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ABSTRACT

Ab-initio density functional approach is employed to investigate the struc-

tural, optical, and electronic properties of twelve undoped (non)stoichiometric mul-

ticomponent oxides with layered structure RAMO4 [R3+=In or Sc, A3+=Al or Ga,

andM2+=Ca, Cd, Mg, or Zn], as candidates for novel transparent conducting oxides.

The compositional complexity of RAMO4 leads to a wide range of band gaps

varying from 2.45 eV for InGaCdO4 to 6.29 eV for ScAlMgO4.We find that despite the

different band gaps in the constituent binary oxides, namely, 2–4 eV in CdO, In2O3,

or ZnO; 5–6 eV for Ga2O3 or Sc2O3; and 7–9 eV in CaO, MgO, or Al2O3, the states

of all cations contribute to the bottom of the conduction band of RAMO4. We show

that this hybrid nature of the conduction band originates from the unusual fivefold

atomic coordination of A3+ andM2+ cations and suggests that both structurally and

chemically distinct layers of RAMO4 are expected to participate in carrier transport.

This is consistent with the obtained isotropic electron effective mass of 0.3–0.5 me.

Next, in order to understand the carrier generation mechanism in RAMO4,

we have systematically investigated the formation of native point defects in three

representative InAMO4 oxides. We find that the donor antisite defects in InGaZnO4

and InAlZnO4 occur in higher concentrations than oxygen vacancies which are major

donors in binary oxides. Also in contrast to the binary TCOs, the formation energy

of cation vacancies is significantly lower in InAMO4 owing to a large structural relax-

ation around the defect. As a result, the equilibrium Fermi level is pushed away from

the conduction band and deeper into the band gap. The results agree well with the

observed dependence of the conductivity on the oxygen partial pressure in InGaZnO4.

These systematic investigations provide a significant insight into the role of

chemical composition and structural complexity of RAMO4 materials on the carrier

generation mechanisms and the resulting properties.
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1. INTRODUCTION

1.1. OVERVIEW

Transparent conducting oxides (TCOs) are unique materials that exhibit high

optical transparency in the visible region and controllable nearly-metallic electrical

conductivity. The range of technological applications and devices which use TCO as

a vital component, is remarkable: it includes flat panel displays, electrochromic and

smart windows, photovoltaic cells, and transparent electronics [1, 2, 3].

The current TCO market is mainly dominated by doped binary post-transition

metal oxides such as In2O3, SnO2, CdO, and ZnO. Obtaining a high electrical conduc-

tivity while maintaining a good optical transparency remains challenging even in the

conventional TCOs. Large carrier concentrations required for improved conductivity

lead to significant optical absorption and also limit the carrier mobility due to ionized

impurity scattering [1]. Thus, achieving optimal device performance requires deep

understanding of the fundamentals behind the complexity of these unique materials.

Until recently, much of the research work and development in the TCO field

has been primarily limited to optimizing and improving the performance of conven-

tional binary n-type TCOs [1, 3, 4]. However, high worldwide demand for TCO-based

technological devices, as well as rapid development of novel TCO-based applications,

stimulated the search for alternative TCO materials, those that are more efficient,

cost effective, and have broader range of both electrical and optical properties [1, 3, 5].

As a result, the number of research groups working in the field of TCOs increased dra-

matically in the recent years, and a variety of novel TCO materials with optical and

electronic properties controllable via chemical composition has been introduced [3, 5].

The novel TCOs include multicomponent oxides with ternary (such as Cd2SnO4,

ZnGa2O4, and ZnSnO3) and quaternary (e.g., InGaO3(ZnO)) compositions as well
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as solid solutions (e.g., Ga2−2xIn2xO3). These complex TCOs are primarily based on

the composition of the conventional TCOs, as illustrated in Fig. 1.1 [1, 2, 3, 6, 7]. In

particular, among the successful multicomponent oxides are the crystalline and amor-

phous InGaO3(ZnO)m (m ≤ 4) TCO and complex RAO3(MO)m compounds (where

R=In; A=Ga, Al; M=Divalent Cation; m=1-11) with layered structure, which have

been under several investigations [8, 9, 10, 11]. These materials have been already em-

ployed as a conducting channel layer in transparent thin-film transistors (TFTs) [12].

Figure 1.1: Composition space for the conventional TCO materials. Most of the
current complex TCOs are based on this composition space.

The main advantage of the multicomponent TCOs is the ability to offer a

wide range of tunable electrical and optical properties. These properties include

band gaps, band offsets, carrier concentrations, and carrier transport that can be

benefitted by a variety of TCO-based applications, such as high performance solar

cells and invisible electronics [13, 14]. In addition, multicomponent oxides offer a

chance to go beyond the conventional oxides in their compositions, by utilizing the

cheap and abundant light-metal oxides (such as Al, Mg, and Ca). The presence

of these light-metals in multicomponent oxides is highly attractive since they help

stabilize the multi-cation structure, allow for a broader optical transmission window



3

due to a larger band gap, and also help control the carrier content while preserving

the carrier mobility [3, 5, 15, 16].

Yet, the multicomponent TCOs have not outperformed the conventional bi-

nary TCOs. Both the electrical conductivity and the carrier mobility achieved in

the complex TCOs, such as Cd2SnO4 and InGaZnO4, σ=100-3000 S/cm and µ=10-

20 cm2V−1s−1, respectively, are considerably lower than those achieved in the bi-

nary TCOs. For example, the highest conductivity observed, specifically, in Sn

doped In2O3 (ITO) materials, is σ=5-10×103 S/cm whereas the mobility is µ=50-

1000 cm2V−1s−1 [10, 13, 17, 18].

To understand the origin of the limited conductivity and carrier mobility in

multicomponent oxides, as well as to shed light on the role played by each constituent

oxide, a more thorough and systematic investigation of the structural, electronic,

and optical properties as well as carrier generation mechanisms in complex oxides

is needed [19]. For this, ab-initio methods based on the density functional theory

have proven to be useful [20, 21, 22]. Electronic band structure investigations can

(i) provide accurate description of the structural, electronic, and optical properties

of undoped stoichiometric and nonstoichiometric oxides, and (ii) help develop funda-

mental understanding of the microscopic origins of the complex materials behavior.

Moreover, the availability and the advancement of high performance computers, as

well as an increased set of theoretical and ab-initio methods opened up possibilities

to systematically investigate and knowledgeably manipulate the properties of known

TCOs for improved performance as well as to search for novel TCO candidates beyond

the conventional post transition-metal oxides [1, 3, 21].
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1.2. CONVENTIONAL BINARY TCOS

This section is devoted to a review of the current status and the microscopic

properties of conventional TCOs, based on the results of both experimental and

theoretical investigations.

Conventional TCOs [such as F doped SnO2, Sn doped In2O3 (ITO), and F

or Al doped ZnO] are, primarily, the oxides of group IIB-IVB metals. They are

wide-band-gap insulators in their un-doped stoichiometric state, with a direct (op-

tical) band gap above 3 eV. The experimental direct band gaps obtained for the

conventional host oxides are 3.5–3.7 eV for In2O3, 3.1–3.6 eV for ZnO, and 3.6–4 eV

for SnO2. The obtained experimental isotropic effective masses are 0.28–0.35 me

for In2O3, 0.23–0.30 me for SnO2, and 0.28–0.32 me for ZnO, respectively, given in

the units of the electron mass, me [1, 3, 23]. Alone, the above basic host proper-

ties cannot explain the differences in the observed conductivities, given in Table 1.1,

suggesting that carrier generation mechanism plays a critical role in the resulting

electrical properties.

Table 1.1: List of some of the representative conventional TCOs with their highest
approximate conductivities σ and mobilities µ obtained experimentally.
Also, their characteristic properties desired for various TCO-based appli-
cations are listed [2].

TCOs σ (103 S/cm) µ (cm2/V·s) Characteristic property

In2O3:Sn 10 100 Highest conductivity

SnO2:F 5 70 Highest work function, lowest cost

ZnO:Al 6.5 50 Easy to etch

ZnO:F 2.5 30 Highest transparency, least toxic

It is important and instructive to know and assess the trend of capabilities of

conventional TCOs based on the observed results. Gordon et al. [2] suggested that

effective TCO materials should have both a high electrical conductivity and a low

absorption of visible light. Hence, a figure of merit for TCO materials can be defined
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as the ratio between the observed electrical conductivity and the optical absorption

coefficient. Within the Boltzmann formulation, the electrical conductivity σ can be

defined as σ = neµ, where µ is the electron mobility, n is the carrier concentration,

and e is the charge of the electron. In addition, mobility µ can be expressed as

µ = eτ/m∗, where τ is the relaxation time and m∗ is the effective mass of the

carriers.

Among the conventional TCOs, as listed in Table 1.1, the highest attained

experimental conductivity and electron concentrations are in the following order:

In2O3:Sn >ZnO:Al > SnO2:F > ZnO:F [2]. In terms of the figure of merit, they

follow a different order: ZnO:F >ZnO:Al > In2O3:Sn >SnO2:F [2]. In addition,

from the technological point of view, factors and characteristic properties, such as

work functions, stability and durability, cost efficiency, safety, and etchability are

important, playing a great role when comparing the TCO material performance [2].

Thus, when assessed on several factors, each conventional TCO has its own merits

which are suitable and desired for certain TCO-based applications and devices. As a

result, the above four compounds, although best-performing in terms of conductivity,

are insufficient for rapidly developing TCO-based applications and development of

alternative TCOs is required [3].

Understanding the theoretical fundamentals of conventional TCOs is the foun-

dation for the success of novel TCO materials’ development as well as for improving

the performance of the existing ones. Within this foundation, electronic band struc-

ture investigations can be used to understand the structural, optical, and electrical

properties of the TCO materials [1, 3, 5]. From an electronic band structure point

of view, the binary conventional TCOs has both an empty conduction band and a

completely-filled valance band, as shown in Figure 1.2(a). In order to become con-

ducting, these insulators have to be degenerately doped to shift the Fermi level EF

up into the conduction band, as shown in Figure 1.2(b).
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Figure 1.2: (a) A schematic electronic band structure of an insulating binary oxide
of conventional TCOs, with a band gap of Eg. The conduction band
is a highly dispersed parabolic band resulting from interactions between
metal s and oxygen p states. Here, the Fermi level, EF , lies within the
band gap Eg. (b) A schematic band structure of conventional transparent
and conducting oxide. The conductivity resulted from the degenerate
doping that shifted the Fermi level EF up into the conduction band via
a Burstein-Moss shift, EBM .

The most important characteristic, common to all conventional n-type TCOs,

is the highly dispersed, single free-electron-like (parabolic) conduction band, as il-

lustrated in Fig. 1.2 [24, 25, 26]. When the material is properly doped, this high

dispersion provides a high mobility of extra carriers because of their small effective

mass. Also, it results in low optical absorption because of the low density of states in

the dispersed conduction band. In addition, due to this highly dispersed conduction

band, the Fermi level EF shifts deep into the conduction band, which is called the

Burstein-Moss (BM) shift, EBM [27, 28]. This BM shift results in several optical
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transitions, including: inter-band transitions from the valance band to the conduc-

tion band Ev; transitions from the partially filled conduction band to the next empty

band Ec; and intra-band transitions within the conduction band Ei. All these transi-

tions contribute to the optical absorption, but their intensity depends on the density

of states.

Both the high mobility of extra carriers and the high carrier concentration

contribute to better conductivity (conductivity σ = neµ, where n is the carrier con-

centration, µ is the electron mobility, and e is the charge of the electron). However,

for better performance, increasing the carrier mobility is preferred over increasing the

carrier concentration because high carrier concentrations may result in an increase of

optical absorption [26]. Thus, obtaining a desired high conductivity without sacrific-

ing the low optical absorption (transparency) is very challenging and considered as

one of the major bottlenecks of the TCO materials development [1, 7].

The calculated electronic band structures of conventional TCOs shown in Fig-

ure 1.3 are similar in that they share the key characteristics of a highly dispersed

parabolic conduction band. This conduction band arises from the interaction be-

tween the oxygen 2p and metal s states. The valence bands are formed from the

oxygen 2p states. From the plots of partial density of states, illustrated in Figure 1.3,

the conduction band includes similar contributions from both the oxygen 2p and

metal ns states. This is critical for the charge transport - it represents a uniform

charge density distribution in the conduction band [15]. These states serve as a

3-dimensional network for carrier transport.

The direct band gaps obtained from first-principles band structure calcula-

tions are 3.38 eV, 3.50 eV, 3.41 eV, and 2.28 eV for In2O3, SnO2, ZnO, and CdO,

respectively. The calculated average electron effective masses are 0.28 me for In2O3,

0.31 me for SnO2, 0.35 me for ZnO, and 0.23 me for CdO, respectively [15, 30]. These

calculated values of band gaps and effective masses are in good agreement with the
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Figure 1.3: Electronic band structure and partial density of states for the binary
base oxides of the conventional TCOs, In2O3, SnO2, ZnO, and CdO [15].
First-principles calculations within the screened-exchange local density
approximation [29] is employed. In the DOS plots, the thick, dashed, and
thin lines represent metal s, metal p, and oxygen p states, respectively.

previously mentioned experimental results, thus, presenting the predictive power of

ab-inito methods based on the density functional theory.

Knowledge of the basic properties of conventional binary TCO hosts allows

for further search of alternative TCO materials, such as multicomponent complex

oxides.

1.3. MULTICOMPONENT TCOS

Rapid development of TCO-based applications requires TCO materials with

a wide range of electronic and optical properties that are beyond what conventional

binary TCOs (doped In2O3, SnO2, ZnO, and CdO) can offer. In particular, broader

optical properties, such as tunable band gaps and plasma frequencies, as well as

controllable electrical properties, such as resistance, carrier concentration, and mo-

bility, are required. To meet this demand, complex compounds with ternary (such as

Cd2SnO4, ZnGa2O4, and ZnSnO3) and quaternary (e.g., InGaO3(ZnO)) compositions
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as well as solid solutions with properties controllable via the chemical compositions,

were introduced and investigated [1, 3, 6, 19, 31]. Also, investigations emerged on

TCO-based materials with oxide constituents that are beyond the composition of

conventional TCOs, such as MgIn2O4 which incorporates the main-group light met-

als (Al, Ca, and Mg) [1, 32]. Incorporation of light-metals in multicomponent oxides

are desirable since they can broaden the optical transmission window due to their

larger band gap [3].

Among the complex quaternary oxides, InGaO3(ZnO)m (m ≤ 4) TCO and

other RAO3(MO)m compounds (R=In; A=Ga, Al; M=Divalent Cation; m=1-11),

with layered structure, have been the most widely investigated [8, 9, 11]. RAO3(MO)m

compounds have structurally different alternating layers of RO1.5 and AMO2.5, as

shown in Figure 1.4. It has been reported [9, 33, 34] that a possible advantage of

these layered materials is to increase conductivity by separating the layers where car-

rier donors (usually, aliovalent substitutional impurities) reside and the layers that

contribute to conduction. This would help to avoid charge scattering on the ionized

impurities. However, the role of structural complexity and chemical composition as

well as the origins of the carrier generation in these multicomponent oxides have been

a subject of active debate [9, 19, 26, 35]. For example, despite the belief that the

InO1.5 (RO1.5) layer is responsible for conductivity [9, 26] in InGaO3(ZnO), another

study suggested that the InGaO3(ZnO) might be a Zn 4s conductor [34]. Recent first-

principles electronic band structure investigations of several undoped stoichiometric

multicomponent RAMO4 oxides with layered structure [36, 37] revealed that atoms

from both structurally and chemically distinct RO1.5 and AMO2.5 layers contribute

comparably to the conduction band. This finding suggested that an isotropic charge

transport can be achieved in RAMO4 compounds once they are degenerately doped.
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Figure 1.4: The unit cell of RAMO4 with a rhombohedral R3̄m structure. Three
similar blocks consisting of one RO1.5 and two AMO2.5 layers alternate
along the [0001] direction. A3+ and M2+ ions are distributed randomly.

Ab-initio investigations of multicomponent InGaZnO4 also showed that its

electronic properties such as highly dispersed s-like conduction band, wide band-

gap, and small isotropic effective mass, are similar to those in the constituent TCO

hosts [15, 19]. For example, the calculated band gaps are 3.38 eV for In2O3, 4.91 eV for

Ga2O3 and 3.41 eV for ZnO while it is 3.29 eV for the multicomponent InGaZnO4.

Similarly, the calculated average electron effective masses are 0.28 me for In2O3,

0.34 me for Ga2O3, 0.35 me for ZnO, and 0.34 me for InGaZnO4. Despite the similar

host properties, the obtained experimental conductivities (σ) and mobilities (µ) in the

complex multicomponent TCO are much lower compared to those obtained in con-

ventional TCOs. The highest obtained conductivities are between 120 to 500 S/cm

and the mobilities (µ) are up to 24 cm2V−1s−1 in the complex multicomponent

TCO [3, 5, 9, 10, 13, 17, 18, 35] whereas the constituent In2O3 and ZnO have con-

ductivities as high as 103 to 104 S/cm and mobilities up to 1000 cm2V−1s−1 [1, 2, 38].



11

Hence, one needs to understand why the complex oxides have not yet outper-

formed the conventional TCOs, despite similar host properties (band gaps, effective

mass) and the uniform conduction band in the complex TCO hosts. Based on the

expected charge transport properties in RAMO4, neither the TCO hosts nor the host

properties but likely the carrier generation mechanism is responsible for the perfor-

mance limitations of complex TCOs, such as the lower mobilities and conductivities

mentioned earlier. Since the carrier generation mechanism behind the conductivity of

the complex multicomponent oxides has not been established, it needs to be studied

further [1, 3, 25].

Moreover, in multicomponent oxides containing the cations from both groups

(i.e., post-transition metals (In, Zn) and light main-group metals (Mg, Al)), the

respective energy locations of the cations’ states may not be the same as in single-

oxide constituents due to the interaction between different cations via a shared oxygen

neighbor. Indeed, it was found [19] that the bottom of the conduction band in

RAMO4 is governed by the states of all cations despite the fact that the band gaps

in the corresponding basis oxides differ significantly (3.38 eV for In2O3, 3.41 eV for

ZnO, 9.08 eV for Al2O3, and 7.55 eV for MgO). Moreover, the electronic properties

in a multicomponent oxide may deviate significantly from that expected from the

electronic band structures of the single-cation (basis) oxides owing to the differences

in the interatomic distances and the atomic coordination numbers in the complex

oxide as compared to those in the bulk ground-state (lowest energy) structures of the

constituent oxides.

Thus, a more thorough understanding and a more systematic first-principles

investigation of the properties of layered RAMO4-based multicomponent oxides would

contribute to the advancement of known and the development of novel TCOs. Factors

that promote these investigations include:
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- Multicomponent oxides offer a way to tune the structural, electronic, and

optical properties desired for specific applications via chemical composition. The tun-

ability of the properties makes the multicomponent oxides one of the most appealing

materials for further investigations.

- Multicomponent oxides offer a possibility to go beyond the composition of

conventional binary oxides by utilizing the cheap, abundant light-metal oxides (such

as Mg, Al, and Ca) in their compositions. Presence of these light metals in multi-

component TCOs is attractive for achieving a broader optical transmission window

associated with a wider band gap. This may allow one to introduce more multicom-

ponent compounds as novel TCO candidates and supports the need to understand

the role and effect of structural peculiarities and chemical composition.

- The carrier generation mechanism behind the conductivity of these multi-

component oxides has not been established. Different carrier generation mechanisms

need to be studied to truly understand what makes them conducting. Thus, it is

crucial to have the knowledge of the current status of carrier generation in the con-

ventional TCOs as a groundwork for creating defects. A detailed discussion on the

carrier generation in TCO hosts appears in the following section.

1.4. CARRIER GENERATION IN TCO HOSTS

There are two major ways to introduce carriers in wide-band-gap oxides, the

TCO hosts. The first way is by varying the growth conditions (growth temperature

and oxygen partial pressure) which controls the concentration of native (intrinsic)

point defects in the oxide sample. These imperfections in the crystal lattice involve

only the constituent elements and may include vacancies (missing atoms at regular

lattice positions) and interstitials (extra atoms occupying interstices in the lattice).

The second way is via intentional (extrinsic) doping with aliovalent substitutional

impurities [39].



13

The best performing conventional binary TCOs employ substitutional impu-

rity doping. They are, primarily, Sn doped In2O3 (ITO), F doped SnO2, F or Al doped

ZnO, and Sn doped CdO. Some of the highest conductivities achieved among these

are 42×103 S/cm in Sn doped CdO, 5×103 S/cm in F doped SnO2, and 10×103 S/cm

in ITO [2, 6, 40]. These conductivities strongly depend on the type of the dopant -

its valence, ionic size radius, and electronic configuration. For example, extensive ex-

perimental studies have been conducted on preparing ZnO films with different doping

elements such as Group III (Al, Ga, and In), Group IV (Si, Ge, and Zr), and Group

VII (F) elements. These studies resulted in a wide range of electrical conductivities of

up to 1.2×103 S/cm in In doped ZnO films [6, 41]. However, in addition to the change

in the electronic band structure of the host oxide due to the presence of dopant, the

resulting electron transport maybe also affected by the charge compensation due to

native defects which can be electron donors (anion vacancies) and acceptors (cation

vacancies) [15]. The charge compensation can be understood as follows: in a wide

band gap material, a donor electron can lower its energy if it falls into an empty

intrinsic defect state (such as a cation vacancy state). If the energy gain exceeds the

cost of creating the defect, the donor action is completely compensated by the defect

if there is thermal equilibrium [3]. Thus, not only the ability to introduce different

type of dopants but also the knowledge of defect physics is critical for understanding

the complexity behind the carrier generation mechanism in TCOs.

Recent electronic band structure investigations [15] compared the properties

of impurity doped and oxygen deficient conventional oxides. It was revealed that

similar conductivity factor can be achieved in both cases. The conductivity factor is

the square of the calculated electron velocity multiplied by the density of states in

the vicinity of the Fermi level since the conductivity σ depends on both, the electron
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group velocity and the density of states near the Fermi level, according to:

σ =
2e2

Ω

∑
kλ

|vkλ|2τkλδ(Ekλ − EF ). (1.1)

Here e is the electron charge, Ω – the volume of the Brillouin zone, k – the wave

vector, λ – the band index, v – the electron group velocity, τ(ϵ) – the relaxation

time, and EF is the Fermi energy. However, the conductivity also depends on the

relaxation time, and it was shown that a smaller relaxation time can be expected in

case of oxygen defects as compared to impurity doped materials [15].

Here, we will discuss how native point defects in oxides can be investigated

from first-principles. The formation energy of a defect in any charge state modeled

using a corresponding background charge, can be calculated as a function of the Fermi

level and the corresponding chemical potential:

Ef (EF , µ) = Edefect − Ehost ± µα + q(EF ) (1.2)

where Edefect and Ehost are the total energies for the oxide with the defect and the

stoichiometric oxide in the same-size supercell, respectively; µα is the chemical po-

tential of atom α added to (–) or removed from (+) the lattice; q is the defect charge

state; EF is the Fermi energy taken with respect to the top of the valence band. The

chemical potential µα=µ
0
α + ∆µα is taken with respect to the chemical potential µ0

α

of the elementary metals or the O2 molecule, whereas ∆µα is a deviation from the

elemental chemical potential determined by the growth conditions which depend on

the temperature and oxygen partial pressure [42, 43].

Once the defect formation energy Ef is determined, the concentration of the

defect in the solid can be found through the relation

c = Nsites exp(
−Ef

kBT
) (1.3)
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where Nsites is the number of sites per unit volume the defect can be incorporated

on, kB is the Boltzmann constant, and T is the temperature. Equation (1.3) shows

that the defects with high formation energies will occur in low concentrations and

vice versa. The equilibrium Fermi level in equation 1.2 is determined from the charge

neutrality condition of the material which takes into account all charged acceptor

and donor defects as well as all carriers (electrons and holes) [42, 44]. Overall, the

formation energy of either a native defect or an impurity and, hence, its concentration

can be computed entirely from first principles [3].

Carrier generation mechanisms in binary TCOs have been investigated from

first-principles [15, 19, 24, 37]. As an example of possible defects in conventional

TCOs, Table 1.2 summarizes defects in ZnO. The defect notations in Table 1.2 are:

VO - oxygen vacancy, Zni - zinc interstitial, and GaZn- Ga atom substituted on zinc

site.

Table 1.2: Possible defects in ZnO.

Character Defects

Native point defects Donor: VO, Zni

Acceptor: VZn, Oi

Impurities(Substitutional) Donor: FO, BZn, AlZn, GaZn, InZn, Hi, Lii

Acceptor: CuZn, LiZn, NO

One can easily formulate and compute the formation energy of any native

defects or impurities from the total energies. For example, in the case of oxygen

vacancy (VO) in ZnO, the formation energy is

Ef (V q
O) = Etot(V

q
O)− Etot(ZnO) + µO + q(EF + EV BM) (1.4)

where Etot(V
q
O) is the total energy of a supercell containing the oxygen vacancy in the

charge state q, Etot(ZnO) is the total energy of a ZnO perfect crystal in the same

supercell, and µO is the oxygen chemical potential.
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Moreover, it is instructive to plot the formation energies as a function of Fermi

level to examine the behavior of defects when the doping level changes. Figure 1.5 il-

lustrates the formation energies of defects in ZnO for both oxygen-rich and metal-rich

(oxygen-poor) growth conditions [44]. The oxygen-rich and metal-rich conditions cor-

respond to ∆µO=0 and ∆µZn=0, respectively. It can be seen from Fig. 1.5 that the

substitutional defects such as AlZn can produce free carriers in metal-rich conditions,

without being compensated by the native acceptor defects. However, in oxygen-rich

conditions, AlZn is compensated by the native Zn vacancies. This compensation oc-

curs when the formation energy of Zn vacancies becomes comparable to the formation

energy of the AlZn at some Fermi energy, i.e., moving the Fermi energy to a band

edge causes the spontaneous formation of that compensating defect [39, 45]. In terms

of native defects, in metal-rich condition, the oxygen vacancies have the lowest for-

mation energies when the Fermi level lies near the conduction band minimum, hence,

results in highest carrier concentrations. Thus, native point defects play a critical

role when determining the major defect in a material.

Figure 1.5: Calculated defect formation energies of intrinsic and extrinsic defects in
ZnO, as a function of Fermi level. The dots mark the transition energies
between different charge states [44].

Knowledge of the basics of doping in conventional TCOs can be applied to

complex RAMO4 compounds. For the multicomponent oxides, such as InGaO3(ZnO),
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the free carriers were believed to be due to the formation of oxygen vacancy defects.

However, based on the first-principles investigations, it was shown that the oxygen

vacancies are deep defects and so can not explain the observed conductivities in these

materials [46]. In marked contrast to binary oxides, the RAMO4 compounds have

many different possible intrinsic and extrinsic defects which can coexist, due to their

structural and the chemical complexity. In addition, because of the structurally and

chemically distinct layers in RAMO4 compounds, there can be several different defect

locations with different neighboring atoms. The possible defects for InGaZnO4 can

be seen from Table 1.3 which serves as an example of possible defects in RAMO4

compounds. First-principles investigations of these native point defects will play a

critical role in determining the carrier generation mechanisms in RAMO4 compounds.

Table 1.3: Possible defects in InGaZnO4.

Donors Acceptors

Vacancies VO VIn, VZn, VGa

Interstitials Ini, Gai, Zni Oi

Cation disorder InZn, GaZn ZnGa, ZnIn

1.5. DISSERTATION OUTLINE

We have systematically investigated the structural, optical, and electronic

properties of both undoped stoichiometric and doped twelve complex multicomponent

RAMO4 materials (R3+=In or Sc; A3+=Al or Ga; and M2+=Ca, Cd, Mg, or Zn) as

novel TCOs. This combinatorial study allowed us to understand which composition,

doping mechanism, and/or carrier concentration result in a better TCO properties

as well as helped guiding us to the right materials for further research.



18

In our first-principles investigations, we employed highly precise, state-of-the-

art, full-potential linearized augmented plane wave (FLAPW) [20, 47, 48] method

based on the density functional theory (DFT) [22, 49].

Outline of this dissertations is as follows. Details of the first-principles com-

putational methods and approaches are discussed in Section 2. In Section 3, the

structural, electronic, and optical properties of the twelve undoped stoichiometric

RAMO4 materials are systematically investigated.

To understand how the chemical composition affects carrier generation in com-

plex oxides, comparative investigations of non-stoichiometric RAMO4 compounds

were performed. In Section 4, the formation of oxygen vacancy and the resulting

electronic properties are investigated both in the representative layered multicom-

ponent oxides as well as in their corresponding binary oxide constituents. Further,

in Section 5, formation of native point defects in layered multicomponent oxides are

investigated.

We note that Sections 3–5 are either published or submitted (or in final prepa-

ration) for publication to a peer-reviewed journals. Thus, they have an abstract,

introduction, and conclusion. In Section 6, we summarize the overall conclusions.
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2. METHODS AND APPROACH

2.1. INTRODUCTION

First-principles calculations based on the density functional theory (DFT) [22,

49] have become one of the most powerful approaches that allow one not only to better

understand but also to model and predict the properties of emerging complex and

novel materials. In addition to the overwhelming success of the density-functional

theory for the description of the ground-state properties of large material classes, the

wide applicability and predictive power of the approach makes it the foundation of

any modern electronic structure theory [50].

Many different DFT methods have been developed and used. The difference

among these methods is mainly based on the type of basis set or the approximations

for the exchange-correlation functional [22]. Both the robustness of these methods and

the availability of high-performance computers allows us to choose either a specific,

suitable method or combine several methods for the outcome of desired materials

investigations [21].

In our investigations of the structural, optical, and electronic properties of

undoped stoichiometric and nonstoichiometric multicomponent oxides, we employed

the full-potential linearized augmented plane wave (FLAPW) method [20, 47, 48].

The FLAPW method is based on the DFT. In the following sections, both the DFT

and the FLAPW method are briefly discussed.

2.2. DENSITY FUNCTIONAL THEORY

2.2.1. Overview. Density functional theory (DFT) is one of the most widely

used quantum mechanical theories to investigate the ground state properties of many-

body systems. DFT is among the most popular and successful methods available for
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the electronic structure calculations of materials. Advantages of DFT include very

good scaling of computational cost with the system size as well as the possibility of

performing calculations on a large and complex systems [50].

The fundamental principle behind the DFT is that any property of an atom-

istic system can be expressed as a functional of its ground state electron density. This

ground state electron density, in principle, can determine all of the information in the

many-body wave-functions. For instance, the total energy of the atomistic system

can be determined as a functional of its electron density.

Although the original idea of DFT was suggested by Thomas [51] and Fermi [52],

the first observation and the proof of the functionals were achieved in the work of

Hohenberg and Kohn [49]. For any system with more than one electron, however, the

exact functionals as well as the construction of those functionals were neither known

nor given by the Hohenberg and Kohn. It was the Kohn-Sham ansats [53] that made

it possible to have approximations for the ground state functionals. These functionals

made the DFT useful and practical. Therefore, the Hohenberg-Kohn [49] theorems

and the Kohn-Sham [53] equations are the two primary core elements of the DFT.

The Hohenberg-Kohn [H-K] theorems have two important principles sets. The

first H-K theorem illustrates that electron density, which depends only on three spa-

tial coordinates, can determine the ground state properties of many-body systems.

Through the use of electron density functionals, the H-K theorem reduces the many-

body problem of N electrons with 3N spatial coordinates to three spatial coordinates.

The second H-K theorem defines an energy functional for the system, proving that

the correct ground state electron density minimizes this energy functional [22].

With the use of Kohn-Sham equations [53], the many-body problem of in-

teracting electrons in a static external potential is reduced to a problem of non-

interacting electrons moving in an effective potential, which makes it easier to solve.

This effective potential includes the external potential and the effects of the Coulomb
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interactions between the electrons, e.g., both the exchange and the correlation inter-

actions. These interactions are difficult to model. For the many-body exchange and

the correlation interactions, the actual expression is not known and approximations

need to be made. The Kohn-Sham reformulation in terms of single-particle orbitals

helped in the development of approximations. The basic approximation is the local-

density approximation (LDA). This approximation is based on the exact exchange

energy for a uniform electron gas [50].

2.2.2. Derivation and Formalism. To better understand the density func-

tional theory, we begin with the elementary quantum mechanics. In quantum me-

chanics, a system’s wave function Ψ contains all of the information we can possibly

have about a given system. The nuclear degrees of freedom appear only in the form

of a potential v(r) acting on the electrons. As a result, the wave function depends

only on the electronic coordinates which is the so-called Born-Oppenheimer approxi-

mation [54]. Non-relativistically, this wave function is calculated from Schrödinger’s

equation, which for a single electron moving in a potential v(r) is

[
−ℏ2∇2

2m
+ v(r)

]
Ψ(r) = ϵΨ(r). (2.1)

For a many-body problem, the Schrödinger’s equation becomes

[
N∑
i

(
−ℏ2∇2

i

2m
+ v(ri)

)
+
∑
i<j

U(ri, rj)

]
Ψ(r1, r2 . . . , rN) = EΨ(r1, r2 . . . , rN) (2.2)

where N is the number of electrons and U(ri, rj) is the electron-electron interaction.

For a Coulomb system, electron-electron interaction energy is

Û =
∑
i<j

U(ri, rj) (2.3)
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which is the same operator for any system of particles interacting via the Coulomb

interaction. The kinetic energy operator is the same for any non-relativistic system:

T̂ = − ℏ2

2m

∑
i

∇2
i . (2.4)

Whether our system is an atom, a molecule, or a solid thus depends only on the

potential v(r).

V̂ =
∑
i

v(ri). (2.5)

A crucial note that only through the term Û the single-body quantum mechanics of

eq. (2.1) differ from the extremely complex many-body problem in eq. (2.2). Due to

this term, the complex many-body problem equation is not separable into simpler

single-particle equations.

In the usual quantum-mechanical approach to Schrödinger’s equation, one first

specifies the system by choosing the potential v(r). Then plugs it into Schrödinger’s

equation which then solves that equation for the wave function Ψ, and calculates the

observables, by taking the expectation values of operators with this wave function.

Though many methods exist for solving the many-body Schrödinger’s equation, these

methods are very computationally resource demanding. In addition, they are very

hard to apply to large and complex systems. This is where the DFT becomes prac-

tical. The DFT provides a way to systematically map the many-body problem, with

Û , onto a single-body problem, without Û . This mapping leads to the point that the

knowledge of particle density n(r) implies the knowledge of the wave function and

the potential, hence, all of other observables, making the particle density n(r) the

key variable in DFT.

n(r) = N

∫
d3r2

∫
d3r3 . . .

∫
d3rNΨ

∗(r, r2 . . . , rN)Ψ(r, r2 . . . , rN). (2.6)
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The core element behind the DFT are the two remarkably powerful Hohenberg-

Kohn[HK] theorems [49]. These theorems relate to any system consisting of electrons

under some external potential v(r). The first Hohenberg-Kohn theorem states that

the external potential v(r), and hence the total energy, is a unique functional of the

electron density n(r). The proof of this theorem is simple. Suppose there are two

different external potentials v1(r) and v2(r) differing by more than a constant which

lead to the same density n(r). The corresponding different Hamiltonians Ĥ1 and

Ĥ2 will have different ground state wavefunctions, Ψ1 and Ψ2, that each yield the

same n0(r). Because Ψ2 is not the ground state of Ĥ1 (and if the ground state is

non-degenerate), using the variational principle, we can write

E1 = ⟨Ψ1|Ĥ1|Ψ1⟩ < ⟨Ψ2|Ĥ1|Ψ2⟩. (2.7)

The last term of the above inequality can be written as

⟨Ψ2|Ĥ1|Ψ2⟩ = ⟨Ψ2|Ĥ2|Ψ2⟩+⟨Ψ2|Ĥ1−Ĥ2|Ψ2⟩ = E2+

∫
d3r[v1(r)−v2(r)]n0(r) (2.8)

so that

E1 < E2 +

∫
d3r[v1(r)− v2(r)]n0(r). (2.9)

Similarly, rewriting previous equations for the Ê2, gives

E2 < E1 +

∫
d3r[v2(r)− v1(r)]n0(r). (2.10)

Adding the equations 2.9 and 2.10, we get to the contradictory inequality

E1 + E2 < E1 + E2. (2.11)
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From Equation 2.11, it can be concluded that there cannot be two different ex-

ternal potentials differing by more than a constant which give rise to the same non-

degenerate ground state charge density. The density uniquely determines the external

potential to within a constant [50].

The second Hohenberg-Kohn theorem states that the ground state energy can

be obtained variationally, where the density n(r) that minimizes the total energy

is the exact ground state density n0(r). For the proof of the second theorem, each

property can be written as a functional of n(r). Hence, the total energy functional is

E[n(r)] = F [n(r)] +

∫
d3rv(r)n(r). (2.12)

The Hamiltonian can be written as Ĥ = F̂ + V̂ . The functional F [n(r)] is a

universal functional of the density. It includes the kinetic energy and the interaction

energies:

F [n(r)] = T [n(r)] + U [n(r)]. (2.13)

Because the wave-function Ψ is a unique functional of the density n(r), the expecta-

tion value of F̂ is also a functional of n(r). Thus,

F [n(r)] = ⟨Ψ|F̂ |Ψ⟩. (2.14)

A density that is the ground-state of some external potential is known as v-representable.

Following from this, a v-representable energy functional Ev[n(r)] can be defined in

which the external potential v(r) is unrelated to another density n′(r),

Ev[n(r)] = F [n′(r)] +

∫
d3rv(r)n′(r). (2.15)
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Using the variational principle, we can write

⟨Ψ′|F̂ |Ψ′⟩+ ⟨Ψ′|V̂ |Ψ′⟩ > ⟨Ψ|F̂ |Ψ⟩+ ⟨Ψ|V̂ |Ψ⟩ (2.16)

where Ψ is the wavefunction associated with the correct ground-state n(r). Hence,

F [n′(r)] +

∫
d3rv(r)n′(r) > F [n(r)] +

∫
d3rv(r)n(r) (2.17)

The variational principle of the second Hohenberg-Kohn theorem can then be:

Ev[n
′(r)] > Ev[n(r)]. (2.18)

Hohenberg-Kohn theorems do not offer a computation for the ground-state density

of a system in practice. The Kohn-Sham [53] equations do offer a way to carry out

the DFT calculations. To obtain the ground-state density, the variational principle is

applied with respect to the one-particle wave functions. In particular, the Schrödinger

equation of this auxiliary system

[
−ℏ2∇2

2m
+ Veff (r)

]
Ψi(r) = ϵiΨi(r) (2.19)

yields orbitals that reproduce the density n(r) of the original system. Then,

n(r) =
∑
i

ni|Ψi(r)|2, (2.20)

where

Veff (r) = VC(r) + µxc[n(r)] (2.21)

is the effective potential and ϵi the effective one-electron eigenvalues. Eqs. (2.19)

and (2.20) are the Kohn-Sham (KS) equations and the solutions, ψi(r), form an
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orthonormal set. The Coulomb, or electrostatic potential, is given as

VC(r) = −e2
∑
α

Zα

|r−Rα|
+ e2

∫
dr′

n(r′)

r− r′
. (2.22)

which can also be calculated using Poisson’s equation,

∆2VC(r) = −4πe2q(r) (2.23)

where q(r) represents both the electronic charge distribution and the positive point

charges at position Rα. The exchange-correlation potential is given by

µxc =
∂Exc[n]

∂n
. (2.24)

Because the exchange-correlation potential (and energy) are not known, approxima-

tions have to be made. The problem of solving the KS equations is a nonlinear one.

The typical way of solving such problems includes beginning with an initial guess for

n(r), calculating the corresponding potential, and then solving the differential equa-

tion (2.19) for ψi. From these, one calculates a new density, using equation (2.20),

and the process is repeated iteratively until it converges.

2.2.3. Exchange-Correlation Functionals. The major problem with the

DFT is that the exact functional for exchange and correlation are not known (except

for the free electron gas). Many types of functionals exist, including local, semi-local,

gradient dependent, and nonlocal functionals. The most important, widely used ap-

proximation for the exchange-correlation energy is the local-density approximation

(LDA). For many decades, the LDA has been applied in calculations of band struc-

tures and total energies. In the LDA, the exchange-correlation energy is assumed to
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depend only on the local electron density in each volume element dr:

Exc[n] ≈
∫
drn(r)ϵxc[n(r)]. (2.25)

ϵxc is the exchange-correlation energy per electron of a homogeneous electron gas.

It is expressed as an analytic function of the electron density, as is the exchange-

correlation potential, µxc. The LDA is known to give less accurate geometries and

predicts binding energies significantly too large [22].

Recently, the generalized gradient approximation (GGA) has been considered

as a possible improvement over the LDA. The GGA has been found to improve the

description of total energies, ionization energies, electron affinities of atoms, and

atomization energies of molecules [55, 56]. The generic form of the GGA exchange-

correlation energy may be written as

EGGA
xc [n] =

∫
drn(r)ϵGGA

xc δn(r) (2.26)

so that it depends locally on the electronic density n(r) and its gradient.

2.2.4. Implementing the DFT. Major computational approaches have lim-

itations, advantages, and disadvantages. One must have a thorough understanding of

each methods capabilities and limitations for a better implementation. When choos-

ing any computational approach, as suggested by Wimmer at al. [21], one must asses

each computational approach in terms of at least six criteria: capabilities, generality,

accuracy, accessible size of systems, accessible time scales, and computational effi-

ciency. When assessed according to these criteria, the DFT have the most desirable

characteristics needed for our investigations of complex multicomponent materials.

Because the primary results of the DFT calculations are the electron density,

the total energy, and the one-particle wave functions, the important electrical and

optical properties we generally investigate can be derived, such as band gaps and
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density of states. In terms of its capability, the DFT does not just provide struc-

tural properties but also enables the prediction of the electrical and optical properties

of materials. Generality of the DFT approach is vast when compared to other ap-

proaches (such as Hartree-Fock). As a result, the DFT is applicable to all elements

of the periodic table and can be used for a variety of solids [21, 22].

With the inclusion of approximations beyond the LDA, the DFT becomes

more superior when compared with other methods, giving a better estimation and

more accurate results. One of the primary reasons we implement the DFT approach is

its state-of-the-art high accuracy. For example, interatomic equilibrium distances for

a great number of bonds can be predicted within approximately 0.02 Å of the experi-

ment. Although the binding energies are overestimated within the LDA, nonlocal ap-

proximations improve the accuracy to within 0.1 eV of the experiment. Calculations

with the system size in the order of up to 100 atoms is possible with the DFT [21]. The

DFT calculations tend to be computationally efficient and do not result in strong de-

viations from the experiment, depending on the type of materials being investigated,

the choice of computational parameters, and the basis functions [21].

Some of the major choices one has to make in a practical Kohn-Sham calcu-

lation are illustrated schematically in Fig. 2.1. This figure illustrates a rich spectrum

of choices for different applications, geometries and symmetries, chemical elements,

and materials requiring different approximations. The solutions of the Khon-Sham

equations shown in Figure 2.1 allow one to have access to all the properties that

can be derived using the DFT. The system can be defined by the terms inside the

brackets. These terms consist of the kinetic energy, the coulomb potential, and the

exchange-correlation potential. Every term in the equation plays a major role when

making choices for DFT calculations. The role and importance of each term and its

relevant significance to our research and the reasoning behind the choices we made

for our DFT methods are discussed below.
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Figure 2.1: Computational choices that one can make based on the Kohn-Sham equa-
tions when using DFT methods [21]. The terms inside the brackets are the
kinetic energy, the electrostatic potential, and the exchange-correlation
potential. Ψi is the one electron wave function, where k is the wave
vector. A star denotes the existence of the feature in FLAPW method.

The Coulomb potential term defines the chemical and structural properties

of the system, offering the choice of calculations for either non-periodic systems or

periodic systems. Moreover, one has the choice between all-electron full potential

(where the coulomb singularities are considered without shape approximations) and

all-electron muffin tin shaped potential (where potential around each atom is assumed

to be spherical which generally works well for densely packed systems). Moreover, a

choice exists between the different approximations for exchange-correlation potentials.

The LDA underestimates the band gaps, as previously mentioned. One can overcome

this problem by choosing approximations beyond the LDA, such as GGA or screened-

exchange LDA [57, 58]. One of the important choices in Fig. 2.1 is the type of basis

set. Generally, the names of DFT methods available are based on the type of basis

set. They can be based on the plane waves and can be augmented. The accuracy of



30

the results from the DFT calculations depend strongly on the choice of both basis

set and density functional.

Combinations of particular choices lead to different methods with different ca-

pability and limitations. Based on Fig. 2.1, the most desired choices we made that are

critical for our first-principles calculations are present in the method known as the full

potential linearized augmented plane wave method (FLAPW) [20, 47]. As previously

mentioned, this method is named after its basis functions which are linearized aug-

mented plane waves. The choices and the features included in the FLAPW method

are considered to be the most accurate. Details regarding the FLAPW method are

discussed in the following section.

2.3. FLAPW METHOD

2.3.1. Overview. The full-potential linearized augmented plane wave method

(FLAPW) [20, 47], which employs density-functional theory, is considered as one

of the most accurate electronic structure calculation schemes. It emerged as a

highly-precise state-of-the-art ab-initio technique with a reasonable computational

efficiency [48, 59]. This method has its origin in the augmented plane wave (APW)

method proposed by Slater [60]. Computationally, the APW method is demanding

since the basis functions are energy dependent and the eigenvalue problem is non-

linear. An important development was presented by the subsequent linearization of

the APW method (LAPW) [61, 62] where the energy dependence was removed by

selecting a fixed set of suitable muffin-tin radial functions and their energy derivatives.

In the FLAPW approach, real space is partitioned into spherical regions

around atoms and interstitial regions between spheres. In the spherical region, the

basis functions are products of radial functions and spherical harmonics. In the in-

terstitial region, plane waves are used. There is no shape approximation for either

the charge density or the potential. All electrons are treated in the self-consistent
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process. The core electrons are treated fully relativistically and the valence electrons

are treated semi-relativistically [63]. Due to its all-electron algorithm, the advantage

and power of the FLAPW method is its universal applicability to all atoms of the

periodic table. In particular, its applicability to transition metals, rare-earths, and

to multi-atomic systems with compact and open structures. Both three-dimensional

and two-dimensional periodic boundary conditions can be used [59].

This program affords highly accurate calculations of the electronic structure,

the total energy and the forces, for a wide range of materials. The capability of calcu-

lating atomic forces exerted on the atoms opens the path to structure optimization.

These advantages elevate the FLAPW method as the method of choice for accurate

electronic structure calculations for a broad spectrum of applications. Also, it is due

to these advantages that we implement the FLAPW method in our investigations of

complex multicomponent oxides.

As we mentioned previously, the exact functional for exchange and correlation

in DFT are not known. Although, there are many types of functionals exist, the

most widely used is the local density approximation (LDA), which is implemented in

FLAPW. However, the LDA underestimates the band gap value in semiconductors

and insulators. Because the valence and conduction band dispersions are less affected

by the LDA feature, a so-called scissors operator is often used to push the conduction

band up so that the band gap corresponds to the experimental value.

Moreover, besides the GGA, the screened-exchange LDA method (sX-LDA),

recently proposed as an approach to obtain realistic excitation energies and improve

band-gaps of insulators and semiconductors, has been implemented in the FLAPW.

The sX-LDA method introduces part of the correlation effects in the exchange hole

by screening the Hartree-Fock exchange integral. Essentially, the sX-LDA method

is designed to find a better energy functional beyond the LDA by modeling the

exchange-correlation hole within nonlocal density schemes. The sX-LDA eigenvalues
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can describe the discontinuity of the exchange-correlation potential for the band gaps.

In addition, it can realize accurate ground-state total energies, ground-state charge

densities, and band gaps. The sX-LDA method has been found to yield an improved

description of band gaps for semiconductors compared to the LDA and the GGA,

hence, it agrees very well with the experiment results [29, 57]. In our work, the

sX-LDA method is employed along with the conventional LDA.

2.3.2. FLAPW Method: Features and Demonstrations. The FLAPW

method is fully parallelized with high efficiency and good stability. An efficient

parallelization of this method by division among the processors of the plane-wave

components for each state is demonstrated by Canning et al. [64]. Specific features

relevant to our investigations that can be obtained using the FLAPW method include

the band structure, density of states, charge density, total energy, formation energy,

atomic forces, and the optimized geometry.

Taking ZnO as an example, the whole process of how we implement the

FLAPW method, and the importance of relevant input parameters and resulting

electronic and optical properties that we obtain are discussed and demonstrated here

in detail. ZnO has a wurtzite crystal structure with known experimental lattice pa-

rameters of a=3.24 Å and c=5.21 Å as well as with internal parameter of u=0.3817.

The general procedure for our calculations of the properties begins with defin-

ing the single input file for the FLAPW method. The options and important input

parameters in the FLAPW input file are as follows. The cell can be defined by set-

ting the lattice vectors in terms of either cartesian or internal coordinates. Atomic

positions for every atom need to be set with their respective x, y, and z components,

whether it is primitive cell or super-cell. For the wurtzite ZnO, there are two zinc and

two oxygen atoms in the cell and we input the atomic positions in terms of cartesian

coordinates. One can define the input parameters of the cell according to the choice
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of calculations between un-doped stoichiometric or doped nonstoichiometric materi-

als. For example, one can investigate the formation of native point defects (such as

cation/anion vacancies) or the substitutional doping (such as fluorine substituted in

zinc site) in ZnO, by setting the necessary position and atom type in the supercell.

In the case of wurtzite ZnO, a 84-atom supercell can be constructed with the lattice

vectors (2̄ 2̄1), (1̄31), and (23̄1), given in the units of hexagonal primitive cell vec-

tors. Due to its translational symmetry, the distances between the oxygen defects

are ≈10 Å. Thus, the resulting defect concentration is approximately 1.7×1021cm−3

which is determined as the number of defect sites divided by the volume of the su-

percell [43]. After defining the cell accordingly, one important step is to perform

geometry optimization. Internal positions can be optimized via total energy and

atomic forces minimization such that the atomic positions are relaxed.

General options exist where one can enable necessary variables for desired cal-

culations, including density of states and band structure. For the latter option, the

special k-points can be provided in a separate file to carry out the ϵ(k) calculations

along the high-symmetry lines in the Brillouin zone. For ZnO calculations, cutoffs for

the basis functions were 16.0 Ry. Summations over the Brillouin zone were carried

out using 32 special k-points in the irreducible wedge. The muffin-tin radius for every

different atom in the cell needs to be defined. The muffin-tin radii for ZnO is 2.1 a.u.

for Zn and 1.6 a.u. for O atoms, respectively. One can set the mixing and the con-

vergence options in the iterations toward self-consistency. The output charge density

is constructed from the eigenvectors and then mixed with the input to yield a refined

input for the next iteration. Mixing schemes such as the Broyden scheme [65], can

be used. The Broyden scheme uses information from previous iterations to accelerate

convergence. The value for convergence of the electron charge density and the maxi-

mum number of iterations allowed can be controlled and the program will terminate

accordingly if convergence is reached before this value [59]. For example, for ZnO,
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we have set the value of convergency to 0.02 e/Bohr3 and the maximum number of

iterations to 80. Typically, convergence is reached within 25 iterations. For un-doped

wurtzite ZnO, it takes about 12 iterations to obtain the above convergence. The total

energy of the system is obtained at every iteration of the optimization. Based on the

total energies, we can obtain a great deal of useful information. Total energies can

be used as a comparison tool between different carrier generation mechanisms i.e.,

calculating and comparing the resultant energies for each doping mechanism, where

the corresponding minimum energy obtained is considered as the system of prefer-

ence for the dopant. In addition, total energies of a system with a defect can be used

to calculate the formation energy of the corresponding defect in that system. One

can calculate the equilibrium defect concentrations since it depends on the formation

energy of the defect, equation 1.3. We note that the properties (such as formation

energy, carrier concentration, and conductivity) related to carrier generation in TCO

hosts are discussed in great detail in Section 1.4.

Furthermore, band structures and (partial)density of states can be calculated

after the geometry optimization by enabling the appropriate features in the input file

(as mentioned before). We can obtain a great deal of information about the electronic

or optical properties of the material by studying the electronic band structures. Bands

in solids allow us to identify the material as either an insulator, a semiconductor, or a

metal. Moreover, the width of the band gaps, band edges, and whether the band gaps

are direct or indirect can provide useful information. For example, from Figure 2.2,

we can tell that the ZnO is a wide band gap insulator with a direct band gap (resulting

from metal s and oxygen p interactions) of 1.21 eV. We can also compare and study

how the band structure changes for a different doping mechanism in ZnO. When

doped, the dispersed parabolic conduction band (with a low density of states) of

ZnO would provide a pronounced shift of Fermi level up into the conduction band as

well as providing high mobility of electrons and low optical absorption.
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Figure 2.2: Band structure and DOS of un-doped ZnO calculated within the lo-
cal density approximations (LDA). In the DOS plot, the thick/black,
dashed/red and thin/blue lines represent metal s, metal p and oxygen p
states, respectively.

Studying the density of states, we can determine which states are contributing

to the conduction band or the valence band, which is critical for charge transport.

From the partial density of states in Figure 2.2, it can be seen that both oxygen

2p and metal s states have a similar contribution to the conduction band of ZnO.

Moreover, we can calculate the electron effective masses me, which is 0.35me and

isotropic for ZnO. Finally, we can calculate the electron group velocities and estimate

the conductivity factor which is the square of the electron velocity multiplied by the

density of states, equation 4.12, within the vicinity of the Fermi level by choosing the

specific band of interest.
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ABSTRACT∗

The structural, electronic, and optical properties of 12 multicomponent oxides

with layered structure RAMO4, where R3+=In or Sc, A3+=Al or Ga, and M2+=Ca,

Cd, Mg, or Zn, are investigated using first-principles density functional approach. The

compositional complexity of RAMO4 leads to a wide range of band gap values varying

from 2.45 eV for InGaCdO4 to 6.29 eV for ScAlMgO4 as obtained from our self-

consistent screened-exchange local density approximation calculations. Strikingly,

despite the different band gaps in the oxide constituents, namely, 2-4 eV in CdO,

In2O3, or ZnO; 5-6 eV for Ga2O3 or Sc2O3; and 7-9 eV in CaO, MgO, or Al2O3, the

bottom of the conduction band in the multicomponent oxides is formed from the s

states of all cations and their neighboring oxygen p states. We show that the hybrid

nature of the conduction band in multicomponent oxides originates from the unusual

fivefold atomic coordination of A3+ and M2+ cations, which enables the interaction

between the spatially spread s orbitals of adjacent cations via shared oxygen atoms.

The effect of the local atomic coordination on the band gap, the electron effective

mass, the orbital composition of the conduction band, and the expected (an)isotropic

character of the electron transport in layered RAMO4 is thoroughly discussed.

∗Published in Physical Review B 85, 155101 (2012)
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3.1. INTRODUCTION

Transparent conducting oxides (TCOs) are unique materials that exhibit both

low optical absorption in the visible region and nearly metallic electrical conductivity.

Serving as a contact and a window layer simultaneously, TCOs are a vital part of many

optoelectronic devices including solar cells, smart windows, and flat panel displays,

and they also find application as heating, antistatic, and optical coatings (for select

reviews, see Refs. [1, 5, 6, 25, 66, 67, 68]).

Multicomponent TCOs – complex oxides which contain a combination of post-

transition metals, In, Zn, Ga, Cd or Sn, as well as light main-group metals such as

Al or Mg – have attracted wide attention due to a possibility to manipulate the

optical, electronic, and thermal properties via the chemical composition and, thus, to

significantly broaden the application range of TCOmaterials [1, 5, 6, 26, 31, 32, 68, 69,

70, 71, 72, 73]. To optimize the properties of a multicomponent TCOs, it is critical to

understand the role played by each constituent oxide. For example, presence of lighter

metals such as Ga, Al or Mg in multicomponent TCOs is attractive for achieving a

broader optical transmission window associated with a wider band gap. At the same

time, however, these cations are know to be detrimental for the electrical properties

as they are believed to significantly suppress carrier concentration and transport.

Recent electronic band structure investigations of several main group metal

oxides [15] reveal that the electronic configuration of the cations plays crucial role

in the charge transport. It was shown that lighter metal cations (Ga, Ca, Al or Mg)

have their empty p or d states near the conduction band bottom. The resulting strong

(directional) hybridization of these anisotropic states with the p states of the neighbor

oxygen atoms result in significant charge localization (trapping) when extra electrons

are introduced. This is in marked contrast to the conventional TCOs, In2O3, ZnO,

SnO2, or CdO, where the cation’s p states are deep in the conduction band (at about

a few eV above the conduction band minimum [15]), and an extra charge is efficiently
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transported via a uniform network of the spatially-spread and spherically-symmetric

metal s orbitals connected by the oxygen p states.

In a multicomponent oxide containing the cations from both groups, i.e., post-

transition metals and light main-group metals, the respective energy locations of the

cations’ states may not be the same as in single-oxide constituents due to the interac-

tion between different cations via a shared oxygen neighbor. Indeed, it was found [19]

that the bottom of the conduction band in InGaZnO4 is governed by the states of all

cations despite the fact that the band gaps in the corresponding basis oxides differ

significantly (2.9 eV for In2O3, 3.4 eV for ZnO, and 4.9 eV for Ga2O3). Moreover, the

electronic properties in a multicomponent oxide may significantly deviate from that

expected from the electronic band structures of the single-cation (basis) oxides. This

stems from the differences in the interatomic distances and the atomic coordination

numbers in the complex oxide as compared to those in the bulk ground-state (lowest

energy) structures of the constituent oxides.

In this work, we systematically investigate the structural, electronic and op-

tical properties of 12 RAMO4 compounds with R3+=In or Sc; A3+=Al or Ga; and

M2+=Ca, Cd, Mg, or Zn. These materials possess the same layered crystal structure

as the member of the homologous series InGaO3(ZnO)m [74, 75] with m=1, where the

chemically and structurally distinct layers ( the octahedrally coordinated RO1.5 layer

and wurtzite-like AMO2.5 double-layer) alternate along the crystallographic z direc-

tion. By comparing the calculated electronic properties of the set of multicomponent

oxides, we determine how the composition affects (i) the nature of the conduction

band bottom; (ii) the electron effective masses in the ab plane (within the layers)

and along the z direction (across the layers); and (iii) the location of the cation(s) p

states with respect to the conduction band minimum. In addition to the local den-

sity approximation (LDA) which underestimates the oxide band gaps and may give

incorrect energy location of the states of different cations in the conduction band of
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multicomponent materials, we also employed self-consistent screened-exchange LDA

(sX-LDA) method which models the exchange-correlation hole within a nonlocal den-

sity scheme [76].

The paper is organized as follows. First, details of the computational meth-

ods and approaches are given in Sec. 3.2. In Sec. 3.3, we discuss the structural

peculiarities of the investigated multicomponent compounds and compare them to

the structural properties of the basis single-cation oxides. Specifically, we compare

the cation-anion distances and the atomic coordination numbers in multicomponent

and single-cation oxides in various structures. Further, the electronic properties of

the basis, single-cation oxides are discussed in Sec. 3.4. We demonstrate how the elec-

tronic properties of the oxides, e.g., band gaps and the electron effective masses, vary

upon changes in the interatomic distances and/or oxygen coordination by considering

both the ground state and hypothetical structures of oxides. In Sec. 3.5, the gen-

eral electronic properties of multicomponent oxides are discussed first. Further, we

thoroughly analyze the following: (a) how the atomic coordination affects the band

gap formation in complex oxides; (b) what is the effect of chemical composition on

(an)isotropy of conduction states in RAMO4; (c) what is the orbital composition of

the conduction band in RAMO4 and the role the peculiar atomic coordination played

in the respective energy location of cation’s empty s, p, and d orbitals in the con-

duction band; and (d) the electron effective masses within and across the structural

layers of different composition in RAMO4. We give conclusions in Sec. 3.6.

3.2. METHODS AND APPROXIMATIONS

First-principles full-potential linearized augmented plane wave (FLAPW) [20,

47] method within the local density approximation is employed for the electronic band

structure investigations of twelve RAMO4 compounds, R3+=In or Sc, A3+=Al, Ga,

M2+=Ca, Cd, Mg, and/or Zn, [11] as well as their single-cation constituents, MgO,
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CaO, ZnO, CdO, Sc2O3, In2O3, Al2O3, and Ga2O3. Cutoffs for the basis functions,

16.0 Ry, and the potential representation, 81.0 Ry, and expansion in terms of spherical

harmonics with ℓ ≤ 8 inside the muffin-tin spheres were used. The muffin-tin radii

of multi-cation and single-cation oxides are as follows: 2.3 to 2.6 a.u. for In, Sc, Cd,

and Ca; 1.7 to 2.1 a.u. for Ga, Mg, Zn, and Al; and 1.6 to 1.8 a.u. for O atoms.

Summations over the Brillouin zone were carried out using at least 23 special k points

in the irreducible wedge.

Because LDA underestimates the oxide band gaps and may give incorrect

energy location of the states of different cations in the conduction band of multi-

component materials, we also employed the self-consistent screened-exchange LDA

(sX-LDA) method [57, 76, 77, 78, 79] for more accurate description of the band gap

values and the valence/conduction band states of the twelve complex oxides. For the

sX-LDA calculations, cutoff for the plane wave basis was 10.2 Ry and summations

over the Brillouin zone were carried out using at least 14 special k points in the irre-

ducible wedge. Ga and Zn 3d10 states, which were treated as valence, were excluded

from screening.

3.3. CRYSTAL STRUCTURE

The investigated multicomponent oxides have rhombohedral R3̄m layered

crystal structure of YbFe2O4 type and belong to the homologous series RAO3(MO)m

with m=1 [74, 75, 80]. In these compounds, R3+ ions (In or Sc) have octahedral

coordination with the oxygen atoms and reside in 3(a) position (Yb), whereas both

A3+ (Al or Ga) and M2+ (Ca, Mg, Zn or Cd) ions reside in 6(c) position (Fe) and

are distributed randomly [81]. To model a random distribution, specifically, to avoid

planes or chains of the same type of atoms, a 49-atom supercell was constructed with

the lattice vectors (302̄), (1̄12) and (021̄), given in the units of the rhombohedral

primitive cell vectors [36]. Note, that the conventional rhombohedral unit cell of
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YbFe2O4 contains 21 atoms (Z=3), and the primitive, i.e., the smallest volume, cell

contains 7 atoms (Z=1).

Because of the different ionic radii and the valence state of the cations in

RAMO4 compounds, the A3+ and M2+ atoms have different z component of the

internal site position 6(c). Since the exact internal positions of atoms are not known,

we used those of the YbFe2O4 [74] as the starting values, and then optimized the

internal positions of all atoms in the supercell via minimization of the total energy and

the atomic forces. During the optimization the lattice parameters were fixed at the

experimental values [11, 74, 75, 80] except for InAlCaO4, InGaCaO4, and InGaCdO4

where a and c were optimized since the experimental values are unavailable. Our

optimized structural parameters for the latter compounds as well as the optimized z

values for every structure under consideration are given in Table 3.1.

Next, we compare the local atomic structure in multicomponent oxides to

that of the constituent basis oxides. First, the following ground state (lowest en-

ergy) structures of single-cation oxides were considered: Fm3̄m (rocksalt) for MgO,

CaO, and CdO; Ia3̄ (bixbyite) for Sc2O3 and In2O3; P63mc (wurtzite) for ZnO; R3̄c

(corundum) for Al2O3; and C2/m (monoclinic) for β-Ga2O3. For these structures,

the lattice parameters were kept at the experimental values. The internal atomic

positions for Sc2O3, In2O3, Al2O3, and Ga2O3 were optimized via the total energy

and atomic forces minimization. Additional phases for oxides of A and M metals

were also calculated as explained in details below.

Our results show that the optimized cation-anion distances in multicomponent

oxides correlate with the ionic radii of the cations, c.f., Tables 3.1 and 3.2. For the

octahedrally coordinated R3+ ions, i.e., In or Sc, the R-O distances in multicomponent

oxides are close to those in the corresponding single-cation oxides, c.f., ⟨DR−O⟩ in

Table 3.1 and ⟨D⟩ in Table 3.2. The averaged In-O or Sc-O distance in RAMO4

is only 0.03-0.04 Å larger than that in In2O3 or Sc2O3. The largest deviations for
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Table 3.1: Lattice constants a and c, in Å; the range for the fractional z coordinates of
A3+=Al or Ga, and M2+=Zn, Cd, Ca, or Mg atoms at the 6(c) positions of
rhombohedral YbFe2O4 structure; and the average optimized cation-anion
distances ⟨DR−O⟩, the average planar ⟨Dab

A/M−O⟩, nearest apical Dc
A/M−O,

and next nearest apical distances Dc
A/M−O∗ in Å, for twelve multicompo-

nent oxides. When available, the experimental lattice constants were used
(experimental values a, b, c, and d are used from references [11, 74, 75, 80],
respectively), otherwise, the lattice parameters were obtained via the ge-
ometry optimization. The experimental data for the prototype structure
YbFe2O4 is given for comparison.

RAMO4 a c ⟨DR−O⟩ ⟨Dab
A−O⟩ Dc

A−O Dc
A−O∗ ⟨Dab

M−O⟩ Dc
M−O Dc

M−O∗

InAlCaO4 3.34 27.25 2.20 1.77 1.78 2.17 2.20 2.20 2.60

InAlCdO4 3.32a 27.50a 2.20 1.78 1.79 2.05 2.17 2.20 2.63

InAlMgO4 3.29a 25.66a 2.20 1.83 1.84 2.30 2.02 1.98 2.26

InAlZnO4 3.31b 26.33b 2.21 1.84 1.84 2.14 2.05 2.00 2.38

InGaCaO4 3.39 27.31 2.22 1.85 1.86 2.14 2.17 2.21 2.52

InGaCdO4 3.38 27.16 2.21 1.86 1.89 2.31 2.15 2.17 2.61

InGaMgO43.30
c 25.81c 2.19 1.88 1.91 2.35 1.98 1.98 2.26

InGaZnO4 3.29c 26.07c 2.21 1.88 1.92 2.35 1.98 1.97 2.38

ScAlMgO4 3.24
a 25.15a 2.15 1.81 1.80 2.28 1.98 1.98 2.32

ScAlZnO4 3.24b 25.54b 2.13 1.82 1.82 2.17 1.99 1.98 2.38

ScGaMgO43.27
a 25.62a 2.14 1.87 1.89 2.32 1.96 1.99 2.33

ScGaZnO4 3.26
c 25.91c 2.13 1.87 1.90 2.35 1.96 1.98 2.29

YbFe2O4 3.45d 25.05d 2.24 2.01 1.94 2.15

one of the six In-O distances in the InO6 octahedra (5-7%) are found for Ca and

Cd-containing compounds (i.e., InGaMO4 and InAlMO4 with M=Ca or Cd). These

compounds represent the case of a large mismatch of the ionic radii of the A and

M ions, which affects the In-O distances in the neighboring InO1.5 layer. In other

compounds, the In-O distances differ by only 1-2% as compared to those in the bulk

In2O3.

The most important observation concerning the crystal structure in RAMO4

compounds is that all A and M atoms are in fivefold coordination (bipyramid) with
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Table 3.2: The cation-anion distances average, ⟨D⟩, and their ranges, in Å in single-
cation oxides as compared to the corresponding average cation-anion dis-
tances and ranges in multicomponent oxides. Also, the deviation in the
ranges of distances in multicomponent oxides with respect to the distances
in the corresponding single-cation oxide, in percent.

Basis oxide RAMO4

⟨D⟩ Range ⟨D⟩ Range Deviation, %

R2O3 In-O 2.17 2.12-2.21 2.21 2.13-2.37 —/+7

Sc-O 2.11 2.08-2.16 2.14 2.05-2.22 –1/+3

A2O3 Al-O 1.91 1.86-1.97 1.85 1.71-2.30 –8/+17

Ga-O 1.93 1.83-2.07 1.93 1.79-2.35 –2/+14

MO Zn-O 1.98 1.97-1.99 2.02 1.92-2.38 –3/+20

Mg-O 2.08 2.08 2.04 1.92-2.33 –8/+12

Ca-O 2.37 2.37 2.25 2.10-2.59 –11/+9

Cd-O 2.35 2.35 2.38 2.09-2.63 –11/+12

oxygen atoms, Fig. 3.1, and not in fourfold (tetrahedral) as it was previously assumed

for decades. As one can see from Table 3.1, the A-O or M-O distance to the fifth

atom (also called the second apical atom hereafter), denoted as ⟨Dc
A/M−O∗⟩, is only

∼0.3-0.5 Å longer than the distance to the nearest apical oxygen atom, denoted as

⟨Dc
A/M−O⟩. For comparison, in wurtzite ZnO, the Zn-O distance to the next nearest

oxygen atom (second apical O) is 3.22 Å which is 1.23 Å longer than the Zn-O

distance to the nearest apical oxygen atom which belongs to the ZnO4 tetrahedra,

Fig. 3.2(a).

The fact that Zn has fivefold oxygen coordination in RAZnO4 is illustrated in

Fig. 3.3 where we compare the calculated charge density distribution for InGaZnO4

and wurtzite ZnO plotted in the (011) plane to include O-Zn-O bonds along the

[0001] direction for both compounds. The strong bonding between Zn (as well as Ga)
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Figure 3.1: (Color online)Oxygen coordination of R=In or Sc (octahedra) and A=Al
or Ga, and M=Zn, Cd, Ca, or Mg (bipyramid) in the single block of the
unit cell of RAMO4 compounds. The conventional unit cell of RAMO4

consists of three similar blocks stacked along the c direction.

Figure 3.2: (Color online)Fourfold vs fivefold coordination of Zn with oxygen atoms
in wurtzite ZnO (a) vs InGaZnO4 (b). The cation-anion apical and planar
distances are shown (in Å). The corresponding charge densities are shown
in Fig. 3.3.
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Figure 3.3: (Color online)Calculated total charge density distribution contour plots
for wurtzite ZnO [left-(a)] and InGaZnO4 [right-(b)]. Zn as well as Ga
have strong bonds with both apical oxygen atoms making them fivefold
coordinated cations in the multicomponent oxide, in marked contrast to
wurtzite ZnO with fourfold oxygen coordination.

atom and the second apical oxygen atom in the multicomponent oxide is clearly seen

from the charge density plot, Fig. 3.3(b). In contrast, there is no overlap between

Zn atom and its second apical oxygen atom in wurtzite ZnO, Fig. 3.3(a). Thus, Zn

atoms form five bonds with neighboring oxygen atoms in InGaZnO4, whereas Zn has

four bonds in the basis ZnO.

Similar to Zn, all other M2+ and all A3+ cations in RAMO4 compounds are

fivefold coordinated with oxygen atoms. Strikingly, none of the A or M atoms possess

fivefold coordination in the basis, single-cation oxides. The Ca, Cd, or Mg metals form

rocksalt structure (Fm3̄m) with octahedral oxygen coordination, whereas Al or Ga

ions are in either fourfold or sixfold coordinations in corundum (R3̄c) or monoclinic

(C2/m) phases, respectively. (Other known phases of Al2O3, i.e., θ- and κ-Al2O3

with C2/m and Pna21 structures, respectively, also have four- and six-coordinated
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Al ions; α-Ga2O3 has corundum structure, space group R3̄c, with sixfold oxygen

coordination of Ga.)

The unusual fivefold coordination of A and M ions stabilized in RAMO4 com-

pounds is expected to manifest itself in the electronic properties of the complex oxides

that differ from those for the basis oxides. Specifically, because the main features of

the electronic band structure of oxides, such as the band gap value and the elec-

tron effective mass, are determined by the strong metal-oxygen interactions, direct

comparison between the (averaged) values obtained for multicomponent oxides with

those in the basis oxides in the ground state structures is invalid.

We stress here that the fivefold coordination of A and M atoms with the

neighbor O atoms in the RAMO4 compounds does not fall out of the fundamental

principles governing the structure formation of multicomponent oxide systems. As

shown in the extensive works of Walsh et al. [31] (and references therein), the coor-

dination environment is determined by satisfying the electronic octet rule for local

charge neutrality as well as the material stoichiometry. The octahedral structure

in the RO1.5 layer which maximizes the atomic separation between the negatively

charged O atoms, serves as a disruptive stacking fault to the wurtzite-like AMO2.5

layer. At the same time, the A atoms, such as Al or Ga, do not have a strong pref-

erence for octahedral sites [31]. Hence, while trying to accommodate the A and M

atoms and obey the electronic octet rule, changes must occur in the AMO2.5 layer

leading to the formation of fivefold trigonal bipyramid structures [31].

To determine how the local atomic coordination affects the electronic proper-

ties of oxides, we performed calculations for the hypothetical phases with fivefold oxy-

gen coordination of A and M cations. Moreover, we set the lattice parameters as well

as the internal atomic positions in the hypothetical phases so that the metal-oxygen

distances are similar to those in the corresponding multicomponent RAMO4 oxides

(given in Table 3.1). This will allow us to compare the band gap value calculated for
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each RAMO4 compound with the value obtained via averaging over the band gaps

in the corresponding single-cation oxides with the same local atomic coordination

and bond-lengths. For ZnO, MgO, CdO, and MgO, i.e., for M2+O2− compounds, we

performed calculations for wurtzite-based structures where the second nearest apical

oxygen atom is located close enough to the metal ion to make it a fivefold coordina-

tion, Table 3.3. Similarly, for Al2O3 and Ga2O3, we used Al2S3-type structure, space

group P61, and modified the lattice parameters and the internal atomic positions

to obtain A-O distances similar to those in the corresponding RAlMO4 or RGaMO4

compounds, Table 3.4. Note, that the In and Sc are octahedrally coordinated with

oxygen atoms both in the basis oxides and in RAMO4. The In-O or Sc-O distances

in the multicomponent oxides are slightly larger than those in the basis oxides, c.f.,

Tables 3.1 and 3.2.

Table 3.3: Structural parameters for wurtzite-based hypothetical structures of
M2+O2− where metal-oxygen distances correspond to the average distances
obtained for RAMO4, Table 3.1. Lattice constants a and c, internal para-
mater u in Å, as well as planar Dab

M−O, nearest apical Dc
M−O, and next

nearest apical distances Dc
M−O∗ in Å. To compare, in ground state wurtzite

ZnO, a=3.25 Å, c=5.21 Å, u=0.3817: Dab
Zn−O=1.97 Å; Dc

Zn−O=1.99 Å;
Dc

Zn−O∗=3.22 Å.

a c u Dab
M−O Dc

M−O Dc
M−O∗

ZnO 3.44 4.34 0.4570 2.00 1.98 2.36

MgO 3.43 4.28 0.4639 1.98 1.98 2.29

CaO 3.77 4.76 0.4625 2.19 2.20 2.56

CdO 3.73 4.81 0.4557 2.16 2.19 2.62

In the next section, we begin our discussions with the electronic properties

of single-cation oxides and how the atomic coordination affects their electronic band

structure.
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Table 3.4: Structural parameters for hypothetical phases of Al2O3 and Ga2O3 in
Al2S3-type (space group P61). The Ga-O and Al-O distances correspond
to the average distances obtained in RAMO4. Lattice constants a and c in
Å, planar Dab

A−O, nearest apical Dc
A−O, and next nearest apical distances

Dc
A−O∗ in Å for different sites.

a c Dab
A−O Dc

A−O Dc
A−O∗

Al2O3 5.30 12.59 Al(1) 1.78 1.81 1.82 1.79 2.30

Al(2) 1.79 1.85 1.89 1.83 2.31

Ga2O3 5.38 12.85 Ga(1) 1.80 1.83 1.85 1.89 2.35

Ga(2) 1.82 1.88 1.92 1.87 2.38

3.4. ELECTRONIC PROPERTIES OF SINGLE-CATION OXIDES

3.4.1. Ground State Structures. The investigated basis oxides of post-

transition and light main-group metals possess qualitatively similar electronic band

structure: the valence band is formed from non-bonding and bonding 2p states of

oxygen, whereas the highly dispersed conduction band arises from the metal s states

and the anti-bonding O-2p states. Strong metal-oxygen interaction is responsible for

wide band gaps and small electron effective masses in these oxides, Table 3.5. Note

that, as expected, LDA underestimates the band gap values as well as the electron

effective masses. The nonlocal density scheme of the sX-LDA method corrects the

LDA failure and gives an excellent agreement between the calculated, Table 3.5, and

experimental band gaps for both the semiconductor-like materials with band gap of

∼2.3-3.4 eV (CdO, In2O3, ZnO) and the insulators with band gaps of ∼6-9 eV (CaO,

MgO, Al2O3, Sc2O3).

The sX-LDA calculated electronic band structures and partial density of states

of all single-cation oxides studied in this work have been published earlier, [15, 19]

except for Sc2O3. The bottom of the conduction band in scandium oxide is governed
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Table 3.5: The averaged electron effective mass in me, for single-cation oxides within
both LDA and sX-LDA are given for the basis oxides in the ground state
phase, ⟨mg⟩ , and in the hypothetical phase, ⟨mh⟩. The effective mass
anisotropy δ, which is defined as δ = (m[100] + m[010])/2m[001]. Also, the
band gap values (in eV) obtained within both LDA and sX-LDA are given
for the basis oxides in the ground state phase, Eg

g, and in the hypothetical
phase, Eh

g , with the bond lengths and oxygen coordination resembling
those in the corresponding RAMO4 compounds. The fundamental band
gaps as well as optical, i.e., direct, band gaps (in parenthesis) are given.

LDA sX-LDA

⟨mg⟩ δ Eg
g Eh

g ⟨mg⟩ Eg
g ⟨mh⟩ Eh

g

R2O3 In2O3 0.18 1.00 1.16 0.85 0.28 2.90(3.38) 0.28 2.61(3.07)

Sc2O3 1.12 1.00 3.66 3.61 1.19 6.06 1.19 5.98

A2O3 Al2O3 0.39 1.00 6.27 3.86 0.45 9.08 0.52 6.80

Ga2O3 0.26 1.17 2.32 2.42 0.34 4.86(4.91) 0.43 4.82

MO ZnO 0.17 1.09 0.81 1.14 0.35 3.41 0.36 3.63

MgO 0.38 1.00 4.76 3.44 0.46 7.55 0.52 6.50

CaO 0.37 1.00 3.45(4.42) 3.52 0.42 5.95(7.15) 0.53 6.51

CdO 0.15 1.00 -0.51(0.92) 0.00 0.23 0.50(2.29) 0.31 1.01

by the localized Sc d states, Fig. 3.4, and, as a result of the low dispersion of the

conduction band, the electron effective mass in Sc2O3 is the largest among the oxides

and is greater than the mass of the free electron, Table 3.5.

Recent comparative investigations of main group metal oxides [15, 19] have

revealed that the fundamental differences in the electronic properties of the conven-

tional TCO hosts (In2O3, ZnO and CdO) and the light metal oxides (Al2O3, CaO

and MgO) originate from the different energy location of the cation’s empty p or d

states with respect to the conduction band bottom. In the former oxides, the cation

p band is well above its s band, which is a prerogative for a good charge transport

via a uniform network formed by the spherically symmetric metal s orbitals and the
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Figure 3.4: Band structure and partial DOS of Sc2O3. The thin, dashed, and thick
lines in the partial DOS plots represent the metal d, oxygen p, and metal
s states, respectively.

neighboring oxygen p orbitals in degenerately doped materials. In striking contrast

to the post-transition metal oxides, the light metal p or d band almost coincides (as

in Al2O3 or MgO) or is even below its s band (as in CaO or Sc2O3) in the classical

insulators. The proximity of the p or d states to the bottom of the conduction band

and the resulting strong directional interaction of these anisotropic orbitals with the

p orbitals of the neighboring oxygen atoms have three consequences: (1) wide band

gaps of 6-9 eV; (2) the electron effective masses which are at least twice larger than

those in the conventional TCO hosts, Table 3.5; and (3) charge localization (widely

known as an F center or color center) of extra electrons near an electron-donor defect.

The deep defect states are unable to produce electrical conductivity in these oxides.

We note here that Ga2O3 does not belong to either of the two groups of oxides,

but rather represents an intermediate case, c.f., Table 3.5, illustrating that, naturally,

the transition between the oxide groups is not abrupt. The Ga p band is located

relatively close to the metal s band but does not coincide with it as, for example,
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in Al2O3 or MgO. This leads to a considerable but not dominant contributions from

the Ga p states near the bottom of the conduction band. Consequently, in oxygen

deficient Ga2O3, extra electrons induced by the oxygen vacancy are not fully localized

near the defect as in light metal oxides, yet, the electron group velocity is nearly an

order of magnitude smaller than that in TCOs, e.g., In2O3 [19]. This explains why

Ga2O3 is not a viable TCO itself, nonetheless, Ga-containing multicomponent TCOs

are common.

In Sec. 3.5.2, we will come back to the discussion of the proximity of the

cation’s p or d states to the conduction band in multicomponent oxides.

3.4.2. Hypothetical Phases With Fivefold Coordination. As mentioned

above, the main features in the electronic band structure of oxides are determined

by the nature and degree of the metal-oxygen interaction. Here we discuss how the

electronic properties, in particular, the band gap values of single-cation oxides vary

when the metal-oxygen distances and oxygen coordination are changed to resemble

those in the RAMO4 multicomponent oxides.

First, we note that In and Sc are octahedrally coordinated with oxygen atoms

both in the basis oxides and in RAMO4. The In-O or Sc-O distances in the basis

oxides are slightly smaller than those in the multicomponent oxides, c.f., Tables 3.1

and 3.2. To reproduce the R-O distances found in the multicomponent oxides, we

increased the lattice parameter a from 10.12 to 10.26 Å and from 9.81 to 9.90 Å for

cubic In2O3 and Sc2O3, respectively. As expected from a smaller nearest neighbor

orbital overlap associated with longer metal-oxygen distances, we obtained smaller

band gaps for indium and scandium oxides, cf., Table 3.5.

For A2O3 and MO oxides, we considered hypothetical structures with fivefold

coordination and metal-oxygen distances that resemble those obtained in multicom-

ponent oxides (see Sec. 3.3 for details). The band gap values calculated within both

LDA and sX-LDA methods for the hypothetical structures are given in Table 3.5.



52

For Al2O3 and MgO with fivefold-coordinated Al and Mg cations, the gap becomes

smaller by 2.2 eV and 1.0 eV, respectively, as compared to the ground state phases

(corundum and rocksalt, respectively) with sixfold coordination. In the hypothetical

CaO and CdO with fivefold coordinated Ca and Cd, the band gap becomes direct

and its value decreases by 0.6 eV and 1.3 eV, respectively, as compared to the optical,

direct band gap of rocksalt CaO and CdO with octahedral coordination of cations,

Tabel 3.5. (Note, the case of Cd represents the largest coordination-induced change

in the band gap, namely, 56%). Accordingly, the band gap in hypothetical ZnO

with fivefold coordinated Zn slightly increases (by ∼0.2 eV) with respect to four-

coordinated Zn in wurtzite ZnO. Finally, there is a negligible change in the band gap

of β-Ga2O3 which has fourfold and sixfold coordinated Ga atoms in the ground state

monoclinic phase as opposed to the fivefold coordination of Ga in the hypothetical

Al2S3-type structure.

Thus, we find that lower coordination number leads to a smaller band gap.

We must stress here that this conclusion should not be generalized to other coordina-

tions. For example, we do not expect the band gap to increase further for structures

with 8fold coordination (e.g., as in CsCl-type structure) with respect to the sixfold

coordination. We believe that octahedral coordination provides a largest band gap

because it corresponds to the largest overlap between the metal orbitals and the px,

py, and pz orbitals of the neighboring oxygen atoms [15]. Therefore, with respect to

the sixfold-coordinated case, higher- and lower-coordinated structures are expected

to produce a smaller band gap. Variations in the metal-oxygen distances (c.f., ranges

in Table 3.2) may further affect the orbital overlap and, hence, the band gap values,

but perhaps to a lesser extent compared to the changes caused by the different atomic

coordination.

In the next section, we will demonstrate that the band gap values of multi-

component RAMO4 compounds can be reproduced via averaging over those obtained
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for the single-cation oxides in the hypothetical structures, i.e., with the corresponding

atomic coordination and interatomic distances.

3.5. ELECTRONIC PROPERTIES OF MULTICOMPONENT OXIDES

3.5.1. Role of Atomic Coordination in Band Gap Formation. The

electronic band structure of 12 multicomponent oxides, RAMO4, is similar to that

of the single-cation oxides: the valence band is formed from the oxygen 2p states,

whereas the conduction band arises from the antibonding oxygen 2p states and the

metal s, p or d states(see Figs. 3.5 and 3.6).

The average width of the valence band is about 6.4 eV for all compounds

with the largest value of 7.5 eV obtained for ScGaZnO4. In the valence band, both

types of the oxygen atoms, O(1) and O(2), give comparable contributions. However,

at the very top of the valence band, the contributions from O(2), i.e., the oxygen

that belongs to the AMO2.5 double layer, are at least two times larger except for

ScAlMgO4 and ScGaMgO4 where the oxygen contributions are similar.

Metal-oxygen interactions result in a band gap between the valence and the

conduction bands which varies significantly with composition. From the sX-LDA

calculations, the smallest gap of 2.45 eV is found for InGaCdO4, and the largest,

6.29 eV, for ScAlMgO4, Table 3.6. We note that independent of the composition of

the complex oxides, the sX-LDA band gap values are larger by about 2 eV (more

precisely, by 1.7–2.5 eV) than the LDA values for all compounds investigated, Table

3.6.

The band gaps of multicomponent oxides seem to follow the general trend ex-

pected from the band gap values of the basis oxide constituents, i.e., the incorporation

of ligher metals results in a band gap increase. However, the increase is not the same

in otherwise similar compounds: for example, when Ga is replaced by Al in InAMO4

compounds, the gap does not increase by the same amount for the four compounds,
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Figure 3.5: (Color online)Partial density of states in multicomponent RAMO4 com-
pounds as obtained from LDA calculations.
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Figure 3.6: Electronic band structure of 12 multicomponent RAMO4 compounds as
obtained from LDA calculations.
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Table 3.6: LDA and sX-LDA calculated band gaps Eg (in eV) in RAMO4 compounds
and the band gap averages obtained using the band gaps of the corre-
sponding single-cation oxides in the ground state, ⟨Eg

g⟩, or the hypotheti-
cal phases, ⟨Eh

g⟩, cf., Table 3.5, with equal weights. In addition, weighted
averages, ⟨Eg

g⟩w and ⟨Eh
g⟩w, calculated based on the respective contribu-

tions of the cations to the bottom of the conduction band, Fig. 3.7, are
given.

LDA sX-LDA

RAMO4 Eg ⟨Eg
g⟩ ⟨Eg

g⟩w ⟨Eh
g⟩ ⟨Eh

g⟩w Eg ⟨Eg
g⟩ ⟨Eg

g⟩w ⟨Eh
g⟩ ⟨Eh

g⟩w

InAlZnO4 1.51 2.75 2.41 1.95 1.73 3.48 5.13 4.68 4.35 4.01

InAlCaO4 2.37 3.63 3.02 2.74 2.21 4.87 5.98 5.21 5.31 4.54

InAlMgO4 2.45 4.06 3.20 2.72 2.15 4.62 6.51 5.43 5.30 4.47

InAlCdO4 1.18 2.31 1.88 1.57 1.32 2.87 4.16 3.62 3.47 3.11

InGaZnO4 1.18 1.43 1.41 1.47 1.43 3.29 3.72 3.67 3.69 3.62

InGaCaO4 1.93 2.31 2.10 2.26 2.02 4.08 4.57 4.28 4.65 4.29

InGaMgO4 2.08 2.75 2.54 2.24 2.07 4.31 5.10 4.83 4.64 4.40

InGaCdO4 0.64 0.99 0.85 1.09 0.99 2.45 2.75 2.54 2.81 2.65

ScGaZnO4 2.44 2.26 1.93 2.39 2.10 4.45 4.78 4.47 4.81 4.53

ScAlZnO4 3.16 3.58 3.00 2.87 2.49 5.52 6.18 5.61 5.47 5.08

ScGaMgO4 3.26 3.58 3.55 3.16 3.09 5.76 6.16 6.15 5.77 5.73

ScAlMgO4 4.35 4.90 4.12 3.64 3.64 6.29 7.56 6.60 6.43 6.13

i.e., those with M=Zn, Ca, Mg, or Cd. Rather, the increase is about 0.2 eV, 0.8 eV,

0.3 eV, or 0.4 eV, respectively, Table 3.6, as obtained within sX-LDA calculations.

A thorough analysis of the obtained trends in the band gap values and a comparison

with those in the corresponding basis oxides allow us to make the following important

conclusions:

(i) The band gap in a multicomponent oxide is not governed by the smallest-

gap basis oxide constituent. For example, for two Cd-containing complex oxides, the

sX-LDA band gaps are 2.5 eV and 2.9 eV which are larger than the CdO band gap,
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Table 3.5. For InAMO4 compounds excluding those with Cd, the band gap values

vary from 3.3 eV to 4.9 eV, Table 3.6 – despite the fact that In2O3 has the band gap

of 2.90 eV (from sX-LDA), Table 3.5.

(ii) The band gap in the multicomponent oxides is affected by the presence of

all oxide constituents disregarding the differences in the band gaps of the basis oxides.

In other words, not only the post-transition metal oxides (smaller-gap constituents)

but also the light metal oxides (large-gap constituents) contribute to the formation of

the band gap (for example, compare the band gaps of InGaMO4 with M=Cd, Zn, Ca

or Mg, or other sets of compounds). This arises from the close interaction between

the alternating cations via shared oxygen atoms in mixed A and M or neighbor R-

layers, and points to a hybrid nature of the conduction band, as discussed in the next

section.

(iii) An equal-weight average, ⟨Eg
g⟩, over the band gaps of the basis oxides in

their ground state phases (c.f., Table 3.5) correlates with the calculated band gaps

for corresponding multicomponent oxides but gives significantly overestimated values

in most cases, Table 3.6.

(iv) An equal-weight average, ⟨Eh
g⟩, over the band gaps of the basis oxides in

the hypothetical phases (c.f., Table 3.5) provides a better guess but still overestimates

the value of the band gap in multicomponent oxides, Table 3.6.

(v) Weighted average over the band gaps of the basis oxides (in either the

ground state phase or the hypothetical phase) with weights taken as the percent

contributions from the cations states to the lowest conduction band wave-function at

the Γ point yields underestimated band gap values with respect to those calculated for

multicomponent oxides (these values are not given in the Table 3.6). For the RAMO4

compounds with two or more light metal oxide constituents, the underestimation is

significant, of ∼30%. This suggests that the states located above the conduction
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band minimum (such as the states of the light metals) play an important role and

must be taken into account.

(vi) Weighted average, ⟨Eh
g⟩w, over the band gaps of the basis oxides in the

hypothetical phase with weights taken as the relative cation contributions to the

conduction band within an energy range, Fig. 3.7, provides a closest match to the

calculated band gap values in multicomponent oxides, Table 3.6. The energy range at

the bottom of the conduction band which is used to determine the cations contribu-

tions, represents the Fermi energy displacement, or the so-called Burstein-Moss (BM)

shift, which corresponds to an extra electron concentration of 1×1021 cm−3 in each

compound. Due to the high energy dispersion of the conduction band in InAMO4

compounds, the BM shift is large, of 1.0-1.5 eV. In ScAMO4, the presence of the Sc d

states near the bottom of the conduction band result in a high density of states, and

hence, the BM shift is significantly smaller, e.g., 0.05 eV for ScAlMgO4 and ∼0.7 eV

for ScAlZnO4 and ScGaMgO4. Thus, the local atomic structure in multicomponent
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Figure 3.7: (Color online) Total charge densities calculated within one unit cell and at
the bottom of the conduction band for the energy window that represents
∼1x1021 cm−3 extra electrons in each RAMO4.

oxides, which differs from that of the basis oxides in the ground state (see Secs. 3.3

and 3.4), plays an important role in determining the resulting electronic properties

and must be taken into account for accurate predictions. We note here that an im-

proved agreement between the calculated and the averaged band gaps is expected

when the metal-oxygen distances in the hypothetical oxide phases closely correspond
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to the distances in particular multicomponent oxide, Table 3.1. In our calculations

for the hypothetical single-cation phases, we used the metal-oxygen distances aver-

aged over all RAMO4 for each particular metal, ⟨D⟩ in Table 3.2, while the actual

distances in each RAMO4 may differ essentially, c.f., deviations of the ranges in Table

3.2. For example, the 15 % overestimation of the band gap average in InAlZnO4 is

due to the fact that the Al-O and Zn-O distances in this compound, ⟨Dab
Zn−O⟩=2.05 Å,

⟨Dc
Zn−O⟩=2.00 Å, ⟨Dab

Al−O⟩=1.84 Å and ⟨Dc
Al−O⟩=1.84 Å, Table 3.1, are larger than

those in the hypothetical ZnO phase, ⟨Dab
Al−O⟩=2.00 Å and ⟨Dc

Zn−O⟩=1.98 Å, Table

3.3, and the hypothetical P61 phase of Al2O3, ⟨Dab
Al−O⟩=1.825 Å and ⟨Dc

Al−O⟩=1.81

Å, Table 3.4. Increased distances in the hypothetical oxide phases will result in

smaller band gaps for these compounds, bringing the average band gap closer to the

calculated one in InAlZnO4. Conversely, the 7% underestimation of the band gap

average in InAlCaO4 is due to the smaller Al-O distances in the multicomponent

oxide (⟨Dab
Al−O⟩=1.77 Å and ⟨Dc

Al−O⟩=1.78 Å, Table 3.1) as compared to those in the

hypothetical Al2O3, Table 3.4.

3.5.2. Nature of the Conduction Band in RAMO4. The nature of the

conduction band in a complex TCO host is of primary interest since the charge

transport in degenerately doped material will occur through the states which form

the conduction band. One of the reasons that the oxides of homologues series

(In,Ga)2O3(ZnO)m, m=integer, have attracted wide attention was a common as-

sumption that the conduction band in these complex oxides is formed from the In s

states. Based on this assumption it was suggested that these layered materials offer

a possibility to spatially separate carrier donors located within non-conducting layers

and the conducting layers which transfer the carriers effectively, i.e., without charge

scattering on the impurities, that would lead to an increased conductivity [72].

From the density of states (DOS) plots, c.f., Fig. 3.5, it may appear that the

In states solely govern the conduction band in all InAMO4 compounds. However,
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analysis of the DOS plots alone may provide a misleading picture of the nature of the

conduction bands for three reasons. First, due to the high energy dispersion at the

bottom of the conduction band in the oxides under consideration, the corresponding

density of states is small. This tail in the DOS should not be neglected. Second, one

should compare the relative contributions from different atoms within a rather narrow

energy range at the bottom of the conduction band which corresponds to a Fermi

level displacement associated with introduction of a particular electron concentration

upon degenerate doping of the material. Usually, the extra electron concentrations

are of the order of 1019−1021 cm−3. Third, the partial DOS is commonly calculated

within thse muffin-tin spheres and, therefore, the interstitial region which may give

a significant contribution owing to the spatial distribution of the metal s-orbitals, is

not taken into account.

To obtain a more reliable description of the conduction states in multicompo-

nent oxides, we calculated the charge density distribution within an energy range at

the bottom of the conduction band. For each RAMO4 compound, the energy range

was chosen to correspond to an extra electron concentration of 1.0-1.3×1021 cm−3.

The resulting Fermi energy displacement depends on the density of states at the bot-

tom of the conduction band: a small density of states (i.e., high energy dispersion

of the conduction band bottom) leads to a pronounced EF shift, while the Fermi

level rises slow with electron concentration in the case of a large density of states.

Specifically, we find that in InAMO4 compounds the EF shift is large: it is 1.5 eV for

InAlCdO4, 0.9-1.0 eV for InACaO4, and 1.1-1.3 eV for all other InAMO4 compounds.

In ScAMO4, the presence of the Sc d states near the bottom of the conduction band

result in a high density of states, and hence, the EF shift is significantly smaller,

namely, 0.05 eV for ScAlMgO4, ∼0.7 eV for ScAlZnO4 and ScGaMgO4, and 0.9 for

ScGaZnO4.
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The charge density distributions calculated within the specified energy ranges

are obtained for the full conventional unit cell of RAMO4 to include both layers,

RO1.5 and AMO2.5, and the interstitial region between the layers. We summed up

the charge within each [0001] plane, Fig. 3.7, in order to compare the contributions

from the two structurally and chemically different layers. We found that:

(1) Different layer contributions to the conduction band are nearly identical in

InGaZnO4, InGaCdO4, and InAlCdO4. Hence, both layers, InO1.5 and AMO2.5, are

expected to participate in the charge transport once degenerate doping is achieved.

(2) In InAlZnO4, InGaMgO4, and InGaCaO4, contributions from the In-O

layer are larger, yet comparable to those from the A-M-O layers. Together with the

compounds in the above case (1), these oxides possess two post-transition metals (In,

Zn, Cd and/or Ga) and one light metal cation (Al, Mg or Ca). These results suggest

that the AMO2.5 layers where post-transition and light metals are mixed, will serve

as conducting path for extra electrons in degenerately doped materials.

(3) If the AMO2.5 layer consists of two light metal cations, as in InAlMgO4

or InAlCaO4, its contribution to the charge density is low, yet it is not zero as, for

example, in ScAlMgO4, Fig. 3.7(c). Similarly, the Sc-O layer contributions are negli-

gible if the AMO2.5 layer contains one or two post-transition metals, as in ScGaZnO4,

ScGaMgO4, or ScAlZnO4.

(4) In ScAlMgO4, the Al-Mg-O layers have zero contributions, while the charge

is localized within the Sc-O layer. Hence, if extra electrons are introduced, the

AMO2.5 layers would be non-conducting.

Thus, despite well-defined crystal lattice anisotropy and presence of a light

metal cation in the AMO2.5 layer, several RAMO4 compounds are capable of giving

rise to a nearly isotropic conductivity (i.e., within and across the structural layers)

when properly doped. The role of light metal cations in carrier generation in these
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multicomponent oxides, i.e., the effect of these cations on the formation of native

electron-donor and electron-“killer” defects, should be investigated further.

3.5.3. Role of Atomic Coordination on the Conduction States. As

mentioned in the introduction, the proximity of the cations empty p- or d states to the

bottom of the conduction band may help predict the degree of electron localization

in the oxides upon doping. Specifically, it was found [15] that in oxides of light

metals, such as Ga2O3, CaO, Al2O3, or MgO, the Ga, Mg or Al p states or Ca d

states are energetically compatible with the s states of cations in the conduction

band. Upon electron doping, extra charge becomes trapped on the anisotropic p or

d-orbitals which form strong covalent metal-oxygen bonds around defect, leading to

the charge confinement (known as a color or F center). Now, we want to determine

the energy location of the detrimental p- or d states of cations in the conduction

band of multicomponent oxides. Our goal is to understand how the p- or d states

location with respect to the conduction band bottom is affected by the local atomic

coordination, i.e., the fivefold coordination in RAMO4 versus the fourfold- or sixfold

coordinations in the ground state structures of basis oxides.

First, we find that the local structural variations significantly affect the con-

duction bands of oxides – in addition to the band gap value discussed in the Sec. 3.5.1

above. Specifically, in rocksalt CaO with sixfold atomic coordination, the charge-

trapping d states of Ca govern the bottom of the conduction band, being about 1.2

eV below the Ca s states, Fig. 3.8(a). In marked contrast to the ground-state CaO,

we find that in hypothetical wurtzite CaO with fivefold coordinated Ca, the Ca d

states are pushed into the conduction band and are above the s states, resulting in

a direct band gap, Fig. 3.8(b). This occurs since the octahedral symmetry favors

strong directional interaction between the d states of Ca and the p states of oxygen

neighbors, whereas the s-p interaction is preferred when the symmetry is broken, as

in fivefold coordinated Ca. Therefore, low-symmetry coordination helps diminish the
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Figure 3.8: Electronic band structure of (a) rocksalt CaO, and (b) hypothetical
wurtzite CaO with the interatomic distances matching those in RACaO4.
Only the bottom of the conduction band is shown. The calculations are
performed within sX-LDA.

detrimental effect of the anisotropic d states on the oxide transport properties by

promoting the s-character of the bottom of the conduction band. Further, from the

calculated density of states for InAlCaO4 or InGaCaO4, Fig. 3.5, we find that the

Ca d states are well above the bottom of the conduction band formed from the s

states of the constituent cations. Similarly, the empty p band of Al, Mg, or Ga in

RAMO4 are located at a higher energy, i.e., deep inside the conduction band. We

conclude that not only the unusual fivefold coordination of the A and M cations but

also the hybridization between the spatially extended s states of the cations (via

shared oxygen atoms) are the reasons for a deeper cation’s p and d bands in RAMO4.

Because of the interaction of cations (e.g., in the mixed AMO2.5 layers) and due to

the difference in the band gaps of the constituent oxides, namely, 2.3-3.4 eV in CdO,

In2O3, or ZnO, and 7-9 eV in CaO, MgO, or Al2O3, the bottom of the hybrid s-like

conduction band of complex oxides is driven away from the Ga, Al, and Mg p states

or Ca d states. The fact that the Ga, Al, Mg, or Ca atoms do contribute their states
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(which are the s states) to the conduction band bottom is clearly illustrated by the

calculated charge densities within different layers, Fig. 3.7. Hence, those atoms are

expected to participate in change transport upon degenerate doping.

Here, we stress the importance of the fivefold coordination in the formation of

the hybrid s-like conduction band in all considered RAMO4 except those containing

Sc. Because the Sc coordination is the same in ScAMO4 and Sc2O3, i.e., octahedral,

the Sc d states remain below its s states in all the oxides. As a result, the interaction

between the Sc and other cations in a Sc-containing multicomponent oxide is very

weak, and the bottom of the conduction band is formed by the states of the basis

oxides with smaller band gap, i.e., Sc d states in ScAlMgO4 or the s states of A and

M atoms in ScGaZnO4, ScGaMgO4, or ScAlZnO4. This leads to a clear separation of

the particular layers (Sc-O layers in the former case and AMO2.5 layers in the latter

cases) into potentially conducting and non-conducting, Fig. 3.7.

3.5.4. Electron Effective Mass in RAMO4. The electron effective masses

calculated along the [100], [010], and [001] crystallographic directions in the multi-

component oxides RAMO4 are given in Table 3.7. LDA underestimates the effective

mass values which are in the range of 0.2-0.5 me, and the sX-LDA gives larger values

– as expected from larger band gaps, Table 3.6. Within the sX-LDA, the smallest

electron effective mass, 0.33 me, is found in InGaCdO4, and the largest, 0.78 me, are

in ScAlMgO4. The trend in the effective mass values of RAMO4 compounds follows

the one in the calculated band gaps, c.f., Table 3.6. Significantly, we find that both

LDA and sX-LDA yield isotropic electron effective masses, i.e., the m values along

and across the structural layers are nearly identical in every RAMO4 compound ex-

cept for ScAlMgO4. This is in agreement with the hybrid nature of the conduction

band and the similar contributions from the R-O and A-M-O layers to the electron

density, as discussed in sections 3.5.2 and 3.5.3
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Table 3.7: Electron effective masses m, in me, calculated within sX-LDA along the
specified crystallographic directions in RAMO4 compounds. The compo-
nents of the electron effective-mass tensor, ma,b, mz, and weighted mw

a,b,
mw

z , calculated for both the ground state and hypothetical phases using
the effective masses of the corresponding single-cation oxides from Table
3.5.

Calculated Predicted

RAMO4 m[100] m[010] m[001] mg
ab mg

z (mg
ab)

w (mg
z)

w mh
ab mh

z (mh
ab)

w (mh
z )

w

InAlZnO4 0.39 0.38 0.38 0.35 0.36 0.34 0.34 0.37 0.39 0.35 0.37

InAlCaO4 0.49 0.50 0.46 0.37 0.38 0.34 0.35 0.41 0.44 0.36 0.40

InAlMgO4 0.46 0.47 0.44 0.38 0.40 0.34 0.36 0.40 0.44 0.36 0.39

InAlCdO4 0.38 0.38 0.38 0.32 0.32 0.32 0.31 0.36 0.37 0.35 0.36

InGaZnO4 0.34 0.34 0.34 0.32 0.32 0.32 0.32 0.35 0.36 0.34 0.35

InGaCaO4 0.43 0.44 0.42 0.34 0.35 0.33 0.33 0.39 0.41 0.37 0.39

InGaMgO4 0.41 0.41 0.40 0.35 0.36 0.34 0.35 0.39 0.41 0.37 0.39

InGaCdO4 0.33 0.34 0.33 0.28 0.28 0.28 0.28 0.33 0.34 0.34 0.34

ScGaZnO4 0.44 0.45 0.43 0.45 0.63 0.39 0.49 0.51 0.66 0.45 0.53

ScAlZnO4 0.48 0.51 0.48 0.51 0.66 0.48 0.59 0.56 0.69 0.52 0.61

ScGaMgO4 0.53 0.54 0.52 0.51 0.66 0.48 0.59 0.59 0.71 0.56 0.65

ScAlMgO4 0.78 0.69 0.64 0.57 0.70 0.90 1.04 0.64 0.74 0.95 1.06

In section 3.5.1, we demonstrated that the band gap in RAMO4 compounds

can be predicted via averaging over the values obtained for the single-cation oxide

constituents with corresponding local atomic structure. Here, we perform similar

analysis for the electron effective masses. The results are given in Table 3.7, where

the LDA and sX-LDA values calculated for RAMO4 compounds are given along with

those obtained via averaging over the masses of the bases sinlge-cation oxides. The

ab and z components of the average effective-mass tensors are found according to

[36]. We find that:
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1) Equal-weight or weighted averaging over the electron effective masses of the

single-cation oxides in their ground state structures, c.f., mg and (mg)w, underesti-

mates the calculated mass values.

2) Averaging over the effective mass values of single-cation oxides in hypo-

thetical phases with fivefold coordination gives better agreement with the calculated

values. This may appear to be counterintuitive: since the band gap in hypotheti-

cal oxides is smaller compared to that calculated for the oxides in the ground state

phases, Table 3.5, one may expect a smaller electron effective mass, and hence, a

worse agreement between the calculated and predicted masses than in the case (1)

above. However, according to the k·p theory, the electron effective mass depends not

only on the band gap value, but also on the orbital overlap of the neighboring atoms:

me

m
(c)
ii

= 1 +
2

me

∑
v ̸=c

|⟨u(c)|p̂i|u(v)⟩|2

E(c) − E(v)
, (3.1)

where p̂ is the momentum operator, |u(l)⟩ is the Bloch wave function of the l’s band at

the Γ point (wave vector k=0) and E(l) is its energy. Band labels v and c represent the

valence and conduction bands, respectively. The smallest denominator corresponds

to E(c) − E(v) ≈ Eg, and thus, the smaller the band gap, the smaller the electron

effective mass. The numerator represents the overlap between the orbitals in the

valence band (oxygen p states) and in the conduction band (metal states). Because

the overlap is greater in the higher-symmetry phases (with octahedral coordination

for CaO, CdO, MgO, tetrahedral for ZnO, etc), the effective mass is smaller in the

ground state phases as compared to the hypothetical structures.

3) With the exception for Sc-containing compounds, the equal-weight average

provides a better match between the predicted and calculated mass values than the

weighted average. For the latter, the respective weights are obtained based on the

contributions to the charge density in an energy range at the bottom of the conduction

band (see section 3.5.2 and Fig. 3.7). The energy range corresponds to a Fermi level
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shift of 0.7 eV - 1.5 eV (see Sec. 3.5.2) However, it appears to be insufficient, and

the states which are located deep in the conduction band – such as the states of

lighter metals – play an important role in determining the electron effective mass of

multicomponent oxides. Therefore, the corresponding light metal oxide constituents

should be given a greater weight.

The above results suggest that the electron effective mass in multicomponent

oxides is highly sensitive to the presence of all oxide constituents independent of their

band gap value, i.e., both the semiconductor-like post-transition metal oxides and the

insulator light-metal oxides play an equal role in the formation of the conduction band

curvature. The local structural peculiarities, i.e., the fivefold coordination of A and M

atoms, are of less significance here because of the opposite effect of a reduced orbital

overlap and a smaller band gap associated with low symmetry of oxygen polyhedra

on the resulting electron effective mass of multicomponent oxides.

3.6. CONCLUSIONS

In conclusion, the structural and compositional complexity of the considered

multicomponent oxides with layered structure RAMO4 allowed us to address two

fundamental questions: (1) how the local atomic coordination affects their electronic

properties such as the band gap, the electron effective mass and the nature of the

conduction band; and (2) how the optical properties and the electron conduction

paths of layered multicomponent oxide hosts vary with the chemical composition.

Most significantly, we demonstrate that the unusual fivefold coordination of

the A3+ and M2+ metal atoms stabilized in RAMO4 compounds, results in the elec-

tronic band structure of the complex oxides that differs from the one expected based

on the electronic properties of the single-cation oxide constituents in their lowest-

energy (ground state) phases. In particular, we find:
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– The band gap in oxides shows strong dependence on the atomic coordination.

High-symmetry octahedral (sixfold) coordination provides the largest overlap between

the metal and oxygen orbitals giving rise to a large band gap. Other coordinations

result in a smaller orbital overlap and, hence, the optical band gap is reduced. In

multicomponent oxides, the band gap is determined not only by the oxide constituent

with the smallest band gap but by all constituent oxides, although those of lighter

metals (Al, Ca, Mg) have smaller contribution to the band gap average compared to

the oxides of post-transition metals (In, Cd, Zn). The respective weights of the oxide

constituents to the band gap average correlate with the calculated percent atomic

contributions to the charge density in the conduction band.

– The electron effective mass in oxides does not follow the trend expected

from the variation in the band gap: we find that the structures with five-coordinated

metals exhibit smaller band gaps but larger electron effective masses as compared

to their six-coordinated counterparts. This finding is explained based on the k·p

theory. In multicomponent oxides, all oxide constituents give equal contributions to

the electron effective mass average.

– The unusual fivefold coordination of the A and M atoms in InAMO4 com-

pounds promotes a hybrid s-like conduction band making isotropic charge transport

possible in this layered materials. The calculated charge density distribution shows

that the light metal elements, such as Al, Ca, and Mg, contribute their s states to

the hybrid conduction band of complex oxides whereas the contributions from their

p or d states which are known to cause electron localization in the corresponding

single-cation oxides, are significantly reduced.

- Although all compounds exhibit n-type asymmetry of the electronic band

structure, a high carrier concentration is likely to be achieved only in InGaCdO4,

Fig. 3.9. Nevertheless, we believe that the oxides that contain light-metal constituents
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Figure 3.9: (Color online) The alignment of the valence and conduction band edges
of InAMO4 with respect to the charge neutrality level (CNL) calculated
based on our sX-LDA results.

(Al, Mg or Ca) may hold promise for applications in which carrier densities must be

kept low while the carrier mobilities are preserved.

Thus, the above results highlight the advantages of incorporating light main

group metals in multicomponent oxides, which is highly attractive for lighter-weight,

less-expensive, and environmentally-friendly devices. Further investigations of how

the structural peculiarities and composition affect the formation of native defects in

complex oxides are warrant in order to understand their role in carrier generation

and transport in doped and/or non-stoichiometric oxides.
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ABSTRACT∗

The formation of oxygen vacancy in layered multicomponent InAMO4 ox-

ides with A3+=Al or Ga, and M2+=Ca or Zn, and in the corresponding binary ox-

ide constituents is investigated using first-principles density functional calculations.

Comparing the formation energies of the oxygen defect at six different site locations

within the structurally and chemically distinct layers of InAMO4 oxides, we find

that the vacancy distribution is significantly affected not only by the strength of the

metal-oxygen bonding, but also by the cation’s ability to adjust to anisotropic oxy-

gen environment created by the vacancy. In particular, the tendency of Zn, Ga, and

Al atoms to form stable structures with lower oxygen coordination, results in nearly

identical vacancy concentrations in the InO1.5 and GaZnO2.5 layers in InGaZnO4, and

only an order of magnitude lower concentration in the AlZnO2.5 layer as compared to

the one in the InO1.5 layer in InAlZnO4. The presence of two light metal constituents

in the InAlCaO4 along with Ca failure to form a stable fourfold coordination as re-

vealed by its negligible relaxation near the defect, leads to a strong preference of the

oxygen vacancy to be in the InO1.5 layer. Based on the results obtained, we propose

several oxides as potential constituents of multicomponent functional materials with

tunable properties.

∗Submitted for publication in Physical Review B.
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4.1. INTRODUCTION

The presence of light main-group metals such as Al, Mg or Ca in multicom-

ponent transparent conducting and semiconducting oxides [1, 5, 31, 37, 68] is highly

attractive since these cations help stabilize the multi-cation structure, allow for a

broader optical transmission window due to a larger band gap, and also help control

the carrier content while preserving the carrier mobility.

Recent systematic electronic band structure investigations [30] of undoped

stoichiometric InAMO4 compounds with A3+=Al or Ga, and M2+=Ca or Zn, [11]

showed that the electronic properties of these layered-structured multicomponent ox-

ides resemble those in the conventional binary transparent conductive oxides (TCOs):

both exhibit a dispersed s-like conduction band and possess a small (0.3–0.5 me),

isotropic electron effective mass. Strikingly, it was found that despite the different

band gaps of the constituent basis binary oxides (2–4 eV In2O3 or ZnO; 5 eV for

Ga2O3; and 7–9 eV in CaO or Al2O3), the states of all cations contribute to the bot-

tom of the conduction band of the multicomponent oxide. Such a hybrid conduction

band can be expected to provide a uniform network for the carrier transport within

and across the chemically and structurally distinct layers of the InAMO4 materials.

To understand how the chemical composition affects carrier generation in com-

plex oxides, comparative investigations of non-stoichiometric InAMO4 compounds

are required. In this work, we study the electronic properties of oxygen deficient

InGaZnO4, InAlZnO4, and InAlCaO4. We determine the distribution of oxygen va-

cancies within the layered structure of the InAMO4 compounds by comparing the

calculated formation energies of the oxygen vacancy defects at various locations within

the InO1.5 and AMO2.5 layers, Fig. 4.1(a). We find that the location preference of

the oxygen vacancy correlates with the defect formation energies obtained for the

corresponding single-cation oxide constituents. At the same time, we show that the

vacancy formation energies in InAMO4 are strongly affected by the highly anisotropic
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Figure 4.1: (a) (Color online) Crystal structure of InAMO4, specifically, one of the
three similar blocks which construct the conventional unit cell when
stacked along the z direction, is shown. (b) Six structurally different pos-
sible sites for the oxygen vacancy defect with different nearest-neighboring
atoms in the layered multicomponent InAMO4 oxides.

atomic relaxation near the defect associated with the presence of several cations of

different valence, ionic radius, and strength of their interaction with the neighbor

oxygen atoms.

4.2. APPROACH

First-principles full-potential linearized augmented plane wave (FLAPW) [20,

47] method within the local density approximation is employed for the investigation

of the defect formation energies and the electronic properties of InAMO4 oxides

(A3+=Al or Ga and M2+=Ca or Zn), as well as their single-cation constituents,

CaO, ZnO, In2O3, Al2O3, and Ga2O3. Cutoffs for the basis functions, 16.0 Ry, and the

potential representation, 81.0 Ry, and expansion in terms of spherical harmonics with

ℓ ≤ 8 inside the muffin-tin spheres were used. The muffin-tin radii of multicomponent

and single-cation oxides are as follows: 2.3 to 2.6 a.u. for In and Ca; 1.7 to 2.1 a.u.

for Ga, Zn, and Al; and 1.45 to 1.8 a.u. for O atoms. Summations over the Brillouin

zone were carried out using at least 23 special k points in the irreducible wedge.
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The investigated InAMO4 oxides have rhombohedral R3̄m layered crystal

structure of YbFe2O4 type, Fig. 4.1(a) [74, 75, 80]. In these compounds, In3+ ions

have octahedral coordination with the oxygen atoms and reside in 3(a) position (Yb),

whereas both A3+ (Al or Ga) and M2+ (Ca or Zn) ions reside in 6(c) position (Fe),

Fig. 4.1, and are distributed randomly [81]. Because of the different ionic radii and

the valence state of the cations in the AMO2.5 double layer, the A
3+ and M2+ atoms

have different z component of the internal site position 6(c). The optimized struc-

tural parameters for every structure under consideration can be found in our previous

work [30].

To model isolated point defects in the InAMO4 compounds, a 49-atom super-

cell was used with the lattice vectors (302̄), (1̄12), and (021̄), given in the units of the

rhombohedral primitive cell vectors [36]. Note that the conventional rhombohedral

unit cell of YbFe2O4 contains 21 atoms (Z=3), and the primitive, i.e., the small-

est volume, cell contains 7 atoms (Z=1). For the binary basis oxides, the following

supercells were constructed: a 80-atom supercell for bixbyite In2O3 and corundum

Al2O3; a 120-atom supercell for monoclinic β-Ga2O3; a 84-atom supercell for wurtzite

ZnO; and a 128-atom supercell for rocksalt CaO. These supercells result in similar

defect concentrations, namely, 1.6–1.8×1021cm−3, and, hence, similar distances be-

tween the oxygen defects ∼ 10Å. We stress that such high concentrations may not

be experimentally feasible in all materials under consideration. However, our goal is

to determine the role played by the chemical composition in the defect formation,

hence, the properties must be compared under the same conditions. The values of

the defect formation energies calculated for the given supercells, can be used to pre-

dict the temperature-dependent defect densities in each compound, and are known

to provide reasonable results [42, 44].

As mentioned above, the layered crystal structure of InAMO4 oxides has

two chemically and structurally distinct layers, AMO2.5 and InO1.5, which alternate
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along the [0001] direction. Depending on the layer and the different nearest-neighbor

cations, there are several structurally different sites for the oxygen vacancy defect.

Figure 4.1(b) shows the six possible defect sites considered for the InAMO4 ox-

ides. During the discussions that follow, we identify the defect sites by their nearest-

neighbor atoms, specifically, by their planar and apical cations. For example, as one

can see from Fig. 4.1(b), the sites 4 and 5 both have three neighbors of atom type M

(Zn or Ca) and one neighbor of type A (Ga or Al). However, the sites are different

due to the different set of the planar atoms versus the apical atom resulting in a

different total energies for these sites, as it will be shown below.

The formation energy of the oxygen vacancy in three charge states, i.e., neutral

V0
O and ionized V+

O or V2+
O , modeled using a corresponding background charge, can be

calculated as a function of the Fermi level and the corresponding chemical potential:

∆H(EF , µ) = Edefect − Ehost + µO + q(EF ) (4.1)

where Edefect and Ehost are the total energies for the oxygen deficient oxide and

the stoichiometric oxide in the same-size supercell, respectively; µ is the chemical

potential for an oxygen atom removed from the lattice; q is the defect charge state,

EF is the Fermi energy taken with respect to the top of the valence band.

The chemical potential µO = µ0
O + ∆µO is taken with respect to the chemical

potential µ0 of the O2 molecule, whereas ∆µO is the deviation from the elemental

chemical potential. In this work, with the purpose of reasonable comparison between

the quaternary and binary oxides, we consider two extreme cases of the growth con-

ditions. In the extreme oxygen-rich conditions, ∆µO=0. In the oxygen-poor, i.e.,

metal-rich conditions, ∆µO depends on the respective values of the heat of forma-

tion, ∆Hf [InAMO], as well as on ∆µIn, ∆µA, and ∆µM which are calculated from

the following thermodynamic stability conditions:
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(1) In order to maintain a stable InAMO4 host, the elemental chemical po-

tentials should have the values that require

∆µIn +∆µA +∆µM + 4∆µO = ∆Hf [InAMO4] (4.2)

(2) To avoid the precipitation of the elements In, A, M , and O, the following

conditions must be satisfied:

∆µIn ≤ 0;∆µA ≤ 0;∆µM ≤ 0;∆µO ≤ 0 (4.3)

(3) To avoid the formation of the binary compounds, such as In2O3, A2O3, or

MO, the following conditions must be fulfilled:

2∆µIn + 3∆µO ≤ ∆Hf (In2O3) (4.4)

2∆µA + 3∆µO ≤ ∆Hf (A2O3) (4.5)

∆µM +∆µO ≤ ∆Hf (MO) (4.6)

Thus, the available range for the elemental chemical potentials in the case of

quaternary InAMO4 materials is a three-dimensional volume determined by the above

stability conditions (equations 5.3– 5.6), projected onto the corresponding InAMO4

plot (equation 5.2).

The heat of formation, ∆Hf , for the oxides is calculated with respect to the

bulk orthorhombic Ga, tetragonal In, hexagonal Zn, and cubic Al or Ca. Our ob-

tained ∆Hf values for the three representative InGaZnO4, InAlZnO4, and InAlCaO4

compounds are –11.28 eV, –14.60 eV, and –15.40 eV, respectively. Calculating the

corresponding heat of formation for the binary constituents [c.f., Table 4.1], we find
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that:

2∆Hf [InGaZnO4] > ∆Hf (In2O3) + ∆Hf (Ga2O3) + 2∆Hf (ZnO) (4.7)

2∆Hf [InAlCaO4] > ∆Hf (In2O3) + ∆Hf (Al2O3) + 2∆Hf (CaO) (4.8)

2∆Hf [InAlZnO4] < ∆Hf (In2O3) + ∆Hf (Al2O3) + 2∆Hf (ZnO) (4.9)

The equations 5.7 and 5.8 suggest that at zero temperature, the formation of InGaZnO4

or InAlCaO4 is impossible without the formation of the corresponding binary phases.

This also means that there is no available elemental chemical potentials which would

allow the formation of the corresponding multicomponent oxides. Since the latter

are stable above 1000 K [74, 75, 80], the entropy term T∆S must be taken into con-

sideration. Similar arguments were reported for In2O3(ZnO)k compounds [82]. The

entropy term can be estimated based on the corresponding equilibrium solid state

reactions which involve the binary constituents as follows:

∆Hf [InGaZnO4]− 1/2[∆Hf (In2O3) + ∆Hf (Ga2O3)+

2∆Hf (ZnO)] = TInGaZnO4 × δSInGaZnO4

(4.10)

∆Hf [InAlCaO4]− 1/2[∆Hf (In2O3) + ∆Hf (Al2O3)+

2∆Hf (CaO)] = TInAlCaO4 × δSInAlCaO4

(4.11)

We then replace the ∆Hf for InGaZnO4 and InAlCaO4 with the correspond-

ing [∆Hf – T × δS], in the equation 5.2 above. As a result, the available chemical

potentials for metals in InGaZnO4, InAlZnO4, and InAlCaO4, plotted in Fig. 4.2, cor-

respond to a very narrow range along the crossing line of the three planes, eqs. 5.4-5.6.

This is in accord with the results for Ga-free layered multicomponent In2O3(ZnO)3

which was shown to exist without the occurrence of the secondary phases only for a

constant ratio between indium and zinc [82]. For the extreme metal-rich conditions,
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Figure 4.2: (Color online) Available elemental chemical potentials for InGaZnO4,
InAlZnO4, and InAlCaO4. Shaded planes represent the stability of con-
stituent binary phases. The inserts show the extreme metal-rich values
(∆µIn=0).

we obtain:

(a) InGaZnO4: ∆µIn=∆µGa=0, ∆µZn=–0.70 eV;

(b) InAlZnO4: ∆µIn=0, ∆µZn=–0.61 eV, ∆µAl=–2.75 eV; and

(c) InAlCaO4: ∆µIn=0, ∆µAl=–2.9 eV, ∆µCa=–3.3 eV.

We stress again that for the clarity of this paper, we do not consider in-

termediate oxygen pressures, i.e., 1/4[∆Hf [InAMO4] −
∑

∆µM−rich
metal ] < ∆µO < 0.

Investigations of possible charge compensation mechanisms (e.g., formation of metal

vacancies) are also beyond the scope of this work, and will be discussed elsewhere [83].

4.3. RESULTS AND DISCUSSION

4.3.1. Oxygen Vacancy in Binary Oxides. The first step to understand

the effect of the chemical composition on the formation and distribution of an oxygen

vacancy in layered multicomponent InAMO4 oxides, is to compare the formation

energies of the oxygen defect in the corresponding binary oxides. Our calculated

formation energies of the neutral oxygen defect, V0
O, are shown in Table 4.1, for

both oxygen-poor and oxygen-rich conditions. It can be seen that the difference
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Table 4.1: Calculated and experimental heat of formation of binary oxides, ∆Hf per
oxygen in eV, and the calculated formation energy of a neutral oxygen
vacancy, ∆H[V 0

O], in eV, for both oxygen-poor and oxygen-rich conditions.

∆Hf per oxygen ∆H[V 0
O]

Calc Exp O-poor O-rich

CaO -6.00 -6.57 0.87 7.02

Al2O3 -4.64 -5.78 1.82 7.10

Ga2O3 -2.74 -3.73 0.69 3.92

ZnO -3.42 -3.60 0.69 4.10

In2O3 -2.72 -3.21 1.10 3.82

in the defect formation energies for the post-transition and the light-metal oxides

is about 3 eV or higher in the oxygen-rich conditions (∆µO=0). The trend in the

defect formation energies correlates with the heat of formation of the binary oxides,

Table 4.1: the low heat of formation of post-transition metal oxides signifies that the

oxygen vacancies are abundant in these oxides.

Under the extreme metal-rich conditions, i.e., when ∆µmetal=0, and ∆µO is

determined by ∆Hcalc
f according to the equations 5.4-5.6, the differences in the defect

formation energies in the binary oxides become less obvious. As it was mentioned

above, with the purpose of fair comparison between the oxides, we do not consider

intermediate oxygen pressures. For each particular compound, the pressure ranges

may be limited by the experimental characteristics, e.g., the annealing temperature

which also affects the value of ∆µO, as well as by the formation of undesired intrinsic

defects. In particular, studies of the charge compensation, e.g., due to a low formation

energy of the metal vacancy in Al2O3 and CaO which are necessary to explain the

insulating behavior in these light-metal oxides, are beyond the scope of this work and

will be presented elsewhere [83].
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Our calculated formation energies of the neutral oxygen defect, V0
O, Table 4.1,

are in a good agreement with prior reported formation energies for neutral oxygen

defect in the binary oxides, such as 0.6 eV for O-poor and 6.6 eV for O-rich in CaO,

7.5 eV for O-rich in Al2O3, 1.2 eV for O-poor and 3.8 eV for O-rich in ZnO, 1.0 eV

for O-poor and 3.7 eV for O-rich in In2O3 [42, 44, 84].

The fact that it is easier to create an oxygen vacancy in the post-transition

metal oxides, i.e., In2O3 or ZnO, as compared to the light main-group metal oxides,

i.e., Al2O3 or CaO, is in accord with the calculated degree of the electron localization

around the oxygen defect [15]. A more uniform charge distribution at the bottom

of the conduction band was found in the oxygen deficient post-transition metal ox-

ides. In contrast, the light-metal oxides exhibit a strong charge confinement near

the oxygen vacancy (an F-like center). It was shown that the electron localization in

the latter oxides is associated with the formation of the strong directional metal p –

oxygen p bonds around the defect [19].

We note here that Ga2O3 should be placed at the far end of the conventional

TCO hosts such as In2O3 and ZnO which have low formation energy of the oxygen

vacancy. In Ga2O3, there are 3 non-equivalent oxygen sites, which we label as site 1,

2, or 3, with 3, 4, or 6 Ga neighbor atoms at the average distance of 1.90 Å, 2.00 Å,

or 1.87 Å, respectively. Consequently, the formation energies of the oxygen vacancy

in those sites are different and correlate with the average Ga-O distances for each

site: we obtained 1.09 eV, 1.31 eV, or 0.69 eV under the metal-rich conditions, and

4.32 eV, 4.55 eV, or 3.92 eV under the oxygen-rich conditions, for the sites 1, 2, or 3,

respectively. Note that only the lowest values are given in the Table 4.1. Since the

concentration of a defect is proportional to the number of the sites available for the

defect, only a third of the oxygen atoms in Ga2O3 may produce a vacancy defect with

the formation energy similar to that in ZnO, i.e., 0.69 eV under the O-poor conditions,

Table 4.1. The higher formation energy of the VO at the other oxygen sites (i.e., sites
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1 and 2) sets Ga2O3 somewhat in between the two oxide groups considered above.

Again, this finding is consistent with the obtained degree of the electron localization

near the oxygen vacancy defect, In2O3 < ZnO < Ga2O3 < CaO < Al2O3 [15]. The

Ga2O3 results above also reveal that the oxygen vacancy formation energy depends

strongly on the coordination and the metal-oxygen distances.

4.3.2. Distribution of Oxygen Vacancies in InAMO4. In this section,

we investigate how the presence of light-metal cations (Ca and/or Al) affects the

distribution of the oxygen vacancies within the structurally and chemically distinct

layers of multicomponent oxides. The chosen three InAMO4 compounds, namely

InGaZnO4, InAlZnO4, and InAlCaO4, represent the systems with none, one, and two

light-metal constituents, respectively. We believe that the trends obtained for these

three oxides may help us understand the role played by the composition in the defect

formation and make reasonable predictions for other multicomponent oxides.

First, to determine the most energetically favorable location of the oxygen

vacancy in InGaZnO4, InAlZnO4, and InAlCaO4, we calculate the formation energies

of the oxygen vacancy defect in the six structurally different oxygen sites which were

discussed above and shown in Fig. 4.1(b). The results are given in Table 4.2. Our

comparative analysis of the defect formation energies shows that the oxygen vacancy

prefers to be within the InO1.5 layer for all three representative compounds. There

are two oxygen site positions within the InO1.5 layer, site-1 and site-2, which differ

by the type of the apical atom, i.e., A or M, respectively, Fig. 4.1(b). Comparing the

formation energies of the oxygen vacancies at these two sites, we find that in the case

of InGaZnO4 and InAlZnO4, the oxygen vacancy defects prefer to be in the site-2

position with three In atoms and one Zn (apical) atom as their nearest-neighbors.

In contrast, in InAlCaO4, the lowest formation energy corresponds to the defect in

site-1 with three In and one apical Al as the defect nearest-neighbors. We note here,

that similar trends in the formation energies of the oxygen vacancy at different site
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Table 4.2: Formation energies of neutral oxygen vacancy located at 6 different defect
sites in InGaZnO4, InAlZnO4, and InAlCaO4 for oxygen-poor and oxygen-
rich conditions. NN denotes the nearest-neighbor atoms and “a” stands
for an apical atom. The lowest formation energy values are given in bold.

InGaZnO4 InAlZnO4 InAlCaO4

Site NNs O-poor O-rich O-poor O-rich O-poor O-rich

1 3R, 1A-a 1.51 4.24 1.43 4.24 1.27 3.98

2 3R, 1M-a 1.32 4.05 1.34 4.15 1.39 4.10

3 2A, 2M-a 1.61 4.34 2.95 5.76 3.26 5.97

4 1A, 3M-a 1.38 4.12 2.00 4.81 2.97 5.68

5 1A-a, 3M 1.35 4.09 1.57 4.38 2.67 5.38

6 3A-a, 1M 1.68 4.42 3.14 5.95 3.08 5.79

positions are obtained for the ionized vacancy defect with the exception for InGaZnO4

where the lowest formation energy of V+
O is for the defect at site-5 while the defect

at site-2 is higher in energy by only 0.02 eV.

For the considered three compounds, the defect preferred site location corre-

lates well with the experimental heat of formation of the corresponding binary oxides,

and, accordingly, with the oxygen vacancy formation energy, c.f., Tables 4.1 and 4.2.

For example, in InGaZnO4 or InAlZnO4, In2O3 has the lowest heat of formation

per oxygen (–3.21 eV) followed by ZnO (–3.60 eV) and Ga2O3 (–3.73 eV) or Al2O3

(–5.78 eV). Hence, the site-2 in the InO1.5 layer corresponds to the set of the metal-

oxygen bonds – three In-O bonds and one Zn-O bond – that would be easiest to break

in order to create an oxygen vacancy defect. Accordingly, for the InAlCaO4 oxide,

the oxygen vacancy prefers to be in the site-1 with three In and one Al neighbor

atoms rather than in the site-2 with three In and one Ca neighbors, since CaO has

stronger metal-oxygen bonds than Al2O3.
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The above results suggest that the oxygen vacancy has a preference to form

within the InO1.5 layer, independent of the chemical composition of the three com-

pounds. However, the preference for the octahedral InO1.5 layer is strong only for

InAlCaO4: the vacancy formation energy in the AlCaO2.5 layer is higher by at least 1.3

eV than that for the oxygen vacancy defect in the InO1.5 layer, Table 4.2. In marked

contrast to InAlCaO4 with two light-metal constituents, the oxygen vacancy distri-

bution is likely to be more uniform throughout the layered structure of InGaZnO4

and InAlZnO4. In InGaZnO4, the difference in the defect formation energies between

site-2 (three In and one Zn) and sites 4 and 5 (three Zn and one Ga) is negligible.

Therefore, one can expect the vacancy concentrations to be comparable in the InO1.5

and GaZnO2.5 layers of InGaZnO4. In InAlZnO4, the difference in the defect for-

mation energies between site-2 and site-5 is larger, about 0.2 eV. In this case, we

can estimate that the resulting defect concentrations will differ by about an order of

magnitude at 1000 K (which is a typical annealing temperature in oxides).

Figure 4.3 shows the estimated concentrations of the oxygen vacancy defect

in the neutral charge state in the InO1.5 and AMO2.5 layers as a function of growth

temperature. The figure clearly illustrates that the presence of one light-metal con-

stituent in the mixed AMO2.5 layer reduces the concentration of the electron donor

defect in that layer, but does not suppress it completely as in the case when both

A and M atoms are light metals. We note, that other charge states of the oxy-

gen vacancy may contribute to the overall VO concentration if acceptor defects such

as cation vacancies, oxygen interstitials, and/or antisite defects, become abundant

pushing the equilibrium Fermi level away from the conduction band.

4.3.3. Formation of Stable Fourfold Structures in Oxygen Deficient

InAMO4. Comparing the energetics for the six different defect sites, we find another

trend that can be explained based on the heat of formation of the constituent binary

oxides. Specifically, in InAlZnO4, the defect formation energy, ∆H(VO), increases as
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Figure 4.3: (Color online) Concentrations of the oxygen vacancy defect in the neutral
charge state in the InO1.5 and AMO2.5 layers as a function of growth
temperature calculated under the extreme oxygen-poor conditions.

the number of the Al atoms around the oxygen defect increases: site-1 (one apical

Al and three In) < site-5 (one apical Al and three Zn) < site-4 (one planar Al) <

site-3 (two planar Al) < site-6 (two planar and one apical Al). Therefore, the oxygen

vacancy in InAlZnO4 “avoids” having Al as a neighbor cation. Indeed, the Al-O

bond is the strongest compared to the In-O and Zn-O bonds in InAlZnO4, and the

oxygen vacancy defect is least likely to be formed near the Al atoms. This tendency is

stronger when the Al is a planar neighbor rather than the apical one simply because

the planar metal-oxygen distances are generally shorter than the apical ones in the

layered InAMO4 compounds.

Similar to InAlZnO4, the oxygen vacancy distribution exhibits a trend with

respect to Ga in InGaZnO4, where the formation energy of the defect in the sites

with one Ga neighbor (sites 1, 4, and 5) is lower than that in the site-3 (two Ga

neighbors) or site-6 (three Ga neighbors). However, simple arguments based on the

comparison of the heat of formation of the binary oxides do not explain all the results

obtained. In particular, in InGaZnO4 the formation energy of the oxygen vacancy

at site-5 (three Zn and one Ga neighbor) is lower than the one at site-1 (three In



84

and one Ga) although the heat of formation of In2O3 is lower as compared to that of

ZnO, Table 4.1. We believe that one of the possible explanations involves the cation

preference for a particular oxygen coordination. For instance, in the ground-state

phase of ZnO, the wurtzite structure, Zn has fourfold coordination with O atoms.

In bixbyite In2O3, as well as in other available phases for indium oxide, In is always

sixfold coordinated with O atoms. In InGaZnO4 compound, all Zn (and Ga) atoms

are in fivefold coordination with oxygen atoms whereas In atoms remain in the sixfold

coordination. After removal of the oxygen atom in site-5, three Zn atoms become

fourfold coordinated with oxygen. Owing to the preference of Zn atoms to be in

the fourfold coordination, the defect in site-5 (or site-4) become energetically more

favorable compared to the site-1 defect where three In atoms lose one oxygen neighbor

to become fivefold coordinated. (As it will be shown in the next section below, Zn

atoms near the defect experience much stronger relaxation, with the Zn-V 0
O distances

reduced by 8 % for the site-5 case, Table 4.2, whereas the In-V 0
O distances change

only by 1-2 %.)

Accordingly, the most stable configuration of the oxygen defect in the AlZnO2.5

layer of InAlZnO4 corresponds to the structure with three fourfold coordinated Zn

(site-5). The formation energy in this case is higher by only 0.14 eV as compared

to the defect at site-1, Table 4.3. (As it will be discussed below, Zn relaxation is

restricted due to the presence of the strong Al-O bonds that limits the ability of Zn

to form a more stable fourfold coordinated structure.)

In marked contrast to Zn, Ca does not exhibit a preference for fourfold coordi-

nation being sixfold-coordinated with oxygen in the ground state (rocksalt structure)

as well as in most CaO-Al2O3 structures [85]. Thus, in InAlCaO4, the difference

between the formation energies in site-1 and site-5 is large, 1.4 eV, which is mainly

determined by the differences in the metal-oxygen binding in binary oxides, Table 4.1.

In other words, there is no additional energy gain associated with the formation of a
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stable fourfold structure similar to the one observed in the case of Zn, since Ca is in-

different to the formation of such structure and, as it will be shown below, experience

negligible relaxation upon oxygen removal – in marked contrast to Zn in InGaZnO4

and InAlZnO4.

While Zn shows a strong preference for the fourfold coordination, Al and Ga

can exist in either sixfold or fourfold oxygen coordination. The corundum Al2O3 has

octahedrally coordinated Al atoms, but there are many phases where Al is in fourfold

coordination with oxygen [85]. In the ground-state monoclinic phase, Ga2O3 has two

nonequivalent Ga atoms – one being fourfold coordinated and the other in sixfold

coordination. Therefore, we believe that both Al and Ga can form a stable fourfold

structure when losing one oxygen atom upon introduction of an oxygen vacancy in

the InAMO4 compounds. The formation of such structures is illustrated below based

on the atomic relaxation near the oxygen defect.

4.3.4. Structural Relaxation in Oxygen Deficient InAMO4. The role

of oxygen coordination in the vacancy formation and distribution in InAMO4 can be

further understood by considering the structural relaxation caused by the defect. For

this, we compared the changes in the positions of the metal and oxygen atoms near

the vacancy defect. Table 4.3 shows how much the metal atoms nearest to the oxygen

vacancy shift with respect to their original positions in the stoichiometric oxide. First

of all, we note that in all three multicomponent oxides, the apical atoms move away

from the defect (positive ∆D-a) and the values are generally larger compared to

the change in the planar distances, ∆DA/M , some of which are positive (cations move

away from the defect), while others are negative (cations get closer to the defect). The

larger relaxation of the apical atoms is inherent to the layered structure of InAMO4

compounds: stacking the cations of different ionic radius, valence, and metal-oxygen
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Table 4.3: Upon the atomic relaxation caused by the oxygen defect, the change in
the distance between the vacancy and its nearest apical metal atom, ∆D-
a, and the average change in the distances between the vacancy and the
planar A or M atoms, ∆DA or ∆DM , in percent, are given.

InGaZnO4 InAlZnO4 InAlCaO4

Site ∆D-a ∆DA ∆DM ∆D-a ∆DA ∆DM ∆D-a ∆DA ∆DM

1 +10 +16 +14

2 +8 +9 0

3 +3 –5 0 +1 +3 –1 +3 –3 –1

4 +5 –5 –3 +3 +6 –4 +3 –1 –1

5 +9 –8 +13 –7 +14 –1

6 +6 –6 +1 +3 +1 –1 +1 –4 –1

bond strength along the c direction leads to larger deviations from the regular metal-

oxygen distances in the corresponding binary oxides [30], and hence allows more

freedom for relaxation.

Comparing the apical atom’s shifts, ∆D-a, for InGaZnO4 and InAlCaO4, we

find that the shifts are large for both Ga and Zn apical atoms in the former oxide,

whereas in the two-light-metal compound, apical Al atoms exhibit more significant

changes, 14%, compared to the apical Ca atoms, 0-3%. Accordingly, the Ca planar

atoms exhibit only a small relaxation, ∆DCa ∼1% for all vacancy sites, as compared

to the planar Zn, Al and Ga atoms shifts. The negligible relaxation of Ca as compared

to the relaxation of Zn, Al, or Ga, can be explained by several factors: (i) the large

ionic radius of Ca ion as compared to those of Zn, Ga and Al (given in the order of

decreasing ionic radii); (ii) the stronger bonds between Ca and its nearest O neighbors

with respect to the oxygen bonds with Zn, Ga and Al, as determined by the heat

of formation of the binary oxides, Table 4.1; as well as (iii) Ca indifference to losing

one oxygen neighbor to become a fourfold coordinated cation. All the factors above
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limit the motion of Ca in the lattice with oxygen defect. In contrast to Ca atoms,

the smaller ionic radius, weaker metal-oxygen bonds, and a possibility to form a

fourfold structure make it easier for Al, Zn, and Ga to adjust to the new electronic

environment created by the oxygen defect and, hence, those atoms experience greater

relaxation (Table 4.3).

Further confirmation of our observations above can be obtained based on the

optimized distances between the metal atoms which surround the defect and their

oxygen neighbors. We find that in InGaZnO4, the atomic relaxation results in slightly

increased planar Zn-O distances (from ∼1.98 Å to ∼2.05 Å) and notably decreased

apical Zn-O distance (from 2.41 Å to ∼2.20 Å) making all four Zn-O distances more

alike to resemble the fourfold coordination. Similarly, the apical Ga atoms near the

vacancy pull their oxygen neighbors to become four-coordinated with oxygen: all four

Ga-O distances are found to be within 1.86–1.89 Å, which is close to the distances

between the fourfold coordinated Ga and oxygen atoms in monoclinic Ga2O3, 1.83–

1.86 Å (for comparison, the distances between the sixfold coordinated Ga and oxygen

atoms in monoclinic Ga2O3 are 1.93–2.07 Å).

Significantly, we find that Zn propensity to become fourfold-coordinated upon

losing an oxygen neighbor decreases in InAlZnO4 as compared to InGaZnO4, i.e.,

when Ga atoms in the A sublattice are changed to Al. We obtain that the distances

between the Zn atoms nearest to the oxygen defect (in site-5) and their oxygen apical

neighbors reduce by only 0-2 %, from ∼2.44 Å to ∼2.38 Å, whereas the corresponding

changes of the Zn-O distances in InGaZnO4 are 3-4 %. The planar Zn-O distances

in InAlZnO4 (2.02–2.21 Å) are also larger than the corresponding Zn-O distances in

InGaZnO4 (1.99–2.13 Å) or the planar Zn-O distances in wurtzite ZnO (1.97 Å). We

believe that the motion of Zn atoms in oxygen deficient InAlZnO4 is restricted due

to the stronger Al-O bonds present in the AlZnO2.5 layer.
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Comparing the relaxation of Al atoms in InAlZnO4 and InAlCaO4 with the

oxygen vacancy at site-1, we observe a similar tendency: in the former, the Al pulls

its nearest oxygen atoms closer to itself so that all four Al-O distances become nearly

identical (changing from 1.87–1.96 Å to 1.80–1.82 Å) with the largest distance change

of 8 %, whereas in InAlCaO4, all four Al-O distances are essentially unchanged upon

introduction of the defect having the largest relaxation of only 0.4 %. Therefore, we

can conclude that the presence of the metal atoms which form stronger bonds with the

oxygen neighbors restricts the motion of the metals with weaker oxygen bonds. As a

result, the latter cations are unable to form a preferred coordination and/or relax to

the desired metal-oxygen distances and are forced to remain in a highly anisotropic

oxygen environment upon introduction of a oxygen vacancy. This leads to a high

formation energy of the defect. Indeed, the formation of strong directional bonds due

to significant contribution from the metal p orbitals near the oxygen vacancy defect

in Al2O3, CaO, and MgO, [19] was shown to be the reason for the strong electron

localization near the vacancy in these binary light-metal oxides. In contrast, when the

multicomponent oxide consists of a low-formation oxide constituents, as in the case of

InGaZnO4, the weakly-bonded lattice may allow for a significant atomic relaxation,

hence, leading to an energy gain due to the formation of more stable structures, and

thus a more uniform defect distribution throughout the lattice (c.f., Fig. 4.3).

4.3.5. Conductivity Estimates in Oxygen Deficient InAMO4. In Sec-

tion 4.3.2 above, we showed that under the extreme metal-rich conditions, the consid-

ered three representative InAMO4 compounds have nearly identical formation energy

of the oxygen vacancy in the InO1.5 layer, Table 4.2, suggesting that similar concen-

trations of the oxygen defect may be achieved in these compounds, Fig. 4.3. However,

apart from the formation of other possible acceptor and donor defects to be discussed

elsewhere [83], one also needs to take into account the electron mobility which deter-

mines the resulting conductivity along with the carrier concentration. Specifically,
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the conductivity σ depends on both, the electron group velocity and the density of

states near the Fermi level, according to:

σ =
2e2

Ω

∑
kλ

|vkλ|2τkλδ(Ekλ − EF ). (4.12)

Here e is the electron charge, Ω – the volume of the Brillouin zone, k – the wave

vector, λ – the band index, v – the electron group velocity, τ(ϵ) – the relaxation

time, and EF is the Fermi energy. Based on our calculations, we can estimate the

band-structure conductivity factor – the square of the electron velocity multiplied by

the density of states in the vicinity of the Fermi level – and compare the results for

the three compounds under consideration, Table. 4.4 . The electron relaxation time

can be roughly assumed to be of the same order for the oxides with similar defect

concentrations.

Table 4.4: Electronic properties of InAMO4 compounds with ionized oxygen vacancy,
V+

O, which corresponds to the conducting state: Defect carrier concentra-
tions used in the supercell calculations; the electron group velocities calcu-
lated at the Fermi level for the [001] crystallographic direction; density of
states (DOS) at the Fermi level; and normalized band-structure conduc-
tivity factor calculated as the square of the electron velocity multiplied by
the density of states at the Fermi level.

InGaZnO4 InAlZnO4 InAlCaO4

Defect concentration, 1021cm−3 1.75 1.72 1.63

Electron velocity, v[001], 105 m/s 6.47 4.09 3.46

Density of states at EF , states/eV·cell 3.7 7.0 7.6

Normalized σ-factor, v2·DOS(EF ) 1.00 0.76 0.59

The electron group velocities and density of states (DOS) are calculated for

the oxygen deficient InAMO4 with ionized oxygen vacancy, V +
O which corresponds to

the conducting state, Table. 4.4 [19, 44]. We find that the electron velocities differ

for the three compounds: we obtain 6.47×105 m/s, 4.09×105 m/s, and 3.46×105
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m/s in InGaZnO4, InAlZnO4, and InAlCaO4, respectively, with the oxygen vacancy

located at the most preferred site. However, the density of states near the Fermi

level increases in the same order, i.e., as the number of the light metal constituents

increases. The larger DOS(EF ) indicates a decrease in the energy dispersion of the

conduction band associated with stronger electron localization, as expected from the

comparative investigations of oxygen deficient binary oxides, Table. 4.4 [15].

As a result, despite a possibility for similar defect concentrations in InAMO4

compounds with oxygen vacancies assumed to be the major donor defects, the con-

ductivity estimated from the electronic band structure is expected to be two times

smaller in InAlCaO4 as compared to InGaZnO4, whereas InAlZnO4 falls in between

the values of the two oxides above.

4.4. CONCLUSIONS

We have investigated the oxygen vacancy formation in three representative

multicomponent InAMO4 compounds with none, one and two light metal constituents.

Although we find that the oxygen defect prefers to be located in the InO1.5 layer for

all three InAMO4 materials which correlates well with the heat of formation of the

corresponding binary oxides, we obtain a significant reduction in the defect formation

energy due to a large atomic relaxation near the defect and the formation of stable

fourfold structures for Zn, Al, and Ga atoms. This additional energy gain results in

a more uniform distribution of the oxygen defect throughout the layered structure of

InGaZnO4 and InAlZnO4. We believe that a similar behavior may be expected for

the multicomponent oxides which consist of the cations with relatively weak metal-

oxygen bonds, e.g., CdO with the heat of formation of ∆Hf=–2.69 eV, SnO2 with

∆Hf=–6.02 eV, and GeO2 with ∆Hf=–5.59 eV, to allow for an appreciable atomic

relaxation in the lattice in order to achieve the desired local structure characteris-

tics (i.e., metal-oxygen distances and coordination). The latter two oxides are also
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appealing because the Ge and Sn cations can exist in both fourfold and sixfold coor-

dinations, therefore, they are more likely to adjust to anisotropic oxygen environment

associated with the formation of oxygen defects.
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ABSTRACT∗

The formation of native point defects in layered multicomponent InAMO4 ox-

ides with A3+=Al or Ga, andM2+=Ca or Zn, is investigated using first-principles den-

sity functional calculations. We calculated the formation energy of acceptor (cation

vacancies, acceptor antisites) and donor (oxygen vacancies, donor antisites) defects

within the structurally and chemically distinct layers of InAMO4 oxides. We find

that the antisite defects, in particular, the A atom substituted on M atom site (AM)

in InAMO4 oxides, have lower formation energies, hence, higher concentrations, as

compared to those of the oxygen vacancies (VO) which are major donor defects in

binary constituent oxides. Furthermore, the cation vacancies (VIn, VA, and VM) have

low formation energies in InAMO4 oxides associated with the large structural relax-

ations around the defect. As a result, the equilibrium Fermi level is pushed away from

the conduction band bottom deeper into the band gap. The results not only agree

with the observed dependence of the conductivity on the oxygen partial pressure in

InGaZnO4, but also explain why the InAlZnO4 samples were unstable under a wide

range of growing conditions.

∗In final preparation for submission to Physical Review B.



93

5.1. INTRODUCTION

Multicomponent transparent conducting oxides (TCOs) [1, 5, 31, 37, 68] with

the composition of both post-transition metals (In, Ga, and Zn) and main-group light-

metals (Al, Mg, and Ca) are highly attractive since the presence of main-group light-

metal cations help stabilize the multi-cation structure, allow for a broader optical

transmission window due to a larger band gap, and also help control the carrier

content while preserving the carrier mobility [3].

The carrier generation mechanism in multicomponent TCOs is a subject of

active debates [9, 19, 26, 35]. For example, the free carriers in InGaO3(ZnO) are

believed to be due to the formation of oxygen vacancy defects [9, 35]. However, based

on the first-principles investigations, it was shown that the oxygen vacancies are deep

donors and can not explain the observed conductivities in these materials [19, 46].

Recently, electronic band structure of undoped stoichiometric as well as oxy-

gen deficient InAMO4 compounds with A3+=Al or Ga, and M2+=Ca or Zn, [11]

have been systematically investigated from first-principles [16, 30]. The results of un-

doped stoichiometric materials showed that the electronic properties of these layered-

structured multicomponent oxides resemble those in the conventional binary TCOs:

both exhibit a dispersed s-like conduction band and possess a small (0.3–0.5 me),

isotropic electron effective mass. Strikingly, it was found that despite the different

band gaps of the constituent binary oxides (2–4 eV In2O3 or ZnO; 5 eV for Ga2O3;

and 7–9 eV in CaO or Al2O3), the s-states of all cations contribute to the bottom of

the conduction band of the multicomponent oxide. Such a hybrid conduction band

can be expected to provide a uniform network for the carrier transport within and

across the chemically and structurally distinct layers of the InAMO4 materials [30].

Moreover, the results of oxygen deficient InAMO4 oxides showed that the chemical

composition, the local atomic coordination, the atomic relaxation, and the metal-

oxygen bond strengths strongly affect the formation and distribution of the oxygen
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vacancy defects [16]. In fact, it was found that the concentration of the oxygen va-

cancy defect is suppressed due to the presence of the light-metal oxide constituents.

In order to understand the carrier generation mechanisms in multicomponent

oxides and make conclusions about the origins of the conductivity, other possible

native point defects in InAMO4 must be studied. In this work, we systematically

calculate and compare the formation energies of possible native point defects at var-

ious locations within the InO1.5 and AMO2.5 layers of InAMO4, Fig. 5.1. Structural

and chemical complexity of InAMO4 compounds lead to several intrinsic donor and

acceptor defects which can coexist. Thus, our investigation of native point defects

include both the donor (anion vacancies, donor antisites) defects and acceptor (cation

vacancies, acceptor antisites) defects. By taking into account the compensation mech-

anism involved within these native defects, we compare the formation energies of

electron donors as well as electron killers, to predict and calculate the most stable

donor defect which can produce free carriers.

Figure 5.1: (a) (Color online) Crystal structure of InAMO4, specifically, one of the
three similar blocks which construct the conventional unit cell when
stacked along the z direction, is shown. (b) Four structurally different
possible antisite defects with different nearest-neighboring atoms in the
layered multicomponent InAMO4 oxides.



95

5.2. APPROACH

Ab-initio full-potential linearized augmented plane wave method (FLAPW) [20,

47] within the local density approximation is employed for the investigation of the

defect formation energies and the electronic properties of InAMO4 oxides (A3+=Al

or Ga and M2+=Ca or Zn). Cutoffs for the basis functions, 16.0 Ry, and the poten-

tial representation, 81.0 Ry, and expansion in terms of spherical harmonics with ℓ ≤

8 inside the muffin-tin spheres were used. The muffin-tin radii of multicomponent

oxides are as follows: 2.3 to 2.6 a.u. for In and Ca; 1.7 to 2.1 a.u. for Ga, Zn, and Al;

and 1.45 to 1.8 a.u. for O atoms. Summations over the Brillouin zone were carried

out using at least 23 special k points in the irreducible wedge.

The investigated InAMO4 oxides have rhombohedral R3̄m layered crystal

structure of YbFe2O4 type, Fig. 5.1(a) [74, 75, 80]. In these compounds, In3+ ions

have octahedral coordination with the oxygen atoms and reside in 3(a) position (Yb),

whereas both A3+ (Al or Ga) and M2+ (Ca or Zn) ions reside in 6(c) position (Fe),

Fig. 5.1, and are distributed randomly [81]. Because of the different ionic radii and

the valence state of the cations in the AMO2.5 double layer, the A
3+ and M2+ atoms

have different z component of the internal site position 6(c). The optimized struc-

tural parameters for every structure under consideration can be found in our previous

work [30].

To model isolated point defects in the InAMO4 compounds, a 49-atom super-

cell was used with the lattice vectors (302̄), (1̄12), and (021̄), given in the units of the

rhombohedral primitive cell vectors [36]. Note that the conventional rhombohedral

unit cell of YbFe2O4 contains 21 atoms (Z=3), and the primitive, i.e., the smallest

volume, cell contains 7 atoms (Z=1). These supercells result in similar defect con-

centrations, namely, 1.6–1.8×1021cm−3, and, hence, similar distances between the

defects ∼ 10Å. We stress that such high concentrations may not be experimentally

feasible in all materials under consideration. However, our goal is to determine and
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compare the properties of defect formations under the same conditions. The values

of the defect formation energies calculated for the given supercells, can be used to

predict the temperature-dependent defect densities in each compound, and are known

to provide reasonable results [42, 44].

As mentioned above, the layered crystal structure of InAMO4 oxides has two

chemically and structurally distinct layers, AMO2.5 and InO1.5, which alternate along

the [0001] direction. In particular, depending on the layer and the different nearest-

neighbor coordination, there are several structurally different sites for the native point

defects. As an example, Figure 5.1-(b) shows four possible antisite defect locations

(AM , InM , MA, and MIn), considered for the InAMO4 oxides. Here, AM means A

replacing the M lattice site.

The formation energy of a defect in any charge state modeled using a corre-

sponding background charge, can be calculated as a function of the Fermi level and

the corresponding chemical potential:

∆H(EF , µ) = Edefect − Ehost ± µα + q(EF ) (5.1)

where Edefect and Ehost are the total energies for the oxide with the defect and the

stoichiometric oxide in the same-size supercell, respectively; µα is the chemical po-

tential of atom α (α=In, A,M , and O) added to (–) or removed from (+) the lattice;

q is the defect charge state, EF is the Fermi energy taken with respect to the top

of the valence band. The chemical potential µα=µ
0
α + ∆µα is taken with respect

to the chemical potential µ0
α of the elementary metals or the O2 molecule, whereas

∆µα is the deviation from the elemental chemical potential which is determined by

the specific growth conditions which depend on the temperature and oxygen partial

pressure [42].

In this work, with the purpose of reasonable comparison with the experimental

growth conditions, we consider two different oxygen partial pressures, oxygen-rich and
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oxygen-poor. In the oxygen-rich conditions, the oxygen partial pressure pO2 is set to

1 atm whereas for the oxygen-poor conditions, pO2=0.0001 atm. For both of these

O-rich and O-poor conditions, ∆µα depends on the respective values of the heat

of formation, ∆Hf [InAMO], as well as on ∆µIn, ∆µA, ∆µM , and ∆µO, which are

calculated from the following thermodynamic stability conditions:

(1) In order to maintain a stable InAMO4 host, the elemental chemical po-

tentials should have the values that require

∆µIn +∆µA +∆µM + 4∆µO = ∆Hf [InAMO4] (5.2)

(2) To avoid the precipitation of the elements In, A, M , and O, the following

conditions must be satisfied:

∆µIn ≤ 0;∆µA ≤ 0;∆µM ≤ 0;∆µO ≤ 0 (5.3)

(3) To avoid the formation of the binary compounds, such as In2O3, A2O3, or

MO, the following conditions must be fulfilled:

2∆µIn + 3∆µO ≤ ∆Hf (In2O3) (5.4)

2∆µA + 3∆µO ≤ ∆Hf (A2O3) (5.5)

∆µM +∆µO ≤ ∆Hf (MO) (5.6)

Thus, the available range for the elemental chemical potentials in the case of

quaternary InAMO4 materials is a three-dimensional volume determined by the above

stability conditions (equations 5.3– 5.6), projected onto the corresponding InAMO4

surface plane (equation 5.2).
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The heat of formation, ∆Hf , for the oxides is calculated with respect to the

bulk orthorhombic Ga, tetragonal In, hexagonal Zn, and cubic Al or Ca. Our ob-

tained ∆Hf values for the three representative InGaZnO4, InAlZnO4, and InAlCaO4

compounds are –11.28 eV, –14.60 eV, and –15.40 eV, respectively. Calculating the

corresponding heat of formation for the binary constituents, we find that:

2∆Hf [InGaZnO4] > ∆Hf (In2O3) + ∆Hf (Ga2O3) + 2∆Hf (ZnO) (5.7)

2∆Hf [InAlCaO4] > ∆Hf (In2O3) + ∆Hf (Al2O3) + 2∆Hf (CaO) (5.8)

2∆Hf [InAlZnO4] < ∆Hf (In2O3) + ∆Hf (Al2O3) + 2∆Hf (ZnO) (5.9)

The equations 5.7 and 5.8 suggest that at zero temperature, the formation

of InGaZnO4 or InAlCaO4 is impossible without the formation of the correspond-

ing binary phases. This also means that there is no available elemental chemical

potentials which would allow the formation of the corresponding multicomponent ox-

ides. Since the latter are stable above 1000 K [74, 75, 80], the entropy term T∆S

must be taken into consideration. Similar arguments were reported for In2O3(ZnO)k

compounds [82]. The entropy term can be estimated based on the corresponding

equilibrium solid state reactions which involve the binary constituents as follows:

∆Hf [InGaZnO4]− 1/2[∆Hf (In2O3) + ∆Hf (Ga2O3) + 2∆Hf (ZnO)]

= TInGaZnO4 × δSInGaZnO4

(5.10)

∆Hf [InAlCaO4]− 1/2[∆Hf (In2O3) + ∆Hf (Al2O3) + 2∆Hf (CaO)]

= TInAlCaO4 × δSInAlCaO4

(5.11)

We then replace the ∆Hf for InGaZnO4 and InAlCaO4 with the correspond-

ing [∆Hf – T × δS], in the equation 5.2 above. As a result, as we have shown

before [16], the available chemical potentials for metals in InGaZnO4, InAlZnO4, and



99

InAlCaO4, correspond to a very narrow range along the crossing line of the three

planes, eqs. 5.4-5.6. This is in accord with the results for Ga-free layered multi-

component In2O3(ZnO)3 which was shown to exist without the occurrence of the

secondary phases only for a constant ratio between indium and zinc [82].

Our obtained chemical potential values for the three representative InGaZnO4,

InAlZnO4, and InAlCaO4 compounds in oxygen-rich (pO2=1 atm) and oxygen-poor

(pO2=0.0001 atm) conditions are shown in Table 5.1.

Table 5.1: Calculated chemical potential values (∆µ) for the O-rich (pO2=1 atm)
and O-poor/M-rich (pO2=0.0001 atm) conditions for the InAMO4 oxides,
in eV.

Oxygen-rich Oxygen-poor

InAMO4 ∆µIn ∆µA ∆µM ∆µO ∆µIn ∆µA ∆µM ∆µO

InGaZnO4 -2.4 -2.5 -2.3 -1.1 -1.8 -1.9 -1.9 -1.5

InAlZnO4 -2.2 -5.1 -2.2 -1.2 -1.5 -4.4 -1.7 -1.7

InAlCaO4 -2.0 -4.9 -4.6 -1.4 -1.3 -4.2 -4.1 -1.9

5.3. RESULTS AND DISCUSSION

The formation of native point defects is investigated in the three represen-

tative multicomponent InAMO4 compounds with none, one, and two light-metal

constituents. In the following sections, we discuss the role of chemical compositions,

atomic coordinations, and metal-oxygen bond strengths in the formation and stability

of native point defects in InAMO4.

5.3.1. Formation of Antisite Defects in InAMO4. First, we investi-

gate the formation of antisite defects (cation disorder) in the three representative

InAMO4 oxides, i.e., InGaZnO4, InAlZnO4, and InAlCaO4. In addition to the in-

trinsic cation/anion vacancies, there are several possible antisite defects including
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both the n-type (donor) and the p-type (acceptor) defects within the layered struc-

ture of InAMO4 with In3+, A3+, and M2+. We consider 4 possible antisites which

are InM , AM (donor antisites) and MIn, MA (acceptor antisites), Fig. 5.1. Our cal-

culated formation energies for the considered antisite defects in InAMO4 oxides, for

both oxygen-rich and oxygen-poor conditions are plotted in Fig. 5.2, as a function of

the Fermi level. It should be noted that the oxygen vacancy formations which were

reported earlier (see Section 4) are included in these plots to show the similar oxygen

vacancy formation energies, hence, similar concentration levels among the InAMO4

oxides.

In InGaZnO4, under the oxygen-rich (metal-poor) conditions as shown in Fig-

ure 5.2-(a), the donor antisites GaZn and InZn have lower formation energies than the

acceptor antisites ZnGa and ZnIn and oxygen vacancy VO. In particular, among the

antisites, when the Fermi level is lower than 2.6 eV, the donor GaZn antisite defect

has the lowest formation energy among all other defects considered, and, hence, is

expected to be the major electron donor defect. However, when the Fermi level is

above 2.6 eV, the acceptor antisites become more stable with lower formation energies

than the donor antisites. Thus, in O-rich conditions, when the Fermi level is above

2.6 eV, the acceptor antisites (electron killers) compensate the donor antisites, hence

no free carriers will be produced. One way to control this compensation of electron

donor antisites is by controlling the oxygen partial pressure which will change the

chemical potential of the oxygen, hence the chemical potentials of the cations, based

on the equation 5.2. In Figure 5.2-(b), we decrease the oxygen partial pressure from

1 atm (O-rich) to 0.0001 atm (O-poor), which decreases the chemical potential of oxy-

gen while increasing the chemical potentials of metals, equation. 5.2. The obtained

chemical potential values for the different oxygen partial pressures are presented in

Table 5.1. We note that if the oxygen partial pressure is decreased below 0.0001

atm, the formation energy of donor antisites becomes unphysically negative, which
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Figure 5.2: (Color online) (a) Formation energies of native point defects in
InGaZnO4, InAlZnO4, and InAlCaO4 for O-rich condition, i.e., pO2=1
atm. (b) Formation energies of native point defects for O-poor conditions,
i.e., pO2=0.0001 atm, in InGaZnO4, InAlZnO4, and InAlCaO4. Calcu-
lated band gaps [30] are used which are 3.29 eV, 3.48 eV, and 4.87 eV,
for InGaZnO4, InAlZnO4, and InAlCaO4, respectively. The tempera-
tures used are 1023 K, 1123 K, and 1223 K for InGaZnO4, InAlZnO4,
and InAlCaO4, respectively. The solid squares represent the transition
points in each defect.
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may indicate that the compound becomes unstable under this conditions (pressure of

0.0001 atm and temperature of ≈1000 K) due to the abundance of antisite defects. As

a result of decreasing the oxygen partial pressure, the order of the formation energies

of antisite defects do not change, the lowest donor antisite is still GaZn. However,

it can be seen from Figure 5.2-(b), the formation energies of the acceptor antisites

have increased whereas the formation energies of the donor antisites have decreased.

Thus, in O-poor conditions, the Fermi level where the acceptor antisites compensate

the donor antisites has increased from 2.6 eV to 3 eV, hence, increasing the dopability

range, Figure 5.2-(b). This also means that the equilibrium Fermi level is more closer

to the conduction band minimum in O-poor conditions (note, that the band gap of

InGaZnO4 is 3.3 eV at room temperature and about 3.1 eV at T=1000 K). However,

this equilibrium Fermi level will be changed when the cation vacancies are introduced

(as discussed below).

Similarly, in InAlZnO4, the donor antisites AlZn and InZn have lower formation

energies than the acceptor antisites ZnAl and ZnIn. The most stable defect with

the lowest formation energy is the donor AlZn antisite defect whereas the acceptor

antisite defect ZnIn has the highest formation energy. In O-rich condition, the donor

antisite defect AlZn is only stable when the Fermi level lies below 3.1 eV, otherwise

it is compensated by the acceptor antisites ZnIn or ZnAl, Fig. 5.2-(a). Similar to

InGaZnO4, to avoid compensation, we have decreased the oxygen partial pressure to

0.0001 atm, Fig. 5.2-(b). As a result, the formation energies of acceptor defects have

increased while the formation energy of the donor antisite AlZn has decreased. Thus,

it can be seen from Fig. 5.2-(b), the AlZn donor antisite is the most stable defect

with the lowest formation energy up to the conduction band edge, i.e., no charge

compensation of the donor antisite AlZn by acceptor antisites will occur under the

O-poor conditions at T=1123 K.



103

In the case of InAlCaO4, the formation of antisite defects differs significantly

from those in InGaZnO4 and InAlZnO4. We find that the donor antisite InCa has

higher formation energy than both acceptor antisites CaAl and CaIn. The donor

antisite AlCa is the most stable defect with the lowest formation energy when the

Fermi level lies below 1.55 eV, in O-rich condition. When the Fermi level is higher

than 1.55 eV, the donor AlCa is compensated by the acceptor antisites. As we did

for InGaZnO4 and InAlZnO4, to increase the formation energies of acceptor antisites,

we have decreased the oxygen partial pressure to 0.0001 atm. Again, no change in

the trend of the formation energies of the antisites occur. As expected, the formation

energies of the acceptor antisite defects have increased while the formation energies

of the donor antisites have decreased in the O-poor condition. This change increased

the Fermi level where AlCa is compensated by the acceptor defects, to 2.1 eV, Fig. 5.2-

(b). Unlike the case of InGaZnO4 and InAlZnO4 where the formation energy of the

most stable donor antisites get very close to zero, the formation energies of antisites in

InAlCaO4 are higher by at least 1.5 eV. Hence, the partial pressure could be decreased

below 0.0001 atm, which might increase the formation energies of the acceptor defects

further. However, even at extreme possible O-poor conditions (with oxygen partial

pressure of pO2=1×10−11atm) as shown in Figure 5.3, the compensation of the donor

antisite AlCa by the acceptor antisites still occurs when the Fermi level lies above

2.8 eV which is 2 eV below the conduction band minimum in InAlCaO4.

The donor antisite defects produce free carriers at their neutral charge states,

the horizontal lines in Figure 5.2. Thus, it can be seen that the most stable donor

antisite defects GaZn and AlZn in InGaZnO4 and InAlZnO4, respectively, expected

to result in similar high defect concentrations due to their similar formation energies,

both in O-poor and O-rich conditions. In contrast, due to the high formation energy

of the most stable donor antisite AlCa in InAlCaO4, the defect concentrations are

expected to be much lower. We stress again that, in addition to the acceptor antisites,
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Figure 5.3: (Color online) Formation energies of native point defects for extreme O-
poor condition, i.e., ∆µO=1/4[∆Hf [InAMO4]−

∑
∆µM−rich

metal ]=–2.71 eV,
in InAlCaO4. ∆µO=–2.71 eV is equivalent to oxygen pressure of
pO2=1×10−11atm.

the cation vacancies also contribute to the charge compensation mechanism as well

as to the equilibrium defect concentrations, and will be discussed in Section 5.3.3.

5.3.2. The Trend of Antisite Defect Formation Energies in InAMO4.

Here, we discuss the trend of formation energies of the antisite defects within and

among the three representative InAMO4 oxides. We find that the formation energies

of the antisite defects correlate well with the experimental heat of formation of the

corresponding constituent binary oxides.

The experimental heat of formation of binary oxides per oxygen are in the

following order: In2O3 (–3.21 eV) >ZnO (–3.60 eV) >Ga2O3 (–3.73 eV) >Al2O3

(–5.78 eV) >CaO (–6.57 eV), i.e., In-O bonds correspond to the set of the metal-

oxygen bonds that would be the easiest to break compared to Ca-O bonds. Table 5.2

shows how the metal-oxygen distances change upon the creation of the corresponding
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Table 5.2: The average distance between the defect site and its nearest planar O
atoms, ⟨Dab⟩, the distances between the defect site and the nearest apical
O atom, Dc, and the next nearest apical O atom, D∗

c , in Å, are given for
stoichiometric InAMO4 and those with antisite defects specified.

InGaZnO4 InAlZnO4 InAlCaO4

⟨Dab⟩ Dc D∗
c ⟨Dab⟩ Dc D∗

c ⟨Dab⟩ Dc D∗
c

No defect In-O 2.21 2.21 2.20

A-O 1.88 1.92 2.35 1.84 1.84 2.14 1.77 1.78 2.17

M-O 1.98 1.97 2.38 2.05 2.00 2.38 2.20 2.20 2.60

InM In-O 2.05 2.09 2.29 2.11 2.09 2.29 2.18 2.13 2.48

AM A-O 1.90 1.97 2.14 1.88 1.86 2.30 1.85 1.80 2.80

MA M-O 1.97 2.04 2.25 2.03 2.12 2.05 2.17 2.25 2.24

MIn M-O 2.17 2.21 2.33

antisite defect. For example, we compare the original Ga-O distances to the respective

ones when In occupies the Ga site to study how the distances changed. As expected,

we find upon introduction of the antisite, the original metal-oxygen distances change

to those that resemble the metal-oxygen distances of the cation that replaces the

original site. For example, for the donor antisite InZn, the original Zn-O distances

were 1.98Å(⟨Dab⟩- average planar distances), 1.97Å(Dc-nearest apical distance), and

2.38Å(D∗
c -next nearest apical distance). At the same time the original average In-O

distances were 2.21Å. When In replaces the Zn site, we found two behaviors. First,

as expected, the InZn-O distances increase to resemble the original In-O distances.

As a result, the new InZn-O distances are 2.05Å, 2.09Å, and 2.29Å. As we can see,

the average planar distances and nearest apical distances are very close, i.e., they

have decreased from 2.21 to 2.05 and 2.09Å. However, the opposite has happened to

the next nearest apical distances. The next nearest apical distances have increased

rather than decreased. Second, we find that, for the oxides that are in fourfold

coordination with oxygen in their ground state, when the 3 planar and 1 nearest
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apical distances become very close to their distances in ground state, they prefer to

form fourfold coordination with O. This can be seen in the percent change in distances

as summarized in Table 5.3.

Table 5.3: Upon the atomic relaxation caused by the corresponding antisite defects,
the average change in the distance between the defect site and its nearest
planar O atoms, ⟨Dab⟩, the nearest apical O atom, Dc, and the next nearest
apical O atom, D∗

c , in percent, are given.

InGaZnO4 InAlZnO4 InAlCaO4

InAMO4 ⟨Dab⟩ Dc D∗
c ⟨Dab⟩ Dc D∗

c ⟨Dab⟩ Dc D∗
c

InM +5 +4 -4 +3 +4 -4 -3 -5 +2

AM -0.1 -0.2 +0.4 -8 -7 -4 -17 -20 +15

MA +4 +3 +5 +8 +8 +4 +17 +19 +12

MIn -1 -0.4 +6

Now, the trend of formation energies of antisite defects can be explained based

on both the experimental heat of formation of binary oxides as well as the change in

the metal-oxygen distances. The trends can be clearly seen from Tables 5.2 and 5.3.

For example, in InGaZnO4, the reason why the donor antisite GaZn has lower forma-

tion energy compared to InZn is that the creation of stronger bond such as Ga-O is

preferred over the In-O one, as follows from the relative heat of formation of the cor-

responding binary oxides, and also due to the Ga preference to have fourfold oxygen

coordination. The reason why ZnIn have higher formation energy as compared to

ZnGa is due to the fact that the structure with six-coordinated Zn (rocksalt ZnO) is

unstable. Similarly, in InAlZnO4 and InAlCaO4, the antisites AlM are more likely to

form as compared to InM antisites due to the energy gain associated with the forma-

tion of strong Al-O bonds. The formation energy of ZnIn is higher than the one for

ZnAl due to the aforementioned preference of Zn for five rather than six-coordinated
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sites, whereas for Ca this trend is reversed: in the ground state phase, CaO is oc-

tahedrally coordinated (rocksalt structure), hence, CaIn is more likely to occur than

CaAl.

Moreover, it can be seen from Table 5.3, in addition to the cations preference

to form stable structures, the relaxation due to the change in the distances between

the defect and nearest atoms increase with the number of light-metal constituents.

For example, the average percent change in the distances for MA antisite defect in

InAlCaO4 is twice larger than the average change in distances in InAlZnO4 and almost

three times larger than the ones in InGaZnO4, Table 5.3.

5.3.3. Formation of Cation Vacancies in InAMO4. In addition to the

acceptor antisites, the cation vacancies also contribute to the charge compensation

of the donor defects, thus, affecting the equilibrium Fermi level and the total defect

concentrations. Here, we discuss the formation energies of the cation vacancies in

InGaZnO4, InAlZnO4, and InAlCaO4. In InAMO4 oxides, VIn, VA, and VM vacancies

can occur. Our calculated formation energies for the respective vacancies are shown

in Figure 5.2. First, we note that the formation energies of the cation vacancies show

some correlation with the experimental heat of formation of the constituent binary

oxides, i.e., with the metal-oxygen bond strengths. Indeed, the formation of VIn is

more likely than that of VAl (especially, in InAlCaO4), and the formation of VZn is

lower than that of VCa. However, the respective formation energies are significantly

affected by the large structural relaxation around the vacancy defects. The latter

appears due to the presence of several cations of different ionic size, valence, metal-

oxygen bond strength, and oxygen coordination near each defect. Indeed, a larger

atomic relaxation around VIn is found in InGaZnO4 (10–17%) as compared to that

in In2O3 (5–12%).

As a result, the cation vacancies in InAMO4 result in much lower formation

energies than the formation of cation vacancies in the constituent binary oxides [44].
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These lead to the charge compensation of the donor antisites at the Fermi levels lower

than the acceptor antisites. Figure 5.2 shows the formation energies of the cation

vacancies for the O-rich and O-poor conditions. As it can be seen from Figure 5.2-

(b), the cation vacancies are pushed up slightly as the oxygen pressure is decreased.

The presence of cation vacancies will push the equilibrium Fermi level away from

the conduction band bottom and into the band gap. This shows that the larger the

number of the light-metal constituents, the harder it is to achieve a shallow donor.

5.3.4. Defect Concentrations in InAMO4. Figure 5.4 shows the equi-

librium defect concentrations plotted as a function of the oxygen partial pressures.

The concentrations are calculated within the extreme possible oxygen partial pressure

ranges. The highest defect concentrations in InGaZnO4 is for GaZn donor antisite and

the highest defect concentrations in InAlZnO4 is for AlZn donor antisite. However, as

shown in Figure 5.4, the equilibrium concentration of AlZn antisite defect exceeds the

maximum possible defect concentration, nmax≈1.2×1022cm−3, in InAMO4, which is

determined as the number of possible sites for this defect in the supercell divided by

the volume of the supercell. Hence, the equilibrium native point defect concentra-

tions should not exceed the possible maximum concentration, nmax, as illustrated in

Figure 5.4. Otherwise, the material will not be stable at this temperature. For the

case of InGaZnO4, the material is stable and the antisite defect GaZn results in the

highest defect concentrations (not exceeding the nmax) for up to pO2=1×10−8atm at

T=1000 K. The resulting equilibrium electron concentration, calculated based on the

charge neutrality condition in the lattice, is also plotted in Figure 5.4. For InGaZnO4,

the electron concentration follows the Log(pO2)
−1/4 dependence. The same depen-

dence is obtained for the observed dependence of conductivity σ on the pressure in

InGaZnO4 [86]. The results also explain why the InAlZnO4 samples were unsta-

ble under a wide range of growing conditions due to the formation of cation metal

phases [9].
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Figure 5.4: (Color online) Equilibrium defect concentrations plotted as a function of
the oxygen partial pressure at 1000K temperature.

5.4. CONCLUSIONS

We have investigated the formation of native point defects in three repre-

sentative multicomponent InAMO4 compounds with none, one and two light metal

constituents. We find that the donor antisite defect such as GaZn in InGaZnO4 has

the lowest formation energies, hence, results in the highest defect concentrations, and

can produce free carriers. The donor antisite defects have much lower formation en-

ergies compared to the oxygen vacancies which were believed to be the major donor

defect in multicomponent oxides. In addition, we find that the formation energy of

cation vacancies in InAMO4 are much lower than the formation energy of the re-

spective cation vacancies in binary TCOs. This agrees well with the large structural

relaxation obtained around the defects in InAMO4. As a result, the equilibrium

Fermi level is affected by the presence of the cation vacancies and is 1.2–2.1 eV be-

low the conduction band minimum (CBM) for the InAMO4 oxides grown under the

oxygen partial pressure of 0.0001 atm and temperature of 1000 K. Thus, the shift in

equilibrium Fermi level increases with the number of the light-metal constituents. For
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example, in InGaZnO4 (without light-metal constituent), the equilibrium Fermi level

is at 1.2 eV below CBM compared to 1.4 eV below CBM in InAlZnO4 (with one light-

metal constituent). However, in InAlCaO4, in addition to the cation vacancies, the

acceptor antisities also have low formation energies, hence the equilibrium Fermi level

is very deep in the band-gap, at 2.1 eV, so that free carriers are not created. Overall,

the obtained equilibrium carrier concentration is in excellent agreement with the ob-

served dependence of the conductivity on the oxygen partial pressure in InGaZnO4.

The results also explain why the samples with light-metal constituents are unstable

under a wide range of growing conditions, such as InAlZnO4.

Acknowledgements

This work was supported by the NSF Grant No. DMR-0705626. Computational

resources are provided by the NSF supported XSEDE.



111

6. CONCLUSIONS

In conclusion, we have systematically investigated the structural, optical, and

electronic properties of twelve undoped stoichiometric and nonstoichiometric com-

plex multicomponent oxides with layered structure RAMO4 [where R
3+=In or Sc, A

3+=Al or Ga, and M2+=Ca, Cd, Mg, or Zn] using ab-initio full-potential linearized

augmented plane wave method (FLAPW) based on density functional theory.

In Section 3, based on the results obtained from our electronic band struc-

ture calculations of the undoped stoichiometric RAMO4 materials, we addressed two

fundamental questions. First, we determined the role played by the local atomic

coordination in the electronic properties such as the band gap, the electron effective

mass, and the nature of the conduction band of RAMO4. Second, we established

how the optical properties and the available electron conduction paths in layered

multicomponent oxide hosts vary with the chemical composition.

The compositional complexity of RAMO4 leads to a wide range of band gap

values varying from 2.45 eV for InGaCdO4 to 6.29 eV for ScAlMgO4 as obtained

from our calculations. Most significantly, we demonstrated that the unusual fivefold

coordination of the A3+ and M2+ metal atoms stabilized in RAMO4 compounds,

results in the electronic band structure of the complex oxides that differs from the

one expected based on the electronic properties of the binary oxide constituents in

their lowest-energy (ground state) phases. The unusual fivefold coordination of the

A and M atoms in RAMO4 compounds promotes a hybrid s-like conduction band

composed from the s-states of all cations independent of the strength of the metal-

oxygen interaction. As a result, an isotropic charge transport is possible in these

layered materials.

Consistently, we find that in multicomponent oxides, all oxide constituents give

equal contributions to the effective mass average. The calculated electron effective
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masses (0.3–0.5 me) are nearly isotropic in RAMO4, and also resemble those in

conventional binary TCOs. However, they do not follow the trend expected from

the variation in the band gap: we find that the structures with fivefold coordinated

metals exhibit smaller band gaps but larger electron effective masses as compared to

their sixfold coordinated counterparts. This finding is explained based on the k·p

theory.

Thus, the above results highlight the advantages of incorporating light main

group metals in multicomponent oxides, which is highly attractive for lighter-weight,

less-expensive, and environmentally-friendly devices.

Further, we have systematically investigated how the structural peculiarities

and the composition affect the formation of native point defects in RAMO4. The

studies are instructive for better understanding of the role of the defects in carrier

generation and transport in doped and/or non-stoichiometric RAMO4 oxides.

In Section 4, we studied the oxygen vacancy formation in three representa-

tive multicomponent InAMO4 compounds with none, one and two light metal con-

stituents. We find that the oxygen vacancy defect prefers to be located in the InO1.5

layer for all three InAMO4 materials which correlates with the heat of formation of

the corresponding binary oxides. However, due to a large atomic relaxation near the

defect and the formation of stable fourfold structures for Zn, Al, and Ga atoms, we

obtained a significant reduction in the formation energy of the oxygen defect located

in the AMO2.5 layer. This additional energy gain results in a more uniform distri-

bution of the oxygen vacancy defect throughout the layered structure of InGaZnO4

and InAlZnO4. In particular, the tendency of Zn, Ga, and Al atoms to form sta-

ble structures with lower oxygen coordination, results in nearly identical vacancy

concentrations in the InO1.5 and GaZnO2.5 layers in InGaZnO4, and only an order

of magnitude lower concentration in the AlZnO2.5 layer as compared to the one in

the InO1.5 layer in InAlZnO4. The presence of two light metal constituents in the
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InAlCaO4 along with Ca failure to form a stable fourfold coordination as revealed by

its negligible relaxation near the defect, leads to a strong preference of the oxygen

vacancy to be in the InO1.5 layer.

In Section 5, we have systematically investigated the formation of native

point defects including both acceptor (cation vacancies, acceptor antisites) and donor

(oxygen vacancies, donor antisites) defects in three representative multicomponent

InAMO4 compounds. We find that the donor antisite defects, such as GaZn in

InGaZnO4 and AlZn in InAlZnO4 have lower formation energies compared to that of

the oxygen vacancies. The latter are the major donor defects in nonstoichiometric

binary oxides and, by analogy, they were assumed to be the origin of conductivity in

multicomponent oxides. Our results refute this assumption, and, for the first time,

establish antisite defects as the most abundant electron donor defects in InGaZnO4

and InAlZnO4 materials.

Moreover, we find that the formation energy of cation vacancies in InAMO4

are much lower than the formation energy of cation vacancies in binary TCOs. We

explain this behavior based on the large structural relaxation around the defects

in InAMO4 associated with the unusual fivefold coordination of A and M atoms

as well as the presence of the strong metal-oxygen bonds near the vacancy. The

obtained equilibrium carrier concentration is in excellent agreement with the observed

dependence of the conductivity on the oxygen partial pressure in InGaZnO4. The

results also explain why the InAlZnO4 samples are unstable under a wide range of

growing conditions.



114

BIBLIOGRAPHY

[1] D. S. Ginley and C. Bright. Special issue on transparent conducting oxides. MRS
Bulletin., 25:15–18, 2000.

[2] R.G Gordon. Criteria for choosing transparent conductors. MRS Bulletin, 25:52,
2000.

[3] D. S. Ginley, H. Hosono, and D. C. Paine. Handbook of Transparent Conductors.
Springer, 2011.

[4] G. Rupprecht. Untersuchungen der elektrischen und lichtelektrischen leitfhigkeit
dnner indiumoxydschichten. Z. Phys., 139(504), 1954.

[5] A. Facchetti and T. Marks. Transparent Electronics: From Synthesis to Appli-
cations. John Wiley & Sons, New York, 2010.

[6] K. L. Chopra, S. Major, and D. K. Pandya. Transparent conductors – a status
review. Thin Solid Films, 102:1–46, 1983.

[7] T. J. Coutts, D. L. Young, and X. Li. Characterization of transparent conducting
oxides. MRS Bulletin, 25:58–65, 2000.

[8] H. Kaga, R. Asahi, and T. Tani. Thermoelectric properties of highly textured
Ca-doped (ZnO)(m)In2O3 ceramics. Jpn. J. Appl. Phys, 43:7133–7136, 2004.

[9] M. Orita, M. Takeuchi, H. Sakai, and H. Tanji. New transparent conductive
oxides with YbFe2O4 structure. Jpn. J. Appl. Phys., 34:L1550–L1552, 1995.

[10] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono. Amorphous
transparent conductive oxide InGaO3(ZnO)(m) (m≤4): a Zn 4s conductor. Phil.
Mag. B, 81:501–515, 2001.

[11] N. Kimizuka and T. Mohri. Structural classification of RAMO4. J. Solid State
Chem, 78:98–384, 1989.

[12] H. Hosono. in Transparent Electronics: From Synthesis to Applications, pages
459–487. John Wiley & Sons, 2010.

[13] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono. Room
temperature fabrication of transparent flexible thin-film transistors using amor-
phous oxide semiconductors. Nature, 432:488–492, 2004.

[14] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, and K. Yang. Subgap states in
transparent amorphous oxide semiconductor, InGaZnO, observed by bulk sensi-
tive x-ray photoelectron spectroscopy. Appl. Phys. Lett, 92:202117, 2008.



115

[15] J. E. Medvedeva. in Transparent Electronics: From Synthesis to Applications,
pages 1–29. John Wiley & Sons, 2010.

[16] A. Murat and J. E. Medvedeva. Composition-dependent oxygen vacancy forma-
tion in multicomponent wide-band-gap oxides. Submitted to Physical Review B,
2012.

[17] T. Minami. Substitution of transparent conducting oxide thin films for indium
tin oxide transparent electrode applications. Thin Solid Films, 516(7):1314–1321,
2008.

[18] A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth. Transparent,
high mobility InGaZnO thin films deposited by PLD. Thin Solid Films, 516:7,
2008.

[19] J. E. Medvedeva and C. L. Hettiarachchi. Tuning the properties of complex
transparent conducting oxides: Role of crystal symmetry, chemical composition,
and carrier generation. Physical Review B, 81:125116, 2010.

[20] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman. Full-potential
self-consistent linearized-augmented-plane-wave method for calculating the elec-
tronic structure of molecules and surfaces – O2 molecule. Phys. Rev. B, 24:864–
875, 1981.

[21] E. Wimmer. Computational materials design: A perspective for atomistic ap-
proaches. Journal of Computer-Aided Materials Design, 1(3):215–242, 1994.

[22] K. Capelle. A bird’s-eye view of density-functional theory. 2006.

[23] A. E. Delahoy and S. Guo. Transparent Conducting Oxides for Photovoltaics,
pages 716–796. John Wiley and Sons, Ltd, 2011.

[24] J. E. Medvedeva and A. J. Freeman. Combining high conductivity with complete
optical transparency: A band-structure approach. Europhys. Lett, 69:583–587,
2005.

[25] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine. Transparent conducting
oxides for photovoltaics. MRS Bulletin, 32:242–247, 2007.

[26] A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P.H. Chang, and T. J.
Marks. Chemical and thin-film strategies for new transparent conducting oxides.
MRS Bulletin, 25:45–51, 2000.

[27] T. S. Moss. The interpretation of the properties of indium antimonide. Proc.
Phys. Soc. B, 67:775–782, 1954.

[28] E. Burstein. Anomalous optical absorption limit in InSb. Phys. Rev. B, 93:632–
633, 1954.



116

[29] D. M. Bylander and L. Kleinman. Good semiconductor band gaps with a mod-
ified local-density approximation. Phys. Rev. B, 41:7868–7871, 1990.

[30] A. Murat and J. E. Medvedeva. Electronic properties of layered multicomponent
wide-band-gap oxides: A combinatorial approach. Phys. Rev. B, 85:155101, 2012.

[31] A. Walsh, J. D. Silva, and S. Wei. Multi-component transparent conducting
oxides: progress in materials modelling. J. Phys.: Condens. Matter, 23:334210,
2011.

[32] H. Un’no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto, and H. Kawazoe.
Preparation of MgIn2O4−X thin films on glass substrate by rf sputtering. Jpn.
J. Appl. Phys, 32:L1260–L1262, 1993.

[33] H. Kawazoe, N. Ueda, H. Un’no, T. Omata, H. Hosono, and H. Tanoue. Gen-
eration of electron carriers in insulating thin film of MgIn2O4 spinel by Li+

implantation. J. Appl. Phys., 76:7935–7941, 1994.

[34] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka. Mechanism of elec-
trical conductivity of transparent InGaZnO4. Phys, 61:1811–1815, 2000.

[35] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka. Mechanism of elec-
trical conductivity of transparent InGaZnO4. Phys. Rev. B, 61(3):1811–1816,
2000.

[36] J. E. Medvedeva. Averaging of the electron effective mass in multicomponent
transparent conducting oxides. Europhys. Lett., 78:57004, 2007.

[37] J. E. Medvedeva. Unconventional approaches to combine optical transparency
with electrical conductivity. Appl. Phys. A, 89:43–47, 2007.

[38] P. P. Edwards, A. Porch, M. O. Jones, and D. V. Morgan. Basic materials
physics of transparent conducting oxides. Dalton Trans, 19:2995–3002, 2004.

[39] D. A. Drabold and S. K. Estreicher. Theory of defects in semiconductors.
Springer, 2007.

[40] M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang. Highly conductive
epitaxial CdO thin films prepared by pulsed laser deposition. APL, 78(16):2324,
2001.

[41] T. Minami. New n-type transparent conducting oxides. MRS Bulletin, 25:38–43,
2000.

[42] J. Osorio-Guillén, S. Lany, S. V. Barabash, and A. Zunger. Magnetism without
magnetic ions: Percolation, exchange, and formation energies of magnetism-
promoting intrinsic defects in CaO. Phys. Rev. Lett., 96:107203, 2006.



117

[43] S. Lany and A. Zunger. Assessment of correction methods for the band-gap
problem and for finite-size effects in supercell defect calculations: Case studies
for ZnO and GaAs. Physical Review B, 78(23):235104, 2008.

[44] S. Lany and A. Zunger. Dopability, intrinsic conductivity and nonstoichiometry
of transparent conducting oxides. Phys. Rev. Lett., 98:045501, 2007.

[45] J. Robertson and S. J. Clark. Limits to doping in oxides. PRB, 83(07525), 2011.

[46] H. Omura, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono.
First-principles study of native point defects in crystalline indium gallium zinc
oxide. J. Appl. Phys, 105(093712), 2009.

[47] M. Weinert, E. Wimmer, and A. J. Freeman. Total-energy all-electron density
functional method for bulk solids and surfaces. Phys. Rev. B, 26:4571–4578,
1982.

[48] M. Weinert, G Schneider, R Podloucky, and J Redinger. FLAPW: applications
and implmentations. J. Phys.: Condens. Matter, 21, 2009.

[49] P. Hohenberg and W.Kohn. Inhomogeneous electron gas. Physical Review,
136:136, 1964.

[50] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cam-
bridge University Press, 2004.

[51] L. H. Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 23(542),
1927.

[52] E. Fermi. Z. Phys, 48(73), 1928.

[53] W. Kohn and L. J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev, 140:A1133, 1965.

[54] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys.
Lpz, 84:124, 1927.

[55] B. G. Johnson, P. M. W. Gill, and J. A. Pople. The performance of a family of
density functional methods. J. Chem, 98:5612, 1993.

[56] A. Garcia, C. Elsaesser, J. Zhu, S. Louie, and M. L. Cohen. Use of gradient-
corrected functionals in total-energy calculations for solids. Phys. Rev. B,
46:9829, 1992.

[57] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy. Generalized kohn-
sham schemes and the band-gap problem. Phys. Rev. B, 53:3764–3774, 1996.

[58] A. D. Perdew. Density-functional approximation for the correlation energy of
the inhomogeneous electron gas. J.P., Phys. Rev.,, B33, 1986.



118

[59] C. Stampfl, M. Kim, G. Profeta, R. Asahi, W. Mannstadt, and A. J. Freeman.
The full-potential linearized augmented plane-wave code FLAPW: Users guide,
2002.

[60] J. C. Slater. Wave functions in a periodic potential. Phys. Rev, 51(846), 1937.

[61] O. K. Anderson. Linear methods in band theory. Phys. Rev. B, 12:3060, 1975.

[62] D. D. Koelling and G. O. Arbman. Use of energy derivative of the radial solution
in an augmented plane wave method: application to copper. J. Phys. F, 5(2041),
1975.

[63] H. J. F. Jansen and A. J. Freeman. Total-energy full-potential linearized
augmented-plane-wave method for bulk solids: Electronic and structural prop-
erties of tungsten. Phys. Rev. B, 30:561, 1984.

[64] A. Canning, W. Mannstadt, and A.J. Freeman. Parallelization of the FLAPW
method. Computer Physics Communications, 2000.

[65] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations.
Math. Comp, 19:577, 1965.

[66] G. Thomas. Invisible circuits. Nature, 389:907 –908, 1997.

[67] P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks. Basic
materials physics of transparent conducting oxides. Dalton Trans, 19:2995–3002,
2004.

[68] D. S. Ginley, H. Hosono, and D. C. Paine. Handbook of Transparent Conductors.
Springer, 2011.

[69] R. D. Shannon, J. L. Gillson, and R. J. Bouchard. Single crystal synthesis and
electrical properties of CdSnO3, Cd2SnO4, In2TeO6, CdIn2O4. J. Phys. Chem.
Solids, 38:877–881, 1977.

[70] A. L. Dawar and J. C. Joshi. Semiconducting transparent thin films: their
properties and applications. J. Mater. Sci, 19:1–23, 1984.

[71] J. M. Phillips, J. Kwo, and G. A. Thomas. Transparent conducting thin films
of GaInO3. Appl. Phys. Lett, 65:115–117, 1994.

[72] H. Kawazoe and K. Ueda. Transparent conducting oxides based on the spinel
structure. J. Amer. Ceram. Soc, 82:3330–3336, 1999.

[73] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason.
Chemical and structural factors governing transparent conductivity in oxides. J.
Electroceram., 13:167–175, 2004.

[74] V. K. Kato, I. Kawada, N. Kimizuka, and T. Katsura. Die kristallstructur von
YbFe2O4. Z. Krist, 141:314–320, 1975.



119

[75] N. Kimizuka and T. Mohri. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures
for compounds in the In2O3 and Sc2O3-A2O3-BO systems [A: Fe, Ga or Al; B:
Mg, Mn, Fe, Ni, Cu or Zn] at temperatures over 1000 C. J. Solid State Chem,
60:382–384, 1985.

[76] D. M. Bylander and L. Kleinman. Good semiconductor band gaps with a mod-
ified local-density approximation. Phys. Rev. B, 41:7868–7871, 1990.

[77] R. Asahi, W. Mannstadt, and A. J. Freeman. Optical properties and elec-
tronic structures of semiconductors with screened-exchange LDA. Phys. Rev.
B, 59:7486–7492, 1999.

[78] C. B. Geller, W. Wolf, S. Picozzi, A. Continenza, R. Asahi, W. Mannstadt,
A. J. Freeman, and E. Wimmer. Computational band-structure engineering of
iii-v semiconductr alloys. Appl. Phys. Lett., 79:368, 2001.

[79] M. Y. Kim, R. Asahi, and A. J. Freeman. Excited states and optical properties
entirely from first principles: Extended FLAPW method and its graphical user
interface. J. Comput.-Aided Mater. Des., 9:173, 2002.

[80] N. Kimizuka, T. Mohri, and Y. Matsui. Homologous compounds. J. Solid State
Chem., 74:98–109, 1988.

[81] C. Li, Y. Bando, M. Nakamura, and M. Kimizuka. A modulated structure of
In2O3(ZnO)(m) as revealed by high resolution electron microscopy. J. Electron
Microsc, 46:119–127, 1997.

[82] H. Peng, J. H. Song, E. M. Hopper, Q. Zhu, T. O. Mason, and A. J. Free-
man. Possible n–type carrier sources in In2O3(ZnO)k. Chemistry of Materials,
24(1):106–114, 2012.

[83] A. Murat and J. E. Medvedeva. Native point defects in multicomponent trans-
parent oxide hosts. Submitted to Physical Review B, 2012.

[84] Katsuyuki Matsunaga, Tomohito Tanaka, Takahisa Yamamoto, and Yuichi
Ikuhara. First-principles calculations of intrinsic defects in Al2O3. Phys. Rev.
B, 68:085110, 2003.

[85] J. E. Medvedeva, E. N. Teasley, and M. D. Hoffman. Electronic band structure
and carrier effective mass in calcium aluminates. Phys. Rev. B, 76:155107, 2007.

[86] A.Adler and T. Mason. Unpublished.



120

VITA

Altynbek Murat was born in Bayan-Ulgii, Mongolia. He graduated from

Mongolian-Turkish high school in 2002. He was awarded a full scholarship to study at

United Arab Emirates University. In May 2007, he received his Bachelors of Science

degree in Physics from UAE University. Upon his graduation from UAE University,

he was awarded with a UAE President’s Gold Medal Award for his academic excel-

lence. In August 2007 he enrolled as a PhD student at Missouri University of Science

and Technology. In 2011, he received his Master of Science degree in Engineering

Management from Missouri S&T. In 2012, he earned his Doctor of Philosophy in

Physics from Missouri S&T. While at Missouri S&T, Altynbek greatly enjoyed his

work as a graduate research assistant to Dr. Julia E. Medvedeva for five years. He

was awarded with several competitive grants to present his research and to partici-

pate in national and international scientific conferences. In addition, Altynbek earned

multiple competition prizes for research presentations and showcases at the Missouri

S&T.


	Complex oxides as novel transparent conductors
	Recommended Citation

	PUBLICATION DISSERTATION OPTION
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	OVERVIEW
	CONVENTIONAL BINARY TCOS
	MULTICOMPONENT TCOS
	CARRIER GENERATION IN TCO HOSTS
	DISSERTATION OUTLINE

	Methods and Approach
	INTRODUCTION
	DENSITY FUNCTIONAL THEORY
	Overview
	Derivation and Formalism
	Exchange-Correlation Functionals
	Implementing the DFT

	FLAPW METHOD
	Overview
	FLAPW Method: Features and Demonstrations


	Electronic properties of layered multicomponent wide-band-gap oxides: A combinatorial approach
	ABSTRACT
	INTRODUCTION
	METHODS AND APPROXIMATIONS
	CRYSTAL STRUCTURE
	ELECTRONIC PROPERTIES OF SINGLE-CATION OXIDES
	Ground State Structures
	Hypothetical Phases With Fivefold Coordination

	ELECTRONIC PROPERTIES OF MULTICOMPONENT OXIDES
	Role of Atomic Coordination in Band Gap Formation
	Nature of the Conduction Band in RAMO4
	Role of Atomic Coordination on the Conduction States
	Electron Effective Mass in RAMO4

	CONCLUSIONS

	Composition-dependent oxygen vacancy formation in multicomponent wide-band-gap oxides
	ABSTRACT
	INTRODUCTION
	APPROACH
	RESULTS AND DISCUSSION
	Oxygen Vacancy in Binary Oxides
	Distribution of Oxygen Vacancies in InAMO4
	Formation of Stable Fourfold Structures in Oxygen Deficient  InAMO4
	Structural Relaxation in Oxygen Deficient InAMO4
	Conductivity Estimates in Oxygen Deficient InAMO4

	CONCLUSIONS

	Native point defects in multicomponent transparent conducting oxide hosts
	ABSTRACT
	INTRODUCTION
	APPROACH
	RESULTS AND DISCUSSION
	Formation of Antisite Defects in InAMO4
	The Trend of Antisite Defect Formation Energies in InAMO4
	Formation of Cation Vacancies in InAMO4
	Defect Concentrations in InAMO4

	CONCLUSIONS

	CONCLUSIONS
	BIBLIOGRAPHY
	VITA

