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ABSTRACT 

Conclusions from studies vary regarding the association of weight loss among 

obese people and measures of health and/or mortality. Total weight loss for individuals in 

a population may be a combination of intentional weight loss (IWL) and unintentional 

weight loss (UWL). Among people who have no intention to lose weight, the total weight 

loss observed is UWL. Among people who have intention to lose weight, the total weight 

loss is assumed to be UWL and IWL. Note that total weight loss among subjects 

intending to lose weight is observable but IWL itself is not and, therefore, the latent 

variable that is of interest.  

This research reformulates Coffey et al. (2005) using the potential outcomes 

framework which help to clarify nonestimable quantities, in particular, tighten bounds for 

nonestimable correlation parameter and a causal parameter in a linear model under 

certain assumptions. Also, the positive definiteness requirement of a correlation matrix 

with covariate(s) is helpful in order to tighten the bounds for nonestimable quantities, and 

this is demostrated using the mice data example from Coffey et al. (2005). A parametric 

bootstrap is used to investigate sampling variability of estimated bounds for the causal 

parameter. 

Finally, a matched pairs design is considered in order to get more information for 

a nonestimable parameter. Three data examples are considered; a data set from an 

experiment on eye treatments, the mice data set, and a data set from a study on twins. 

With the mice data set, the base line weight is used to assign mice to matched pairs. 

Some pairs are created from mice in different treatment groups, and other pairs from 

mice in the same treatment group. The latter helps to assess “quality of matching”. 
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1. INTRODUCTION 

1.1. MOTIVATION OF RESEARCH 
 

Obesity continues to increase in the United States (Ogden et al., 2002; Flegal et 

al., 2002). There are many studies have shown that obesity is associated with increased 

mortality rate (Allison et al., 1999) and short-term weight loss improves risk factors for 

mortality (Weinsier, 1987), however, it has not been convincingly shown that weight loss 

among obese people results in reduced mortality rate. In contrary, weight loss is 

sometimes associated with increased mortality rate (Fontaine K.R. and Allison, 2001). 

Hence, weight loss among obese people is neither beneficial nor deleterious for human 

health. One possible explanation is that total weight loss for individuals in a population 

may have contributions from intentional weight loss (IWL) and unintentional weight loss 

(UWL). Some studies are designed to observe the intention to lose weight (Sorensen, 

2003), and those that do must often implicitly assume that consequent observed weight 

loss was from the intention to lose weight (Yang et al., 2003). Among people who do not 

have intention to lose weight, it is assumed that all weight loss observed is entirely 

represented as unintentional. Therefore, the observed total weight loss is due only to their 

intention. However, among people who intend to lose weight, the total weight loss could 

be observed and this total, as well as any apparent effect on mortality would have 

contributions from UWL and IWL (Yang et al., 2003). These contributions may be in 

opposite directions from one another, as might be the case if UWL resulted from some 

underlying disease in a subset of the population being studied. Since IWL and UWL 

cannot be observed separately for those intending to lose weight, this makes it difficult to 

access their effects on mortality rate. 

Again, the total weight loss for people intending to lose weight is observable but 

IWL itself is not. Therefore, IWL is the unobservable latent variable that is of interest. 

The latent variables have been described in different definitions and terminology (Bollen, 

2002). Coffey et al. (2005) considered the problem of disentangling the effects of IWL on 

mortality from that of UWL, and developed a linear model using  IWL as a latent 

variable and showed that the effect of IWL on mortality is a nonestimable parameter 

(unless some strong assumptions for other parameters). This research reformulates 
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Coffey et al. (2005) by using a different approach. Potential outcomes framework (Rubin, 

1974) is proposed to clarify unobservable quantities and help tightening the bounds for a 

nonestimable correlation parameter and a causal parameter in a linear model under an 

assumption of random assignment to intention.  

Aside from Coffey et al. (2005), there is no other paper known that considers total 

weight loss as a summation of UWL and IWL and that specifically try to estimate the 

effect of IWL on mortality or some other subsequent measure of health. There is a large 

body of literature on latent variable models with much of it focused on causality in 

observational data (cf., Berkane, 1997). Some such papers consider assignment to 

treatment as being dependent upon a latent variable in nonrandomized studies with 

resulting inferences then sensitive to hidden bias (e.g., Rosenbaum, 1991). Sensitivity 

analyses can be used to bound effects of treatment in such contexts (e.g. Rosenbaum, 

1995; Heckman and Vytlach 1999). Here the latent variable is the causal variable that is 

of interest and assignment to intention is assumed to be random as was the case in Coffey 

et al. (2005) and is, in fact, true in the mice data example presented later. Estimation of a 

direct effect on a response from a variable that is not observable poses obvious problems; 

however, aspects of the study design combined with the fact that IWL is partially 

observable in total weight loss yield enough information about the variable that bounds 

for its effect can be estimated. 

Sorensen et al. (2005) investigated the influence on mortality of intentional to lose 

weight for twins. Also matching can have appeal when drawing causal inferences using 

observational data (Rosenbaum and Rubin, 1983). Therefore, a matched pairs design is 

proposed in order to get the estimate bounds of the parameter of interest. 

 

1.2. DISSERTATION OUTLINE 
 

The effect of weight loss on mortality among obese population is questionable. As 

in Coffey et al. (2005), the weight loss is determined into two groups; unintentional and 

intentional to lose weight group. For the unintentional group, the observed weight loss is 

solely determined by the UWL but for intentional group, the observed total weight loss is 

the sum of UWL and IWL, whereas IWL is not separately observable. First, this 

dissertation gives the brief review and the key results of Coffey et al. (2005). Then, 
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Coffey et al. (2005) is reformulated by using the potential outcomes framework to clarify 

nonestimable parameters. The causal model is defined in terms of the parameters of 

interest and, under certain assumptions, the formula of the slope coefficient parameter is 

calculated by ordinary least squares (Graybill, 1976). Together with use of the positive 

definiteness requirement for a correlation matrix (Gadbury and Iyer, 2000) a set of 

plausible values for a nonestimable parameters is produced. Then a covariate is 

considered that helps tighten the bounds of the nonestimable correlation parameter and 

this leads to tighter bounds of the parameter of interest. Finally illustrate this approach 

with the mice data, which is exactly the same as in Coffey et al. (2005) and compare the 

result. 

Next, use of parametric bootstrap procedure is implemented by simulating the 

data in order to assess the sampling variability of the bounds. All estimable parameters 

are set to be the same as in the mice experiment.  

With matched pairs, the subjects in the population are paired prior to 

randomization using additional information, for example, twins. The mortality and 

covariate information are not used in this section. Section 4 focuses on matched pairs 

design using potential outcomes to estimate bounds of the variance of IWL. This section 

has two parts. First, within a pair, one subject is randomly assigned to receive one 

treatment; and the other is received different treatment. However, because of lack of 

homogeneity within pairs, the result only shows how large the nonestimable parameters 

might be. A modified matched pairs is then investigated in order to get the estimate 

bounds for parameter of interest. That is, both subjects within pairs are randomly 

assigned to get the same treatment. The illustration of this part is applied to three of 

examples which are eye, mice, and twins data. The eye experiment illustrates how the 

first approach applies. The mice data, with specific matching by using baseline weight at 

12 months of age, and twins data are applied to both parts. The twins data is one of the 

interesting example since it was matched based on monozygotic and dizygotic twin pairs. 

Conclusions, discussion and future research work are summarized in the last section. 
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2. LITERATURE REVIEW 

2.1. A BRIEF REVIEW OF COFFEY ET AL. (2005) 
 

Assume that N subjects are observed until the time of death and denote the time 

until death (or some monotonic transformation thereof) as Y. The variable Y can generally 

be any continuous measurement of health or wellness. Let X be an indicator variable 

where 0=X  for subjects not intending to lose weight and 1=X  for subjects intending 

to lose weight. Denote the weight loss due to a subject’s or experiment’s intention as Z 

( IWLZ = ) and the weight loss due to factors other than the intention as W ( UWLW = ). 

By definition, it is assumed that 0=Z  when 0=X . Therefore ( )2,~1 ZZXZ σµ=  and 

( ) 100 === XZP . 

The regression model describing the influences on lifespan is 

 

eXZXWY ++++= 3210 ββββ ,    (1) 

 

where the variables Y, W, X, and Z are described above. e is a random error with mean 

zero and variance 2

eσ . W is distributed with mean Wµ  and variance 2

Wσ . Also, Z is 

distributed with mean Zµ  and variance 2

Zσ . The coefficients 0β , 1β , 2β , and 3β  are 

constants whereas the slope coefficients 1β , 2β , and 3β  are defined as partial regression 

coefficients in a general linear model (Graybill, 1976) and, when estimable, are estimated 

by ordinary least squares. 

The parameter 1β  captures the effects of UWL on Y and 2β captures the effects of 

IWL on Y. Since no IWL occurs in the unintentional to lose weight, by the definition, this 

model assumes that there is an interaction between Z and X but no interaction between W 

and X. The parameter 3β  allows for the fact that there may be some effect of intending to 

lose weight (or more likely the actions or conditions that follow from such intention) as 

some data suggest (Gregg et al., 2003, 2004) which is associated with mortality. Levels 

of X were assumed to be assigned at random so that if Z could be observed for some 
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subject, then 2β  is unbiased estimator in equation (1). Note that, in human studies, this 

random assignment assumption could not be assumed which is left to be discussed later. 

The observed total weight loss in practical is ZWV +=  which consists of the 

sum of UWL and IWL, respectively, and IWL, Z, is the latent variable. That is, for those 

not intending to lose weight, when 0=X , a linear regression model based on observable 

data is 

 

eWY ++= 10 ββ .     (2) 

 

For those intending to lose weight, when 1=X , a regression model which follow from 

(1) is written as 

 

( ) eZWY ++++= 2130 ββββ .    (3) 

 

Note that, this model assumes that both the variation of UWL and the slope of the 

effect of UWL is the same regardless of whether or not a subject intends to lose weight, 

i.e., homogeneity of variance for UWL in two groups. Since the variable Z in (1) is not 

separately observable, a regression model based on observable data does not follow from 

the regression model (1). This leads the linear regression equation for those intending to 

lose weight as  

 

eVY ++= 10 λλ .     (4) 

 

Herein, 1λ  is considered as a naïve estimate relating mortality and total weight loss. 

Coffey et al. (2005) solved for the parameter of interest, 2β , as 

 

( )
ZWZWZ

ZWZWWV

σσρσ

σσρσβσλ
β

,

2

,

2

1

2

1

2
+

+−
= .    (5) 
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The parameters 1β , 1λ , 2

Vσ , and 2

Wσ  are estimable in observed data but the parameters 

ZW ,ρ  (the simple correlation between W and Z) and Zσ  are not because the variable Z is 

not observable. Coffey et al. (2005) used (5) to get the bound of 2β  by plugging in 

sample estimates of the observed parameters 1β , 1λ , 2

Vσ , and 2

Wσ  and varying the 

possible values of ZW ,ρ  and Zσ . 

 The results from Coffey et al. (2005) provide the plausible ranges for VW ,ρ  in (-1, 

0.730) and (0.980, 1). The estimated plausible values for 2β  based on the allowable 

values for VW ,ρ  are 20.15 1.21β− ≤ ≤ , and 25.11 6.41β≤ ≤ . However, the upper range 

was excluded since it was impossible to be true. Note that, bounds for 2β  in Coffey et al. 

(2005) are 5 times of those reported here since the results of the data example reported 

here are based on weigh loss measured in original units of grams, but the data example in 

Coffey et al. (2005) used weight loss in 5 gram increments.  

 

2.2. OTHER LITERATURE REVIEW 
 

Though Coffey et al. (2005) looked at a mice data set; recent studies on human 

have measured intention to lose weight. As in Sorensen et al. (2005), the paper analyzed 

the Finnish Twin Cohort which was composed of all same-sex twin pairs born in Finland 

before 1958 in which both twins were alive in 1967 (Kaprio, 2002) to investigate the 

influence on mortality of intention to lose weight among obese people. The overweight or 

obese was defined by body mass index (BMI=weight/height
2
, kg/m

2
), BMI�25 kg/m

2
. 

Notice that a change of 2 kg in body weight may have different implications for tall and 

short people, in analogy with body weight as such; Sorensen et al. (2005) analyzed 

weight changes as changes in BMI units rather than in kg. The data were collected since 

1975. All participants were asked whether they were currently trying to lose weight 

because of overweight, which was interpreted as “intention to lose weight”. In addition, 

the lifestyle factors, such as smoking habits, alcohol drinking, physical activity, life 

satisfaction, work status, and income, were recorded and analyzed. Moreover, the 

confounding by diseases was eliminated. All of the participants were followed up until 

death or the end of 1999 where some subjects might have died but others were still alive. 
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Sorensen et al. (2005) mentioned that the health effects of weight loss are complex and it 

would need more research. 

Also, Gregg et al. (2004) investigated the relationships between intention to lose 

weight, actual weight loss, and all-cause mortality among obese individuals with 

diabetes. The population for this study is 1401 overweight diabetic adults aged � 35 

years. The obese was determined by BMI � 30 kg/m
2
. All participants were asked for 

intention to lose weight, weight change, age, race, sex, education, smoking status, 

limitations in daily activity, past year hospitalizations, doctor visits, and insulin use. All 

of the participants were followed up to 9 years. Gregg et al. (2004) specified the 

limitation of the observational weight change on mortality which is the lack of 

information about weight loss intention (Yang et al., 2002). Among overweight 

individuals, it is difficult to examine the effect of weight loss on mortality since the 

weight loss among individuals includes a mixture of weight loss on purpose and 

unintentional weight loss that is frequently associated with poor health. Gregg et al. 

(2004) concluded that intention to lose weight was associated with reduced mortality 

regardless of whether weight loss is occurred.  

One challenge of human data is that assignment to intention is not random. This 

dissertation does not take up that challenge but do look at a subset of data from Sorensen 

et al. (2005) to determine the extent to which parameters of the distribution of Z=IWL 

can be estimated or bounded. In particular, matched pairs are considered. Matching has 

shown some value for latent variable type applications (Rosenbaum, 1989). 
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3. INTENTIONAL VERSUS UNINTENTIONAL WEIGHT LOSS ON 

MORTALITY 

3.1.  FORMULATING THE IWL PROBLEM WITH POTENTIAL OUTCOMES 
 

The potential outcomes framework is used to investigate the IWL problem 

without considering the covariate and defined as ( ) ( )( )ZWY xx ,, , where 0=x  is for 

subjects not intending to lose weight,  1=x  is for subjects intending to lose weight, Y, W 

and Z are as described before. Herein, there are five potential outcomes for a subject 

where ( )0Y and ( )1Y  are the mortality of a subject who does not intend and intend to lose 

weight, respectively. In the same way, ( )0
W  and ( )1

W  are the unintentional weight loss for 

a subject who not intending and intending to lose weight, respectively. With the same 

assumptions as in Coffey et al. (2005), both variables ( )0
W  and ( )1

W  have the same 

variance, 2

Wσ . Since the observed total weight loss for unintentional group is only ( )0
W , 

that is, ( ) 00 =Z , therefore, in order to simplify the notation the superscript for Z will be 

dropped out and define ( )
ZZ =1  as a single outcome, however it is unobservable, for 

each individual. Hence the regression models from Coffey et al. (2005) in terms of 

potential outcomes become 

 

( ) ( ) ( )00

10

0 εββ ++= WY ,      (6) 

( ) ( ) ( ) ( )1

2

1

130

1 εββββ ++++= ZWY ,     (7) 

 

where ( )0ε  and ( )1ε  are the random error with mean zero and variance ( )
2

0ε
σ  and ( )

2
1ε

σ , 

respectively. The causal but nonestimable causal effect of IWL, where the expectation is 

conditional on the weight loss variables, is 

 

( )( ) ( ) ( )( ) ( ) ( )( ) ZWWYYEZWD
x

2

01

13

01, βββ +−+=−= .   (8) 
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For 1 unit change in Z, by holding other variables to be constant, the effect is 

( ) ( ) 21 β=−+ zDzD . Therefore, the parameter 2β  is called the causal parameter and the 

equation (7) is the causal model. 

For a given subject, either ( ) ( )( )00 ,WY  or ( ) ( ) ( )( )ZWVY += 111 ,  is observed 

depending on random assignment to either unintentional or intentional to lose weight. 

Again, since the observed total weight loss for unintentional group is only ( )0
W , that is, 

( ) 00 =Z  and ( ) ( )00
WV = , therefore, the superscript of V will be dropped out and set 

( )
ZWV += 1 .  The parameters 1β  and 1λ  can be estimated by the regression models (2) 

and (4), respectively. Consider the simple linear regression model, 

 

( ) εαα ++= VW 10

1 .     (9) 

 

Since ( )1
W  is not separately observable from the observed total weight loss, ( )

ZWV += 1  

for each subject, the parameters in equation (9) cannot be estimated. From Coffey et al. 

(2005) and the regression model (9), 2β  can be written as a function of one nonestimable 

parameter 1α , that is, 
1

111
2

1 α

αβλ
β

−

−
= . With the assumption in Coffey et al. (2005) that 

( )1
W  and V are independent, it shows that 01 =α  and also 12 λβ = . This assumption is 

unlikely to be true. The parameter estimate of 1λ  in the linear regression model (4) is 

called a naïve estimate of 2β . Consider the linear regression model (9), the parameter 1α  

is nonesimable because of the nonestimable correlation between V and ( )1
W . Equation (5) 

shows that 2β  is a function of two nonestimable parameters which can be reformulated 

as the function of only one nonestimable parameter VW ,ρ , the simple correlation between 

V and ( )1
W . It is clear to drop out the superscript of the correlation between V and ( )1

W  

because ( ) ( )00
WV =  for unintentional group. In addition, as in Coffey et al. (2005), the 

assumption, that the marginal distributions of both ( )0
W  and ( )1

W  are the same with 

variance 2

Wσ , is required. For reference, the summarization of the notation for 

distributional parameters of potential outcomes variables which are estimable together 
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with their description and any assumes restrictions on marginal and joint distributions is 

in Table 3.1. Moreover, Table 3.1 includes information on a covariate U (to be described 

later) and also parameter estimates from a data example explained in Section 3.3. 

 

 

Table 3.1.  Parameter Notation, Descriptions of Parameters Including Restrictions on 

Marginal and Joint Distributions, and Parameter Estimates from the Data Example 

 

Parameter notation Parameter description Parameter estimate 

(1)
Y

µ  ( )(1)
E Y  36.91 

( 0)
Y

µ
 ( )(0)

E Y  33.71 

Wµ
 ( ) ( )(1) (0)

E W E W=  0.45 

Vµ
 ( ) ( )(1) ,E V E V V W Z= = +  14.14 

Uµ
 ( )E U  41.72 

( )
2

1Y
σ

 ( )(1)Var Y  5.42 

( )
2

0Y
σ

 ( )(0)Var Y  4.71 

2

Wσ
 ( ) ( )(1) (0)Var W Var W=  4.79 

2

Vσ
 ( ) ( )(1)Var V Var V=  5.20 

2

Uσ
 ( )Var U  4.68 

(1)
,Y V

ρ
 ( ) ( )(1) (1) (1), ,Cor Y V Cor Y V=  0.105 

(0 )
,Y W

ρ
 ( )(0) (0),Cor Y W  -0.436 

(1)
,Y U

ρ
 ( )(1) ,Cor Y U  0.126 

(0 )
,Y U

ρ  ( )(0) ,Cor Y U  -0.272 

,W Uρ  ( ) ( )(1) (0), ,Cor W U Cor W U=  0.550 

,V Uρ
 ( )(1) , ( , )Cor V U Cor V U=  0.870 
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The causal model (7) can be rewritten as 

 

( ) ( ) ( ) ( ) ( )1

2

1

2130

1 εβββββ ++−++= VWY .    (10) 

 

Now consider the regression model (6) and the causal model (10). In the regression 

model (6), ( ) ( )( )00 ,WY  are observable for unintentional group but in the causal model 

(10), for intentional group, ( )1
W  is not observable. It is previously assumed that 1β  is the 

same in models (6) and (10), that is, there was no W and X interaction or homogeneity of 

variance of UWL in the two groups. Applying these two equations (see details in 

Appendix A), ( ) WVWVZZW
σρσσρ −= ,,

1  and VWWVWVZ ,

222 2 ρσσσσσ −+=  leads equation 

(5) as 

 

( ) ( ) ( ) ( )

VWWV

VWWYYVYY

,

,,,

2

0011

ρσσ

ρρσρσ
β

−

−
= .    (11) 

 

All the parameters in equation (11) are estimable except the simple correlation between V 

and ( )1
W , VW ,ρ . Vary the possible value of nonestimable VW ,ρ  from -1 to 1 in order to get 

the bounds for the parameter of interest, 2β . 

There is another constraint that could tighten the bounds for 2β . Gadbury and 

Iyer (2000) used the positive definiteness requirement for a correlation matrix to produce 

a set of plausible values for a nonestimable parameters. Consider the correlation matrix of 

the random vector ( ) ( ) ( )( )′VWYY ,,, 101  with six correlation parameters. Four of them are 

nonestimable which are ( ) ( )01
,YY

ρ , ( )
WY ,

1ρ , ( )
VY ,

0ρ , and VW ,ρ . Applying the use of positive 

definiteness which is not useful since this set of matrix produces only 3 equations but 4 

unknowns or nonestimable parameters. Therefore, consider the random vector of only 

three variables, ( ) ( )( )′VWY ,, 11  and see that these 3 variables are, in fact, those of interest in 

the causal model (10). Let R be the 3-dimensional correlation matrix and there are only 2 

nonestimable parameters which are ( ) ( )11
,WY

ρ  and VW ,ρ . However, with the assumptions 
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stated as before, both of nonestimable parameters are functionally related. Equation (6) 

gives a formula 1β  and equation (10) gives two different formulas for 2β , which are,  

 

( )1

2β
( ) ( ) ( ) ( )[ ]

( )2

,

,,,

1

1111

VWV

VWWYVYY

ρσ

ρρρσ

−

−
= ,       

( )2

2β  ( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) �

�

�
�
�

�

−

−
−=

2

,

,,,

, 1

1 1111

000

VW

VWVYWYY

WYY
W ρ

ρρρσ
ρσ

σ
.    

 

The derivation detail is in Appendix A. Equating these two of 2β  providing 1β  produces 

the equation of 2β  as given in equation (11). See details in Appendix A. One result is an 

equation of the correlation between the two nonestimable parameters ( )1Y  and ( )1
W  as 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )VWWVY

WVWVVYYVWWYVY

WY
,

,,

2

,,

,
1

1100

11

1

ρσσσ

σρσρσρρσσ
ρ

−

−+−
= .  (12) 

 

Plugging the formula (12), which is a function of only nonestimable VW ,ρ , into the 

correlation matrix for ( ) ( )( )′VWY ,, 11 , 

 

( ) ( )

( )
( )

��
�
�

�

	









�

�

=

1

1

1

,,

,,

,,

1

1

VWVY

VWVW

VYVW

h

h

R

ρρ

ρρ

ρρ

,    (13) 

 

where 
,( )W Vh ρ

 
is in the form (12). Let mine be the minimum eigenvalue of the correlation 

matrix R. With the positive definiteness constraint, min 0e > , this can tighten the range of 

plausible values of
,W Vρ . The range for 

,W Vρ results in tighter bounds for 2β that can be 

estimated from observable data. 
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3.2. THE ROLE OF A COVARIATE IN TIGHTENING BOUNDS  
 

Let U be a covariate and observed on all subjects in an experiment. Note that U is 

not affected by the assigned treatment, herein, the intention to lose weight. An example 

of a covariate could be baseline weight before assigning the treatment. It is questionable 

on whether the causal model is given by model (10) defined without the covariate, or by a 

similar model with the covariate. However, the capability of the covariate to tighten the 

bounds for 
,W Vρ  depends on how well it predicts W and/or V, in which case colinearity 

problems are encountered when it is included in the causal model. Which causal model is 

ultimately preferred depends on the ability of U to predict (1)Y  given W and V are in the 

model. This section presents a method to estimate bounds for 2β  in a causal model with 

and without a covariate in the model. The issue of colinearity is considered later with a 

data example in Section 3.3. 

3.2.1. Using a Covariate to Tighten the Range for 
,W Vρ .  Consider the 4-

dimensional correlation matrix for the random vector ( )(1) (1), , ,Y W V U
′
, 

 

( ) ( ) ( ) ( )

( ) ( )

( )

( )
�
�
�
�
�

�

	












�

�

=Σ

1

1

1

1

,,,

,,,

,,,

,,,

1

1

11

1111

UVUWUY

UVVWVY

UWVWWY

UYVYWY

ρρρ

ρρρ

ρρρ

ρρρ

.    (14) 

 

Since the covariate U is observable for all subjects, four out of six correlation 

parameters in matrix (14) are all estimable except (1) (1)
,Y W

ρ and 
,W Vρ , which are the same 

as previous section. Partition the correlation matrix as 

 

��
�

	



�

�
=Σ

2221

12

SS

SR
,     (15) 

 

where R is the same matrix as (13) and ( )(1) (1) ,, W VY W
hρ ρ=  is the function in term of  

,W Vρ
 
using the multivariate distribution without the covariate. 

,W Vρ  is now a constraint 
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for making the matrix R positive definite, i.e., R > 0. In general, the notation 
12 21S S ′=  is 

used for general case with multiple covariates observed for a subject and these terms 

represent the correlation between each covariate and the first three variables 

( )(1) (1), ,Y W V . The matrix 22S  is the correlation matrix of the vector of covariates and 

equal to 1 in the case of only one covariate. The constraint of that the matrix R is positive 

definite, R > 0, combined with the identity 1

22 21 12
0R S S R S

−Σ = − >  gives more 

information to tighten the range for 
,W Vρ . With only one covariate, it is simplified to 

1

21 12 1S R S
− < . 

3.2.2. A Causal Model With a Covariate.  The regression model with a 

covariate is 

 

εββββββ ++++++= UXXUZXWY 543210 .   (16) 

 

The treatment-covariate interaction term in model (16) implies that the slope parameters 

on the covariate, U, are not necessarily to be the same for both groups. It is explicitly 

seen when consider the model (16) into two groups, UWL and IWL, and the total weight 

loss for IWL group is ( )
ZWV += 1 , as 

 

( ) ( ) ( )0

3

0

10

0 εβββ +++= UWY ,     (17) 

( ) ( ) ( ) ( ) ( ) ( )1

532

1

2140

1 εβββββββ ++++−++= UVWY .  (18) 

 

As before, the causal but nonestimable causal effect of IWL is  

 

( ) ( ) ( ) ( ) ( )( )1 0 1 0( )

4 1 2 5, , ( )x
D Z W U E Y Y W W Z Uβ β β β= − = + − + + .   

 

For 1 unit change in Z, holding other variables constant, the effect is 

( ) 21 ( )D z D z β+ − = . Therefore 2β  is the causal parameter and equation (18) is the 

causal model. 
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Similarly with no covariate case, the model (17) gives the equation of 1β  and 

model (18) gives two forms of 2β , which are, 

 

( )1

2β
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

�
�
�

�

�
�
�

�

+−−−

−+−+−
=

UVUWVWVWUVUW

UVUWVWUYUWVYVWUVUWWY

V

Y

,,,

2

,

2

,

2

,

,,,,

2

,,,,,,

21

1 11111

ρρρρρρ

ρρρρρρρρρρ

σ

σ
,      (19) 

( )2

2β
( ) ( ) ( ) ( )[ ]

( )2

,

,,,

1

0000

UWW

UWUYWYY

ρσ

ρρρσ

−

−
=  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

�
�
�

�

�
�
�

�

+−−−

−+−+−
−

VWUVUWVWUVUW

UWUVVWUYVWUVUWVYUVWY

W

Y

,,,

2

,

2

,

2

,

,,,,,,,,

2

,,

21

1 11111

ρρρρρρ

ρρρρρρρρρρ

σ

σ
. 

 

The derivation detail is in Appendix B. With the same approach, equate those two forms 

of 2β
 
provides a functional relationship ( )(1) (1) ,, W VY W

gρ ρ=  which is (also, see details in 

Appendix B), 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

�
�

�
�
�

�
−−

�
�
�

�

�
�
�

� −
+

−
=

−

D

E

D

E

DD V

Y

W

Y

W

UVY

V

VWUVUWY

WY σ

σ

σ

σ
β

σ

ρσ

σ

ρρρσ
ρ 12

1

1
2

,,,,

,

1111

11

1
 , (20) 

 

where,   ( ) ( ) ( ) ( )UVUWVWUYUWVY
E ,,,,

2

,,1 11 1 ρρρρρρ −+−= , 

UVUWVWVWUVUWD ,,,

2

,

2

,

2

, 21 ρρρρρρ +−−−= , 

( ) ( ) ( ) ( )UWUVVWUYVWUVUWVY
E ,,,,,,,,2 11 ρρρρρρρρ −+−= , 

 

and the equation of parameter of interest, 2β , is now a function of only one nonestimable 

correlation 
,W Vρ . The derivation of 2β  is somewhat tedious, though straightforward, and 

given in Appendix B. The constraints on 
,W Vρ  result from the positive definiteness 

requirement for the matrix Σ  as in (14) and these constraints is used to bound 2β
 
in the 

model (18). 
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3.2.3. Putting it All Together Using a Covariate.  The nonestimable correlation, 

,W Vρ , is an unknown, but fixed parameter. With certain conditions, 
,W Vρ  is bounded by a 

continuous interval. 

Proposition 1.  Consider a population correlation matrix consisting of an 

unknown nonestimable correlation, 
,W Vρ , and other distinct but fixed known correlations. 

Assume that there is at least one value of 
,W Vρ  such that the population correlation matrix 

is positive definite. Then plausible values of 
,W Vρ  are bounded by a continuous interval. 

Proof.  Let a random vector be given by ( )UWV ,,  where U is a vector of 

variables. Partition the correlation matrix as ��
�

	



�

�

′
USB

BA
 where ��

�

	



�

�
=

1

1

,

,

VW

VW
A

ρ

ρ
, US  is a 

correlation matrix of U, and ��
�

	



�

�
=

UW

UV

S

S
B

,

,
, that is, the correlation of V and W, respectively, 

with variables in U. The positive definite requirement of a correlation matrix implies that 

01 >′− − BBSA U . With ��
�

	



�

�
=′−

2221

12111

mm

mm
BBSU , where 2112 mm = , hence, 

,W Vρ  is bounded 

by ( )( )221112 11 mmm −−± . 

� 

 

The proposition is important to state since it is difficult to interpret the bounds for 

,W Vρ  when they do not contain a continuous interval. In the application described here, 

the conditions of the proposition are not met because of a restriction enforced by the 

assumption that the coefficient parameter 1β  was the same for both UWL and IWL 

groups. This assumption not only helped to tighten the bounds for 
,W Vρ , but also led the 

two nonestimable parameters, VW ,ρ  and ( ) ( )11
,WY

ρ , to be functionally related by either 

equation (12) which is used to bound VW ,ρ  in Section 3.1, or by equation (20) which is 

used to bound VW ,ρ  in Section 3.2. Consequently, plausible values of VW ,ρ  may or may 

not lie in a continuous interval but this due to an assumption made herein. Therefore, it is 

interesting to find a reasonable method to combine information obtained from population 
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models with and without covariate that produces a continuous set of plausible values for 

VW ,ρ . 

Let 1Ρ  be the estimated set of plausible values for VW ,ρ  from Section 3.1, and 2Ρ  

be the estimated set of plausible values for VW ,ρ  from Section 3.2. Since VW ,ρ  is a fixed 

population parameter, all of the information available in both the marginal tri-variate 

distribution of ( )(1) (1), ,Y W V
′
 and in the 4-dimensional distribution of ( )(1) (1), , ,Y W V U

′
 is 

used. Thus the plausible values of VW ,ρ  could be defined as the set P, 

 

( )21, PPP ∩=∈VWρ .     (21) 

 

After the set P has been obtained as in equation (21), bounds for 2β  can be 

estimated using either equation (11) or equation (19), depending on whether or not the 

covariate has been conditioned on the estimated causal effect. Henceforth, when the 

lower and upper values bound a continuous interval, the estimated bounds will be 

referred as valid bounds. 

 

3.3. ILLUSTRATION ON A DATA SET 
 

The illustration of this approach is applied with the same example described in 

Coffey et al. (2005). The data were drawn from the field of rodent caloric restriction 

studies where animals are regularly observed until all are dead. Briefly, 135 male mice of 

the B10C3F1 strain were fed ad libitum until 12 months of age at which point they were 

randomized, individual housed, and provided an intake of either an amount sufficient to 

maintain body weight (a control diet is the unintentional condition, X=0,160 

kcal/mouse/wk) or an intake of 90 kcal (a restricted group is the intentional condition, 

X=1). To avoid malnutrition, both groups consumed a diet enriched in content of protein, 

vitamins and minerals, therefore, the intakes of these dietary essentials were matched 

between groups. All mice were followed until death and the treatments were randomly 

assigned at the age of 12 months. The baseline weight at 12 months of age is set to be a 

covariate U. 
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At 23 months of age, the weight loss was observed for each mouse. Four mice 

were omitted since they were not alive at the 23 month. The remaining 131 mice were 

followed until death. Y represents the lifespan or mortality which was recorded for 64 

mice in the UWL group and 67 in the IWL group. 

3.3.1. Analysis Without the Covariate.  Figure 3.1 shows the scatter plot of total 

weight loss at 23 months and lifespan, also, with a fitted simple regression estimated for 

both IWL and UWL groups, ( )(1),V Y
 
and ( )(0) (0),W Y . Circle and the plus sign represent 

for IWL and UWL group, respectively. The solid line stands for IWL group and the other 

for UWL group. 

It is obviously seen that the IWL group seemed to have more weight loss and 

slightly positive relationship with the mortality. On the other hand, the UWL group had a 

negative association between W and (0)Y . The sample estimable parameters of this mice 

experiment are given in Table 3.1. The correlation matrix R, defined in matrix (13), with 

the positive definite requirement provides the plausible values for VW ,ρ  into two intervals 

(-1, 0.730) and (0.980, 1). These plausible ranges of values for VW ,ρ  were obtained 

numerically such that the minimum eigenvalue, mine , of the matrix R is positive. The 

values of VW ,ρ  in the interval (0.980, 1) have the minimum eigenvalues near singularity. 

The interval is not continuous because the functional relationship, ( )(1) (1) ,, W VY W
hρ ρ=  

given by equation (12), is nonlinearity which created a complex functional relationship, 

i.e., higher order between mine  and VW ,ρ . The estimated plausible values for 2β  based on 

the allowable values for VW ,ρ  are 20.15 1.21β− ≤ ≤ , and 25.11 6.41β≤ ≤ . Coffey et al. 

(2005) excluded the upper range as implausible based on knowledge of the particular 

application, however, there was no mathematical justification for eliminating this range.  

Note that, bounds for 2β  in Coffey et al. (2005) are 5 times of those reported here since 

the results of the data example reported here are based on weigh loss measured in original 

units of grams, but the data example in Coffey et al. (2005) used weight loss in 5 gram 

increments.  
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Weight Loss at 23 Months
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Figure 3.1.  Scatter Plot of Mortality versus Observed Total Weight Loss with Fitted 

Regression Lines for the Two Groups 

 

 

Based on the result in Section 3.2, the estimated bounds is valid only if the lower 

and upper values bound a continuous interval. These two plausible intervals for 2β
 
are 

not considered valid. Unless one is willing to assume a more restricted range for
,W Vρ , 

there is little else that can be done to tighten the bounds for 2β without more information. 

3.3.2. Illustration on the Data Set Using Baseline Weight as a Covariate.  The 

covariate U is baseline weight, in grams, at the age of 12 months which was recorded 

prior to the treatment assignment and not effect by the assigned treatment. First, the 3-

dimensional correlation matrix ( )(1) , ,W V U , with positive definiteness requirement, 

provides estimated bounds for the nonestimable correlation, 
W,V0.067  0.890ρ≤ ≤ . 
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Next, the 4-dimensional correlation matrix ( )(1) (1), , ,Y W V U  with use of partitioned Σ  

defined in equation (15) provides estimated bounds, 
W,V0.203  0.720ρ≤ ≤ . 

Section 3.1 used the relationship between (1) (1)
,Y W

ρ and 
,W Vρ  with covariate, as in 

equation (20), together with the positive definiteness restriction of the matrix Σ  in 

equation (14) provides a set of plausible 
,W Vρ  which is the union of the two intervals, 

(0.069, 0.676) and (0.792, 0.890). The intervals are discontinuous because of the 

nonlinearity functional relationship ( )(1) (1) ,, W VY W
gρ ρ=  described in Section 3.2 and the 

equation is given in equation (20). 

There are two estimated sets of plausible values for 
,W Vρ , which are 

( )1 0.203,0.720Ρ =  and ( ) ( )2
0.069,0.676 0.792,0.890Ρ = ∪� �� � . As discussed in Section 

3.2, the intersection of these two sets gives estimated bounds for nonestimable correlation 

W,V0.203  0.676ρ≤ ≤ . Using this interval as a range for values of 
,W Vρ  leads to obtain 

bounds for the causal parameter 2β . 

Let 2

Noβ  be the parameter 2β  in the model without covariate as in model (11). 

The estimated bounds are given by 20.233 0.996Noβ≤ ≤ . The naïve estimate of total 

weight loss on mortality, i.e., 1λ  in equation (4), is 0.109, which is lower than the 

estimated minimum for 2

Noβ . This implies that the variable Z has positive effects on 

mortality and the effects are greater than what is observed to be the effect of total weight 

loss on mortality. 

Similarly, let 2

Yesβ  be the parameter 2β  in the model with covariate as explained 

in Section 3.1. Using equation (19) in, the estimated bounds are given by 

20.216 1.125Yesβ− ≤ ≤ . The naïve estimate of total weight loss on mortality including the 

covariate is -0.020 which is near the lower bound of the estimates for 2

Yesβ . The interval 

of plausible estimates for 2

Yesβ  is wider than 2

Noβ . This could happen because, for this 

mice example, baseline weight is not statistically significant when included in the two 

regression models (2) and (4). Hence, additional correlation parameters are being 

estimated for a variable that is not a significant predictor of mortality, given that the 
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weight loss variable is in the model. Baseline weight is a significant predictor of W and V, 

which explains its usefulness in tightening the bound of plausible values for parameter of 

interest, 
,W Vρ , but it presents colinearity problems when included in the causal model. 

More discussion is in Section 5. 

3.3.3. Assessing the Sampling Variability of the Bounds Using a Modified 

Parametric Bootstrap Procedure.  A parametric bootstrap (Efron and Tibshirani, 1993) 

procedure was proposed to test the sampling variability of the estimated bounds for 
,W Vρ , 

2

Noβ , and 2

Yesβ . A multivariate normal distribution was applied to simulate data from the 

two models in (17) and (18). Equation (17) corresponds to data from a random vector 

( )(0) (0), ,Y W U
′
 and, similarly, equation (18) from a random vector ( )(1) (1), , ,Y W V U

′
. All 

estimable parameters were set as the sample estimates from the mice experiment and the 

nonestimable 
,W Vρ  was set to specific values within the interval specified by the 

estimated bounds, in particular, 0.3, 0.4, 0.5, and 0.6. Values of 
,W Vρ , that is outside the 

range specified by the estimated bounds, did not have the positive definiteness 

requirement for the correlation matrix, therefore, those values would not be considered in 

the simulation model. Table 3.1 provides the estimable parameters and their estimates 

from the mice data set.  

Herein, the sample sizes, N = 100, 500, 1000, and 10000, were considered and 

divided into the unintentional and intentional groups of sizes N/2. The parameter (1) (1)
,Y W

ρ
 

is computed using the relationship in equation (20) for each value of 
,W Vρ . Use the 

simulation with all of above setting as a function of sample size and values of 
,W Vρ  to see 

the estimated bounds and their sampling variance. 

The simulation results for 
,W Vρ , 

2

Noβ , and 
2

Yesβ  are shown in Tables 3.2-3.4, 

respectively. The entries in the table show the sample size, N, the true value of the 

parameter using in the simulation, and the lower and upper bounds of the simulation 

estimate for the mean and standard deviation of the sampling distribution.  

 

 



 

 

22 

Table 3.2.  The Estimated Bounds for the Mean and Standard Deviation of 
,W Vρ  

Including the Number of Sample Correlation Matrices which are Positive Definite and 

the Number of Simulations Creating the Valid Bounds from 200 Parametric Bootstrap 

Simulations 

 

N 100 500 1000 10000 

 

 
min max min max min max min max 

 mean 0.215 0.606 0.214 0.630 0.220 0.647 0.204 0.674 

 sd 0.182 0.127 0.091 0.061 0.069 0.054 0.027 0.014 0.3 

 (148, 72) (169, 114) (190, 147) (200, 200) 

 mean 0.200 0.620 0.218 0.640 0.220 0.645 0.205 0.674 

 sd 0.207 0.127 0.083 0.066 0.070 0.054 0.023 0.011 0.4 

 (151, 66) (175, 120) (191, 153) (200, 200) 

 mean 0.170 0.606 0.225 0.645 0.224 0.647 0.206 0.674 

 sd 0.186 0.127 0.097 0.059 0.080 0.059 0.024 0.012 0.5 

 (139, 68) (174, 128) (186, 144) (200, 199) 

 mean 0.148 0.592 0.221 0.634 0.221 0.651 0.204 0.675 

 sd 0.142 0.117 0.102 0.069 0.078 0.047 0.023 0.011 0.6 

 (141, 68) (178, 126) (188, 148) (200, 200) 

 

 

As shown in Table 3.2, there are two numbers, 
pn  and 

c
n , for each simulation 

case. Nevertheless, the population correlation matrix that simulated the data was positive 

definite, because of the sampling variability, the estimate matrix of the simulation might 

not be positive definite. Hence, the number 
pn  represents the number of sample 

correlation matrices which are positive definite out of 200 simulations. Of the number of 

the positive definite matrices with the approach in Section 3.2.3, it did not always 

produce a continuous interval for 
,W Vρ . Often the correlation matrix was positive definite 

for values of 
,W Vρ  close to 1, however, the matrix was very near singular in these cases. 

( ),
p c

n n

,W V
ρ

( ),
p c

n n

( ),
p c

n n

( ),
p c

n n
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Table 3.3.  The Estimated Bounds for the Mean and Standard Deviation of 
2

Noβ  from 200 

Parametric Bootstrap Simulations 

 

N 100 500 1000 10000 

 

 

 

 
min max min max min max min max 

 mean 0.206 0.814 0.272 0.919 0.262 0.946 0.235 0.993 
0.3 0.315 

 sd 0.393 0.420 0.121 0.148 0.088 0.123 0.034 0.054 

 mean 0.189 0.836 0.263 0.924 0.262 0.945 0.234 0.989 
0.4 0.423 

 sd 0.411 0.509 0.101 0.153 0.087 0.114 0.030 0.051 

 mean 0.182 0.807 0.280 0.963 0.263 0.938 0.237 0.989 
0.5 0.569 

 sd 0.429 0.516 0.115 0.149 0.102 0.124 0.032 0.053 

 mean 0.192 0.789 0.275 0.918 0.265 0.951 0.233 0.989 
0.6 0.774 

 sd 0.161 0.275 0.122 0.168 0.097 0.117 0.029 0.047 

 

 

Table 3.4.  The Estimated Bounds for the Mean and Standard Deviation of 
2

Yesβ  from 200 

Parametric Bootstrap Simulations 

 

N 100 500 1000 10000 

 

 

 

 
min max min max min max min max 

 mean -0.212 0.580 -0.183 0.796 -0.207 0.862 -0.216 1.088 
0.3 -0.175 

 sd 0.256 0.525 0.065 0.412 0.049 0.367 0.016 0.096 

 mean -0.233 0.555 -0.194 0.850 -0.201 0.864 -0.218 1.088 
0.4 -0.108 

 sd 0.294 0.625 0.063 0.428 0.049 0.375 0.017 0.074 

 mean -0.250 0.810 -0.197 0.848 -0.201 0.860 -0.215 1.085 
0.5 0.015 

 sd 0.336 0.909 0.067 0.423 0.0510 0.396 0.018 0.079 

mean -0.222 0.749 -0.199 0.842 -0.206 0.886 -0.216 1.095 
0.6 0.310 

 sd 0.260 0.508 0.072 0.425 0.043 0.380 0.016 0.064 

  

,W Vρ No

2β

,W Vρ Yes

2β
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Therefore, the number 
c

n  represents the number of simulations that the estimated bounds 

yield to a continuous interval between the estimated bounds. The mean and sd represent 

the mean and standard deviations of the sampling distributions for the lower and upper 

bounds which were computed from the number 
c

n  estimated valid bounds in all Tables 

3.2-3.4. 

The simulations provide comprehensive insight of the sampling variability of the 

bounds at small values of N. In most cases, the estimated bounds for the mean of the 

sampling distributions contain the true parameter values, except only the bounds for 
,W Vρ  

when its true value is 0.6 and the sample size, N, is 100. The bounds involve estimates of 

several population correlations and standard deviations. The results show that the larger 

of the sample size N, particularly more than 1000, the smaller of the sampling variability 

is. This would reflect some caution in interpreting the accuracy of the bounds in the mice 

experiment with 131 sample size. 

The width of the bounds does not depend on the true value of 
,W Vρ  since 

,W Vρ  is 

nonestimable in observed data. Note that, the parametric bootstrap simulation procedure 

simulated data using parameter estimates from the data example as model parameter 

values in the simulated model, therefore, the true value of 
,W Vρ  was restricted to be 

between the bounds computed from the data. Also, the width of the bounds does not 

depend on how large the sample size, N, is. The larger the sample size, N, results the 

smaller the sampling variability of the bounds. If one could find the covariate that are 

extremely predictive of the weight loss variable W and/or V, then it would narrower the 

interval between the bounds. 
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4. MATCHED PAIRS DESIGN 

4.1. INTRODUCTION 
 

Matched pairs design is a type of experimental design using a sample size of 

nN 2= . The subjects in the population are paired prior to randomization using a relevant 

factor or additional information that may be available on the subjects. This information 

could be in the form of covariates, or other more subjective information, for example, 

twins, husband and wife, or same geographical location. There are two treatments in a 

matched pairs design and the two subjects are paired in such a way that their responses to 

either treatment may be assumed to be the same. Thus, one subject’s observed outcome to 

a particular treatment can serve as a prediction for the missing potential outcome for the 

other subject within the pair that received the other treatment. In usual matched pairs 

designs, one subject within a pair is randomly selected to receive one treatment with the 

other receiving the second treatment. The resulting observed data could provide for 

estimation of an average treatment effect and its standard error. Also considered herein is 

a modified matched pairs design where, for some pairs, the same treatment is applied to 

both subjects. This allows for some assessment of the quality of matching. 

This section focuses on estimating bounds for the correlation between W and V 

that was considered earlier and also the variance of Z, the two parameters that were not 

estimable from the results in Coffey et al., (2005). The mortality variable is not 

considered here but, instead, only the variables W, V, (and Z) are considered as is a 

covariate, U. The covariate is used as a matching variable and its use in matching is 

compared to its use as covariate in a linear regression model, i.e., the way it was used in 

the previous section. Data on twins are also used where their matching has essentially 

been done on information related to genetics and living environment. 

The true variance of IWL is defined as 2

ZS . This can be thought of as a variance of 

treatment effect where V is a response to intention to lose weight and W is a response to 

no intention to lose weight, and WVZ −= . Thus the variance of Z depends on the same 

nonestimable correlation between W and V as before. When this variance is positive, then 

IWL varies across subjects or it might be said that there is subject-treatment interaction 

present, that is, the effect of treatment varies across subjects. Thus some of the material 
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on variance of individual treatment effects in a matched-pairs setting (Gadbury, 2001) 

can be adapted to the IWL problem where the objective is to estimate the variance of 

IWL which is a variable that is completely unobservable. The naïve estimate of this 

variance is the usual variance of observed paired differences. Gadbury (1998) compared 

matched pairs designs and two sample experimental designs. These two different designs 

provide different interpretations regarding the subject-treatment interaction term. 

Homogeneity within pairs is then the criteria that are needed to estimate the variance of 

Z. Homogeneity within pairs assumes that there is no subject by treatment interaction 

within pairs or, in the IWL problem, that both subjects within a pair have the same IWL 

value. The comparison for the bias and mean square errors naïve estimator of 2

ZS  between 

a two sample experimental design and a matched pairs design were simulated in Gadbury 

(1998) and it was suggested that a matched pairs design has advantages over a two 

sample experimental design when estimating nonestimable parameters with naïve 

estimators. 

The next section adapts the matched pairs design to IWL problem using potential 

outcomes and within a pair, one subject is assumed to randomly be assigned to intention 

= yes, and the other to intention to lose weight = no, and it builds on some earlier work 

by Gadbury (1998, 2001). The results show that the variance of IWL, 2

ZS , is the 

summation of the within pair and between pairs sums of squares. It is shown that the 

naïve estimator is biased in general, and the conditions where it is unbiased are shown. 

Bounds for 2

ZS  are derived that depend on the matching parameters, in particular, on 

distributional parameters that are nonestimable. The issue of estimability relates to lack 

of homogeneity within pairs. Later, a matched pairs design where both subjects have the 

same intention within some pairs is considered in order to get more information about the 

quality of matching and, hence, refine estimates bounds for 2

ZS . 

The last part will apply this to example data sets. The first illustration is applied to 

an eye experiment (the Krypton Argon Regression Neovascularization Study Research 

Group, 1993) which has two different treatments in each pair. Next, the mice data are 

considered but with specific matched pairs using the covariate, baseline weight, in order 

to get a mix of different treatments (i.e., intention) and the same treatments (i.e., 
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intention) in each pair (Herein the term ‘treatment’ and ‘intention’ will be used 

interchangeably since the assignment of the treatment in usual matched pairs design 

terminology is assignment to intention in this application). Finally, the twins data 

(Sorensen et al., 2005) will be considered where some pairs are genetically homogeneous 

(monozygotic) and other pairs are dizygotic. 

 

4.2. ESTIMATING BOUNDS FOR 2

ZS  WITH TWO DIFFERENT INTENTIONS 

WITHIN A PAIR 
 

The potential outcomes framework of the finite population is written as in the 

matrix form 
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where, within the i
th

 pair, iV  and iW  are the average observed responses to the given 

treatment, and iε  and iη  represent lack of homogeneity within the i
th

 pair. The advantage 

of this parameterization is that certain characteristics of a point estimate of the true 

variance of treatment effects, 2

ZS , for example, bias, can be shown as a function of the 

parameters ε  and η . Within the i
th

 pair, one subject is randomly selected to one intention 

and the other subject to the other intention. With this notation, IWL for the two subjects 

within the i
th

 pair could be written as  
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( ) ( )iiiii WVZ ηε −−−=1 ( ) ( )iiii WV ηε −−−= ,    

( ) ( )iiiii WVZ ηε +−+=2 ( ) ( )iiii WV ηε −+−= .    

 

The mean of IWL for each pair is  

 

2

21 ii
iii

ZZ
WVZ

−
=−= .     (22) 

 

The average true IWL for the set of individuals is  

 

WVZ
n

Z
n

i j

ji −== 
= =1

2

1

,
2

1
,     (23) 

 

which is the difference between the average of both weight loss variables. The total sum 

of squares of IWL is, 

 

( ) ( ) ( )
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,

1

2

1

2

, 2 ,  (24) 

 

which leads to the equation of the true variance of IWL, 2

ZS , by dividing equation (24) by 

the total sample sizes, 2n, as 
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1
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1

22
,    (25) 

 

where SSW and SSB are the within and between pairs sums of squares, respectively and 

written as,  
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( )
=

−=
n

i

iiSSW
1

2
ηε       (26) 

( ) ( )[ ]
=

−−−=
n

i

ii WVWVSSB
1

2
2 .    (27) 

 

It is stated earlier that, for the i
th

 pair, one of two possible values are observed, 

each with probability one half, determined by the treatment assignment of the i
th

 pair. 

That is, for the i
th

 pair, the observed effect of intention to lose weight is, 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )�
�
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Define  
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as an indicator random variable which represent the treatment (intention) assignment for 

the i
th

 pair where ( ) 2/11 ==iTP  for ni ,...,2,1= . The observed IWL for the i
th

 pair can be 

written as 

 

( )[ ] ( )[ ]( )iiiiiiiiiii TYXTYXz −++−++−−= 1ηεηε .    

 

Let the observed average IWL be 

 


=

=
n

i

iz
n

z
1

1
,       

 

and the observed variance of IWL be 
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2

zS ( )[ ]
=

−=
n

i

i zz
n 1

21
�
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21
znz

n

n
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i .   (28) 

 

Note that, the randomizations have n
k 2=  possible outcomes. It is clear that ( ) ZzE = , 

that is, z  is an unbiased for the true mean IWL Z  where the expectation is taken with 

respect to the randomization. However, 2

zS  is not unbiased estimator for 2

ZS . 

Proposition 2.  Assume a random treatment is assigned for subjects in each pair 

using the potential outcomes framework with the notation stated before. The expectation 

of 2

zS  for all possible random treatment assignments is  

 

( )2

zSE ( )
==

+−++=
n

i

ii

n

i

ii
nnn

SSB

n

SSW

1

2

2
1

14

22
ηεηε    (29) 

 

Proof.  See Appendix F. 

� 

 

This proposition shows that the estimator 2

zS  is biased for 2

ZS  and the bias is,  

 

( )
==

+−=
n

i

ii

n

i

ii
nn
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2

2
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14
ηεηε .    (30) 

 

The bias cannot be estimated because of the lack of homogeneity within the i
th

 pairs, that 

is, iε  and iη  are not estimable from observed data. Now, two conditions are considered. 

First, the strongest condition, if all of the subjects are perfectly matched, that is, 

0== ii ηε  for ni ,...,2,1= , then the bias will be zero and, also, the observed IWL for a 

pair is the true Z for each individual in the pair. Moreover, this implies the within sum of 

squares is zero. Hence, not only is 2

zS  unbiased for 2

ZS , but also, 22

Zz SS = . A second 

condition is when the subjects are matched only on the treatment effect, that is, ii ηε =  

for ni ,...,2,1= , and is equivalent to the within sum of squares being zero. 
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Homogeneity within pairs, that is, 0== ii ηε  for ni ,...,2,1= , could result 2

zS  to 

be unbiased for 2

ZS , and 22

Zz SS = . This strongest condition is not likely to hold, and iε
 

and iη  are not estimable from observed data. If one has the information on how large ε  

and η  could be, then that would help to estimate bounds for 2

ZS . One possible approach, 

that could get more information for ε  and η , is using the matched pairs design using 

potential outcomes framework with the same treatment for both subjects in a pair which 

is considered later on. 

Assume that ( )ii ηε ,  are independent and identically distributed (iid) random 

variables for ni ,...,2,1=  from a superpopulation, without loss of generality with mean 

( )T
0,0  and covariance matrix ��

�

	



�

�

1

1
2

ρ

ρ
σ , where ρ  is the correlation between ε  and η . 

If the expectation operator over the bivariate distribution of ε  and η  is denoted by ηε ,Ε , 

then the expectation of the bias of 2

zS  is give by (details in Appendix F), 

 

( ) ( )[ ]224
2

, −−=Ε ρ
σ

ηε n
n

bias .    (31) 

 

By varying the values of ρ  from -1 to 1, ( )biasηε ,Ε  lies between 24σ−  and 
( ) 214

σ
n

n −
. 

Define the quantities L̂  and Û , 

 

( ) 22 14ˆ σ
n

n
SL z

−
−= ,      (32) 

22 4ˆ σ+= zSU .       (33) 

 

Now, recall that the expectation operator over all possible randomization is denoted by E. 

Then ( )[ ] 0ˆ 2

, ≤−Ε ZSLEηε  and ( )[ ] 0ˆ 2

, ≥−Ε ZSUEηε , this implies that L̂  and Û  could be 



 

 

32 

bounds for 2

ZS  in the expectation sense, also, the bounds ( )UL ˆ,ˆ  could give the idea how 

large or small 2

ZS  might be. 

The bound for ZS  could be obtained by taking square roots of L̂  and Û  and if L̂  

is negative, set the lower bound of ZS  to be zero. The bounds will be the most 

informative if the lower bound estimate is large and/or if the upper bound estimate is very 

small. They are also dependent on an assumption reference on how well the subjects in 

the population are paired. 

Since ( )ii ηε ,  is nonestimable, there is no estimate for 2σ . The bounds are 

sensitive to the value of 2σ ; however, this parameter cannot be estimated without more 

information on the distribution of matching parameters. It is interesting to consider a 

matched pairs design using potential outcomes where the same intention to lose weight is  

“assigned” within a pair in order to get more information about ε  and η . This is 

considered in the next section. 

 

4.3. ESTIMATING BOUNDS FOR 2

ZS  WHERE SOME PAIRS HAD THE SAME 

INTENTION 
 

Consider a modified matched pairs design using potential outcomes framework 

where some pairs had the same treatment (i.e., intention) within a pair assuming sample 

size is 212 nnnN ++=  where n is the number of pairs randomly assigned to two 

different intentions, and 1n , 2n  are the number of pairs with both subjects assigned to 

IWL or UWL, respectively. With two different intentions within a pair, the detail is 

already explained in Section 4.2. This section considers only the part that some pairs have 

the same intention. The observed potential outcomes framework is given as the matrix 

(34), 
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where, within the i
th

 pair both subjects are randomly assigned to the same treatment (i.e., 

intention), iV  and iW  are the average observed responses to the given intention, IWL and 

UWL. The variables iε  and iη , as before, represent lack of homogeneity within the i
th

 

pairs. With these pairs, differences within a pair are now iε2±  or jη2± . This modified 

matched pairs design gives information for ε  and η . 

Assume that ( )
ji ηε ,  are independent and identically distributed (iid) random 

variables for 1,...,2,1 ni =  and 2,...,2,1 nj =  from a superpopulation with mean ( )T
0,0  and 

covariance matrix ��
�

	



�

�

1

1
2

ρ

ρ
σ , where ρ  is the correlation between ε  and η . The point 

estimate of common variance of ε  and η  could be written as, 
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This point estimate of 2σ , 2σ̂ , comes from the information of the assumption that 

some pairs had the same intention. However, it is required that, in the experiment, 2

zS  
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comes from matched pairs design with one subject is randomly selected to one intention 

and the other subject to the other intention. 

Therefore, by the result from Proposition 2 and the bounds of 2

ZS  in equations 

(32)-(33), the bounds for 2

ZS  are 

 

( ) 22 ˆ
14ˆ σ

n

n
SL z

−
−=      (36) 

22 ˆ4ˆ σ+= zSU ,      (37) 

 

where 2

zS  is the observed variance of IWL and 2σ̂  is defined in equation (35). 

Similarly, the bounds for ZS  is obtained by taking square roots to both L̂  and Û  

and in case that L̂  is negative, this lower bound is set to be zero. Note that, the modified 

matched pairs design requires that some pairs got the same intention in order to get the 

estimate lower and upper bounds for the naïve estimator of the standard deviation of IWL 

effects, ZS .  

 

4.4. COMPARISON WITH TRI-VARIATE RANDOM VARIABLE 
 

To relate the material on pairing to material from Section 3 that used 2

Zσ  rather 

than 2

ZS . If a random sample of potential outcomes is assumed, then ( ) 22

12

2
ZZSE

n

n
σ=

−
. 

So when discussion a true variance of Z in the paired case, 2

ZS  will be used and in the two 

sample case from Section 3, 2

Zσ  will be used. 

Under a two sample design, consider the tri-variate random variable ( )UVW ,, . 

The two identities ( )
VWWVZ WVVar ,

222 2σσσσ −+=−=  and WVVWVW σσρσ ,, =  provide 

trivial bounds for standard deviation of IWL effect Zσ , where no information of VW ,ρ  is 

obtained. 

 

( ) ( )[ ]WVWVZ σσσσσ +−∈ ,     (38) 
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 In fact, Section 3 gave bounds for VW ,ρ  where a covariate tightens the bounds for 

2

Zσ . The bounds for 2

Zσ  using a covariate U, are giving by the following relation 

 

WVVWWVZ σσρσσσ ,

222 2−+= .      (39) 

 

Recall the correlation matrix of tri-variate correlation matrix ( )UVW ,,  given by 
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Gadbury and Iyer (2000) used the positive definite requirement and get the result 

 

( )( ) ( )( )2222 1111 VUWUVUWUWVVUWUVUWU ρρρρρρρρρ −−+≤≤−−− .  

 

This combined with equation (39) tighten bounds for 2

Zσ . 

Also, with the identities WZ

V

V

V

W
WV ρ

σ

σ

σ

σ
ρ += , the following equation is obtained, 
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−∈ 22 11 .   (40) 

 

So WZρ  can be bounded for a given set of bounds for Zσ . Data set illustrated can 

compare bounds obtained from pairing versus those using the formula given here. 

 

4.5. ILLUSTRATION ON A DATASET 
 

The illustration of this approach is applied to three examples. The eye data set is 

the experiment with one treatment randomly assigned to a subject within a pair and the 

other to another subject. This has two different treatments within a pair. Next, the mice 
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experiment which is the same as the previous but with specific matched pairs by 

considering a covariate, baseline weight, to pair the mice in order to get some pairs have 

the same treatment. The last, the twins data would be applied. The twins data is one of the 

interesting example since it was matched based on monozygotic and dizygotic twin pairs. 

The results are given in each section below. 

4.5.1. Two Different Treatments Within a Pair.  Consider the eye data 

experiment. Two laser treatments, Argon and Krypton, were being compared to see 

which produced a better outcome for an eye disease. Some patients had the disease in 

both eyes while others had the disease in only one eye. When patients had the disease in 

only one eye, that eye was randomly assigned to one of the two treatments. Here, 

consider 184 patients who had the disease in both eyes. One eye was randomly assigned 

to one treatment while the other is assigned to the other treatment. The baseline visual 

acuity is collected at the time before giving the laser treatment and also after 3 months of 

assigning treatment. This data are matched by the same person where each eye got a 

different laser treatment. 

Only 157 patients are considered since there are some missing data. The observed 

variance of treatment effect, 2

zS , is 311.54. Apply matched pairs design with the potential 

outcomes in Section 4.2 to the eye experiment gives the results of the lower and upper 

bounds for the true variance of treatment effects as equations (32) and (33), however, the 

common variance of ε  and η , 2σ , could not be obtained because ε  and η  are not 

estimable from observed data. The results of the bounds for naïve estimator of the 

variance of treatment effects, 2

ZS , is shown in Figure 4.1 where the x-axis represents the 

common variance 2σ  of ε  and η  and the y-axis represents the possible bounds for 2

ZS  in 

expectation sense. Since this common variance 2σ  could not be exactly estimated, this 

approach only gives the idea how large 2

ZS  might be. 

Figure 4.1 shows that at the point 02 =σ , the expected value of the variance of 

treatment effects, ( )2

zSE  is exactly at the same as the observed variance of treatment 

effect, 2

zS . This case is, as stated earlier, the strongest condition of homogeneity within 
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pairs, that is, iε  and iη  are all zero for all i which is not likely to hold. As the common 

variance 2σ  is increasing, the bounds for 2

ZS  are wider. 
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Figure 4.1.  The Bounds for Naïve Estimator of the Standard Deviation of Treatment 

Effects, ( )2

zSE , at which the Common Variance, 2σ , of ε  and η  Specified 

 

 

4.5.2. Specific Matched Pairs Using Covariate where Some Pairs Had the 

Same Intention.  Consider again the mice example in Section 3 with mice matched on 

the basis of the covariate, baseline weight at 12-months age. The mice were matched in 

pairs in order to get 32 pairs randomly assigned for two different treatments in a pair and 

the two sets of 16 pairs and 17 pairs were then designated to pairs when both mice were 

in the unintentional group or both in the intentional group, respectively. For these two 

sets, the assumption for the distribution of ( )
ji ηε ,  with mean ( )T

0,0  and covariance 

matrix ��
�

	



�

�

1

1
2

ρ

ρ
σ  is made. Therefore, ε  and η  have mean zero with common estimated 

variance of ε  and η  is 011.1ˆ 2 =σ . For those 32 pairs which, within a pair, one mice was 

2σ  

( )2

zSE
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randomly assigned to one treatment and the other to another treatment, the observed 

variance of IWL effect is 859.262 =zS , so 18.5=zS . Applying the approach in Section 

4.3, the bounds the true standard deviation of treatment effects, ZS  are [4.790,5.559] by 

equations (36) and (37). 

Section 3.4 provided the bounds for WVρ  as ( )0.89  0.067,  where only the 

distribution of W, V, and U are considered. By using the tri-variate random variable 

( )UVW ,,  and the information of WVρ , the bounds for naïve estimator of the standard 

deviation of treatment effects, Zσ , are ( )42.379,6.83  using Section 3 material.  

Furthermore, recall the correlation matrix of tri-variate correlation matrix 

( )UVW ,,  in Section 4.4 that give the result as in equation (40). This section, under the 

specific matched pairs, could provide the bounds for ZS  and this would help to get the 

bounds for WZρ  as in Figure 4.2. 
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Figure 4.2.  The Bounds for WZρ  given ZS  Using Positive Definite Requirement of the 

Correlation Matrix ( )UVW ,,  under Specific Matched Pairs for the Mice Data 
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4.5.3 Twin Pairs with Some Pairs Had the Same Intention.  The study was 

based on The Finnish Twin Cohort (Sorensen, 2005), which was composed of all same-

sex twin pairs born in Finland before 1985 in which both twins were alive in 1967 

(Kaprio, 2002) and are overweight with the body mass index, BMI � 25 kg/m
2
. In 1975, a 

cohort of individuals reported height, weight, and current attempts (i.e., “intention”) to 

lose weight, and in 1981, they reported current weight. All the participants were followed 

from 1982 through 1999 without pre-existing or current diseases which is the 

confounding by diseases. They were asked whether they were currently trying to lose 

weight because of overweight, which was interpreted as “intention to lose weight”. In 

addition, the lifestyle factors, such as smoking habits, alcohol drinking, physical activity, 

life satisfaction, work status, and income, were recorded and analyzed. 

Monozygotic and dizygotic twins data are applied to this approach. There are total 

445 pairs of twins data collected to see the BMI change and also other interesting factors 

such as gender, age, smoking habit, and etc. Two different groups are being considered 

which are 0 and 1, unintentional and intentional groups, respectively. The (0,0), (1,0) and 

(1,1) are from 208, 135, and 102 twins, respectively. The BMI mean differences are -

0.27, -0.24, and 0.05, and the standard deviations are 2.3, 2.4 and 2,9 for those groups of 

twins, respectively. Matched pairs design from Sections 4.2 and 4.3 with this data, 

equations (36) and (37) provide the bounds for the standard deviation of IWL, ZS  in the 

range [0, 3.981]. 

Consider tri-variate random variable approach ( )UVW ,,  from Section 3 to get the 

bounds for Zσ . With covariate(s), the BMI before applying the treatment, the positive 

definiteness requirement helps tighten the bounds for 
,W Vρ . Then, with this identity from 

two sample design would get the bound for 2

Zσ  as stated earlier. With the same 445 pairs 

of twins data using one covariate, the BMI recorded before assigning the treatment, the 

bounds for 
,W Vρ  is (-0.9916, 0.9960) which give the bounds for Zσ  in (0.3911, 4.1226). 

Using many of the covariates, this helps a little bit on tightening the bounds for 
,W Vρ  to 

be (-0.8739, 0.9374) and Zσ  in (0.8062, 3.9998). The covariates did not help in 
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tightening the bounds too much since the covariate probably is not a good linear predictor 

of W and V. 

These two bounds of standard deviation of IWL, ZS  and Zσ , from two different 

methods are slightly different and cannot be directly compared. With the matched pairs, 

the covariate information was not used - just the twin pairs. For the tri-variate random 

variable ( )UVW ,, , the covariate was used to tighten the bounds based on the information 

of the previous section, however, the twin pairs were ignored and the data were treated as 

two independent samples. It would be interesting to further incorporate these two 

approaches in order to get tightened bounds for a parameter of interest, that is, combine 

information in paring such as twin pairs, but adjust for observable differences within a 

pair, based on covariates, to increase homogeneity of responses within pairs, given the 

covariates. 
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5. CONCLUSION AND FUTURE WORK 

The potential outcomes framework was applied to the IWL problem to estimate 

bounds for a nonestimable correlation and also a causal parameter in a linear model. The 

positive definiteness of the correlation matrix under certain assumptions is used to bound 

the unknown parameter. The valid bounds (bounds containing a continuous interval) were 

obtained in the mice data but the simulations suggest that the method will not always 

produce valid bounds when sample sizes are small because of the complicated 

relationship between ( ) ( )11
,WY

ρ  and VW ,ρ . For example, in the mice data, using the 

relationship in equation (12) with the 3-variable correlation matrix, ( ) ( )( )VWY ,, 11 , the 

plausible range of VW ,ρ  is the union of the two intervals, (0.069, 0.676) and (0.792, 

0.890). The upper range was nearly singular because of the complicated function of 

( ) ( )11
,WY

ρ  and VW ,ρ . The upper range was excluded by using a covariate and the 

intersection in section 3.2. However, in some simulations, this does not always happen 

and one is left with invalid bounds. More than one covariate could solve cases such as 

these (Gadbury et al., 2008).  

Including additional covariates in the causal model modifies the definition of 

causal parameter. A covariate using in the mice data is the baseline weight which helps 

tightening the bounds for VW ,ρ  since it was a good linear predictor of W and V. This 

presents the problem of colinearity when it was used in the causal model. Questions arise 

as to whether high baseline weight is associated with higher weight loss tending to 

decrease mortality, or whether high baseline weight itself is associated with mortality. 

The potential outcomes framework for a two treatment comparison would essentially 

assume that a potential outcome response variable corresponds to each treatment. When 

treatment assignment is random, one can obtain an unbiased estimate of an average 

causal effect of one treatment with respect to the other. The assignment to intention was 

assumed to be random and that there is no interference between subjects (Rubin, 1980), 

but there are two different potential outcome variables to this assignment, the pairs 

( )VW ,  and ( ) ( )( )10 ,YY . The effect of intention on the variables ( ) ( )( )10 ,YY  is difficult to 
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interpret. Future challenges are dealing with the more practical scenario, for example, 

human studies with nonrandom assignment. 

Some results from other applications have been reported by others that might be 

helpful in addressing some issues encountered in this application. One possibility is to 

borrow from the concepts related to partial compliance in clinical trials (Jin and Rubin, 

2007). That is, the weight loss might be considered as “dosage received” after the 

assignment of treatment (i.e. intention). If such a connection between these two 

applications can be made, then material on principal stratification (Frangakis and Rubin, 

2002) might help to more clearly define the relationship between “intention to lose 

weight” and some subsequent measure of health or mortality. 

The casual models considered here are simple and do not include many of the 

potential confounders and nonlinearities in the relationship between weight loss and 

mortality that have been seen or suspected in other studies (Allison et al., 1997; Fontaine 

and Allison, 2001; Brock et al., 2006). Bayesian MCMC techniques could be used for 

more complicated models since these techniques can accommodate censoring, nonlinear 

effects and do not necessary require the assumption that the slope parameter on UWL, 

1β , has to be the same in both groups. The choices of a prior for nonestimable parameters 

are still the issue to consider. This work is in progress (Yi et al., 2008). 

Herein, a subject’s intention was assumed to remain the same for the study. A 

longitudinal design might be useful for assessing the effect of IWL on mortality or some 

other subsequent measure of health. That is, the subject’s intention may change over time 

periods and still allow one to compare the weight loss and intention within subjects. A 

likely issue would be the effect of carry-over of intention from one period to the next. 

Gadbury (2001) presented the potential outcomes framework for a matched pairs design 

and for a two time period design. These other types of designs may provide a more 

flexible way to separate the effects of IWL and UWL on mortality, using assumptions 

that are perhaps more plausible in practical situations. 

A difficulty in human data is to find some variables that are predictive of 

subsequent weight loss (Allison and Engel, 1995). Unfortunately “intention to lose” has 

been shown to be a weak predictor of subsequent weight loss, particularly among older 

people who have the highest death rates (Lee et al., 2004). Subsequent weight loss 
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appears to be confounded by many other possible variables (Hardy and Kuh, 2006). 

Other study designs might prove useful in adjusting for potential confounders which 

could clarify more on the effect of intention on subsequent weight loss.  

Our treatment of this topic can be seen as an exemplar of a broader class of 

approaches all aimed at reducing the influence of obesity and mortality rate. Such 

putative biases include the so-called ‘late-life bias’, ‘reverse-causation bias’, and 

‘regression-dilution bias’ (c.f., Greenberg, 2001; 2002). Future research should address 

those additional hypothesized biases and see if our method could be combined with 

methods aimed at reducing those hypothesized biases. 

In many human studies, weights are self-reported and this could conceivably 

introduce additional bias. Such conceivable biases also merit further investigation. Also, 

note that, any conclusions from a sample from one population must be generalized to 

other populations with caution. Thus, it will be useful to conduct such analyses across 

multiple species and multiple human populations to assess the consistency of result. For 

additional discussion of these issues see Campbell and Kenny (1997). 

Finally, in matched pairs design, the bounds for human were not that useful. This 

might be because, for twin pairs, the covariate was not use and the weight loss for 

humans is confounded with too many factors. Future research could further combine 

information in pairing but adjust for observable differences with a pair (two independent 

samples), based on covariates, to increase homogeneity of responses within pairs, given 

the covariates, in order to tighten the bounds for a parameter of interest. 
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APPENDIX A. 

DERIVATION FOR PARAMETERS OF INTEREST FROM THE CASUAL MODEL 

WITHOUT COVARIATE 
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Coffey et al. (2005) proposed equation (5) for the parameter of interest, 2β , as 

( )
( )

2 2

1 1 ,

2 2

,

V W W V W V W

Z W V W V W

λ σ β σ σ σ ρ σ
β

σ σ σ ρ σ

� �− + −� �=
+ −

. Applying these two identities, 

( ) WVWVZZW
σρσσρ −= ,,

1  and VWWVWVZ ,

222 2 ρσσσσσ −+=  leads equation (5) to be 

equation (11),  

   
( )

( )

2 2

1 1 ,

2 2

,

V W W V W V W

Z W V W V W

λ σ β σ σ σ ρ σ
β

σ σ σ ρ σ

� �− + −� �=
+ −

 

     

2
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2

, ,2

V W V W V

V W V W V W V W V

λ σ β σ σ ρ

σ σ σ ρ σ σ ρ

−
=

− +
 

     

( )

( )

( )

0

1

,

,2,

,

Y W

W V W VY V
W

V V W W V

σ
σ σ σ ρ

σ

σ σ σ ρ

−

=
−

 

     

( ) ( ) ( ) ( )1 1 0 0 ,, ,

,

W VY Y V Y Y W

V W W V

σ ρ σ ρ ρ

σ σ ρ

−
=

−
. 

 

Recall the regression model (6) and the causal model (10) without covariate, 

( ) ( ) ( )00

10

0 εββ ++= WY ,     (A1) 

( ) ( ) ( ) ( ) ( )1

2

1

2130

1 εβββββ ++−++= VWY .   (A2) 

Equation (A1) gives 
( ) ( )( )

( )( )0

00

1

,

WVar

WYCov
=β . Since the covaince between ( )0Y  and ( )0

W  can 

be written as ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )000000 ,,

00 ,
WYWYWY

WYCov ρσσσ == , then 1β  becomes 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )0

000

0

0000 ,

2

,

1

W

WYY

W

WYWY

σ

ρσ

σ

ρσσ
β ==    (A3) 

Equation (A2) gives two forms of 2β  which are 

( )
( ) ( )( )

( )( )1

11
1

2
|

|,

WVVar

WVYCov
=β ,      (A4) 

( )
( ) ( )( )

( )( )VWVar

VWYCov

|

|,
1

11
2

21 =− ββ  or ( )
( ) ( )( )

( )( )VWVar

VWYCov

|

|,
1

11

1

2

2 −= ββ . (A5) 
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It would be easier to simplify each of necessarily conditional variance-covariance terms 

in equation (A4) and (A5). Note that, the two variable ( )0
W  and ( )1

W  are assumed to have 

the same variance 2

Wσ . Consider 3-variable framework ( ) ( )( )11 ,, WVY , 

( ) ( )

( )
( ) ( ) ( ) ( )

( )

( )
( ) ( )

2

,,

1

,

2

,

,,

21

11

11

1

1111

WVWWY

VWVVY

WYVYY

W

V

Y

WVY

σσσ

σσσ

σσσ
.     

It is now straightforward to get 

( ) ( )( ) ( ) ( )

( )

( ) ( )
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VWWY

WVW

WY

VVY

VYYWVYVar ,,2
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σ
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and, therefore, ( ) ( )( ) ( ) ( ) ( ) VWWY
W
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111

1
|, σσ

σ
σ −=  
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These turns ( )1

2β  into the form 
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2
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111

1
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also, ( )( ) ( )2

,
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,
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2

2

,
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2

2

2

,21 1| VWWVWWW

V
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Finally, these make   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
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,,,,2

2
1

1111000
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ρσ
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,,,

, 1

1 1111
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ρρρσ
ρσ

σ
.  (A7) 

Equating both equation (A6) and (A7) to get ( ) ( )11
,WY

ρ  as a function of the nonestimable 

VW ,ρ , the same as equation (12) as,  

( ) ( )
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Recall the regression model (17) and the causal model (18) with a covariate, 

( )0 (0) (0)

0 1 3Y W Uβ β β ε= + + +
,     (B1) 

( ) ( ) ( ) ( ) ( ) ( )1

532

1

2140

1 εβββββββ ++++−++= UVWY .  (B2) 

Equation (B1) gives 
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|
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1=β . Consider the 3-variable framework 
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Equation (B2) gives two forms of 2β  which are 
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Similarly, simplify each of necessarily conditional variance-covariance terms in equation 

(B4) and (B5). Consider 4-variable framework ( ) ( )( )UWVY ,,, 11 , 
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It is now straightforward to get 

( ) ( )( )UWVYVar ,|, 11

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) �
�
�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
−

�
�
�

�

�
�
�

�
=

−

UVUY

VWWY

UUW

UWW

UVVW

UYWY

VVY

VYY

,,

,,

1

2

,

,

2

,,

,,

2

,

,

2

1

11111

1

11

σσ

σσ

σσ

σσ

σσ

σσ

σσ

σσ
 

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) �
�
�

�

�
�
�

�
�
�

�
�
�

�

−

−

−
�
�

�
�
�

�
−

�
�
�

�

�
�
�

�
=

UVUY

VWWY

WUW

UWU

UWUWUVVW

UYWY

VVY

VYY

,,

,,

2

,

,

2

2

,

22
,,

,,

2

,

,

2

1

11111

1

11 1

σσ

σσ

σσ

σσ

σσσσσ

σσ

σσ

σσ
 

( ) ( )

( )

( ) ( )
( ) ( )��

�
�
�

�

−
−

�
�
�

�

�
�
�

�
=

2,21,2

2,11,11
2

,

222

,

,

2

1

11

VV

VV

UWUWVVY

VYY

σσσσσ

σσ
, 

where   ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
UYWWYUWUYUYUWWYUWY

V
,

2

,,,,,,

2

, 1111111111,1 σσσσσσσσσσ +−+−=  

( ) ( ) ( ) ( )( ) ( ) ( )( )
UYWWYUWUVUYUWWYUVW VV
,

2

,,,,,,

2

, 11111,2 σσσσσσσσσσ +−+−=  

( ) ( ) ( ) ( ) ( ) ( )
UVWVWUWUYUVUWVWUWY

V ,

2

,,,,,,

2

, 1112,1 σσσσσσσσσσ +−+−=  

( ) ( ) ( )UVWVWUWUVUVUWVWUVWV ,

2

,,,,,,

2

,2,2 σσσσσσσσσσ +−+−= . 

The term ( ) ( )( )UWVYCov ,|, 11  

( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
2

,

22

,

2

,,,,,,

2

,

,

111111

1

UWUW

UYWWYUWUVUYUWWYUVW

VY σσσ

σσσσσσσσσσ
σ

−

+−+−
−=  

( ) ( )

( ) ( ) ( ) ( ) ( )( )
2

,

2222

,,,

2

,

,

11111

11

UWUWUW

UYUYUWUWWYWYUVWVW

VYVY ρσσσσ

ρσσρσσρσσσρσσ
ρσσ

−

−
−=  

    
( ) ( ) ( ) ( ) ( )( )

2

,

2222

,

2

,,, 11111

UWUWUW

UYUYWWYWYUWUWUVUV

ρσσσσ

ρσσσρσσρσσρσσ

−

+−
−  

       
( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]1111111

1

,,,,,,,,

2

,,2

,

1
1 WYUWUYUVUYUWWYVWUWVY

UW

VY ρρρρρρρρρρ
ρ

σσ
−−−−−

−
= . 



 

 

51 

The conditional variance of V given ( )1
W  and U is 
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Now, define these three new variables, 
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APPENDIX C. 

S-PLUS CODE FOR THE MICE EXAMPLE DATA WITHOUT COVARIATE 
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Using the approach explained in Section 3.2 with the mice data without covariate 

and this S-plus code below provide the results in Section 3.4.1. 

 

#Below are commands to compute estimable correlations from the mice data set 

# and to bound the nonestimable ones. We have 4 potential outcome variables,  

# lifespan(IWL) = yv 

# lifespan(UWL) = yw 

# Total weight loss = v 

# UWL  = w 

#------------------------------------------- 

 

#These lines extract the variables from the mice data 

#They also omit mice that died before wt5 was recorded 

 

vars_c("Diet","wt12mo","wt5","Lifespan") 

data_IWLmouse[,vars] 

 

data_na.omit(data) 

x1_data[data[,"Diet"]==1,] 

x0_data[data[,"Diet"]==0,] 

 

v_x1[,"wt12mo"] - x1[,"wt5"] 

 

w_x0[,"wt12mo"] - x0[,"wt5"] 

 

y.v_x1[,"Lifespan"] 

y.w_x0[,"Lifespan"] 

 

 

#Here we estimate the correlations that can be estimated from observed data, 

there are 2 

ryw.w_cor(y.w,w); ryv.v_cor(y.v,v) 

 

it_1000 

rwv_seq(-1,1,length=it) 

 

beta1_sqrt(var(y.w)) / sqrt(var(w)) * ryw.w 

# beta1 = -0.4287891 

# beta1*5 = -2.143945 

 

lamda1_sqrt(var(y.v))*ryv.v/sqrt(var(v)) 

# lamda1 = 0.1092931 

# lamda1*5 = 0.5464653 

 

num_( sqrt(var(y.v))*ryv.v ) - ( sqrt(var(w))*ryw.w*rwv ) 

denum_sqrt(var(v)) - (sqrt(var(w))*rwv) 

beta2_num/denum 

 

beta.result_cbind(rwv,beta2) 

 

bounds_rbind(apply(beta.result,2,min),apply(beta.result,2,max)) 

dimnames(bounds)[2]_list(c("Cor(W,V)","Beta2")) 

dimnames(bounds)[1]_list(c("min","max")) 

 

it 

bounds 

 

## 

## applying 3*3 correlation matrix of y(1), W(1) and v 

## 
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sy.v_sqrt(var(y.v)); sy.w_sqrt(var(y.w)); sv_sqrt(var(v)); sw_sqrt(var(w)) 

 

it_100 

rwv_seq(-1,1, length=it)  # i 

ryv.w_( (sy.w*sv*ryw.w*(1-rwv^2)) + ( sy.v*ryv.v*(sv*rwv-sw) ) ) / (sy.v*(sv-

(sw*rwv)) ) 

 

x_matrix(0,3,3) 

result_c(0,0,0) 

 

it_length(rwv) 

 

for(i in 1:it) { 

  

x_cbind( c(1,   ryv.w[i],  ryv.v), 

   c(ryv.w[i], 1,    rwv[i]), 

   c(ryv.v,  rwv[i],  1) ) 

 

e_eigen(x)$values 

r_c(rwv[i],ryv.w[i],min(e)) 

result_rbind(result,r) 

} 

 

result_result[-1,] 

cor.result_result[result[,3]>0,] 

plot(cor.result[,1],cor.result[,3]) 

 

num_( sy.v*ryv.v ) - ( sw*ryw.w*cor.result[,1] ) 

denum_sv - (sw*cor.result[,1]) 

beta2_num/denum 
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APPENDIX D. 

S-PLUS CODE FOR THE MICE EXAMPLE DATA WITH COVARIATE 
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Using the approach explained in Section 3.3 with the mice data without covariate 

and this S-plus code below provide the results in Section 3.4.2. 

 

#Below are commands to compute estimable correlations from the mice data set 

# and to bound the nonestimable ones. We have 5 potential outcome variables,  

# lifespan(IWL) = yv 

# lifespan(UWL) = yw 

# Total weight loss = v 

# UWL  = w 

# covariate = baseline weight = u 

#------------------------------------------- 

 

#These lines extract the variables from the mice data 

#They also omit mice that died before wt5 was recorded 

 

vars_c("Diet","wt12mo","wt5","Lifespan") 

data_IWLmouse[,vars] 

 

data_na.omit(data) 

x1_data[data[,"Diet"]==1,] 

x0_data[data[,"Diet"]==0,] 

 

v_x1[,"wt12mo"] - x1[,"wt5"] 

w_x0[,"wt12mo"] - x0[,"wt5"] 

 

y.v_x1[,"Lifespan"] 

y.w_x0[,"Lifespan"] 

 

 

#now consider baseline covariate = initial weight 

covar_"wt12mo" 

 

u.no_data[data[,"Diet"]==0,covar] 

u.yes_data[data[,"Diet"]==1,covar] 

u_data[,covar]    # u is now the set of covariates observable for all 

individuals. 

 

#Here we estimate the correlations that can be estimated from observed data, 

there are 6 

ryw.w_cor(y.w,w); ryw.u_cor(y.w,u.no); ryv.v_cor(y.v,v) 

ryv.u_cor(y.v,u.yes); rwu_cor(w,u.no); rvu_cor(v,u.yes) 

 

#The following produces bounds for the correlation beteen w and v 

s0_rwu 

s1_rvu 

s_cbind(s0,s1) 

 

h_t(s)%*%solve(cor(u))%*%s 

 

low_h[1,2] - sqrt((1-h[1,1])*(1-h[2,2])) 

up_h[1,2] + sqrt((1-h[1,1])*(1-h[2,2])) 

b1_c(low,up)   #here are the estimated bounds for the simple correlation 

between w and v 

rwv.L_b1[1]   # 0.06731668 

rwv.U_b1[2]   # 0.8899493 

 

cbind(b1[1],b1[2])  # From 3*3 correlation matrix of [w(1),V,U] 

##  [1,] 0.06731668 0.8899493 
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### 4*4 matrix and using the relationship between rwv & ryv.w (NO COVARIATE) 

 

it_1000 

 

rwv_seq(rwv.L+.0000000001,rwv.U-.0000000001,length=it) 

ryv.w_( (sy.w*sv*ryw.w*(1-rwv^2)) + ( sy.v*ryv.v*(sv*rwv-sw) ) ) / (sy.v*(sv-

(sw*rwv)) ) 

ee_0 

for(i in 1:length(rwv)){ testmat_cbind(c(1,ryv.v,ryv.w[i],ryv.u), 

   c(ryv.v,1,rwv[i],rvu), 

   c(ryv.w[i],rwv[i], 1, rwu), 

   c(ryv.u,rvu,rwu,1) ) 

 

ee[i]_min(eigen(testmat)$values) 

} 

 

rwv_rwv[ee>0] 

ryv.w_ryv.w[ee>0] 

 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv*rwu)- rvu ) ) 

  

D_1 - (rwu^2) - (rvu^2) - (rwv^2)  + ( 2*rwv * rwu * rvu )  

  

E2_( ryv.v*( (rwu*rvu)-rwv ) ) + ( ryv.u*( (rwv*rvu)-rwu ) ) 

  

 

# version1 

Beta2_sy.v / sv * ( (ryv.w*((rvu*rwu)-rwv) ) + E1 ) / D 

 

 

# version2 

Beta2v2_beta1-( sy.v / sw * ( (ryv.w*(1-(rvu^2)))  + E2 ) / D ) 

 

 

 

beta.result_cbind(rwv,ryv.w,Beta2,Beta2v2) 

 

bounds_rbind(apply(beta.result,2,min),apply(beta.result,2,max)) 

dimnames(bounds)[2]_list(c("Cor(W,V)","Cor(yv.w)","Beta2","Beta2v2")) 

dimnames(bounds)[1]_list(c("min","max")) 

 

it 

bounds 

 #     Cor(W,V)  Cor(yv.w)     Beta2   Beta2v2  

# min 0.2031869 -0.6180382 -1.908373 0.6879764 

# max 0.7203174 -0.5398768  1.502665 1.4012451 

 

 

 

### 4*4 matrix and using the relationship between rwv & ryv.w (w COVARIATE) 

 

it_1000 

 

rwv_seq(rwv.L,rwv.U,length=it) 

beta1_sy.w / sw * ( ryw.w - (ryw.u*rwu) ) / ( 1 - (rwu^2) ) 

# beta1 = -0.4041165 

# beta1*5 = -2.020582 

 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv*rwu)- rvu ) ) 

D_1 - (rwu^2) - (rvu^2) - (rwv^2)  + ( 2*rwv * rwu * rvu )  

E2_( ryv.v*( (rwu*rvu)-rwv ) ) + ( ryv.u*( (rwv*rvu)-rwu ) ) 

  

A_( (sy.v*((rwu*rvu)-rwv)) / (sv*D) ) + ( (sy.v*(1-(rvu^2))) / (sw*D) ) 
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E12_-sy.v/D*( (E2/sw) + (E1/sv) ) 

 

ryv.w_(beta1+E12)/A 

 

ee_0 

for(i in 1:length(rwv)){ testmat_cbind(c(1,ryv.v,ryv.w[i],ryv.u), 

   c(ryv.v,1,rwv[i],rvu), 

   c(ryv.w[i],rwv[i], 1, rwu), 

   c(ryv.u,rvu,rwu,1) ) 

 

ee[i]_min(eigen(testmat)$values) 

} 

 

rwv_rwv[ee>0] 

ryv.w_ryv.w[ee>0] 

 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv*rwu)- rvu ) ) 

  

D_1 - (rwu^2) - (rvu^2) - (rwv^2)  + ( 2*rwv * rwu * rvu )  

  

E2_( ryv.v*( (rwu*rvu)-rwv ) ) + ( ryv.u*( (rwv*rvu)-rwu ) ) 

  

 

# version1 

Beta2_sy.v / sv * ( (ryv.w*((rvu*rwu)-rwv) ) + E1 ) / D 

 

 

# version2 

Beta2v2_beta1-( sy.v / sw * ( (ryv.w*(1-(rvu^2)))  + E2 ) / D ) 

 

 

 

beta.result_cbind(rwv,ryv.w,Beta2,Beta2v2) 

 

bounds_rbind(apply(beta.result,2,min),apply(beta.result,2,max)) 

dimnames(bounds)[2]_list(c("Cor(W,V)","Cor(yv.w)","Beta2","Beta2v2")) 

dimnames(bounds)[1]_list(c("min","max")) 

 

it 

bounds 

 

##### This gives discontinuous range of rwv. 
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APPENDIX E. 

S-PLUS CODE FOR SIMULATIONS USING PARAMETRIC BOOTSTRAP 



 

 

61 

The parametric bootstrap is using to assess the sampling variability of the 

variables of interest, 
,W V

ρ , 2

Noβ , and 2

Yesβ . As in Section 3.4.3, consider two models (17) 

and (18) and applied a multivariate normal distribution corresponding to a random vector 

( )(0) (0), ,Y W U
′
 and ( )(1) (1), , ,Y W V U

′
, respectively. All estimable parameters were set as 

the sample estimates from the mice experiment. Moreover, nonestimable 
,W V

ρ  was set to 

particular values, 0.3, 0.4, 0.5, and 0.6, within the interval specified by the estimated 

bounds. The code below provides the results as in Tables 3.2-3.4. 

 

#Below are commands to compute estimable correlations from the mice data set 

# and to bound the nonestimable ones. We have 5 potential outcome variables,  

# lifespan(IWL) = yv 

# lifespan(UWL) = yw 

# Total weight loss = v 

# UWL  = w 

# covariate = baseline weight = u 

#------------------------------------------- 

 

#These lines extract the variables from the mice data 

#They also omit mice that died before wt5 was recorded 

 

#The function sim.data will take an input data set and simulate data from it. 

sim.data<-function(data.in=DATA.in,n=N,rwv.in=RWV.in){ 

 

#the input data set must have variables defined by vars below 

 

vars_c("Diet","wt12mo","wt5","Lifespan") 

 

data_data.in[,vars] 

data_na.omit(data) 

x1_data[data[,"Diet"]==1,] 

x0_data[data[,"Diet"]==0,] 

 

v_x1[,"wt12mo"] - x1[,"wt5"]; w_x0[,"wt12mo"] - x0[,"wt5"] 

 

y.v_x1[,"Lifespan"];   y.w_x0[,"Lifespan"] 

 

 

#now consider baseline covariate = initial weight 

 

covar_vars[2] 

 

u.no_data[data[,"Diet"]==0,covar] 

u.yes_data[data[,"Diet"]==1,covar] 

u_data[,covar]    # u is now the set of covariates observable for all 

individuals. 

 

 

#Here we estimate the correlations that can be estimated from observed data, 

there are 6 

ryw.w_cor(y.w,w); ryw.u_cor(y.w,u.no); ryv.v_cor(y.v,v) 

ryv.u_cor(y.v,u.yes); rwu_cor(w,u.no); rvu_cor(v,u.yes) 

check1<<-c(ryw.w,ryw.u,ryv.v,ryv.u,rwu,rvu) 

 



 

 

62 

sw_sqrt(var(w)); sv_sqrt(var(v)) 

sy.v_sqrt(var(y.v)); sy.w_sqrt(var(y.w)) 

su_sqrt(var(u)) 

#values defined up to hear --------------------------------------------------- 

 

# Simulate data with covariate  

 

rwv<-rwv.in 

beta1_sy.w / sw * ( ryw.w - (ryw.u*rwu) ) / ( 1 - (rwu^2) ) 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv*rwu)- rvu ) ) 

D_1 - (rwu^2) - (rvu^2) - (rwv^2)  + ( 2*rwv * rwu * rvu )  

E2_( ryv.v*( (rwu*rvu)-rwv ) ) + ( ryv.u*( (rwv*rvu)-rwu ) ) 

A_( (sy.v*((rwu*rvu)-rwv)) / (sv*D) ) + ( (sy.v*(1-(rvu^2))) / (sw*D) ) 

E12_-sy.v/D*( (E2/sw) + (E1/sv) ) 

ryv.w_(beta1+E12)/A 

 

mat_cbind(    c(1,  ryv.w,  ryv.v,  ryv.u), 

     c(ryv.w, 1,  rwv,  rwu), 

    c(ryv.v, rwv,  1,  rvu), 

    c(ryv.u, rwu,  rvu,  1) ) 

     

#print(min(eigen(mat)$values))      

 

sd_c(sy.v,sw,sv,su) 

mu_c(mean(y.v),mean(w),mean(v),mean(u)) 

 

data_rmvnorm(n,mean=mu,cov=mat,sd=sd) 

testdat<<-data 

fit.yw_lm(y.w~w+u.no) 

 

#Now produce estimates from the simulated data set 

m_(n/2)+1 

 

y.v.s_data[1:(m-1),1] 

w.s_data[m:n,2] 

v.s_data[1:(m-1),3] 

u.s_data[,4] 

u.yes.s_u.s[1:(m-1)] 

u.no.s_u.s[m:n] 

 

cor.wmat_c(1,ryw.w,ryw.u,ryw.w,1,rwu,ryw.u,rwu,1) 

cor.wmat_matrix(cor.wmat,ncol=3) 

 

covmat_diag(c(sy.w,sw,su))%*%cor.wmat%*%diag(c(sy.w,sw,su)) 

var.yw_sy.w^2 - covmat[1,2:3]%*%solve(covmat[2:3,2:3])%*%covmat[2:3,1] 

 

pred.yw_fit.yw$coeff[1] + fit.yw$coeff[2]*w.s + fit.yw$coeff[3]*u.no.s 

 

y.w.s_pred.yw + rnorm(length(pred.yw),0,sqrt(var.yw)) 

Lifespan_c(y.v.s,y.w.s) 

 

Diet_c(rep(1,length(y.v.s)),rep(0,length(y.w.s))) 

wt5_u.s-c(v.s,w.s)  

wt12mo_u.s 

data.sim_data.frame(Diet,wt12mo,wt5,Lifespan) 

return(data.sim) 

} 

 

 

#------------------------------------------- 

#now the analysis code for a data set 

#This function analyzes data from an input data set 
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analyze.data_function(simdata.in,it=IT){ 

vars_c("Diet","wt12mo","wt5","Lifespan") 

data_simdata.in[,vars] 

data_na.omit(data) 

x1_data[data[,"Diet"]==1,] 

x0_data[data[,"Diet"]==0,] 

 

v_x1[,"wt12mo"] - x1[,"wt5"];  w_x0[,"wt12mo"] - x0[,"wt5"] 

y.v_x1[,"Lifespan"];    y.w_x0[,"Lifespan"] 

 

#now consider baseline covariate = initial weight 

 

covar_"wt12mo" 

u.no_data[data[,"Diet"]==0,covar] 

u.yes_data[data[,"Diet"]==1,covar] 

u_data[,covar]    # u is now the set of covariates observable for all 

individuals. 

 

#Here we estimate the correlations that can be estimated from observed data 

ryw.w_cor(y.w,w); ryw.u_cor(y.w,u.no); ryv.v_cor(y.v,v) 

ryv.u_cor(y.v,u.yes); rwu_cor(w,u.no); rvu_cor(v,u.yes) 

check2<<-c(ryw.w,ryw.u,ryv.v,ryv.u,rwu,rvu) 

 

sw_sqrt(var(w)); sv_sqrt(var(v)) 

sy.v_sqrt(var(y.v)); sy.w_sqrt(var(y.w)) 

rwv_seq(-1,1,length=it) 

 

#-----------------------no covariate investigating positive definiteness 

tt_sy.w*sv*ryw.w*(1-rwv^2) + (sy.v*ryv.v *( (sv*rwv) - sw ) ) 

dd_sy.v*sv - sy.v*sw*rwv 

ryv.w1_tt/dd 

ee1a_0 

 

for(i in 1:length(rwv)){ 

testmat_cbind(c(1,ryv.v,ryv.w1[i]), 

              c(ryv.v,1,rwv[i]), 

              c(ryv.w1[i],rwv[i],1) ) 

ee1a[i]_min(eigen(testmat)$values) 

} 

 

beta1_sy.w / sw * ( ryw.w - (ryw.u*rwu) ) / ( 1 - (rwu^2) ) 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv*rwu)- rvu ) ) 

D_1 - (rwu^2) - (rvu^2) - (rwv^2)  + ( 2*rwv * rwu * rvu )  

E2_( ryv.v*( (rwu*rvu)-rwv ) ) + ( ryv.u*( (rwv*rvu)-rwu ) ) 

A_( (sy.v*((rwu*rvu)-rwv)) / (sv*D) ) + ( (sy.v*(1-(rvu^2))) / (sw*D) ) 

E12_-sy.v/D*( (E2/sw) + (E1/sv) ) 

ryv.w2_(beta1+E12)/A 

 

ee1b_0 

for(i in 1:length(rwv)){ testmat_cbind(c(1,ryv.v,ryv.w1[i],ryv.u), 

   c(ryv.v,1,rwv[i],rvu), 

   c(ryv.w1[i],rwv[i], 1, rwu), 

   c(ryv.u,rvu,rwu,1) ) 

ee1b[i]_min(eigen(testmat)$values) 

} 

 

ee2_0 

for(i in 1:length(rwv)){ testmat_cbind(c(1,ryv.v,ryv.w2[i],ryv.u), 

   c(ryv.v,1,rwv[i],rvu), 

   c(ryv.w2[i],rwv[i], 1, rwu), 

   c(ryv.u,rvu,rwu,1) ) 

 

ee2[i]_min(eigen(testmat)$values) 
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} 

 

mm<-cbind(rwv,ee1a,ee1b,ee2) 

 

mma<-apply(mm[,2:4],1,min) 

r1_(1:(dim(mm)[1]))[mma>0] 

flag_rep(0,dim(mm)[1]) 

flag[r1]_1 

 

m1a_min(r1) 

m2a_max(r1) 

 

flag.sum_0 

for (i in 1:length(flag)) 

{   flag.sum_flag.sum+flag[i] 

} 

 

print (flag.sum) 

 

if ( flag.sum >0) 

{ 

print(c(m1a,m2a)) 

tta_m1a:m2a 

test.cont_prod(flag[tta]) 

mm<-mm[mm[,2]>0&mm[,3]>0&mm[,4]>0,] 

#now compute the beta2 bounds 

rwv1<-mm[,1] 

beta1_sy.w / sw * ( ryw.w - (ryw.u*rwu) ) / ( 1 - (rwu^2) ) 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwv1*rwu)- rvu ) ) 

D_1 - (rwu^2) - (rvu^2) - (rwv1^2)  + ( 2*rwv1 * rwu * rvu )   

E2_( ryv.v*( (rwu*rvu)-rwv1 ) ) + ( ryv.u*( (rwv1*rvu)-rwu ) )  

A_( (sy.v*((rwu*rvu)-rwv1)) / (sv*D) ) + ( (sy.v*(1-(rvu^2))) / (sw*D) ) 

E12_-sy.v/D*( (E2/sw) + (E1/sv) ) 

 

B2.no_(sy.v*ryv.v - sy.w*ryw.w*rwv1)/(sv-sw*rwv1) 

B2.yes_(sy.v / (sv*D)) * (((beta1+E12)/A)*(rwu*rvu - rwv1) + E1) 

 

Beta2.no.min<-min(B2.no) 

Beta2.no.max<-max(B2.no) 

Beta2.yes.min<-min(B2.yes) 

Beta2.yes.max<-max(B2.yes) 

rwv.min<-min(rwv1) 

rwv.max<-max(rwv1) 

} 

 

else  

{ 

m1a<-0 

m2a<-0 

print(c(m1a,m2a)) 

test.cont<-0 

 

rwv.min<-0 

rwv.max<-0 

Beta2.no.min<-0 

Beta2.no.max<-0 

Beta2.yes.min<-0 

Beta2.yes.max<-0 

} 

 

# ----------- CALCULATE BETA2 at RWV.in ------------------ 

 

rwvsetup_RWV.in 
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beta1_sy.w / sw * ( ryw.w - (ryw.u*rwu) ) / ( 1 - (rwu^2) ) 

 

E1_( ryv.v * (1-(rwu^2)) ) + ( ryv.u * ( (rwvsetup*rwu)- rvu ) ) 

D_1 - (rwu^2) - (rvu^2) - (rwvsetup^2)  + ( 2*rwvsetup * rwu * rvu )   

E2_( ryv.v*( (rwu*rvu)-rwvsetup ) ) + ( ryv.u*( (rwvsetup*rvu)-rwu ) )  

A_( (sy.v*((rwu*rvu)-rwvsetup)) / (sv*D) ) + ( (sy.v*(1-(rvu^2))) / (sw*D) ) 

E12_-sy.v/D*( (E2/sw) + (E1/sv) ) 

 

Beta2.no_(sy.v*ryv.v - sy.w*ryw.w*rwvsetup)/(sv-sw*rwvsetup) 

Beta2.yes_(sy.v / (sv*D)) * (((beta1+E12)/A)*(rwu*rvu - rwvsetup) + E1) 

 

result_data.frame(Beta2.no,Beta2.yes,rwv.min,rwv.max,Beta2.no.min,Beta2.no.max,

Beta2.yes.min,Beta2.yes.max,test.cont) 

return(result) 

} 

 

#----------Here is the Master simulation function 

Master.mouse<-function(DATA.in,N=1000,RWV.in=.5,IT=200,sim.nos=10,seed=222){ 

#DATA.in = input template data set 

#N = total sample size to be divided into two groups 

#RWV.in = true value of RWV 

#IT = number of divisions of the vector RWV in the simulations 

#sim.nos = number of simulations 

#seed = seed for entire simulation run 

DATA.in<<-DATA.in 

N<<-N 

RWV.in<<-RWV.in 

IT<<-IT 

RESULT<-

data.frame(Beta2.no=0,Beta2.yes=0,rwv.min=0,rwv.max=0,Beta2.no.min=0,Beta2.n

o.max=0,Beta2.yes.min=0,Beta2.yes.max=0,test.cont=0) 

for(i in 1:sim.nos){ 

SDATA.in<-sim.data() 

res.sim<-analyze.data(simdata.in=SDATA.in,it=IT) 

RESULT<-rbind(RESULT,res.sim) 

} 

RESULT<-RESULT[-1,] 

return(RESULT) 

} 

 

 

## Save above program as the name simcode.txt with the specific folder and run 

those function first and these commands later. 

 

source("c:\\research\\papercode\\simcode.txt") 

 

test11_Master.mouse(DATA.in,N=1000,RWV.in=.5,IT=200,sim.nos=5,seed=233) 
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APPENDIX F. 

DERIVATION IN SECTION 4.2 
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1. The sums of squares 

Recall IWL for the two subjects within the i
th

 pair, 

( ) ( )iiiii WVZ ηε −−−=1 ( ) ( )iiii WV ηε −−−= ,   (F1) 

( ) ( )iiiii WVZ ηε +−+=2 ( ) ( )iiii WV ηε −+−= ,   (F2) 

and the observed effect of intention to lose weight is either one of the following  
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The average of the true IWL effect in equation (23) could be written as  
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2. Proof of Proposition 2 

Recall equation (28), the observed variance of IWL be 
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The expectation, denoted by E, of 2
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Consider the first term on the right hand side, ( )2
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where 1=′iiδ  if ii ′=  and 0  otherwise. Algebraically simplify above equation and get 
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Equations (F3) and (F4) give the result of the expectation of 2

zS , ( )2

zSE , as in equation 

(29), 
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3. The expectation of the bias of 2

zS . 

Proposition 2 shows that the estimator 2

zS  is biased for 2

ZS  and the bias is defined 

by equation (30). The expectation of the bias of 2

zS is 
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4. The bounds for 2

ZS  

The quantities L̂  and Û  in equations (32) and (33) give the bounds for 2

ZS , if the 

expectation operator over the bivariate distribution is denoted by ηε ,Ε  and the expectation 

operator over possible random treatment is denoted by E, 
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This implies that the bounds ( )UL ˆ,ˆ  could give the idea how large or small 2

ZS  might be as 

in Section 4.2. 
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S-PLUS CODE FOR SECTION 4.5 
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1. Eye data 

attach(EyeData) 

 

data_EyeData 

data_na.omit(data) 

 

x1_0; x2_0 

x1_data[data[,2]==1,]  

x2_data[data[,2]==2,] 

## cbind(x1,x2) 

 

 

id_0; trt.x_0; va.x_0; va3.x_0; trt.y_0; va.y_0; va3.y_0; x_0; y_0 

id_c(x1[,1],x2[,1]); trt.x_c(x1[,2],x2[,5]); va.x_c(x1[,3],x2[,6]); 

va3.x_c(x1[,4],x2[,7]) 

x_va3.x-va.x 

trt.y_c(x1[,5],x2[,2]); va.y_c(x1[,6],x2[,3]); va3.y_c(x1[,7],x2[,4]) 

y_va3.y-va.y 

 

cbind(x,y) 

 

z_0 

z_x-y 

 

n_length(z) 

var.z_var(z)*(n-1)/n   # var(z) = 313.5365 

# [1] 311.5395 

 

 

s2_5 

 

varZ.L_var.z - (4*(n-1)/n*s2) 

varZ.U_var.z + (4*s2) 

 

cbind(varZ.L, varZ.U) 

# [1,] 291.6668 331.5395 

cbind(sqrt(varZ.L), sqrt(varZ.U)) 

# [1,] 17.07826 18.20822 

 

s2_seq(0,20,.1) 

varZ.L_var.z - (4*(n-1)/n*s2) 

varZ.U_var.z + (4*s2) 

 

plot(s2,sqrt(varZ.L), type="n",xlab="var(eps) or var(eeta)", 

ylab="var(Z)",ylim=c( min(sqrt(varZ.L)), max(sqrt(varZ.U)) ))  

 

points(s2,sqrt(varZ.L)) 

points(s2,sqrt(varZ.U)) 
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2. Mice data with specific matched pairs using baseline weight at 12 months 

 

attach(IWLmouseSS) # this data is matched based on the baseline weight 

 

vars_c("Diet","wt12mo","wt22mo","wt5","Lifespan") 

data_0;      

data_IWLmouseSS[,vars] 

 

data_na.omit(data) 

x1_0; x0_0 

x1_data[data[,"Diet"]==1,]  

x0_data[data[,"Diet"]==0,] 

 

v_0; w_0 

v_x1[,"wt12mo"] - x1[,"wt5"] 

w_x0[,"wt12mo"] - x0[,"wt5"] 

 

y1_0; y0_0; y_0 

y1_x1[,"Lifespan"] 

y0_x0[,"Lifespan"] 

y_data[,"Lifespan"] 

 

u.no_0; u.yes_0; u_0 

u.no_data[data[,"Diet"]==0,"wt12mo"]     # 64 

u.yes_data[data[,"Diet"]==1,"wt12mo"]    # 67 

u_data[,"wt12mo"] 

  

eps_0; i_1 

for (i in 1:16) 

{ 

 eps[i]_( w[32+(2*i)]-w[32+(2*i)-1] )/2 

} 

 

eeta_0 

for (i in 1:17) 

{ 

 eeta[i]_( v[32+(2*i)]-v[32+(2*i)-1] )/2 

} 

 

## CHECK     sum(eps); sum(eeta) 

mean(eps); var(eps)   # 0  1.191667 

mean(eeta); var(eeta)  # 0  0.96875 

 

n.eeta<-length(eeta) 

n.eps<-length(eps) 

s22_(sum(eps^2)+sum(eeta^2)) / (n.eeta+n.eps)  # 1.011364 ## this is sigma^2 

 

z_0 

z_v[1:32]-w[1:32] 

n.z<-length(z) 

var.z_var(z)*(n.z-1)/n.z   # var(z) = 27.72581 

# [1] 26.85938      This is S(z)^2 

 

varZ.L_var.z - (4*(n.z-1)/n.z*s22) 

varZ.U_var.z + (4*s22) 

cbind(varZ.L, varZ.U)    # [1,] 22.94034 30.90483 

cbind(sqrt(varZ.L), sqrt(varZ.U)) # [1,] 4.789608 5.559211 

 

rwv.L_( var(w) + var(v) - varZ.L ) / (2*sw*sv) 

rwv.U_( var(w) + var(v) - varZ.U ) / (2*sw*sv) 
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cbind(rwv.L,rwv.U)     

##  [1,] 0.5436294 0.3840173 

 

sZ_seq( sqrt(varZ.L),sqrt(varZ.U),.001) 

rwz1_sv/sZ*( (rwu*rvu) - (sw/sv) - sqrt((1-rwu^2)*(1-rvu^2)) ) 

rwz2_sv/sZ*( (rwu*rvu) - (sw/sv) + sqrt((1-rwu^2)*(1-rvu^2)) ) 

 

plot(sZ,rwz1, type="n",xlab="sZ", ylab="Rwz",ylim=c( min(rwz1,rwz2), 

max(rwz1,rwz2) ))  

 

lines(sZ,rwz1,type="b", lty=1)  

lines(sZ,rwz2,type="b", lty=1)  

 

#### TRi-VARIATE 

 

vars_c("Diet","wt12mo","wt5","Lifespan") 

data_0 

data_IWLmouse[,vars] 

 

data_na.omit(data) 

x1_data[data[,"Diet"]==1,] 

x0_data[data[,"Diet"]==0,] 

 

v_x1[,"wt12mo"] - x1[,"wt5"] 

w_x0[,"wt12mo"] - x0[,"wt5"] 

 

y.v_x1[,"Lifespan"] 

y.w_x0[,"Lifespan"] 

 

 

#now consider baseline covariate = initial weight 

 

covar_"wt12mo" 

u.no_data[data[,"Diet"]==0,covar] 

u.yes_data[data[,"Diet"]==1,covar] 

u_data[,covar]    # u is now the set of covariates observable for all 

individuals. 

 

#Here we estimate the correlations that can be estimated from observed data, 

there are 6 

ryw.w_cor(y.w,w); ryw.u_cor(y.w,u.no); ryv.v_cor(y.v,v) 

ryv.u_cor(y.v,u.yes); rwu_cor(w,u.no); rvu_cor(v,u.yes) 

 

sw_sqrt(var(w)); sv_sqrt(var(v)) 

sy.v_sqrt(var(y.v)); sy.w_sqrt(var(y.w)) 

 

rwv.WVU_cbind( (rwu*rvu) - sqrt((1-rwu^2)*(1-rvu^2)), (rwu*rvu) + sqrt((1-

rwu^2)*(1-rvu^2)))  

### [1,] 0.06731668 0.8899493 

 

sz.wvu_sqrt(var(w)+var(v)-(2*sw*sv*rwv.WVU)) 

## [1,] 6.834317 2.378932 
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3. Twins data 

 

attach(finnishdata1) 

i<-2:(length(fam.id)) 

 

m<-fam.id[i]-fam.id[i-1] 

m0<-(1:(length(m)))[m==0] 

m1<-m0+1 

 

###### ignoring matched pairs and use the 2 sample design  

vars<-

c("fam.id","zyg","Sex","age81","death","ftime","bmi75","bmidiff","wtloss","d

iet","act","medic","smokstat",     

"sm81.st","smokch1","smokch2","smokch3","heavych1","heavych2","heavych3","lsch1

","lsch2","lsch3", 

"vigch1","vigch2","vigch3","work","income75","hyper","dysp") 

 

mat<-finnishdata1[,vars]    

 

mat[,"wtloss"]<-mat[,"wtloss"]-1 

mat[,"diet"]<-mat[,"diet"]-1 

mat[,"act"]<-mat[,"act"]-1 

mat[,"medic"]<-mat[,"medic"]-1 

mat[,"hyper"]<-mat[,"hyper"]-1 

mat[,"bmi75"]<-mat[,"bmi75"]-1 

 

twin1<-mat[m0,] 

twin2<-mat[m1,] 

dim(twin1); dim(twin2) 

 

mat<-rbind(twin1,twin2) 

dim(mat)   # [1] 890  30 

 

mat[,"wtloss"]<-mat[,"wtloss"]-1 

mat[,"diet"]<-mat[,"diet"]-1 

mat[,"act"]<-mat[,"act"]-1 

mat[,"medic"]<-mat[,"medic"]-1 

mat[,"hyper"]<-mat[,"hyper"]-1 

 

mat0<-mat[mat[,"wtloss"]==0,] #0 = wtloss = no 

mat1<-mat[mat[,"wtloss"]==-1,] #1 = wtloss = yes 

 

w<-mat0[,"bmidiff"] 

v<-mat1[,"bmidiff"] 

 

## covar<-

c("Sex","age81","bmi75","smokch1","smokch2","smokch3","heavych1","heavych2",

"heavych3","lsch1","lsch2","lsch3", 

"vigch1","vigch2","vigch3","income75","hyper") 

 

covar<-c("bmi75") 

 

u<-mat[,covar] 

u.no<-mat0[,covar] 

u.yes<-mat1[,covar] 

 

s0_cor(w,u.no) 

s1_cor(v,u.yes) 

s_cbind(s0,s1) 

 

h_t(s)%*%solve(cor(u))%*%s 
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low_h[1,2] - sqrt((1-h[1,1])*(1-h[2,2])) 

up_h[1,2] + sqrt((1-h[1,1])*(1-h[2,2])) 

b1_c(low,up)   #here are the estimated bounds for the simple correlation 

between w and v 

##  -0.9915891  0.9960139    1 covariate ## 

##  -0.8739296  0.9373542  all covariate ## 

rwv.L_b1[1] 

rwv.U_b1[2] 

## cbind(rwv.L,rwv.U)  == b1 

 

rwv.u_seq(rwv.L,rwv.U,.0001) 

max(rwv.u); min(rwv.u) 

sv_sqrt(var(v)) 

sw_sqrt(var(w)) 

sz.u_sqrt(var(v)+var(w)-(2*rwv.u*sv*sw)) 

sz.um_sqrt(var(v)+var(w)-(2*rwv.U*sv*sw)) 

cbind(min(sz.u,sz.um),max(sz.u,sz.um)) 

 

## This are the bounds for S(Z)  

## [1,] 0.3910776 4.122554  1 covariate 

## [1,] 0.8062324 3.999804  all covariates 

 

 

 

###### START using matched pairs for 445 pairs 

 

zy<-twin1[,"zyg"] 

wt1<-twin1[,"wtloss"] 

wt2<-twin2[,"wtloss"] 

u1<-twin1[,"bmi75"] 

u2<-twin2[,"bmi75"] 

d1<-twin1[,"death"] 

d2<-twin2[,"death"] 

ftime1<-twin1[,"ftime"] 

ftime2<-twin2[,"ftime"] 

bmidiff1<-twin1[,"bmidiff"] 

bmidiff2<-twin2[,"bmidiff"] 

 

twindata<-cbind(zy,wt1,wt2,d1,d2,ftime1,ftime2,u1,u2,bmidiff1,bmidiff2) 

dim(twindata) 

 

###################################################### MATCH 

 

mat0<-0; mat1<-0; w<-0; v<-0; u<-0; u.no<-0; u.yes<-0 

 

mat0<-twindata[twindata[,"wt1"]==0 & twindata[,"wt2"]==0,] #0 = wtloss = no   

BOTH 00 

 

mat1<-twindata[twindata[,"wt1"]==1 & twindata[,"wt2"]==1,] #1 = wtloss = yes  

BOTH 11 

 

eeta<-(mat1[,"bmidiff1"]-mat1[,"bmidiff2"])/2   # 1 IWL 

cbind(mean(eeta),var(eeta))       #  0.02257535 2.070687 

eps<-(mat0[,"bmidiff1"]-mat0[,"bmidiff2"])/2  # 0 UWL 

cbind(mean(eps),var(eps))       # -0.1340113 1.32709 

 

n.eeta<-length(eeta)      #  102 

n.eps<-length(eps)      #  208 

 

s22_( ( sum(eps)^2)+  ( sum(eeta)^2)) / (n.eeta+n.eps)    # 2.523488 

## THIS IS Sigma^2 

######################## TC - CT ############# 
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mat10<-twindata[twindata[,"wt1"]==1 & twindata[,"wt2"]==0,]      # 58  

z10<-mat10[,"bmidiff2"]-mat10[,"bmidiff1"] 

mat01<-twindata[twindata[,"wt1"]==0 & twindata[,"wt2"]==1,]    # 77 

z01<-mat01[,"bmidiff1"]-mat01[,"bmidiff2"] 

z<-c(z10,z01) 

 

n.z<-length(z) 

var.z_var(z)*(n.z-1)/n.z     #  5.751557  This is S(z)^2 

 

 

varZ.l_var.z - (4*(n.z-1)/n.z*s22) 

varZ.u_var.z + (4*s22) 

cbind(varZ.l, varZ.u)      # -4.267626 15.84551 

 

 

if (varZ.l<0 ) 

{ 

 varZ.l<-0 

} 

 

cbind(sqrt(varZ.l), sqrt(varZ.u))   #  0 3.980642 

            #  This is bounds for S(Z) 

 

 

########################### 

###################################################### 

########################### 
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