantageous embodiment;

Figure 5 is an illustration of a mission planner server in

accordance with an advantageous embodiment;

Figure 6 is an illustration of a graphical user interface

in accordance with an advantageous embodiment;

Figure 7 is an illustration of a graphical user interface

in accordance with an advantageous embodiment ;

Figure 8 is an illustration of a graphical user interface

in accordance with an advantageous embodiment;

Figure 9 is an illustration of a graphical user interface

in accordance with an advantageous embodiment;

Figure 10 is an illustration of a flowchart illustrating a

process for mission planning in accordance with an advantageous

embodiment ; and

Figure 11 is an illustration of a flowchart illustrating a

process for defining a mission in accordance with an

advantageous embodiment .



DETAILED DESCRIPTION

With reference now to the figures and in particular with

reference to Figures 1-2, exemplary diagrams of data processing

environments are provided in which the advantageous embodiments

of the present invention may be implemented. It should be

appreciated that Figures 1-2 are only exemplary and are not

intended to assert or imply any limitation with regard to the

environments in which different embodiments may be implemented.

Many modifications to the depicted environments may be made.

With reference now to the figures, Figure 1 depicts a

pictorial representation of a network planning environment in

which the advantageous embodiments of the present invention may

be implemented. Network planning environment 100 is a network

of computers in which embodiments may be implemented. Network

planning environment 100 contains network 101, which is the

medium used to provide communications links between various

devices and computers connected together within network planning

environment 100. Network 101 may include connections, such as

wire, wireless communication links, or fiber optic cables.

In the depicted example, mission planning system 102

connects to netv/ork 101 along with number of assets 108.

Mission planning system 102 may include a number of servers and

a number of clients, in an advantageous embodiment. In another

advantageous embodiment, servers and clients of mission planning

system 102 may be located in a number of locations and connect

to network 101, for example. Mission planning system 102 may

include, for example, data processing systems, personal

computers, and/or netv/ork computers.

Number of users 104 interacts with mission planning system

102 to plan mission 106, monitor mission 106 in a real-time

environment, and/or modify mission 105 in a real-time

environment. Number of users 104 may include human users,

robotic and/or machine users, program code, and/or any other

suitable user of mission planning system 102 .



Number of assets 108 may exchange data with mission

planning system 102 through a wireless communications link or

through any other type of communications link using network 101.

In these examples, number of assets 108 may be computers and/or

assets controlled by a computer. Assets controlled by a computer

may include, for example, without limitation, mobile assets,

vehicles, sensors, machines, charging stations and/or any other

suitable asset. Network planning environment 100 may include

additional servers processes, clients processes, and other

devices not shown.

Number of assets 108 may execute number of tasks 110 in

order to accomplish mission 106, in an illustrative example.

Mission 106 may be a collection of tasks. Number of tasks 110

may combine to form mission 106, for example.

In the depicted example, network planning environment 100

is the Internet with network 101 representing a worldwide

collection of networks and gateways chat use the Transmission

Control Protocol/Internet Protocol (TCP/IP) suite of protocols

to communicate with one another. Of course, network planning

environment 100 also may be implemented as a number of different

types of networks, such as for example, an intranet, a local

area network (LAN) , or a wide area network (WAN) . Figure 1 is

intended as an example, and not as an architectural limitation

for different embodiments.

Turning now to Figure 2 , a block diagram of a data

processing system is depicted in accordance with an advantageous

embodiment. Data processing system 200 is an example of a data

processing system that may be used to implement servers and

clients, such as mission planning system 102 and number of

assets 108.

In this illustrative example, data processing system 200

includes communications fabric 202, which provides

communications between processor unit 204, memory 206,



persistent storage 208, communications unit 210, input/output

(I/O) unit 212, and display 214.

Processor unit 204 serves to execute instructions for

software that may be loaded into memory 206. Processor unit 204

may be a number of processors, a mult i-processor core, or some

other type of processor, depending on the particular

implementation. A number, as used herein with reference to an

item means one or more items. Further, processor unit 204 may

be implemented using a number of heterogeneous processor systems

in which a main processor is present with secondary processors

on a single chip. A s another illustrative example, processor

unit 204 may be a symmetric tnulti -processor system containing

multiple processors of the same type.

Memory 206 and persistent storage 208 are examples of

storage devices 216. A storage device is any piece of hardware

that is capable of storing information, such as, for example

without limitation, data, program code in functional form,

and/or other suitable information either on a temporary basis

and/or a permanent basis. Memory 206, in these examples, may

be. for example, a random access memory or any other suitable

volatile or non-volatile storage device. Persistent storage 208

may take various forms depending on the particular

implementation .

For example, persistent storage 208 may contain one or more

components or devices. For example, persistent storage 208 may

be a hard drive, a flash memory, a rewritable optical disk, a

rewritable magnetic tape, or some combination of the above. The

media used by persistent storage 208 also may be removable. For

example, a removable hard drive may be used for persistent

storage 208 .

Communications unit 210, in these examples, provides for

communications with other data processing systems or devices.

In these examples, communications unit 210 is a network

interface card. Communications unit 210 may provide



communications through the use of either or both physical and

wireless communications links.

Input/output unit 212 allows for input and output of data

with other devices that may be connected to data processing

system 200. For examp le input/output unit 212 may provide a

connection for user input through a keyboard, a mouse, and/or

some other suitable input device. Further input/output unit

212 may send output to a printer. Display 214 provides a

mechanism to display information to a user.

Instructions for the operating system, applications and/or

programs may be located in storage devices 216, which are in

communication with processor unit 204 through communications

fabric 202, In these illustrative examples the instruction are

in a functional form on persistent storage 208. These

instructions may be loaded into memory 206 for execution by

processor unit 204. The processes of the different embodiments

may be performed by processor unit 204 using computer

implemented instructions, which may be located in a memory, such

as memory 206.

These instructions are referred to as program code,

computer usable program code, or computer readable program code

that may be read and executed by a processor in processor unit

204. The program code in the different embodiments may be

embodied on different physical or tangible computer readable

media, such as memory 206 or persistent storage 208.

Program code 218 is located in a functional form on

computer readable media 220 that is selectively removable and

may be loaded onto or transferred to data processing system 200

for execution by processor unit 204. Program code 218 and

computer readable media 220 form computer program product 222 in

these examples. In one example, computer readable media 220 may

be computer readable storage media 224 or computer readable

signal media 226, Computer readable storage media 224 may

include, for example, an optical or magnetic disk that is



inserted or placed into a drive or other device that is part of

persistent storage 208 for transfer onto a storage device, such

as a hard drive, that is part of persistent storage 208.

Computer readable storage media 224 also may take the form of a

persistent storage, such as a hard drive, a thumb drive, or a

flash memory, that is connected to data processing system 200.

In some instances, computer readable storage media 224 may not

be removable from data processing system 200. In these

illustrative examples, computer readable storage media 224 is a

non- transitory computer readable storage medium.

Alternatively, program code 218 may be transferred to data

processing system 200 using computer readable signal media 226.

Computer readable signal media 226 may be, for example, a

propagated data signal containing program code 218. For

example, computer readable signal media 226 may be an

electromagnetic signal, an optical signal, and/or any other

suitable type of signal. These signals may be transmitted over

communications links, such as wireless communications links,

optical fiber cable, coaxial cable, a wire, and/or any other

suitable type of communications link. In other words, the

communications link and/or the connection may be physical or

wireless in the illustrative examples.

In some advantageous embodiments, program code 218 may be

downloaded over a network to persistent storage 208 from another

device or data processing system through computer readable

signal media 226 for use within data processing system 200. For

instance, program code stored in a computer readable storage

medium in a server data processing system may be downloaded over

a network from the server to data processing system 200. The

data processing system providing program code 218 may be a

server computer, a client computer, or some other device capable

of storing and transmitting program code 218,

The different components illustrated for data processing

system 200 are not meant to provide architectural limitations to



the manner in which different embodiments may be implemented.

The different advantageous embodiments may be implemented in a

data processing system including components in addition to or in

place of those illustrated for data processing system 200

Other components shown in Figure 2 can be varied from the

illustrative examples shown. The different embodiments may be

implemented using any hardware device or system capable of

running program code. As one example, the data processing

system may include organic components integrated with inorganic

components and/or may be comprised entirely of organic

components excluding a human being. For example a storage

device may be comprised of an organic semiconductor.

As another example, a storage device in data processing

system 200 is any hardware apparatus that may store data.

Memory 206, persistent storage 208, and computer readable media

220 are examples of storage devices in a tangible form.

In another example, a bus system may be used to implement

communications fabric 202 and may be comprised of one or more

buses, such as a system bus or an input/output bus. Of course,

the bus system may be implemented using any suitable type of

architecture that provides for a transfer of data between

different components or devices attached to the bus system.

Additionally, a communications unit may include one or more

devices used to transmit and receive data, such as a modem or a

network adapter. Further, a memory may be, for example, memory

206 f or a cache such as found in an interface and memory

controller hub that may be present in communications fabric 202.

As used herein, the phrase "at least one of", when used

with a list of items, means that different combinations of one

or more of the items may be used and only one of each item in

the list may be needed. For example, "at least one of item A ,

item B , and item C " may include, for example, without

limitation, item A or item A and item B . This example also may

include item A , item B , and item C or item B and item C .



As used herein, when a first component is connected to a

second component, the first component may be connected to the

second component without any additional components. The first

component also may be connected to the second component by one

or more other components. For example, one electronic device

may be connected to another electronic device without any

additional electronic devices between the first electronic

device and the second electronic device. In some cases, another

electronic device may be present between the two electronic

devices connected to each other.

The different advantageous embodiments recognize and take

into account that current mission planning systems involve

scripting missions offline then running the missions after they

are completed offline. Many of these current systems are

specific to a single mission type, such as an area search

mission for example. The existing solutions are not practical

for dynamic applications where missions need to be created and

modified on the fly. These current systems are rigid and do not

provide for modifying a mission once execution starts. The

systems currently available require a user to be able to write

code and script the mission manually as well. Manual scripting

of missions is labor extensive and very costly. In addition,

manually scripted missions require more extensive testing since

they are built from scratch and the testing process increases

with the mission complexity.

Thus, the different advantageous embodiments provide a

system comprising a number of computers, a graphical user

interface, first program code stored on the computer, and second

program code stored on the computer. The graphical user

interface is executed by a computer in the number of computers.

The computer is configured to run the first program code to

define a mission using a number of mission elements. The

computer is configured to run the second program code to

generate instructions for a number of assets to execute the



mission and monitor the number of assets during execution of the

mission .

The different advantageous embodiments further provide a

method for mission planning. A computer receives a user-

definition of a mission. A mission script is generated using

the user definition and a number of mission elements. The

number of mission elements is assigned to a number of assets.

Execution of the number of mission elements by the number of

assets is controlled. The number of assets executing the

mission is monitored.

The different advantageous embodiments further provide a

computer program product for mission planning comprising a

computer recordable storage medium and program code stored on

the computer recordable storage medium. The program code

receives a user definition of a mission, generates a mission

script using the user definition and a number of mission

elements, assigns the number of mission elements to a number of

assets, generates instructions for the number of assets to

execute the mission using the number of mission elements, and

monitors the number of assets executing the mission.

With reference now to Figure 3 , an illustration of a

mission planning environment is depicted in accordance with an

advantageous embodiment. Mission planning environment 300 may

be implemented in a network environment, such as network

planning environment 100 in Figure 1 , for example.

Mission planning environment 300 may be any type of

environment suitable for generating, monitoring, updating,

modifying, and/or approving missions, for example. Mission

planning environment 300 includes mission planning system 302.

Mission planning system 302 is an illustrative example of

mission planning system 102 in Figure 1 . Mission planning

system 302 defines, executes, and monitors a number of missions

involving a number of assets in the different advantageous



Mission planning system 302 includes computer system 304.

Computer system 304 may be implemented as a number of computers

and/or data processing systems, such as data processing system

200 in Figure 2 . Computer system 304 may include number of

mission planner clients 306 and mission planner server 308. In

one advantageous embodiment, computer system 304 may be

implemented using a number of data processing systems, where

each data processing system includes an instance of number of

mission planner clients 306 and connects to mission planner

server 308 at a central data processing system using a network,

such as network 101 in Figure 1 , for example. In another

advantageous embodiment, number of mission planner clients 306

and mission planner server 308 may be implemented on the same

data processing system and accessed using a number of different

data processing systems, for example.

Number of mission planner clients 306 is a graphical user

interface used to remotely build missions. Number of mission

planner clients 306 may include number of devices 310 and number

of modules 312. Number of devices 310 may include, for example,

without limitation a display, data-glove, a personal digital

assistant, a laptop, mouse, trackpad, keyboard, joystick, a

touchscreen, an optical interface, a visual interface, a tactile

interface, video console, wireless controller, wireless three

dimensional (3D) controller, and/or any other suitable device.

In one illustrative example, a wireless 3D controller may be a

remote control pointing device that includes a number of

accelerometers and an infrared detector for detecting motion in

three dimensional space. In another illustrative example, a

wireless 3D controller may include a number of accelerometers

used to directly control a number of mobile assets when given

control by a mission element in the mission generated by mission

planner server 308. In an advantageous embodiment, number of

devices 310 may be available for use with specialized mission

elements generated by mission planner server 308. for example.



Number of mission planner clients 306 communicates with

mission planner server 308 through a messaging format, such as,

for example, without limitation, extensible markup language -

remote procedure call (XML-RPC) . In an illustrative example,

number of modules 312 may be written in a language such as

Python using wxPython for the graphical components of number of

mission planner clients 306. Number of modules 312 may include,

for example, without limitation, data and functions necessary to

describe and create mission elements and graphical components

needed to manipulate mission elements within the graphical user

interface of number of mission planner clients 306 during

creation of a mission. Number of users 314 is able to create

mission elements using number of modules 312 and number of

devices 310 of number of mission planner clients 305.

Mission planner server 308 is a process executing on a

computer, such as data processing system 200 in Figure 2 , for

example. Mission planner server 308 listens for incoming XML-

RPC communication from number of mission planner clients 306 and

processes the incoming communication to query and modify a

current mission, for example. Mission planner server 308 keeps

the current mission in memory, such as memory 206 in Figure 2 ,

before and during execution of the current mission, which allows

number of mission planner clients 306 to create and execute the

current mission while adding new elements in real time.

Mission planner server 308 includes number of modules 316

and mission management framework 318. In an illustrative

example, number of modules 316 may be written in a language such

as Python. Number of modules 316 may include, for example,

without limitation, data and functions necessary to identify,

manipulate, and store mission functions and parameters, as well

as parse mission elements for information during execution of

the mission.

Mission management framework 318 is a system that includes

a library of mission elements and a library of assets, as well



as a number of processes for ta sk allocation. The library of

mission elements includes a number of mission elements to be

executed in a current mission. The number of mission elements

is retrieved from mission element database 319 and stored into

the library of mission elements by mission planner server 308

during mission creation, for example. Mission element database

319 includes a number of mission elements pre-defined by a user.

The library of assets includes a list of all a sse ts such

as number of assets 324, along with information about each

asset. For example, the library of assets may include

information about the availability of an asset, the readiness of

an asset for use in a mission and/or task, the health of an

asset, the resource use of an asset, the resource depletion by

an asset, the current status of an asset, and/or any other

suitable information associated with an asset.

Mission management framework 318 identifies the assets and

tasks needed to execute a number of mission elements, and sends

instructions to the number of assets identified to assign and

control execution of a number of tasks and/or missions. When

issues arise during execution of a mission mission management

framework 318 autonomously reconfigures the mission to achieve

the mission objective using available assets, for example. In

other words, the assets become an extension of mission planning

system 302, where mission management framework 318 is the brain

and the assets are components of the body, for example.

Mission management framework 318 sends out instructions for the

assets to execute tasks and receives back messages from the

assets about the status of the tasks and/or the status of the

assets. These messages from the assets are used by mission

management framework 318 to reconfigure instructions dynamically

during a mission execution in a bottom up and top down planning

structure .

Communications system 320 connects computer system 304 to

number of assets 324. Communications system 320 receives and



transmits information 322 between mission management framework

318 and number of assets 324. Information 322 may include, for

example, without limitation, commands 326, programs 328, and

messages 330. Communications system 320 may be a wireless

communication system or a wired communication system in the

different advantageous embodiments.

In one advantageous embodiment, number of users 314 may

initiate a mission planning task using number of mission planner

clients 306 on computer system 304. For example, number of

users 314 may identify a specific task or mission for mission

planning system 302 to execute. Number of users 314 may be

local to number of assets 324 or may be very remote from number

of assets 324. For example, number of assets 324 may be in a

different location, country, or planet than number of users 314,

such as a number of autonomous vehicles deployed on the moon and

being controlled by mission management framework 318 from the

earth. Mission planning system 302 may provide number of users

314 with the capability to build and monitor complex missions in

real-time during execution of the missions by number of assets

324 regardless of the proximity, or lack thereof, of number of

users 314 to number of assets 324. Number of mobile assets 332,

number of sensors 334, number of machines 336 , and number of

charging stations 338 may be examples of a number of assets that

may be included in number of assets 324.

Number of mobile assets 332 may include, for example,

without limitation, number of vehicles 340. Number of vehicles

340 may be any type of vehicle including, without limitation,

autonomous vehicles, semi -autonomous vehicles, unmanned

vehicles, manned vehicles, and/or any other suitable vehicle. A

vehicle may be an automobile, a land vehicle, a marine vessel,

an aircraft, a spacecraft, a wall -climbing robot, and/or any

other suitable type of vehicle, for example.

In an illustrative example, number of users 314 may use

number of mission planner clients 306 to build a mission.



Number of mission planner clients 306 communicates the mission

dynamically as it is being built by number of users 314 to

mission planner server 308, Mission planner server 308

generates a high level mission script for mission management

framework 318. For example, the high level mission script may-

include high level commands. Mission management framework. 318

converts these high level commands into low level commands, and

generates a mission script for specific assets in number of

assets 324. For example, the mission script generated by

mission management framework 318 may include commands to turn on

and deploy one or more specific assets associated with a mission

element. A mission script is a number of instructions. These

instructions may include commands 326 and/or programs 328 for

number of assets 324, for example. Mission management framework

318 sends mission 342, having commands 326 and/or programs 328,

to number of assets 324 using communication system 320. Number

of assets 324 execute mission 342 according to commands 326

and/or programs 328, and communicate messages 330 back to

mission management framework 318 during execution of the

mission. Messages 330 may include, for example, without

limitation, status of the mission, status of a number of tasks,

and/or status of number of assets 324. Mission management

framework 318 may use the information received in messages 330

to modify mission 342, sending modified mission 344 back to

number of assets 324.

In an illustrative example, messages 330 may include

information about one or more of number of vehicles 340

exhausting current fuel resources before the completion of a

task involved in mission 342. Mission management framework 318

may reconfigure mission 342 to identify another vehicle that is

fueled and capable of completing the incomplete task, and send

modified mission 344 instructing the new vehicle to complete the

incomplete task, in this illustrative example.



The illustration of mission planning environment 300 in

Figure 3 is not meant to imply physical or architectural

limitations to the manner in which different advantageous

embodiments may be implemented. Other components in addition

and/or in place of the ones illustrated may be used. Some

components may be unnecessary in some advantageous embodiments.

Also, the blocks are presented to illustrate some functional

components. One or more of these blocks may be combined and/or

divided into different blocks when implemented in different

advantageous embodiments.

For example, mission planning system 302 may be implemented

with other computer systems in addition to computer system 304.

In another advantageous embodiment, computer system 304 may

include additional mission planner clients implemented on

additional data processing systems for use by number of users

314 in simultaneous mission planning and/or planning of multiple

missions, for example.

With reference now to Figure 4 , an illustration of a

mission planner client is depicted in accordance with an

advantageous embodiment. Mission planner client 400 is an

illustrative example of number of mission planner clients 306 in

Figure 3 .

Mission planner client 400 includes number of devices 402,

display 404, and number of modules 406. Number of devices 402

is an illustrative example of one implementation of number of

devices 310 in Figure 3 . Display 404 may be an example of one

type of device in number of devices 402 used by number of users

314 in Figure 3 to interact with mission planner client 400.

Number of modules 406 include mission element design module

408, element button module 410. mission type select module 412,

mission variable define module 414, popup element module 416,

and select window module 418. Number of modules 406 is a number

of software modules presented on a user interface as buttons,



tabs, text boxes, pull-down menus, and the like, that correspond

to a given software module.

Mission element design module 408 contains all of the data

and functions necessary to describe and graphically depict a

mission element. In an illustrative example, the mission

element may be graphically depicted as a rectangle with

triangles to indicate lines to connect the mission element with

a previous mission element and/or a next mission element, for

example, using a device, such as display 404.

Element button module 410 contains program code necessary

to graphically depict a button within a screen of the graphical

user interface, as well as program code to create a new mission

element when the button depicted is selected, or pressed.

Element button module 410 spawns a iv.issionTypeSelect window,

linked to mission type select module 412, to determine the start

and stop parameters for the mission element as well as its label

before the creation of the mission element.

Mission type select module 412 presents a dialog box to

allow a user, such as number of users 314 in Figure 3 , to define

the start and stop types associated with the start and stop

parameters of element button module 410, as well as values for

the mission element. Mission type select module 412 is called

after the user selects an element But ton, generated by element

button module 410, but before a missionElement is created by

element button module 410. In an illustrative example options

within the dialog box presented by mission type select module

412 may be grayed out to show the user what is available in the

current state. For example, an element is not allowed to end on

a sequence change when it does not begin on a sequence change.

In another example, an element cannot begin at the end of a

previous element if no elements are defined yet. Only values

for currently selected types are allowed to be changed in the

dialog box presented by mission type select module 412.



Mission variable define module 414 presents a dialog box to

allow the user to change some variables in a mission. The

variables may be presented in two columns to conserve screen

space, in one illustrative example. This dialog is presented

immediately after a missioriElement is defined and before a

missionElement is created.

Popup element module 416 presents program code to the

current element as static text. Popup element module 416 may be

an optional selection by a user who wants to see the code that

makes up a mission element. The user selects popup element

module 416 to display the code of a mission element. The code

is static because the user can view the code but cannot modify

the code .

Select window module 418 presents the user with a selection

of a number of different options having a number of different

values. The values are the code for the functions of each

option. Some options may allow for multiple selections while

other options only allow for a single selection. These options

may be defined when the window is created.

In an illustrative example, a user selects one of the

Element buttons on the left side of the graphical user interface

of Figure 7 , or in the graphical user interface of Figure 6 ,

right-clicks anywhere in the middle window, and selects "insert

mission element". The user will then see mission component

creator 804 illustrated in Figure 8 . The user selects one of the

mission elements in mission element database 80S as illustrated

in Figure 8 and selects "OK", resulting in a view of component

editor 904 illustrated in Figure 9 . The user fills out the

mission element parameters, then selects the "Time" tab depicted

in component editor 904 of Figure 9 and fills out the Start and

Stop Conditions, then selects "OK." This process is repeated

for every mission element and every function that the user wants

to add to the mission. At the end the user clicks the "save"



button, depicted as a floppy d isk at the top of the graphical

user interface of Figure 8 and Figure 9 .

The illustration of mission planner client 400 in Figure 4

is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be

implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments. For example, other modules in addition to number

of modules 406 may be included in mission planner client 400.

With reference now to Figure 5 , an illustration of a

mission planner server is depicted in accordance with an

advantageous embodiment. Mission planner server 500 is an

illustrative example of mission planner server 308 in Figure 3 .

Mission planner server 500 includes number of modules 502

and mission management framework 504. Number of modules 502 is

an illustrative example of one implementation of number of

modules 316 in Figure 3 . Number of modules 502 includes mission

function module 506, mission element module 508, read library

module 510, write mission module 512, and main module 514.

Mission function module 506 contains data necessary to

identify unique mission functions. Mission function module 506

includes data such as, without limitation, the name,

description, code, parameters, number of assets required, and

estimated time to execute for each mission function. The code

may be written in Python, for example. The parameters may be

any variables in the mission that are capable of being changed

by a user, such as number of users 314 in Figure 3 , for example.

In an illustrative example, a parameter may be area coordinates

or a number of iterations. A user may change area coordinates

for a mission function, for example. The number of assets



required and time to execute refers to the number of assets

required for and the time to execute the mission elements.

Mission element module 508 contains information necessary

for a mission element registered in the mission. Mission

element module 508 includes information such as, without

limitation, the function name as defined by its original file,

the unique label as defined by the user, the code, any

parameters that must be defined by a user, and the start and

stop types as well as their values for the mission element. In

an illustrative example, getCode () may be a function to return

the Python code from the mission element which replaces all

instances of parameters with their defined value.

Read library module 510 contains functions to read mission

functions from the file system as well as parse the mission

functions for information. For example, vehJ'ypeParams may be a

data structure to hold parameters for the type of vehicle assets

required in the mission. This data structure may contain the

type, number, wait flag and release flag values, for example.

In another illustrative example, readLibrary (dir) is a function

that reads all files in a directory (dir) and returns the

contents of the files as a dictionary with the key set as the

file name without the extension, removing w .py" for example in

Python code, and the contents of the file as its value. This

function may assume that all files with "~" in their name are

temporary files and should not be read, in this illustrative

example .

In yet another illustrative example, par seFunc (code) is a

function that takes the code for a mission element and parses it

for several parameters. This function may assume that the first

string surrounded by three quotation marks (""") is the

description of the element. The function checks the Requires

decorator to gather information about assets required for the

mission element, for example. The function may look for the

string "#Time=" and assume that the string following this but



before the new line is the time estimated for this mission

element to execute, for example. The function may also find

user defined variables, denoted by a commented line starting

with "#" followed by a variable surrounded by "$," for example.

If immediately follows the variable, without whitespace, it

is stored as that variable's default value. If a string follows

the variable or default value, with whitespace in between, then

that string is assumed to be the description of that variable,

in this illustrative example.

Write mission module 512 writes the mission to a python

file readable by mission management framework. 504. Write

mission module 512 may use the following set of functions:

writ eMi ssion (dir, name, sta.rt.Func, stopFunc, onlterations ,

support Func s, missionElements) . This set of functions takes in

several parameters in order to write the mission file. For

example, dir is the directory to place the file and name is the

name of the mission. The name of the mission will be

concatenated with ".py" in this example. start Func is the

function that should follow the decorator OnStart to be

compliant with the mission manager framework. stopFunc is the

function that should follow the decorator GnStop. onlterations

is the list of functions that require the decorator OnIterat.ion .

supportFuncs is a list of functions that must be printed at the

beginning of the mission for use in later elements.

missionElements is a list of mis sionEl emen t objects to be

written by write mission module 512 . missionElements is the

function that handles all the decorator additions necessary for

the mission, for example.

Main module 514 runs the extensible markup language remote

procedure call (XML-RPC) server and stores all of the mission

functions. Data on the XML-RPC server is broken into possible

functions and active functions. Possible functions are all of

the available functions in the library, as read by read library



module 510. Active functions are all of the functions that have

been defined.

Possible functions are stored as dictionaries with the name

of the function as the key and a niissionFunction object as the

value. All components are read for their respective

directories, defined at the beginning of the mission script

written by write mission module 512, at the beginning of the

mission. Each possible component dictionary is stored in the

possibleComponents dictionary using its component name as the

key and the dictionary itself as the value. This makes

retrieval easier in later functions.

Active functions are defined in several ways, depending on

the component. Start and stop functions are defined as the name

of the function given by the user. Iteration and support

functions are defined as lists since more than one can be

defined. In each case, the value is the name of the function.

Mission elements are defined as a dictionary using the label of

the element as the key and a missionElement object as the value.

Main module 514 also stores, on the XML-RPC server,

variables to determine if the mission is started, the current

sequence number, and the current mission time. The current

mission time may be stored in seconds, in one illustrative

example .

Mission management framework 504 includes mission elements

library 516, asset library 518. resource identification process

520, task identification process 522, and mission assignment

process 524. Mission elements library 516 includes number of

mission elements 526. Number of mission elements 526 is stored

mission elements built by number of modules 502 to be executed

in a current mission. Number of mission elements 526 may be

retrieved from mission element database 534 by number of modules

502 during mission creation, for example. Mission element

database 534 is an illustrative example of one implementation of

mission element database 319 in Figure 3 .



Asset library 518 includes number of assets 528. Number of

assets 528 is a list of all assets, such as number of assets 324

in Figure 3 , along with a current status of each asset. For

example, number of assets 528 may include information about the

availability of an asset, the readiness of an asset for use in a

mission and/or task, the health of an asset, the resource use of

an asset, the resource depletion by an asset, the current status

of an asset, and/or any other suitable information associated

with an asset.

Task identification process 522 receives a mission script

from write mission module 512 and uses mission elements library

516 to identify the mission elements, or tasks, needed for the

mission. Resource identification process 520 receives a mission

script from write mission module 512 and uses mission elements

library 516 to identify a number of assets from number of assets

528 in a sset library 518 that can accomplish the mission

elements selected for the mission. Mission assignment process

524 receives the mission elements and assets identified by-

resource identification process 520 and task identification

process 522, and assign the tasks identified to specific assets

identified, generating instructions 530. Instructions 530 are

then transmitted by mission management framework 504 to number

of assets 532 for mission execution.

The illustration of mission planner server 500 in Figure 5

is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be

implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments .



With reference now to Figure 6 , an illustration of a

graphical user interface is depicted in accordance with an

advantageous embodiment. Graphical user interface 600 is an

illustrative example of one implementation of mission planner

client 305 in Figure 3 using number of devices 312 in Figure 3 .

Graphical user interface 600 includes execution control

buttons 602 and mission elements 604 Execution control buttons

602 may be selected by a user, such as number of users 314 in

Figure 3 , to start a mission, stop a mission, advance a mission

sequence, and any other number of control features for a

mission. Mission elements 604 are an illustrative example of

mission elements selected from number of mission elements 526 in

Figure 5 for inclusion into a mission, for example. One or more

start functions 606 are selected from a library of available

start functions. A start function is a function that runs at

the start of the mission for example as an initialization

function for the mission. As an illustrative example, graphical

user interface 600 depicts start function 606 called

defaultStart that has been added by the user to this mission.

One or more stop functions 608 are selected from a library of

available stop functions. A stop function is a function that

runs upon completion of the mission. A stop function may be,

for example, 'without limitation, to clear all tasks and reset

the number of assets. As an illustrative example, graphical

user interface 600 depicts stop function 608 called stopMission

that has been added by the user to this mission.

One or more stop conditions 610 are selected from a library

of available stop conditions. A stop condition is a function

that defines a stop condition of the mission. A stop condition

may, for example, without limitation, define a time value at

which the mission stops regardless of whether the individual

mission elements completed execution or not. As an illustrative

example, graphical user interface 600 depicts stop condition 610

called seqAdvanced that has been added by the user to this



mission. One or more iteration functions 612 are selected from a

library of available iteration functions. An iteration function

is a function that runs on every iteration of the mission

management framework. For example, an iteration function may

run in parallel with the mission elements and display a report

about available and deployed assets. As an illustrative example,

graphical user interface 600 depicts iteration function 612

called defaultlteration that has been added by the user to this

mission .

One or more support functions 614 are selected from a

library of available support functions. A support function is a

function that is called by one or more mission elements. For

example, a support function may be an algorithm to partition a

search area that can be used by different mission elements that

perform search related tasks. As an illustrative example,

graphical user interface 600 depicts support functions 614

called divideSearchArea and greedySearch that have been added by

the user to this mission. Mission elements 604 are represented

by bars the length of which is proportional to the mission

element duration as measured by time scale 616, similar to a

Gantt chart .

The illustration of graphical user interface 600 in Figure

6 is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be

implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments .

For example although the different functions are depicted

as being selected by a user using graphical user interface 600,

other advantageous embodiments may include an automated



selection process that specifies the required support functions

within each mission element.

With reference now to Figure 7 , an illustration of a

graphical user interface is depicted in accordance with an

advantageous embodiment. Graphical user interface 700 is an

illustrative example of one implementation of mission planner

client 306 in Figure 3 using number of devices 312 in Figure 3 .

Graphical user interface 700 includes mission elements

database 702 and library of mission elements 704. Mission

elements database 702 is an illustrative example of one

implementation of mission elements database 319 in Figure 3 .

Library of mission elements 704 is an illustrative example of

one implementation of mission elements library 516 in Figure 5 ,

In this illustrative example, mission elements database 702

includes a number of mission elements, such as inspectTarget

706, observeStructure 708, mixedCoverage 710, monitorAdvance

712, initialSurvey 714. clearGround 716, and jointSearch 718.

Library of mission elements 704 is an illustrative example of

mission elements that a user selected from mission elements

database 702 and added to the mission using graphical user

interface 700. In this illustrative example the user added

five mission elements of initialSurvey 714, inspectTarget 706,

jointSearch 718, monitorAdvance 712, mixedCoverage 710. Library

of mission elements 704 are represented by bars in this

illustrative example, the length of which is proportional to the

mission element duration as measured by time scale 720 and/or

sequence number 722. This proportional measurement may be

similar to a Gantt chart, for example. A user such as number

of users 314 in Figure 3 , may enter values in sequence times

estimates 724 to determine the estimated times at which the

mission sequence is advanced in order to represent those mission

elements that begin or end on sequence change on a time scale,

for example. The user then selects update 726 to apply the

values entered into sequence times estimates 724 to the mission



elements display. In this illustrative example, the mission

sequence starts at zero and changes to one at sixty seconds.

The illustration of graphical user interface 700 in Figure

7 is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be

implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments .

With reference now to Figure 8 , an illustration of a

graphical user interface is depicted in accordance with an

advantageous embodiment. Graphical user interface 800 is an

illustrative example of one implementation of mission planner

client 306 in Figure 3 using number of devices 312 in Figure 3 .

Graphical user interface 800 includes canvas 802 and

mission component creator 804. Canvas 802 may be an

illustrative example of one implementation of display 404 of

mission planner client 400 in Figure 4 . Canvas 802 is a

graphical situational display of the mission environment where a

user can drag a cursor using a device, such as a mouse, to

select coordinates parameters of mission elements.

Mission component creator 804 is a dialog box that presents

a user, such as number of users 314 in Figure 3 , with mission

element database 80S and associated code of selected mission

element 808. In an illustrative example, if a user selects a

mission element from mission element database 806, the code for

that mission element will be displayed in the dialog box to the

right of the listing of mission elements. Mission component

creator 804 is an example of select window module 418. In this

example, the different options in select 'window module 418 are

the mission elements in mission element database 806. and the



different values of select window module 418 are code of

selected mission element 808 for each mission element. Code of

selected mission element 808 is displayed by popup element

module 416.

The illustration of graphical user interface 800 in Figure

8 is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be

implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments .

With reference now to Figure 9 , an illustration of a

graphical user interface is depicted in accordance with an

advantageous embodiment. Graphical user interface 900 is an

illustrative example of one implementation of mission planner

client 306 in Figure 3 using number of devices 312 in Figure 3 .

Graphical user interface 900 includes mission planner 902

and component editor 904. Mission planner 902 is an

illustrative example of one implementation of mission planner

client 306 in Figure 3 , presenting graphical depictions of

functions for a user to manipulate. Component editor 904 may be

an illustrative example of a dialog box presented by mission

variable define module 414 in Figure 4 , for example, allowing a

user to change variables in a mission. A user can insert

multiple instances of the same mission element, for example

running at different times or locations, and get unique names.

In this example, the user entered initialSurveyl as Unique Name

of this instance of initialSurvey mission element.

The illustration of graphical user interface 900 in Figure

9 is not meant to imply physical or architectural limitations to

the manner in which different advantageous embodiments may be



implemented. Other components in addition and/or in place of

the ones illustrated may be used. Some components may be

unnecessary in some advantageous embodiments. Also, the blocks

are presented to illustrate some functional components. One or

more of these blocks may be combined and/or divided into

different blocks when implemented in different advantageous

embodiments .

With reference now to Figure 10, an illustration of a

flowchart illustrating a process for mission planning is

depicted in accordance with an advantageous embodiment. The

process in Figure 10 may be implemented by a component such as

mission planning system 302 in Figure 3 , for example.

The process begins by receiving a user definition of a

mission (operation 1002} . The user definition may be received

using a graphical user interface, such as mission planner client

306 in Figure 3 , for example. The user definition may generally

define a mission, or number of tasks, that needs to be

accompl ished .

The process generates a mission script using the user

definition and a number of mission elements (operation 1004) .

The process may generate a mission script using a mission

management framework, such as mission management framework 318

in Figure 3 , for example. The number of mission elements may

define aspects of a mission, or specific tasks in a number of

tasks, for examp 1e .

The process assigns the number of mission elements to a

number of assets (operation 1006) . The assets may be, for

example, number of assets 324 in Figure 3 . The process controls

execution of the number of mission elements by the number of

assets (operation 1008) . The process may generate instructions

for the number of assets to execute the mission using the number

of mission elements. The instructions may be transmitted to the

number of assets using a communication system, such as

communication system 320 in Figure 3 . for example. The



execution control actions may include optional advancement of a

mission sequence by the process to skip a mission element, for

example, given feedback or messages received from the number of

assets. Optionally, the sequence advancement of a mission may

be controlled by a user, such as number of users 314 in Figure

3 , whereby the user gives this command to the mission management

framework and not directly to the number of assets.

The process monitors the number of assets executing the

mission (operation 1010} . The process receives messages from

the number of assets during execution of the mission (operation

1012) . The process determines whether a mission reconfiguration

is needed (operation 1014) . A mission reconfiguration may be

needed if an asset is unable to complete a mission element, or

needs assistance completing a mission element, for example.

If a determination is made that a mission reconfiguration

is needed, the process generates a modified mission using the

messages received (operation 1016) . and returns to operation

1010. This reconfiguration is performed autonomously by the

mission management framework based on the messages received,

such as vehicle failures or other changes in asset status, for

example. Optionally, a user may also modify the mission by

adding a number of mission elements to the mission, removing a

number of mission elements that have not yet started from the

mission, modifying the parameters of a number of mission

elements that have not yet started, and/or any other suitable

mod ification of the mission.

If a determination is made that a mission reconfiguration

is not needed, the process then determines whether the mission

is complete (operation 1018) . If a determination is made that

the mission is not complete, the process returns to operation

1010. If a determination is made that the mission is complete,

the process terminates thereafter.

With reference now to Figure 11, a flowchart illustrating a

process for defining a mission is depicted in accordance with an



advantageous embodiment. The process in Figure 11 may be

implemented by a component such as mission planning system 302

in Figure 3 , for example.

The process begins by adding a number of mission elements

to a library of mission elements (operation 1102) . The number

of mission elements may be selected from a mission elements

database, such as mission elements database 319 in Figure 3 , by

a mission planner server, and saved into a mission elements

library, such as mission elements library 516 in Figure 5 , for

example.

The process adds a number of start functions to the mission

(operation 1104) . The start functions may be added from a

library of start functions, such as start functions 606 in

Figure β . The process then adds a number of stop functions to

the mission (operation 1106) . The stop functions may be added

from a library of stop functions, such as stop functions 608 in

Figure 6 , The process optionally adds a number of stop

conditions to the mission (operation 1108) . The stop conditions

may be added from a library of stop conditions, such as stop

conditions 610 in Figure 6 . The process adds a number of

iteration functions to the mission (operation 1110) . The

iteration functions may be added from a library of iteration

functions, such as iteration functions 612 in Figure β . The

process optionally adds a number of support functions to the

mission (operation 1112) . The support functions may be added

from a library of support functions, such as support functions

614 in Figure 6 . The process optionally save the mission in a

storage device (operation 1114) , with the process terminating

thereafter. The process may execute the mission from the

computer memory without saving it, for example.

The flowcharts and block diagrams in the different depicted

embodiments illustrate the architecture, functionality, and

operation of some possible implementations of apparatus, methods

and computer program products. In this regard, each block in



the flowchart or block diagrams may represent a module, segment,

or portion of computer usable or readable program code, which

comprises one or more executable instructions for implementing

the specified function or functions. In some alternative

implementations, the function or functions noted in the block

may occur out of the order noted in the figures. For example,

in some cases, two blocks shown in succession may be executed

substantially concurrently, or the blocks may sometimes be

executed in the reverse order, depending upon the functionality

involved .

The different advantageous embodiments can take the form of

an entirely hardware embodiment, an entirely software

embodiment, or an embodiment containing both hardware and

software elements. Some embodiments are implemented in

software, which includes but is not limited to forms, such as,

for example, firmware, resident software and microcode.

Furthermore, the different embodiments can take the form of

a computer program product accessible from a computer usable or

computer readable medium providing program code for use by or in

connection with a computer or any device or system that executes

instructions. For the purposes of this disclosure, a computer

usable or computer readable medium can generally be any tangible

apparatus that can contain, store, communicate, propagate, or

transport the program for use by or in connection with the

instruction execution system, apparatus, or device.

The computer usable or computer readable medium can be, for

example, without limitation an electronic, magnetic, optical,

electromagnetic, infrared, or semiconductor system or a

propagation medium. Non limiting examples of a computer

readable medium include a semiconductor or solid state memory,

magnetic tape, a removable computer diskette, a random access

memory (RAM) . a read-only memory (ROM) , a rigid magnetic disk,

and an optical disk. Optical disks may include compact disk -



read only memory (CD-ROM) , compact disk - read/write (CD-R/W)

and DVD .

Further a computer usable or computer readable medium may

contain or score a computer readable or usable program code such

that when the computer readable or usable program code is

executed on a computer, the execution of this computer readable

or usable program code causes the computer to transmit another

computer readable or usable program code over a communications

link. This communications link may use a medium that is, for

example without limitation, physical or wireless

A data processing system suitable for storing and/or

executing computer readable or computer usable program code will

include one or more processors coupled directly or indirectly to

memory elements through a communications fabric, such as a

system bus. The memory elements may include local memory

employed during actual execution of the program code bulk

storage, and cache memories which provide temporary storage of

at least some computer readable or computer usable program code

to reduce the number of times code may be retrieved from bulk

storage during execution of the code.

Input/output or I/O devices can be coupled to the system

either directly or through intervening I/O controllers. These

devices may include, for example, without limitation to

keyboards, touch screen displays and pointing devices.

Different communications adapters may also be coupled to the

system to enable the data processing system to become coupled to

other data processing systems or remote printers or storage

devices through intervening private or public networks . Non-

limiting examples are modems and network adapters are just a few

of the currently available types of communications adapters.

The different advantageous embodiments recognize and take

into account that current mission planning systems involve

scripting missions offline then running the missions after they

are completed offline. Many of these current systems are



specific to a single mission type, such as an area search

mission for example. The existing solutions are not practical

for dynamic applications where missions need to be created and

modified on the fly. These current systems are rigid and do not

provide for modifying a mission once execution starts. The

systems currently available require a user to be able to write

code and script the mission manually as well.

Thus, the different advantageous embodiments provide a

system for real-time definition, execution, and monitoring of

complex missions involving a multitude of assets. This system

allows operators of autonomous vehicles to easily create

update, and execute complex missions involving multiple casks

that need to be executed by varying numbers and types of assets,

using a graphical user interface. By having the client and

server communicate over a network, the user can define update

and execute missions from a remote location. Also multiple

clients can be used to allow multiple users to simultaneously

monitor and update missions. Mission definition is modular using

the concept of "mission elements", and thus a user can monitor

mission progress by graphically displaying the mission elements

in a real-time Gantt chart format chat shows the dependencies

between mission elements, their completion status, and the

resources assigned or required to each mission element. This is

achieved using feedback from the mission management framework

via the mission planner server. In addition, XML-RPC may be used

for rich messaging between clients and server including querying

the server library of mission elements, thus allowing easy

updates of the library without any software change in the

clients .

The description of the different advantageous embodiments

has been presented for purposes of illustration and description,

and is not intended to be exhaustive or limited to the

embodiments in the form disclosed. Many modifications and

variations will be apparent to those of ordinary skill in the



art. Further, different advantageous embodiments may provide

different advantages as compared to other advantageous

embodiments. The embodiment or embodiments selected are chosen

and described in order to best explain the principles of the

embodiments, the practical application, and to enable others of

ordinary skill in the art to understand the disclosure for

various embodiments with various modifications as are suited to

the particular use contemplated.



CLAIMS :

What is claimed is:

1 . A system comprising:

a number of computers ;

a graphical user interface, wherein the graphical user

interface is executed by a computer in the number of computers;

first program code stored on the computer, wherein the

computer is configured to run the first program code to define a

mission using a number of mission elements; and

second program code stored on the computer, wherein the

computer is configured to run the second program code to

generate instructions for a number of assets to execute the

mission and monitor the number of assets during execution of the

mission .

2 . The system of claim 1 , wherein the number of assets include

at least one of a vehicle, sensor, charging station, and

machine .

3 . The system of claim 1 , wherein the number of mission

elements is stored in a mission element library.

4 . The system of claim 1 . wherein the number of mission

elements is generated by the first program code.

5 . The system of claim 1 , wherein the first program code

communicates with the second program code over a network.

6 . The system of claim 1 , wherein a first computer from the

number of computers runs the second program code and a plurality

of computers from the number of computers run multiple instances

of the first program code, wherein the first computer is not one

of the plurality of computers, and wherein the first computer

communicates with the plurality of computers allowing multiple



users to perform at least one of defining, modifying, executing,

and monitoring missions simultaneously.

7 . The system of claim 1 , wherein each mission element includes

a number of mission tasks, and wherein the system defines,

updates, executes and monitors multiple missions simultaneously.

8 . A method for mission planning, the method comprising:

receiving, by a computer, a user definition of a mission ?

generating a mission program using the user definition and

a number of mission elements;

assigning the number of mission elements to a number of

assets ;

controlling execution of the number of mission elements by

the number of assets; and

monitoring the number of assets executing the mission.

9 . The method of claim 8 further comprising:

receiving messages from the number of assets during

execution of the mission;

determining whether a mission reconfiguration is needed;

and

responsive to a determination that the mission

reconfiguration is needed, generating a modified mission using

the messages received.

10. The method of claim 9 , further comprising:

responsive to a determination that the mission

reconfiguration is not needed, determining whether the mission

is complete.

11. The method of claim 8 , wherein the user definition is

received by the computer using a mission planner client.

12. The method of claim 8 , wherein the mission script is

generated by a mission management framework.



13. The method of claim 8 , wherein the number of mission

elements is generated by a mission planner server and selected

by the mission management framework for assignment to the number

of assets.

14. The method of claim 8 . wherein a user uses a graphical user

interface and a number of devices to input coordinate parameters

to the number of mission elements.

15. The method of claim 8 . wherein the receiving, generating,

assigning, controlling, and monitoring steps are performed in

real-time .

16 . A computer program product for managing information for

flights, the computer program product comprising:

a computer recordable storage medium;

program code, stored on the computer recordable storage

medium, for receiving a user definition of a mission;

program code, stored on the computer recordable storage

medium, for generating a mission script using the user

definition and a number of mission elements;

program code, stored on the computer recordable storage

medium, for assigning the number of mission elements to a number

of assets;

program code, stored on the computer recordable storage

medium, for generating instructions for the number of assets to

execute the mission using the number of mission elements; and

program code, stored on the computer recordable storage

medium, for monitoring the number of assets executing the

mission .

17. The computer program product of claim 16 further

comprising :



program code, stored on the computer recordable storage

medium, for receiving messages from the number of assets during

execution of the mission;

program code, scored on the computer recordable storage

medium, for determining whether a mission reconfiguration is

needed; and

program code, stored on the computer recordable storage

medium, responsive to a determination chat the mission

reconfiguration is needed, for generating a modified mission

using the messages received.

18. The computer program product of claim 17 further

comprising :

program code, stored on the computer recordable storage

medium, responsive to a determination chat the mission

reconfiguration is not needed, for determining whether the

miss ion is comp1ete .

19. The computer program product of claim 16, wherein the user

definition is received by the computer using a mission planner

client .

20. The computer program product of claim 16, wherein the

number of mission elements is generated by a mission planner

server and selected by the mission management framework for

assignment to the number of assets.




















	Real Time Mission Planning
	Recommended Citation

	abstract
	description
	claims
	drawings

