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Abstract

We show that weak-coupled two-dimensional dilaton gravity on anti-de Sitter space can be described by the dynamics
of an open string. Neumann and Dirichlet boundary conditions for the string lead to two different realizations of the anti-
de Sitter/Conformal Field Theory correspondence. In particular, in the Dirichlet case the thermodynamical entropy of two-
dimensional black holes can be exactly reproduced by counting the string states. 2001 Elsevier Science B.V. All rights
reserved.

PACS: 04.70.Dy; 11.25.Pm; 04.50.+h

The realization of the holographic principle in two
spacetime dimensions is a subject that has recently
attracted much attention in the literature, where it has
been mainly investigated in the context of the anti-
de Sitter/Conformal Field Theory (AdSd/CFTd−1)
correspondence [1]. Ford = 2 it states that gravity
on AdS2 is dual to a one-dimensional conformal field
theory living on the boundary of AdS2.

In spite of the efforts that have been devoted to clar-
ify the AdS2/CFT1 duality [2–5], the latter remains
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puzzling and mysterious. Since the conformal sym-
metry involved in the duality is infinite dimensional,
the dynamics is expected to be highly constrained.
However, the realization of the symmetry in terms of
boundary states is far from trivial [4,5]. This difficulty
seems related to the topology of the boundary of AdS2,
which is one-dimensional and disconnected.

The lack in understanding of the AdS2/CFT1 dual-
ity has prevented real progress in what is considered its
main application: the study of two-dimensional (2D)
gravity structures (e.g., black holes) [6] using confor-
mal field theory techniques. This application is of fun-
damental relevance for black holes physics because
it can be used to give statistical meaning to the en-
tropy of both 2D black holes and higher dimensional
black holes that reduce to 2D models upon compact-
ification. Attempts to calculate the statistical entropy

0370-2693/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0370-2693(00)01398-8
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of 2D AdS2 black holes met only partial success [4,5].
A mismatch of a factor

√
2 between the thermodynam-

ical and statistical entropy was found.
In this Letter we clarify the meaning of the

AdS/CFT correspondence in two dimensions by show-
ing that it can be realized in two different ways both
stemming from a more fundamental AdS2/CFT2 cor-
respondence. Using the nonlinear sigma model formu-
lation of 2D dilaton gravity [7] we show that weak-
coupled dilaton gravity on AdS2 can be described
by the dynamics of an open string. Using Neumann
boundary conditions we retrieve the AdS2/CFT1 cor-
respondence that has been analyzed in Refs. [4,5].
Dirichlet boundary conditions lead to a new realization
of the AdS/CFT correspondence. In this case the prop-
erties of 2D black holes have a direct interpretation in
terms of string dynamics. In particular, the entropy of
the black hole can be exactly computed in terms of the
degeneracy of the open string spectrum.

The simplest 2D gravity model admitting AdS2 as
solution is the Jackiw–Teitelboim (JT) model [8]

(1)A= 1

2

∫ √−g d2x φ
(
R + 2λ2).

The classical solutions of the model,

ds2 = −
(
λ2r2 − 2m

λφ0

)
dt2

(2)

+
(
λ2r2 − 2m

λφ0

)−1

dr2, φ = φ0λr, m� 0,

can be interpreted as AdS2-black holes [9]. The black
hole massm appearing in Eq. (2) is defined by the
mass functional

(3)M = λ2φ2 − ∂ρφ∂ρφ.
On-shellM is constant [10] and equal to 2φ0λm.

The 2D gravity model (1) is pure gauge, i.e., it
has no physical local degrees of freedom. Moreover,
solutions (2) with different values ofm represent
different, locally equivalent, parametrization of AdS2.
However, the presence of the scalarφ makes them
globally nonequivalent [9]. Following the notation of
Ref. [9] we will denote with AdS+2 and AdS02 the black
hole solutions (m > 0) and the ground state (m= 0),
respectively.

The link between 2D AdS-gravity and CFT can
be established using the asymptotic symmetries of

AdS2. It has been shown in Refs. [4,5] that the
asymptotic symmetries of AdS2 are generated by a
Virasoro algebra and that the deformations of the
timelike boundary of AdS2 give a realization of
the conformal symmetry. In Refs. [4,5] the(r, t)
coordinates of Eq. (2) have been used to discuss the
asymptotic symmetries of AdS2, yet for our purposes
it is convenient to use light-cone coordinates(u, v). In
the(u, v)-frame the AdS02 solution isguv = 2/λ2(u+
v)2, guu = gvv = 0, φ = −φ0/λ(u + v), so the
boundary conditions [4] to be imposed on the metric
and on the dilaton areguv = 2/λ2(u + v)2 + O(1),
guu = O(1), gvv = O(1), and φ = O((u + v)−1),
respectively. The metric and the dilaton have the
asymptotic,u→ −v, form

guu =U0 + · · · +Un(u+ v)n + · · · ,
guv = 2

λ2(u+ v)2 + Y0 + · · · + Yn(u+ v)n + · · · ,
gvv = V0 + · · · + Vn(u+ v)n + · · · ,

(4)

φ = −φ0

[
ω−1

λ(u+ v) +ω1λ(u+ v)

+ · · · +ωnλn(u+ v)n + · · ·
]
,

where the coefficientsUk,Uk,ωk are functions of
u− v only. The transformations generated by the as-
ymptotic symmetry group leave unchanged the lead-
ing terms in Eq. (4) and act on the remaining func-
tionsUk,Vk,Yk andωk . These can be thought as char-
acterizing the deformations of theu = −v boundary
of AdS2.

The asymptotic symmetry group is generated by the
Killing vectors

χu = 1

2

[
ε + ε′(u+ v)+ 1

2
ε′′(u+ v)2

]
+ αu,

(5)χv = 1

2

[
−ε + ε′(u+ v)− 1

2
ε′′(u+ v)2

]
+ αv,

whereε ≡ ε(u − v) is an arbitrary function,αu,v =∑∞
k=3α

u,v
k (u− v)(u+ v)k , and′ = d/d(u− v). αu,v

represent “pure gauge” diffeomorphisms of the 2D
gravity theory that fall off rapidly asu → −v. The
Killing vectors (5) define a conformal group gener-
ated by a Virasoro algebra and the boundary fields
Θk = (Uk,Vk,Yk,ωk) span a representation of this



M. Cadoni, M. Cavaglià / Physics Letters B 499 (2001) 315–320 317

symmetry. Their transformation law has the form

(6)δεΘk = εΘ ′
k + (h+ k)ε′Θk + · · · ,

whereh = 2 for the fieldsU,V,Y andh = 0 for the
fieldsω, and dots denote terms that depend on higher
derivatives ofε and on the “pure gauge” diffeomor-
phisms. It is important to notice that although “pure
gauge” transformations affect the boundary fields, the
charges that are associated with the asymptotic sym-
metry are invariant [5] under pure gauge transforma-
tions. The mass functionalM can be likewise ex-
panded near theu= −v boundary

(7)M =
∞∑
k=0

Mk(u− v)(u+ v)k.

Using Eqs. (3) and (4) theMk can be expressed
in terms of the boundary fields. They follow the
transformation law (6) withh= 0.

The action (1) can be cast in the form of a 2D
conformal nonlinear sigma model [7] with Lagrangian

(8)L = √−g ∂µM∂µψ · 1

1− 4λ2ψ2M
,

whereφ = (−2λ2ψ)−1 and we have neglected irrel-
evant surface terms. The Lagrangian (8) can be ex-
panded aroundψ = 0

(9)L = √−g
∞∑
k=0

∂µMk∂
µψk,

whereMk =Mk+1/(k+1),ψk = (2λψ)2k+1/2λ(2k+
1). Eq. (9) is both a perturbative expansion in terms of
the (coordinate-dependent) gravitational coupling of
the model (1) (φ−1) and an expansion near the bound-
ary of AdS2. Each term in Eq. (9) has the form of a
free-field conformal theory and transforms according
to Eq. (6) withh = 2, although the sum (full theory)
does not. In the weak-coupling regime,ψ � 1, the
theory can be treated perturbatively. In particular, if
we restrict ourselves to the first order in the perturba-
tive expansion the theory reduces to a free CFT and
the usual machinery of CFTs can be applied. In this
sense we speak of “duality” between (weak-coupled)
AdS2 gravity and CFT. Let us stress that the identifi-
cation of a weak-coupling regime, where a consistent
perturbative expansion can be constructed, is a funda-
mental feature of the sigma model representation that

does not have counterpart in the original formulation
based on Eq. (1) and is essential for the identification
of the fundamental microscopic degrees of freedom of
the theory. In this Letter we shall focus attention on
the first term in the perturbative expansion (9) leav-
ing the discussion of higher terms to further investi-
gations. This amounts to neglecting, in first approx-
imation, higher order perturbative corrections gener-
ated by the running gravitational coupling. Note that
the latter becomes strong nearr = 0, i.e., precisely in
the “opposite” region of AdS2 around which we are
expanding. In this approach higher order corrections
are described by interacting terms for the free CFT.

It is convenient to define the new fields

√
πα′M0 = 1

2

(
X1 + iX2) = 1

2

(
X0 +X1),

(10)
√
πα′ψ0 = 1

2

(
X1 − iX2) = 1

2

(
X1 −X0),

whereα′ is a constant with dimension oflenght2. Us-
ing complex coordinatesz ≡ u = (t + x)/2 = (σ 1 +
iσ 2)/2 and z̄ ≡ v = (x − t)/2 = (σ 1 − iσ 2)/2, the
leading term in the expansion (9) can be cast in the
usual bosonic string form. (See Ref. [11] for nota-
tions.) Since AdS2 has a timelike boundary atx = 0,
we are dealing with open strings and the expansion (9)
defines a AdS2/CFT2 correspondence between open
string theory and dilaton gravity on AdS2. Boundary
conditions are restricted to Dirichlet (Xµ(x = 0) =
const) or Neumann (na∂aXµ(x = 0) = 0) type, re-
spectively. Mixed boundary conditions are not allowed
because from the boundary expansion (4) for the field
φ it follows ∂tX0(x = 0) = ∂tX1(x = 0). The choice
of boundary conditions determines the realization of
the AdS/CFT correspondence. The AdS2/CFT1 cor-
respondence that has been proposed in Ref. [4] is ob-
tained by imposing Neumann boundary conditions,
which allow for excitations on the boundary. In this
case we haveXµ(x = 0)= F(t)=M0 and the confor-
mal symmetry can be realized on the boundary by the
charges that are associated with the asymptotic sym-
metries of AdS2. Dirichlet boundary conditions break
translation invariance in thex direction and no dynam-
ical degrees of freedom are allowed on the boundary,
the string endpoint being fixed. In this case we are nat-
urally lead to a new realization of the AdS/CFT corre-
spondence. It is shown below that the correspondence
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is realized in terms of pure deformations of the bound-
ary of AdS2.

In addition to the timelike boundary atx = 0, AdS0
2

has an inner null boundary. However, the presence
of the latter does not influence the dynamics of
the open string. Writing the solution, Eq. (2), in the
conformal coordinate frame(t, x), one finds that AdS02
is conformal to Minkowski space and that the presence
of the dilaton requires

(11)−∞< t <∞, 0� x <∞.
In this coordinate frame the inner null boundary
is located atx = ∞. Hence, because of conformal
invariance, open strings on AdS0

2 are equivalent to
open strings on the region of the Minkowski spacetime
defined by Eq. (11).

The AdS2/CFT2 correspondence is expressed in a
exact form by putting in a one-to-one correspondence
the symmetries and local degrees of freedom of
the open string and the asymptotic symmetries and
excitations of AdS2. The conformal symmetry in two
spacetime dimensions is generated by the Killing
vectors,χ = χ(z)∂ + χ̄(z̄)∂̄ . A generic CFT2 field
ψ(z, z̄) of weights(h, h̄) transforms as

(12)δχ,χ̄ψ = (χ∂ + h∂χ)ψ + (
χ̄ ∂̄ + h̄∂̄ χ̄)

ψ.

Dirichlet boundary conditions require thatχ andχ̄ are
related by the condition

(13)χ(z)+ χ̄(z̄)= 0.

This equation implies that the conformal symmetry
is generated by a single copy of the Virasoro alge-
bra. By expanding the Killing vectors on the bound-
ary we obtain Eq. (5) withχ((z− z̄)/2)= −χ̄(−(z−
z̄)/2) = ε(u − v)/2, where the pure gauge diffeo-
morphisms have been fixed asαuk = (−1)k+1αvk =
(1/2k!)dkε/d(u− v)k . Thus, by fixing the pure gauge
diffeomorphisms appropriately, the symmetry group
of the Dirichlet open string and the asymptotic sym-
metry group of AdS2 coincide. Each AdS2 field liv-
ing nearx = 0 can be interpreted as the coefficient of
the expansion of the CFT2 field around the boundary
with given weighth + h̄ and pole of orderp. More-
over, the above correspondence allows to determine
from CFT2 the Virasoro generators of the asymptotic
symmetry group of AdS2. Using Eq. (13) and express-
ing the CFT2 Virasoro generatorsLCFT

m = z−m+1∂ and

L̃CFT
m = z̄−m+1∂̄ as functions of thex, t coordinates

we find

LAdS
m = 2m−1{[(t + x)−m+1 + (t − x)−m+1]∂t

(14)

+ [
(t + x)−m+1 − (t − x)−m+1]∂x}.

The AdS Virasoro generators (14) are valid both on
the boundary and outside the boundary, where they
generate the full symmetry group of the open string
with Dirichlet boundary conditions. Eq. (14) leads
to the asymptotic AdS Killing vectors (5) with fixed
gauge diffeomorphisms. By fixing the pure gauge
diffeomorphisms of the AdS asymptotic symmetries
we can reconstruct the full symmetry group of the
Dirichlet open string. According to this picture the
Virasoro generatorsLAdS

m cannot be interpreted as
generating the symmetries of a 1D conformal field
theory living on the boundary of AdS2, the latter being
frozen by the Dirichlet boundary conditions.

The AdS2/CFT2 correspondence can also be real-
ized using local oscillator degrees of freedom. Let us
expand the string field in normal modes

Xµ = xµ − ipµ log|z|2

(15)+ i
(
α′

2

)1/2 ∞∑
m=−∞

1

m

(
αµmz

−m + α̃µmz̄−m
)
.

Comparing Eq. (15) to the asymptotic expansions of
M0 andψ0

M0 =
∞∑
k=0

∞∑
m=−∞

Mkmx
ktm,

(16)ψ0 =
∞∑
k=1

∞∑
m=−∞

Ψkmx
ktm,

we find (we assumet > 0 for simplicity)

αµm = (−1)m+1α̃µm

(17)= i√π 2−1/2−m[M1,−1−m ∓Ψ1,−1−m],
where we have imposed the Dirichlet boundary condi-
tions that implypµ = 0,M00 = const, andM0m = 0
for m �= 0. The asymptotic excitations of the gravity
theory are in a one-to-one correspondence with the
open string modes. Moreover, the lower terms in the
asymptotic expansion are sufficient to determine the
whole CFT2 theory. The fieldsM1, Ψ1 andM0 are
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invariant under pure gauge bulk transformations and
transform conformally with weighth= 1 (M1 andΨ1)
and h = 0 (M0). Therefore, Eq. (17) provides a re-
alization of the AdS2/CFT2 correspondence: asymp-
totic 2D gravity modes around the boundary that de-
scribe boundary deformations determine completely
CFT2 (the open string theory) and vice versa. Finally,
using Eq. (17) the CFT2 Virasoro generators can be
expressed in terms of the asymptotic modes

LCFT
m = 1

2

∞∑
n=−∞

α
µ
m−nαµn

(18)= −π2−m
∞∑

n=−∞
M1,−1−nΨ1,−1−m+n.

By imposing Neumann boundary conditions on the
open string, the string modes are determined by the
gravitational modesM0,m. In this case the Virasoro
generators (18) and the CFT2 action are zero at any
order in the expansion and the conformal symmetry
cannot be realized in terms of local string oscillators.
Rather, we are dealing with a topological theory
which has no physical local degrees of freedom and
the conformal symmetry is realized by the charges
associated with the asymptotic symmetries [4].

The AdS2/CFT2 correspondence leads to a natural
interpretation of the Hawking evaporation of the AdS2
black hole [9]. From Eq. (14) it follows that the
invariantSL(2,R) algebra is generated by

LAdS
0 = t∂t + x∂x, LAdS

1 = 2∂t ,

(19)LAdS
−1 = 1

2

(
t2 + x2)∂t + xt∂x .

In the representation aboveLAdS
0 does not generate

translations int but dilatations.LAdS
0 generates time

translations in theT ,X coordinates

(20)λt = eλT cosh(λX), λx = eλT sinh(λX).

Using Eq. (20) the metric of the AdS0
2 ground state is

(21)ds2 = 1

sinh2(λX)

(−dT 2 + dX2).
Eq. (21) describes a 2D black hole [9]. Hence, the
Hawking evaporation process can be explained in the
CFT2 context using the same arguments of Ref. [9].
Positive frequency modes of a quantum field with
respect to Killing vector∂t are not positive frequency

modes with respect to Killing vector∂T , i.e., the
vacuum state for an observer in the(X,T ) reference
frame appears filled with thermal radiation to an
observer in the(x, t) frame. The value of the Hawking
flux has been calculated in Ref. [9].

The correspondence between the open string with
Dirichlet boundary conditions and the 2D AdS2 black
hole can be used to calculate the statistical entropy of
the latter. Since local oscillators of the Dirichlet string
are in one-to-one correspondence with excitations of
AdS0

2 we can count black hole states by counting
states of CFT2. To this purpose, we calculate the
central chargec associated with the central extension
of the Virasoro algebra generated byLCFT

m . Keeping in
mind the interpretation ofc as a Casimir energy (see
for instance Ref. [11]), the transformation law of the
stress-energy tensor under the change of coordinates
(20) (w= T +X) is

(22)T (2)ww = (∂wz)2T (2)zz − c

12
{w,z}(∂wz)2.

The vacuum energy is shifted byl(2)0 → l
(2)
0 − c/24,

wherel(2)0 is the eigenvalue ofLCFT
0 which is associ-

ated to the vacuum. This shift corresponds to a Casimir
energyE = (−c/24)λ.

The coordinate transformation (20) maps the AdS0
2

ground state solution of the 2D dilaton gravity theory
into the AdS+2 black hole solution (21) with massm=
(φ0/2)λ (see Ref. [9]). Because of the correspondence
between the gravitational theory and the Dirichlet
string we can interpret the previous map as the gravity
theory counterpart of the shift ofLCFT

0 in CFT2 and
equate the Casimir energyE with m. There is a
subtlety concerning the sign to be used in the equation.
The coordinate transformation (20) is analogous to
the coordinate transformation that maps the Rindler
spacetime into the Minkowski spacetime, i.e., it maps
observers. So an observer in the AdS+

2 vacuum sees
the AdS0

2 vacuum as filled with thermal radiation with
negative flux [9]. Since the Casimir energyE is the
energy of thez-vacuum as seen in thew-frame, we
must use the equationE = −m which leads toc =
12φ0. Finally, the eigenvalue ofLCFT

0 can be expressed
in terms of the black hole mass. Using the Cardy
formula [12] the statistical black hole entropy is

(23)S = 2π

√
cLCFT

0

6
= 4π

√
φ0m

2λ
,
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in complete agreement with the thermodynamical
result.

In this Letter we have proved that the correspon-
dence between 2D gravity and open strings allows
for two distinct realization of the AdS/CFT corre-
spondence. The first realization, which is obtained
by imposing Neumann boundary conditions to the
open string, implies the existence of a genuine one-
dimensional CFT living on the boundary of AdS2.
This realization is, however, problematic from differ-
ent points of view [4,5]. The realization which is ob-
tained by imposing Dirichlet boundary conditions sup-
ports the viewpoint of Ref. [13], where, by quite a dif-
ferent argument, the authors conclude that the corre-
spondence should be realized as AdS2/CFT2, rather
than AdS2/CFT1.
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