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(57) ABSTRACT 
An example method for controlling an AC electrical machine 
can include providing a PWM converter operably connected 
between an electrical power source and the AC electrical 
machine and providing a neural network vector control sys 
tem operably connected to the PWM converter. The control 
system can include a current-loop neural network configured 
to receive a plurality of inputs. The current-loop neural net 
work can be configured to optimize the compensating dd 
control Voltage. The inputs can be d- and q-axis currents, d 
and q-axis error signals, predicted d- and q-axis current sig 
nals, and a feedback compensating dd-control Voltage. The d 
and q-axis error signals can be a difference between the d- and 
q-axis currents and reference d- and q-axis currents, respec 
tively. The method can further include outputting a compen 
sating dd-control Voltage from the current-loop neural net 
work and controlling the PWM converter using the 
compensating da-control Voltage. 
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SYSTEMS, METHODS AND DEVICES FOR 
VECTOR CONTROL OF PERMANENT 
MAGNET SYNCHRONOUS MACHINES 

USING ARTIFICIAL NEURAL NETWORKS 

PRIORITY 

0001. This application claims priority to U.S. Provisional 
Patent Application No. 61/862.277 filed on Aug. 5, 2013, 
which is fully incorporated by reference and made a part 
hereof. 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

0002 This invention was made with Government support 
under Grant NOS. ECCS 1102038 and ECCS 1102159 
awarded by the National Science Foundation. The Govern 
ment has certain rights in the invention. 

BACKGROUND 

0003 AC electrical machines are used in a large number of 
applications including, but not limited to, factory automation, 
wind turbines and electric drive vehicles. Typical AC electric 
machines include induction machines and synchronous 
machines. FIG. 1 is a schematic diagram illustrating a per 
manent magnet synchronous generator (“PMSG”) wind tur 
bine. APMSG is a form of a permanent magnet synchronous 
machine (“PMSM'). In FIG.1, the PMSG 101 stator winding 
is connected to an electrical grid 103 through a frequency 
converter 102 (e.g., in this instance a pulse width modulated 
(“PWM) converter). The frequency converter 102 can 
include two self-commutated PWM converters 102A and 
102B, i.e., machine-side converter 102A and grid-side con 
verter 102B, with an intermediate DC voltage link 102C. The 
DC voltage link 102C (e.g., a capacitor) decouples the opera 
tion of the two PWM converters, thus allowing their control 
and operation to be optimized. The control objectives of the 
machine-side converter 102A include 1) maximum energy 
extraction from the wind, and 2) management of PMSG 
energy generation in compliance with grid demands. 
0004. The performance of an AC electric machine depends 
on how it is controlled. Conventionally, vector control tech 
nologies have been used to control AC electric machines 
based on proportional-integral-derivative (“PID) control 
technology. Recent studies, however, indicate that such con 
trol strategies have limitations, particularly when facing 
uncertainties. 
0005 Referring now to FIG. 2, a schematic diagram illus 

trates another type of PMSM, one used in an electric drive 
vehicle (“EDV). In FIG. 2, the PMSM 201 is connected to 
battery 203 (e.g., a power source) through a frequency con 
verter 202(e.g., a PWM converter). Similar to the PMSG, the 
control design of PMSM is primarily model based and/or uses 
PID control technology, which may be inefficient, unstable 
and unreliable especially under variable and complex system 
conditions. 
0006. Therefore, what are needed are improved control 
systems for controlling PMSMs. In particular, systems, meth 
ods and devices are desired for controlling PMSMs under 
unstable and uncertain system conditions. 

SUMMARY 

0007 Methods, systems and devices are described herein 
that use artificial neural networks to control AC electric 
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machines and motor drives, which enhances the performance, 
reliability and efficiency of the AC electric machines and 
motor drives. 
0008. An example method for controlling an AC electrical 
machine can include providing a PWM converter operably 
connected between an electrical power source and the AC 
electrical machine and providing a neural network vector 
control system operably connected to the PWM converter. 
The neural network vector control system can include a cur 
rent-loop neural network configured to receive a plurality of 
inputs. The current-loop neural network can be configured to 
optimize a compensating dd-control Voltage based on the 
plurality of inputs. The plurality of inputs can be a d-axis 
current, is a q-axis current, is a d-axis error signal, a q-axis 
error signal, a predicted d-axis current signal, a predicted 
q-axis current signal and a feedback compensating dd-control 
voltage. The d-axis error signal can be a difference between 
is and a reference d-axis current, i, and the q-axis error 
signal can be a difference between is and a reference q-axis 
current, i. The method can further include outputting a 
compensating da-control Voltage from the current-loop neu 
ral network and controlling the PWM converter using the 
compensating da-control Voltage. 
0009 Optionally, a predicted d-axis current signal can be 
a difference between is and a predicted d-axis current, i. 
and a predicted q-axis current signal can be a difference 
between i, and a predicted q-axis current, i. The predicted 
d- and q-axis current signals, i? and i', can be computed 
using a current prediction model. For example, the current 
prediction model can be based on is is and the compensat 
ing dd-control Voltage at a previous time step and default 
parameters for the AC electrical machine. 
0010 Additionally, the compensating dd-control voltage 
can optionally be adjusted by a stabilization matrix that is 
based on default parameters for the AC electrical machine. 
0011 Alternatively or additionally, the plurality of inputs 
at the current-loop neural network can further include an 
integral of the d-axis error signal and an integral of the q-axis 
error signal. 
0012 Optionally, the neural network vector control sys 
tem can further include a speed-loop neural network config 
ured to receive a plurality of inputs. The speed-loop neural 
network can be configured to optimize a drive torque signal 
based on the plurality of inputs. The plurality of inputs can be 
a speed of the AC electrical machine, (), a speed error signal, 
a predicted speed signal and a feedback drive torque signal. 
The speed error signal can be a difference between (), and a 
reference speed, (). The method can further include out 
putting a drive torque signal, T., from the speed-loop neural 
network. Additionally, the drive torque signal, T. can be 
converted into the reference q-axis current, i. 
0013 The predicted speed signal can optionally be a dif 
ference between (), and a predicted speed signal, (), where 
(), is computed using a speed prediction model. For 
example, the speed prediction model can be based on (), and 
T, at a previous time step and default parameters for the AC 
electrical machine. 
0014. Alternatively or additionally, the drive torque sig 
nal, t, can optionally be adjusted by a drive-torque stabili 
zation matrix that is based on default parameters for the AC 
electrical machine. 
00.15 Optionally, the plurality of inputs at the speed-loop 
neural network can further include an integral of the speed 
error signal. 

er 
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0016 Optionally, at least one of the current-loop neural 
network and the speed-loop neural network can be configured 
to implement a dynamic programming (“DP) algorithm. 
0017 Additionally, at least one of the current-loop neural 
network and the speed-loop neural network can be trained to 
minimize a cost function of a dynamic programming (“DP) 
algorithm using a backpropagation through time (“BPTT) 
algorithm. For example, at least one of the current-loop neural 
network and the speed-loop neural network can be trained by 
randomly generating an initial state, randomly generating a 
sample reference state, unrolling a trajectory of the neural 
network vector control system from the initial state and train 
ing the current-loop neural network or the speed-loop neural 
network based on the cost function of the DP algorithm and 
the BPTT algorithm. 
0018. Additionally, at least one of the current-loop neural 
network and the speed-loop neural network can optionally be 
a multi-layer perceptron including a plurality of input nodes, 
a plurality of hidden layer nodes and a plurality of output 
nodes. Alternatively or additionally, each of the nodes can be 
configured to implement a hyperbolic tangent function. 
0019. Optionally, the AC electrical machine is a perma 
nent magnet synchronous machine or an induction machine. 
0020. An example system for controlling an AC electrical 
machine can include a PWM converter operably connected 
between an electrical power source and the AC electrical 
machine and a neural network vector control system operably 
connected to the PWM converter. The neural network vector 
control system can include a current-loop neural network 
configured to receive a plurality of inputs. The current-loop 
neural network can be configured to optimize a compensating 
dq-control Voltage based on the plurality of inputs. The plu 
rality of inputs can be a d-axis current, is a q-axis current, i. 
a d-axis error signal, a q-axis error signal, a predicted d-axis 
current signal, a predicted q-axis current signal and a feed 
back compensating dd-control Voltage. The d-axis error Sig 
nal can be a difference between is and a reference d-axis 
current, i., and the q-axis error signal can be a difference 
between i, and a reference q-axis current, i. The current 
loop neural network can output a compensating dd-control 
Voltage. The neural network vector control system can control 
the PWM converter using the compensating dd-control volt 
age. 
0021 Optionally, a predicted d-axis current signal can be 
a difference between is and a predicted d-axis current, i. 
and a predicted q-axis current signal can be a difference 
between i, and a predicted q-axis current, i. The predicted 
d- and q-axis current signals, is and i', can be computed 
using a current prediction model. For example, the current 
prediction model can be based on is is and the compensat 
ing dd-control Voltage at a previous time step and default 
parameters for the AC electrical machine. 
0022. Additionally, the compensating da-control voltage 
can optionally be adjusted by a stabilization matrix that is 
based on default parameters for the AC electrical machine. 
0023. Alternatively or additionally, the plurality of inputs 
at the current-loop neural network can further include an 
integral of the d-axis error signal and an integral of the q-axis 
error signal. 
0024 Optionally, the neural network vector control sys 
tem can further include a speed-loop neural network config 
ured to receive a plurality of inputs. The speed-loop neural 
network can be configured to optimize a drive torque signal 
based on the plurality of inputs. The plurality of inputs can be 
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a speed of the AC electrical machine, (), a speed error signal, 
a predicted speed signal and a feedback drive torque signal. 
The speed error signal can be a difference between (), and a 
reference speed, co. The speed-loop neural network can 
output a drive torque signal, t. Additionally, the drive 
torque signal, T. can be converted into the reference q-axis 
current, i. 
0025. The predicted speed signal can optionally be a dif 
ference between (), and a predicted speed signal, co", where 
(), is computed using a speed prediction model. For 
example, the speed prediction model can be based on (), and 
T, at a previous time step and default parameters for the AC 
electrical machine. 
0026. Alternatively or additionally, the drive torque sig 
nal, t, can optionally be adjusted by a drive-torque stabili 
zation matrix that is based on default parameters for the AC 
electrical machine. 
0027 Optionally, the plurality of inputs at the speed-loop 
neural network can further include an integral of the speed 
error signal. 
0028 Optionally, at least one of the current-loop neural 
network and the speed-loop neural network can be configured 
to implement a DP algorithm. 
0029. Additionally, at least one of the current-loop neural 
network and the speed-loop neural network can be trained to 
minimize a cost function of the DP algorithm using a BPTT 
algorithm. For example, at least one of the current-loop neural 
network and the speed-loop neural network can be trained by 
randomly generating an initial state, randomly generating a 
sample reference state, unrolling a trajectory of the neural 
network vector control system from the initial state and train 
ing the current-loop neural network or the speed-loop neural 
network based on the cost function of the DP algorithm and 
the BPTT algorithm. 
0030 Additionally, at least one of the current-loop neural 
network and the speed-loop neural network can optionally be 
a multi-layer perceptron including a plurality of input nodes, 
a plurality of hidden layer nodes and a plurality of output 
nodes. Alternatively or additionally, each of the nodes can be 
configured to implement a hyperbolic tangent function. 
0031 Optionally, the AC electrical machine is a perma 
nent magnet synchronous machine or an induction machine. 
0032. It should be understood that the above-described 
Subject matter may also be implemented as a computer-con 
trolled apparatus, a computer process, a computing system, or 
an article of manufacture, such as a computer-readable stor 
age medium. 
0033. Other systems, methods, features and/or advantages 
will be or may become apparent to one with skill in the art 
upon examination of the following drawings and detailed 
description. It is intended that all Such additional systems, 
methods, features and/or advantages be included within this 
description and be protected by the accompanying claims. 

er 

BRIEF DESCRIPTION OF THE DRAWINGS 

0034. The components in the drawings are not necessarily 
to scale relative to each other. Like reference numerals des 
ignate corresponding parts throughout the several views. 
0035 FIG. 1 is a schematic diagram illustrating a PMSG 
wind turbine; 
0036 FIG. 2 is a schematic diagram illustrating a PMSM 
in an electric drive vehicle; 
0037 FIG. 3 is a schematic diagram illustrating a PMSM 
with a nested-loop PI control structure: 
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0038 FIG. 4 is a schematic diagram illustrating a PMSM 
with a nested-loop neural network vector control structure: 
0039 FIGS. 5A-5B are graphs illustrating example error 
Surfaces encountered according to techniques described 
herein; 
0040 FIG. 6 is a graph illustrating how the state vector 
evolves if an action network chooses completely passive 
actions; 
0041 FIG. 7 is a graph illustrating an average DP cost per 
trajectory time step for training an example neural network; 
0042 FIG. 8 is a block diagram illustrating a neural net 
work vector control system for a PMSM used for the simula 
tions; 
0043 FIGS. 9A-9C are graphs illustrating performance of 
an example nested-loop neural network vector controller; 
0044 FIGS. 10A-10B are graphs illustrating a compari 
son of a conventional PI controller and a nested-loop neural 
network vector controller; 
0045 FIGS. 11A-11B are graphs illustrating performance 
of an example neural vector controller under variable system 
parameter conditions; and 
0046 FIGS. 12A-12C are graphs illustrating a case study 
of an example neural network vector controller in a Switching 
environment of the power converter. 

DETAILED DESCRIPTION 

0047 Unless defined otherwise, all technical and scien 
tific terms used herein have the same meaning as commonly 
understood by one of ordinary skill in the art. Methods and 
materials similar or equivalent to those described herein can 
be used in the practice or testing of the present disclosure. As 
used in the specification, and in the appended claims, the 
singular forms “a” “an.” “the include plural referents unless 
the context clearly dictates otherwise. The term “comprising 
and variations thereofas used herein is used synonymously 
with the term “including and variations thereofandare open, 
non-limiting terms. The terms “optional or “optionally 
used herein mean that the subsequently described feature, 
event or circumstance may or may not occur, and that the 
description includes instances where said feature, event or 
circumstance occurs and instances where it does not. While 
implementations will be described for controlling PMSMs 
used in electric drive vehicles, it will become evident to those 
skilled in the art that the implementations are not limited 
thereto, but are applicable for controlling other types of AC 
electrical machines, including but not limited to, PMSMs 
used in other environments, induction machines used for 
factory automation and wind turbines connected to the power 
grid. 
0048 Referring now to FIG.3, a schematic diagram illus 
trating a PMSM with a nested-loop control structure is 
shown. The PMSM in FIG. 3 is used in an EDV. A PMSM is 
an AC electric motor that uses permanent magnets to produce 
the air gap magnetic field rather than using electromagnets. In 
a PMSM, the rotor is driven by the stator, via a synchronous 
rotational field generated by the three-phase currents passing 
through the stator windings. In EDV applications, the stator 
windings of a PMSM301 are connected to a DC bus 303A, 
which is connected to a battery 303, through a standard three 
leg voltage-source PWM converter 302. The PWM converter 
302 converts DC voltage to three-phase AC voltage in the 
PMSM drive mode or converts three-phase AC voltage to DC 
Voltage in the regenerating mode. In the drive mode, power 
flows from the DC bus 303 A to the PMSM301 to drive the 
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vehicle, while in the regenerating mode, power flows from the 
PMSM301 to the DC bus 303A to charge the battery 303. 
0049. In FIG.3, conventional standard vector control tech 
niques are used. For example, the control structure is a nested 
loop having of a faster inner current loop 310 and a slower 
outer speed loop 320. The speed reference (e.g., n)) is gen 
erated during the operation of the EDV. The speed and mag 
netic field control is converted into decoupled d-q current 
control (e.g., a q-axis reference signal, i.). The faster inner 
current loop 310 implements the final control function by 
applying a stator Voltage control signal (e.g., v) to the 
PWM converter 302 to realize the variable-speed operation of 
the EDV. 

0050 Referring now to FIG. 4, a schematic diagram illus 
trating a PMSM in an EDV with a neural network vector 
control structure is shown. The PMSM in FIG. 4 can be used 
in an EDV. Similar to FIG. 3, a PMSM 401 (e.g., an AC 
electrical machine) is connected to an electrical power Source 
403 (e.g., a DC bus, a DC power source, a battery, etc.) 
through a DC/AC converter 402. The DC/AC converter 402 
(e.g., a PWM converter) converts DC voltage to three-phase 
AC voltage in the PMSM drive mode or converts three-phase 
AC voltage to DC voltage in the regenerating mode. In FIG. 
4, the neural network vector control system includes a faster 
inner current-loop neural network controller 410 (e.g., 
including current-loop neural network 410A) and a slower 
outer speed-loop neural network controller 420 (e.g., includ 
ing speed-loop neural network 420A). It should be under 
stood that the current-loop neural network controller 410 is 
important for high power quality of the PMSM 401 in terms 
of harmonics and unbalance. Of the two nested-loop neural 
network controllers, the current-loop neural network control 
ler 410 is more critical due to the limitations of the conven 
tional current-loop PI controller discussed above. 
0051. A neural network implements the optimal control 
principle through a dynamic programming (“DP) algorithm. 
Therefore, using a neural network is completely different 
than using the conventional vector control techniques 
described above. Compared to conventional vector control 
techniques, the neural network vector control approach pro 
duces faster response time, lower overshoot, and, in general, 
better performance. In addition, since a neural network is 
trained under variable system parameters, the nested-loop 
neural network vector control system of FIG. 4 has more 
attractive performance when the system parameters are diffi 
cult to identify. 

0052. A commonly used PMSM transient model is 
described by Eqn. (1). Using the motor sign convention, space 
vector theory yields the stator Voltage equation in the form: 

sd = R isd Y d (thsd ( ...) thsd (1) (= (f) of O 

where R is the resistance of the stator winding, (t) is the 
rotational speed of the PMSM, and V. V. i. i. p., and 
p, are the d and q components of instant stator Voltage, 
current, and flux. If the d-axis is aligned along the rotor flux 
position, the stator flux linkages are defined by Eqn. (2). 
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thsd) (Lls + Lein O id -- fif (2) ()-("" -(, 
where L is the leakage inductance, L, and L, are the stator 
and rotor d- and q-axis mutual inductances, p, is the flux 
linkage produced by the permanent magnet. Under the 
steady-state condition, Eqn. (1) is expressed as Eqn. (3). 

Vd Rs - Coe L. Y isd O (3) (-, ..."-(...) 
0053. If stator winding resistance is neglected, the statord 
and q-axis currents are defined by Eqn. (4). 

I-V (OL), I-(V-(0,p) (OL) (4) 

0054 The magnets can be placed in two different ways on 
the rotor of a permanent magnet (“PM) motor (e.g., a 
PMSM). Depending on the placement, the PM motors are 
called either Surface Permanent Magnet (“SPM) motors or 
Interior Permanent Magnet (“IPM) motors. An IPM motoris 
considered to have saliency with q axis inductance greater 
than the daxis inductance (L>L), while an SPM motor is 
considered to have Small saliency, thus having practically 
equal inductances in both d- and q-axes (LL). The torque 
of the PM motor is calculated by Eqn. (5) for a SPM motor 
and by Eqn. (6) for a IPM motor. 

T., ppi. SPM motor (5) 

T., p(y iH(L-L)ii) IPM Motor (6) 

where p is pole pairs. If the torque computed from Eqn. (5) or 
(6) is positive, the motor operates in the drive mode. If the 
torque computed from Eqn. (5) or (6) is negative, the motor 
operates in the regenerate mode. 
0055. In an EDV, the motor produces an electromagnetic 
torque. The bearing friction and wind resistance (e.g., drag) 
can be combined with the load torque opposing the rotation of 
the PM motor. The net torque, e.g., the difference between the 
electromagnetic torquet, developed by the motor and the 
load torque T, causes the combined inertias J., of the motor 
and the load to accelerate. Thus, the rotational speed of the 
PM motor is defined by Eqn. (7). 

te, Jedo), di+BC), +T. (7) 

where (), is the motor rotational speed, and B is the active 
damping coefficient. The relation between (), and () is 
defined below, where p is motor pole pairs. 

(Dep"() 

0056 PMSM Nested-Loop Vector Control Using Artifi 
cial Neural Networks 

0057 
0058 Referring again to FIG. 4, to develop a current-loop 
neural network controller 410, the PMSM model of Eqn. (1) 
is rearranged into the standard State-space form as shown by 
Eqn. (8), where the system states are is and is permanent 
magnet flux p, is assumed constant, and converter output 
voltages V, and V., are proportional to the control voltage of 
the current-loop neural network 410A. 

Current-Loop Neural Network Vector Control 
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R Coe La sd (8) 
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0059 For digital control implementations, the discrete 
equivalent of the continuous system state-space model can be 
obtained as shown by Eqn. (9). 

id (kT +T) Y (id (kT) vs. (kT) - O (9) 
i (kT + T ) a? is. (kT) -- s vs. (kT) - coeff 

where T represents the sampling period, A is the system 
matrix, and B is the input matrix. A zero-order-hold discrete 
equivalent mechanism is used herein to convert the continu 
ous state-space model of the system shown by Eqn. (8) to the 
discrete State-space model of the system as shown by Eqn. 
(9). T-1 ms has been used in all examples provided herein. 
This disclosure contemplates using other values for T. 
0060. The current-loop neural network 410A, also 
referred to herein as the current-loop action network, is 
applied to the DC/AC converter 402 through a PWM mecha 
nism to regulate the inverter output Voltage V applied to Sasb.Sc 
the PMSM stator. The current-loop action network, which can 
be denoted by the function A(x(k)w), is a fully connected 
multi-layer perceptron with weight vector w, an input layer 
with a plurality of input nodes, a plurality of hidden layers 
with a plurality of hidden layer nodes and an output layer with 
a plurality of output nodes. The multi-layer perceptron can 
have shortcut connections between all pairs of layers. Option 
ally, the multi-layer perceptron includes at least six input 
nodes, two hidden layers of six hidden layer nodes each and 
two output nodes. Alternatively or additionally, each of the 
nodes can be configured to implement a hyperbolic tangent 
function. It should be understood that the multi-layer percep 
tron can include the number of input nodes, hidden layer 
nodes and output nodes needed to implement the control 
techniques described herein. 
0061 The input vector to the current-loop action network 

i.a,(k)-i.(k), A(x (k-1), w)). The current-loop action net 
work can be configured to optimize a compensating da-con 
trol voltage based on the plurality of inputs. The four compo 
nents or inputs of x(k) correspond, respectively, to (1) 
presently measured PMSM stator B- and q-axis currents (e.g., 
d-axis current, is and q-axis current, i.), (2) error signals of 
the d- and q-axis currents (e.g., d-axis error signal and q-axis 
error signal), (3) predictive input signals (e.g., predicted 
d-axis current signal and predicted q-axis current signal), and 
(4) history of the current-loop action network output from a 
previous time step (e.g., feedback compensating da-control 
voltage). The d-axis error signal can be a difference between 
is and a reference d-axis current, is, and the q-axis error 
signal can be a difference between is and a reference q-axis 
current, i. 
10062) In the above input vector, i(k) is the predicted cur 
rent state vector (e.g., the B- and q-axis current signals or the 
predictive input signals), which can be calculated with a fixed 
model shown in Eqn. (10). 
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where Ao and Bo are constant matrices of Eqn. (9) chosen for 
the default nominal parameters of the AC electrical machine 
(e.g., PMSM 401). In other words, the predicted d- and q-axis 
current signals, i? and i, can be computed using a current 
prediction model. The current prediction model can be based 
on it is and the compensating da-control Voltage at a pre 
vious time step and default parameters for the AC electrical 
machine as shown in Eqn. (10). In addition, the predicted 
d-axis current signal can be a difference between is and a 
predicted d-axis current, is, and a predicted q-axis current 
signal can be a difference between is and a predicted q-axis 
current, i. Hence the third component of x(k), i.e., Sg 

i.a(k) -i.(k), gives the current-loop action network infor 
mation on how much the current matrices A and B differ from 
the default parameters Ao and Bo. This information allows the 
current-loop action network to adapt in real time to changing 
A and B matrices. When the predictive input signals are 
provided to the current-loop action network, it is more pow 
erful than the conventional model-based predictive control 
due to the advantage obtained through learning. In addition, 
A(x (k-1),w) is the output of the current-loop action network 
at a previous time step (e.g., feedback compensating dd 
control Voltage). This input helps the current-loop action 
network adapt in real time to changing A and B matrices since 
it gives feedback on what relative adjustments need making to 
the previous action which was attempted. 
I0063 Optionally, the input vector, i(k), to the current 
loop neural network can further include an integral of the 
d-axis error signal and an integral of the q-axis error signal. 
The integrals of the d-axis and the q-axis error signals can 
provide the current-loop action neural network with a history 
of the d-axis and q-axis error signals, respectively. The inte 
gral terms provide a history of all past errors by Summing 
errors together. For example, if there is an errorina given time 
step, the error is added to the integral term for the next time 
step. Thus, the integral term will only stay the same as it was 
at a previous time step if there is no errorina current time step, 
which prevents the action neural network from stabilizing at 
a non-target value. This helps to minimize steady state errors. 
0064. To simplify the expressions, the discrete system 
model Eq. (9) is represented by Eqn. (11). 

i(k+1)-A (k)+B (v(k)-e) (11) 

where e (0 (D.J.)" va,(k) is the control vector, which is 
determined from the output of the current-loop action net 
work, A(x(k)a) as shown by Eqn. (12). 

where Wo-Bo (Ao-I) is a constant referred to herein as a 
stabilization matrix. As discussed herein, the stabilization 
matrix refers to both Wo and e terms in Eqn. (12), which are 
added to A(x (k-1),w). The stabilization matrix acts like an 
extra weight matrix in the current-loop action network that 
connects the input layer directly to the output layer. In other 
words, the compensating dd-control Voltage (e.g., the output 
of the current-loop action network) can optionally be adjusted 
by the stabilization matrix, which is based on default param 
eters for the AC electrical machine (e.g., PMSM 401). This 
provides the current-loop action network with some basic 
default behavior of being able to hold the system steady more 
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easily. The stabilization matrix also removes many of the 
local minima from the search space that are classically asso 
ciated with gradient-descent algorithms applied to recurrent 
neural networks. 

0065. It should be understood that training the current 
loop action network (discussed in detail below) can be diffi 
cult because every time a component of the weight vector w 
changes, the actions chosen by Eqn. (12) change at every time 
step. Each changed action will consequently change the next 
state that the system passes through as shown by Eqn. (11). 
And each changed State will further change the next action 
chosen by Eqn. (12). This creates an ongoing cascade of 
changes. Hence changing even one component of weven by 
the tiniest finite amount can completely scramble the trajec 
tory generated by Eqns. (11) and (12). Thus, the cost function 
(Eqn. (17)) can be overly sensitive to changes in w. In other 
words, the surface of the cost function in the w-space aS 
shown by FIG. 5 (see FIG. 5A) can be extremely crinkly. In 
FIG. 5A, the error surface is difficult for gradient descent 
algorithms. Hence it may be difficult to train the current-loop 
action network effectively. 
0066. The stabilization matrix is effectively a hand-picked 
weight matrix which helps the current-loop action network do 
its job more effectively. It works partly by smoothing out the 
crinkliness of the cost function, which makes the Surface 
more like FIG.SB than FIG. 5A. In FIG.SB, the error surface 
is Smoother and easier for gradient descent algorithms. 
0067. Referring now to FIG. 6, agraph illustrating how the 
state vector evolves if an action network chose completely 

-> -> -> 

passive actions is shown, e.g., u=0 and e = 0. In this 
case, the state vector would drift around the state space like a 
cork floating on an ocean current. 
0068 To solve the tracking problem, the task of the cur 
rent-loop action network can be split into two stages. First, to 
fight against moving with the arrows in FIG. 6, which will 
most likely take the state away from the target state is,*. 
Then, secondly, to actively head towards the tracking target 
point i.*. The idea of the stabilization matrix is to make the 
first of these two objectives automatic. This should make the 
current-loop action network's task much simpler. The pres 
ence of the stabilization matrix should make the arrows in 
FIG. 6 vanish. To achieve this, first find the fixed point of Eqn. 
(11) with respect to the control action by: 

-> -> 

isi, Aisatis (tsa, ed.) 

d-1 -- 
lisi, e =-B (A-I) i sdq 

to-1 - - -> ti-B" (A-I) is + e. 
where I is the identity matrix. Choosing this action will help 
keep the AC electrical machine in exactly the same state. 
0069. The stabilization matrix is a very useful addition to 
the neural network vector control system because with the 
feedback present the current-loop action network is effec 
tively a recurrent neural network, which is challenging to 
train correctly and consistently. Furthermore, according to 
the techniques discussed herein, the current-loop action net 
work learns to overcome the challenge of coping with rapidly 
changing target states and random variation of parameters of 
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the AC electrical machine. Hence the stabilization matrix 
helps to make the current-loop action network training 
achieve consistently good results. For example, the stabiliza 
tion matrix helps prevent the current-loop action network 
training from getting trapped in Suboptimal local minima. 
0070 Speed-Loop Neural Network Vector Control 
0071 Referring again to FIG. 4, to develop a speed-loop 
neural network controller 420, the torque equation from Eqn. 
(7) is rearranged into the standard State-space representation 
as shown by Eqn. (13). 

do), di-BO),J-(T-T)/J (13) 
where the system state is (), and the drive torque t is 
proportional to the output of the speed-loop action network. 
The conversion from the torque to the q-axis current (e.g., the 
reference q-axis current, i) is obtained from Eqn. (5). For 
digital control implementations, the discrete equivalent of the 
continuous state-space model can be obtained as shown by 
Eqn. (14). 

0072 The output of the speed-loop neural network 420A, 
also referred to herein as the speed-loop action network, is 
applied to the input of the current-loop action network as the 
reference q-axis current, i. Similar to the current-loop 
action network, the speed-loop action network is a fully con 
nected multi-layer perceptron with weight vector w, an input 
layer with a plurality of input nodes, a plurality of hidden 
layers with a plurality of hidden layer nodes and an output 
layer with a plurality of output nodes. The multi-layer per 
ceptron can have shortcut connections between all pairs of 
layers. Optionally, the multi-layer perceptron includes at least 
four input nodes, two hidden layers of six hidden layer nodes 
each and two output nodes. Alternatively or additionally, each 
of the nodes can be configured to implement a hyperbolic 
tangent function. It should be understood that the multi-layer 
perceptron can include the number of input nodes, hidden 
layer nodes and output nodes needed to implement the control 
techniques described herein. 
0073. The control signal generated by the speed-loop 
action network is shown by Eqn. (15). 

where 

contains all the network inputs, and w is the weight vector of 
the speed-loop action network. The speed-loop action net 
work can be configured to optimize a drive torque signal 
based on the plurality of inputs. Similar to the current-loop 
action network, the speed-loop action network can use pre 
dictive inputs, as well as previous speed-loop control actions. 
As shown by Eqn. (15), the plurality of inputs can be a speed 
of the AC electrical machine, (), a speed error signal, a 
predicted speed signal and a feedback drive torque signal 
(e.g., output of the speed-loop action network at a previous 
time step). The speed error signal can be a difference between 
co, and a reference speed, co. Additionally, (),(k) is the 
predicted speed calculated with a fixed model shown by Eqn. 
(16). 

6,(k)-ao (), (k-1)+bot, (k-1)-T) (16) 
wherea and bo are the constant values of Eqn. (14) chosen for 
the default AC electrical machine (e.g., PMSM 401) inertias 
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and damping coefficient. In other words, the predicted speed 
signal can optionally be a difference between (), and a pre 
dicted speed signal, (), where () is computed using a speed 
prediction model. As shown in Eqn. (16), the speed prediction 
model can be based on (), and t, at a previous time step and 
default parameters for the AC electrical machine. 
0074. Optionally, the inputs to the speed-loop neural net 
work can further include an integral of the speed error signal. 
The integral of the speed error signal can provide the speed 
loop action neural network with a history of the speed-loop 
error signals. The integral term provides a history of all past 
errors by Summing errors together. For example, if there is an 
error in a given time step, the error is added to the integral 
term for the next time step. Thus, the integral term will only 
stay the same as it was at a previous time step if there is no 
error in a speed time step, which prevents the action neural 
network from stabilizing at a non-target value. This helps to 
minimize steady state errors. 
0075 Also similar to the current-loop action network, the 
drive torque signal, t, can optionally be adjusted by a 
drive-torque stabilization matrix that is based on default 
parameters for the AC electrical machine (e.g., PMSM 401). 
The use of a stabilization matrix is discussed in detail above 
and is therefore not discussed in further detail below. 
0076 Training Neural Networks Based Upon Dynamic 
Programming 
0077 DP employs the principle of optimality and is a very 
useful tool for Solving optimization and optimal control prob 
lems. Action neural networks (e.g., current-loop neural net 
work 410A and/or speed-loop neural network 420A of FIG. 
4) can be trained to minimize a cost of the DP algorithm 
(described below) using a BPTT algorithm. The BPTT algo 
rithm is gradient descent on J(x (),w) with respect to the 
weight vector of the action neural network. The BPTT algo 
rithm can be applied to an arbitrary trajectory with an initial 
state iG), and thus be used to optimize the vector control 
strategy. In general, the BPTT algorithm consists of two 
steps: a forward pass which unrolls a trajectory, followed by 
a backward pass along the whole trajectory which accumu 
lates the gradient descent derivative. 
(0078 Training the Current-Loop Neural Network 
007.9 The objective of the current-loop control (e.g., using 
current-loop neural network 410A of FIG. 4) is to implement 
a current tracking problem, e.g., hold the existing state i.dig 
near to a given (and possibly moving) target state i.*. The 
Weights (e.g., w) of the action network can be trained to solve 
the tracking problem by doing gradient descent with respect 
to won Eqn. (17) based on the DP principle: 

where m is some constant power (e.g., m=0.5 in the 
examples), || denotes the modulus of a vector, and Ye O. 1 is 
a constant “discount factor'. The current-loop action network 
was trained separately to minimize the DP cost in Eqn. (17), 
by using the BPTT algorithm. The BPTT algorithm was cho 
sen because it is particularly Suited to situations where the 
model functions are known and differentiable, and also 
because BPTT has proven stability and convergence proper 
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ties since it is a gradient descent algorithm provided the 
learning rate is sufficiently small. In general, the BPTT algo 
rithm consists of two steps: a forward pass which unrolls a 
trajectory, followed by a backward pass along the whole 
trajectory, which accumulates the gradient descent derivative. 
For the termination condition of a trajectory, a fixed trajectory 
length corresponding to a real time of 1 second is used (e.g., 
a trajectory had 1/T1000 time steps in it). Y=1 is for the 
discount factor in Eqn. (17). 
0080. To train the current-loop action network, the system 
data associated with Eq. (8) are specified. The training pro 
cedure for the current-loop action network includes: (1) ran 
domly generating a sample initial state iG), (2) randomly 
generating a changing sample reference dd current time 
sequence, (3) unrolling the trajectory of the neural network 
vector control system from the initial state, (4) training the 
current-loop action network based on the DP cost function in 
Eqn. (17) and the BPTT training algorithm, and (5) repeating 
the process for all the sample initial states and referencedd 
currents until a stop criterion associated with the DP cost is 
reached. The weights were initially all randomized using a 
Gaussian distribution with Zero mean and 0.1 variance. The 
training also considers variable nature of the AC electrical 
machine (e.g., PMSM) resistance and inductance. Training 
used Resilient backpropagation (“RPROP”) to accelerate 
learning. RPROP was allowed to act on multiple trajectories 
simultaneously (each with a different start point and is,*). 
I0081 Example algorithms for BPTT for PMSM vector 
control with and without the stabilization matrix are provided 
below in Tables 1 and 2, respectively. 

TABLE 1. 

Algorithm 1 BPTT for PMSM 
Vector-control problem, with fixed A and B matrices 

{Unroll a full trajectory: 
for k = 0 to K-1 do 

k,T(x,x* - X, w){Neural network output} 
x <-AX + B (u? - c) Calculate next state 
J - J + YU (X, X*, u) 

end for 

-> 

u - 

{Backwards pass along trajectory: 
J w - 0 
J x - 0 

11: for k = K-1 to Ostep - 1 do 
12: 

1 O: 

atti Jul; e- (B).J x + y -X 
du 

13: 

dx. J u + (AJ X, + J x -kpen 

k (tie) y - 
8x. 

14: -X --> oft(x,x. is, w) 
w 

15: end for 
16: J 

{On exit, J wholds aw for the whole trajectory.} 
W 
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TABLE 2 

Algorithm 2 Enhanced BPTT for PMSM 
Vector-control, with stabilization matrix and adaptive controller 

J - 0, x -xo, so - 0 
2: Unroll a full trajectory: 
3: for k = 0 to K-1 do 

4: y - I (X,x* - x, x -x s , w) {Neural network output 
5: u. -k, y + Wox + c {Stabilized control action} 
6: x <-AX + B (u? - c) {Next state, using the time 

dependent A and B matrices 
7: x <-AX +B (u - c) {Predicted next state, according to 

the fixed A and B matrices} 
8: S <-y: {Previous network output} 
9: J - J -- YU (X,x, *, u?.) 

10: end for 
11: Backwards pass along trajectory: 
12: J w e- O 

J x - 0, J x - 0, J. S. - 0 
14: for k = K-1 to Ostep - 1 do 
15: 

dui 
16: J ye- keen u + Js: 1 
17: -* -> --> M --> --> 

d7t(X, X, -X, Xi - xk, St., -X -X J x, - ' ' ' ' WJy, way u + 
dx. 

0U (X,x, ui, ) -X Tr a ks lik 

(A:) J X-1 +AJ & 1 +y (lite 8x. 
18: -* -> --> M --> --> r Ö (X,x -x., x - &, S., w) , J & e-- Jy, dxt 
19: -* -> --> M -> --> -X 67 (X,x -x., x - &, Sk, w) , J S - - Jy. 

ds. 
2O: -X* -> --> -> --> 

J w e-J w -- dir (X, X-X, X - &, Sk, w) Jy. 
dw 

21: end for 
22: -X J 

{On exit, J wholds for the whole trajectory.} w 

0082 Generation of the reference current can consider the 
physical constraints of a practical PMSM. These include the 
rated current and converter PWM saturation constraints. 
From the power converter standpoint, the PWM saturation 
constraint represents the maximum Voltage that can be gen 
erated and applied to the PWM circuit. From the current-loop 
action network standpoint, the PWM saturation constraint 
stands for the maximum positive or negative Voltage that the 
current-loop neural network can output. Therefore, if a refer 
encedd current requires a control Voltage that is beyond the 
acceptable Voltage range of the current-loop neural network, 
it is impossible to reduce the cost (e.g., Eqn. (17)) during the 
training of the action network. 
I0083. The following two strategies are used to adjust ran 
domly generated reference currents. If the rated current con 
straint is exceeded, the referencedd current is modified by 
keeping the q-axis current reference i* unchanged to main 
tain torque control effectiveness (e.g., Eq. (5)) while modify 
ing the d-axis current reference is to satisfy the d-axis 
control demand as much as possible as shown by Eqn. (18). 

ia e-sign(i)V(id na")-(i.) (18) 

0084. If the PWM saturation limit is exceeded, the refer 
encedd current is modified by Eqn. (19). 
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which represents a condition of keeping the d-axis Voltage 
reference V, unchanged so as to maintain the torque control 
effectiveness (e.g., Eqns. (4) and (5)) while modifying the 
q-axis voltage reference V* to meet the d-axis control 
demand as much as possible. 
0085. Referring now to FIG. 7, a graph illustrating an 
average DP cost per trajectory time step for training an 
example neural network is shown. In particular, FIG. 7 dem 
onstrates the average DP cost per trajectory time step for a 
successful training of the current-loop neural network 410A 
of FIG. 4, in which both the initial state and the referencedd 
currents are generated randomly using uniform distribution. 
Each trajectory duration was unrolled during training for a 
duration of 1 second, and the reference dd current was 
changed every 0.05 seconds. As shown in FIG. 7, the overall 
average DP cost dropped to a small number quickly, demon 
strating good learning ability of the current-loop neural net 
work for the vector control application. 
I0086 Training the Speed-Loop Neural Network 
0087. The objective of the speed-loop control (e.g., using 
speed-loop neural network 420A of FIG. 4) is to implement a 
speed tracking problem, e.g., hold the existing state (), near 
to a given (and possibly moving) target state (). The 
weights wo of the speed-loop action network are trained to 
solve the tracking problem by doing gradient descent with 
respect to w on Eqn. (20) based on the DP principle: 

K (20) 
JC, (j), w) =Xylon(k)- co,(k)" 

0088. To train the speed-loop action network, the system 
data associated with Eq. (14) are specified. The training pro 
cedure includes: (1) randomly generating a sample initial 
State (), (2) randomly generating a changing sample refer 
ence speed time sequence, (3) unrolling the motor speed 
trajectory from the initial state, (4) training the speed-loop 
action network based on the DP cost function of Eqn. (20) and 
the BPTT training algorithm, and (5) repeating the process for 
all the sample initial states and reference speeds until a stop 
criterion associated with the DP cost is reached. Speed-loop 
training also used RPROP. The generation of the reference 
speed considers the speed changing range from 0 rad/s to the 
maximum possible motor rotating speed. The training con 
siders variable nature of the inertia and the damping coeffi 
cient and the limitation of maximum acceptable torque. 
Example algorithms for BPTT for PMSM vector control with 
and without the stabilization matrix are provided below in 
Tables 1 and 2, respectively. 

EXAMPLES 

Performance Evaluation of Nested-Loop Neural 
Network Controller 

0089. An integrated transient simulation of a complete 
PMSM system is developed by using power converter aver 
age and detailed switching models in SIMPOWERSYS 
TEMS made by MATHWORKS of NATICK, MA. A block 
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diagram illustrating a neural network vector control system 
for a PMSM used for the simulations is shown in FIG. 8. The 
block diagram includes a PMSM 801, a DC/AC PWM con 
verter 802, an electrical power source 803 and a neural net 
work control system 810. The average model is used for an 
initial evaluation while the detailed switching model is used 
for investigation under more practical conditions. For the 
switching-model based PMSM system, the converter switch 
ing frequency is 1980 Hz, and losses within the DC/AC power 
converter are considered. The parameters used in the simula 
tion study are shown in Table 3. 

TABLE 3 

Parameter Value Units 

Rated Power 50 kW 
dc voltage 500 V 
Permanent magnet flux 0.1757 wb 
Inductance in q-axis, L. 1.598 mH 
Inductance in d-axis, L. 1.598 mH 
Stator copper resistance, O.OO6S 
R 
Inertia O.O89 kg m) 
Damping coefficient O.1 
Pole pairs 4 

0090 Two approaches are used to prevent high motor 
current. First, the speed reference applied to the speed-loop 
controller is processed through a ramp limit, which is very 
effective to prevent rapidly-changing high current from being 
applied to the motor. Second, if the increase of speed refer 
ence causes the current reference generated by the speed-loop 
controller to go beyond its rated current, any speed reference 
increment will be blocked. 

(0091 Ability of the Neural Network Controllers in Cur 
rent and Speed Tracking 
0092 FIGS.9A-9C are graphs illustrating performance of 
an example nested-loop neural network vector controller. 
FIGS. 9A-9C illustrate reference and actual motor (e.g., a 
PMSM) speeds. FIG.9B illustrates electromagnetic torque. 
FIG. 9C illustrates reference and actual d- and q-axis cur 
rents. FIG.9 presents a performance study of the current- and 
speed-loop neural network controllers of a PM motor under a 
steady load torque condition by using the average-model 
based simulation. The motor starts with a reference speed 
increasing linearly from 0 rad/s at the beginning to 60 rad/s at 
t=0.25 s. This causes the q-axis reference current generated 
by the speed-loop controller increasing linearly whiled-axis 
reference current is hold at OA for a minimum stator current 
control purpose. As shown in FIGS. 9A-9C, both motor cur 
rent and speed can follow the reference current and speed 
perfectly. When the reference speed changes to a constant 
value of 60 rad/s at t=0.25 s, the motor current or torque is 
quickly regulated in Such a way that makes the motor get to 
the steady speed almost immediately. For other reference 
speed changes from 60 rad/s to 40 rad/s at t=1 s and from 40 
rad/s to 80 rad/s at t=2 s, the nested-loop neural network 
vector controller shows excellent performance to meet the 
motor control demands as shown by FIG. 9. 
(0093 Comparison of Neural Network Controller with 
Conventional Vector Control Method 

0094 FIGS. 10A-10B are graphs illustrating a compari 
son of a conventional PI controller and a nested-loop neural 
network vector controller. FIG. 10A illustrates reference and 
actual motor speeds. Reference speed 1002, PMSM speed 
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using a neural network vector controller 1004 and PMSM 
speed using a conventional PI controller 1006 are shown in 
FIG. 10A. FIG. 10B illustrates electromagnetic torque. 
PMSM torque using a neural network vector controller 1010 
and PMSM torque using a conventional PI controller1012 are 
shown in FIG. 10B. For the comparison study, the current 
and speed-loop PI controllers are designed by using the con 
ventional standard vector control techniques described 
above. The gains of the current-loop PI controller are 
designed based on the following transfer functions: 

visi(Rii-Laivat)-(D-Li, 

The gains of the speed-loop PI controller are designed based 
on the transfer function of Eqn. (7). Then, for digital control 
implementation of the PI controllers at the sampling rate of 
T=1 ms, the controller gains for both the speed and current 
loops are retuned until the controller performance is accept 
able. Tuning of the PI controllers is a challenging task, par 
ticularly for a low sampling rate. Such as TF1 ms. The com 
parison shown by FIG. 10 indicates that the neural network 
vector controller has the fastest response time, low overshoot, 
and best performance. For many other reference current con 
ditions, the comparison demonstrates that the neural network 
vector controller performs better. 
0095 Performance Evaluation Under Variable Parameters 
of a PMSM 

0096 PMSM stability is an issue to consider. In general, 
studies primarily focus on the motor performance under 
uncertain system parameter variations. These include 
changes of motor resistance and inductance from its nominal 
values or changes of fraction coefficient and combined iner 
tia. Those changes affect the performance of the current- or 
speed-loop controller. 
0097. The stability of the nested-loop neural control tech 
nique is evaluated for two variable system parameter condi 
tions, namely, 1) variation of motor resistance and induc 
tance, and 2) deviation of motor drive parameters associated 
with the torque-speed of Eqn. (7). FIGS. 11A-11B are graphs 
illustrating performance of an example neural vector control 
ler under variable system parameter conditions (e.g., changes 
in motor resistance and inductance values). In particular, FIG. 
11A-11B illustrate how an example neural network vector 
controller is affected when the motor resistance and induc 
tance values increase by 30% from the initial values and the 
equivalent inertia J., is doubled. FIG. 11A illustrates motor 
speed. FIG. 11B illustrates d- and q-axis currents. FIGS. 
11A-11B show that both the current- and speed-loop neural 
network controllers are affected very little by the system 
parameter variation. This is due to the fact that both the speed 
and current-loop neural network controllers have been trained 
for the variable system parameter conditions so that the neural 
network controllers possess strong robustness to handle the 
motor control under variable system parameter conditions. 
0098 Performance Evaluation in Power Converter 
Switching Environment 
0099 PMSM control is achieved through power electronic 
converters, which operate in a highly dynamic Switching 
environment. This causes high order harmonics in the three 
phase PMSM stator voltage and current. This means that in 
the dd reference frame, large oscillations would appear in 
stator Voltage and current. Since these oscillation impacts are 
not considered during the training stage of the neural net 
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works, the behavior of the neural network controller is inves 
tigated in the power converter Switching environment. 
0100 FIGS. 12A-12C are graphs illustrating a case study 
of an example neural network vector controller in the switch 
ing environment of the power converter, in which the speed 
reference is similar to those used in FIGS. 9A-9C. FIG. 12A 
illustrates reference and actual motor speed. FIG. 12B illus 
trates d- and q-axis currents. FIG. 12C illustrates three-phase 
stator current. As shown in FIG. 12A-12C, the neural network 
control shows an excellent performance in the Switching con 
dition too. Due to the Switching impact, the actual dd current 
oscillates around the reference current. An examination of the 
stator current shows that the three-phase current is very bal 
anced and adequate. For any command change of the refer 
ence speed, the motor can be adjusted to a new balanced 
three-phase current and a new speed quickly, demonstrating a 
strong optimal control capability of the neural network vector 
control method even in the highly dynamic Switching condi 
tions. 

0101 The figures illustrate the architecture, functionality, 
and operation of possible implementations of systems, meth 
ods and computer program products according to various 
implementations of the present invention. In this regard, each 
block of a flowchart or block diagrams may represent a mod 
ule, segment, or portion of code, which comprises one or 
more executable instructions for implementing the specified 
logical function(s). It should also be noted that, in some 
alternative implementations, the functions noted in the block 
may occur out of the order noted in the figures. For example, 
two blocks shown in Succession may, in fact, be executed 
Substantially concurrently, or the blocks may sometimes be 
executed in the reverse order, depending upon the function 
ality involved. It will also be noted that each block of the 
block diagrams and/or flowchart illustration, and combina 
tions of blocks in the block diagrams and/or flowchart illus 
tration, can be implemented by special purpose hardware 
based systems that perform the specified functions or acts, or 
combinations of special purpose hardware and computer 
instructions. 

0102 The corresponding structures, materials, acts, and 
equivalents of all means or step plus function elements in the 
claims below are intended to include any structure, material, 
or act for performing the function in combination with other 
claimed elements as specifically claimed. The description of 
the present invention has been presented for purposes of 
illustration and description, but is not intended to be exhaus 
tive or limited to the invention in the form disclosed. Many 
modifications and variations will be apparent to those of 
ordinary skill in the art without departing from the scope and 
spirit of the invention. The implementation was chosen and 
described in order to best explain the principles of the inven 
tion and the practical application, and to enable others of 
ordinary skill in the art to understand the invention for various 
implementations with various modifications as are Suited to 
the particular use contemplated. 
0103) Any combination of one or more computer readable 
medium(s) may be used to implement the systems and meth 
ods described hereinabove. The computer readable medium 
may be a computer readable signal medium or a computer 
readable storage medium. A computer readable storage 
medium may be, for example, but not limited to, an elec 
tronic, magnetic, optical, electromagnetic, infrared, or semi 
conductor System, apparatus, or device, or any suitable com 
bination of the foregoing. More specific examples (a non 
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exhaustive list) of the computer readable storage medium 
would include the following: an electrical connection having 
one or more wires, a portable computer diskette, a hard disk, 
a random access memory (RAM), a read-only memory 
(ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), an optical fiber, a portable com 
pact disc read-only memory (CD-ROM), an optical storage 
device, a magnetic storage device, or any suitable combina 
tion of the foregoing. In the context of this document, a 
computer readable storage medium may be any tangible 
medium that can contain, or store a program for use by or in 
connection with an instruction execution system, apparatus, 
or device. 
0104. A computer readable signal medium may include a 
propagated data signal with computer readable program code 
embodied therein, for example, in baseband or as part of a 
carrier wave. Such a propagated signal may take any of a 
variety of forms, including, but not limited to, electro-mag 
netic, optical, or any Suitable combination thereof. A com 
puter readable signal medium may be any computer readable 
medium that is not a computer readable storage medium and 
that can communicate, propagate, or transport a program for 
use by or in connection with an instruction execution system, 
apparatus, or device. 
0105 Program code embodied on a computer readable 
medium may be transmitted using any appropriate medium, 
including but not limited to wireless, wireline, optical fiber 
cable, RF, etc., or any Suitable combination of the foregoing. 
0106 Computer program code for carrying out operations 
for aspects of the present invention may be written in any 
combination of one or more programming languages, includ 
ing an object oriented programming language such as Java, 
Smalltalk, C++ or the like and conventional procedural pro 
gramming languages, such as the “C” programming language 
or similar programming languages. The program code may 
execute entirely on the user's computer, partly on the user's 
computer, as a stand-alone software package, partly on the 
user's computer and partly on a remote computer or entirely 
on the remote computer or server. In the latter scenario, the 
remote computer may be connected to the user's computer 
through any type of network, including a local area network 
(LAN) or a wide area network (WAN), or the connection may 
be made to an external computer (for example, through the 
Internet using an Internet Service Provider). 
0107 Aspects of the present invention are described 
herein with reference to flowchart illustrations and/or block 
diagrams of methods, apparatus (systems) and computer pro 
gram products according to implementations of the invention. 
It will be understood that each block of the flowchart illustra 
tions and/or block diagrams, and combinations of blocks in 
the flowchart illustrations and/or block diagrams, can be 
implemented by computer program instructions. These com 
puter program instructions may be provided to a processor of 
a general purpose computer, special purpose computer, or 
other programmable data processing apparatus to produce a 
machine, such that the instructions, which execute via the 
processor of the computer or other programmable data pro 
cessing apparatus, create means for implementing the func 
tions/acts specified in the flowchart and/or block diagram 
block or blocks. 
0108. These computer program instructions may also be 
stored in a computer readable medium that can direct a com 
puter, other programmable data processing apparatus, or 
other devices to function in a particular manner, Such that the 
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instructions stored in the computer readable medium produce 
an article of manufacture including instructions which imple 
ment the function/act specified in the flowchart and/or block 
diagram block or blocks. 
0109 The computer program instructions may also be 
loaded onto a computer, other programmable data processing 
apparatus, or other devices to cause a series of operational 
steps to be performed on the computer, other programmable 
apparatus or other devices to produce a computer imple 
mented process such that the instructions which execute on 
the computer or other programmable apparatus provide pro 
cesses for implementing the functions/acts specified in the 
flowchart and/or block diagram block or blocks. 
0110. Although the subject matter has been described in 
language specific to structural features and/or methodologi 
cal acts, it is to be understood that the subject matter defined 
in the appended claims is not necessarily limited to the spe 
cific features or acts described above. Rather, the specific 
features and acts described above are disclosed as example 
forms of implementing the claims. 

1. A method for controlling an AC electrical machine, 
comprising: 

providing a pulse-width modulated (“PWM) converter 
operably connected between an electrical power Source 
and the AC electrical machine; 

providing a neural network vector control system operably 
connected to the PWM converter, the neural network 
vector control system comprising a current-loop neural 
network; 

receiving a plurality of inputs at the current-loop neural 
network, wherein the plurality of inputs comprise: 
a d-axis current, is and a q-axis current, i. 
a d-axis error signal and a q-axis error signal, wherein 

the d-axis error signal comprises a difference between 
is and a referenced-axis current, i, and the q-axis 
error signal comprises a difference between is and a 
reference q-axis current, i. 

a predicted d-axis current signal and a predicted q-axis 
current signal; and 

a feedback compensating dd-control Voltage; 
outputting a compensating dd-control Voltage from the 

current-loop neural network, wherein the current-loop 
neural network is configured to optimize the compen 
Sating da-control Voltage based on the plurality of 
inputs; and 

controlling the PWM converter using the compensating 
dq-control voltage. 

2. The method of claim 1, wherein a predicted d-axis cur 
rent signal further comprises a difference between is and a 
predicted d-axis current, i, and a predicted q-axis current 
signal further comprises a difference between is and a pre 
dicted q-axis current, i, wherein i? and is are computed 
using a current prediction model. 

3. The method of claim 2, wherein the current prediction 
model is based on it is and the compensating dg-control 
Voltage at a previous time step and default parameters for the 
AC electrical machine. 

4. The method of claim 1, wherein the compensating da 
control Voltage is adjusted by a stabilization matrix, the sta 
bilization matrix being based on default parameters for the 
AC electrical machine. 
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5. The method of claim 1, wherein the plurality of inputs at 
the current-loop neural network further comprise an integral 
of the d-axis error signal and an integral of the q-axis error 
signal. 

6. The method of claim 1, wherein the neural network 
vector control system further comprises a speed-loop neural 
network, the method further comprising: 

receiving a plurality of inputs at the speed-loop neural 
network, wherein the plurality of inputs comprise: 
a speed of the AC electrical machine, (), 
a speed error signal comprising a difference between (), 

and a reference speed, co, 
a predicted speed signal; and 
a feedback drive torque signal; and 

outputting a drive torque signal, t, from the speed-loop 
neural network, wherein the speed-loop neural network 
is configured to optimize the drive torque signal, T. 
based on the plurality of inputs, and wherein the drive 
torque signal, t, is converted into the reference q-axis 
current, i. 

7. The method of claim 6, wherein a predicted speed signal 
further comprises a difference between co, and a predicted 
speed signal, (), wherein (), is computed using a speed 
prediction model. 

8. The method of claim 7, wherein the speed prediction 
model is based on (), and t at a previous time step and 
default parameters for the AC electrical machine. 

9. The method of claim 6, wherein the drive torque signal, 
T, is adjusted by a drive-torque stabilization matrix, the 
drive-torque stabilization matrix being based on default 
parameters for the AC electrical machine. 

10. The method of claim 6, wherein the plurality of inputs 
at the speed-loop neural network further comprise an integral 
of the speed error signal. 

11. The method of claim 1, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work is configured to implement a dynamic programming 
(“DP) algorithm. 

12. The method of claim 11, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work is trained to minimize a cost function of the DP algo 
rithm using a backpropagation through time (“BPTT) algo 
rithm. 

13. The method of claim 12, further comprising training at 
least one of the current-loop neural network and the speed 
loop neural network by: 

randomly generating an initial state; 
randomly generating a sample reference state; 
unrolling a trajectory of the neural network vector control 

system from the initial state; and 
training the current-loop neural network or the speed-loop 

neural network based on the cost function of the DP 
algorithm and the BPTT algorithm. 

14. The method of claim 1, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work comprises a multi-layer perceptron including a plurality 
of input nodes, a plurality of hidden layer nodes and a plural 
ity of output nodes. 

15. The method of claim 14, wherein each of the nodes is 
configured to implement a hyperbolic tangent function. 

16. The method of claim 1, wherein the AC electrical 
machine is at least one of a permanent magnet synchronous 
machine and an induction machine. 

er 
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17. A system for controlling an AC electrical machine, 
comprising: 

a pulse-width modulated (“PWM) converter operably 
connected between an electrical power source and the 
AC electrical machine; 

a neural network vector control system operably connected 
to the PWM converter, the neural network vector control 
system comprising a current-loop neural network con 
figured to: 
receive a plurality of inputs at the current-loop neural 

network, wherein the plurality of inputs comprise: 
a d-axis current, is and a q-axis current, i. 
a d-axis error signal and a q-axis error signal, wherein 

the d-axis error signal comprises a difference 
between is and a referenced-axis current, i., and 
the q-axis error signal comprises a difference 
between is and a reference q-axis current, i. s so 

a predicted d-axis current signal and a predicted q-axis 
current signal; and 
a feedback compensating dd-control Voltage; and 

output a compensating dd-control Voltage from the cur 
rent-loop neural network, wherein the current-loop 
neural network is configured to optimize the compen 
sating dd-control Voltage based on the plurality of 
inputs, and wherein neural network vector control 
system controls the PWM converter using the com 
pensating dd-control Voltage. 

18. The system of claim 17, wherein a predicted d-axis 
current signal further comprises a difference between is and 
a predicted d-axis current, i, and a predicted q-axis current 
signal further comprises a difference between is and a pre 
dicted q-axis current, i, wherein i? and is are computed 
using a current prediction model. 

19. The system of claim 18, wherein the current prediction 
model is based on it is and the compensating dg-control 
Voltage at a previous time step and default parameters for the 
AC electrical machine. 

20. The system of claim 17, wherein the compensating 
dq-control Voltage is adjusted by a stabilization matrix, the 
stabilization matrix being based on default parameters for the 
AC electrical machine. 

21. The system of claim 17, wherein the plurality of inputs 
at the current-loop neural network further comprise an inte 
gral of the d-axis error signal and an integral of the q-axis 
error signal. 

22. The system of claim 17, wherein the neural network 
vector control system further comprises a speed-loop neural 
network configured to: 

receive a plurality of inputs at the speed-loop neural net 
work, wherein the plurality of inputs comprise: 
a speed of the AC electrical machine, (), 
a speed error signal comprising a difference between (), 

and a reference speed, co, 
a predicted speed signal; and 
a feedback drive torque signal; and 

output a drive torque signal, t, from the speed-loop neu 
ral network, wherein the speed-loop neural network is 
configured to optimize the drive torque signal, t, 
based on the plurality of inputs, and wherein the drive 
torque signal, t, is converted into the reference q-axis 
current, i. 
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23. The system of claim 22, wherein a predicted speed 
signal further comprises a difference between (), and a pre 
dicted speed signal, (), wherein () is computed using a 
speed prediction model. 

24. The system of claim 23, wherein the speed prediction 
model is based on co, and t at a previous time step and 
default parameters for the AC electrical machine. 

25. The system of claim 22, wherein the drive torque sig 
nal, T is adjusted by a drive-torque stabilization matrix, the 
drive-torque stabilization matrix being based on default 
parameters for the AC electrical machine. 

26. The system of claim 22, wherein the plurality of inputs 
at the speed-loop neural network further comprise an integral 
of the speed error signal. 

27. The system of claim 17, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work is configured to implement a dynamic programming 
(“DP) algorithm. 

28. The system of claim 27, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work is trained to minimize a cost function of the DP algo 
rithm using a backpropagation through time (“BPTT) algo 
rithm. 
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29. The system of claim 28, further comprising training at 
least one of the current-loop neural network and the speed 
loop neural network by: 

randomly generating an initial state; 
randomly generating a sample reference state; 
unrolling a trajectory of the neural network vector control 

system from the initial state; and 
training the current-loop neural network or the speed-loop 

neural network based on the cost function of the DP 
algorithm and the BPTT algorithm. 

30. The system of claim 17, wherein at least one of the 
current-loop neural network and the speed-loop neural net 
work comprises a multi-layer perceptron including a plurality 
of input nodes, a plurality of hidden layer nodes and a plural 
ity of output nodes. 

31. The system of claim 30, wherein each of the nodes is 
configured to implement a hyperbolic tangent function. 

32. The system of claim 17, wherein the AC electrical 
machine is at least one of a permanent magnet synchronous 
machine and an induction machine. 

k k k k k 
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