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ABSTRACT 

Increasing globalization and growing industrial system complexity has amplified 

the interest in the use of information provided by sensors as a means of improving overall 

manufacturing system performance and maintainability. However, utilization of sensors 

can only be effective if the real-time data can be integrated into the necessary business 

processes, such as production planning, scheduling and execution systems. This 

integration requires the development of intelligent decision making models that can 

effectively process the sensor data into information and suggest appropriate actions. To 

be able to improve the performance of a system, the health of the system also needs to be 

maintained. In many cases a single sensor type cannot provide sufficient information for 

complex decision making including diagnostics and prognostics of a system. Therefore, a 

combination of sensors should be used in an integrated manner in order to achieve 

desired performance levels. Sensor generated data need to be processed into information 

through the use of appropriate decision making models in order to improve overall 

performance.  

 In this dissertation, which is presented as a collection of five journal papers, 

several reactive and proactive decision making models that utilize data from single and 

multi-sensor environments are developed. The first paper presents a testbed architecture 

for Auto-ID systems. An adaptive inventory management model which utilizes real-time 

RFID data is developed in the second paper. In the third paper, a complete hardware and 

inventory management solution, which involves the integration of RFID sensors into an 

extremely low temperature industrial freezer, is presented. The last two papers in the 

dissertation deal with diagnostic and prognostic decision making models in order to 

assure the healthy operation of a manufacturing system and its components. In the fourth 

paper a Mahalanobis-Taguchi System (MTS) based prognostics tool is developed and it is 

used to estimate the remaining useful life of rolling element bearings using data acquired 

from vibration sensors. In the final paper, an MTS based prognostics tool is developed for 

a centrifugal water pump, which fuses information from multiple types of sensors in 

order to take diagnostic and prognostics decisions for the pump and its components. 
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SECTION 

1. INTRODUCTION 

 

Increasing globalization and growing industrial system complexity has amplified 

the interest in the use of information provided by sensors as a means of improving overall 

manufacturing system performance and maintainability, and lowering costs. Performance 

loss in a manufacturing system can either be due to inventory related problems or because 

of the health condition of the system. Lack of critical inventory items can cripple the 

entire production/ processes in the manufacturing system; whereas holding too much 

inventory can generate substantial holding costs for an organization. On the other hand, 

one cannot maintain performance if the components that comprise the overall 

manufacturing system are performing below acceptable performance thresholds. The 

drop in performance of components may be due to sudden failures or slow and gradual 

wearing of parts. Unfortunately there are no known solutions for the former case, 

however, with the help of an adequate monitoring, diagnostic and prognostics scheme, 

the latter case can be prevented. 

 

1.1. INVENTORY MANAGEMENT 

In the recent years Radio Frequency Identification (RFID) sensors have gained 

wide attention due to their capability to provide non-contact object identification and 

inventory visibility.  An RFID system consists of (a) RFID tags, which store the unique 

item identity and other relevant information about items, (b) readers and antennas, that 
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interrogate the tags and read the information, and (c) software called middleware, that 

controls the RFID equipment, manages the data and provides an interface for the 

distribution and sharing of data with other enterprise applications. Potential benefits of 

RFID include: (1) instantaneous and automated data entry and monitoring, (2) effective 

use of labor, (3) real time visibility, and (4) mobile databases (i.e., self-storage of 

pertinent information of an item on the item itself).  

RFID is a member of a broad group of technologies called Auto-ID (automatic 

identification), which are used to identify objects without human intervention. In general, 

Auto-ID technologies, advanced sensing capabilities, and recent developments in the area 

of mobile wireless ad hoc networking provide a potential to establish a data-rich 

manufacturing environment [1, 2].  Such technological capabilities provide real-time 

visibility of each single entity in the supply chain; presenting many opportunities for 

process improvement and re-engineering [3, 4].  On the other hand, the technology also 

presents various challenges due to the lack of established industrial standards and 

application roadmaps [5, 6], and the difficulties that arise while dealing with voluminous 

data in a timely fashion [1].  

A typical Auto-ID application requires effective integration of two components.  

First, business processes (i.e., decision-making models) must be re-engineered to 

encapsulate Auto-ID data. Business process re-engineering should involve the integration 

of real-time data into the critical processes such as manufacturing execution, production 

planning, and scheduling systems. This integration requires the development of 

intelligent decision making models that can effectively process the sensor data into 

information and suggest the appropriate actions. For instance, the amount of safety 
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stocks, which are typically used in traditional inventory management models, can be 

dramatically reduced if Auto-ID data can be incorporated into the model.  The second 

component is the networking topologies and related scheduling/routing protocols.  In 

order for the decision-making component to be realistic, the network must facilitate 

effective and efficient routing of Auto-ID data packets. Academic studies usually focus 

either on manufacturing-specific decision-making (manufacturing engineering and 

industrial engineering) [7-9]; or on networking (electrical and computer engineering) [10, 

11]. Due to the gap between these two sub-components, namely decision-making and 

networking, the solutions provided to the industry are not directly applicable; further 

testing on Auto-ID technologies within the proposed solution is usually necessary in 

order to fine-tune it to the production environment. 

In the recent years, Auto-ID technologies, especially RFID has been gaining 

momentum in inventory management applications [12-14]. The objective in inventory 

management is to have the necessary inventory items at the right time, at the right 

amount, and at the right place. Since not all inventory items are of high value, tight 

tracking of them may not be desired. On the other hand, critical inventory items may 

require a tighter control. Due to the variety of items in a typical manufacturing 

environment, inventory items can be categorized in different classes, such as ABC 

classification, since tracking of all inventory items may not be economically viable.  

When implemented properly, RFID technology can provide item-level visibility in which 

electronic tags programmed with unique identification information are attached to 

“objects” that need to be monitored, tracked, or identified easily when needed; this has 

been an unreachable region of manufacturing information domain. 
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Today’s inventory management systems operate with Stock Keeping Unit (SKU) 

level data, which means that hundreds of products can fall under the same SKU that 

associates brand, size, flavor, etc. and essentially categorizes them under a product type.  

While SKU-level data provide aggregate inventory levels for inventory items, it falls 

short when visibility of each item is desired.  RFID technology facilitates Electronic 

Product Codes that provide unique identification for each product inside the enveloping 

SKU or inventory category [15]. This type of data helps associate production events with 

each inventory item, which facilitates tighter inventory control that relies on such real-

time data.  

Organizations that understand these possibilities have become trend-setters by 

establishing a January 2005 mandate for suppliers, which require RFID implementation 

on container/pallet size inventory. Such organizations include Wal-Mart and the 

Department of Defense (DOD).  The focus of these mandates are twofold; not only do 

they force companies to take quick action in fulfilling requirements, but also to look 

towards the future with overall cost savings in mind.  The need to organize and make 

decisions based on the data provided by the RFID tags is prominent.  

To date, research that conjoins RFID technology and item-level inventory 

management on the shop floor is at a preliminary stage, only inferring benefits upon 

application.  The challenge is to collect RFID data in a timely manner, to process such 

voluminous data, and to make timely decisions that are tied into manufacturing execution 

systems.  If the challenge is overcome, then the benefits such as waste elimination, 

inventory reduction, automatic replenishment, stock-out reduction, and overall cost 
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savings can be easily realized.  Therefore, there is a need for RFID data-based effective 

decision making algorithms that can lead to such benefits. 

In addition, past work in the literature [1-14] assume a straightforward 

deployment of RFID technology will yield 100% satisfactory results in terms of item 

visibility. However, most of these studies have been performed under “controlled” 

laboratory settings and upon technology transfer to a real industrial environment, 

unforeseen problems, such as readability may arise from radio frequency (RF) 

interference, RF absorbing materials, and environmental conditions [16]. For instance, 

RFID tags may experience temperatures down to 100 deg F below zero in extremely low 

temperature environments such as an industrial freezer, or a cold chain warehouse. In 

such a case, excessive ice buildup on the tags may render the technology unreliable 

resulting in some of the tags becoming unreadable by RFID readers. Therefore, additional 

design and development need to be undertaken in areas in such as antenna configuration, 

antenna power control, etc. in order to provide feasible solutions for the intended 

application. 

 

1.2. MANUFACTURING SYSTEM HEALTH MANAGEMENT 

It is important to note that RFID is only one of many possible sensors that can be 

“embedded” in business processes in order to improve system performance. Even if the 

RFID/Auto-ID implementation for inventory management is successful, the performance 

of the overall system still depends on the physical health condition of its components. 

Therefore, it is necessary to be able to monitor and diagnose problems that can arise due 

to the wearing out of components.  



 

 

6

As discussed in Section 1.1, RFID sensors can usually provide satisfactory results 

in order to prevent performance loss due to inventory management problems.  However, 

in the component health management case, a single sensor type usually cannot provide 

sufficient information complex decision making. Therefore, a combination of sensors 

should be used in an integrated manner in order to achieve desired performance levels. 

Some of the various sensors that have been traditionally used to control the physical 

operations of system components are vibration, acoustic emission, temperature, force, 

and torque sensors [17, 18]. These sensors can also be utilized to convey information 

about the health condition of components that they are attached to. If the data acquired 

from these sensors are properly analyzed, it can be turned into diagnostic and prognostic 

information about the components. Consequently, this information can be stored on the 

RFID tags which are attached to the components and provide additional visibility about 

the manufacturing system which would lead to better decision making. 

Most of the work in component health management focuses on monitoring and 

diagnostics of a single component out of many that comprise a system. For instance 

rolling element bearings and centrifugal pumps have been extensively studied in order to 

develop numerical model-based or process history-based monitoring and diagnostic 

algorithms and techniques since they are often the critical components that directly affect 

the overall performance of the entire system [19-25]. However, diagnostics by its nature 

is a reactive approach. In order to prevent catastrophic failures, preventive maintenance 

strategies are usually employed by industries. Maintenance on machinery is performed on 

a schedule-basis, which tends to unnecessarily increase downtime, reduce machine life 

and thus generate redundant costs. In order to rectify this problem, it is necessary to 
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transition to a more proactive approach, i.e. predictive maintenance. Prognostics are 

important to predictive maintenance, and it focuses on performance degradation and 

estimation of remaining useful life (RUL) of components. Therefore, research on 

prognostics has been gaining momentum in the last decade; however, compared to 

diagnostics, literature on prognostics is much smaller. 

In the literature, there are two approaches for the estimation of RUL. The first 

approach utilizes physics of failure models that incorporate operating conditions in order 

to track the damage that components experience. These models require specific 

mechanistic knowledge and theory relevant to the components under investigation [26, 

27]. The second approach to estimation of RUL comprises of pattern recognition models 

that are derived from historical data collected from the system under investigation. 

Artificial intelligence techniques such as neural networks, neuro-fuzzy inference systems, 

self organizing maps, etc. have been applied to the prediction of RUL by many 

researchers [28, 30]. 

It should be noted that most of the work done in this area [19-30], focuses on 

specific failure cases created under controlled laboratory conditions or through computer 

simulations. In some cases several faults may be present at the same time, one of which 

would ultimately result in failure. Nevertheless, all of the faults need to be monitored 

concurrently in order to have an effective prognosis on the RUL. In addition, it is usually 

much easier to detect damage than to assess its severity and progression. Both physics of 

failure and damage-progression/performance-degradation models face difficulties when 

the system under consideration is complex and affected by the operating conditions and 

the environment. The papers in the literature present several signals; and features that are 
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derived from these signals, which need to be monitored. If these signals/features show a 

large variability between experiments, it becomes difficult to select suitable thresholds to 

be used in monitoring diagnostics and prognostics. In addition, the existing body of work 

does not present a systematic method which can identify the most pertinent variables and 

eliminate the redundant ones in order to reduce analysis overhead. Therefore, a new 

multivariable method is necessary to identify the input variables necessary to be 

monitored for fault detection, root cause analysis, and fault prognosis. 

 

1.3. ORGANIZATION OF THE DISSERTATION 

In this dissertation, which is presented as a collection of five journal papers, 

several reactive and proactive sensor data-based decision making models that utilize data 

from single and multi-sensor environments are developed. The first three papers strive 

to provide solutions for inventory management related problems in order to increase 

manufacturing system performance. Papers IV and V, delve into condition monitoring, 

diagnosis and prognosis of components. Table 1.1 and Figure 1.1 show the organization 

of the dissertation in the form of several papers, and display the overall application area 

and the level of complexity. 
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Table 1.1. Organization of the Dissertation 

SENSOR 
DATA‐based 
DECISION 
MAKING 

Paper I: 
 “A Testbed 
Architecture for 
Auto‐ID 
Technologies”,  
Assembly 
Automation, vol. 
26, no. 2, pp. 127‐
136, 2006. 

Paper II:  
“Adaptive inventory 
management using 
RFID data”,  
Int. Journal of 
Advanced Manufac. 
Technology,  
vol. 32, no. 9, pp. 1045‐
1051, 2007. 

Paper III:  
“RFID‐based 
smart freezer”,  
Industrial 
Electronics,  
IEEE Transactions 
on,  
vol. 56‐7, pp. 
2347‐2356, 2009. 

Paper IV: 
“Mahalanobis Taguchi 
System (MTS) as a 
prognostics tool for  
rolling element bearing 
failures” 
Accepted for publication on  
Journal of Manufacturing 
Science and Engineering, 
Manuscript No: 09‐1254 

Paper V: 
“Mahalanobis 
Taguchi System 
(MTS) as a multi‐
sensor based 
prognostics tool for 
centrifugal pump 
failures”,  Intended 
for submission to 
IEEE Systems Journal

Single / Multi‐
sensor 

N/A  Single Sensor (RFID)
Single Sensor 

(RFID) 
Single sensor (vibration) 

Multi‐sensor 
(vibration,  

temperature, flow, 
and, pressure) 

Sensor Output  Digital  Digital  Digital  Analog  Analog 
Reactive / 
Proactive 

N/A  Reactive  Reactive  Proactive  Proactive 

Simulation‐based 
/  
Hardware 
Implementation 

N/A  Simulation‐based 
Hardware 

implemented 
Hardware implemented 

Hardware 
implemented 

Number of 
Components 

N/A  N/A  N/A 
1 (rolling element  

bearings) 
3 (impeller, seal, 

and filter) 

Number of 
Failures /  
Data Collection 
Complexity 

N/A  N/A  N/A / Moderate 1 / Moderate  3 / High 

 
 
 
 
 

 
Figure 1.1. Outline of the dissertation 
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1.4. CONTRIBUTIONS OF THE DISSERTATION 

This dissertation introduces several sensor data-based decision making models in 

single-sensor and multi-sensor environments in order to maintain manufacturing system 

performance. First, a general testbed architecture which facilitates the hardware/software 

based testing of the ideas that are developed in the dissertation is presented. Then, two 

inventory management control models are developed in order to overcome inventory 

related problems that affect performance. In the final part of the dissertation, a 

Mahalanobis Taguchi System based component health monitoring, diagnostics and 

prognostics scheme is developed. The contributions of each paper that constitute the 

dissertation are listed below.     

The contribution of Paper I includes the development of a multi-sensor testbed 

architecture in order to support the research, development and implementation of Auto-

ID technologies in network centric manufacturing environments. The proposed solution 

utilizes a unique hardware-in-the-loop simulation methodology, which integrates decision 

making model development with the design of networking topology and data 

routing/scheduling schemes in order to develop, test and implement viable Auto-ID 

solution. The paper also presents two case studies that highlight the effective use of RFID 

technology, its potential benefits, challenges, and deficiencies. The architecture 

developed in this paper lays the foundation for the successful implementation of 

hardware solutions and decision making models developed in the subsequent papers. 

The contribution of Paper II is the development of a single sensor data-based 

reactive inventory management decision making model in a purely simulation 

environment. The paper introduces an adaptive inventory management model, which uses 
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a forecasting algorithm founded on RFID-based state and event data for tracking and 

dispatching of time and temperature sensitive materials. The study compares a traditional, 

static inventory model with the proposed model in terms of cost savings, inventory waste 

and reduction, and decision making complexity. The performance of the proposed model 

is validated in a simulation environment, which demonstrates the overall benefits and 

effectiveness of RFID technologies in providing low cost manufacturing solutions, 

reduced inventory levels and waste. 

Subsequently, single sensor data-based reactive decision making model 

development has been extended to include hardware implementation in Paper III. 

Hardware implementation creates additional challenges which are addressed by the 

development of a novel RFID-based smart freezer using a new inventory management 

scheme for extremely low temperature environments. The proposed solution utilizes 

backpressure inventory control, systematic selection of antenna configuration, and 

antenna power control. The proposed distributed inventory control (DIC) scheme dictates 

the amount of items transferred through the supply chain. When a high item visibility is 

ensured, the control scheme maintains the desired level of inventory at each supply chain 

echelon. The performance of the DIC scheme is guaranteed using a Lyapunov-based 

analysis. The proposed RFID antenna configuration design methodology coupled with 

locally asymptotically stable distributed power control (LASDPC) ensures a 99% read 

rate of items while minimizing the required number of RFID antennas in the confined 

cold chain environments with non-RF friendly materials. The proposed RFID-based 

Smart Freezer performance is verified through simulations of supply chain and 

experiments on an industrial freezer testbed operating at -100°F. 
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Paper IV introduces additional sensors increasing the overall decision making 

complexity due to the multi-variate nature of the problem. In addition, the decision 

making model developed in this paper is proactive, further increasing the complexity.  

The contribution of this paper is the proposed novel Mahalanobis Taguchi System (MTS) 

based fault detection, isolation, and prognostics scheme. The proposed data-driven 

scheme builds upon MTS by utilizing Mahalanobis Distance (MD) based fault clustering 

for diagnostics and by the use of the progression of MD values over time for prognostics. 

MD thresholds derived from the clustering analysis are used for fault detection and 

isolation. When a fault is detected, the prognostics scheme, which monitors the 

progression of the MD values, is triggered. Then, using a linear approximation, time to 

failure is estimated. The performance of the scheme has been validated via experiments 

performed on rolling element bearings inside the spindle headstock of a micro computer 

numerical control (CNC) machine testbed. The bearings have been instrumented with 

vibration and temperature sensors and experiments involving healthy and various types of 

faulty operating conditions have been performed. The analysis is performed in the feature 

domain by extracting useful features from the raw sensor data. The experiments show 

that the proposed approach renders satisfactory results for bearing fault detection, 

isolation and prognostics. Overall, the proposed solution provides a reliable multivariate 

analysis and real-time decision making tool that; (1) presents a single tool for fault 

detection, isolation and prognosis, eliminating the need to develop each separately and 

(2) offers a systematic way to determine the key features, thus reducing analysis 

overhead. In addition, the MTS-based scheme is process independent and can easily be 
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implemented on wireless motes and deployed for real-time monitoring, diagnostics and 

prognostics in a wide variety of industrial environments. 

In Paper V, the Mahalanobis Taguchi System is be utilized for fault detection, 

isolation and prognostics of centrifugal water pump failures.  Unlike, the bearings 

mentioned in paper IV, the centrifugal water pump has multiple components, each with 

their own failure modes. In addition, experimental data is provided through multiple 

sensors, which increases the data collection and processing complexity. In addition, the 

analysis is performed in the data domain, i.e. directly on the raw data collected from the 

sensors. The contribution of this paper can be summarized as follows: (1) Uses MTS in 

order to fuse multi-sensor information into a single system performance metric; (2) 

Builds upon MTS by introducing the use of MD-based fault clusters for fault isolation; 

(3) Utilizes the progression of MD values over time in order to estimate the remaining 

useful life of components; and (4) Applies MTS to the domain of centrifugal pump 

monitoring, diagnostics and prognostics for the first time to the best knowledge of the 

authors. 
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PAPER 

1. A TESTBED ARCHITECTURE FOR AUTO-ID TECHNOLOGIES 

 

1.1. INTRODUCTION 

The advent of Auto-ID technology has enabled electronic labeling and wireless 

identification of objects, which facilitates real-time product visibility and accurate 

tracking at all levels of the product life cycle (McFarlane et al., 2003).  From supply 

chain level business processes to shop floor level manufacturing execution, this 

technology presents many opportunities for process improvement and re-engineering 

(Brewer, Sloan, and Landers, 1999; Lee et al., 2004; Michael and McCathie, 2005). On 

the other hand, it also presents many challenges due to lack of standards and roadmaps to 

transform Auto-ID technologies into Auto-ID solutions (Engels et al., 2001; McFarlane 

2002; Penttila et al., 2004).  In spite of its potential advantages, the major challenge is 

how to manage such voluminous data in a timely fashion.  If this can be achieved, then 

“information” can replace “inventory” on the shop floor. 

A typical Auto-ID application requires effective integration of two components.  

First, business processes (i.e., decision-making models) must be re-engineered to 

encapsulate Auto-ID data.  For instance, the amount of safety stocks, which are typically 

used in traditional inventory management models, can be dramatically reduced if Auto-

ID data can be incorporated into the model.  The second component is the networking 

topologies and related scheduling/routing protocols.  In order for the decision-making 

component to be realistic, the network must facilitate effective and efficient routing of 
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Auto-ID data packets. Academic studies usually focus either on manufacturing-specific 

decision-making (manufacturing engineering and industrial engineering) (Zaremba and 

Morel, 2003; Naso and Turchiano, 2004; Gao et al., 2005) or on networking (electrical 

and computer engineering) (Jacquet et al., 2001; Agarwal et al., 2001; Vaidya et al., 

2005).   Due to the gap between these two sub-components, namely decision-making and 

networking, the solutions provided to the industry are not directly applicable; further 

testing on Auto-ID technologies within the proposed solution is usually necessary in 

order to fine-tune it to the production environment. 

 

1.2. UMR’S AUTO-ID TESTBED 

An Auto-ID testbed has been established at the University of Missouri-Rolla 

(UMR) with the objective of providing viable solutions to industry by developing 

architectures, methodologies, and tools that include both decision-making and 

networking components, and facilitate effective and efficient collection and use of Auto-

ID data for manufacturing applications.  

The generic approach developed in the Testbed to provide a viable solution, as 

depicted in Figure 1.1, includes two major activities so that the research and development 

work can be carried out in realistic and accurate conditions.  In the Decision-Making 

Module, the current business process is analyzed.  After initial data collection about the 

process, a simulation model is developed in order to carry out “what-if” scenarios.  As a 

result of this approach, various alternative decision-making models that rely on a certain 

level of Auto-ID data are developed.  The information flow required by each model is 

then communicated to the Networking Module, which mimics, through network 
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simulation, the possible load on the network.  In this module, various data scheduling and 

routing protocols are developed and tested using simulation.  These two modules, 

Decision-Making and Networking, provide an in-depth analysis of all possible solutions.  

The most reliable networking scheme and the most promising decision-making model are 

then combined together for hardware-in-the-loop testing. Finally, a viable solution 

emerges after the hardware-in-the-loop testing is successfully completed. The solutions 

developed and validated in UMR’s Auto-ID Testbed include a decision-making 

component and a networking component that supports the industrial application.   

In order to avoid long development lead times while implementing the approach 

depicted in Figure 1.1 for different industries, modular software and hardware 

components have been developed, which can be integrated easily so that the testbed 

environment can be re-configured in a timely manner in order to satisfy the need for the 

particular industrial application. 

 

 

Figure 1.1. UMR’s Auto-ID testbed’s approach to providing viable solutions 
 

• Mimic major hardware, software, 
networking problems

• Develop alternative solutions, such 
as protocol, topology, etc.

• Validate protocol and assess 
network performance

Networking ModuleDecision-Making Module

• Assess current practice

• Develop alternative decision-
making models

• Validate these models

VIABLE SOLUTIONS
“Cost Savings & Improved performance”

1

2

3

Hardware-in-the-loop Testing

4
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1.3. HARDWARE-IN-THE-LOOP SIMULATION METHODOLOGY 

The fundamental motivation behind establishing an Auto-ID testbed at UMR 

stemmed from the fact that in order to demonstrate the potential benefits of integrating 

Auto-ID technologies in a manufacturing environment, a testbed needs to be equipped 

with a variety of industry-grade production equipment and Auto-ID hardware and 

software tools, which is not a realistic expectation due to two reasons:  Such equipment 

(1) have a very high overall cost and are not usually flexible enough to be utilized in a 

variety of different configurations for a variety of different industrial applications, 

therefore they are not cost effective; and (2) do not allow for expedited testing (i.e., 

testing of different alternative models in a very short time).  Therefore, there is a need to 

develop “virtual” hardware that can mimic the real hardware in a cost-effective way and 

also allow for developing simulated production scenarios for expedited testing.  An 

additional advantage of such virtual models is that they can be run on distributed 

computers, similar to a realistic industrial setting, which then allows for networking and 

communications related testing. 

UMR’s Auto-ID Testbed is equipped with virtual models that have the capability 

to communicate with real hardware, which leads to the concept of hardware-in-the-loop 

simulation models.  Such an approach provides a dynamic, controlled testbed 

environment for developing, testing, and evaluating Auto-ID systems, and it enables 

development of guidelines for technology transfer. 

 Virtual models can be used to mimic actual hardware and they can generate a 

large amount of data, which are essential for developing realistic solutions to industrial 

problems.  For example, data generated by using such a combination of actual hardware 
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and virtual models can provide a basis for low-cost experimentation on network 

overloading.  In order to make effective decisions with the data generated in a hardware-

in-the-loop simulation environment, data must be properly communicated among 

decision-makers (i.e., controllers), therefore reliable data scheduling and routing schemes 

are required for such reliable data transfer. 

Most real-world systems are too complex to allow realistic models to be evaluated 

analytically.  Traditionally, simulation is used for modeling of such systems where a 

simple closed form analytical solution through the use of a mathematical model is not 

possible due to the highly stochastic natures of these systems (Law and Kelton, 1991).  In 

a typical simulation study, a computer is used to evaluate a model numerically, and data 

are gathered in order to estimate the desired true characteristics of the model. In addition 

to its typical use, at UMR’s Auto-ID Testbed, simulation is used in three other ways: 

(1) Virtual Model (VM) Development:  Simulation is used to develop virtual 

hardware/equipment models that can communicate with real hardware. When 

such virtual models are validated, they can be duplicated to form a more 

complicated production environment, where they can interact with each other, as 

well as with other hardware, and run in real-time (i.e., unlike typical simulation 

models that are run in accelerated mode) on distributed computing platforms to 

represent complex behaviors. 

(2) System Controller (SC) Development: Since simulation packages have 

capabilities to facilitate decision-making modeling, simulation models can be 

used to control real hardware/equipment if they are properly designed to 
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communicate with the hardware (i.e., I/O capability with the equipment’s 

protocol).  

(3) Networking Simulation (NS): Auto-ID technology potentially leads to 

generation of large amounts of data, which can overload the network and cause 

congestion and information loss.  Amount and type of data flow is dictated by the 

design of decision-making models embedded in a system.  Therefore, networking 

performance, in the presence of such voluminous data transfer, must be evaluated 

in order to make sure that the decision-making models perform as expected.  

Network simulators are used to construct virtual networks of varying sizes based 

on the Auto-ID devices that are being considered for deployment with alternative 

topologies to find suitable solutions for a particular Auto-ID environment.  In 

addition, network simulators are used in the process of evaluating different 

communication protocols and in the design of new protocols specifically for 

Auto-ID networks.  One example of such a protocol design is to predict the onset 

of congestion due to Auto-ID data and to mitigate congestion while ensuring that 

sufficient data will be transferred for decision making. 

Simulation packages, by default, are designed to collect data on a variety of 

events and entities defined by the user.  Therefore, VM, SC, and NS development 

strategies, virtual models and controllers are also used as “system monitors” since they 

have the informational equivalence of real systems, which justifies the approach adopted 

by the UMR’s Auto-ID Testbed.  In addition, distributed simulation models provide 

advantages in modeling the behavior of Auto-ID devices embedded in an application that 

consists of geographically distributed environments. 
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The hardware-in-the-loop simulation methodology, developed at UMR’s Auto-ID 

Testbed, is built on three integrated levels of development and testing activities.  A 

typical industrial application (referred to as a “project” hereafter) goes through those 

three levels, as described in Sections 2.3.1 through 2.3.3, before a viable solution is 

generated.  Before starting at Level 1, a conceptual system design is carried out; the 

application domain analyzed, potential Auto-ID tools determined, material and 

information flow requirements investigated, and new decision-making models that rely 

on Auto-ID data are developed.  These activities are carried out in close cooperation with 

the industry client.  Once an agreement is reached, the 3-level hardware-in-the-loop 

simulation methodology starts. 

1.3.1. Level 1: Controller Simulation.  At Level 1, controllers in the industry 

client's workshop shop floor are modeled individually and their interaction with possible 

Auto-ID tools is simulated.  Such individual models provide insights in terms of the 

controllers’ capability to handle voluminous Auto-ID based data and to timely respond to 

changes within its domain. 

An example Level 1 application is depicted in Figure 1.2.  A virtual replica of a 

pick-and-place robotic cell, with additional RFID features, is developed in the Arena 

simulation environment (Rockwell Automation product).  The programmable logic 

controller (PLC), which controls the real robotic cell, is integrated with the virtual cell 

(i.e., the Arena simulation model) via RSLinx, which is a communication server 

providing plant-floor device connectivity.  The Arena model includes virtual RFID 

antennas and virtual products with RFID tags.  The production objective is to sort parts 
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according to their types, which is determined in the simulation environment based on 

virtual antennas and tags. 

A typical Level 1 application demonstrates the use of virtual Auto-ID data on the 

shop floor and the use of simulation as real-time manufacturing execution and control 

system. Level 1 applications are used for developing proof-of-concept decision-making 

models in the early stages of an industrial application via system simulation on a single 

computer. Therefore, it does not allow for networking performance analysis. 

 

 

Figure 1.2. Level 1: controller simulation 
 
 
 

1.3.2. Level 2: Distributed Controller Simulation.  Level 2 is built upon Level 

1. Once Level 1 applications are developed on individual computers or mobile devices 

are verified, they are integrated with each other based on material and information flow 

determined at the conceptual design stage of a project. Such integration requires 

communications network design, selecting alternative topologies, and necessary data 

scheduling and routing protocols. Level 2 allows for experimenting with distributed 

Level 1 applications that have virtual Auto-ID tools. At this level, alternative decision-

making models, along with their communications requirements, can be tested and 

benchmarked.  
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Therefore, an initial assessment of the overall system, including a network performance 

analysis, can be carried out. 

Different networking topologies that connect decision-making models, which 

reside on distributed computers or mobile devices, can be tested. Once the decision-

making models are validated in terms of system-level performance measures, a series of 

different network topologies and communication protocols can be evaluated to identify 

satisfactory solution for such decision-making models. This is first done by prototyping 

the decision-making network with existing modular hardware and software. For example, 

at UMR’s Auto-ID Testbed, a set of wireless nodes are built for evaluating different 

wireless networks and protocols; these plug-and-play nodes include Bluetooth, 802.11, 

Zigbee, and 900MHz RF radio, each with varying capabilities and limitations in terms of 

data transfer rate. Such modular devices allow for validation of small scale 

communication network and provide sufficient information on simulating larger scale 

networks. If it is not possible to develop a satisfactory networking topology in order to 

meet the networking performance requirements, referred to as quality of service (QoS), 

defined in terms of end-to-end delay, information loss, throughput, and delay variation, 

alternative networking topologies and decision-making models are sought and tested. 

Different data scheduling and routing schemes are required in order to meet the 

user defined QoS, which affects the decision-making models. Therefore, the 

feedback/revision loop (as shown in Figure 1) between the system simulation and 

networking simulation continues until satisfactory results, both at system and networking 

levels, are achieved.  
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Figure 1.3 depicts an example Level 2 application developed at UMR’s Auto-ID 

Testbed.  The application includes a virtual cell and an actual robotic cell.  A decision-

making model, developed in Arena, is added on these two cells as a higher-level 

controller with the objective of demonstrating a supervisory control scheme. This 

application demonstrates the interaction among the three computers/controllers and 

allows for investigating the networking performance in addition to decision-making 

model analysis. 

 

 

Figure 1.3. Level 2: distributed controller simulation 
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overall objective is to demonstrate how a variety of technology tools, including Auto-ID, 

can be effectively integrated in a distributed environment built on the modules that have 

been developed at Level 1 and Level 2. 

An example Level 3 application is shown in Figure 1.4.  The application includes 

two physically distributed (i.e., communication is provided via the Internet) production 

areas; one of them is a virtual (simulated) manufacturing system and the other one is a 

system with actual RFID antennas and parts with RFID tags.  The objective is to monitor 

the inventory levels at two production areas and to minimize stock-outs by allocating 

inventory from one area to the other.  As shown in the figure, a supervisory controller 

monitors the status of the two production areas via RFID data and aims to balance the 

inventory levels.  When a critical point in inventory level is reached, the supervisory 

controller sends a message to the PDA of the inventory dispatcher via wireless 

communication alerting him of the unbalance between the production areas.  In addition 

to demonstrating how various technology tools can be effectively integrated, this 

application shows how the inventory visibility provided by real-time RFID data can 

enhance decision-making on the shop floor.   

 

 

Figure 1.4. Level 3: Distributed controller simulation with Auto-ID hardware-in-the-loop 
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Most Auto-ID applications in industry are carried out in a turn-key manner, which 

usually leads to (1) several revisions after implementation, (2) loss in production, (3) 

purchasing more hardware than necessary, and (4) interconnectedness between legacy 

systems and the new Auto-ID system due to the unforeseen problems at the design stage.  

Unlike such an approach, UMR’s Testbed provides an evolutionary approach that 

facilitates incremental testing and evaluation through three integrated levels of the 

hardware-in-the-loop simulation methodology for validating system and networking-level 

models so that viable solutions, with shorter implementation lead times, can be 

developed. 

 

1.4. CASE STUDIES 

In this section, two case studies, that have been developed using the hardware-in-

the-loop simulation methodology, are presented: (1) RFID data-driven shop floor control, 

and (2) Adaptive inventory management of time-sensitive materials using RFID data.  

Through these case studies, the objective is to highlight the integration of decision-

making models and the network topology/scheduling/routing models with emphasis on 

the testbed design. 

1.4.1. RFID Data-Driven Shop Floor Control.  At  UMR’s  Auto-ID  Testbed,   

a shop floor environment that consists of dock doors, automated guided vehicles, a 

conveyor system, an automated storage and retrieval system (AS/RS), and an assembly 

area has been equipped with RFID systems in order to test a variety of decision-making 

models and networking protocols in the presence of RFID data, as shown in Figure 1.5.  

A programmable logic controller (PLC) and three computers, which are a cell control 
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computer, an RFID middleware computer, and a production planning & control (PP&C) 

computer, are used to run the system. 

 

 

Figure 1.5. RFID data-driven shop floor control 
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to a typical Internet-based shopping site.  Each customer can place an order, which 

includes an assembly of certain number of raw materials stored in the AS/RS.   

The focus of this section is on the manufacturer’s facility, which includes 

industry-size production equipment: dock doors, representing its warehouse, a closed 

loop conveyor that transports raw materials to/from an AS/RS, and an assembly area.  

The dock door and the conveyor are equipped with RFID antennas, which are connected 

to an RFID reader.  A PLC is used to control the shop floor operations, including the 

conveyor, AS/RS, and the motion sensors on the dock door to detect inbound and 

outbound material. 

A cell controller computer is used to serve the following purposes: (1) Act as an 

HMI (human-machine interface) for the operator(s); (2) Execute the control logic that 

governs the production cell; (3) Store local events in a database; and (4) Handle 

communication to/from the PLC by means of an OPC server and XML-DA gateway.  On 

another computer an RFID middleware package resides, which serves as a filter of RFID 

data and facilitates forwarding the data to the correct recipient (system/software). 

A production planning and control computer is used to place orders to the suppliers, 

receive orders from customers, and monitor material flow within the facility.  The various 

computers in this arrangement communicate over the Intranet, which is typically the case 

in many industrial settings due to the geographical locations of facilities.   

In the following sub-sections, problems, challenges, and solution strategies that 

have been developed to solve those RFID technology-related problems are discussed. 
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1.4.1.1.   Shipping and receiving operations at the dock door.  UMR's Auto-ID 

testbed has two dock doors, which are equipped with RFID antennas, light stacks, and 

motion sensors. The shipping and receiving operations are carried out by pallet jacks and 

automated guided vehicles. 

Initial implementation was done using pallet jacks, which require manual 

handling of tagged materials placed on pallets, to investigate read rates.  The second 

implementation was carried out using AGVs that also require wireless communications, 

which adds more complexity to the overall system. The third application involved 

operating two dock doors side by side, similar to an actual warehouse setting, in order to 

investigate the interference and cross-reading of material, which refers to the case where 

both dock-doors read each other’s material due to the range of the RFID antennas, and 

location and identity information cannot be matched. As a result of the third 

implementation, an RFID data-based AGV traffic management model was developed. 

The basic dock door operation involves the following steps. Each material has an 

RFID tag and all materials are placed on an industrial pallet. First, the motion sensors 

detect the direction of the pallet (i.e., inbound or outbound material flow). The 

information is sent wirelessly to an RFID server (i.e., middleware). It turns on the red 

light on the light stack, in case of manual material handling, for the dispatcher to stop or 

it stops the AGV, in case of automated (i.e., unmanned) material handling, at the dock 

door. Then, the server initiates the RFID tag reading process and passes the readings to 

the PP&C computer, which compares the order list with the pallet content to determine if 

right materials at the right amount have been received. 
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After reading the tags, there can be a mismatch between the order list and the 

pallet content, which can be due to two possibilities. First, the pallet content may be 

correct but the readings, due to read-rate problems, can be wrong. Second, the pallet may 

include incomplete shipment. In either case, the material flow is not disrupted at the dock 

door but the inventory database is updated to reflect this anomaly. When the pallet 

reaches its destination on the shop floor, each material on the pallet is manually placed on 

the conveyor, which is equipped with RFID antennas. On their way to the AS/RS via the 

conveyor, the tag on each material is read and checked against the order list in the 

database. Since it is less likely to have a read-rate problem when you have only one tag, 

the overall decision-making model that monitors material flow between the dock door 

and the conveyor facilitates “process visibility” in spite of the read-rate problem 

associated with RFID technology. 

The dock doors use Class-0 900 MHz UHF RFID readers and tags, which are 

known to be prone to interferences (Engels, 2002). High power devices, such as RFID 

readers, placed in close proximity cause interferences among themselves and for other RF 

devices (i.e., wireless transmitter for motion sensor). In dense networks, detection range 

and read rates of RFID readers suffer severely while other lower power RF devices 

become completely unusable. Similarly, dock doors located next to each other form a 

dense RFID reader network, and therefore it is not possible to obtain reliable 

identification data. In addition, when a pallet, loaded with tagged materials, is moved 

parallel to the dock doors, the antennas on both dock doors read the tags. In other words, 

it is not possible to detect whether the material is being moved through a dock door or it 

is being maneuvered in front of the dock doors.  
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In order to solve both problems, a “read it when you need it” concept has been 

developed, which is implemented using an on/off power control protocol. The protocol 

enables turning on and off RFID antennas intelligently to avoid communication signal 

interference depending on the status of the motion sensors on dock doors. The concept 

has been implemented as a forklift (or AGV) traffic management system, as shown in 

Figure 1.6.  The antennas are turned on and off whenever it is needed by making sure that 

only one dock door is active at any time so that cross-reading is avoided. The power 

control on antennas and management of forklifts are synchronized by the use of light 

stacks (i.e., similar to traffic lights).  

The interference problem can be expanded to a warehouse scale, where large 

number of RFID devices may operate together with each having unique specifications 

according to the applications. For example, for a dock door application, on/off time 

should be frequent and relatively shorter, especially for field motion sensors. On the other 

hand, for inventory monitoring, waiting time can be long by considering changes are not 

sensitive to time while reading time should be also be sufficiently long for large item 

counts. Therefore, a priority based scheduling algorithm is necessary and it was 

developed to accommodate a “multi-sensor” environment. The algorithm dynamically 

schedules waiting and read time intervals based on unique requirements of numerous 

devices and applications. 
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Figure 1.6. An RFID data-based forklift traffic management system 
 

 

1.4.1.2.   Integration  of  RFID middleware  with  PLC.   At   UMR's   Auto-ID 
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provides an HMI for the operator, local control logic for the cell, and database storage of 

local events. A separate server hosts the RFID middleware. Since the middleware is 

designed to communicate using the XML-DA protocol, an OPC-DA to XML-DA 

gateway (Kassle) was employed on the cell controller in order to translate between OPC 

protocols (herein referred to as OPC server). 

When a tagged material is placed on the conveyor, it is detected by a sensor on 

the conveyor line just before passing under an RFID antenna. This sensor is connected as 

an input to the PLC and its state is externally visible through the OPC server as an OPC 

tag. An RFID read cycle is utilized due to the OPC tag trigger capability built into the 

RFID middleware. The RFID middleware continually checks the state of the antenna 

sensor OPC tag and when a material is sensed, an RFID read cycle commences. This 

filtered RFID data is then sent from the middleware server through the intranet to the cell 

control computer. This controlled read cycle helps to reduce interference between 

multiple RFID antennas in close proximity and also allows the system to detect items on 

the conveyor with missing or unreadable RFID tags, which strengthens visibility on the 

shop floor. 

Upon receiving the RFID data from the middleware server, the cell control 

computer then processes the data into information useful at the cell level. The cell control 

computer is in a unique position, which allows it to communicate with both lower level 

(PLC) and higher level systems (PP&C). This capability allows the cell control computer 

to associate the RFID tag read with a material type and transform this information into 

actions needed to be taken by the PLC. The necessary data is then forwarded to the PLC 

through the OPC server. 
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This arrangement of decoupling the equipment control functions (PLC) from the 

higher level processes lends itself to an evolutionary approach to the implementation of 

RFID data onto the shop floor. Existing systems and controls can be refitted to make use 

of RFID data without a major interruption in production. 

1.4.2. Adaptive Inventory Management.      Inventory   management  of   time- 

sensitive materials is very critical due to their shelf lives. One primary concern is to 

insure that the required materials are available at all times to the operators.  The lack of 

time-sensitive materials results in loss of production and in turn loss of profits.  On the 

other hand, those materials that are not used in production within their lives expire and 

become another cost factor.  In addition, disposal of time-sensitive materials, once they 

reach their shelf life, to prevent their usage on a product is also major concern. 

 

 

 

Figure 1.7. Adaptive inventory management based on RFID data 
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 The implementation, as show in Figure 1.7, included two major tasks: 

(1) A simulation-based business case that demonstrated the overall cost savings 

when real-time RFID data were used for inventory management was developed.  

To achieve this goal, a trend-adjusted exponential smoothing algorithm (i.e., 

forecasting model) was developed.  The algorithm looks at the difference between 

the current inventory level based on real-time RFID data and the forecast (i.e., 

predicted demand) in order to determine the amount of material that needs to be 

ordered.  The simulation model included 20 buffers and approximately 6,000 

virtual RFID-tagged time-sensitive materials.  A gap analysis, which compared 

the as-is practice with the RFID data-based inventory management on the basis of 

amount of expired, ordered, and re-allocated (among buffers) materials, was 

carried out.  The gap analysis showed that approximately $500K per year would 

be saved by implementing the proposed model. 

(2) A prototype network was built with one real and several virtual RFID readers, 

multiple databases, RIFD middleware/decision-maker, and a PDA unit. Several 

scenarios were created to test the basic connectivity and reliability. A larger scale 

network simulation was then constructed to model the real manufacturing 

environment. The simulation model involved one hundred RFID readers 

connected in a star topology, and network traffic was simulated based on real data 

captured at an RFID reader. The model was then expanded to emulate multiple 

routes (i.e., duplicate routes), network bandwidth test (i.e., 10/100/1000Mbps), 

and wireless network test (i.e., 802.11a/b/g).  Average delay, packet drop, and 
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average throughput were used to evaluate different topologies. An example of the 

network simulation results is shown in Table 1.1. 

 

Table 1.1. Network Simulation Results 
Performance 

Measure 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Link bandwidth 10Mbps 100Mbps 1000Mbps 
802.11g 

(54Mbps) 
Packet drop 2923 0 0 345 
Average delay 
(Seconds) 

0.237 0.0157 0.0132 0.0179 

Link utilization 100% 44.6% 4.6% 99% 
 
 
 
 

1.5. DISCUSSION 

UMR’s Auto-ID Testbed is currently being used to address various research 

challenges. It has been experienced that the read rates on RFID antennas vary between 

70-80% depending on product types, number of products, and orientation of the products 

with respect to each other on a pallet. If the read rate problem cannot be solved, then the 

ultimate goal of RFID, which is “100% visibility on the shop floor”, cannot be realized.  

While the RFID vendors are working on improving the technology, the industry users 

should understand the fact that for a successful RFID implementation, their processes 

must be 100% visible.  RFID technology cannot magically bring order to a chaotic shop 

floor environment; the processes must be redesigned to make them lean and visible. 

To avoid the above-mentioned potential deficiency of RFID technology, the 

applications at UMR’s Auto-ID Testbed have been designed to operate on various check 

points so as to improve the visibility of the overall process. For instance, when raw 

materials are received at the dock door, the antennas read the RFID tags on the materials 
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while they are on a pallet. If the pallet content does not match the order list, the pallet is 

not rejected immediately since the problem can be caused by the read rate of the antenna, 

not necessarily due to a mismatch between the order list and the pallet content.  The raw 

materials are then transported to the production area and each material is loaded on a 

pallet on the conveyor. Each pallet goes through two RFID antennas to verify its identity.  

After each material is identified, it is stored in the AS/RS. If a material cannot be 

identified after it is circulated on the conveyor twice, then it is pushed out of the 

conveyor for manual identification. If there is an unknown material, then it is sent back to 

the supplier. Similarly, if there are materials missing on the pallet, then the supplier is 

notified. 

Another potential problem with RFID antennas is that when they are placed in 

closed proximity, a tag can be read by multiple antennas. In this case, the actual location 

of the tag (i.e., the product) cannot be determined. For example, when the dock door is 

placed very close to the conveyor, the antennas on the dock door and the conveyor can 

read “all” the tags in the environment; a tag on a pallet at the dock door simultaneously 

appears on the conveyor. To avoid this problem, the environment must be equipped with 

additional sensors. The testbed demonstrates a lean approach: “read it when you need it”.  

Unless there is an event that requires automatic identification, then the antennas should 

not be powered. Event detection can be done by integrating sensors into the environment 

and interpreting the sensor data together with RFID data. Therefore, it is important to 

scrutinize RFID implementations as potential “multi-sensor” applications, where such 

sensors need to be carefully determined in order to improve the visibility of the business 

process. 
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1.6. CONCLUSIONS 

UMR’s Auto-ID Testbed provides a flexible test environment that can be used for 

evaluating Auto-ID technologies and solutions for industry. The testing environment, as 

well as the testing conditions, can be varied easily in order to match the needs of the 

industry. The testbed can be used as a low-cost technology development and assessment 

platform (proof-of-concept) due to the availability of reconfigurable models, which 

facilitate rapid model development, hardware/software benchmarking, and 

implementation.   

UMR’s Auto-ID Testbed provides viable solutions to industry due to its 

integrated approach; decision-making models and hardware/software/networking issues 

are considered simultaneously. The testbed allows the researchers and industry 

practitioners to investigate the operational limits and possible failure behaviors of a 

variety of Auto-ID technologies. Especially, the effective use of simulated scenarios in 

the presence of hardware leads to realistic solutions that are greatly valued by industry.   

The distributed hardware-in-the-loop simulation environment at the UMR’s Auto-

ID Testbed is intended to investigate, with increasing level of system complexity, the 

potential benefits of Auto-ID technologies using simulation. 
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2. ADAPTIVE INVENTORY MANAGEMENT USING RFID DATA 

 

2.1. INTRODUCTION 

The advent of automated identification (Auto-ID) technology has enabled 

electronic labeling and wireless identification of objects, which facilitates real-time 

product visibility and accurate tracking at all levels of the product life cycle [1]. From 

supply chain level business processes to shop floor level manufacturing execution, this 

technology presents many opportunities for process improvement and re-engineering [2-

4]. On the other hand, it also presents many challenges due to lack of standards and 

roadmaps to transform Auto-ID technologies into Auto-ID solutions [5-7]. In spite of its 

potential advantages, the major challenge is how to manage such voluminous data in a 

timely fashion. If this can be achieved, then “information” can replace “inventory” on the 

shop floor. 

The objective in inventory management is to have the necessary inventory items 

at the right time, at the right amount, and at the right place. Since not all inventory items 

are of high value, tight tracking of them may not be desired. On the other hand, critical 

inventory items may require a tighter control. Due to the variety of items in a typical 

manufacturing environment, inventory items can be categorized in different classes, such 

as ABC classification, since tracking of all inventory items may not be economically 

viable. When implemented properly, Radio Frequency Identification (RFID) technology 

can provide item-level visibility in which electronic tags programmed with unique 

identification information are attached to “objects” that need to be monitored, tracked, or 
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identified easily when needed; this has been an unreachable region of manufacturing 

information domain. 

Today’s inventory management systems operate with Stock Keeping Unit (SKU) 

level data, which means that hundreds of products can fall under the same SKU that 

associates brand, size, flavor, etc. and essentially categorizes them under a product type.  

While SKU-level data provide aggregate inventory levels for inventory items, it falls 

short when visibility of each item is desired. RFID technology facilitates Electronic 

Product Codes that provide unique identification for each product inside the enveloping 

SKU or inventory category [8]. This type of data helps associate production events with 

each inventory item, which facilitates tighter inventory control that relies on such real-

time data.  

Organizations that understand these possibilities have become trend-setters by 

establishing a January 2005 mandate for suppliers, which require RFID implementation 

on container/pallet size inventory. Such organizations include Wal-Mart and the 

Department of Defense (DOD).  The focus of these mandates are twofold; not only do 

they force companies to take quick action in fulfilling requirements, but also to look 

towards the future with overall cost savings in mind. The need to organize and make 

decisions based on the data provided by the RFID tags is prominent.  

To date, research that conjoins RFID technology and item-level inventory 

management on the shop floor is at a preliminary stage, only inferring benefits upon 

application. The challenge is to collect RFID data in a timely manner, to process such 

voluminous data, and to make timely decisions that are tied into manufacturing execution 

systems. If the challenge is overcome, then the benefits such as waste elimination, 
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inventory reduction, automatic replenishment, stock-out reduction, and overall cost 

savings can be easily realized. Therefore, there is a need for RFID data-based effective 

decision making algorithms that can lead to such benefits. In this study, a forecast-

integrated inventory management model that relies on real-time RFID data is presented.  

The goal of this research is threefold:  (1) to model and analyze the decisions made to 

manage inventory levels of time sensitive materials in a shop floor manufacturing 

environment; (2) to investigate new decision making algorithms that substantiate the use 

of RFID for real-time visibility; and (3) to explore the impact of fundamental control 

parameters on performance measures. 

This paper is organized as follows. A brief literature survey is presented in 

Section 2.2. Section 2.3 discussed the problem definition, model development, and 

performance measures. Experimentation is presented in Section 2.4, which includes 

detailed comparison of inventory models based on statistical analysis.  Finally, 

conclusions are given in Section 2.5. 

 

2.2. LITERATURE REVIEW 

The momentum behind RFID is growing. With increased awareness and 

improved technology, RFID systems are being implemented throughout a surprisingly 

wide variety of industry sectors. This trend is particularly prevalent within supply chain 

management where limitations exist due to the current traditional methods used. These 

limitations include the inaccuracies of product identification throughout the product life 

cycle, the daunting and difficult task of actually tracking the product, and uniquely 

identifying each part rather than product type [1]. This leads to the realization of specific 
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benefits of using RFID within the manufacturing supply chain, such as product tracking 

accuracy, reduced inventory levels and automated inventory management. McFarlane [9] 

goes further to explain a potential long term benefit with respect to holonic behavior such 

as customized products and self-organizing production, distribution and inventory 

systems. He also explains in more detail the importance of product identity to enhance 

the visibility or observability of a product through its life cycle. Chappell et al. [10] give 

an in-depth look at the business potential of Auto-ID on manufacturing, as well as other 

associated benefits. These include increasing capacity utilization and yield, reducing 

cycle time, increasing labor productivity, improving product quality, preventative 

maintenance, reducing product obsolescence costs, tracking and managing spare parts 

inventory, facilitating statistical process control, enabling lot/batch track and trace, 

ensuring worker safety, reducing returns and warranty claims, and reducing scrap. 

Another perspective on RFID and supply chain is established by Brewer, Sloan, 

and Landers [2], where more of the same benefits are explained. In addition to the 

advantage of RFID, Brewer et al. also discuss the potential coupling of RFID with GPS 

to provide more information about products in transit.  Moran, Ayub, and McFarlane [11] 

take a closer look into process improvement within a retail company via the “Use Case 

Approach,” described in more detail under Moran, McFarlane, and Milne [12]. The 

emphasis of their research is directed towards improvement of processes directly related 

to product handling, storage and exchange; including product reorder, product receipt and 

put-away, product recount, replenishment, and reverse logistics. The potential benefits of 

implementing RFID technology through those specific areas comprise of the increase in 

productivity, reduction in cost, improvement in service, and strategic value.  
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Additionally, Moran, McFarlane, and Milne [12] explain that increased 

production occurs due to increased inventory visibility that helps to utilize warehouse 

facilities and assets, as well as, improved stock outs and more accurate reordering. Cost 

reduction is associated with the detection of shrinkage and reduction in waste due to 

improved product rotation. Garcia et al. [13] also present the benefits of RFID technology 

in assorted material handling systems within the supply chain. Their analysis brings about 

techniques and solutions, as well as examples of implementing these systems. 

As it can be seen throughout the research the management of inventory should be 

robust yet sensitive enough to change with respect to varying demand patterns. This type 

of agility is important to all types of organizations and systems. There are many different 

types of methods that can be used to predict that type of behavior but it is important to 

tailor the type of forecasting technique or algorithm to the current or desired system. 

2.2.1. Problem Definition.  Inventory management of time-sensitive materials is  

very critical due to their shelf lives. One primary concern is to insure that the required 

materials are available at all times to the operators. The lack of time-sensitive materials 

results in loss of production and in turn loss of profits. On the other hand, those materials 

that are not used in production within their lives expire and become another cost factor.  

In addition, disposal of time-sensitive materials, once they reach their shelf life, to 

prevent their usage on a product is also major concern. 

The inventory models that are developed and compared in this paper has been 

developed for a manufacturing company based on its shop floor that consists of 18 

operator stations with each having a storage area to store time-sensitive materials. There 

are 23 different types of time-sensitive materials, each containing an identification 
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number, container size, lot number, manufacture date, and expiration date. The baseline 

(BL) inventory capacity for each storage area is established by consulting the operators in 

that specific area and determined by an estimation based upon the quantity of time-

sensitive materials used in production within a week. Each storage area contains different 

quantities and types of time-sensitive materials, specifically tailored to that particular job, 

and has a capacity of 300 units of time-sensitive materials. 

Expeditors, the personnel responsible for inventory management on the shop 

floor, manually check each storage area, dispose of expired inventory items, and generate 

a purchase order based on the difference between the baseline and the current inventory. 

The lead time between placing the orders and receiving the time-sensitive materials is in 

the range of 3-5 days.  When the shipment arrives the expeditor distributes the materials 

to one storage area at a time. The operators can use multiple materials at a time in order 

to perform their individual assigned tasks. During an unexpected increase in production 

demand, a storage area can run out of necessary materials and the operator may obtain the 

required material(s) from a neighboring storage area, which is called as reallocation. 

The primary objective of the manufacturing company was to meet the production 

demand at the highest possible rate (i.e., maximize service level) while avoiding 

excessive waste due to expired materials.  

2.2.2. Model Development.     After  several  site  visits  to   the   manufacturing  

company and conducting interviews with operators, expeditors, and managers, three 

inventory management scenarios were developed. The scenarios, including the current 

practice at the manufacturing company, are as follows:  
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SCManual,BL: This scenario includes the existing manufacturing environment and 

directly mimics the current inventory management practice, which is heavily manual.  

The current practice relies on baseline (BL) inventory levels that have been fixed prior to 

production for each storage area. On a weekly basis, the inventory level at each storage 

area is checked and an order is placed to bring the inventory level back to its baseline 

level.  SCManual,BL is used as a reference for comparing the other three scenarios. 

 SCRFID,BL: In this scenario, it is assumed that the inventory items are tagged (i.e., 

RFID tags); therefore there is theoretically 100% visibility in terms of inventory levels.  

Fixed BL values, similar to SCManual,BL, are used for ordering purposes. The objective is 

to determine how much value RFID data can add if it is implemented only for monitoring 

purposes, not for dynamically adjusting the inventory levels.  

 SCRFID,BL/2: Similar to the first two scenarios, this scenario is also built on fixed 

baseline inventory levels. The only difference is that the baseline inventory levels are cut 

in half in order to investigate the effect of reduced inventory level. For instance, this 

scenario should allow for tighter inventory control due to real-time product visibility 

since all inventory items are tagged but would require frequent reallocations among 

storage areas since inventory levels are reduced. 

 SCRFID,αβ: In this scenario, an adaptive inventory scheme, which is based on a 

forecasting model, has been integrated into a decision-making framework to replace the 

manual inventory operations and to avoid the inflexibility of fixed baselines. Since RFID, 

in theory, provides 100% inventory visibility, the only two stochastic parameters within 

the problem definition are purchasing lead time and production demand. The objective is 

to utilize the RFID data in the best possible way in order to handle uncertainties in the 
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purchasing lead time and adapt to fluctuations in the production demand.  Therefore, a 

trend-adjusted exponential smoothing algorithm has been adopted. It uses two 

parameters, α and β, as coefficients for the average production demand and its trend, 

respectively. The adaptive inventory scheme looks at the difference between the current 

inventory level of a particular inventory item at a storage area and the associated forecast 

(i.e., predicted demand) in order to determine the amount of material that needs to be 

ordered.  The equations for the forecasting algorithm are given below: 

 , , , , 1, , 1, ,(1 )( )t i j t i j t i j t i jA D A T        (1) 

 , , , , 1, , 1, ,( ) (1 )t i j t i j t i j t i jT A A T       (2) 

 1, , , , , ,t i j t i j t i jF A T    (3) 

 

Where: 

Dt,i,j = demand in period t for material i at storage area j. 

At,i,j = exponentially smoothed average of the series in period t for material i at 

storage area j. 

Tt,i,j = exponentially smoothed average of the trend in period t for material i at 

storage area j. 

α = smoothing parameter for the average (0 < α < 1) 

β = smoothing parameter for the trend (0 < β < 1) 

Ft+1,i,j = predicted demand for material i at storage area j in period t+1 

2.2.3. Performance Measures.  There are  six  performance measures derived to  

evaluate the overall performance of the inventory models.  These are defined as expired, 

normal use, ordered, stock-out, reallocated, and service level.  Expired refers to the total 
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number of time-sensitive materials that expire, normal use is the total number of time-

sensitive materials the operators request and are able to use in production, ordered is the 

total number of time-sensitive materials ordered, stock-out is the total number of time-

sensitive materials requested by an operator but were not in stock at the time of the 

demand, and reallocated is the total number of time-sensitive materials an operator 

obtains from a neighboring storage area (i.e., not his storage area).  Service level is the 

ratio of normal use to demand, which is a percentage.  For instance, a 90% service level 

means that 90% of the production demand has been met.  Therefore, a higher percentage 

is desired.   

 

2.3. EXPERIMENTATION 

Each of the four scenarios (SCManual,BL, SCRFID,BL, SCRFID,BL/2, and SCRFID,αβ) is 

implemented as a simulation model on a simulation platform, which includes Rockwell 

ARENATM simulation package, Microsoft Visual BasicTM, and Microsoft AccessTM.   

Production system-related events and entities are modeled in ARENATM. A database 

structure is developed using Microsoft AccessTM, and the decision-making modules, as 

well as the data collection procedures, are implemented in Visual BasicTM. The ARENA 

and Visual Basic modules are integrated to run seamlessly. 

In the SCRFID,αβ model, the levels of the smoothing parameters (α and β) are set to 

0.2, 0.5, or 0.8, and 9 sub-models are developed, which includes all the possible level-

combinations (3x3) of these parameters in order to explore the impact of  α and β settings 

on the performance. 
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In each scenario, the production environment includes 18 storage areas and 23 

different types of time-sensitive inventory items. Each scenario is run for 10 replications 

for a total simulation period of 7 months. The amount of time-sensitive inventory items in 

the system varies between 4,500 and 5,500 at any given time during simulation. The 

production demand on each inventory item is generated based on a Poisson distribution 

estimated from the historical data provided by the manufacturing company. 

The statistical analysis of the performance obtained in each scenario is carried out 

using analysis of variance (ANOVA) and paired-t test based on 95% confidence interval.  

ANOVA is performed on the sub-models of SCRFID,αβ in order to evaluate the impact of 

the value of smoothing parameters. First, the best performing sub-model SCRFID,αβ_best is 

selected as a result of ANOVA. Then, SCManual,BL, SCRFID,BL, SCRFID,BL/2, and SCRFID,αβ_best 

are compared using paired t-test. 

2.3.1. SCRFID,αβ Sub-models. Based on  their average number of inventory items  

among 10 replications, the simulation results of the nine sub-models of SCRFID,αβ are 

ranked under six performance measures, as shown in Table 2.1.  In order to facilitate 

better understanding of the relative performance of each sub-model, the results under 

each performance measure, except for reallocated, are assigned a relative weight from 1 

to 9 that shows the rank of the sub-model under that performance measure.  The higher 

the relative weight, the worse the performance of the sub-model (i.e., 1 is the best and 9 

is the worst). 

RFID enables reallocations among storage areas by providing visibility in terms 

of inventory levels. As it is shown in Table 2.1, the sub-model with α = 0.2 and β = 0.2 

yields the lowest number of reallocations while α = 0.8 and β = 0.5 yields the highest 
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number. In general, reallocations are done in order to use the existing inventory 

efficiently. On the other hand, it should be noted that reallocations may be costly if the 

operators themselves are walking over to a neighboring storage area to pick up an 

inventory item; it may lead to excessive non-productive operator time. Therefore, the 

numbers shown in the reallocated column must be taken into consideration with an 

emphasis on reallocation cost, which has been considered to be proportional to the 

number of reallocations in this study. Therefore, a lower number of reallocations is 

desired.  

 

Table 2.1.  Forecasting Control Parameters vs. Performance Measures  
Control 

Parameters 
Performance Measures (measured as number of inventory items) 

α  β Expired 
Normal 

Use 
Ordered 

Stock-

out 

Service 

Level 
Reallocated 

0.2 0.2 8* 1 8 1 1 (96%) 7,185 

0.2 0.5 2 4 1 4 3 14,508 

0.2 0.8 5 5 2 5 5 16,700 

0.5 0.2 3 3 4 3 4 15,044 

0.5 0.5 7 9 3 9 9 (91.5%) 18,175 

0.5 0.8 4 7 5 7 7 19,257 

0.8 0.2 1 8 6 8 8 18,077 

0.8 0.5 6 6 7 6 6 19,903 

0.8 0.8 9 2 9 2 2 18,930 

Difference** 150 2,900 2,100 2,850 4.5% 13,000 

 
 
 

Each level-combination of the control parameters, α and β (i.e., sub-models), 

yields a different performance for different performance measures. For instance, the sub-

model, where α = 0.8 and β = 0.2, yields the best result for expired. On the other hand, 
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the same sub-model ranks number 8 for normal use, stock-out, and service-level. Similar 

comparisons can be made for the other sub-models. The relationship among the 

performance measures needs to be taken into consideration when analyzing the results.  

For instance, the more that is ordered the more inventory items are likely to expire and 

the less operators will run out of stock because more inventory items are potentially 

available for production. 

In order to select the best α-β combination among nine combinations, it is 

important to be able to make a thorough analysis of the results across all six performance 

measures.  In other words, it may be misleading to evaluate each performance measure in 

isolation from others. Therefore, the difference row in Table 2.1 should be taken into 

consideration. For instance, the column for the number of expired inventory items shows 

only a difference of 150 units of inventory items between the best (α = 0.8 and β = 0.2) 

and the worst (α = 0.8 and β = 0.8) sub-models, which is much less than the difference 

given under the normal use, ordered, and stock-out columns, which is in the order of a 

couple of thousands. 

Overall, the proposed forecast-integrated model yields approximately the same 

amount of expired time-sensitive materials regardless of the α-β levels; as shown with a 

variation of only 150 units of inventory items. There is, however, a substantial difference 

among the sub-models with regards to normal use, ordered, stock-out, and service level: 

2900, 2100, 2850, and 4.5%, respectively. The difference for stock-out is nearly the total 

amount of inventory items that were unavailable during the entire simulation for 

SCRFID,α=0.2,β=0.2, therefore; normal use and service level will have a large difference 

among level-combination since they are inversely proportional to stock-out. Although 
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service level is the primary concern, the other performance measures need to be taken 

into consideration to ensure the system performs as desired at the possible lowest cost. A 

high amount of inventory items expiring in conjunction to the lowest service level would 

not be cost effective. Therefore, a balance of the two would lead to a more robust 

inventory model. 

When deciding the best α-β combination, it is important to understand the direct 

influence they have on the overall forecast. When α is small, the ordering forecast puts 

less emphasis on Dt and more emphasis on At-1 and Tt-1; therefore At becomes a larger 

value resulting in more time-sensitive materials ordered due to a larger forecast value.  

The reverse is true with α; a larger number would put more emphasis on Dt and less on 

At-1 and Tt-1; therefore making the forecast and ordered time-sensitive materials more 

responsive to recent demands instead of a previous average and more likely to order less. 

When β is small, it places more emphasis on Tt-1. Conversely, a larger β would 

result in the difference between At and At-1 to be accentuated. Depending on the value of 

α and ultimately At, this can cause the Tt value be large or small. For example, if α was 

large, the forecasting calculation would be emphasized by At-1 and Tt-1 and the final value 

of At would closely resemble them. From there, Tt is calculated with an emphasis on the 

difference between At and At-1 or Tt-1. If β is small then the emphasis stays on At and At-1.  

There is a high probability that the value for At would be large if α was small and in 

conjunction with a small β the forecast would result in a large number. 

Overall, since α = 0.2 and β = 0.2 yield the highest service level with the lowest 

number of reallocations, SCRFID,α=02,β=0.2 is selected to be the best combination of all nine 

sub-models (i.e., SCRFID,αβ_best =SCRFID,α=02,β=0.2). 
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2.3.2. Comparison of SCManual,BL, SCRFID,BL, SCRFID,BL/2, and SCRFID,α=0.2,β=0.2 

The results of the paired t-test analysis conducted on SCManual,BL, SCRFID,BL, SCRFID,BL/2, 

and SCRFID, α=0.2,β=0.2 are shown in Tables 2.2 through 2.4.  A complete comparison of the 

means for each performance measure is given in Table 2.5.  The results show that RFID 

implementation combined with the right decision-making model improves the 

performance. 

 

Table 2.2.  Paired t-test for SCRFID,α=0.2,β=0.2 versus SCManual,BL 

Performance Measure  SCRFID,α=0.2,β=0.2 SCManual,BL 

Service Level   

Expired   

Normal Use    

Ordered    

Stock-out   

Reallocated Inconclusive 

 
 
 
 
 
 

Table 2.3.  Paired t-test for SCRFID,α=0.2,β=0.2 versus SCRFID,BL 

Performance Measure  SCRFID,α=0.2,β=0.2 SCRFID,BL 

Service Level   

Expired   

Normal Use   

Ordered   

Stock-out   

Reallocated   
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Table 2.4.  Paired t-test for SCRFID,α=0.2,β=0.2 versus SCRFID,BL/2 

Performance Measure SCRFID,α=0.2,β=0.2 SCRFID,BL/2 

Service Level   

Expired   

Normal Use   

Ordered   

Stock-out   

Reallocated   

 

 

The primary performance measure is service level, which needs to be maximized, 

while the overall cost is to be reduced. As shown in Table 2.5, SCRFID,BL outperforms 

SCRFID,α=0.2,β=0.2 on the basis of service life (97% and 95% service levels, respectively).  

On the other hand, SCRFID,BL orders approximately 8,000 more inventory items than 

SCRFID,α=0.2,β=0.2. In addition, SCRFID,BL leads to expiration of approximately 3,700 more 

inventory items and approximately 4,500 more reallocations than SCRFID,α=0.2,β=0.2. At this 

point, a detailed cost analysis with the manufacturing company led to a conclusion that 

SCRFID,α=0.2,β=0.2 would be more cost effective than SCRFID,BL. This conclusion could have 

been reversed if the conditions in the manufacturing company were different. 

 

 

Table 2.5.  Comparison of the Means 

Scenario 

Service  

Level 

Expired

* 

Normal 

Use* Stock-out* Reallocated* Ordered* 

SCManual,BL 91% 9,310 59,897 6,179 7,046 74,363 

SCRFID,BL 97% 5,685 64,036 1,984 11,762 74,529 

SCRFID,BL/2 84% 1,631 55,524 10,629 28,288 59,302 

SCRFID,α=0.2,β=0.2 95% 1,957 62,999 3,265 7,185 66,437 
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2.4. CONCLUSIONS 

In this paper, inventory management of time-sensitive materials using RFID data 

is studied.  In addition to two static inventory models that rely on fixed baseline inventory 

levels, a dynamic, forecast-integrated inventory model is proposed. The impact of 

integrating RFID technologies with inventory control on the shop floor is discussed. The 

results show that the forecast-integrated model can adapt to the system dynamics more 

effectively than the current practice. 

Since the performance of the forecast-integrated inventory model depends on the 

levels of the smoothing parameters α and β, a full factorial experiment is conducted to 

determine the best levels for the given production scenarios. Analysis of simulation 

results using ANOVA showed that α = 0.2 and β = 0.2 outperformed all other 

combinations on the service level, which has been the fundamental performance measure 

due to the high value of the product. Even though the service level was the primary 

concern, each performance measure was taken into consideration to ensure the system 

would perform as desired. For example, the highest service level at a certain (α, β) setting 

may not be desirable if it yields a high amount of expired time-sensitive materials.  

Therefore, the “best” (α, β) setting can be selected by seeking a balance among all 

performance measures, such as in SCRFID,α=0.2,β=0.2.  In this study, after the best levels of α 

and β are established, the performance of SCRFID,α=0.2,β=0.2 is compared to SCManual,BL. The 

results of the paired t-test analysis validated the advantage of using the proposed adaptive 

inventory management model by proving the ability to lower manufacturing costs, reduce 

inventory levels, and prevent excessive waste in typical manufacturing environments 

where RFID technologies can be utilized. 
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The results of this paper are relevant to all organizations concerned with 

improving their shop floor operations by reducing their inventory levels through the 

adoption of RFID. Through simulation, this paper demonstrates that there are 

opportunities for RFID technology to provide significant benefits on the shop floor, well 

beyond the automation-oriented advantages, such as labor savings.  The scenarios that 

have been developed and tested in this paper were customized towards the needs of the 

manufacturing company; thus they might not be completely realistic to all organizations.  

However, the results do show the potential of RFID in a manufacturing environment, 

which can further be expanded to supply chain level. 
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3. RFID-BASED SMART FREEZER 

 

3.1. INTRODUCTION 

Inventory control of time and temperature sensitive materials (TTSM) is a vital 

problem that needs attention for various industries, for example composite manufacturers 

and food producers. Such items have to be stored in a temperature-controlled 

environment and used within a limited time, otherwise, they become waste. Effective 

management of TTSM will reduce inventory levels and prevent usage of expired 

materials thus reducing costs. 

The goal of inventory management is to make the required quantities of items at 

the right time and location. Today, in inventory management, barcodes are widely used; 

however, this technology needs that a line-of-sight is maintained for the items besides the 

items are scanned one at a time. In addition, barcode-based systems have problems under 

low temperature environments. Additionally, tight control of certain item types that are 

critical for production may be required. Consequently, tracking of all inventory items 

through traditional methods may not be economically feasible. 

These limitations can be mitigated with RFID technology, where electronic tags 

programmed with unique identification code are attached to items. However, in order to 

provide item-level visibility through monitoring, tracking and identification of items, a 

proper RFID implementation is necessary. 

The application of RFID to inventory management was discussed in many papers. 

In [1], inventory management of TTSM using RFID data is presented under ambient 

temperature environments. In [2], an RFID based resource management system, which 
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integrates RFID, case based reasoning and pure integral linear programming is presented. 

Lian et al. [3] presents the hardware and software issues associated with warehouse 

logistics control and management system based on RFID in order to improve efficiency. 

Han et. al [4] utilize RFID for accurate localization of mobile robots in automated 

warehouses for inventory transportation. 

The availability of item-level visibility also provides opportunities to control 

another type of inventory, namely work in process inventory [5, 6, 7]. In addition, RFID 

coupled with other sensing schemes helps close the loop on product life-cycle 

management (PLM) by providing visibility of product related information such as usage 

data, disposal conditions, etc., from cradle to grave. Jun, et al. [8],  discuss issues 

regarding PLM, whereas Yang et al. [9] develop a component-based software framework 

for PLM. Within the scope of inventory management, RFID enables smart shelves [9, 10] 

and smart freezers. 

However, the work in [1-11] assumes that a straightforward deployment of RFID 

technology providing almost 100% read rates under “controlled” laboratory settings. 

Upon technology transfer, unforeseen problems, such as readability may arise from radio 

frequency (RF) interference, RF absorbing materials, and environmental conditions [12]. 

For instance, in the proposed smart freezer, the low 100 deg F below zero temperatures 

cause excessive ice buildup rendering RFID technology unreliable. In addition, RF 

absorbing materials render low read rates and longer reading times. 

Therefore in this paper, a novel scheme of obtaining high read rates within a 

reasonable reading time for inventory management at extremely low temperature 

environments using passive RFID tags is introduced. This overall scheme consists of: a) a 
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backpressure-based inventory management scheme for reducing waste and to attain cost 

savings; b) a selection scheme for placement and number of antennas inside the freezer; 

and c) a locally asymptotically stable distributed power control (LASDPC) scheme or 

simply DPC scheme for antenna transmission in order to obtain a high read rate required 

for backpressure-based inventory management. Lyapunov approach [13, 14] is utilized to 

show the stability of the inventory control and the DPC schemes. The overall method has 

been experimentally tested and verified on hardware. Both simulation and experimental 

results are included to justify theoretical conclusions. 

 

3.2. METHODOLOGY 

In this paper, a novel distributed inventory control (DIC) scheme for balancing 

the inventory levels at each layer at a desired target baseline value using the backpressure 

mechanism along the supply chain is proposed. Fig. 3.1 illustrates the supply chain 

structure with buffers, for example freezers on the shop floor, with local inventory 

control logic at each layer. This scheme considers only a single type of material flow. 

However, additional types of materials can be accommodated by using the same control 

logic for each material.  The details of the DIC are presented in Subsection 1 under the 

assumption that there is full visibility 

 

 

Figure 3.1. Supply chain with back pressure mechanism 
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In the subsequent section, antenna placement and power control discussion is 

presented in order to attain the 99-100% read rate requirement. The process of selecting 

the number of antennas and their location is presented in Section 3.2.3. Additionally, a 

novel mechanism that controls the power of the antennas to reduce the RF interference 

among them is proposed in Section 3.2.4. The proposed antenna placement mechanism 

together with the DPC will be referred hereafter as the Missouri S&T scheme, which is 

shown to reduce the number of antennas inside the freezer, while guaranteeing 99% read 

rates by eliminating all nulls. 

The proposed DIC scheme expects a high item visibility. The proposed design 

methodology attains 99-100% read rates by considering several factors: 

 Number of antennas and their placements inside the freezer was altered to attain 

the RF coverage; 

 The power on each antenna is varied using the proposed DPC, which reduces RF 

interferences and collisions in the backscatter direction.  

The design methodology is given in Sections 3.2.2, 3.2.3, and 3.2.3. 

3.2.1. Inventory Management Across the Supply Chain. 

3.2.1.1. Prediction. This paper proposes a new model to predict the instantaneous 

demand given by  

 ( 1)( ) [ ( 1) ( 1)] ( 1) ( 1)( 1)
Tf kf k k k k kD k           

 (1) 

where ( )f k is the demand at time k, ( 1)k  and ( 1)k  are online tunable parameters, and 

( 1)D k  is the actual measured demand at the time instant (k-1). The error in prediction is 

then expressed as 

 ( 1) ( 1) ( 2)e k f k D k      (2) 
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Selection of appropriate values for  and  is essential in order to improve the 

accuracy of the prediction model. Traditionally, these values are selected through offline 

analysis of historical data. In contrast, the proposed scheme performs online tuning of 

these parameters to guarantee stability as presented in Theorem 1. 

Theorem 1: Consider the instantaneous demand expressed as (1) with the error 

dynamics given in (2). Let the parameters update be provided by 

 ( ) ( 1) ( 1) ( 1)k k k e k        (3) 

where 0 1  is the gain factor, then the instantaneous demand approaches the measured 

value asymptotically.■ 

Subsequently, the instantaneous value is utilized by the inventory controller, to 

create a backpressure signal, z, as shown in Fig. 4.1. The signal is propagated along the 

supply chain to adjust the delivery amount periodically. Next, the analysis of the 

backpressure mechanism is discussed. 

3.2.1.2. Backpressure mechanism in the supply chain. In this section, inventory 

level dynamics in a supply chain are modeled using difference equations. In order to 

maintain target inventory levels, the DIC scheme is developed employing control theory. 

The performance of DIC is mathematically studied and the error bound on inventory 

level is obtained through the Lyapunov-based analysis. 

At a particular echelon j in a supply chain, the inventory level will decrease when 

materials are used or shipped out to next echelon in the supply chain. When the change 

depends on the usage, it has to be estimated using (1). Otherwise, the change is dictated 

by the backpressure signal, zi,j-1, which indicates the delivery request from the subsequent 

echelon, j-1. Then, the demand is fulfilled by delivery, f, shipped out from the current 

echelon of the supply chain. On the other hand, the inventory will increase when the 
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material is delivered from the supplier up the supply chain based on demand zij. Thus in a 

supply chain environment, the inventory levels change due to the fluctuation in demand. 

Overall, the change of the inventory level inside a freezer in the supply chain at 

echelon j can be expressed as 

      1 ( ) ( )ij Q ij ij ij dijq k + = Sat q k + z k f k e k     (4) 

where ( )ijq k  is inventory level at freezer i at time k, ( )ijz k  is the required delivery for 

freezer i for period k, ( )ijf k  is the usage rate of the freezer I, and SatQ is saturation 

function modeling the limited capacity of freezers. The fluctuation in the demand, edij (k) , 

is due to many factors, for example just in time manufacturing, machine break down, etc. 

Remark 1: In a supply chain a negative delivery size,  ijz k corresponds to a 

reduction in supply from the baseline level. Reduction is necessary to minimize wastage. 

■ 

At any time instant, materials inside the freezer will be shipped back to the 

supplier. Hence, the calculated delivery request is modified to exclude this case and 

actual delivery request ' ( )ijz k  can be expressed as 

 
' ( ) if ( ) 0
( )

0 if ( ) 0
ij i

ij
i

z k z k
z k

z k


  

 (5) 

 

Remark 2: In the case when  ijz k is positive, the baseline will be completed with 

the instant demand.  In contrast, for the case of negative  ijz k , there will be no shipment; 

hence the inventory level error cannot be directly controlled.■ 

Define the desired level of inventory as tijq . Then the error in inventory level is 

equal to ( ) ( )ij tij ije k q q k  . This value at the next time instant can be obtained as 
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    ( 1) ( 1) ( ) ( )ij tij ij ij ij ij dije k q q k e k z k f k e k         (6) 

 

The requested delivery level ( )ijz k  should minimize the error in inventory level for 

the next time instant. In other words 

     ( ) ( ) 0tij ij ij ij dijq q k + z k f k e k       (7) 

 

Unfortunately, the exact demand ( )ijf k  is unknown for the time period k (future) 

due to uncertainties such as usage rates etc. By using an estimated demand value, 

backpressure control signal can be obtained as 

 ˆ( ) ( ) ( )ij ij v ijz k f k k e k     (8) 

where ˆ ( )ijf k  is the predicted demand for the freezer i during the time interval k in echelon 

j. Then, the expected error in inventory level at time k+1 is equal to 

  ( 1) ( 1) ( ) ( ) ( )e k q q k e k k e k f k e kij tij ij ij v ij ij dij         (9) 

where ˆ( ) ( ) ( )f f fij ij ij      is an error in demand prediction. Next, the bound on error in 

inventory level is shown. 

Theorem 2 (General case): Consider the desired inventory level, tijq , to be finite, 

and the demand fluctuation bound, dMe , to be equal to zero. Let the delivery quantity for 

(4) be given by (8) with the delivery quantity being estimated properly such that the 

approximation error ( )ijf   is bounded above by Mf . Then, the inventory level 

backpressure system is uniformly ultimately bounded provided 10  vk . 

 Proof: Consider Lyapunov function candidate 2
( )ijJ e k    . Then, the first 

difference is 
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   2 2
( ) ( ) ( )J k e k f k e k e kv ij ij dij ij          

  (10) 

 

The stability condition 0J  is satisfied if and only if 

    1 maxe f d kM M v    (11) 

 

When this condition is satisfied, the first difference of Lyapunov function candidate is 

negative for all k. Hence, the closed-loop system is uniformly ultimately bounded. ■ 

Remark 3: The bound on error in inventory level depends on maxvk  as shown in 

(11). The bound decreases as maxvk approaches zero thus yielding a smaller error.■ 

 Remark 4: Theorem 1 demonstrates that the actual inventory level converges 

close to the target value provided the errors in demand estimation and variation being 

bounded.■ 

3.2.1.3. Multi-freezer environment.  In a  typical  industrial  environment,  there  

may be more than one freezer as shown in Fig. 4.2. Then, the overall inventory of the 

shop floor is expressed as a set of equations given by (4), where i=1,…, n. For simplicity, 

the following vector form represents the shop floor inventory levels at echelon j   

 ( 1) ( ) ( ) ( ) ( )Q k Q k Z k F k D kj j j j j      (12) 

where 

 

( ) ( ) ( ) ( )1 1 1 1

( ) ( ) ( ) ( )2 2 2 2
( ) , ( ) , ( ) , ( ) ,

( ) ( ) ( ) ( )

q k z k f k e kj j j d j

q k z k f k e kj j j d j
Q k Z k F k D kj j j j

q k z k f k e knj nj nj dnj

       
       
                 
       
              

   
 (13) 

 

In such a case, the error in inventory at the shop floor, e(k), is equal to sum of error 

magnitudes at each freezer 
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 ( ) ( )e k e kj ij
i

  (14) 

 

3.2.1.4. Inventory balancing.  In the multi-freezer scenario, as shown in Fig.3.2,  

items can be quickly moved between the freezers to balance inventory, minimize wastage 

thus saving cost. Due to the co-location of freezers, the load balancing mechanism can 

yield almost immediate (relative to delivery period) correction of inventory levels among 

freezers thus reducing wastage. 

 

Echelon 1 
Supplier

Freezer 1

Freezer 2

Freezer n

Shop 
Flooru1

u2

un

Inventory
Balancing 
Between
Freezers

 

Figure 3.2. Inventory balancing between multiple freezers 
 

 

In the case of load balancing, the individual inventory levels, the demand and the 

delivery/usage levels for all freezers can be combined as 

 ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )q k q k z k z k f k f k e k e kTj ij Tj ij Tj ij dTj dij
i i i i

        (15) 

 

where ( )Tjq k  is total inventory level on the shop floor at time k for echelon j, ( )Tjz k  is the 

corresponding total demand, ( )Tjf k  is the total usage or delivery shipped out of the current 

supply chain level, and ( )dTje k  is the total variation of the demand. Therefore (12) can be 

written as  
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 ( 1) ( ) ( ) ( ) ( )q k q k z k f k e kTj Tj Tj Tj dTj      (16) 

 

 The load balancing is performed internally in order to minimize inventory errors 

at each freezer. Consequently, the total error in the inventory level at the echelon j is 

given by ( ) ( )Tj Ttj Tje k q q k  . In the case of individual inventory controllers, the demand z is 

fulfilled only when it is a positive value. To prevent excess inventory being shipped back, 

shifting the load between the freezers can offset the negative demand z as explained next. 

First, consider the total demand at echelon ‘j’. In the case of independent 

inventory control at each freezer, the total demand _ , ( )T NLB jz k  would include only the 

positive demand values of the individual freezers at that echelon. In contrast, in the case 

of inventory balancing, the total demand will include the negative demand as well, which 

in turn will reduce total demand _ , ( )T LB jz k as 

  

 

_ ,
, ( ) 0 , ( ) 0 , ( ) 0

_ ,
, ( ) 0 , ( ) 0

( ) ( ) 0 ( )

( ) ( ) ( )
i i i

i i

T NLB j ij ij
i z k i z k i z k

T LB j ij ij
i z k i z k

z k z k z k

z k z k z k

  

 

  

 

  

   (17) 

 

 When there is no negative demand, that is , ( ) 0
( ) 0,  for all 1,...,

i iji z k
z k j m


  , the 

total demand is equal for both scenarios. However, if there is at least one freezer with 

negative demand, the corresponding excess inventory will be used to fulfill the positive 

demand of the other freezers at that echelon thus reducing the total order or target 

demand. Thus, the total order in the case of load balancing scenario will be smaller or at 

least equal to the total demand observed in the case of no load balancing. This total 

demand satisfies 

   



 

 

70

 _ , _ ,
, ( ) 0

0 ( ) ( ) ( )
i

ij T LB j T NLB j
i z k

z k z k z k


    (18) 

 

By using (17) and (18), it can be shown that the load balancing can reduce the 

total error in the inventory levels corresponding to the negative demand, ( )Tjz k , by 

shifting inventory among the freezers. In contrast, without load balancing, wastage due to 

excess inventory at one freezer cannot be redirected to the freezers needing inventory. 

Additionally, the errors due to demand variation at the freezers may cancel each other 

out. For instance, in the worst case scenario, the individual errors will be equal for both 

scenarios with and without load balancing. 

In other words, the total error in inventory levels for load balancing scenario is 

smaller or equal to the scenario when the total error in inventory levels without load 

balancing as 

 ( ) ( )e k e kij ij
i i

   (19) 

 

3.2.2. Space for Antennas in a Freezer.  Initial experiments have demonstrated  

that the number of antennas and their orientation affect the read rates besides reducing 

capacity due to antenna placement. However, such problems can be easily overcome by 

reducing the number of items in the baseline when the 99% visibility is ensured.  At 

present, the freezers are filled up regardless of real usage thus leading to high baselines 

and more wastage. Full visibility through improved read-rates allows more accurate 

usage levels and less waste. However, if for any reason, such high baselines are needed, 

the Missouri S&T Smart Freezer scheme can still provide 99% read rates for a fully 

loaded freezer. 
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3.2.3. Antenna Configuration.  The selection  process  for finding the necessary  

number of antennas and their localization inside the freezer in order to achieve full 

visibility is illustrated in Fig 3.3. First, a realistic RF coverage pattern has to be obtained 

for the utilized antennas in the target environment. 

Next, the individual antenna coverage pattern is used to determine the number and 

positions of antennas that provide the RF coverage of the entire freezer cavity. The 

selection of location and the number of antennas required for attaining such high read 

rates with low reading times is performed iteratively by adding and positioning one 

antenna at a time. When the final antenna configuration is acquired, hardware tests can be 

used to verify that each antenna reads all the tags within its designated area. Finally, the 

proposed power control scheme is applied online in order to minimize interference 

among the antennas while ensuring the desired coverage inside the freezer. The proposed 

scheme to obtain antenna configuration is described next. 

3.2.3.1. Acquisition of antenna pattern.  First  an   ideal   radiation   pattern   is  

calculated and modeled by assuming no obstructions and interference. Next, the 

propagation model is used to calculate the coverage in a non-ideal environment. The 

radiation pattern can be obtained from antenna vendor, through measurements in an 

anechoic chamber, or by using existing models from the literature [15].  

For example, a dipole antenna radiation pattern can be calculated 15] using 

     0 0sin 2j ωt kr
dipoleE θ,r = jI e θ πε cr where Edipole  is far electric field (or radiated 

electromagnetic field) of a half-wave dipole at point A , θ  is an Euler angle between 

direction of dipole and the direction to point  A , r  distance between the dipole and the 

point A, 0I is the maximum current passing through the dipole, 0ε is the permittivity of 
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vacuum , c  speed of light in vacuum, λ is wavelength, πF=ω 2  is the pulsation at 

frequency F , and /2π=k  is wave-number. The radiation patterns are utilized to 

determine the antenna gains which are subsequently used to study the attenuation caused 

by the freezer walls, the material of the stored items, and the freezer cavity. This 

information will be further used to study the overall coverage, nulls and thus to determine 

the number of antennas. 

The maximum coverage around an antenna is calculated using signal strength 

equation as 

  

 
4

1
q

bs i i t ii iP K P r g P     (20) 

 

where q is environment dependent variable considering path loss (depends on stored 

material properties), ri-t is the distance between reader’s antenna and the grid point, and 

K1 is the constant that includes reader and tag antenna gains, modulation indexing and 

wavelength, derived in [16]. The gain from the radiation pattern is used to calculate K1 

for each direction. Assuming maximum tranmsssion power, Pmax , and reader’s sensitivity 

level,  , the maximum read range can be calculated from (20) as 

 

 
4

max 1 max( ) ( ) /q
Ar G K P    (21) 

 

where   is the angle around antenna, GA ( ) is the reader’s antenna gain at an angle  . 
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Figure 3.3.  Antenna selection configuration for Missouri S&T smart freezer  
 

 

Remark 5: In the initial step, a maximum power for each antenna is considered. 

However, operating the antennas simultaneously at their maximum power will cause 

collisions among the antennas thus rendering a signifcant reduction in coverage and read 

rates while increasing the read times. As a consequence, DPC is needed to minimize 

collisions and to ensure the coverage for the given antenna configuration.■ 

The parameter q strongly depends on the environment and has to be determined 

for a particular type of stored material, operating temperature, etc. For example, when the 

RF-absorbing material such as water is used, the attenuation of the RF signal over 
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distance increases thus reducing coverage and creating nulls. Therefore, more antennas 

are needed. 

3.2.3.2. Selection of antenna configuration to cover the freezer. The procedure  

begins with a single antenna. The coverage for the entire freezer is calculated by dividing 

the freezer volume into a grid of reference points spaced at predefined intervals. For each 

grid point, the signal strength is calculated from each RFID antenna using the 

propagation model (20) which includes the absorption properties of the materials. 

When the coverage for entire freezer cannot be achieved with maximum antenna 

power, then additional antennas are added one at a time in orthogonal configuration to 

cover the nulls. Each antenna is placed to provide best coverage based on their radiation 

pattern. When a new antenna is added, only the location of this antenna is varied, since 

the location of the existing antennas had been already established. 

Remark 6: The orientation of a tag with reference to antenna alters radar cross-

section of the tag’s antenna. By placing the RFID reader antennas orthogonally the 

combined radar cross-section will improve since the maximum value among the 

considered antennas will apply as 

  
0..2

( ) max( ( ))T i
i

C C
 




   (22) 

 

where ( )iC   is the tag radar cross-section for an angle   in reference to ith RFID reader 

antenna, and )(TC  is combined radar cross-section for all RFID reader antennas.■ 
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3.2.3.3. Testbed validation of the antenna configuration. The overall capability    

of the freezer setup is validated on the hardware. The reference tags are placed at worst 

possible locations (e.g. in the middle of the item stack, at the corner of the designated 

cavity). The antennas are powered one at a time and the reference tags are read. 

3.2.3.4. Fine tuning of antennas location to reduce interference.   Because   of   

the limited space inside a freezer, the coverage obtained from Steps 1 and 2 will be 

reduced due to the interference/collisions from other antennas operating simultaneously. 

Then the proposed locally asymptotically stable distributed power control (LASDPC) 

scheme or simply DPC is used to minimize the interference while attaining the desired 

coverage. The DPC selects suitable power while ensuring there is no overlap in RF 

coverage among the antennas at all times. This essentially eliminates the collisions 

among the antennas. The proposed scheme ensures asymptotic stability as presented in 

Section 3.2.4 in contrast with [14] where a bounded stability is shown. This asymptotic 

stability is needed for attaining 99% read rates and low read times. If the LASDPC alone 

cannot mitigate the interference, then the antenna position is fine-tuned. Once the 

consistent 99% read-rate is achieved, the current configuration of antennas becomes the 

solution. 

3.2.4. Proposed Distributed Power Control Scheme.  In  RFID  systems, a  tag   

will be detected provided the ratio of the backscatter signal received by the reader is 

above the target signal-to-noise ratio (SNR) [14]. The SNR is defined as Pbs (k) / I i (k)   , 

where Pbs is the backscatter power from a tag at the time instant k, I i (k )  is the interference 

at the tag backscatter frequency, and  is the minimal SNR required to correctly decode 

the backscatter signal. The SNR state equation for an antenna can now be defined as  
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 ( 1) ( ) ( ) ( 1) / ( )Ty k k k P k I ki i i i ii        (23) 

 

where ( )iy k is the SNR value,      T
i i il l r l      is a vector of unknown parameters, and 

      T

i i il y l l      is the regression vector, Pi(k+1) is power at time k+1, and i  is signal 

loss. 

Define the SNR error as ( ) ( )i ie k y k  . By selecting the antenna transmission 

power as 

 
( ) ( )ˆ( 1) ( ) ( ) ( )

1 ( ) ( )

I k e ki iP k k k k e ki i i i vi i Te k e k ci i ii

  


 
      

   
 (24) 

 

where 0ic   and   are design constants, one can ensure locally asymptotically stable 

system. The proposed update law for the channel parameter estimate, ˆ( )k , is given by 

 ˆ ˆ( 1) ( )  ( 1)Tk k e ki i        (25) 

 

After combining and defining 1( ) T
i ik      and ( ) ( )ik k  , the closed loop error system in 

terms of SNR becomes 

 1

( )
( 1) ( ) ( ) ( )

( ) ( )
i

i vi i T
i i i

e k
e k k e k k k

e k e k c

      
  (26) 

 

Assume a conic region that satisfies
1 12 ( ( ) ) ( ) ( )T T T

M i i ie k e k e k        , where 

2( ( ) )ie k  , the following theorem guarantees local asymptotic stability of the SNR 

error dynamics even with channel estimation errors. 

Theorem 3 (General Case): Consider the SNR state equation (21) with the 

parameter update law given by (23) in the presence of bounded channel uncertainties. Let 
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the power update be provided by (22). Then the SNR error ( )ie k and the channel parameter 

estimation errors, ( )k , respectively are locally asymptotically stable. 

Proof: See Appendix. 

 

3.3. SIMULATION AND EXPERIMENTAL RESULTS 

3.3.1. Simulation Study.   In  order  to  verify  the  effectiveness of the proposed  

inventory control scheme, several simulation scenarios were completed in Matlab. The 

simulation scenarios depict an industrial shop floor with 8 freezers. Actual demand for 

each freezer was modeled using an assortment of functions, for example a step function 

and a sinusoidal function. Demand variation ( )dije k was implemented using a uniform 

random variable with range (-10, 10).  Total error in the inventory level and total delivery 

request were selected as the performance metrics. The overall goal is to reduce the total 

error since high error leads to wastage of materials due to overstocking, or disruption of 

production due to insufficient inventory. Additionally, the total delivery request is 

observed in order to identify when excess amount of items is ordered. 

The proposed scheme is compared with exponential weighted moving average (EWMA) 

method [1]. One level of the EWMA smoothing parameter α=(0.9) and two levels of the 

smoothing parameter β=(0.1, 0.9) were tested. Total of 3 cases were simulated, with and 

without the distributed inventory control scheme and inventory balancing. Each scenario 

was repeated 500 times and the results were averaged in order to account for the effects 

of the stochasticity in the system.  

Table 3.1 summarizes the results of the simulation study. The proposed scheme 

performs on par with the best-case scenario using EWMA. However, the EWMA 
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parameters need to be manually selected based on experiments [1] since they have a 

direct effect on the accuracy of the demand prediction. In contrast, the proposed demand 

prediction model tunes these parameters online in order to reduce prediction error.  

When the DIC backpressure signal is applied, the total error in inventory level is reduced 

by up to 15% for EWMA and 34% for the proposed scheme over the No–DIC scenario. 

By employing the backpressure DIC signal, the performance for each demand prediction 

scheme is further improved since the ordering policy for the supply chain compensates 

for demand fluctuations. It is important to note that, the main improvement in the 

performance between EWMA and proposed scheme is the direct result of the online 

tuning that eliminates the need for offline manual training, and can adopt parameters to 

changing demand patterns without user intervention. Further performance improvement 

is observed when all the schemes are implemented with DIC coupled with inventory load 

balancing. For instance, Table 3.1 shows that the DIC with inventory balancing reduces 

errors in inventory levels by 62-70% when compared to DIC without inventory load 

balancing. 
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Table 3.1. Simulation Results 

 Proposed Scheme
EWMA 

α =  0.9, β =  0.1

EWMA 

α =  0.9, β =  0.9 

 
Total 

Error in 

Inv. 

Level 

Delivery 

Request 

Total 

Error in 

Inv. 

Level 

Delivery 

Request

Total 

Error in 

Inv. 

Level 

Delivery 

Request 

No - DIC 15029 25107 11476 24696 12282 24711 

DIC w/o 

Inventory 

Balancing 

9833 24674 9860 24723 10347 24722 

DIC w/ 

Inventory 

Balancing 

2989 24718 2982 24702 3880 25867 

 

 

3.3.2. Hardware Experiments.  In the hardware portion of the experimentation, 

impact of RFID reader and antenna types, number and placement of antennas, reading 

times and operational temperature on the read rate were investigated. Each experimental 

scenario was repeated at least five times to ensure consistency in the results. The 

containers were kept in the freezer for a prolonged time to study impact of exposure to 

low temperatures and ice buildup. 

Placement of antennas inside the freezer that can deliver 99% read rates were 

identified using the proposed methodology in Section 3.2.3. First, following Step 1, the 

theoretical antenna coverage has been altered to accommodate the presence of ferrous 

materials inside the freezer. Next, antennas were successively added and the coverage 

was tested as per Step 2. The intermediate results are shown below. The final 

configuration, as shown in Fig. 3.4, was achieved by fine-tuning the locations of 6 

antennas connected to an Alien ALR9800 reader as per Step 4. 
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Figure 3.4.  RFID antenna locations for smart freezer solution 
 

 

The reader was operated with a maximum transmission power of 30dBm. Tracked 

items are tagged with Gen 2 tags wrapped around the containers. The proposed LASDPC 

scheme was implemented at the reader. The antenna configuration design and confined 

freezer area resulted in the power control scheme operating in a simplified on/off mode, 

where the power control combats the multipath fading alone. 

The experimental setup used in this work comprised of: 

 AR400 Matrics Class 1 Gen 2 RFID reader with dual directional antennas 

 ALR 9800 Alien Class 1 Gen2 RFID reader with circularly polarized antennas 

The freezer was loaded with 276 containers including 120 containers with non-

RF-friendly (iron oxide) materials. Non-RF friendly materials absorb the RF signal and 

negatively affect the overall read rates. 

AD-220 Gen 2 tags from Avery Dennison were attached to the containers. 

Series of experiments have been conducted in order to evaluate the impact of each 

step of the proposed antenna configuration design scheme. First, a baseline scenario with 
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simple antenna placement is presented. Next, the steps to determine the desired antenna 

number and placement are applied taking into account signal attenuation due to ferrous 

materials, frost, and tag orientation. Finally, the proposed power control is applied and 

tested in varying operating conditions. The worst case of -100F operating temperature has 

been thoroughly tested over a period of 3 months. 

3.3.2.1.   Results for  antenna  propagation pattern calculations.   The  antenna 

specification provides basic data about its radiation pattern including beam width and 

gains. For example, ALR-9610 circular antenna provides 65º of 3dB-beamwidth. 

Consequently, the coverage pattern assumes a cone shape that creates nulls for tags 

located close to antenna but off the beam center. In the proposed design methodology 

additional antennas cover the nulls. Second major parameter used in the creation of 

coverage pattern is the effective read range. The parameters of the model (20) have to be 

set appropriately for the given environment. Inside a fully loaded freezer the content can 

absorb RF signal thus increasing path loss parameter from q=1 (free space) to q=3 for an 

iron oxide used in the experiments. Consequently, the read range reduces to 3ft. 

Furthermore, the orientation of the tag with respect to the antenna’s beam direction can 

reduce tags gain by up to 3dB. Based on the read range model and experimental 

verification, the 3dB loss corresponds to a distance of about 4 inches. Hence, the final 

coverage pattern assumes the shape of a cone with a height of 26in. 

3.3.2.2.   Experiments with  various antenna configurations.   Table  3.2   was 

obtained during the initial testing of RFID-enabled freezer. The study shows inadequate 

read rates for simple antenna configuration for both Alien and MATRICS antennas. In 

general, the read rates increase with the number of antennas since the additional antennas 
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can be positioned to cover the nulls. However, read times appear to be quite high which 

can be mitigated using DPC as presented in Table 3.3. 

Moreover, the read rates improved for the ‘multi-static’ Alien antennas since they 

can switch between transmission and reception whereas a Matrics antenna includes two 

static elements. As a result, each Alien antenna act as two sets of fixed function antennas 

although physically there is one. This information should not be confused in the Table 3.2 

between the manufacturers. Next, the proposed design methodology from Sections 3.2.2, 

3.2.3 and 3.2.4 was applied and experimentally tested.  

By using the flow chart in Fig. 3.3, the adequate number of antennas and their 

location was calculated to be equal to six and their respective locations are shown in 

Figure 3.4. 

 

Table 3.2. Performance Comparison of Matrix and Alien Equipment 

Reader Antenna Duration 
Read rate 

1-Antenna 2- antennas 4-Antennas 

Matrics 

AR-400 

AN-100 

Dual 

Directional

180 sec 34-50 % 68-75 % 82-86% 

Alien 

ALR-9800 

ALR-9610 

Circular 
180 sec 59-63% 75-77 % 84-88 % 

        *Each Matrics antenna include a separate transmitting and receiving element 

 

 

Remark 7: The Matrics reader requires that each antenna set contain two 

elements (transmitter and receiver). Consequently, the complete freezer setup for Matrics 

reader would require 12 antenna elements, which reduces the storage volume 

significantly. Hence, Alien readers were used only.■ 
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Remark 8: The introduction of antennas into the freezer reduces its volumetric 

capacity. The actual reduction depends upon the freezer and antenna dimensions. In the 

proposed freezer (So-Low C85-9 interior: 47”x16”x20”), the reduction of the freezer 

capacity is equal to 28.5% due to 2in. spacing at each freezer wall mounted with 

antennas.■ 

3.3.3. Results for Varying Temperature.  The selected  antenna  configuration  

was validated at several operating freezer temperatures with proposed antenna placement 

and power control. The temperature varied from 20° F to −100° F, which is a typical 

range of temperatures used in the composite industry. Table 3.3 presents the summary of 

results. Missouri S&T scheme renders 99% read rates regardless of freezer temperature 

since the methodology ensures coverage in the presence of severe fading and interference 

while ensuring a low read time of 40 sec. 

 

 

Table 3.3. Read Rates 
Reader and 

Antennas 

# of antennas Duration Temp. 

(° F) 

No Power 

Control 

Random 

Placement 

Power 

Control 

Random 

Placement 

Power 

Control &

Antenna 

Placement

Alien Alr-9800 

ALR-9610 

Circular 

6 40 sec. 

20 81% 94% 99% 

-20 80% 93% 99% 

-40 78% 93% 99% 

-60 75% 89% 99% 

-100 73% 88% 99% 
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3.4. CONCLUSIONS 

This paper introduces a novel DIC scheme and a methodology to identify the 

location and number of antennas required for attaining full visibility. The proposed DIC 

scheme with inventory balancing reduces errors in inventory level when contrasted 

against a simple demand prediction scheme. The performance of the DIC scheme was 

demonstrated through Lyapunov approach. In order to achieve the 99% read rates, 

Missouri S&T smart freezer solution was utilized. The experimental results demonstrate 

99% read rates within 40 seconds at −100°F temperature with six antennas. Overall, the 

DIC scheme in concert with the smart freezer design delivers a reliable and efficient 

supply chain solution. 
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4. MAHALANOBIS TAGUCHI SYSTEM (MTS) AS A PROGNOSTICS TOOL 
FOR ROLLING ELEMENT BEARING FAILURES 

 
 

4.1. INTRODUCTION 

According to the Motor Reliability Working Group and the Electric Power 

Research Institute [1], the most common failure mode of electric motors is bearing 

failure, which accounts for over 40% of all machine failures. Therefore, monitoring, 

diagnosis, and prognosis (MDP) of bearing failures is vital for reliable operation of 

industrial equipment. Rolling element bearings consist of four separate parts, as shown in 

Figure 4.1: (1) outer race, (2) inner race, (3) cage, and (4) rolling elements 

 

 

 

Figure 4.1. Components of a rolling element bearing  
(image courtesy of Timken Co.) 

 

 

Of the various sensory data commonly used for machine monitoring and 

evaluation purposes (e.g. vibration, acoustic emission, temperature, force, and torque, 

etc.), vibration signals are directly related to a machine’s structural dynamics and 
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working conditions. Faults that typically occur on rolling element bearings are due to 

localized defects on the inner race, outer race, rolling element and the cage of the bearing 

[2, 3]. As a result, impact vibrations are generated as the rolling elements pass over the 

surface of the defect. These vibrations are governed by the geometry of the bearing, the 

operating speed, the actual location of the defect and the natural dampening of the 

machinery; the total effects of which form what is called the bearing characteristic 

frequency (BCF) [4].  

An in-depth discussion of complete rolling element bearing vibration features 

with mathematical formulations is provided by Harris [3], Hochmann and Bechhoefer 

[5], and Li et al. [6]. Consequently, vibration signals are commonly used as an effective 

indicator of potential machine failure. In this study, features derived from bearing 

vibration signals are also utilized. 

Rolling element bearings have been extensively studied in the literature for the 

last three decades in order to develop algorithms and techniques for bearing fault MDP. 

Janjarasjitt et al. [7] present a modified computational algorithm for the correlation 

integral, which is a popular nonlinear algorithm for time series analysis. The partial 

correlation integral is applied to bearing vibration data to examine the nonlinear 

dynamics of bearing system throughout the life of a bearing. The test system in the paper 

includes two bearings operating under an axial load mounted with accelerometers; and 

vibration data are recorded. Once the partial correlation integral algorithm is applied to 

these sets of data, the results show that the vibration characteristics during the normal 

operating period of a bearing are dominated by nonlinear deterministic signals.  
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As the bearing progresses towards failure, the nonlinear features start to be 

dominated by stochastic signal features. The authors conclude that the partial correlation 

integral and the dimensional exponent provide useful diagnostic and prognostic 

information for monitoring and detecting inner and outer race failures of bearings in 

rotating machinery through complexity analysis of the bearing vibration data. Wu et al. 

[8] utilize frequency spectrum analysis in order to detect localized defects of rolling 

element bearings. They improve upon the high frequency resonance technique, also 

called envelope analysis, which is limited by the requirement of bearing operation under 

constant speed. However, rotating machinery may operate in varying speeds due to 

varying loads, run-ups and run-downs. The authors state that if variations in speed are 

present, additional hardware such as tachometers and key phasors would be required to 

use the envelope analysis.  

In order to overcome this limitation they propose a mathematical model that 

employs instantaneous frequency estimations. They test their scheme on two bearings 

that are mounted on the shaft of an electrical motor. The bearings are instrumented with 

accelerometers and one of the bearings is seeded with an inner race fault, while the other 

one has an outer race fault. The results show that the proposed scheme successfully 

detects bearing faults without the need for the additional hardware. 

Most of the time, impact vibrations generated by bearing faults exhibit low energy 

and can easily be overwhelmed by  noise with  higher energy levels other sources of 

vibration such as the other structural components of the machinery under examination. 

Due to the wide variety and complexity of machinery in industrial manufacturing 

environments, assessment of the status of a machine directly from raw vibration signals 
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or signals analyzed in the time or frequency domains [9, 10] can become complicated. In 

some cases it may even be entirely unfeasible [11]. This is due to limitations of the time 

domain and frequency domain procedures. Hence, various time-frequency analysis 

methods including wavelet transforms have been developed in order to overcome these 

limitations. Tse et al. [12], demonstrate the advantages of wavelets by performing a 

comparison between a wavelet based approach and FFT with envelope detection (ED) 

approach based on experimental data. In their testbed several ball bearings are 

instrumented with accelerometers for recording vibration data and a tachometer for 

measuring rotational speeds.  

The test bearings were seeded with inner and outer race faults, in addition to a 

fault induced on the rollers themselves. The results showed that both FFT with ED and 

wavelet analysis were successful in detecting the outer race defect condition, where as the 

inner race and the rolling element defects were successfully identified by the wavelet 

analysis only.  

Lou and Loparo [13], propose a new technique that uses the wavelet transform 

coupled with an adaptive neural fuzzy inference system (ANFIS). ANFIS is a model that 

maps inputs through input membership functions (MFs) and associated parameters, and 

then through output MFs to outputs. Detailed information on ANFIS can be seen in [14]. 

Their experimental system consists of bearings mounted on the shaft of a three-phase 

induction motor. From the test system, they collect vibration signals for various healthy 

bearings and bearings with pre-seeded fault conditions. They use the wavelet transform 

on the normalized data in order the define feature vectors that represent the condition of 

the bearings. Next, they train an ANFIS as a pattern classifier and test out an assortment 
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of bearing fault conditions. In their conclusion they state that ANFIS coupled with 

wavelet analysis could be used to identify the time of occurrence and the degree of 

severity of a fault, which would enable prognostics of bearings. 

All of the papers discussed so far deal with monitoring and diagnosis of bearing 

failures. Diagnostics, by its nature is a reactive approach. In order to prevent catastrophic 

failures, preventive maintenance strategies are usually employed by industries. 

Maintenance on machinery is performed on a schedule-basis, which tends to 

unnecessarily increase downtime, reduce machine life and thus generate redundant costs. 

In order to rectify this problem, it is necessary to transition to a more proactive approach, 

i.e. predictive maintenance. Prognostics are important to predictive maintenance, and it 

focuses on performance degradation and estimation of remaining useful life (RUL) of 

components. Therefore, research on prognostics has been gaining momentum in the last 

decade; however, compared to diagnostics, literature on prognostics is much smaller.  

In the literature, there are two approaches for the estimation of remaining useful 

life. The first approach utilizes physics of failure models that incorporate operating 

conditions in order to track the damage that components experience. These models 

require specific mechanistic knowledge and theory relevant to the components under 

investigation [15]. In their papers, Li et al. employ two defect propagation models 

developed through mechanistic modeling in order to estimate RUL for rolling element 

bearings [16, 17]. Li et al. [18], introduce a single surface defect propagation model along 

with an adaptive prognostic methodology for the prediction of bearing defect growth.  In 

computer simulation and real-life testing, they show that their adaptive methodology is 

able to effectively predict the defect propagation of bearings without the need for a priori 
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knowledge of the prognostic model parameters. Luo et al. [19], present an integrated 

prognostics process based on an interacting multiple model approach. The prognostics 

process is derived from model-based simulations under nominal and degraded conditions. 

time-averaged mode probabilities. 

The second approach to estimation of RUL comprises of pattern recognition 

models that are derived from historical data collected from the system under 

investigation. Artificial intelligence techniques such as neural networks, neuro-fuzzy 

inference systems, self organizing maps, etc. have been applied to the prediction of RUL 

by many researchers. Wang and Vachtsevanos [20], discuss the components of a 

prognostic architecture, such as network structure, learning algorithms, performance 

assessment, etc. in their study. They develop a prognostic scheme that draws on dynamic 

neural networks. They test a defective bearing with an inner race crack and validate the 

prognostics capability of their scheme. Qiu and Lee [21], apply the wavelet transform and 

self organizing maps in order to facilitate bearing prognostics. They collect data from a 

testbed that consists of four bearings mounted on an AC motor shaft operation at 2000 

rpm. A radial load of 6000lbs is applied to the shaft through a spring mechanism where 3 

sets of test are run until failure. Vibration data are collected and analyzed periodically. 

The results demonstrate that by monitoring the trajectory of bearing conditions within the 

SOM, it is possible to predict the remaining life of bearings. Finally, Chinnam and 

Baruah [22], present a neuro-fuzzy approach in a situation where failure data and failure 

definition models are unavailable but domain expert knowledge with strong experiential 

knowledge is available.  
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It should be noted that most of the work done in this area focuses on specific 

failure cases created under controlled laboratory conditions or through computer 

simulations. In some cases several bearing faults may be present at the same time, one of 

which would ultimately result in failure. Nevertheless, all of the faults need to be 

monitored concurrently in order to have an effective prognosis on the RUL. In addition, it 

is usually much easier to detect damage than to assess its severity and progression. Both 

physics of failure and damage-progression/performance-degradation models face 

difficulties when the system under consideration is complex and affected by the operating 

conditions and the environment. The papers in the literature present several signals; and 

features that are derived from these signals, which need to be monitored. If these 

signals/features show a large variability between experiments, it becomes difficult to 

select suitable thresholds to be used in rolling element bearing MDP. In addition, the 

existing body of work does not present a systematic method which can identify the most 

pertinent variables and eliminate the redundant ones in order to reduce analysis overhead. 

Therefore, a new multivariable method is necessary to identify the input variables 

necessary to be monitored for fault detection, root cause analysis, and fault prognosis.  

In this paper, rolling element bearings are used as a case study in order to develop 

a Mahalanobis-Taguchi System (MTS) based fault detection, isolation, and prognostic 

scheme for real-time decision making. MTS is a multivariate pattern recognition tool, 

which provides the background to combine all pertinent information about a system into 

a single metric using Mahalanobis Distance, and it also presents a methodical way of 

determining the key features required for analysis drawing on the Taguchi methods. 
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MTS has been widely used in various diagnostic applications that deal with data 

classification. In MTS, Mahalanobis Distance (MD) is used to identify the degree of 

abnormality of data, whereas the Taguchi methods, which utilize orthogonal arrays (OA) 

and signal-to-noise ratio (S/N), are used to evaluate the accuracy of predictions and to 

optimize the system [23]. MD, introduced by P.C. Mahalanobis in 1936 [24],  is a 

multivariate generalized measure used to determine the distance of a data point to the 

mean of a group. MD is measured in terms of the standard deviations from the mean of 

the samples and provides a statistical measure of how well the unknown data set matches 

with the ideal one. The advantage of the MD is that it is sensitive to the intervariable 

changes in the reference data. Therefore, it has traditionally been used to classify 

observations into different groups and diagnosis [25].  

The benefits of MTS as a pattern recognition and data classification tool can be 

summarized as follows: 

 A robust methodology that is insensitive to variations in multidimensional 

systems. 

 Can handle many different types of data sets and effectively consolidates the data 

into a useful metric. 

 Implementation of MTS requires limited knowledge of statistics. 

 Relies typically on simple arithmetic, contextual knowledge, and intuition.  

 Its success has been demonstrated in various practical applications. 

In their paper, Chinnam et al. [26], use ten features derived from two degradation 

signals (thrust force and torque) in a drilling operation in order to determine the condition 

of the drilling tool. The authors utilize MD in order to generate a measurement scale and 
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then they use the Taguchi methods to reduce the number of features down to six. They 

use the 99th percentile of the MDs from the normal group as a threshold, which shows a 

superior performance when compared with the any of the individual features.  

Wang et al. [27] use the iris data, which is often used in statistical textbooks, and 

credit card data from a Taiwanese bank in order to display the effectiveness of MTS in 

data classification. They compare the performance of MTS with discriminant and 

stepwise discriminant analysis and conclude that MTS shows better performance. Cudney 

et al. [28] apply MTS in order to study the relationship between available vehicle level 

performance data for vehicle ride and the corresponding consumer satisfaction ratings for 

the purpose of improving customer-driven quality. They analyze six vehicle ride 

parameters from sixty-seven datasets using the MTS, determining the key parameters. 

The authors are able to show that the MTS methodology can be used in order to evaluate 

consumer satisfaction and manufacturers can utilize this knowledge to make the 

appropriate design decisions regarding attributes that are delivered in a product.  

Cudney et al. [29] further investigate the performance data and customer 

satisfaction relationship using the Mahalanobis-Taguchi Gram-Schmidt (MTGS) 

technique and showed improved results. In their recent article, Foster et al. [30] develop 

an alternative search procedure  to be used within the MTS. The adaptive One-Factor-

AT-a-Time (aOFAT) procedure replaces the orthogonal arrays traditionally utilized in 

MTS, and features are individually added or removed from the classification system 

depending on their impact on the overall signal-to-noise ratio. The experimentation 

shows that the aOFAT procedure renders greater improvements over the median with the 
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same or fewer design alternatives being explored and also exhibits good ability to 

generalize to new instances after training. 

MTS has also been used as a process control and improvement tool to aid 

manufacturing systems. Asada [31] use MTS to forecast the yield of a wafer production 

system, which is affected by variability of the electrical properties and environmental 

dust. MDs are used to compare the relationship between wafer yield and distance. 

Hayashi et al. [32] develop an MD based method in order to maximize productivity in a 

semi-conductor manufacturing facility. Their method consists of real-time monitoring of 

flow factor and in process wafers using MD values to identify the out-of-specification 

processes and/or tools and take the necessary actions.  

Mohan et al. [33] propose a MTS-based diagnostic and root cause analysis 

scheme for online monitoring of grip-length of pull type fasteners. Their scheme utilizes 

data collected from an aerospace industry pull-type fastening tool instrumented with 

various sensors. Sensor data are analyzed using MTS and the quality of the current 

operation is communicated back to the user via a wireless network. The authors were able 

to obtain a 100% data collection on each fastener as opposed to other statistical process 

control techniques, which rely on sampling. Dasgupta [34] develop a unified framework 

for achieving process control and improvement during the implementation phase of Six 

Sigma. The proposed framework takes advantage of the adaptability of MTS as a 

classification, variable selection and monitoring tool. The framework is explained using a 

simulated example. Srinivasaraghavan and Allada [35] also propose a MTGS based 

methodology in order to support the implementation of lean processes. Their 

methodology assists contemporary lean assessment tools through providing a measure of 
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leanness by benchmarking exemplary lean industries along with suggestions for 

improvements based on cost considerations. 

MTS is a data driven method that relies on multivariate statistical analysis. 

Therefore, it is important to compare MTS to well-established multivariate statistical 

techniques such as principal component analysis, discriminant analysis, cluster analysis, 

canonical component analysis, and multidimensional scaling, as well as artificial neural 

networks. For an in-depth comparison of these techniques to MTS, please refer to Kim et 

al. [36], Cudney et al. [37],  Jugulum [38], and Woodall et al. [39]. Books relevant to this 

study are Harris  [3], Isermann [40], and Wowk [41]. 

The contribution of this paper can be summarized as follows: (1) Applies MTS to 

the domain of rolling element bearing monitoring, diagnostics and prognostics for the 

first time to the best knowledge of the authors; (2) Builds upon MTS by introducing the 

use of MD-based fault clusters for fault isolation; and (3) Utilizes the progression of MD 

values over time in order to estimate the remaining useful life of components. 

 

4.2. METHODOLOGY 

In this paper, a Mahalanobis Taguchi System based fault detection, isolation, and 

prognostics scheme is presented. The proposed scheme utilizes a Mahalanobis Distance 

based fault clustering method in order to classify faults into different categories. Using 

these clusters, fault detection and root cause analysis is performed. The scheme also 

utilizes the progression of the MD values over time in order to facilitate prognosis of time 

to failure for components. The details of the scheme are presented in the rest of the 

section. 
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4.2.1. Mahalanobis Taguchi System. MTS starts with data collection on normal  

observations. Then, Mahalanobis Distance is calculated using certain characteristics to 

investigate whether MD has the ability to differentiate the normal group from an 

abnormal group. If MD cannot detect the normal group using those particular 

characteristics, then a new combination of characteristics need to be explored. When the 

right set of characteristics are found, Taguchi methods are employed to evaluate the 

contribution of each characteristic. If possible, dimensionality is reduced by eliminating 

those characteristics that do not add value to the analysis. MTS consists of four stages 

[23, 25]: 

Stage 1: Construction of Mahalanobis Space  

 The first step in MTS is the construction of the Mahalanobis Space (MS) as the 

reference. In order to construct MS, the variables that represent “normal” conditions are 

defined and sampled. In this study, new bearings that are properly lubricated represent 

the normal case. The steps for the construction of MS are outlined below: 

1. Calculate the mean for each characteristic in the normal data set as:  
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2. Then, calculate the standard deviation for each characteristic: 
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3. Next, normalize each characteristic, form the normalized data matrix ( )ijZ  and 

take its transpose ( )T
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4. Then, verify that the mean of the normalized data is zero: 
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5. Verify that the standard deviation of the normalized data is one: 
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6. Form the correlation matrix ( )C  for normalized data. Calculate the matrix 

elements ( )ijc as follows:  
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7. Calculate the inverse of the correlation matrix 1( )C  . 

8. Finally, calculate MD as: 
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where 

ijx is the thi characteristic in the thj observation, 

n  is the number of observations, 

is  is the standard deviation of the thi characteristic, 
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ijZ  is the normalized value of the thi characteristic in the thj observation, 

zs is the standard deviation of the normalized values, 

C is the correlation matrix, 

1C is the inverse of the correlation matrix 

jMD is the Mahalanobis Distance for the thj observation, and 

k is the number of characteristics. 

Stage 2: Validation of MS 

 In order to validate MS, observations that fall outside the normal group are 

identified and the corresponding MD values are calculated. The characteristics of the 

abnormal group are normalized using the mean and the standard deviation of the 

corresponding characteristics in the normal group. The correlation matrix corresponding 

to the normal group is used to compute the MDs of the abnormal cases. If MS has been 

constructed using the appropriate characteristics, then the MDs of the abnormal group 

should have higher values than that of the normal group. 

Stage 3: Identification of the Useful Characteristics 

 In this stage, the useful characteristics are determined using orthogonal arrays 

(OA) and signal to noise (S/N) ratios. An orthogonal array is a table that lists the 

combination of characteristics, which enables testing the effects of the presence or 

absence of a characteristic. The size of the OA is determined by the number of 

characteristics and the levels they can take. In MTS, characteristics in the OA have two 

levels. Level-1 represents the presence of a characteristic while level-2 represents the 

absence of a characteristic. For the abnormal cases, MD values are calculated using the 
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combination of the characteristics dictated by the OA and the larger-the-better  signal-to-

noise ratio is calculated as follows [23, 25]: 
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1 1
10log
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j jt MD




 
   

  
  (8) 

 

where 

 q is the signal-to-noise ratio for the thq run of the OA, and 

 t  is the number of abnormalities under consideration 

 Then, an average signal-to-noise ratio at level-1 and level-2 of each characteristic 

is obtained and the gain in signal-to-noise ratio values for each characteristic is calculated 

[23, 25]: 

 1 2( . / ) ( . / )Level LevelGain Avg S N Ratio Avg S N Ratio    (9) 

 

Stage 4: Decision Making 

 In the final stage, the application under investigation is monitored via data 

collection using the MS. MDs are calculated and if MD >> 1, it is concluded that the 

application is displaying abnormal behavior and appropriate corrective actions need to be 

taken. If 1MD , then the conditions are normal. 

4.2.2. MD-based Diagnostics.  A fault is a change from the normal operation of  

a system. Fault detection is the first step in diagnostics, which indicates the occurrence of 

a fault in a monitored system. Diagnostics or also referred to as fault isolation, therefore 

identifies the root cause of a fault [40]. In this study, an MD-based data clustering 

technique is used in order to classify rolling element bearing failure data into different 

fault groups. The technique takes advantage of the fact that the Mahalanobis distance is 
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calculated using the inverse of the correlation matrix (Eqn. 6). The correlation matrix 

consists of the correlation coefficients, which is a normalized measure of the strength of 

the linear relationship between variables as shown below: 

 ,

cov( , ) (( )( ))
X Y

X Y X Y
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   (10) 

 

where  

X  and Y are the standard deviations of the random variables X  and Y , 

X  and Y are the expected values for X and Y, 

E  is the expected value operator, and  

cov denotes the covariance. 

The correlation between the MDs can be visualized by plotting the current MD 

value against the previous MD value. In this case, signatures obtained from faulty 

operating regimes are grouped into individual clusters as shown in Figure 4.2. In other 

words, data from the same failure are clustered together due to their correlation. 

 

 

 

Figure 4.2. MD-based fault clustering 
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 Upon completion of the clustering analysis, the designer selects the appropriate 

thresholds based on the mean and standard deviation of the MD values for each fault 

cluster.  Consequently, the type of the fault is isolated by comparing the average MD 

value of the process with the thresholds set for various faulty conditions. 

4.2.3. MD-based Prognostics.  Prognostics involves a) detection of an abnormal 

condition or fault, b) identifying the root cause or fault isolation, and, c) estimating the 

remaining useful life or time to failure. In the prognostics case, the MD values are 

calculated using a predetermined time window as the process continues. Fault detection 

occurs once the MDs leave the normal regime and the tracking of the MD trend is 

initiated. By observing the direction of the transition of the MD trend between the normal 

case and one of the fault clusters, the possible root cause is identified. This is 

accomplished by calculating the angle  between the unknown point U and the mean MD 

value of each of the known fault clusters assuming the fault progression will follow a 

roughly linear trajectory (Fig. 4.3). In this case, the smaller the angle, the more likely that 

the unknown point is progressing towards one of the fault clusters. 

 

 

 

Figure 4.3. Illustration of angle based fault isolation 
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Once the MD data enters the root cause failure cluster, prognosis of the time to 

failure is initiated via linear approximation. First, the slope of the progression of the MD 

value is generated using the MD value of the current and the previous time windows. 

Then, using the slope and the current MD value, the time to failure is determined at each 

instant of time (11). The failure threshold is selected by the designer when the 

performance of the machine is unsatisfactory. 

 
t failure threshold

t failure

MD MD
slope

time time



  (11) 

In some cases, the fault clusters may lie on a linear path. The linear alignment of 

the fault clusters would make the classification of the fault progression difficult.  For 

example, consider the fault clusters in Figure 4.4, and assume that the MD value of the 

current time window is being marked in the plot with an “x”. As the process continues, 

the MD values leave the normal condition, following the direction of the arrow, but it is 

not clear whether the actual fault is progressing towards fault-1 or fault-2.  In this case, a 

new set of MD values is calculated using one of the faulty data sets as a basis. 

Consequently, the MS is shifted and the identification of the MD progression becomes 

straightforward. 

 

 

Figure 4.4. Linearly aligned fault clusters 
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4.3. DESIGN OF EXPERIMENTS 

In order to facilitate the development of the proposed MTS-based prognostic 

scheme a CNC machine testbed has been constructed at Missouri University of Science 

and Technology. The testbed consists of a Taig MicroMill CNC machine, which houses 

two ORS (Ortadogu Rulman Sanayi) 6203 brand rolling element bearings in its spindle 

headstock. Each bearing has been instrumented with two dual vibration/temperature 

sensors (CTC TA-102-1A) along the x and y axes, while a separate vibration sensor is 

installed on the worktable in order to determine the noise floor and help in denoising the 

vibration signals. Figure 4.5 represents the placement of the sensors on the spindle 

headstock, while. Figure 4.6 shows the actual testbed setup. 

 

 

 
Figure 4.5. Sensor placement on the spindle headstock 

 

 

The spindle of the CNC machine was operated at 1,600 rpm, while performing a 

facing operation on Al 6061 plates at a feed rate of 2 in/min. In order to eliminate the 

effects of tool wear and to achieve consistency between the tests, a brand new 3/8 inch 4-

flute end mill was installed into the spindle at the start of each test. 
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Figure 4.6. Taig MicroMill CNC machine testbed 

 

 

 Vibration and temperature data from both bearings was sampled continuously at a 

rate of 10 kHz and the data was recorded to a hard drive every 30 seconds. It should be 

noted that acquisition of data while performing a cutting operation more closely 

represents the conditions that would be faced in a real-life manufacturing operation. In 

the normal operating condition case, new bearings were installed into the spindle 

headstock for each experiment. However, due to the long life of rolling element bearings, 

further modifications (i.e., seeded with faults) were made to the bearings in order to 

expedite the fault progression, which is explained below. 

Out of the various failure types shown in Fig. 4.7, four different types of bearing 

operating conditions were investigated in the experiments: 

1. Normal Condition: Brand new bearings were operated with no alterations. 

2. Cage defect: Bearings were operated after all of the lubrication was removed by 

the use of solvents in order to accelerate the testing. 
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3. Inner race defect: A 0.005 inch groove was cut in the inner race of the bearings 

with the help of a wire EDM machine. Then the bearings were run with no 

lubrication. 

4. Outer race defect: Same as the inner race defect, but this time the groove was 

placed on the outer race of the bearings. 

In order to have adequate amount of data sets for the validation of the proposed 

scheme, three experiments with normal operating conditions, six experiments with cage 

defect fault, and, three experiments each of inner and outer race defect faults were 

performed until the bearings reached a complete failure state and stopped spinning.  

It is important to note that due to its proximity to the milling cutter, the bottom bearing of 

the spindle headstock is exposed to higher level of forces and it was the one that always 

failed in the experiments. Therefore, the details of the experimental results and analysis, 

which are explained in the next section, are based on the data collected on the bottom 

bearings. 

 

4.4. EXPERIMENTAL RESULTS 

4.4.1. Feature Extraction.  The construction of the Mahalanobis Space requires 

selection of an initial set of features. Therefore, kurtosis and root-mean-square (RMS) of 

vibration in the time domain, and the bearing characteristic frequencies in the frequency 

domain are extracted from the vibration signals of each bearing sensor. The temperature 

signal is also used as a feature without any further processing. . By assuming a fixed 

outer race, rotating inner race, and no slippage; equations (12), (13), and (14), provide 
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frequencies for ball pass inner race (BPFI), ball pass outer race (BPFO), and cage defect 

(CD), respectively [5]. 

 1 cos( )
2

bf d
BPFI

e
   

 
 (12) 

 

 1 cos( )
2

bf d
BPFO

e
   

 
 (13) 

 

 1 cos( )
2

f d
CD

e
   

   (14) 

where 

b is the number of rolling elements, 

f is the bearing inner race rotational speed, 

d is the diameter of the rolling elements, 

e is the bearing pitch diameter, and 

 is the rolling element contact angle. 

The specifications for the experimental bearings are b = 8, f = 1600 rpm, d = 0.2362 in., 

e = 1.18 in., and  = 15°. Using equations (12-14), the cage defect frequency, ball pass 

inner race frequency and the ball pass outer race  

frequency are calculated as 15.91 Hz, 127.3 Hz, and 86.04 Hz, respectively. Upon 

completion of the feature extraction, each feature is analyzed individually. Across all of 

the experiments, a large variability in the bearing characteristics frequencies is observed 

despite the fact that the experiments were performed under identical and strictly 

controlled conditions. 
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Figure 4.7. Rolling element bearing failure cause-effect diagram 
 

 

Figures 4.8 through 4.9 highlight the variability of the cage defect frequencies and 

the bearing failure times. The failure times range between 4.3 hours to approximately 70 

hours where as the amplitude of the cage defect frequency at the end of an experiment 

ranges from -60 dB to -30 dB. This confirms the challenge of setting thresholds based on 

individual features in order to perform diagnostics and prognostics. Therefore, the need 

for a multivariate tool that effectively combines multiple characteristics into a single 

metric, which is the Mahalanobis Distance, is validated. 
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Figure 4.8. Progression of cage defect frequency over time for cage defect tests 
 

 

Figure 4.9. Progression of cage defect frequency over time for inner race defect tests 
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Figure 4.10. Progression of cage defect frequency over time for outer race defect tests 
 

 

4.4.2. Identification of Key Features.   The  initial  Mahalanobis  Space  is  

constructed and corroborated using ten features: cage defect frequencies (CD_x, CD_y), 

ball pass inner race frequency (BPFI_x, BPFI_y), ball pass outer race frequencies 

(BPFO_x, BPFO_y), root mean square of the vibration signal (RMS_x, RMS_y), and 

kurtosis of the vibration signal (KURT_x, KURT_y). The features are extracted by 

processing the vibration data collected from the sensors in the x and y axes. The raw 

temperature data (Temp) are also used as the eleventh feature. 

Then, the L12(2
11) orthogonal array is utilized for each of the twelve experiments. 

Using the larger-the-better type signal to noise ratios and the overall gains, the following 

eight features are selected as the final inputs to the MTS to be used in further analysis: 

 Ball pass inner race frequencies in the x and y axes, 

 Ball pass outer race frequencies in the x and y axes,  

 Cage defect frequencies in x and y axes, and 

 Vibration RMS in the x and y axes 
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Table 4.1, shows the results of the OA analysis for all of the experiments. The features 

that display a positive S/N are marked with an "X". 

4.4.3. Fault Detection and Isolation.  After the key features are identified, MD 

 values for all of the experiments are recalculated. Then, the fault clusters are formed by 

plotting the current MDs against the previous MDs as described in Section 4.2.2 (Fig. 

4.11). 

Notice that there are no transition points between the fault clusters in Figure 4.11. 

This is because the bearings were seeded with faults in order to accelerate the testing (i.e., 

fault progression), as described in Section 4.3.  Using the mean and three times the 

standard deviation of the MDs for each fault type, the thresholds for each fault cluster are 

identified. Table 4.2 shows the observed minimum and maximum mean and standard 

deviations of MDs during the experiments for each fault type. The differences in the 

values are due to the variability between the data sets as explained earlier. 
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Table 4.1. Results of the Orthogonal Array Analysis 
Exp. CD_x BPFI_x BPFO_x CD_y BPFI_y BPFO_y KURT_x* KURT_y* RMS_x RMS_y Temp. *

Cage Defect Test 
1     

X X 
  

X X X 

Cage Defect Test2 X X X X X X 
Cage Defect Test 

3 
X X X X X 

   
X X 

 
Cage Defect Test 

4 
X X X X X X 

 
X X X 

 
Cage Defect Test 

5  
X X X X X X 

    
Cage Defect Test 

6 
X X 

 
X X 

   
X X 

 
Inner Race Defect 

Test 1 
X X 

 
X 

 
X 

  
X X 

 
Inner Race Defect 

Test  2   
X X 

 
X 

  
X X 

 
Inner Race Defect 

Test 3 
X 

 
X X X 

     
X 

Outer Race Defect 
Test 1 

X X 
  

X X 
  

X X 
 

Outer Race Defect 
Test 2 

X X X X X 
 

X 
 

X X 
 

Outer Race Defect 
Test 3 

X X X X 
 

X 
 

X X X 
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Table 4.2. Mean and Standard Deviation of MDs 
 Observed max. and 

min.  mean of MDs 
Observed max. and min.  

std. deviation of MDs 
Normal Case 0.99 – 0.995 2.05 – 3.07 
Cage Fault 2.2 – 15 0.75 – 1.56 
Inner Race Fault 190 - 257 5.7 – 28.5 
Outer Race Fault 273 - 423 10.4 – 32.8 

 

 

 

 

Figure 4.11. MD-based fault clusters 
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Figure 4.12 displays the fault detection and isolation scheme. The detection starts 

with the loading/acquisition of test data. Then, the mean of the MD values for the current 

time window is calculated. If the mean MD is larger than that of the threshold set for the 

normal case, a fault is detected. Next, the mean MD value is compared with the 

thresholds of the other fault cases. If the mean MD value stays within the thresholds of a 

cluster for a user determined time window, then the fault type is isolated. 

 

 

 

Figure 4.12. Fault detection and isolation scheme 
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Table 4.3 shows the fault detection and isolation results that were obtained using 

different combinations of thresholds for the fault clusters. The threshold values displayed 

in Table 4.3 were obtained by utilizing one third of the experimental data. These data 

were used for the training of the MTS. Upon analysis of the resulting MD values, the 

thresholds were selected. The remainder of the experimental data was then used for 

testing the diagnostic capability of the proposed methodology. The results show 100% 

success rate in correct detection and isolation of bearing faults. 

 

Table 4.3. Fault Detection and Isolation Results 
Fault 
Type 

No. of 
Cases 

Correct 
Detection 

Missed 
Detection 

Cage 
Fault 

6 

Tcage = 2 & Tinner = 190 
6 0 

Tcage = 3 & Tinner = 190 
6 0 

Tcage =5 & Tinner = 190 
6 0 

Inner 
Race 

3 

Tinner = 190 & Touter =270 
3 0 

Tinner = 220 & Touter = 270 
3 0 

Tinner = 250 & Touter = 270 
3 0 

Outer 
Race 

3 
Touter = 300 

3 0 
 

 

4.4.4. Prognostics.  As  described  in Section 4.2.2, determining the direction of 

actual progression of a fault is difficult if the fault clusters are aligned linearly (Fig. 4.11). 

In general, transition data is utilized to obtain the direction of fault progression and to 

identify the root cause by finding the fault cluster the data leads to.  Unfortunately, for the 
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experiments performed in this study, due to the nature of accelerated fault progression, 

the transition data is not available. If transition data were available, it could have 

displayed a gradual progression from the healthy state to the faulty state in a nonlinear 

fashion, which could be utilized for prognostics. 

In order to determine the actual direction of the progression of a fault and to 

identify the root cause, a new set of MDs are calculated using the cage fault case as a 

basis for comparison. This realigns the fault clusters as seen in Figure 4.13, where the 

normal operating condition cluster now sits between the cage fault and inner race fault 

clusters. The realignment improves the probability of correctly identifying the root cause 

of a fault since the progression of a cage fault and an inner race fault would now proceed 

in opposite directions. By selecting the inner race fault and the outer race fault cases as 

the normal case in MD calculations, two other alignments of the fault clusters are 

obtained, which covers all of the possible fault progression scenarios. 

Figure 4.14 shows the MD-value based prognostic scheme. The proposed scheme 

exploits the idea of using each of the fault cases as a reference in the generation of fault 

clusters. At time = 1, test data is acquired and the MD values are calculated using the 

normal case as the basis for comparison. Fault detection occurs when the MD of the 

current process crosses the predetermined threshold of the normal case. If a fault is 

detected, a flag is set to initiate the parallel calculation of MD values with the faulty cases 

as the references, and the time is advanced to the next time window.  Then, by using the 

four references, the direction of progression of the fault to its fault cluster is determined 

and the root cause identified. 
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Figure 4.13. Fault clusters using cage fault as the normal case 
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Figure 4.14. Detection of the fault progression 
 

 

Figure 4.15 shows how the MD values evolve over time for cage defect test #6. 

Figure 4.16 shows the time-to-failure (TTF) estimation plot for the same experiment 

using a thirty minute time window and the failure detection threshold given in Table 4.1 

using Eqn. (11). The estimation is triggered as soon as a particular operation enters a fault 

cluster and stays within the cluster for a period of two time windows in order to minimize 

false fault classification alarms. The failure MD thresholds used in the time to failure 

calculations was set to 6.3 for Figure 4.16.  The prognostics scheme renders satisfactory 

results for all of the experiments. 
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Figure 4.15. Time evolution of MD values for cage failure test 6 
 

 

 

 

Figure 4.16. Time to failure estimation for cage failure test 6 
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4.5. CONCLUSIONS 

In this paper, a novel Mahalanobis Taguchi System based fault detection, 

isolation and prognostics scheme is presented. The proposed scheme utilizes 

Mahalanobis Distance based fault clustering and the progression of MD values for 

diagnostics and prognostics. The performance of the scheme was validated through 

experiments performed on rolling element bearings installed in the spindle headstock of a 

micro-CNC machine testbed.  

 Advantages of the proposed approach can be summarized as follows: 

 Experimental results show large variability between traditional bearing failure 

indicators, such as cage defect frequency, ball pass inner, outer race frequencies, 

and the overall failure times. The proposed approach overcomes the difficulty of 

setting individual thresholds for each fault indicator in such a high variability 

multivariable environment, by combining all of the pertinent information into a 

single metric, which is the Mahalanobis Distance. 

 It provides a unique solution for rolling element bearing fault detection, isolation 

and prognostics, eliminating the need for developing a tool for each one 

separately. 

 It is process independent. It can be applied to a wide variety of multi-variate 

problems provided that a priori normal and abnormal data are available. 

 It provides a methodical way to identify the features critical for the process, 

reducing dimensionality of the problem.  Therefore, the analysis overhead is 

reduced since efforts can be concentrated on the key features. 
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 Since the proposed scheme is not computationally exhaustive, it can easily be 

implemented onto wireless motes and deployed to perform online monitoring 

(i.e., real-time) and decision making in a variety of industrial environments.  

The analysis and results presented in this paper, especially the thresholds, are 

valid for the particular experimental setup and operating conditions. However, the 

proposed approach can be applied to other processes. 
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5. MAHALANOBIS TAGUCHI SYSTEM (MTS) AS A MULTI-SENSOR BASED 
DECISION MAKING PROGNOSTICS TOOL FOR CENTRIFUGAL PUMP 

FAILURES 
 

5.1. INTRODUCTION  

Centrifugal pumps are extensively used in a wide variety of process industries 

such as chemical processing plants, food service, electric utility and automotive 

companies. There are many types of centrifugal pumps that are specialized for the type of 

application. Drum centrifugal pumps are generally utilized to transport the contents of 

drums or barrels, ballast pumps are used on ships in order to load or remove water from a 

ship's ballast tanks, grinder centrifugal pumps are used so as to grind the waste material 

in a sewage system for easier transportation of the liquids, and magnetic drive centrifugal 

pumps are generally used in laboratories and chemical processing. Centrifugal pumps are 

often critical components in the entire production/process chain [1].  

According to a report prepared under the SAVE program for the European 

Commission, pumps annually consume 117 Terawatt-hours of electricity in Europe alone 

[2]. Unexpected failure of centrifugal pumps can become costly due to the interruption in 

processes and further costs are incurred in terms of repair/replacement. In addition, the 

failure of a pump can also cause potential damage in the equipment elsewhere in the 

process chain. In a centrifugal pump, bearing, seal and impeller are critical components 

that directly affect the desired performance of the pump.  

Bearing, seal and impeller defects, and cavitation can result in problems such as 

abnormal noise, leakage, drop in hydraulic performance, structural vibration and damage 

on the pump components by corrosion and pitting. Therefore, a variety of techniques that 
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strive to maximize the availability of pumps have been developed and presented in the 

literature. Based on the literature survey regarding centrifugal pumps presented below, 

failures of the seal and the impeller are found to be the predominant failure modes. 

Figures 5.1 and 5.2 show the cause-effect diagram of for seal and impeller failures in 

centrifugal pumps respectively. In general, researchers have approached the centrifugal 

pump performance monitoring and fault diagnosis problem in two ways: (1) utilizing 

qualitative or quantitative model based techniques, (2) using process history based 

models. Table 5.1 summarizes the various types of failure modes and the sensors that can 

be utilized to identify these failures, where as Table 6.2 shows the detection techniques. 

 

 

 

 

Figure 5.1. Cause-effect diagram for seal failure 
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Figure 5.2. Cause-effect diagram for impeller failure 
 

 

In their paper, Byskov et al. [3] investigate the flow field in a centrifugal pump 

impeller at design load and quarter-load using large eddy simulation (LES). They 

compare velocities predicted by the LES and steady-state Reynolds averaged Navier-

Stokes (RANS) simulations based on the Baldwin-Lomax and Chien k-ε turbulence 

models with experimental data obtained from PIV. They report that using LES for 

analyzing the flow field in centrifugal pumps provides an improved insight into the basic 

fluid dynamics with a satisfactory accuracy compared to experiments.  

 Coutier-Delgosha et al. [4] study a pump with two-dimensional curvature blade 

geometry in cavitating and non-cavitating conditions using different experimental 

techniques and a three-dimensional numerical model. They compare experimental and 

numerical results under various flow conditions. Their results show the ability of the 

developed model to simulate complex three dimensional cavitation in rotating machinery 

and the associated effects of pump performance, which can be utilized in future pump 

designs.  
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Table 5.1. Summary of the Various Failure Modes and Sensors Used for Detection 

Failure 

Modes 

Eddy 

Current 

Proximity 

Probes 

Optical 

Pickup 

Current 

Transformer 

Thermo-

couples 

Accelero-

meters 

Strain 

Gauge 

Piezo 

electric 

Transducer 

Oil 

Debris 

Sensor 

Proximity 

Probes 

Cavitation   X [12]  
X [1, 

8] 
 

X [13, 

14] 
  

Axial 

Thrust 
    X [1]     

Radial 

Thrust 
    X [1]     

Pressure 

Pulsations 
      X [9]   

Impeller 

Failure 
X [3]  X [12]  

X [1, 

8, 10] 
 

X [13, 

14] 
 X [10] 

Seal 

Failures 
  X [12]    

X [13, 

14] 
  

Bearing  

Failures 
    X [15]  

X [13, 

14] 
X [1]  

Vibration     
X [1, 8 

,10] 
   

X [1, 8, 

10] 

Fatigue 

Failures 
 

X 

[11] 
   

X 

[11] 
  X [11] 

Shaft 

Cracking 

Failures 

 
X 

[11] 
      X [11] 
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Table 5.2. Techniques Used for Fault Detection 

Failure 

Modes 

Acoustic 

Emission 

Tech. 

Vibration 

Analysis 

Frequency 

Analysis 

High 

BW 

Dynamic 

Analysis 

Low BW 

Performance 

Analysis 

Pit 

Count 

Torsional 

Vibration 

Analysis 

Cavitation X [6]  
X [12 - 

14] 
X [8] X [8]  X [8]  

Axial Thrust  X [1]      

Radial Thrust  X [1]      

Pressure 

Pulsations 
 X [9] X [9]     

Impeller 

Failure 
X [6] X [1] 

X [12 - 

14] 
X [8] X [8]   

Seal Failure   
X [12 - 

14] 
    

Bearing Failure  X [1] 
X [13 - 

15] 
X [1] X [1]   

Vibration  X [1] X [10, 15]     

Fatigue Failure  X [1] X [11]    X [11] 

Shaft Cracking 

Failure 
  X [11]    X [11] 

Shaft 

Misalignment 
 X [1] X [11]    X [11] 

 

 

Hirschi et al. [5] propose a three-dimensional numerical method which can predict 

the cavitation behavior of centrifugal pump. The proposed method, which allows 

performance drop prediction,  consists of assuming the cavity interface as a free surface 

boundary of the computation domain and computing the single phase flow. The unknown 

shape of the interface is determined using an iterative procedure matching the cavity 

surface to a constant pressure boundary. Using the proposed method, the main cavitation 

characteristics of the pump impeller can predicted and it compares well with Navier-

Stokes computations. 
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Langthjem and Olhoff develop a computationally simple and fast numerical 

model in order to calculate the flow induced noise in a two-dimensional centrifugal pump 

[6]. They use a discrete vortex model in order to simulate the flow within the pump and 

their results show that the proposed method is one of the simplest methods of capturing 

the essential features of rotational flow. Medvitz et al. [7] use a multi-phase 

computational fluid dynamics (CFD) method to analyze centrifugal pump flow under 

developing cavitation conditions. They use a quasi-three dimensional analysis method to 

model a 7-blade pump impeller across wide range of flow coefficients and cavitation 

numbers. Their results show that performance trends associated with off-design flow and 

blade-cavitation, including breakdowns compare qualitatively well with experimental 

results.  

Byington et al. [8] develop an inline intelligent pump monitor for critical 

hydraulic pumps and motors used in aircraft systems. They acquire pressure, flow and 

temperature data from the pump system and reduce the raw data by processing and 

extracting salient features using high and low bandwidth analysis. Their overall approach 

includes performance modeling, signal processing and feature extraction, feature level 

fusion, automated classification using neuro-fuzzy classifiers, and knowledge fusion for 

estimating degradation through the collection of in-line pump data. They demonstrate the 

success of their approach by running five different pumps to failure. 

Dong et al. [9] investigate the effect of the modification of impeller geometry on 

unsteady flow, pressure fluctuations, and noise in a centrifugal pump. They utilize 

particle image velocimetry (PIV), pressure and noise measurements after performing 

various modifications to the impeller and try to determine the overall effects on the pump 
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performance. Koo and Kim [10] develop a Wigner Distribution based vibration 

monitoring system in order to analyze vibration signals collected from nuclear reactor 

coolant pump. They use a rotor kit in order to simulate abnormal conditions such as 

bearing rubbing, shaft bending and shaft misalignment and within the pump and develop 

a neural network based online diagnostic method which analyzes the vibration data by 

utilizing Fourier Transforms and a special software developed with the WD. They 

achieve a classification accuracy of %81.25 using their proposed method. The study 

shows that the WD makes it easy to analyze the vibration signals and it helps operators 

better grasp the cause of vibrations in the pump.  

Lebold et al. [11] develop a non-intrusive torsional vibration method in order to 

monitor and track small changes in crack growth in the shaft of a reactor coolant pump. 

They initiate and grow fatigue cracks in a laboratory scale shaft under a controlled 

process. The shaft is equipped with a photosensitive optical encoder and the encoder data 

is processed with a customized torsional vibration algorithm in order to produce a 

torsional vibration spectrum. They show that the torsional vibration measurement method 

has the ability to detect and track natural frequency shifts, which potentially allows online 

diagnostics and prevention of shaft failure due to cracks.  

Perovic et al. [12] develop a fuzzy logic system in order to cavitation, blockage 

and impeller damage in centrifugal pumps. They establish fault signatures from the pump 

motor current data by relating spectral features to individual faults using fuzzy logic 

inference. They then build a fuzzy logic system for the final diagnostic decision making. 

They test their method by performing experiments on two centrifugal pumps and state 
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that the analysis of fault signatures using fuzzy logic inference achieves good success in 

pump diagnostics.  

Sakhtivel et al. [13] perform vibration based fault diagnosis of a mono-block 

centrifugal pump studying normal, bearing fault, impeller fault, seal fault impeller and 

bearing fault together, and cavitation. They measure vibrations at the pump inlet using a 

piezo-electric accelerometer and use clear acrylic pipes at the inlet and outlet of the pump 

in order to visualize the cavitation. They extract standard statistical features such as 

standard deviation, kurtosis, skewness, and sample variance from the vibration data and 

use a C4.5 decision tree algorithm in order the classify the features into the operating 

conditions mentioned above. They report good experimental results which are applicable 

to practical applications of fault diagnosis of mono-block centrifugal pumps.  

In a later paper, Sakhtivel et al. [14] present the use of decision tree and rough 

sets to generate classification rules from statistical features extracted from vibration 

signals under normal and faulty operating conditions of centrifugal pump. They build a 

fuzzy classifier using decision tree and rough set rules using experimental data. The 

performance of the decision tree and the rough set are compared. They also evaluate the 

classification accuracy of a principal component analysis based decision tree-fuzzy 

system. The results show that the performance of the decision tree-fuzzy hybrid system 

performs better than the rough set-fuzzy hybrid system. 

 Zhang et al. [15] propose a fuzzy neural network for fault diagnosis of rotary 

machines. The fault diagnosis system is based on a series of standard fault pattern 

pairings between fault symptoms and fault and the fuzzy neural network is trained to 

memorize these pairings. Since fuzzy neural networks adopt bi-directional association, 
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they make use of information from both the fault symptoms and the faults, which 

improve the recognition rates. They verify their results through experiments performed 

on water pump sets of an oil plant and report a well distinguished ability to perform 

diagnosis of rotary machines. 

As it can be seen from the literature survey, most of the authors report success in 

condition monitoring and fault diagnosis of pumps using various quantitative model-

based, qualitative model-based and process history based methods. However, to the best 

knowledge of the authors, a method which can also successfully predict the remaining 

useful life of a pump or its components in addition to fault diagnosis is not presented. In 

this paper, a Mahalanobis-Taguchi System (MTS) based prognostics tool for centrifugal 

pumps is developed.  

MTS has been widely used in various diagnostic applications that deal with data 

classification. In MTS, Mahalanobis Distance (MD) is used to identify the degree of 

abnormality of data, whereas the Taguchi methods, which utilize orthogonal arrays (OA) 

and signal-to-noise ratio (S/N), are used to evaluate the accuracy of predictions and to 

optimize the system [16]. MD, introduced by P.C. Mahalanobis in 1936 [17],  is a 

multivariate generalized measure used to determine the distance of a data point to the 

mean of a group. MD is measured in terms of the standard deviations from the mean of 

the samples and provides a statistical measure of how well the unknown data set matches 

with the ideal one. The advantage of the MD is that it is sensitive to the intervariable 

changes in the reference data. Therefore, it has traditionally been used to classify 

observations into different groups and diagnosis [18].  
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The benefits of MTS as a pattern recognition and data classification tool can be 

summarized as follows: 

 A robust methodology that is insensitive to variations in multidimensional 

systems. 

 Can handle many different types of data sets and effectively consolidates the data 

into a useful metric. 

 Implementation of MTS requires limited knowledge of statistics. 

 Relies typically on simple arithmetic, contextual knowledge, and intuition.  

 Its success has been demonstrated in various practical applications. 

In their paper, Chinnam et al. [19], use ten features derived from two degradation 

signals (thrust force and torque) in a drilling operation in order to determine the condition 

of the drilling tool. The authors utilize MD in order to generate a measurement scale and 

then they use the Taguchi methods to reduce the number of features down to six. They 

use the 99th percentile of the MDs from the normal group as a threshold, which shows a 

superior performance when compared with the any of the individual features. 

Wang et al. [20] use the iris data, which is often used in statistical textbooks, and 

credit card data from a Taiwanese bank in order to display the effectiveness of MTS in 

data classification. They compare the performance of MTS with discriminant and 

stepwise discriminant analysis and conclude that MTS shows better performance. Cudney 

et al. [21] apply MTS in order to study the relationship between available vehicle level 

performance data for vehicle ride and the corresponding consumer satisfaction ratings for 

the purpose of improving customer-driven quality. They analyze six vehicle ride 

parameters from sixty-seven datasets using the MTS, determining the key parameters. 
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The authors are able to show that the MTS methodology can be used in order to evaluate 

consumer satisfaction and manufacturers can utilize this knowledge to make the 

appropriate design decisions regarding attributes that are delivered in a product.  

Cudney et al. [22] further investigate the performance data and customer 

satisfaction relationship using the Mahalanobis-Taguchi Gram-Schmidt (MTGS) 

technique and showed improved results. In their recent article, Foster et al. [23] develop 

an alternative search procedure  to be used within the MTS. The adaptive One-Factor-

AT-a-Time (aOFAT) procedure replaces the orthogonal arrays traditionally utilized in 

MTS, and features are individually added or removed from the classification system 

depending on their impact on the overall signal-to-noise ratio. The experimentation 

shows that the aOFAT procedure renders greater improvements over the median with the 

same or fewer design alternatives being explored and also exhibits good ability to 

generalize to new instances after training. 

MTS has also been used as a process control and improvement tool to aid 

manufacturing systems. Asada [24] use MTS to forecast the yield of a wafer production 

system, which is affected by variability of the electrical properties and environmental 

dust. MDs are used to compare the relationship between wafer yield and distance. 

Hayashi et al. [25] develop an MD based method in order to maximize productivity in a 

semi-conductor manufacturing facility. Their method consists of real-time monitoring of 

flow factor and in process wafers using MD values to identify the out-of-specification 

processes and/or tools and take the necessary actions.  

Mohan et al. [26] propose a MTS-based diagnostic and root cause analysis 

scheme for online monitoring of grip-length of pull type fasteners. Their scheme utilizes 
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data collected from an aerospace industry pull-type fastening tool instrumented with 

various sensors. Sensor data are analyzed using MTS and the quality of the current 

operation is communicated back to the user via a wireless network. The authors were able 

to obtain a 100% data collection on each fastener as opposed to other statistical process 

control techniques, which rely on sampling.  

Dasgupta [27] develop a unified framework for achieving process control and 

improvement during the implementation phase of Six Sigma. The proposed framework 

takes advantage of the adaptability of MTS as a classification, variable selection and 

monitoring tool. The framework is explained using a simulated example. 

Srinivasaraghavan and Allada [28] also propose a MTGS based methodology in order to 

support the implementation of lean processes. Their methodology assists contemporary 

lean assessment tools through providing a measure of leanness by benchmarking 

exemplary lean industries along with suggestions for improvements based on cost 

considerations. 

MTS is a data driven method that relies on multivariate statistical analysis. 

Therefore, it is important to compare MTS to well-established multivariate statistical 

techniques such as principal component analysis, discriminant analysis, cluster analysis, 

canonical component analysis, and multidimensional scaling, as well as artificial neural 

networks. For an in-depth comparison of these techniques to MTS, please refer to Kim et 

al. [29], Cudney et al. [30],  Jugulum [31], and Woodall et al. [32]. Books relevant to this 

study are Harris [3], Isermann [40], and Wowk [41]. 

The contribution of this paper can be summarized as follows: (1) Uses MTS in 

order to fuse multi-sensor information into a single system performance metric;  
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(2) Builds upon MTS by introducing the use of MD-based fault clusters for fault 

isolation; (3) Utilizes the progression of MD values over time in order to estimate the 

remaining useful life of components; and (4) Applies MTS to the domain of centrifugal 

pump monitoring, diagnostics and prognostics for the first time to the best knowledge of 

the authors. 

 

5.2. METHODOLOGY 

 In this paper, a Mahalanobis Taguchi System based fault detection, isolation, and 

prognostics scheme is presented. The proposed scheme utilizes a Mahalanobis Distance 

based fault clustering method in order to classify faults into different categories. Using 

these clusters, fault detection and root cause analysis is performed. The scheme also 

utilizes the progression of the MD values over time in order to facilitate prognosis of time 

to failure for components. The details of the scheme are presented in the rest of the 

section. 

5.2.1. Mahalanobis Taguchi System. MTS starts with data collection on normal 

observations. Then, Mahalanobis Distance is calculated using certain characteristics to 

investigate whether MD has the ability to differentiate the normal group from an 

abnormal group. If MD cannot detect the normal group using those particular 

characteristics, then a new combination of characteristics need to be explored. When the 

right set of characteristics are found, Taguchi methods are employed to evaluate the 

contribution of each characteristic. If possible, dimensionality is reduced by eliminating 

those characteristics that do not add value to the analysis. MTS consists of four stages 

[23, 25]: 
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Stage 1: Construction of Mahalanobis Space  

The first step in MTS is the construction of the Mahalanobis Space (MS) as the 

reference. In order to construct MS, the variables that represent “normal” conditions are 

defined and sampled. In this study, new bearings that are properly lubricated represent 

the normal case. The steps for the construction of MS are outlined below: 

1. Calculate the mean for each characteristic in the normal data set as:  
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2. Then, calculate the standard deviation for each characteristic: 
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3. Next, normalize each characteristic, form the normalized data matrix ( )ijZ  and 

take its transpose ( )T
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4. Then, verify that the mean of the normalized data is zero: 
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5. Verify that the standard deviation of the normalized data is one: 
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6. Form the correlation matrix ( )C  for normalized data. Calculate the matrix 

elements ( )ijc as follows:  
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7. Calculate the inverse of the correlation matrix 1( )C  . 

8. Finally, calculate MD as: 
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where 

ijx is the thi characteristic in the thj observation, 

n  is the number of observations, 

is  is the standard deviation of the thi characteristic, 

ijZ  is the normalized value of the thi characteristic in the thj observation, 

zs is the standard deviation of the normalized values, 

C is the correlation matrix, 

1C is the inverse of the correlation matrix 

jMD is the Mahalanobis Distance for the thj observation, and 

k is the number of characteristics. 

Stage 2: Validation of MS 

 In order to validate MS, observations that fall outside the normal group are 

identified and the corresponding MD values are calculated. The characteristics of the 

abnormal group are normalized using the mean and the standard deviation of the 
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corresponding characteristics in the normal group. The correlation matrix corresponding 

to the normal group is used to compute the MDs of the abnormal cases. If MS has been 

constructed using the appropriate characteristics, then the MDs of the abnormal group 

should have higher values than that of the normal group. 

Stage 3: Identification of the Useful Characteristics 

 In this stage, the useful characteristics are determined using orthogonal arrays 

(OA) and signal to noise (S/N) ratios. An orthogonal array is a table that lists the 

combination of characteristics, which enables testing the effects of the presence or 

absence of a characteristic. The size of the OA is determined by the number of 

characteristics and the levels they can take. In MTS, characteristics in the OA have two 

levels. Level-1 represents the presence of a characteristic while level-2 represents the 

absence of a characteristic. For the abnormal cases, MD values are calculated using the 

combination of the characteristics dictated by the OA and the larger-the-better  signal-to-

noise ratio is calculated as follows [23, 25]: 
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  (8) 

where 

 q is the signal-to-noise ratio for the thq run of the OA, and 

 t  is the number of abnormalities under consideration 

Then, an average signal-to-noise ratio at level-1 and level-2 of each characteristic is 

obtained and the gain in signal-to-noise ratio values for each characteristic is calculated 

[23, 25]: 

 1 2( . / ) ( . / )Level LevelGain Avg S N Ratio Avg S N Ratio    (9) 
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Stage 4: Decision Making 

In the final stage, the application under investigation is monitored via data 

collection using the MS. MDs are calculated and if MD >> 1, it is concluded that the 

application is displaying abnormal behavior and appropriate corrective actions need to be 

taken. If 1MD , then the conditions are normal. 

5.2.2. MD-based Diagnostics. A fault is a change from the normal operation of  

a system. Fault detection is the first step in diagnostics, which indicates the occurrence of 

a fault in a monitored system. Diagnostics or also referred to as fault isolation, therefore 

identifies the root cause of a fault [40]. In this study, an MD-based data clustering 

technique is used in order to classify rolling element bearing failure data into different 

fault groups. The technique takes advantage of the fact that the Mahalanobis distance is 

calculated using the inverse of the correlation matrix (Eqn. 6). The correlation matrix 

consists of the correlation coefficients, which is a normalized measure of the strength of 

the linear relationship between variables as shown below: 

 ,

cov( , ) (( )( ))
X Y

X Y X Y

X Y E X X Y Y
r

 
   

 
   (10) 

 

where  

X  and Y are the standard deviations of the random variables X  and Y , 

X  and Y are the expected values for X and Y, 

E  is the expected value operator, and  

cov denotes the covariance. 

The correlation between the MDs can be visualized by plotting the current MD 

value against the previous MD value. In this case, signatures obtained from faulty 
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operating regimes are grouped into individual clusters as shown in Figure 5.3. In other 

words, data from the same failure are clustered together due to their correlation. 

 

 

 

Figure 5.3. MD-based fault clustering 
 

 

Upon completion of the clustering analysis, the designer selects the appropriate 

thresholds based on the mean and standard deviation of the MD values for each fault 

cluster.  Consequently, the type of the fault is isolated by comparing the average MD 

value of the process with the thresholds set for various faulty conditions. 

5.2.3. MD-based Prognostics.  Prognostics involves a) detection of an abnormal 

condition or fault, b) identifying the root cause or fault isolation, and, c) estimating the 

remaining useful life or time to failure. In the prognostics case, the MD values are 

calculated using a predetermined time window as the process continues. Fault detection 

occurs once the MDs leave the normal regime and the tracking of the MD trend is 

initiated. By observing the direction of the transition of the MD trend between the normal 
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case and one of the fault clusters, the possible root cause is identified. This is 

accomplished by calculating the angle  between the unknown point U and the mean MD 

value of each of the known fault clusters assuming the fault progression will follow a 

roughly linear trajectory (Fig. 5.4). In this case, the smaller the angle, the more likely that 

the unknown point is progressing towards one of the fault clusters. 

 

 

 

Figure 5.4. Illustration of angle based fault isolation 
 

 

Once the MD data enters the root cause failure cluster, prognosis of the time to 

failure is initiated via linear approximation. First, the slope of the progression of the MD 

value is generated using the MD value of the current and the previous time windows. 

Then, using the slope and the current MD value, the time to failure is determined at each 

instant of time (11). The failure threshold is selected by the designer when the 

performance of the machine is unsatisfactory. 
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  (11) 

 

In some cases, the fault clusters may lie on a linear path. The linear alignment of 

the fault clusters would make the classification of the fault progression difficult.  For 

example, consider the fault clusters in Figure 5.5, and assume that the MD value of the 

current time window is being marked in the plot with an “x”. As the process continues, 

the MD values leave the normal condition, following the direction of the arrow, but it is 

not clear whether the actual fault is progressing towards fault-1 or fault-2.  In this case, a 

new set of MD values is calculated using one of the faulty data sets as a basis. 

Consequently, the MS is shifted and the identification of the MD progression becomes 

straightforward. 

 

 

 

Figure 5.5. Linearly aligned fault clusters 
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5.3. DESIGN OF EXPERIMENTS 

In order to facilitate the development of the proposed multi-sensor based MTS 

prognostics tool, a centrifugal water pump testbed has been constructed at the Missouri 

University of Science and Technology. The 1/2 HP centrifugal pump has been 

instrumented with the following sensors at the inlet and the outlet of the pump: 

 Inlet: pressure, temperature 

 Outlet: pressure, temperature and flow 

In addition to these sensors, two accelerometers were installed in the pump casing in 

order to measure the lateral and vertical vibration. Figure 5.6 shows a schematic 

representation of the testbed setup. 

 

 

 

Figure 5.6. Centrifugal water pump testbed 
 

 

The water pump testbed was operated for 150 hours in order to collect the 

signature for normal operating conditions. After the initial data collection was complete, 
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three types of pump failures one at a time were seeded in order to accelerate the testing. 

In one of the tests, the seal was mechanically defaced to create an artificial seal failure. 

The pump was operated with the damaged seal and sensor signatures were collected. 

During the experiment, a drop in the inlet pressure was noticed. 

In another experiment, impeller failure was investigated. The failure was seeded 

by intermittent dry running of the pump, which caused erosion on the impeller surface. 

Since the experiments were taking a long time, the blades on the impeller were 

mechanically filed down in order to further accelerate the testing. The experiment was 

carried out until a large change from the normal sensor signature was noticed. As the 

damage on the impeller progressed, corresponding drop in flow values was observed. The 

accelerometer signatures were also observed to deviate from the normal case. Figure 5.7 

shows the damage on the impeller surface at the end of the experiment. 

 

 

 

Figure 5.7. Erosion damage on the impeller surface 
 

 

In the final experiment, the filter clog failure was studied. The pump was operated 

while contaminants such as sand were added in to the pump’s water reservoir. Since the 
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filter is located right before the main body of the pump, a clog in the filter resulted in a 

drop in the inlet and outlet pressures, and the outlet flow. 

 

5.4. EXPERIMENTAL RESULTS 

5.4.1. Identification of Key Parameters.  The construction of  the  Mahalanobis 

Space requires the selection of an initial set of parameters [18]. In some cases, raw sensor 

data may provide sufficient information in order to differentiate between various failure 

modes. When the raw sensor data is not sufficient, it is customary to search for higher 

level features that can be extracted by further processing sensor data e.g., the bearing 

characteristic frequencies obtained from vibration data for rolling element bearings. In 

this study, the raw sensor measurements are used as the input parameters for the MTS 

since they provide adequate information. The input parameters are: 

 Lateral acceleration 

 Vertical acceleration 

 Inlet pressure 

 Outlet pressure 

 Outlet flow  

Then, the L8(2
7) orthogonal array is utilized for the S/N analysis. Using the larger-

the-better type signal to noise ratios and the overall gains, all of the parameters 

mentioned above are selected as the final input parameters for further analysis since none 

of the inputs could be eliminated. Figures 5.8 through 5.10 show the results for the OA 

analysis for the experiments. 
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Figure 5.8. OA analysis gains for filter clog failure 

 

 

 

 

Figure 5.9. OA analysis gains for impeller failure 
 

 

 

 

Figure 5.10. OA analysis gains for seal failure 
 

5.4.2. Analysis on the Number and Type of Sensors Required.   In  an  ideal  

case, one would like to use as few as possible sensors to perform diagnostics and 

prognostics on a system. The implementation of multiple sensors may be become costly, 

or may altogether be unfeasible due to the mechanical limitations of the system. In order 
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to determine the number and type of sensors required for identifying different centrifugal 

pump failures, a series of analyses using only the data from one sensor at a time were 

performed for the filter clog, seal and impeller failure cases. 

5.4.2.1.   Pressure sensor installed on the pump outlet.  The outlet pressure of a 

centrifugal pump is one of the main performance characteristics. Therefore, it would be 

ideal to be able to determine the health state of the entire pump components by measuring 

only the outlet pressure. In order determine the adequacy of using only a pressure sensor 

on the outlet of the pump, MD fault clusters are formed as mentioned in Section 5.2.2. 

Figure 5.11 shows the fault clusters. 

 As it can be seen from Figure 5.11, the normal and the impeller failure cases can 

clearly be identified using the outlet pressure. However, the seal failure and the filter clog 

failure fault clusters overlap with each other 

 

 

 

Figure 5.11. MD based fault clusters using only the outlet pressure 
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5.4.2.2.   Accelerometer  installed  on  the  pump   casing   in  the  lateral  axis. 

 Another good indicator of the health state of a centrifugal pump is the amount of 

vibration that it generates. In a normal case the pump should operate within a specified 

range of vibrations, therefore the amount of vibration experienced on the pump could be 

good indicator of potential problems. Figure 5.12 depicts the MD based fault clusters 

using the data obtained from the lateral accelerometer on the pump casing. Figure 5.13 

shows a zoomed-in plot of failure clusters. 

 

 

 

Figure 5.12. MD based fault clusters using only lateral acceleration 
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Figure 5.13. Zoomed-in version of Fig. 5.12 
 

 

As it can be seen from Figures 5.12 and 5.13, the impeller failure can clearly be 

identified using only the lateral acceleration information. However, the normal, seal 

failure and filter clog failure conditions completely overlap with each other and cannot be 

separated. 

5.4.2.3.   Fault detection and isolation using multiple sensors.  The analyses  in 

Section 5.3.2.1 and 5.3.2.2 show that using a single type of sensor is not sufficient for 

successful fault isolation on a centrifugal pump. Therefore multiple types of sensors are 

required. 

Using all of the sensors mentioned in Section 5.3, MD values for all of the 

experiments are calculated. Table 5.3 shows the observed minimum and maximum values 

of MDs as well as the standard deviations during the experiments for each fault type. 

Using the mean and the standard deviation of the MDs for each fault type, the thresholds 
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for the each cluster is identified. Figure 5.14 shows the fault clusters that are used in the 

final analysis. Notice that there are no transition points between the fault clusters in 

Figure 5.14. This is because the experiments were performed in an accelerated manner. 

Figure 5.15 zooms-in on the normal operation, filter clog, and the impeller failures. 

 

Table 5.3. Mean and Standard Deviation of MDs 
 Observed min. 

and max. values 
of MDs 

Observed std. 
deviation of 

MDs 
Normal 
Case 

0.02 – 10.11 0.89 

Filter Clog 
Failure 

482 - 582.17  38.16 

Seal Failure 561.33 – 827.02 59.21 
Impeller 
Failure 

28430 - 29179 155.59 

 

 

 

 

Figure 5.14. MD based fault clusters using all sensors 
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Figure 5.15. MD based fault clusters zoomed-in 
 

 

Figure 5.16 displays the fault detection and isolation scheme for the centrifugal 

pump. The detection starts with the loading/acquisition of test data. Then, the mean of the 

MD values for the current time window is calculated. If the mean MD is larger than that 

of the threshold set for the normal case, a fault is detected. Next, the mean MD value is 

compared with the thresholds of the other fault cases. If the mean MD value stays within 

the thresholds of a cluster for a user determined time window, then the fault type is 

isolated. 
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Figure 5.16. Fault detection and isolation scheme 
 

 

Table 5.4 shows the fault detection and isolation results that were obtained using 

different combinations of thresholds for the fault clusters. The results show a high 

success rate in correct detection and isolation of centrifugal pump faults. In the case 

where the filter clog failure threshold is selected as 570 and the seal failure threshold is 

selected as 562, the proposed scheme misses the detection. This is due to the slight 

overlapping between the fault clusters as can be seen in Figure 5.15. 
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Table 5.4. Fault Detection and Isolation Results 

Fault Type 
Correct 

Detection 
Missed 

Detection 

Filter Clog 
Failure 

Tfilter = 482 & Tseal = 562 
1 0 

Tfilter = 500 & Tseal = 562 
1 0 

Tfilter =570 & Tseal = 562 
0 1 

Seal 
Failure 

Tseal = 562 & Timpeller =28430 
1 0 

Tseal = 600 & Timpeller = 28430 
1 0 

Tseal = 700 & Timpeller = 28430 
1 0 

Impeller 
Failure 

Timpeller = 28430 
1 0 

 

 

5.4.3. Prognostics.   As described in Section 5.2.2, determining  the direction of 

actual progression of a fault is difficult if the fault clusters are aligned linearly (Figures 

5.14 and 5.15). In general, transition data is utilized to obtain the direction of fault 

progression and to identify the root cause by finding the fault cluster the data leads to.  

Unfortunately, for the experiments performed in this study, due to the nature of 

accelerated fault progression, the transition data is not available. If transition data were 

available, it could have displayed a gradual progression from the healthy state to the 

faulty state in a nonlinear fashion, which could be utilized for prognostics. 

In order to determine the actual direction of the progression of a fault and to 

identify the root cause, a new set of MDs are calculated using the filter clog case as a 

basis for comparison. This realigns the fault clusters as seen in Figure 5.17, where the 

normal operating condition cluster now sits between the filter clog failure and the seal 
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failure clusters. The realignment improves the probability of correctly identifying the root 

cause of a fault since the progression of a filter clog fault and a seal fault would now 

proceed in opposite directions. By selecting the seal failure and the impeller failure cases 

as the normal case in MD calculations, two other alignments of the fault clusters are 

obtained, which covers all of the possible fault progression scenarios. 

Fig. 5.18 shows the MD-value based prognostic scheme. The proposed scheme 

exploits the idea of using each of the fault cases as a reference in the generation of fault 

clusters. At time = 1, test data is acquired and the MD values are calculated using the 

normal case as the basis for comparison. Fault detection occurs when the MD of the 

current process crosses the predetermined threshold of the normal case. If a fault is 

detected, a flag is set to initiate the parallel calculation of MD values with the faulty cases 

as the references, and the time is advanced to the next time window.  Then, by using the 

four references, the direction of progression of the fault to its fault cluster is determined 

and the root cause identified. 
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Figure 5.17. Realigned fault clusters using filter clog as the normal case 
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Figure 5.18. MD value based prognostic scheme 
 

 

Figure 5.19 shows the time evolution of MD values for the seal failure 

experiment. Figure 6.20 shows the time-to-failure (TTF) estimation plot for the same 

experiment using a thirty minute time window using Eqn. (11). The failure threshold 

value selected for the experiment is 827. The estimation is triggered as soon as a 

particular operation enters a fault cluster and stays within the cluster for a period of two 

time windows in order to minimize false fault classification alarms 
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Figure 5.19. Time evolution of MD values for the seal failure experiment 
 

 

 

Figure 5.20. Time to failure estimation for the seal failure experiment 
 

 

Figure 5.21 displays the time evolution of MD values for the filter clog failure 

experiment, while Figure 5.22 shows the time to failure estimation for the same 

experiment using a 30 minute time window and a failure threshold value of 582. 

TTF 
estimation 
triggered 
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Figure 5.21. Time evolution of MD values for the filter clog failure experiment 
 

 

 

 
Figure 5.22. Time to failure estimation for the filter clog failure experiment 

 

 

 

5.5. CONCLUSIONS 

In this paper, a novel multi-sensor based Mahalanobis Taguchi System fault 

detection, isolation and prognostics scheme is presented. The proposed scheme utilizes 

Mahalanobis Distance based fault clustering and the progression of MD values for 

TTF 
estimation 
triggered 
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diagnostics and prognostics. The performance of the scheme was validated through 

experiments performed on a centrifugal water pump testbed. 

 Advantages of the proposed approach can be summarized as follows: 

 The proposed approach fuses all of the pertinent information obtained from a 

multi-sensor environment into a single performance metric, which is the 

Mahalanobis Distance. 

 The proposed approach can function equally well in both the data and feature 

domains. In the case when the raw data collected from sensors is adequate to 

differentiate between various system health states, the data can directly be used as 

inputs to the system. If the raw data is not sufficient, then higher level features 

can be extracted from the data by further analysis, and these features can be 

utilized as inputs.  

 It provides a unique solution for centrifugal pump fault detection, isolation and 

prognostics, eliminating the need for developing a tool for each one separately. 

 It is process independent. It can be applied to a wide variety of multi-variate 

problems provided that a priori normal and abnormal data are available. 

 It provides a methodical way to identify the features critical for the process, 

reducing dimensionality of the problem.  Therefore, the analysis overhead is 

reduced since efforts can be concentrated on the key features. 

 Since the proposed scheme is not computationally exhaustive, it can easily be 

implemented onto wireless motes and deployed to perform online monitoring 

(i.e., real-time) and decision making in a variety of industrial environments.  
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The analysis and results presented in this paper, especially the thresholds, are 

valid for the particular experimental setup and operating conditions. However, the 

proposed approach can be applied to other processes. 
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

 

2.1. CONCLUSIONS 

Two of the main reasons for the loss of performance in a manufacturing system 

are problems regarding efficient and effective management of inventory and difficulties 

that arise due to the physical health condition of the components of the system. The 

overall objective of this dissertation is to develop sensor data-based decision making 

models in order to address these problems. 

Technological developments in the recent years have introduced highly capable 

sensors such as RFID and other related Auto-ID tools, which provide non-contact object 

identification and inventory visibility. Such technological capabilities provide real-time 

visibility of each single entity in the supply chain; presenting many opportunities for 

process improvement and re-engineering. On the other hand, the technology also presents 

various challenges due to the lack of established industrial standards and application 

roadmaps and the difficulties that arise while dealing with voluminous data in a timely 

fashion.  

 A typical Auto-ID application requires effective integration of business processes 

and networking topologies and protocols. First, business decision-making models must be 

re-engineered to incorporate Auto-ID data. Business process re-engineering should 

involve the integration of real-time data into the critical processes such as production 

planning, scheduling and execution. This integration requires the development of 
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intelligent decision making models that can effectively process the sensor data into 

information and suggest the appropriate actions. On the other hand, in order for the 

decision-making component to be realistic, the network must facilitate effective and 

efficient routing of Auto-ID data packets. Academic studies usually focus either on 

manufacturing-specific decision-making, or on networking. Due to the gap between these 

two sub-components, the solutions provided to the industry are not directly applicable; 

further testing on Auto-ID technologies within the proposed solution is usually necessary 

in order to fine-tune it to the production environment. 

 In Paper I, an Auto-ID testbed architecture that aims to bridge this gap has been 

developed. The testbed provides a flexible test environment that can be used for 

evaluating Auto-ID technologies and solutions for industry.  The testing environment, as 

well as the testing conditions, can be varied easily in order to match the needs of the 

industry.  The testbed can be used as a low-cost technology development and assessment 

platform (proof-of-concept) due to the availability of reconfigurable models, which 

facilitate rapid decision making model development, hardware/software benchmarking, 

and implementation where hardware, software, and networking issues are considered 

simultaneously. 

 Additionally collection of RFID data in a timely manner, processing of such 

voluminous data, and making timely decisions that are tied into manufacturing execution 

systems presents a further challenge. Benefits provide by RFID such as waste 

elimination, inventory reduction, automatic replenishment, stock-out reduction, and 

overall cost savings can only realized if the challenge is conquered.  Therefore, there is a 
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need for RFID data-based effective decision making algorithms that can lead to such 

benefits. 

 In Paper II, two static inventory models that rely on fixed baseline inventory 

levels, and a dynamic, forecast-integrated inventory model, which utilize RFID data was 

proposed.  The results showed that the forecast-integrated model can adapt to the system 

dynamics more effectively than the current practice. The paper established that there are 

opportunities for RFID technology to provide significant benefits on the shop floor, well 

beyond the automation-oriented advantages, such as labor savings. The results displayed 

the potential of integrating RFID generated data with appropriate decision making 

models in a manufacturing environment 

 A further misapprehension regarding RFID technology is the assumption that a 

straightforward deployment will yield 100% satisfactory results in terms of item 

visibility. However, most of the reported studies have been performed under “controlled” 

laboratory settings and upon technology transfer to a real industrial environment, 

unforeseen problems, such as readability may arise from radio frequency (RF) 

interference, RF absorbing materials, and environmental conditions. Therefore, additional 

design and development need to be undertaken in areas in such as antenna configuration, 

antenna power control, etc. in order to provide feasible solutions for the intended 

application. 

In Paper III, a complete solution that involves hardware considerations and 

decision making model development for such a real industry application was presented. 

The additional challenges that come up due to an extremely low temperature 

environments were addressed by the development of a novel RFID-based smart freezer. 
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The proposed solution utilized backpressure inventory control, systematic selection of 

antenna configuration, and antenna power control. The proposed RFID antenna 

configuration design methodology coupled with locally asymptotically stable distributed 

power control (LASDPC) ensured a 99% read rate of items while minimizing the 

required number of RFID antennas in the confined cold chain environments with non-RF 

friendly materials, which resulted in high inventory visibility. The proposed RFID-based 

Smart Freezer performance was verified through simulations of supply chain and 

experiments on an industrial freezer testbed operating at -100°F. 

 It is important to note that RFID is only one of many possible sensors that can be 

“embedded” in business processes in order to improve system performance. Even if the 

RFID/Auto-ID implementation for inventory management is successful, the performance 

of the overall system still depends on the physical health condition of its components. 

Therefore, it is necessary to be able to monitor and diagnose problems that can arise due 

to the wearing out of components. RFID sensors can usually provide satisfactory results 

in order to prevent performance loss due to inventory management problems.  However, 

in the component health management case, a single sensor type usually cannot provide 

sufficient information complex decision making. Therefore, a combination of sensors 

should be used in an integrated manner in order to achieve desired performance levels.  

 The papers in the literature present several sensor signals; and features that are 

derived from these signals, which need to be monitored for component health 

management. If these signals/features show a large variability between experiments, it 

becomes difficult to select suitable thresholds to be used in monitoring diagnostics and 

prognostics. In addition, the existing body of work does not present a systematic method 
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which can identify the most pertinent variables and eliminate the redundant ones in order 

to reduce analysis overhead. Therefore, a new multivariable method is necessary to 

identify the input variables necessary to be monitored for fault detection, root cause 

analysis, and fault prognosis. 

 To address these issues, Paper IV introduced a novel Mahalanobis Taguchi 

System (MTS) based fault detection, isolation, and prognostics scheme. The proposed 

data-driven scheme built upon MTS by utilizing Mahalanobis Distance (MD) based fault 

clustering for diagnostics and by the use of the progression of MD values over time for 

prognostics. MD thresholds derived from the clustering analysis were used for fault 

detection and isolation. The performance of the scheme was validated via experiments 

performed on rolling element bearings inside the spindle headstock of a micro computer 

numerical control (CNC) machine testbed. The analysis was performed in the feature 

domain by extracting useful features from the raw sensor data. The experiments showed 

that the proposed approach provides a reliable multivariate analysis and real-time 

decision making tool that; presents a single tool for fault detection, isolation and 

prognosis, eliminating the need to develop each separately and (2) offers a systematic 

way to determine the key features, thus reducing analysis overhead.  

 In Paper V, the Mahalanobis Taguchi System based prognostics tool was 

expanded into a multi-sensor/multi-component/multi-failure-mode environment, which 

added on to the data collection and processing complexity. In this case, the analysis was 

performed in the data domain, i.e. directly on the raw data collected from the sensors. 

The need for multiple sensors in order to be able to effectively monitor the health of 

components was also demonstrated. Overall the paper showed that MTS can be 
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successfully used to fuse multi-sensor information into a single system performance 

metric for monitoring, diagnostics and prognostics purposes, and the proposed MTS-

based prognostic tool is applicable to various industrial systems. 

 

2.2. FUTURE WORK 

 The inventory management decision making models developed in Papers II and 

III are specific to the needs of the application. As part of the future work, other well-

known inventory management models could be contrasted to the proposed models in 

terms of performance. 

 Due to the physical limitations of the laboratory environment and time 

constraints, the verification of the proposed MTS-based prognostics tool were performed 

via accelerated testing of rolling element bearings and a centrifugal pump. This resulted 

in the lack of transition data, which shows the gradual progression of a component from a 

healthy state into a faulty state. The ideas presented in Papers IV and IV could be better 

tested if it were possible to collect sensor data from a real industrial production 

environment. 

 Since the proposed scheme is not computationally exhaustive, it can easily be 

implemented onto wireless motes and deployed to perform real-time monitoring and 

decision making in a variety of industrial environments. In addition, with the use of RFID 

read/write tags, the current condition of a component can be stored on the component 

itself, effectively turning components into mobile databases. This would have a positive 

impact on the maintenance policies and component inventory management of 

manufacturing organizations. 
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APPENDIX 

PROOF OF THEOREM 3 
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Next, substituting the parameter update law in 2V becomes 
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Applying the Cauchy-Schwartz inequality 

1 2 1 2 1 1 2 2(( ....... ) .( ....... ) .( ....... ))T T T T
n n n na a a a a a n a a a a a a           

for the first term in the above equation, and applying the trace operator (given a vector 

nx  , ( )T Ttr xx x x ), 

2

0 0 1 1 2

1 0 1

( ) ( )
4 ( ( ) ( ) )

( ( ) ( ) )

( )
2 ( ( ) )

( ) ( )

T
T T T T Ti i

i i T
i i

T i
i T

i i

e k e k
e k A A e k

e k e k c

e k
A e k

e k e k c
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Now apply Cauchy Schwartz inequality ( 2 2
2ab a b  ) to terms numbered as 1 in the 

above equation, and using the facts 
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Hence 0V   if the gains are taken as:  
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This shows that the SNR error, ( )ie k , and the channel estimation error ( )k  are locally 

asymptotically stable. 
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