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ABSTRACT 

It is challenging and important for a firm to make effective decisions under 

uncertainties, such as random fluctuations of products prices or demands, etc. This 

dissertation formulates mathematic models to help decision makers in energy and retail 

industries make optimal timing and optimal operational decisions when facing uncertain 

electricity prices and demands. 

As for energy portfolio management, the optimal entry and dispatch strategies are 

investigated for an electricity generating firm to introduce a renewable power plant as an 

alternative method for generating electricity, with or without construction delay. In 

addition, the abandonment strategies of considering shutting down one of the two power 

plants in the energy portfolio are studied. To develop these strategies, the expected per 

unit profit is maximized over a finite time horizon by assuming that the price of 

electricity follows mean reversion stochastic process. This problem is formulated as a 

mixed optimal stochastic control and optimal stopping problem. The original problem is 

solved numerically through two auxiliary problems. Numerical experiments are 

conducted to confirm the results. The sensitivity analysis of the parameters is conducted 

to reveal how the uncertainty of electricity price, investment, operation cost, and 

production rate affect the decisions. 

A dynamic inventory model is also developed to study optimal control policy in a 

finite planning horizon with consideration of debt financing and tax. The model assumes 

that the retailer raises funds from the financial market and replenishes its stock under the 

constraint of its cash flow facing random demand. The objective is to maximize the 

expected terminal wealth. The optimal inventory policy and the optimal debt financing 

decision with the capital constraint and the effect of tax are obtained. 
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1. INTRODUCTION 

1.1. ENERGY INDUSTRY AND CO2 CONTROL 

The United States is the largest energy consumer in the world in terms of total 

usage, 40.4% of which is used to generate electricity. Electricity, an extremely flexible 

form of energy, has been adapted for a great many and growing number of uses. Coal, 

natural gas, nuclear, hydro, wind, and solar are used primarily to make electricity in the 

U.S. today (EIA, 2011). Figure 1.1 indicates that coal is still the major source for 

generating electricity in the U.S. by now, and that fossil sources account for 68.3% of the 

total electricity. For the short term, coal is so abundant and fits the current grid 

infrastructure, but the problems are that it will run out some day in the future, and 

environmental pollution and Greenhouse Gases (GHG) emissions are becoming more and 

more critical. Natural gas, another major source for generating electricity, is used by most 

peaking power plants and some off-grid engine generators, since it produces less carbon 

dioxide during burning and is much cleaner than coal. The data indicate that burning 

natural gas produces about 45% less carbon dioxide than burning coal (Naturalgas.org, 

2012). As the cleanest known source for combined cycle power generation, the natural 

gas is currently widely used all over the world.  

As the third and fourth major sources for generating power, nuclear energy and 

hydro power plants produce electricity at a lower cost, almost without carbon dioxide 

emissions, and with high efficiencies and high capacity factors (Ipatov, 2008). The costs 

associated with nuclear and hydro power are primarily all startup costs, which is similar 

to most renewable sources. And the total costs to generate electricity from nuclear and 
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While the nations around the world agreed to reduce carbon dioxide emissions, 

governments tightened regulations on power plants that release carbon dioxide. In 2007, 

the Supreme Court ruled that greenhouse gases, including carbon dioxide, qualified as air 

pollutants under the Clean Air Act. In 2008, Congress required that the Environmental 

Protection Agency (EPA) begin releasing data about carbon dioxide and air quality. On 

December 23, 2010, EPA issued a proposed schedule for establishing greenhouse gas 

(GHG) standards under the Clean Air Act for fossil fuel fired power plants and petroleum 

refineries. 

Governments often launch a carbon tax, emission tax, energy tax, and feed-in 

tariff in order to regulate generators. Carbon tax is an environmental tax levied on the 

carbon content of fuels; emission tax requires emitters to pay a fee, charge, or tax for 

every ton of GHG released; energy tax is charged directly to the energy commodities. All 

of these taxes offer a potential cost-effective means of reducing GHG. Feed-in tariff is a 

policy mechanism designed to accelerate investment in renewable energy technologies, 

which offer long-term contracts to renewable energy generators based on the cost of 

generations. Thus, the tight regulations and incentive policies from governments are the 

direct motivations that force generators to transfer generation of electricity from 

traditional methods to renewable methods, since these factors tend to increase the cost of 

traditional methods and decrease the cost of renewable methods. 

1.2. MOTIVATIONS AND LITERATURE REVIEWS 

Decision making is the essence of management; the quality of managerial 

decisions has a major influence on whether an organization succeeds or fails (Robbins, 
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2007). At the same time, uncertainties are always around us, including product prices, 

production costs, regulations from government, etc. So, the question is how to make 

effective decisions under uncertainty. Most decision-makers make decisions by intuition 

or by science (Christensen and Knudsen, 2010). In this dissertation, how to set up 

mathematical models to help decision-makers to find the optimal solutions for decisions 

relevant to energy portfolio management and inventory management are studied. 

Facing current pressures to reduce carbon dioxide emissions, the generators are 

considering the decisions about building a renewable power plant to satisfy the increasing 

demand for electricity or abandoning a traditional old power plant to get rid of the burden 

of increasing costs. So, the generators have to find out the optimal time for building a 

new power plant or the best time for abandoning an old power plant with fluctuating of 

electricity prices, which are assumed to follow the mean reverting stochastic process. The 

generators also need to decide the optimal operational dispatch between the two power 

plants in the energy portfolio. In order to help generators to make these decisions, 

optimization models are formed to maximize the expected long-term unit profits of the 

firm, assuming that the price of electricity follows the mean reverting stochastic process. 

In this model construction delay for the new power plant is considered, which would be 

significant for the energy industry. The sensitivity analysis is also conducted in the 

models to reveal how the parameters could affect the decisions.  

The optimal investment entry decisions and optimal operations decisions have 

been widely studied in recent years (Brekke and Øksendal, 1994). Some researchers 

considered the general investment model based on the productions capacity according to 

market fluctuations (Dixit and Pindyck, 1994). Pindyck (1988) and Øksendal (2000) 
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studied the capacity decision by modeling a firm with capacity expanding in irreversible 

investment over an infinite horizon; Chiarolla and Haussmann (2003) modeled 

irreversible investment in a finite horizon. More recently, Guo and Pham (2005) set up a 

model to find the optimal entry and production decisions within an infinite time horizon; 

their model introduced expansion and contraction as partially reversible investment. They 

also reduced the original control problem into a two-stage procedure: a stochastic control 

problem (expansion and contraction) corresponding to an immediate entry decision, and a 

related optimal stopping time problem on the entry decision. They made extensive use of 

viscosity solutions approach in their paper. 

The models on the energy industry can also be found easily (Deng et al., 2010). 

Tseng and Lin (2007) used a real option framework to value a power plant by generating 

discrete-time price lattices for two correlated Ito� processes for electricity and fuel prices. 

This model incorporated operational constraints into the decision-making process and the 

lattice framework can handle general price processes; their method of stochastic dynamic 

programming, with two-factor price lattices, provides a much more efficient approach to 

calculating the value of power plant than the Monte Carlo simulation. Tseng and Barz 

(2002) evaluated a power plant in short-term with unit commitment constraints by using 

real-options approach, which was tackled using the Monte Carlo simulation. 

Chen and Tseng (2011) explored the optimal investment timing for a coal-fired 

plant generator, and considered introducing a natural gas power plant using the real 

option approach in the face of tradable permits and carbon taxes, which are two market-

based instruments commonly considered by government. Their model considered three 

stochastic processes: electricity price, natural gas price, and emission permit cost, with 
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the objective function maximizing per MWh profit of the firm. They also found that 

tradable permits could effectively trigger the adoption of a new technology at a lower 

level of carbon tax; higher levels of volatility in the permit prices were likely to induce 

suppliers to take early actions to hedge against carbon risks. Their model employed two-

factor price lattices (trees) as the numerical method for the solution procedure. 

Bar-Ilan and Strange (1996) focused their research on investment lags, which are 

significant in the investment process of power generating plants. They concluded that the 

investment lag would reduce the deterrent effect of uncertainty on investment and tend to 

lessen inertia. With a short lag, an increase in uncertainty would delay investment, 

whereas a long lag, and increase in uncertainty may encourage investment. Delay 

information in the optimal investment problem also was considered by Øksendal (2005), 

who studied a general optimal problem by considering a time lag between making a 

decision and the time when the system actually stopped. 

1.3. STOCHASTIC CONTROL AND FINITE DIFFERENCE METHODS 

1.3.1. Stochastic Process. A Stochastic Process (SP) is a family of random 

variables �����|� � ��� defined on a given probability space, indexed by the time variable 

t, where t varies over an index set T (Trivedi, 2002). Stochastic processes can be found 

anywhere, including stock price, electricity price, coal price, natural gas price, etc. 

Although there have numerous stochastic processes, here only introduce Markov process, 

Wiener process and ���� process (Dynkin, 2006) (Fleming and Soner, 2006). 

Any stochastic process, whose present value is only relevant for predicting future 

value, is called the Markov process. So, the distribution of the Markov process variable in 
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a particular future time is not dependent on the variable changing path in the past. In 

other words, the future is dependent form the past, given the present. Stock price, 

electricity price, and many merchandise prices satisfy this Markov property.  

The Wiener process is a Markov process with a mean change of zero and a 

variance rate of 1.0 per year. If Bt follows a Wiener process, so (Hull, 2009): 

∆� � �√∆�                                                                      (1.1) 

where  � has a standardized normal distribution ��0,1� .  

And, the values of ∆� for any two different short intervals of time, ∆�, are 

independent.  

From (1.1): 

#�∆�� � 0                                                                       (1.2) 

$%&�∆�� � ∆�                                                                 (1.3) 

The Wiener process, also called the Brownian motion in physics, has a variety of 

applications in many areas. 

The Wiener process can be expanded as a generalized Wiener process by adding 

drift rate and variance rate: 

 '( � %'� ) *'+                                                             (1.4) 

where constant parameters % and * represent drift rate and variance rate respectively. 

Thus, the discrete case ∆( and the expectation and variance of ∆( can be obtained: 

∆( � %∆� ) *�√∆�                                                        (1.5) 

#�∆(� � %                                                                      (1.6) 

$%&�∆(� � *
∆� .                                                          (1.7) 
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Figure 1.3 is a generalized Wiener process with the following parameters: 

 % � 0.5, * � 1.8, (�0� � 0, � � 10. 

 

Figure 1.3.  A Generalized Wiener Process 

If the constant parameters a and b in the generalized Wiener process in (1.4) are 

changed to functions of x and t, the ���� process can be obtained. 

'( � %�(, ��'� ) *�(, ��'+.                                           (1.8) 

The ���� process is a more general type of stochastic process. Stock prices and 

electricity prices follow the ���� process. 
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For stock price, assume that expected rate of return is 0 and volatility is 1. Also 

it’s assumed that investors would demand the same rate of return on different stock 

prices, and would feel the same uncertainty of the same percentage returns on different 

stock prices. So, the stochastic process model of stock price is: 

  '2 � 02'� ) 12'+                                                         (1.9) 

or                                           
344 � 0'� ) 1'+.                                                            (1.10) 

Electricity prices also can be treated as Ito� process, but has more characteristics.  

First, electricity cannot be easily stored; and the production of power plants is 

determined by the demand in the market. Accordingly, electricity prices can jump up as 

much as 1000% of normal prices in a short term, as shown is Figure 1.4 (Kim and 

Powell, 2011): 

 

 

Figure 1.4.  PJM West Hub Electricity Price in 2009 
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Second, seasonal variations occur. Major amount of electricity are used for air 

conditioning, so, the consumption and price of electricity are much higher in the summer 

than in the winter. The electricity price can revert to a long-run average level seasonally. 

The average retail price of electricity is shown in Figure 1.5 (EIA, 2011). 

 

 

 

Figure 1.5.  Average Retail Price of Electricity in 2005-2011 

 

How to model the price of electricity has long been the focus of research interests, 

and different researchers have developed different models of electricity prices (Clewlow 

and Strickland, 2000) (Burger et al., 2003) (Eydeland and Geman, 2003) (Schwartz and 

Lucia, 2002). Some researchers assumed that the energy prices follow a Geometric 

Brownian Motion (GBM). Pindyck (1999) studied the long-run evolution of energy 

prices, which advocated that the prices follow a mean reversion stochastic process, but 
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the rate of mean reversion is slow. Barz (1999) also assume electricity price as a 

geometric mean reversion (GMR) in order to set up stochastic financial models for 

electricity derivatives in his Ph.D dissertation. Deng (2000) modeled the electricity spot 

price as a mean reversion stochastic process with jumps and spikes, which incorporated 

multiple jumps, regime-switching, and stochastic volatility in his models. He also showed 

how his model about electricity price determines the value of investment opportunities 

and the optimal entry decisions. Deng (2005) later formulated a valuation of investment 

in power generation assets with spikes in electricity prices. This model demonstrated how 

to determine the value of an opportunity to invest in acquiring the generation capacity 

and the threshold value above which a firm should invest. He also illustrated the 

implications of electricity price spikes on the value of electricity generation capacity and 

the investment timing decisions on when to invest in such capacity. Thompson, Davison, 

and Rasmussen (2004) presented the valuation and optimal operation of hydroelectric and 

thermal power plants by considering the electricity price with mean reversion trends and 

price spikes. 

Hull (2009) models the electricity price as: 

  '562 � 78��� 9 %562:'� ) 1'+.                                   (1.11) 

where S is the electricity price, both % and σ are constants. Parameter % measures the 

speed with which that price reverts to a long-run average level; 8��� captures seasonality 

and trends.  

This dissertation will model electricity price like Barz and Hull’s, since that is the 

best way in which to model these optimal investment and operations optimization 

problems that were described previously. 
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1.3.2. Optimal Control and Dynamic Programming. Optimal control includes 

objective function, control variables, state variables and constraints. And the decisions 

need to be made by control variables at each stage or time to maximize or minimize the 

objective function (profit, cost, time, etc.) under the constraints. Optimal control can be 

divided into static optimization and dynamic optimization. Dynamic optimization 

includes discrete-time optimization and continuous-time optimization, while continuous-

time optimization consists of deterministic optimal control and stochastic optimal control 

(Stengel, 1993) (Kloeden, 1992) (Øksendal, 2003) (Øksendal and Sulem, 2005) (Steele, 

2001). 

A discrete-time optimal control problem can be stated as follows (Sarangapani, 

2010): 

Objective function: 

Max or Min     ; � ��(<� ) ∑ >?�(?, @?�<A	?BC .                                     (1.12) 

Subject to constraint: 

(?D	 � E?�(?, @?�                                                         (1.13) 

where ��(<� represents terminal condition. Expression >?�(?, @?� could be cost function, 

profit function, energy consumption function, or total time, etc. 

The problem is to find optimal control @? � @?F and goes through optimal 

trajectory (? � (?F, so that J is minimized or maximized. These problems can be solved 

by introducing Lagrange multipliers to obtain a state equation, co-state equation, and 

stationary condition. Optimal control problems generally do not have analytic solutions 

because most of these problems are nonlinear, so, it is necessary to employ numerical 

methods to solve optimal control problems. 
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Deterministic continuous-time optimal control problems can be described as: 

Objective function: 

;�(, �� �  minJ��KLM�7�N(���O ) P >�(���, @���, ��'�M�K : .             (1.14) 

Subject to constraint: 

(Q � E�(���, @���, ��.                                                                 (1.15) 

For this system, the Hamilton-Jacobi-Bellman equation is: 

9;��(, �� �  minJ��KLM�7>�(, @, �� ) ;R�(, ��E�(, @, ��:.                  (1.16) 

The Hamilton-Jacobi-Bellman (H-J-B) equation can be solved for all x backwards 

from time T to �C. The optimal control decision at (x,t) is given by: 

@�(, �� � %&S minJ��KLM�7>�(, @, �� ) ;R�(, ��E�(, @, ��:.                (1.17) 

Stochastic continuous-time optimal control problems would be like this: 

Consider the stochastic differential equation: 

'( � 0�(���, @���, ��'� ) 1�(���, @���, ��'+                           (1.18) 

where u(t) is control variable, Bt is a Wiener process. 

Objective function: 

;�(, �� �  minJ��KLM� # T�N(���O ) P >�(���, @���, ��'�M�K U .           (1.19) 

By using the Bellman principle of optimality, Hamilton-Jacobi-Bellman equation 

can be obtained (Kappen, 2005,  2007,  2011, 2012): 

 9V�;�(, �� �  minJ��KLM�7>�(, @, �� ) VR;�(, ��0�(, @, �� ) 	
 1�(, @, ��VR
;�(, ��:.      (1.20) 

Dynamic programming is a solution approach to optimal control problems. It can 

be introduced to solve discrete-time optimization problems or continuous-time 

optimization problems by breaking these continuous-time complex problems down into 



 

 

15

simpler sub-problems in a recursive manner. In dynamic programming, a problem can be 

divided into stages, with a control (or policy) decision required at each stage; and each 

stage has states associated with the beginning of that stage. The control decision will 

transform the current states into new states that are associated with the next stage. The 

goal is to find the optimal solution at each stage, as well as to determine a solution for the 

overall problem (Bertsekas, 2011). 

The Principle of Optimality is the core of dynamic programming, which can be 

described as shown below: 

An optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first decision (Bellman, 1957). 

The principle of optimality means that the optimal decisions in the future are 

independent of past decisions (actions) which led to the present state. Thus, the optimal 

decisions for every state can be constructed by starting at the final state and extending 

backwards. The relationship between the value function in one period and the value 

function in the next period in recursive form is called the Bellman Equation. The Bellman 

equation is a very important result of dynamic programming, which has different formats 

for various dynamic programming problems. 
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1.3.3. Finite Difference Methods. There are a number of numerical methods that 

can be employed to find the solution for our problem. Finite difference methods are 

considered to be a good choice for our models. Finite difference methods are numerical 

methods for approximating the solutions to differential equations by converting 

differential equations into difference equations and then solving them iteratively. The 

approximations are based on the Taylor series expansions of functions near the point. As 

the following Figure 1.6 shows, there are three approximations: forward, backward, and 

central difference approximations (Wilmott et al., 1995).  

 

 

Figure 1.6.  Finite Difference Approximations 

 

 

 The partial derivative 
WXW� can be forward approximated as: 

WXW� �(, �� Y X�R,�D∆��AX�R,��∆� ) Z�∆��.                                         (1.21) 

And, the backward difference: 

t � � ) ∆� � 9 ∆� 

v 

backward 

t � � 9 ∆� � ) ∆� 

forward 

central 
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WXW� �(, �� Y X�R,��AX�R,�A∆��∆� ) Z�∆��.                                         (1.22) 

Central difference: 

WXW� �(, �� Y X�R,�D∆��AX�R,�A∆��
∆� ) Z��∆��
�.                               (1.23) 

So, the finite difference approximations can be defined for the x-partial derivative 

of v in the same way. 

Forward difference: 

WXWR �(, �� Y X�RD∆�,��AX�R,��∆� ) Z�∆��.                                         (1.24) 

Backward difference: 

WXWR �(, �� Y X�R,��AX�RA∆�,��∆� ) Z�∆��.                                        (1.25) 

Central difference: 

WXWR �(, �� Y X�RD∆�,��AX�RA∆�,��
∆� ) Z��∆��
� .                             (1.26) 

For the second partial derivatives, a symmetric finite difference approximation 

can be defined as the forward difference of backward difference approximation to the 

first derivative: 

W[XWR[ �(, �� Y X�RD∆�,��A
X�R,��DX�RA∆�,���∆��[ ) Z��∆��
� .                (1.27) 

The basic premise of the finite difference methods is to divide the x-axis into 

equally-spaced nodes at a distance of ∆( apart, and the t-axis into equally-spaced nodes 

at a distant of ∆� apart. This will divide the plane (x,t) into a mesh, where the mesh points 

can be presented as (6∆(, \∆�), let ]_̂ � ]�6∆(, \∆��.  

Assume that the initial condition (t=0) is given as well as boundary conditions, 

there have explicit and implicit finite difference methods by using the difference forward 

or backward approximations of derivatives. 
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An explicit difference method gives the relationship between one value at time 

�\ ) 1�∆� and three different values at time \∆�. This problem is easy to solve because 

the initial condition is known. However, the explicit difference method requires the size 

of time steps as � � ∆��∆R�[ ` 0.5 in order to make the computation stable. The implicit 

difference method expresses the relationship between one value at time a∆� and three 

different values at time �a ) 1�∆�, which are needed to solve numerous simultaneous 

equations to calculate the value of ]bc from the values of ]bD	cD	, ]bcD	, and ]bA	cD	
. The 

implicity difference method has the advantage of being very robust. The difference 

between the explicit difference method and the implicit difference method is shown in 

Figure 1.7 (Hull, 2009). 

 

 

Figure 1.7.  Explicit and Implicit Finite Difference Methods 

 

 

t 

x 

]bD	cD	 

]bcD	 

]bA	cD	 

]bc ]_̂D	 

]^A	_  

]^D	_  

]_̂ 

explicit finite difference method  implicit finite difference method  



 

 

19

1.4. ORGANIZATION OF THE DISSERTATION 

The rest of this dissertation is organized as follows. In Section 2, a basic energy 

portfolio management model introduced is a mixed stochastic optimal control and 

optimal stopping time problem. An optimization model is set up with the objective 

function to maximize the long-term unit profit of the generator, with the assumption that 

the prices of electricity follow the mean reverting stochastic process. The problem will be 

solved numerically by finite difference methods. As a result, free boundaries will be used 

to make investment decisions.  

In Section 3, a more complex energy portfolio management model with 

construction delay and relative gain is formed. In this model, sensitivity analysis with 

different parameters is used to reveal how the parameters affect the optimal decisions and 

relative gains. In this section, also, the operational cost of new power plant could be 

decreased over time, different combinations of operation rates and costs are discussed.  

In Section 4, the optimal abandonment decision model for the energy portfolio is 

studied. This problem is formulated by maximizing long-term unit profit and solving it 

numerically. The free boundary will help the generator making abandonment decisions in 

a way similar to the energy portfolio management model. 

In Section 5, a dynamic inventory optimal control problem, with consideration of 

debt financing and tax, is set up by maximizing the expected terminal wealth of a retailer 

facing random demand. The optimal ordering policy and optimal debt financing decision, 

with capital constraint and the effect of tax, are found at the end of this section.    

Section 6 presents the conclusion and possible future work of the models. 
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2. ENTRY DECISION MODEL ON ENERGY PORTFOLIO MANAGEMENT 

2.1. MOTIVATIONS 

This is a basic model about the entry decision on energy portfolio management, 

which is very useful to the rest models in this dissertation. In this model, given a fixed 

capital investment, the optimal entry decision for a new plant and the optimal dispatch 

decision between the existing plant and the new plant are studied with the objective to 

maximize the long-term profit under the Geometric Mean Reversion (GMR) process for 

the price of electricity.  

In this section, a unique approach is developed to find out the optimal stopping 

time and the optimal dispatch. At the same time, models are introduced that can help the 

generators optimize long-term unit profits as well.  

This section is organized as follows. In Section 2.2, mathematical models that are 

developed based on a real problem are described. For simplicity, only the price of the 

electricity generated by the power plant is considered as a stochastic process; the price of 

coal and alternative energy, the cost of carbon dioxide emissions, and other costs are all 

considered constants. The problem is broken down into two separate parts, the optimal 

stopping time problem (when to build a new plant) and the optimal dispatch problem 

(how to operate the two power plants). The Hamilton-Jacobi-Bellman (H-J-B) equations 

are applied separately to each problem. Section 2.3 employs finite difference methods to 

solve the partial differential equations (PDEs) using forward and backward difference 

approximations. To ensure a stable and accurate solution, explicit finite difference 

methods, with a proper step size, are used to calculate the PDEs. A sample case, 

including data to illustrate the solutions of the PDEs, is also presented in Section 2.3. 
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2.2. MODELS AND FORMULATIONS 

Assume that an energy company already owns and operates one existing power 

plant, which is assumed to be a traditional Coal-fired power plant. The decision makers 

of the generator are considering building a new renewable power plant to form an energy 

portfolio. So, the optimal operation policy and optimal time to build the new power plant 

have to be figured out. This decision-making problem is formulated as mixed optimal 

stochastic control and optimal stopping time problem to maximize the long-term unit 

profit of the firm. 

There are many random variables that can affect decisions about investment time 

and operation, including electricity price, carbon dioxide emission cost, and the prices for 

the energies used by the two power plants to generate electricity. These prices, which 

follow different stochastic processes, are decided based on their demands and supplies in 

different markets. To simplify the models, the costs to generate electricity of the two 

power plants are assumed to be either fixed or locked in through financial contracts. The 

production rates of the two power plants are also assumed to be constants over a finite 

time horizon. Electricity price is the only stochastic process in this model. 

How to describe the fluctuation in the price of electricity is the base of this model. 

Various researchers have different models for the electricity price (Barz, 1999) (Clewlow 

et al., 2001) (Deng, 2001) (Lucia and Schwartz, 2002) (Schwartz, 1998). Despite the 

presence of spikes in the short term (Deng, 2005), and the low rate of mean reversion in 

the long term (Pindyck, 1999), this model ignores the electricity jump diffusion and the 

changing of the mean reversion level, and assumes that electricity prices follow a 

Geometric Mean Reversion (GMR) process, so that the model can just focus on the 
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optimal stopping time and optimal control. In a mathematical language, the evolution of 

the electricity price is represented as: 

'56�� � 0�f 9 56���'� ) 1'��.                                               (2.1) 

That is 

  '�� � �0�f 9 56��� ) 	
 1
���'� ) 1��'��.                            (2.2) 

Here, the electricity price (��) follows the Geometric Mean Reversion (GMR) 

process, where 0, 1 and f are reverting coefficients, volatility, and the mean-reverting 

level of 56��, respectively (Clewlow et al., 2001); �� is a Wiener Process (Hull, 2009)  

(Seydel, 2006). 

The energy firm is assumed to face a risk-neutral market and is treated as a price 

taking producer of electricity. Thus, the electricity demand is not considered in this 

model. Switching costs, which occur when operation switches from one power plant to 

another, is ignored in this model. The model also assumes that there is no construction 

delay, which means that the new power plant can be put into operation immediately after 

the decision is made. Or, it means that the firm purchases a new power plant, which was 

generating electricity. The model with construction delay will be proposed in Section 3. 

In this model, �� represents electricity price at time t; K is the capital investment 

for a new plant using alternative generating method; �	, �
 represent the production rate 

of the existing generating method and alternative generating method, respectively; �	, �
 

represent the total cost of generating �	units of electricity, by using exiting method, and 

the total cost of generating �
units of electricity, using the alternative method, 

respectively; T is the time planning horizon. 
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Per unit monetary input analysis is used in this model, where it assumes that the 

existing power plant can generate  �	 MWh electricity by inputting one unit of cash to 

buy the fuel for the existing plant and the total cost to generate �	 MWh electricity is �	, 

so, the operation profit of the existing power plant, by inputting one unit of cash on fuel, 

is �	�g 9 �	. Using the same analysis, the alternative power plant operation profit, by 

inputting one unit of cash on fuel, can be represented as �
�g 9 �
.  

Parameter � � 70, ��: represents the proportion of total monetary input in the 

alternative method, when � � 0, it means that the firm just uses the existing power plant. 

On the other hand, when � � ��, it means that the firm uses ��  percentage of its cash to 

buy fuel for the alternative power plant, and input the rest of the cash (1- �� ) on the 

existing power plant (Chen and Tseng, 2011).  

Assume that the time to make a decision to build a new power plant is h ; and the 

required capital investment for building the new plant is K dollars.; the electricity price at 

time t is x, which can be expressed as X(t)=x. 

Thus, per unit profit can be presented by the following functional: 

;��, (; h, �� j #R7P ��	�g 9 �	�kAl�gA��'m 9 nkAl�oA��o� ) P ��1 9 ���Mo �	�g 9 �	� )
���
�g 9 �
��kAl�gA��'m:.                                                                     (2.3) 

Notes that, before time τ, the profits only come from the old power plant; but after 

the new power plant is built, the profits come from the energy portfolio formed at time τ. 

All of the values are discounted to the present value at time t. Discount rate p is the Risk-

adjusted Discount Rate. Parameters h and � are control variables: the problem is to 

determine the optimal time τ to build a new plant, and the optimal dispatch (�F) for the 

existing power plant and the new plant. 
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Let function @C��, (� represent the best possible value of the objective function 

with a given time and electricity price (t,x). So, the value function @C��, (� is 

�PC�         @C��, (� �   ;��, (; h, ��τ�st,u,α�7C,α�:vwx             
                                             (2.4) 

where y�,M, denotes the set of stopping times in [t,T] (Boudarel et al., 1971). 

Because of the intractability of this mixed stochastic control and optimal stopping 

time problem, the above problem (2.4) is decomposed into two sub-problems: optimal 

dispatch once the new plant is built and the optimal time to build a new plant (Guo and 

Pham, 2005). 

2.2.1. Optimal Dispatch Once the New Plant is Built. Suppose a new renewable 

power plant becomes available to join the operation at time τ. Therefore, an energy 

portfolio of existing and new generating methods is thus formed, and the optimal 

proportions of each generating method must be determined. Hence, the problem becomes 

an optimal dispatch problem (optimal stochastic control problem). The value function 

v(t,x) of the optimal dispatch problem can be defined as: 

(P1)  ]��, (� j  max{�7C,{|: #R7P ��1 9 ���Mo �	�g 9 �	� ) ���
�g 9 �
��kAl�gAo�'m:.     (2.5) 

This stochastic control problem defined above can be transformed into a partial 

differential equation problem using the principle of dynamic programming (Kirk, 1970). 

The value function v satisfies the following stochastic Hamilton-Jacobi-Bellman (H-J-B) 

equation (Kappen, 2007): 

 
WW� ] )  sup{�7C,{|:7�1 9 �g���	�g 9 �	� ) �g��
�g 9 �
� ) >X 9 p]: � 0      (2.6) 

where 

>X j �0�f 9 56(� ) 	
 σ
�( WXWR ) 	
 σ
(
 W[�W�[ .                              (2.7) 
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From value function v(t,x) (2.5), it is obvious that v(t,x) is a non-decreasing 

function of α if ( � �[A���[A�� ; v(t,x) is a non-increasing function of α if ( ` �[A���[A�� . So, the 

optimal control �Fcan then be calculated as follows: 

�F��, (� � ���, �E �( � �[A���[A�� �0 , �E �( ` �[A���[A�� �� .                                                   (2.8) 

Therefore, the H-J-B equation (2.6) is reduced to 

         
WW� ] ) �1 9 �F���	�g 9 �	� ) �F��
�g 9 �
� ) >] 9 p] � 0.                  (2.9) 

with the terminal condition: 

]�(, �� � ��	( 9 �	                                                    , �E �( ` �[A���[A�� ��1 9 �����	( 9 �	� ) ����
� 9 �
�    , �E �( � �[A���[A�� ��.           (2.10) 

Finite difference methods can be used to solve equation (2.9) in order to get the 

evolution of value function v, which is the base to solve the second sub problem (optimal 

stopping problem). 

2.2.2. Optimal Time to Build a New Plant. Based on the solution of the optimal 

dispatch problem, the optimal stopping problem can be found. Noting that the value of 

the energy portfolio (when the new renewable power plant is built) is given by 

v(τ,Xτ),which can be used in the optimal stopping problem. Therefore, the value function 

of the optimal stopping problem w(t,x) is defined as follows: 

(P2) 

���, (� j  supo�Τt,u #R�P ��	�g 9 �	�kAl�gA��'m ) �]�h, �o� 9 n�kAl�oA��o� �,   � � 70, ��  (2.11) 

The solution to this optimal stopping time problem w satisfies the following linear 

complementarity problem: 
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� WW� � ) >� ) ��	�g 9 �	� 9 p� � 0                           � � ] 9 n                                                                         � WW� � ) >� ) ��	�g 9 �	� 9 p�� �� 9 ] ) n� � 0� .                        (2.12) 

That is, 

��6 �9 WW� � 9 >� 9 ��	�g 9 �	� ) p�, � 9 �] 9 n�� � 0                (2.13) 

with the terminal condition: 

��(, �� � 0.                                                                                           (2.14) 

According to Guo and Pham, Problems (P2) and (P0) are equivalent. Hence, the 

original problem (P0) can be decomposed into an optimal stochastic control problem 

(P1), which can be solved by the PDE equation (2.9), and an optimal stopping time 

problem (P2), which can be solved by the PDE equation (2.13). An example is given on 

how to solve this problem in the case study section. 

2.3. NUMERICAL SOLUTION AND RESULTS 

2.3.1. Numerical Solution. Finite difference methods can be used to solve the 

PDE equations. According to the Taylor series expansion of functions near a point, 

forward and backward difference approximations are applied (Wilmott et al., 1995): 

WXW� Y X�R,�D∆��AX�R,��∆� ) Z�∆��                                                   (2.15) 

WXWR Y X�R,��AX�RA∆R,��∆R ) Z�∆(�                                                  (2.16) 

or     
WXWR Y X�RD∆R,��AX�R,��∆R ) Z�∆(�                                                  (2.17) 

W[�WR[ Y X�RD∆R,��A
X�R,��DX�RA∆R,���∆R�[ ) Z��∆(�
�.                          (2.18) 
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The x-axis is then divided into n equally spaced nodes with an interval of ∆(, and 

the t-axis is divided into m equally spaced nodes with an interval of ∆�. Thus, the x - t 

plane is divided into a mesh with the cross point (n∆(, m∆�). The value of u(x,t) at the 

mesh point (6∆(, \∆�) can be expressed as  ]_̂ � ]�6∆(, \∆��. 

First, considering equation (2.9) 

VV� ] ) �1 9 �F���	( 9 �	� ) �F��
( 9 �
� ) >X 9 p] � 0 

      >X �  0′ WXWR ) 	
 1
 W[�W�[                                                                (2.19) 

      0′ � 0�f 9 56(� ) 	
 1
 .                                                          (2.20) 

To calculate the equation, the terminal condition needs to be changed to initial 

condition by considering �′ � � 9 �. However, in this dissertation t is still employed to 

represent � ′ for convenient. Thus, the following equation can be achieved: 

9 WW� ] ) �1 9 �F���	( 9 �	� ) �F��
( 9 �
� ) >X 9 p] � 0                         (2.21) 

with the boundary conditions: 

         ]��_�^, �� � 9 ��l �1 9 kAl��                (�_�^ � 0�                                           (2.22) 

]��_�R, �� � 9 ��	 ) �F��
 9 �	�� F �_�R 9 �1 9 �F��	 9 �F�
p �kAl� 9 1� 

   � �_�R is a big number�              (2.23) 

with the initial condition: 

 ]�(, 0� � ��	( 9 �	                                                    , �E �( ` �[A���[A�� ��1 9 �����	( 9 �	� ) ����
( 9 �
�    , �E �( � �[A���[A�� � �.                   (2.24) 
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In order to improve computationally efficiency, a change of variable is used in the 

calculation as � � 56� (Hull, 2009). To overcome the artificial oscillations, an upwind 

scheme is used to represent ���� (Seydel, 2006). Thus, equation (2.16) is used when 0R ′ � 0 

; and equation (2.17) is used when 0R ′ ` 0. 

Using equations (2.15),(2.16),(2.17) and (2.18), ignoring terms of Z�∆�� and 

Z�∆(�, and plugging in equation (2.21), the formula for ]_̂D	 is obtained: 

If  µ�′ ` 0 

]_̂D	 � ∆��∆��[  [
 ]^D	_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� ]^A	_ )
∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 αF��	 9 �F�
�.                                           (2.25) 

If  µ�′ � 0    
]_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � ]^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) ∆��∆��[  [
 ]^A	_ )

∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 �F��	 9 �F�
�.                                                  (2.26) 

As the equations determining ]_̂D	 in terms of  ]_̂ are explicit, this process can 

be solved by Matlab. Thus, the numerical solution of v is found. 

Second, consider H-J-B equation (2.13) after getting the value of v, 

��6�9 WW� � 9 >� 9 ��	�g 9 �	� ) p�, � 9 ] ) n� � 0. 

Consider first part of equation (2.13): 

WW� �¡ ) >�¡ ) ��	�g 9 �	� 9 p�¡ � 0                                          (2.27) 

>�¡ � 0′ W�¡WR ) 	
 1
 W[�¡W�[  .                                                               (2.28) 

By using the same strategy as before to change t: 

     9 WW� �¡ ) >�¡ ) ��	�g 9 �	� 9 p�¡ � 0                                       (2.29) 
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with the boundary conditions as follows: 

             �¢��\�6, �� � 9 �1p �1 9 k9p��                            (h � �, �_�^ � ���� �            (2.30) 

   �¢��\%(, �� � �1�\%(9�1p �1 9 k9p��        �h � �, �_�R is a big number�.    (2.31) 

with the initial condition as follows:  

             �¢�(, 0� � 0.                                                                                                   (2.32) 

Also the formula for �¡_̂D	
 is obtained: 

If  0R ′ ` 0    
�¡_̂D	 � ∆��∆��[  [
 �¡^D	

_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� �¡_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� �¡^A	_ )
∆��c1k¤ 9 �	�.                                                                                           (2.33) 

If  µ�′ � 0    
�¡_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � �¡^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� �¡_̂ ) ∆��∆��[  [
 �¡^A	_ )

∆��c1k¤ 9 �	�.                                                                                         (2.34) 

Once the evolution of �¢ is obtained, �¡_̂ in this solution can be compared 

with ]_̂ 9 n; if the electricity price �g makes  ]_̂ 9 n � �¡_̂, which means the portfolio 

value is greater than the value without portfolio, value function w should be equal to 

 ]_̂ 9 n, because value function w satisfy the equation �_̂ � \%( ��¡_̂, ]_̂ 9 n}. In 

other words, the new green plant should be built. The free boundary curve is formed by 

the electricity price at different times that satisfy equation �¡_̂ � ]_̂ 9 n. 

2.3.2. Case Study and Results. To illustrate this mathematic model and solution 

technique, the parameters are established in Table 2.1. Values are obtained from literature 

reviews and experience on energy industry. 
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Table 2.1.  The List of Parameters for Entry Decision Model 

Notation Value Unit 

µ 0.053  
σ 0.13  
λ 4.788  
ρ 6%  �� 80%  
c1 2 MWh/unit monetary input 
c2 3 MWh/ unit monetary input 
D1 100 $/c1MWh 
D2 130 $/c2MWh 
K 500 $/unit monetary input 
T 10 Year 

 

 

First, the mean price of electricity $120/MWh is derived from the parameters. 

Second, form free boundary of w by using the equation �_̂ � ]_̂ 9 n, which shows 

when the new plant should be built at a given time with respect to the electricity prices. 

The case study finds that  ]_̂ 9 n � �_̂ in the area above free boundary, which means 

the value with portfolio is greater than the value without portfolio in that area. So, the 

generator should invest the new plant when the electricity price goes up above the free 

boundary. The free boundary of w is shown in Figure 2.1.  

Figure 2.2 shows that the decision maker should excise the investment option at 

time τ when the electricity price is about to across over the free boundary. 
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Figure 2.1.  Free Boundary of w 

 

 

 

Figure 2.2.  Entry Decision by Using Free Boundary 
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2.4. CONCLUSIONS 

This section models the optimal entry problem for a new renewable power plant, 

with the given fixed capital investment, and the optimal dispatch between the existing 

power plant and the new power plant in order to maximize the long-term profit under the 

Geometric Mean Reversion (GMR) process for the price of electricity. Optimal control 

and finite difference methods are used to solve the entry decision and optimal dispatch 

problems in the energy portfolio investment.  

The results provide some valuable data for the generators to make viable 

decisions. The free boundary can be employed to decide when the generator should build 

the new renewable power plant. That is, the new plant is to be built when the price of 

electricity jumps up above the free boundary at a particular time. After the new plant is 

built, the new plant should be set on the maximum proportion (��) of monetary input 

when the electricity price is higher than �[A���[A�� . 

  The contributions of this basic model are two-fold: First, the model of optimal 

entry decisions of a firm to form an energy portfolio by the stochastic control approach is 

formulated. Second, the intractable problem is decomposed into two sub-problems, and 

then solves them numerically. 
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3. ENTRY DECISION MODEL WITH DELAY 

3.1. MOTIVATIONS 

The previous section introduces a basic model of the entry decision on energy 

portfolio management. However, the reality is much more complex than the assumption 

of that model. For example, the new power plant cannot be put into operation 

immediately after the investment decision is made, since it needs several years to finish 

the construction. Also, the operation cost could change over the finite horizon time, 

especially for the new technology. Accordingly, in this section, the construction delay 

and changing operation cost are considered, and, the optimal entry decision for the new 

plant and the optimal dispatch decision are investigated further. The model maximizes 

the long-term expected profit under the geometric mean reversion process for the 

electricity prices.  

It is assumed that a firm owns a plant, and considers adding a new plant while 

maximizing the expected long-term profit. Since the firm can generate electricity by a 

portfolio of two plants, the optimal dispatch of these two plants needs to be determined 

after the new plant is constructed. Under the geometric mean reversion process for 

electricity prices, this decision problem is formulated as a mixed stochastic optimal 

control problem and optimal stopping problem. Due to the intractability of the mixed 

problem, it is decomposed into two auxiliary problems: one is a regular stochastic control 

problem, and the other one is an optimal stopping problem with a delay. The solutions to 

the auxiliary problems are equivalent to the original control problem. As an extension of 

Section 2, the optimal stopping problem with a delay can be transferred into an optimal 

stopping problem without delay by the Markov property of a Markov process. 
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 The rest of this section is organized as follows. Section 3.2 describes a 

mathematical model of the problem. The intractable problem is decomposed into two 

sub-problems, the optimal stopping time problem and the optimal dispatch problem. The 

Hamilton-Jacobi-Bellman (HJB) equation or Variational Inequality (VI) of the value 

functions for the sub-problems are obtained, respectively. Section 3.3 employs finite 

difference methods to solve the partial differential equations (PDEs) and get the gain 

percentage by using forward and backward difference approximations. To ensure a stable 

and accurate solution, explicit finite difference methods with a proper step size are used 

to calculate the PDEs. Numerical experiments are presented in the Section 3.4. 

3.2. MODELS AND FORMULATIONS 

This problem is formulated as a mixed stochastic control and optimal stopping 

time problem, to maximize the long-term profits of the company, using the same 

assumption that is presented in Section 2. The difference is that a construction time to 

build the new power plant (delay) is considered in this model. The same standard 

notations are used in this section as are used in Section 2, with δ representing the 

construction time for building the alternative power plant. 

The price of electricity is also assumed to follow the stochastic process. In 

addition, the cost to generate electricity by the existing power plant is assumed to be 

either fixed or locked in through financial contracts, as well as by the constant production 

rate of this power plant. The cost for the new power plant to generate electricity is 

assumed to have decreased over time because of the new plant’s improved technology. It 
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should be noted that constant costs are used to set up the model. The decreasing costs of 

the new power plant are discussed in the sensitivity section. 

The electricity price is assumed to follow the Geometric Mean reversion (GMR) 

process just as the basic model describes in Section 2. The assumption is made that 

construction of the new power plant would take  years to be complete. Here, per unit 

monetary input analysis used is the same as described in Section 2. Thus, the long-term 

profit functional is 

;��, (; h, �� j #R7P ��	�g 9 �	�kAl�gA��'m 9 nkAl�oD®A��oD®� )         
P ��1 9 ���MoD® �	�g 9 �	� ) ���
�g 9 �
��kAl�gA��'m:.                           (3.1) 

So, the value function @C (t,x) is defined as 

      �PC�                      @C��, (� �   ;��, (; h, ��o�¯°,±²³,{�7C,{|:gJc             
.                                     (3.2) 

That is 

@C��, (� �   o�¯°,±²³,{�7C,{|:gJc             #R7P ��	�g 9 �	�kAl�gA��'m 9 nkAl�oD®A��oD®� )      

  P ��1 9 ���MoD® �	�g 9 �	 ) ���
�g 9 �
��kAl�gA��'m:.                             (3.3) 

where y�,MA®, denotes the set of stopping times in 7�, � 9 : (Bar-Ilan and Strange, 1996). 

Due to the intractability of this mixed stochastic control and optimal stopping 

time problem, the above problem is decomposed into an optimal control (dispatch) 

problem and an optimal stopping time problem (Guo and Pham, 2005). 

3.2.1. Optimal Dispatch Once the New Plant is Built. It is assumed that 

construction of the new power plant has been completed and becomes available to join 

the operation at time τ. The value function v is defined as: 

]��, (� j  \%({�7C,{|: #R7P ��1 9 ���Mo �	�g 9 �	� ) ���
�g 9 �
��kAl�gA��'m:.     (3.4) 
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By using the principle of dynamic programming, the value function v satisfies the 

following H-J-B equation: 

 
WW� ] )  sup{�7C,{|:7�1 9 �g���	( 9 �	� ) �g��
( 9 �
� ) >X 9 p]: � 0               (3.5) 

where 

>X j �0�f 9 56(� ) 	
 1
�( WXWR ) 	
 1
(
 W[�W�[,                                       (3.6) 

with the terminal condition: 

]�(, �� � ��	( 9 �	                                                    , �E �( ` �[A���[A�� ��1 9 �����	( 9 �	� ) ����
( 9 �
�    , �E �( � �[A���[A�� � � .  (3.7) 

It is not difficult to solve equation (3.4); the optimal control variable �Fcan then 

be calculated as follows: 

�F��, (� � � 0       , �E �( ` �[A���[A�� ���        , �E �( � �[A���[A�� ��.                                                    (3.8) 

Therefore, the H-J-B equation (3.5) is reduced to 

 
WW� ] ) �1 9 �F���	( 9 �	� ) �F��
( 9 �
� ) >X 9 p] � 0.            (3.9) 

By solving equation (3.9), the maximal discounted portfolio values for different t 

and x after building the new power plant can be used in the next step to solve the optimal 

stopping time problem. 

3.2.2. Optimal Time to Build a New Plant with Construction Delay. Based on 

the previous calculations, the value of the portfolio is given by v(τ+δ, xτ+δ)  when the 

new plant is built; therefore, the value function w(t, x) , with consideration of the 

construction time (delay), is defined as follows: 
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���, (� j  supo� °̄,± #R TP ��	�g 9 �	�kAl�gA��'m ) �]�h ) , �oD®� 9 n�kAl�oD®A��oD®� U     
� � 70, � 9 �                                                                                              (3.10) 

Although it is difficult to solve w(t,x) directly, some researchers have identified a 

method for solving the delay problem (that is similar to the problem in this model) by 

transforming it into an easily solvable problem without the time delay. By introducing the 

function SC��, (� (Øksendal, 2005), the delayed optimal stopping problem is transformed 

into a non-delayed optimal stopping problem as follow:        

���, (� j  supo�st,u²´ #R TP ��	�g 9 �	�kAl�gA��'m ) SC��, (µ�kAl�µA��µ� U , � � 70, � 9 �      (3.11) 

where 

SC��, (� j #�,R TP ��	�g 9 �	�kAl�gA��'m ) �]�� ) , ��D®� 9 n�kAl®�D®� U, � � 70, � 9 � (3.12) 

Note that � � h )  is the optimal stopping time for a non-delayed problem. The 

SC can be solved by the following problem by using the Feynman-Kac theorem: 

¶ WW� SC ) >·K ) ��	�g 9 �	� 9 pSC � 0           SCN�̧, (O � ]N�̧, (O 9 n                                     �                                       (3.13) 

where �̧ � � )  is the terminal time. 

Thus, the solution to this optimal stopping time problem w, with time delay, 

satisfies the following linear complementarity problem: 

� WW� � ) >� ) ��	( 9 �	� 9 p� � 0                           � � SC                                                                                 � WW� � ) >� ) ��	( 9 �	� 9 p�� �� 9 SC� � 0     � .                        (3.14) 

That is, 

��6 �9 WW� � 9 >� 9 ��	( 9 �	� ) p�, � 9 SC� � 0                         (3.15) 
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with the terminal condition: 

��(, � 9 � � 0.                                                                                (3.16) 

The solution of w in (3.15) is found after solving SC��, (� in (3.13). 

Hence, the original problem is decomposed into a stochastic control problem, 

which can be solved by the PDE equation (3.9), and an optimal stopping time problem 

with delay, which can be solved by the PDE equation (3.15). Examples of how to solve 

these problems numerically is presented in the case study section. 

3.2.3. No Investment Option. In order to determine the effect of the energy 

portfolio, this section introduces relative gain, which measures the profit increment 

comparing the case with that where no portfolio is involved. So, by considering a case 

where there is no investment option throughout the finite planning horizon, and only the 

existing power plant is operated. 

The value function u for the case where is no investment option is defined as  

@��, (� j #R7P ��	�g 9 �	�kAl�gA��'m:o� .                                 (3.17) 

Using the same strategy, the H-J-B equation is found: 

WW� @ ) ��	( 9 �	� ) >J 9 p@ � 0                                           (3.18) 

                                 >J j �0�f 9 56(� ) 	
 1
�( WJWR ) 	
 1
(
 W[¹W�[                            (3.19) 

with the terminal condition: 

@�(, ��=0.                                                                                (3.20) 

After PDE (3.18) is obtained, it can be solved numerically. Thus, the numerical 

solution of u can be used to calculate the relative gain of portfolio investment, which is 

defined as a � �� 9 @�/@. 
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3.3. NUMERICAL SOLUTION AND RESULTS 

3.3.1. Numerical Solution. Finite difference methods are also employed to solve 

these PDEs, with the solution result of the problems as follows. Detailed solution 

procedures are shown in Appendix Section. 

In order to improve calculation efficiency, � � 56� is set when solving equation 

(3.9),(3.13),(3.15),(3.18). The formulas for ]_̂D	 , SC_̂D	,  �¡_̂D	
 and @_̂D	 are obtained 

by using an upwind scheme (Seydel, 2006), note that 0′ � 0�f 9 56��� ) 	
 1
. 

If µ′ ` 0    
 ]_̂D	 � ∆��∆��[  [
 ]^D	_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� ]^A	_  

)∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 αF��	 9 �F�
�.                                      (3.21) 

SCº»D	 � ∆��∆��[  [
 SCºD	» 9 �p∆t 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� SCº» ) � ∆��∆��[  [
 9 µ′ ∆�∆�� SCºA	» )
∆t�c	k� 9 D	�.                                                                                                 (3.22) 

�¢_̂D	 � ∆��∆��[  [
 �¢^D	
_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� �¢_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� �¢^A	_ )

∆��c	k� 9 �	�.                                                                                                  (3.23) 

@_̂D	 � ∆��∆��[  [
 @^D	_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� @_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� @^A	_ )
∆��c	k� 9 �	�.                                                                                                 (3.24) 

If µ′ � 0    
 ]_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � ]^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) ∆��∆��[  [
 ]^A	_  

)∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 �F��	 9 �F�
�.                                  (3.25) 
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SC_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � SC^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� SC_̂ ) ∆��∆��[  [
 SC^A	_ )
∆��c	k� 9 �	�.                                                                                               (3.26) 

�¢_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � �¢^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� �¢_̂ )                  

∆��∆��[  [
 �¢^A	_ ) ∆��c	k� 9 �	�.                                                                     (3.27) 

@_̂D	 � �∆�∆� µ¢ ) ∆��∆��[  [
 � @^D	_ 9 �p∆� 9 1 ) ∆�∆� µ¢ ) ∆��∆��[ 1
� @_̂ ) ∆��∆��[  [
 @^A	_ )
∆��c	k� 9 �	�.                                                                                               (3.28) 

As the equations of ]_̂D	,SC_̂D	,�¢_̂D	
,@_̂D	, in terms of  ]_̂, SC_̂, �¢_̂

, @_̂, 

respectively, are explicit, these processes can be solved by MATLAB. Thus, the 

numerical solution of v, SC, �¢, u are found. According to equation (3.14), 

once �¢_̂
,  SC_̂ are obtained, the evolution �_̂ � \%( ��¢_̂,  SC_̂� is found. Also, the 

free boundary presents �¢_̂ �  SC_̂ at a given point (n,m). Now, the optimal investment 

problem becomes clear: if the electricity price �g makes SC_̂ � �¢_̂
, �_̂should be equal 

to SC_̂. In another words, the new green plant should be built. Both free boundary and 

relative gain (a � ��_̂ 9 @_̂�/@_̂) can be used to help the generators to make 

investment decisions. 

3.3.2. Case Study and Results. To illustrate this technique, the parameters 

established in Table 3.1 are used in the case study. Some data about the electricity price 

come from the research of Tseng and Lin (2007), other values of the parameters come 

from literature reviews and author’s experience. Most values in Table 3.1 are the same as 

values in previous model. The construction delay is assumed to be 1 year, which indicates 

the new power plant is assumed to be a small or medium size power plant.   
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Table 3.1.  The List of Parameters for Delay Model 

Notation Value Unit 

µ 0.053 
 

σ 0.13 
 

λ 4.788 
 

ρ 6% 
 

�� 80%  

c1 2 MWh/unit monetary input 
c2 3 MWh/ unit monetary input 
D1 100 $/c1MWh 
D2 130 $/c2MWh 
K 500 $/unit monetary input 
T 10 Year 
δ 1 Year 

 

 

First of all, the mean price of electricity ($120/MWh) is derived from the 

parameters. Second, use the equation �¢_̂ � SC_̂
 to form the free boundary of w, which 

shows when the new plant should be built at a series of times in the planning horizon 

with respect to the electricity prices. Last, the relative gain line of portfolio investment at 

the beginning of the time horizon is formed, which is defined as:  a � �� Ĉ 9 @Ĉ�/@Ĉ. 

The free boundaries of w, with a 1 year delay, and relative gain of the portfolio 

investment are shown in Figure 3.1 and Figure 3.2, respectively.   
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Figure 3.1.  Free Boundary of w with Delay 

 

Figure 3.2.  Relative Gain of Portfolio Investment with Delay 
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According to the calculations in case study, the free boundary is formed by the 

points (x,t), which satisfy the equation �¢_̂ �  SC_̂ ; and it’s also found that  �_̂ �  SC_̂ 

when electricity prices are above the free boundary at a given time in Figure 3.1, and 

�_̂ �  �¢_̂
 when electricity prices are below the free boundary at a given time. Thus, 

the entry decisions with a construction delay become very clear according to the free 

boundary of w, which is similar to the previous model. The decision maker should invest 

the new power plant at a given year if the electricity price is jumping above the free 

boundary at that given time, since the company’s profit with the energy portfolio is more 

that its profit without the energy portfolio. Otherwise, the firm should not invest the new 

power plant but just keep operating the old power plant.  

Figure 3.1 also reveals that the free boundary function increases before the 9th 

year, and then suddenly stops at the end of 9th year because of the construction delay. So, 

the decision makers for the energy company need a higher price of electricity in order to 

make a decision about an investment in a new power plant as time goes by. 

Figure 3.2 shows the relative gains of the portfolio at the beginning of the time. It 

is obvious that the relative gain increases with respect to the electricity price increase 

after $94.5/MWh, which is the exercise price at time zero in Figure 3.1. The relative 

gains should be zero when the electricity price is below $94.5/MWh, since no new power 

plant investment decision is made at that time. Figure 3.2 also reveals that the increase 

rate of relative gain line decrease. 
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3.3.3. Sensitivity Analysis. In order to reveal how the parameters affect the 

decisions, the following sensitivity analyses are conducted. Different combinations for 

production rates and operational costs are also studied in this section. 

3.3.3.1 Sensitivity analysis for investment amount. Different investments K 

derive different free boundaries, just as shown in Figure 3.3, and, the free boundaries 

move up when the investment requirement capital K increases. This means that high 

electricity prices are required to trigger the new power plant investment decision if 

investment K increases. In other words, the possibility to invest the new power plant 

becomes smaller based on the stochastic process of electricity price. On the other hand, 

the less a new power plant costs, the more possible it is that a new plant should be built.   

 

 

 

Figure 3.3.  Free Boundary for Investment with Different K 
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This relative gain sensitivity analysis for K in Figure 3.4 reveals that the smaller 

the investment amount is, then, the larger the relative gain will be. 

 

 

Figure 3.4.  Relative Gain with Different K 
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Figure 3.5.  Free Boundary for Investment with Different Delays 

 

 

Figure 3.6.  Relative Gain with Different Delays 
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 Figure 3.6 shows that the relative gain line moves up when the construction delay 

increase from 1 year to 2 years. This result is consistent with sensitivity analysis of free 

boundary: more delay could increase the possibility to make the investment decision to 

build a new power plant. 

3.3.3.3 Sensitivity analysis for volatility.  From the following electricity price 

volatility analysis (Figure 3.7 and Figure 3.8), it can be seen that the uncertainty of 

electricity prices would also affect the free boundary and relative gain. More uncertainty 

would lower the free boundary and raise the relative gain curve. These results are also 

consistent with Bar-Ilan and Strange (1996). That is, the increase in uncertainty with 

investment construction delay would decrease the investment trigger price in a particular 

volatility range. Of course, an increase in electricity price uncertainty will not always 

lead to an earlier investment decision. 

 

 

Figure 3.7.  Free Boundary for Investment with Different σ 
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Figure 3.8.  Relative Gain with Different σ 
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Figure 3.9.  Free Boundary for Investment with Different c2 

 

 

Figure 3.10.  Relative Gain with Different c2 
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3.3.3.5 Sensitivity analysis for D2.  Figure 3.11 and Figure 3.12 show that cost 

D2 also affects the free boundary and relative gain line. When the cost D2 increases, the 

free boundary moves up and relative gain line goes down; otherwise, when the cost D2 

decreases, the free boundary moves down and the relative gain line goes up. So, it can be 

concluded that decreasing the operation cost of the new power plant can increase the 

possibility to invest a new power plant at a given time under the uncertainty of price of 

electricity, which follows the GMR stochastic process. 

 

 

 

Figure 3.11.  Free Boundary for Investment with Different D2 
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Figure 3.12.  Relative Gain with Different D2 
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Figure 3.13.  Free Boundary for Investment with Different D2(t) 

 

 

Figure 3.14.  Relative Gain with Different D2(t) 
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These results are intuitive and consistent with Figure 3.11 and Figure 3.12, 

respectively. The decreasing cost of the new power plant over time lowers the free 

boundary, on the other hand, the increases relative gain curve. This means that the 

expected cost decrease would trigger an early investment decision for a new power plant. 

3.3.3.6 Characteristics of production rate and cost.  The values of parameters 

�	, �
, �	, �
 in the case study section are just for the theoretic model; they are not real 

data of power plants. This section will discuss all cases with different c&D combinations 

and more realistic data for the production rate and cost. Here, the existing power plant is 

assumed to be a coal power plant and the new power plant is a natural gas power plant, in 

order to learn how different combinations of �	, �
, �	, �
 would affect the free boundary 

and relative gain. First, it is assumed that unit monetary input is $100; the coal price is 

either $28/MWh or $35/MWh, as a result of the definitions of parameters, c	 would be 

either 3.571 or 2.857; natural gas price is $29/MWh, c
 would be 3.448; the total cost of 

the coal power plant is assumed to be $60/MWh, so, �	 is either $214.286/MWh or 

$171.429/MWh, depending on different production rate. The total costs of the natural gas 

power plant are assumed to be $66/MWh, $59/MWh, $52/MWh, or $46/MWh, so, �
 

would be $227.586/MWh, $203.448/MWh, $179.310/MWh, or $158.621/MWh, 

depending on different total costs of the natural gas power plant (Bloomberg, 2012). So, 

four cases with different combinations of c and D are displayed in Table 3.2 as well as 

the free boundaries and relative gain curves shown in Figure 3.15 and Figure 3.16:   
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Table 3.2.  Different Combinations of c and D 

Different Combinations 

 

Case 1 

ÀÁ � ÀÂ 
ÃÁ ` ÃÂ 

 

Case 2 

ÀÁ � ÀÂ 
ÃÁ � ÃÂ 

 

Case 3 

ÀÁ ` ÀÂ 
ÃÁ ` ÃÂ 

 

Case 4 

ÀÁ ` ÀÂ 
ÃÁ � ÃÂ 

Coal price($/MWh) 28 28 35 35 

Natural gas price($/MWh) 29 29 29 29 

Total cost of coal power plant 
($/MWh) 

60 60 60 60 

Total cost of natural gas power plant 
($/MWh) 

66 59 52 46 

�	 3.571 3.571 2.857 2.857 

�
 3.448 3.448 3.448 3.448 

�	 214.286 214.286 171.429 171.429 

�
 227.586 203.448 179.310 158.621 

   

 

Figure 3.15.  Free Boundary for Investment with Different c&D 
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Figure 3.16.  Relative Gain with Different c&D 
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increasing free boundaries, which indicates “good” investment and should be invested as 

soon as possible when the electricity price jumps above the free boundary. Finally, it is 

concluded that a lower free boundary means “better” investment potential, which is also 

shown in Figure 3.16 in terms of relative gain. 

3.4. CONCLUSIONS 

In this section, studies are made of the optimal entry decisions for a new plant, 

given a fixed capital investment with a construction delay, and the optimal dispatch 

decisions between the existing power plant and a new power plant. The objective 

function is to maximize the long-term profit under the geometric mean reversion process 

for electricity price. Optimal control and finite difference methods are used to solve the 

entry decision problem in the energy portfolio investment.  

The results provide some valuable data for the generators to make decisions. The 

free boundary can be employed to decide when the generator should build a new plant. It 

is determined that the new power plant should be built when the electricity price is above 

the free boundary at a particular time. After the new plant is built, the new plant should 

get the maximum proportion of monetary input (��) when the electricity price is higher 

than �[A���[A�� , otherwise, it would be kept idle. 

The relative gain of the portfolio investment at the beginning of the finite 

planning horizon is increased as the price of electricity; but, the increase rate decreases 

when the electricity price increases. The sensitivity analysis shows that many parameters 

affect the free boundary as well as the optimal entry time decisions.  
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Sensitivity analysis gives the decision-makers in energy industry more 

information about investment entry decisions. A less investment requirement capital or 

operation cost can increase the possibility to make the investment decision at a given 

time; on the other hand, a greater construction delay, volatility, or production rate can 

result less possible to make entry decision. Free boundary also can be used to value 

power plant investment: lower free boundary indicates better investment.  
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4. OPTIMAL ABANDONMENT DECISION MODEL 

4.1. MOTIVATIONS 

This section models the optimal time to abandon an old power plant of a firm, 

which has a portfolio of new power plant and an old traditional power plant, with the 

objective to maximize the long-term expected profit. Assume that the firm owns a power 

plant portfolio, and considers shutting down of the old traditional power plant while 

maximizing the expected long-term profit. Under the Mean Reversion Stochastic process 

of electricity prices, the decision problem is formulated as a mixed stochastic control 

problem. Due to the intractability of the mixed problem, it is decomposed into two 

auxiliary problems: one is a regular stochastic control problem, and the other one is an 

optimal stopping problem.  

The rest of this section is organized as follows. Section 4.2 describes a 

mathematical model of the problem. Section 4.3 employs finite difference methods to 

solve the partial differential equations (PDEs) using forward and backward difference 

approximations. To ensure a stable and accurate solution, explicit finite difference 

methods with a proper step size are used to calculate the PDEs.  

4.2. MODELS AND FORMULATIONS 

Assume that an energy firm is operating two power plants as an energy portfolio, 

and that the firm’s decision makers are considering shutting down one of the power 

plants within a certain period due to the lifetime of the plant, or the tight regulation from 

government. Thus, the optimal operation policies of the energy portfolio and the optimal 
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time for abandoning one of the power plants have to be determined. This problem is 

formulated as a mixed stochastic control and optimal stopping time problem to maximize 

the long-term profit of the company. In this section, β represents the proportion of total 

monetary input in the old power plant; M is the liquidation value of the old power plant, 

which includes government subsidies and salvage values. Other notations are the same 

notations used in Section 2. 

Many factors can affect the decisions of abandonment time and operation. To 

simplify the models, only the price of the electricity price is considered as a stochastic 

process. In this section, electricity prices are also modeled as a mean reversion stochastic 

process.  

Assuming that the decision to shut down the old plant is made at time τ when the 

power plant can gain a liquidation value of M dollars.  

Thus, the long-term profit functional is: 

;��, (; h, �� j #R7Ä ����	�g 9 �	�)�1 9 ����
�g 9 �
��kAl�gA��'m )o
�  

�kAl�oA�� ) P ��
�g 9 �
�kAl�gA��'mMo :.                                                       (4.1) 

All values are discounted to the present value at time t. Here, h and � are control 

variables. 

Function @C(t,x) represents optimal value of the objective at given (t,x). So, the 

value function @C(t,x) is defined as: 

�PC�@C��, (� � ;��, (; h, ��o� °̄,±,µ�7C,µ|:vwx         
.                                                (4.2) 

That is 

@C��, (� � #R7P ���	�g 9 �	�)�1 9 ����
�g 9 �
�kAl�gA��'m )o�o� °̄,±,µ�7C,µ|:gJc        
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�kAl�oA�� ) P ��
�g 9 �
�kAl�gA��'mMo :                                                         (4.3) 

where y�,M, denotes the set of stopping times in 7�, �:. 
Due to the intractability of this mixed stochastic control and optimal stopping 

time problem, the following auxiliary function is introduced. 

4.2.1. Auxiliary Function. Suppose the old power plant has already been shut 

down at time τ. Therefore, there is only one new power plant in operation. The value 

function v(t,x) is defined as: 

]��, (� j #R7P ��
�g 9 �
�kAl�gA��'mM� :.                                        (4.4) 
According to the dynamic programming, the following H-J-B equation is 

obtained: 

WW� ] ) ��
�g 9 �
� ) >X 9 p] � 0                                                 (4.5) 
where 

>X j �0�f 9 56��� ) 	
 1
�( WXWR ) 	
 1
(
 W[�W�[,                               (4.6) 
with the terminal condition: 

]�(, �� � 0 .                                                                              (4.7) 

From equation (4.5), the maximal discounted values for different t and x after 

shutting down the old power plant can be obtained, and these results can be used in the 

next section. 

4.2.2. Optimal Time to Abandon the Old Power Plant.  According to previous 

calculations, the value of the operation is given by v(τ,xτ) when the old traditional power 

plant has been shut down; therefore, the value function w(t,x) is defined as follows: 

���, (� j E�o� °̄,±,µ�7C,µ|:vwx         7P ����	�g 9 �	�)�1 9 ����
�g 9 �
��kAl�gA��'m )o�                        

�]�h, �o� ) ��kAl�oA��: , � � 70, �� .                                                       (4.8) 



 

 

61

The solution to this optimal stopping time problem w satisfies the following linear 

complementarity problem: 

ÆÇÈ
ÇÉ WW� � ) >� ) ���	�g 9 �	� ) �1 9 ����
�g 9 �
� 9 p� � 0                           � � ] ) �                                                                                                                       � WW� � ) >� ) ���	�g 9 �	� ) �1 9 ����
�g 9 �
� 9 p�� �� 9 ] 9 �� � 0  >� �  0 W�W� ( ) 	
 1
 W[�WR[ (
                                                                                              

�.    (4.9) 
That is, 

��6 �9 WW� � 9 >� 9 ���	�g 9 �	� 9 �1 9 ���c
Xv 9 D
� ) p�, � 9 ] 9 �� � 0 

(4.10) 
with the terminal condition: 

��(, �� � 0.                                                                              (4.11) 

It is obvious that the optimal proportion �F is: 

�F��, (� � � 0       , �E �( ` ��A�[��A�[ ���        , �E �( � ��A�[��A�[ ��.                                          (4.12) 

So, equation (4.10) is transformed to: 

��6 �9 WW� � 9 >� 9 �F��	�g 9 �	� ) �1 9 �F��c
Xv 9 D
� ) p�, � 9 ] 9 �� � 0.   

(4.13) 

Following the same procedures, the original problem is decomposed into a 

stochastic control problem (4.12), and an optimal stopping time problem, which can be 

solved by the PDE equation (4.13).  
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4.3. NUMERICAL SOLUTION AND RESULTS  

4.3.1. Numerical Solution.  Finite difference methods are used to solve these 

PDE equations. The following are the solution results of the problems by using finite 

difference methods.  

Consider the H-J-B Equation (4.5): 

                                       
WW� ] ) ��
�g 9 �
� ) >X 9 p] � 0    

      >X � 0′ WXWR ( ) 	
 1
 W[�W�[ (
                                                       (4.14) 

      0′ � 0�λ 9 56��� ) 	
 1
.                                                       (4.15) 

To calculate the equation, the terminal condition needs to be changed to initial 

condition by considering �′ � � 9 �. But this model still uses t to represent �′ for 

convenience. So, the following PDE is obtained: 

9 WW� ] ) ��
�g 9 �
� ) >X 9 p] � 0                                                      (4.16) 

the boundary conditions: 

         ]��_�^, �� � 9 ��l �1 9 kAl��                 (�_�^ � 0�                              (4.17) 

                ]��_�R, �� � �[FÌÍÎ�A�[l �1 9 kAl��  �h � �, �_�R is a big number�    (4.18) 

the initial condition: 

]�(, �� � 0.                                                                                            (4.19) 

To overcome the artificial oscillations, an upwind scheme is used to represent ����.  

The formula for ]_̂D	: 

]_̂D	 � ∆��∆R�[  [
 (
]^D	_ 9 �p∆� 9 1 9 ∆�∆R (µ′ ) ∆��∆R�[ 1
(
� ]_̂ )       

 � ∆��∆R�[  [
 (
 9 (µ′ ∆�∆R� ]^A	_ ) ∆���
( 9 �
�.                                                  (4.20) 

In order to improve the calculation efficiency, set � � 56�, 
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]_̂D	 � ∆��∆¤�
 1
2 ]^D	_ 9 Ïp∆� 9 1 9 ∆�∆¤ µ′ ) ∆��∆¤�
 1
Ð ]_̂ ) 

� ∆��∆��[  [
 9 µ′ ∆�∆�� ]^A	_ ) ∆���
k� 9 D
�.                                                     (4.21) 

Consider the H-J-B Equation (4.13) 

��6 �9 WW� � 9 >� 9 �F��	�g 9 �	� 9 �1 9 �F��c
Xv 9 D
� ) p�, � 9 ] 9 �� � 0.  

First step is considering the first part of (4.13) by introducing w¢: 
WW� w¢ ) >ÒÓ ) �F��	�g 9 �	� ) �1 9 �F��c
Xv 9 D
� 9 pw¢ � 0.       (4.22) 

>�Ó � 0 W�ÓWR ( ) 	
 1
 W[ÔÓW�[ (
 .                                                                (4.23) 

The following PDE is obtained by changing the terminal condition to initial 

condition. 

9 WW� w¢ ) >ÒÓ ) �F��	�g 9 �	� ) �1 9 �F��c
Xv 9 D
� 9 pw¢ � 0             (4.24) 

with the boundary conditions: 

w¢��_�^, �� � 9 �[AµF��[A���l �1 9 kAl��              (�_�^ � 0�                               (4.25) 

w¢��_�R, �� � ��[DµF���A�[��FÌÍÎ�A�	AµF��[AµF��l �1 9 kAl��    � �_�Ris a big number�    

(4.26) 

with the initial condition:  

�¢�(, �� � 0.                                                               (4.27) 

 The formula for �¢_̂D	
 is obtained using an upwind scheme: 

�¢_̂D	 � �∆�∆R (0 ) ∆��∆R�[  [
 (
� �¢^D	_ 9 �p∆� 9 1 ) ∆�∆R (0 ) ∆��∆R�[ 1
(
� �¢_̂ )
∆��∆R�[  [
 (
�¢^A	_ ) ∆����	 ) �F��
 9 �	��( 9 �1 9 �F��	 9 �F�
�.           (4.28) 
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In order to improve the calculation efficiency, set � � 56�, equations (4.28) is 

transferred as following: 

�¢_̂D	 � �∆�∆� µ ) ∆��∆��[  [
 � �¢^D	_ 9 �p∆� 9 1 ) ∆�∆� µ ) ∆��∆��[ 1
� �¢_̂ ) ∆��∆��[  [
 �¢^A	_ )
∆����	 ) �F��
 9 �	��k� 9 �1 9 �F��	 9 �F�
� .                                         (4.29) 

As the equation for ]_̂D	, �¢_̂D	
, in terms of ]_̂, �¢_̂

, are explicit, these 

processes can be solved by MATLAB. Thus, the numerical solutions of v and w are 

found. Thus, the numerical solution of w=max{�¡, ] ) �} is found. 

According to equation (4.13), once �¢_̂
 are obtained, the evolution for �_̂ �

\%( ��¢_̂, ]_̂ ) �� can be obtained. Also define the free boundary present �¢_̂ �
]_̂ ) � at a given point �6, \�. Now, the optimal abandonment problem becomes clear: 

when the electricity price Xv makes ]_̂ ) � � �¢_̂
, �_̂should equal to ]_̂ ) �. In 

other words, the old power plant should be shut down. The free boundary can be used to 

help the decision makers in the energy companies to make abandonment decisions. 

4.3.2. Case Study and Results. To illustrate this technique for abandonment 

decision model, the parameters established in Table 4.1 are used in the case study section. 

The parameters about the price of electricity are the same the parameters used in the 

previous models. Other values of parameters come from literature reviews and experience 

on energy industry. 
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Table 4.1.  The List of Parameters for Abandonment Model 

Notation Value Unit 

µ 0.053  

σ 0.13  

λ 4.788  

ρ 6%  

�� 50%  

c1 3 MWh/unit monetary input 

c2 2 MWh/ unit monetary input 

D1 130 $/c	MWh 

D2 100 $/c
MWh 

M 150 $/unit monetary input 

T 10 Year 

 

 

The equation �¢_̂ � ]_̂ ) � can be used to form the free boundary in 

abandonment model, which shows when the old power plant should be shut down at a 

given time in the planning horizon, with respect to the price of electricity; the free 

boundary of w is shown in Figure 4.1.  
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Figure 4.1.  Free Boundary for Abandonment 

 

According to the case study, �_̂ � ]_̂ ) � when electricity prices are below the 

free boundary as in Figure 4.1, and �_̂ � �¢_̂
 when electricity prices are above the free 

boundary. Thus, the abandonment decisions become very clear according to the free 

boundary of w. The decision maker should shut down the old power plant when the 

electricity price is below the free boundary at that given time, since the company’s long-

term profit, without an energy portfolio plus liquidation value, is more than the profit 

with an energy portfolio. Otherwise, the old power plant should not be shut down, but 

should keep operating the energy portfolio to await better timing. Figure 4.2 shows how 

to use free boundary to make abandonment decisions for the generator. 
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Figure 4.2.  Abandonment Decision by Using Free Boundary  

 

4.3.3. Sensitivity Analysis.  Sensitivity analysis of free boundary for liquidation 

value, volatility, production rate and operation cost of the old power plant are conducted 

as following: 

4.3.3.1 Sensitivity analysis for liquidation value.  Different liquidation values 

M derive different free boundaries, as Figure 4.3 shows, and the free boundaries move 

up when the liquidation value M increases. This means that the abandonment decision 

(shutting down the old power plant) is easier (easier to drop below the free boundary), or 

sooner when the liquidation value M increases.  
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Figure 4.3.  Free Boundary for Abandonment with Different M 

 

4.3.3.2 Sensitivity analysis for volatility.  Figure 4.4 shows that the changing 

of volatility σ also affects the decisions (free boundaries). The free boundary moves 

down when volatility σ increases, which reveals that the uncertainty of future electricity 

prices can increase the possibility of keeping the old power plant to avoid an 

abandonment decision. These results reveal that a portfolio is a better way to deal with 

the higher uncertainty of the market. 
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Figure 4.4.  Free Boundary for Abandonment with Different σ 

 

 

4.3.3.3 Sensitivity analysis for c1.  According to the sensitivity analysis for c1 in 

Figure 4.5, the production rate of the old power plant c1 affects the free boundary. The 

free boundary moves down when the production rate c1  increases, which means that the 

electricity price needs to drop down to a lower level to excise the abandonment option. In 

other words, it is expected that the old power plant can be kept longer. 
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Figure 4.5.  Free Boundary for Abandonment with Different c1 

 

4.3.3.4 Sensitivity analysis for D1.  Figure 4.6 shows that cost D1 also affects 

the free boundary. When the cost D1 decreases, the free boundary moves down; 

otherwise, if the cost D1 increases, the free boundary moves up.  This means that the old 

power plant is expected to shut down earlier (the abandonment option can be easily 

exercised) when its cost goes up. 
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Figure 4.6.  Free Boundary for Abandonment with Different D1 

4.4. CONCLUSIONS 

In this section, the optimal abandonment decision for the old power plant and the 

optimal dispatch decision between the two power plants are studied. The objective 

function is to maximize the long-term profit under the mean reversion stochastic process 

for electricity prices. Optimal stochastic control and finite difference methods are used to 

solve the abandonment decision problem in this section.  

The results of abandonment model also provide valuable policy for the decision-

makers of the generators to make abandonment decisions. The free boundary can be 

employed to decide when the generator should shut down the old traditional power plant: 

the generator should shut down the old power plant if the electricity price is below the 

free boundary at a given time.  Liquidation value, volatility, production rate and cost of 

the old traditional power plant all make effect on the abandonment decisions. 
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5. DYNAMIC INVENTORY MANAGEMENT MODEL 

5.1. MOTIVATIONS 

This section formulates a dynamic inventory optimal control problem in a finite 

planning horizon, with consideration of debt financing and tax, which are two important 

factors that influence inventory decisions. The retailer, who raises funds from the 

financial market at the beginning of the planning horizon and pays off the debt at the end 

of the horizon, replenishes the stock under constraint of the cash flow over each period of 

the planning horizon. The retailer faces random demand and the unmet demand in each 

period is lost. It is assumed that tax losses are not allowed for tax carry-backs or carry-

forwards. The objective is to maximize the expected terminal wealth at the end of the 

planning horizon. Finally, the optimal inventory policy and the optimal debt financing 

decision can be found with the capital constraint and the effect of tax. 

Many small retailers face problems about capital constraints when they order to 

maintain their inventory. Financing ability is a critical factor for start-up and growing 

retailers, whose developments heavily depend on the venture capital or debt. In most 

cases, they do not have enough capital to do what they want to in their operations. 

Though operational and financing decisions have a strong relationship, the dynamic 

inventory management literature considers little about the financial constraints. 

Therefore, it is very important to combine the ordering decisions and the financing 

decisions together in order to obtain the long term profit for the retailers. 

Dynamic inventory problems have been studied by many researchers. Pioneering 

works include Arrow, Harris and Marschak (1951), Scarf (1960), Iglehart (1963), and 

Weinott and Wagner (1965) for a single warehouse, Clark and Scarf (1960) for multi-
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echelon systems; and Eppen and Schrage (1981) and Federgruen and Zipkin (1984) for 

distribution systems. More recently, the works of Zheng (1991), and Chen and Zheng 

(1994) have revealed new insights and have provided more efficient algorithms for these 

problems. 

Several papers have recognized the relationship between operational decisions 

and financing decisions. The seminal work by Modigliani and Miller (1958) has showed 

that a firm’s investment and financing decisions could be made separately within a 

perfect capital market. Due to market imperfections, such as taxes, agency costs, and 

asymmetric information, however, the choice of a firm’s capital structure may in fact be 

closely related to its production decisions. Xu and Birge (2004) developed models to 

make production and financing decisions, simultaneously, in the presence of demand 

uncertainty and market imperfections. Their models illustrated how a firm’s production 

decisions were affected by the existence of financial constraints. Li (1997) considered a 

single-product firm that made production decisions, borrowing decisions, and dividend 

policies during each period while facing uncertain demand. The firm could obtain an 

unbounded single-period loan with a constant interest rate. Archibald (2002) focused on 

start-up firms with the probability of long-term survival. 

Chao et al. (2008) introduced a self-financing retailer model with financial 

constraints. The retailer periodically replenishes its stock from a supplier and sells it to 

the market. Excess demand in each period is lost. They derived the optimal inventory 

policy for each period, and characterized the dependence of the firm’s optimal 

operational policy on its financial status. They also analyzed the relationship between the 

optimal control parameters and system parameters. 
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In this section, the optimal ordering policy and the optimal financing decision are 

considered simultaneously. This model incorporates the holding cost and the effect of tax 

that was not considered by Chao et al. (2008). The section is organized as follows. A 

mathematical model is first set up for the inventory problem of the retailer. By solving 

this problem, the optimal ordering solution, without considering the debt financing, can 

be found out. Finally, the debt financing, which can be done only at the beginning of the 

finite planning horizon and be paid back at the end of the finite planning horizon, is 

incorporated into the model.  It is concluded at the last section. 

5.2. MATHEMATIC MODELS 

It is assumed that a retailer sells a single product to the market in a finite planning 

horizon. Due to financial constraints, the retailer have to decide about how much fund 

need to raise from the financial market at the beginning of the finite planning horizon, 

which will be paid back at the end of the finite planning horizon. The retailer has an 

initial inventory (	 and raised an initial capital m	. For simplicity, only the demand is 

considered as a stochastic process; the sale and purchase prices, tax and interest rate, 

holding cost and salvage value rate are all assumed to be constant.  

 The retailer makes replenishment decisions over the planning horizon of N 

periods. Assume unmet demand in each period is lost and that the ordering lead time 

(delay) is zero. 

The periods are numbered from 1 to N, the demands �^(1 � 6 � Õ) are 

independent, and identically distributed nonnegative random variables. Let p be the unit 

sales price, and c is the unit ordering cost. Any inventory left at the end of the planning 
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horizon has a salvage value Ö per unit, where 9∞ ` Ö ` � ` a. The holding cost per unit 

per period is h.  

Let 2^, 1 � 6 � Õ be the capital level at the beginning of period n,  (^ and ¤̂ , 

1 � 6 � Õ ,be the inventory levels, before and after the replenishment at the beginning 

of period n, respectively, and SØD	 be the terminal wealth at the end of the planning 

horizon. The interest rate d is charged by debt holders for the whole horizon, and &Ù is the 

risk-free interest rate per period. Assume �N1 ) &ÙO ` a . Otherwise, the operations will 

not have been necessary, since the retailer can just put the money into the bank to make 

higher income. Also assume ' � &Ù. At end of each period, the retailer receives its 

revenue from sales and interest on deposits. 

Because the retailer only finances once, at the beginning of the planning horizon, 

the ordering decision have to satisfy the cash flow constraints  ��¤̂ 9 (^� � 2^. And the 

remaining capital will be deposited in the bank in order to get the interest &Ù. The sales 

revenue in period n is a��6� ¤̂ ,  �^�; the holding cost is  Ú�¤̂ 9 �^�D; so, the total 

capital level at the end of period n is: 

2^D	 � a��6� ¤̂ ,  �^� ) N1 ) &ÙON2^ 9 ��¤̂ 9 (^�O 9 Ú�¤̂ 9 �^�D,   n=1, 2, 3…, N.                                   

(5.1) 

The inventory level, which considers unmet demand as lost, at the beginning of 

the period n+1 is: 

(^D	 � �¤̂ 9 �^�D, n=1, 2, 3…, N.                                      (5.2) 

For simplicity, gains are assumed to be taxed at a constant rate h, while tax losses 

are not allowed for tax carry-backs or carry-forwards (Xu and Birge, 2008). The terminal 

wealth net of tax is: 
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Û2<D	 9 �1 ) '�2	 9 h�2<D	 9 '2	�   �E 2<D	 � �1 ) '�2	 0                                                                �E 2<D	 � �1 ) '�2	 �.                       (5.3) 

Therefore, the problem for the retailer is to decide on an ordering 

policy ¤	, ¤
, ¤Ü, … ¤̂ … ¤<, and an initial debt level 2	 to maximize the expected terminal 

wealth at the end of the planning horizon, given the initial inventory level (	, subject to 

the cash flow constraints in each period. That is, the decision problem is: 

�%(��…�Þ…�ß, 4� #71�4ßà�á�	D3�4��� �1 9 h�2<D	 9 �1 ) �1 9 h�'�2	              (5.4) 

Subject to (5.1), (5.2) and  

0 � ��¤̂ 9 (^� � 2^   n=1, 2, 3…, N.                                    (5.5) 

The value function of the objective problem ]�(, 2� represents the maximum 

expected terminal wealth by changing the control variable ¤̂  and 2	 at the given x and S. 

So, the dynamic programming Bellman optimality equation is: 

]^�(, 2� � �%(Râ�âRDãä #7]^D	��¤̂ 9 �^�D , a��6� ¤̂ ,  �^� )   

N1 ) &ÙON2^ 9 ��¤̂ 9 (^�O 9 Ú�¤̂ 9 �^�D�:                                          (5.6) 

with the boundary condition: 

]<D	�(, 2� � Û�1 9 h��2 ) Ö(� 9 �1 ) �1 9 h�'�2	  , 2 ) Ö( � �1 ) '�2	  0                                                                , 2 ) Ö( � �1 ) '�2	 �   .          (5.7) 

5.2.1. Raised Initial Capital is Given.  A result similar to that of Chao et al. 

(2008) can be obtained if the S1 is considered as a constant. In order to solve the problem, 

two propositions are proposed first: 

Proposition 1:  

For any period n and fixed A and B, ]^�å 9 8, � ) �a ) Ú�8� is increasing in 8. 

Proof: 
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Note that ]<D	 � �1 9 h��2 ) Ö(� 9 �1 ) �1 9 h�'�2	 is increasing in S. So, 

]<�(, 2� � �%(Râ�âRDãä #7]<D	�(<D	, 2<D	�: is increasing in S; from this terminal value, it 

can be concluded that the general format]^�(, 2� � �%(Râ�âRDãä #7]^D	�(^D	, 2^D	� is 

increasing in S. 

Note the relationship: 

]^�å 9 8, � ) �a ) Ú�8� � �%(æAçâ�âæDèäDé²ää ç #7]^D	��¤̂ 9 �^�D, a��6� ¤̂ ,  �^� )   

                                   N1 ) &ÙON�a ) Ú 9 ��8 ) � ) �å 9 �¤̂ O 9 Ú�¤̂ 9 �^�D�:. 
From the previous proof, it can be concluded that: 

]^D	��¤̂ 9 �^�D, a��6� ¤̂ ,  �^� ) N1 ) &ÙON�a ) Ú 9 ��8 ) � ) �å 9 �¤̂ O 9 Ú�¤̂ 9 �^�D�  
is increasing in θ. So, ]^�å 9 8, � ) �a ) Ú�8� is increasing in θ. 

Proposition 2:  

For any period n, ]^�(, 2� is jointly concave in x and S. 

Proof: 

In order to simplify the proof, let: 

 (� � f(	 ) �1 9 f�(
, 

 (ê � \�6 �f(	 ) �1 9 f�(
, �^�,   

 (� � f\�6 �(	, �^� ) �1 9 f�\�6 �(
, �^�; 

 ¤� � f¤	 ) �1 9 f�¤
, 

 ¤ê � \�6 �f¤	 ) �1 9 f�¤
, �^�,  

 ¤� � f\�6 �¤	, �^� ) �1 9 f�\�6 �¤
, �^�; 

 2� � f2	 ) �1 9 f�2
, 

 2ë � \�6 �f2	 ) �1 9 f�2
, �^�,   



 

 

78

2ì � f\�6 �2	, �^� ) �1 9 f�\�6 �2
, �^�; 

Note that: (ê � (�; ¤ê � ¤�; 2ë � 2ì. 
Induction is used to prove this proposition.  

First, prove ]<D	�(, 2� is jointly concave in x and S. Note that ]<D	�(, 2� is 

jointly concave in x and S when 2 ) Ö( � �1 ) '�2	, and ]<D	�(, 2� � 0 is also jointly 

concave in x and S when 2 ) Ö( ` �1 ) '�2	. 

Note that if  2<D	 9 �1 ) '�2	 � h�2<D	 9 '2	�, ]<D	�(, 2� is jointly concave in 

x and S in the whole area. So, let h � 1 9 4DíRA4�4DíRA34� in order to make sure that jointly 

concave in x and S.  

Second, assume ]^D	�(, 2� is jointly concave in x and S, then it need to be proved 

that ]^�(, 2� is jointly concave in x and S. 

]^�f(	 ) �1 9 f�(
, f2	 ) �1 9 f�2
� 

=   Râ�âRDãä
  îï�      #7]^D	��f¤	 ) �1 9 f�¤
 9 �^�D, a��6�f¤	 ) �1 9 f�¤
,  �^� ) 

                     N1 ) &ÙONf2	 ) �1 9 f�2
 9 ��f¤	 ) �1 9 f�¤
 9 f(	 9 �1 9 f�(
�O 9 

                      Ú�f¤	 ) �1 9 f�¤
 9 �^�D: 
=   Râ�âRDãä

  îï�     #7]^D	N¤� 9 ¤ê, N1 ) &ÙON2� 9 �� ¤� 9 (��O 9 Ú¤� ) �a ) Ú�¤êO: 
�   Râ�âRDãä

  îï�     #7]^D	N¤� 9 ¤�, N1 ) &ÙON2� 9 �� ¤� 9 (��O 9 Ú¤� ) �a ) Ú�¤�O:             
(Proposition1) 

=   Râ�âRDãä
  îï�     #7]^D	�f�¤	 9 �^�D ) �1 9 f��¤
 9 �^�D, f�a��6�¤	,  �^� ) 

            N1 ) &ÙON2	 9 ��¤	 9 (	�O 9 Ú�¤	 9 �^�D ) �1 9 f��a��6�¤
,  �^� ) 

            N1 ) &ÙON2
 9 ��¤
 9 (
�O 9 Ú�¤
 9 �^�D: 
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�   Râ�âRDãä
  îï�     #7f]^D	��¤	 9 �^�D, a��6�¤	,  �^� ) N1 ) &ÙON2	 9 ��¤	 9 (	�O 9    

                   Ú�¤	 9 �^�D� ) �1 9 f�]^D	��¤
 9 �^�D, a��6�¤
,  �^� ) 

                   N1 ) &ÙON2
 9 ��¤
 9 (
�O 9 Ú�¤
 9 �^�D�: 
(Since ]^D	�(, 2� is jointly concave) 

=f]^�(	, 2	� ) �1 9 f�]^�(
, 2
� 

So, ]^�(, 2� is jointly concave in x and S.  

From proposition 2, the following proposition can be easily obtained: 

Proposition 3:  

For any period n and given ð � 2 ) �( , 

ñ^�¤, ð� � #7]^D	N�¤ 9 �^�D, a��6�¤,  �^� ) N1 ) &ÙO�ð 9 �¤� 9 Ú�¤ 9 �^�DO: is 

jointly concave in (y, R). 

Let ¤̂ F�ð�be the optimal solution to the problem �%(Râ�âòä   ñ^�¤, ð�. The optimal 

 inventory policy proposed in Theorem 1 naturally follows from Proposition 3. 

Theorem 1:  

The capital-dependent base stock inventory policy of period n: 

0^F�ð� � �   ó�                       (^ � ¤̂ F�ð� 9 4�¤̂ F�ð�       ¤̂ F�ð� 9 4� � ( ` ¤̂ F�ð�   (^                           (^ � ¤̂ F�ð� �                                      (5.8) 

  According to Theorem 1, the optimal inventory policy is to keep the inventory 

level as close to ¤̂ F�ð�  as possible. The retailer should use all of the capital to replenish 

its stock if ð � �¤̂ F�ð�, even though the resulting stock level is not the optimal level 

due to capital constraint. The stock should be replenished to the optimal level ¤̂ F�ð� 
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when there is enough capital, that is, ð � �¤̂ F�ð�. The inventory level (^ should be kept 

unchanged when  (^ � ¤̂ F�ð�.         

5.2.2. Raised Initial Capital is a Decision Variable.  If the initial capital is 

controllable, the retailer should have earned more profit at the end of the planning 

horizon, since the retailer can choose the optimal amount to debt financing.  

In order to derive the optimal debt financing and optimal ordering decisions. 

Assume that the cost to finance one unit capital is smaller than the profit generated by 

one unit capital, that is, ' ` WXÞ�R,4�W4 . It is intuitively clear that the retailer should keep the 

inventory as the optimal inventory level ¤	F�ð� at the beginning of the finite planning 

horizon if the retailer can control the debt amount 2	. And, note that ð^ is increasing in n. 

Theorem 2:  

The capital-dependent base stock inventory policy of period n with debt financing 

decision: 

0^F�ð� �
ÆÇÈ
ÇÉ   ¤	F�ð�                                E�&m� m�kaó�                          (^ � ¤̂ F�ð� 9 4�¤̂ F�ð�       ¤̂ F�ð� 9 4� � (^ ` ¤̂ F�ð�   (^                            (^ � ¤̂ F�ð�

�                              (5.9) 

And the optimal debt is: 

 2	 � ��   ¤	F�ð� 9 (�D.                                                                        (5.10) 

According to theorem 2, considering the debt financing, the optimal decisions are 

simple: the retailer should finance  2	 � �� ¤	F�ð� 9 (�D at the beginning of the finite 

planning horizon in order to have the ability to maintain the optimal inventory level 

throughout the whole finite planning horizon. At the beginning of each period, the retailer 

should replenish the inventory level to reach the optimal inventory  ¤̂ F�ð� if ( `
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¤̂ F�ð�; otherwise keep the current inventory level x unchanged at the beginning of the 

planning horizon. 

5.3. CONCLUSIONS 

This section studies a dynamic multi-period inventory model that is proposed for 

incorporating financial decisions into ordering decisions with consideration of capital 

constraints, lost sales, holding cost and tax. First, a basic model is studied, in which the 

debt financing is not available. For this base model, the optimal ordering policies with 

capital constraints at each period are proposed. Then, the optimal debt financing 

decisions, as well as the optimal ordering policies with debt financing, are described. 

 The optimal financing amount  2	 � �� ¤	F�ð� 9 (�D  is financed at the 

beginning of the finite planning horizon only once.  That financing amount assures that 

the retailer has sufficient capital to keep its inventory at the optimal level; the optimal 

ordering policy is to order up to ¤̂ F�ð� at the beginning of period n, when the inventory 

level is below ¤̂ F�ð�, otherwise nothing is ordered in that period. 
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6. CONCLUSIONS 

This dissertation formulates mathematic optimization models to help decision 

makers in the energy and retail industries to make optimal entry, optimal operation, and 

optimal abandonment decisions under stochastic process. These research findings can 

help generators in energy industry reduce carbon dioxide emissions as well as 

maximizing long-term profits. It can also benefit retailers in retail industry reducing 

inventory and financing cost as well as maximizing long-term profits. 

6.1. CONTRIBUTIONS 

The first model described in this dissertation is a basic entry decision model in 

energy portfolio management, which displays a basic method for formulating and solving 

optimal entry and optimal operation problems in the energy industry. Electricity price, 

which follows Geometric Mean Reversion (GMR) stochastic process, is assumed to be 

the only stochastic process in this model, as well as in the other two models related to the 

basic model. The long-term unit profit of the firm was maximized over a finite time 

horizon as the objective function. The original mixed optimal stochastic control and 

optimal stopping problem is divided into two sub-problems: an optimal control problem 

and an optimal stopping problem. A numerical method is employed to solve PDEs, which 

come from H-J-B equations, in order to find free boundaries. The free boundaries are 

used to help generators make entry decisions with different electricity prices over the 

finite time horizon. With the results obtained from this model, the investment decision 

become very clear: the generator should excise the investment option when the electricity 
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price jumps up above the free boundary, but otherwise, just wait until the price of 

electricity satisfy the requirement. It is obvious that a lower free boundary represents the 

better investment for the new power plant. 

 The second model is a more reality model for the entry and operation decision, 

because it considers construction delay, variability of costs, and different types of power 

plants. Construction delay brings the delay model with different solution procedures but 

almost the same solution pattern. Construction delays obviously lower the free boundary, 

which means it is easy to trigger investment decisions. The relative gains are also 

displayed in the second model to show the benefit of investment versus no investment at 

different electricity prices when the free boundaries imply the investment option should 

be exercised.  

The sensitivity analysis also shows that the changing of cost for the new power 

plant can affect the free boundary as well as the entry decision: when the cost of the new 

power plant is lowered to a new constant cost all of the time, or assuming it decreasing 

over time deterministically would easily trigger investment decisions (lower free 

boundary). Meanwhile, reducing capital investment, improving production rate of new 

power plant can also lower the free boundary.  

Another valuable finding determined by this model is that the uncertainty of the 

electricity also affects the free boundary: greater volatility (more uncertainty) leads to a 

lower free boundary, but higher relative gains.  

It should be pointed out that the free boundaries in this model can be used to 

evaluate the investment of new power plant. Various combinations of operation rates and 

costs represent different types of power plants, which have different free boundaries and 
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relative gain curves. The conclusion is that the lowest free boundary represents the best 

investment choice, which corresponds with the highest relative gain curve.  

The abandonment model studies the optimal abandonment for the generator who 

owns an energy portfolio, including two power plants. This model is the opposite case of 

the previous models although a similar modeling methods and solution procedures are 

used. The free boundary can also be used to make abandonment decisions. The generator 

should excise the abandonment option (make abandonment decision) when the electricity 

price drops below the free boundary. The sensitivity analysis of subsidies reveals that 

more subsidies trigger easier abandonment decisions (a higher the free boundary). 

The dynamic inventory model was proposed to provide an optimal control policy 

and an optimal financing policy. This dynamic multi-period inventory model incorporates 

financial decisions into ordering decisions while considering capital constraints, lost 

sales, holding cost and tax. The closed form solution about the optimal financing amount 

at the beginning of the finite planning horizon is obtained. The optimal ordering policy is 

also found for each period: orders are placed up to ¤̂ F�ð� at the beginning of period n, 

when the inventory level is below ¤̂ F�ð�, otherwise nothing is ordered for that period. 

6.2. FUTURE WORKS 

Energy portfolio models described in this dissertation can possibly be extended in 

three ways.  

First, switching costs will be incurred when generator considers switching from 

the existing plant to the new plant, and vice versa; a singular control technique would be 

employed to study this problem. Second, in reality, the spikes (jumps) of the spot 
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electricity prices are an important characteristic of the stochastic process of electricity 

prices. Electricity spot prices often jump to 10 or 20 times their current or normal price 

for a few hours before returning to normal levels. Thus, the spikes of the electricity prices 

will need to be considered in the future. After considering the jump, the evolution of 

electricity price can be represented as: 

'�� � �0�f 9 56��� ) 	
 1
� ��'� ) 1��'�� ) ∑ Ö?'ô?<?B	                 (6.1) 

Note that 'ô? are Poisson processes with the properties: 

'ô? � Û0                a � 1 9 �?��, ��'�1                       a � �?��, ��'� �                                                    (6.2) 

Third, the energy portfolio models in this dissertation are based on only one 

stochastic process (the electricity price); it is obvious that there are other stochastic 

processes that can affect the decisions, such as the cost of carbon dioxide emissions. 

Multidimensional optimal control problems should be solved since there are more 

stochastic processes, in addition to the electricity prices. A possible extension could be 

formulated as bellow: 

Let �� represents CO2 emission cost at time t ($/MWh). So, the evolution of CO2 

emission cost is represented by: 

'�� � 0���'� ) 1���'���.                                                              (6.3)     

Here, the CO2 emission cost follows the Geometric Brownian Motion (GBM). 

Where 0�and 1� are no stochastic functions and Bt is a Wiener processes. 

And, ��R, ��� are correlated Wiener processes with: 

'��R'��� � pR�'g                                                                                  (6.4) 
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Assume that the decision to build a new plant is made at time h which requires a 

capital investment of K dollars which will be paid when the construction is completed in 

 years.  

Thus, the long-term profit functional is: 

;��, (, ¤; h, �� j #R7Ä ��	�g 9 �	 9 m	�g�kAl�gA��'m 9 nkAl�oD®A��oD®
� ) 

        P ��1 9 ���MoD® �	�g 9 �	 9 m	�g� ) ���
�g 9 �
 9 m
�g��kAl�gA��'m:.  (6.5)                                    

The value function u is defined as 

      @��, (, ¤� �   ;��, (, ¤; h, ��o�¯°,±²³,{�7C,{|:gJc             
.                                            (6.6)              

where y�,M, denotes the set of stopping times in [t,T]. 

Decompose above problem into the following two problems: 

The first problem is optimal dispatch once the new plant is built. The value 

function v of the optimal dispatch problem is defined as: 

  ]��, (, ¤� j  \%({°�7C,{|: #R,�7P ��1 9 �g��Mo �	�g 9 �	 9 m	�g� )     

�g��
�g 9 �
 9 m
�g��kAl�gA��'m:.                    (6.7) 

This stochastic control problem, as defined above, is transformed into a partial 

differential equation problem by using the principle of dynamic programming. The value 

function v satisfies the following H-J-B equation: 

 
WW� ] ) 2@a{�7C,{|:7��1 9 �g���	�g 9 �	 9 m	�g� ) �g��
�g 9 �
 9 m
�g��kAl�gA�� ) >X 9 p]: � 0, 

(6.8) 

where 

>X j T0R�\�R 9 56��� ) 	
 1R
U WXWR ) 	
 1R
 W[�W�[ ) 0� WXW� ) 	
 1�
 W[�Wõ[ ) pR�1R1�(¤ W[�WRW�.(6.9)                                
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Therefore, the H-J-B equation is reduced to 

 
WW� ] ) �1 9 �F���	�g 9 �	 9 m	�g� ) �F��
�g 9 �
 9 m
�g� ) >X 9 p] � 0.         (6.10)   

Second, consider optimal time to build a new plant with construction delay. The value of 

the portfolio is given by ]�h, �o� when the new plant is built; therefore, the value 

function of this problem w by considering construction time delay is defined as follows: 

���, (, ¤� j m@ao�ö°,± #R,�7Ä ��	�g 9 �	 9 m	�g�kAl�gA��'m )oD®
�    

�]�h ) , �oD®� 9 n�kAl�oD®A��, � � 70, � 9 �.                                   (6.11)        

The delayed optimal stopping problem can be transformed to a non-delayed 

optimal stopping problem and solve it by using a similar method once used in previous 

entry decision model with delay.  

For the dynamic inventory model, it is assumed that the retailer has no equity at 

the beginning and only acquires capital by one-time debt financing. Future work can 

relax this condition to make the problem more realistic, e.g., the retailer already has 

equity. Other conditions also can be extended. For example, the retailer has shortage cost 

as well as holding costs. The relationship between the optimal ordering policy and the 

parameters is also very important to study.  
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APPENDIX 

THE SOLUTION PROCEDURE OF DELAY MODEL 

 

The following are the details of solution for the PDEs in Section 3. 

First, Consider the H-J-B Equation (3.9): 

                                 
WW� ] ) �1 9 �F���	( 9 �	� ) �F��
( 9 �
� ) >X 9 p] � 0    

      >X � 0′ WXWR ( ) 	
 1
 W[�W�[ (
                                                             (A.1) 

      0′ � 0�f 9 56(� ) 	
 1
.                                                               (A.2) 

To calculate the equation, the terminal condition needs to be changed to initial 

condition by considering �′ � � 9 �. However, the model still uses � to represent �′ for 

convenience. Thus: 

9 WW� ] ) �1 9 �F���	( 9 �	� ) �F��
( 9 �
� ) >X 9 p] � 0                         (A.3) 

the boundary conditions: 

         ]��_�^, �� � 9 ��l �1 9 kAl��                 (�_�^ � 0�                                         (A.4) 

]��_�R, �� � ��	 ) �F��
 9 �	�� F �_�R 9 �1 9 �F��	 9 �F�
p �1 9 kAl�� 

 �h � �, �_�R is a big number�    (A.5) 

the initial condition: 

]�(, �� � ��	( 9 �	                                                    , �E �( ` �[A���[A�� ��1 9 �����	( 9 �	� ) ����
� 9 �
�    , �E �( � �[A���[A�� ��.                (A.6) 
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To overcome the artificial oscillations, an upwind scheme is used to represent ����. 

Thus, equation (2.16) is used when 0′ ` 0 ; equation (2.17) is used when 0′ � 0.  

In this model, changing variable technique (Y=lnX) is used to improve the 

calculation efficiency. 

Using equations (2.15),(2.16),(2.17) and (2.18), ignoring terms of Z�∆�� and 

Z�∆(�, and plugging in equation (A.3), obtain the formula for ]_̂D	: 

If 0′ ` 0 

 ]_̂D	 � ∆��∆��[  [
 ]^D	_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� ]^A	_ )
∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 αF��	 9 �F�
�.                                                               

If 0′ � 0    
 ]_̂D	 � �∆�∆� µ′ ) ∆��∆��[  [
 � ]^D	_ 9 �p∆� 9 1 ) ∆�∆� µ′ ) ∆��∆��[ 1
� ]_̂ ) ∆��∆��[  [
 ]^A	_ )

∆�N��	 ) �F��
 9 �	�Ok� 9 �1 9 �F��	 9 �F�
�.                                                       

Consider the H-J-B Equation (3.13) with terminal condition: 

¶ WW� SC ) >·K ) ��	�g 9 �	� 9 pSC � 0           SCN�̧, (O � ]N�̧, (O 9 n                                     �        
By using the same strategy as before, the following PDE is obtained: 

     9 WW� SC ) >·K ) ��	�g 9 �	� 9 pSC � 0                                             (A.7) 

the boundary conditions: 

             SC��_�^, �� � 9 ��l �1 9 kAl��     (h � �, �_�^ � 0�                           (A.8) 

   SC��_�R, �� � ��ÌÍÎ�A��l �1 9 kAl�� �h � �, �_�R is a big number�  (A.9) 
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the initial condition:  

             SC�(, δ� � ]�(, � 9 n.                                                                      (A.10) 

So, SC��� is obtained by using the following formulas in the interval [t-, t]. 

If 0′ ` 0    
SCº»D	 � ∆��∆��[  [
 SCºD	» 9 �p∆t 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� SCº» ) � ∆��∆��[  [
 9 µ′ ∆�∆�� SCºA	» )

∆t�c	k� 9 D	�. 
If 0′ � 0    

SC_̂D	 � ÷∆�∆¤ µ′ ) ∆��∆¤�
 1
2 ø SC^D	_ 9 Ïp∆� 9 1 ) ∆�∆¤ µ′ ) ∆��∆¤�
 1
Ð SC_̂ ) ∆��∆¤�
 1
2 SC^A	_
) ∆��c	k� 9 �	�. 

After solving SC�6, \�, considering the H-J-B Equation (3.15) 

      ��6�9 WW� � 9 >� 9 ��	�g 9 �	� ) p�, � 9 S0� � 0     

First, consider: 

WW� w¢ ) >ÒÓ ) ��	�g 9 �	� 9 pw¢ � 0                                                (A.11) 

>ÒÓ � 0′ W�ÓWR ( ) 	
 1
 W[ùÓW�[ (
                                                                (A.12) 

By using the same strategy as before, the following PDE is obtained: 

     9 WW� �¢ ) >ÒÓ ) ��	�g 9 �	� 9 p�¢ � 0                                              (A.13) 

the boundary conditions: 

             �¢��_�^, �� � 9 ��l �1 9 kAl��        (h � �, �_�^ � 0�                         (A.14) 

   �¢��_�R, �� � ��ÌÍÎ�A��l �1 9 kAl��   �h � �, �_�R is a big number� (A.15) 

the initial condition:  

             �¢�(, � � 0.                                                                                          (A.16) 
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Also the formula for �¢_̂D	
 is obtained: 

If 0′ ` 0    
�¢_̂D	 � ∆��∆��[  [
 �¢^D	

_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� �¢_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� �¢^A	_ )
∆��c	k� 9 �	�. 

If 0′ � 0    
�¢_̂D	 � ÷∆�∆¤ µ′ ) ∆��∆¤�
 1
2 ø �¢^D	_ 9 Ïp∆� 9 1 ) ∆�∆¤ µ′ ) ∆��∆¤�
 1
Ð �¢_̂ ) ∆��∆¤�
 1
2 �¢^A	_

) ∆���	k� 9 �	�. 
Using the same method, the numerical solution of w=max{�¢, SC} is found.  

Consider the H-J-B Equation (3.18) 

                                             
WW� @ ) ��	�g 9 �	� ) >w 9 p@ � 0   

                                               >w j 0 WJWR ( ) 	
 1
 W[¹W�[ (
 

the boundary conditions: 

@��_�^, �� � 9 ��l �1 9 kAl��        (�_�^ � 0�                               (A.17) 

@��_�R, �� � ���ÌÍÎ�A���l �1 9 kAl��  � �_�R is a big number�    (A.18) 

the initial condition: 

@�(, 0� � 0                                                                                     (A.19) 

Also the formula for @_̂D	 is obtained: 

If 0′ ` 0    
@_̂D	 � ∆��∆��[  [
 @^D	_ 9 �p∆� 9 1 9 ∆�∆� µ′ ) ∆��∆��[ 1
� @_̂ ) � ∆��∆��[  [
 9 µ′ ∆�∆�� @^A	_ )

∆��c	k� 9 �	�. 
 If 0′ � 0    
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@_̂D	 � �∆�∆� µ¢ ) ∆��∆��[  [
 � @^D	_ 9 �p∆� 9 1 ) ∆�∆� µ¢ ) ∆��∆��[ 1
� @_̂ ) ∆��∆��[  [
 @^A	_ )
∆��c	k� 9 �	�.  

Using the same method, the numerical solution of u is found. 
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