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a  b  s  t  r  a  c  t

The  dynamic  behavior  of many  chemical  processes  can be  represented  by an  index-2  system  of
differential-algebraic  equations.  This  index  can be  reduced  by  differentiation,  but  unfortunately  the  index
reduced  systems  are  not  guaranteed  to  possess  the  same  stability  characteristics  as  that  of  the  original
system.  When  the  set  of  differential-algebraic  equations  can  be  written  in  Hessenberg  form,  the  matrix
pencil  of the  linearized  system  can  be  used  to directly  evaluate  the  stability  of  a  steady  state  without
the  need  for  index  reduction.  Direct  evaluations  of  stability  of  reactive  flash  and  reactive  distillation  are
presented.  It is  also  shown  that  a  commonly  used  index  reduction  will  always  result  in  null  eigenvalues
at  steady  state.  Stabilization  methods  were  successfully  applied  to this  reduced  system.  An alternative
index  reduction  method  for a  reactive  flash  is generalized  and  shown  to be highly  sensitive  to  minor
changes  in  the  jacobian.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the autonomous system of differential-algebraic equa-
tions

A
dx

dt
= f (x) (1)

If the constant coefficient matrix A is non-singular, Eq. (1) rep-
resents a system of ordinary-differential equations (ODE). In cases
where matrix A is not of full-rank, the system is a differential-
algebraic equation (DAE).

It is well known (e.g. Froment, Bischoff, & De Wilde, 2010) that
a continuous stirred tank reactor (CSTR) with a single liquid phase
has a dynamic representation in the form of Eq. (1) with a coefficient
matrix of full-rank. Therefore the stability of a steady state can be
analytically determined by checking the eigenvalues of the jacobian
matrix, ∂f /∂x. In the event that all eigenvalues have negative real
parts, that steady state is stable and small dynamic perturbations
will return to the state. When the CSTR model is extended to include
mass transfer between the liquid and vapor phases, a reactive flash
results. If the rate of this mass transfer is assumed to be very fast in

∗ Corresponding author.
E-mail address: david.anthony.harney@gmail.com (D.A. Harney).

comparison to other time constants of the reactive flash, then the
dynamic representation is a DAE. The algebraic constraints in this
case are the vapor–liquid equilibrium equations. Tracing the orbit
of such a system and determining the stability of its steady states
can be considerably more difficult than is the case with ODE’s.

A critical property of a DAE system is the index. There are a num-
ber of definitions for this integer-valued parameter, but the most
straightforward is the differentiation index, which is defined as the
number of times that all or part of the system must be differentiated
with respect to time in order to reduce the system to its underlying
ODE (Brenan, Campbell, & Petzold, 1996).

For example, many chemical engineering systems can be writ-
ten in the semi-explicit form

x′ = f (x) + b(x)y (2a)

0 = g(x) (2b)

Successive differentiation of the algebraic constraint (2b) results
in

0 = ∂g

∂x
(f (x) + b(x)y) (2c)

0 =
((

∂g

∂x
f (x)

)
x

+
(

∂g

∂x
b(x)

)
x

y

)
(f (x) + b(x)y) +

(
∂g

∂x
b(x)

)
y′

(2d)

0098-1354/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
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Nomenclature

F liquid feed rate (mol/min)
H liquid molar holdup (mol)
hfeed specific enthalpy of feed stream (J/mol)
hliq specific enthalpy of liquid exit (J/mol)
hvap specific enthalpy of vapor exit (J/mol)
Ki ratio of vapor to liquid mole fraction of component

i
L liquid exit flow (mol/min)
l specific liquid molar exit rate (=L/F)
pSAT

i
vapor pressure of component i (Pa)

rj rate of reaction j (min−1)
q External heat input to flash, Q divided by feed rate F

(J/mol)
T temperature (K)
V vapor exit flow (mol/s)
xi liquid mole fraction of component i
zi feed mole fraction of component i

Greek
�i,j stoichiometric coefficient of component i in reaction

j
�T,j sum of stoichiometric coefficients in reaction j
� reactive flash time constant (=H/F) (min)
� vapor fraction (=V/F)

Rearranging (2d) allows an expression for dy/dt to be generated,
and the combination of (2a) and (2d) represents the underlying ODE
of the original DAE, whose differentiation index is two.

It should be noted that when the DAE is in the form of Eqs. (2a)
and (2b) and the matrix (∂g/∂x b(x)) is non-singular, the index-2
system can be converted to an ODE after only one differentiation
by rewriting (2c) to get an expression for y and then substituting
into (2a) to obtain

x′ = f (x) − b(x)

(
∂g

∂x
b(x)

)−1
∂g

∂x
f (x) (3)

Numerical solutions of higher index DAEs (differentiation index
of 2 or higher) can be obtained from the underlying ODE via index
reductions of this type. An obvious difficulty that arises is that
constants of integration are introduced every time the algebraic
constraint is differentiated. Potential pitfalls and implementation
aspects are discussed in detail by Brenan et al. (1996),  Gear (1988)
and Ascher and Petzold (1998).

Kumar and Daoutidis (1995) developed a generalized index
reduction algorithm, which exploited the equation form (2a) and
(2b), and used this algorithm to create a state-space realization of a
reactive flash. In a somewhat similar manner, Rahul, Pavan Kumar,
Dwivedi, and Kaistha (2009) reduced the index of a reactive distil-
lation system by differentiating the algebraic constraint and using
the resultant equation to derive an expression for the molar vapor
flow on each stage of the column.

A dynamic model of an ethylene glycol reactive-distillation col-
umn  with non-zero vapor holdup was developed by Kumar and
Daoutidis (1999).  The stability of steady states of this system were
not evaluated directly, but were extracted instead from the under-
lying index-1 model that did not include vapor holdup. This stability
prediction was justified based on the fact that the dynamic and
underlying models had identical solutions at steady state. A dif-
ferent method to determine steady state stability of a reactive
distillation was used by Chen, Huss, Doherty, and Malone (2002),

who labeled a solution as stable if the Backward Differentiation
Formula of Gear (1971) converged to it from a reasonable starting
point. They indirectly reduced the index of the system by solv-
ing for the liquid and vapor stage flows independently. Rodriguez,
Zheng, and Malone (2001) applied an alternative index reduction
to evaluate the stability of the steady states of a reactive flash.

In cases where multiple solutions occur in a reactive flash,
the bifurcation curve quite often assumes an ‘S’ shape. A number
of authors (Luyben, 1993; Monroy-Loperena & Alvarez-Ramirez,
1999) have extended the results familiar from the study of a sin-
gle phase CSTR and postulated that the middle solutions on the
reversed portion of the ‘S’ are unstable. The results presented in this
paper do not contradict this assumption, but do provide methods
for analytically determining the stability of a solution without nec-
essarily having to traverse the bifurcation path of steady states, and
therefore is independent of any knowledge of solution multiplicity.

2. Direct calculation of stability

2.1. Theory

März (1994, 1998) presented two  important theorems on the
stability of index-1 and index-2 DAE’s in the general form of Eq. (1)
that are repeated here.

Theorem 1. f(x) ∈ C2 on an open bounded region D, containing a
stationary point x*, f(x*) = 0. Let the matrix pencil (�A − B) be regular
with index 1 and all its generalized eigenvalues have negative real
parts. Then the DAE is Lyapunov stable at this stationary point.

Theorem 2. f(x) ∈ C2 on an open bounded region D, containing a
stationary point x*, f(x*) = 0. Let the matrix pencil (�A − B) be regular
with index 2 and all its generalized eigenvalues have negative real
parts. Additionally, let the DAE be in Hessenberg form of size 2. Then
the DAE is Lyapunov stable at this stationary point.

The matrix B is simply the jacobian matrix ∂f /∂x of Eq. (1) eval-
uated at the stationary point x*. While defined very differently, the
index of the matrix pencil has the same value as the differentiation
index defined earlier when the DAE can be written in Hessenberg
form. Regularity of the matrix pencil requires simply that there
exist values of � such that the matrix pencil (�A − B) is non-singular.

An autonomous DAE is in ‘Hessenberg’ form of size 2 if it can be
written in the following form (Brenan et al., 1996)

x′ = f (x, y) (4)

0 = g(x) (5)

with (∂g/∂x)(∂f /∂y) being non-singular. The dynamic represen-
tation of a reactive flash (and many other chemical engineering
processes) can be written in this form. It should be noted that the
second theorem of März (1994) can be generalized beyond Hessen-
berg form DAE’s under certain conditions, but this topic is beyond
the scope of this paper.

The theorems of März (1994, 1998) provide necessary condi-
tions for stability but do not state if they are sufficient. This appears
to be a more subtle issue, but Riaza (2010) has addressed the ques-
tion in the context of general quasilinear DAEs and stated that when
traversing a bifurcation path of steady states, a transition of the real
part of an eigenvalue from R

− to R
+ does indeed correspond to a loss

of stability of the steady state if the remaining eigenvalues remain
on C

−.

2.2. Reactive flash example

The dynamic representation of a P–Q reactive flash with r
reactions, n components, constant molar holdup H, liquid molar
feed rate F and ideal vapor–liquid equilibrium can be written
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as follows;

�
dxi

dt
= zi − xi − �(Kixi − xi) − �

⎛
⎝xi

r∑
j=1

�T,jrj −
r∑

j=1

�i,jrj

⎞
⎠ ,

i = 1, . . . , n − 1 (6)

�Cp
dT

dt
= hfeed + q − hliq − hliq�

r∑
j=1

�T,jrj + �(hliq − hvap) (7)

Kn

(
1 −

n−1∑
i=1

xi

)
+

n−1∑
i=1

Kixi − 1 = 0 (8)

noting that the constant molar holdup requires that

0 = 1 − l − � + �

r∑
j=1

�T,jrj (9)

The particular case considered here will be an adaption of the
ethylene glycol reactive flash presented by Rodriguez, Zheng, and
Malone (2004),  with the primary reaction of ethylene oxide and
water to produce ethylene glycol and a competing reaction of
ethylene glycol with ethylene oxide, both of which are considered
irreversible.

C2H4O + H2O
r1−→C2H6O2

C2H4O + C2H6O2
r2−→C4H10O3

(10)

With ethylene oxide, water, ethylene glycol and diethylene gly-
col labeled as components A, B, C and D, respectively, the reaction
rate and vapor pressure equations are given by;

r1 = 3.2023 × 109 exp
(

−9360.845
T

)
xAxB (11)

r2 = 5.84 × 109 exp
(

−9360.845
T

)
xAxC (12)

pSAT
A = exp

(
21.3066 − 2428.2

T − 35.388

)
(13)

pSAT
B = exp

(
23.2256 − 3835.18

T − 45.34

)
(14)

pSAT
C = exp

(
25.1431 − 6022.18

T − 28.25

)
(15)

pSAT
D = exp

(
23.8578 − 6085.25

T − 26.15

)
(16)

Liquid and vapor specific enthalpies are determined using the
latent heat models of Eqs. (17) and (18), neglecting the sensible
heat of the vapor phase.

hliq =
n∑

i=1

(�f H0
liq,i + Cpi(T − 298))xi (17)

hvap =
n∑

i=1

(�f H0
liq,i + Cpi(Tboil − 298) + �Hvap,i)yi (18)

Component specific data are shown in Table 1. Heat of forma-
tion and heat capacity data were obtained from the NIST Chemistry
WebBook (Afeefy, Liebman, & Stein, 2012). The heat of formation
data used predicts a heat of reaction at standard conditions of
−78.47 kJ/mol for the primary reaction and −72.8 kJ/mol for the
secondary reaction. The pressure is atmospheric, feed temperature
is 298 K and the specific heat (addition), q, is set at 2.282 kJ/mol of
feed.

Table 1
Component specific data for Reactive Flash Problem.

EO H2O EG DEG

Cp (kJ/mol K) 0.0869 0.0754 0.1498 0.2870
�fH◦

liq (kJ/mol) −95.7 −285.83 −460 −628.5
�Hvap (kJ/mol) 25.543 40.6603 53.186 56.944
z  0.5 0.5 0 0

It is straightforward to show that Eqs. (6)–(8) are in the Hessen-
berg form defined by Eqs. (4) and (5) when the variables are x = [x1,
x2, x3, T] and y = [�], and therefore that the theorem of März applies
for this index-2 DAE system. The requirement that (∂g/∂x)(∂f /∂y)
be non-singular is equivalent in this case to stating that the vapor
fraction � be finite.

A steady state solution was determined and using the system
time constant � = H/F as a continuation parameter, the path of
steady state solutions was  tracked using PITCON (Rheinboldt &
Burkardt, 1983) and the generalized eigenvalues of the matrix
pencil were calculated using LAPACK routines (Anderson et al.,
1999). For the energy balance, the overall heat capacity used in the
eigenvalue calculations was defined as simply the molar average at
that particular steady state. Fig. 1 shows the continuation path for
the vapor fraction � and steady state stability properties evaluated
at large values of the time constant where a region of steady state
multiplicity exists. The generalized eigenvalue with maximum
real part changed sign at the turning points and was positive in the
middle section, indicating a transition to unstable steady states.
As with ODE’s, the ordering of the equations and variables should
correspond, which in the case of steady state simulators, may
require a re-ordering of the equations or variables.
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Fig. 1. (a and b) Steady state vapor fraction for the reactive flash example. Stabil-
ity  determined by generalized eigenvalues of the matrix pencil. Unstable regions
indicated with dashed lined.
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Fig. 2. Stability profile as determined using the underlying ODE. Jacobian deter-
mined using central difference formula with ε = 10−6. Points where steady state
incorrectly determined to be unstable marked with an ‘×’ symbol.

3. Index reductions and stabilization

3.1. Loss of stability information after index-reduction

In the same manner that Eq. (3) was generated, an explicit
expression for the vapor fraction, �, can be written by differen-
tiating Eq. (8) of the reactive flash example with respect to time
and combining with Eqs. (6) and (7).

� =
−
∑i=1

n−1fi(x)(Ki − Kn) − fn(x)
(

(dKn/dT)(1 −
∑i=1

n−1xi) +
∑i=1

n−1xi(dKi/dT)
)

∑i=1
n−1((xi − Kixi)/�)(Ki − Kn) + ((hliq − hvap)/�Cp)

(
(dKn/dT)(1 −

∑i=1
n−1xi) +

∑i=1
n−1xi(dKi/dT)

) (19)

where fi is the vapor-fraction free parts of the differential equations.

fi = 1
�

⎛
⎝zi − xi − �

⎛
⎝xi

r∑
j=1

�T,jrj −
r∑

j=1

�i,jrj

⎞
⎠
⎞
⎠ , i = 1, . . . , 3 (20)

f4 = 1
�Cp

⎛
⎝hfeed + q − hliq − hliq�

r∑
j=1

�T,jrj

⎞
⎠ (21)

Substituting this expression for � into Eqs. (6) and (7) converts
the system to an underlying ODE. The same bifurcation path as
before was traced as accurately as possible by setting the PITCON
absolute and relative error tolerances as well as the minimum step
size to the default value of the square root of the machine precision
(calculated internally by PITCON to be 2.2 × 10−16) and setting the
maximum step size to be 0.1. The eigenvalues of the reduced sys-
tem were evaluated at each point, with the jacobian of this reduced
system determined using both a central difference formula and an
exact analytical expression. (Developing an analytic expression for
the jacobian becomes considerably more difficult after the substi-
tution above.) The central-difference step size used for evaluating
the jth column of the jacobian was h = 2ε(1 + |xj|).

Figs. 2 and 3 show stability curves generated with ε set to 10−6

and an exact expression for the jacobian matrix respectively. In
both cases, the lower stable portion of the curve was calculated to
have a scattered stability pattern with the maximum real part of an
eigenvalue being positive along portions of this part of the curve.

If the index-reduced system is written as an index-1 DAE instead
of an ODE, the calculated stability profile is still not accurate. The
resulting index-1 system is the combination of Eqs. (6) and (7) along
with Eq. (19) written in form g(x) = 0. In this case, the stability pro-
file is calculated by evaluating the generalized eigenvalues of the
index-1 matrix pencil. As can be seen in Fig. 4, the lower stable
portion of the curve still incorrectly shows numerous points with
unstable steady states.
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Fig. 3. Stability profile as determined using the underlying ODE. Jacobian deter-
mined analytically. Points where steady state incorrectly determined to be unstable
marked with an ‘×’ symbol.

The incorrect stability curves shown in Figs. 2–4 are a result of
the fact that when the underlying ODE is written in the form of Eq.
(3), the jacobian of the linearization is singular at a steady state.
More particularly, two  propositions are made, which follow simply
and directly from those of Riaza (2002, 2004).

Proposition 1. Given the DAE defined by Eqs.  (2a) and (2b) with

(a) x ∈ R
r , y ∈ R

p

(b) f : R
r → R

r , b : R
r → R

r × R
p, and g : R

r →
R

p, are at least C2 continous.

(c)
(

∂g
∂x

)
b(x) is of full rank (Eqs. (2a) and (2b) represent DAE in Hes-

senberg form of size 2)

If � is a generalized eigenvalue of the matrix pencil of the lineariza-
tion of Eqs.  (2a) and (2b) at a steady state (x*, y*)T, then � is an
eigenvalue of the jacobian of the right hand side of Eq. (3) at x*.

Proof. Write the matrix pencil defined by the linearization of Eqs.
(2a) and (2b) as

�A2 − J∗2 = �

(
Ir 0

0 0

)
−
(

(f + by)x b

gx 0

)
(x∗,y∗)T

(22)
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Fig. 4. Stability profile as determined using the underlying index-1 DAE. Jacobian
determined analytically. Points where steady state incorrectly determined to be
unstable marked with an ‘×’ symbol.
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Similarly, the matrix pencil of the linearization of the system
defined by (2a) and (2c) can be written as

�A1 − J∗1 = �

(
Ir 0

0 0

)
−
(

(f + by)x b

gx(f + by)x gxb

)
(x∗,y∗)T

(23)

noting that this matrix pencil is being evaluated at a steady state
and that both (f(x*) + b(x*)y*) and g(x*) are zero. Finally, the jaco-
bian of the ODE defined by Eq. (3) at steady state can be written
as

J∗0 =
(

fx − (b(gxb)−1gxf )x

)
(x∗,y∗)T (24)

The condition that (∂g/∂x)b be non-singular implies that the
DAE defined by Eqs. (2a) and (2c) is of index-1. Riaza (2002) has
shown that the spectrum of eigenvalues of the matrix pencil of this
index-1 DAE, 	(A1, J∗1) is identical to the spectrum of eigenvalues of
the jacobian of Eq. (3),  	(J∗0). Therefore, it is sufficient to show that
	(A2, J∗2) ⊂ 	(A1, J∗1)

If � is an eigenvalue of the linearization of Eqs. (2a) and (2b),
then(

�

(
Ir 0

0  0

)
−
(

(f + by)x b

gx 0

)
(x∗,y∗)T

) (
w1

w2

)
= 0 (25)

for some eigenvector (w1, w2)T. Therefore

�w1 = (f + by)∗
xw1 + bw2 (26a)

0 = g∗
x w1 (26b)

Multiplying Eq. (26b) by � and substituting in Eq. (26a) results
in

0 = g∗
x (f + by)∗

xw1 + g∗
x b∗w2 (26c)

Re-arranging (26a) and (26c) implies that(
�

(
Ir 0

0 0

)
−
(

(f + by)x b

gx(f + by)x gxb

)
(x∗,y∗)T

)(
w1

w2

)

= (�A1 − J∗1)

(
w1

w2

)
= 0 (27)

and hence that 	(A2, J∗2) ⊂ 	(A1, J∗1) = 	(J∗0). �

Proposition 2. The spectrum of eigenvalues of the jacobian of Eq.
(3), 	(J∗0), contains at least p null eigenvalues at a steady state, where
p is the dimension of y.

Proof. Eqs. (2a) and (2d) represent the underlying ODE generated
by two successive differentiations of the algebraic constraint. Mov-
ing the term for dy/dt to the left hand side, the matrix pencil of the
system linearization at a steady state (x*, y*)T can be written as

�AU − J∗U = �

(
Ir 0

0 gxb

)
(x∗,y∗)T

−
(

(f + by)x b

−gx(f + by)2
x −gx(f + by)xb

)
(x∗,y∗)T

(28)

Proposition 5 of Riaza (2002) states that the spectrum of this
matrix pencil contains at least 2p null eigenvalues. It is straight-
forward to show that 	(J∗0) = 	(A1, J∗1) ⊂ 	(AU, J∗U) using the same
method as Proposition 1. As the rank of J∗0 is �r (the dimension of
x), 	(J∗0) contains at least p null eigenvalues. �

Therefore, when analyzing the eigenvalues of the reactive flash
defined by Eqs. (6), (7), and (19)–(21), the dimension of y is 1, and
a single eigenvalue with the lowest absolute value should be dis-
carded. When this is carried out, the correct stability profile shown
in Fig. 1 is obtained in all the cases described previously.

It is important to note that tracking the orbit of these equa-
tions with a standard initial-value problem solver such as MATLAB’s
ode15s will result in serious numerical difficulties at a steady state
due the presence of a singular jacobian matrix there.

3.2. Stabilization of the index-reduced system

Tracing the solution path of an Initial Value Problem that has
been index-reduced is subject to the so-called ‘drift’ phenomena.
The drift in question arises due to the fact that the original algebraic
constraints are lost, and any local errors can be compounded by
integration. One method to address this problem is to project back
onto the original algebraic constraint at each time step (Ascher &
Petzold, 1991). The other widely used method is to stabilize the
invariant manifold defined by the algebraic equations using the
technique of Baumgarte (1972).  This technique has been adapted
further by Ascher, Chin, and Reich (1994) and Chin (1995).  Here,
these techniques are used primarily to stabilize the index reduced
system at the steady states.

As discussed previously, a DAE in the form of Eqs. (2a) and (2b)
can be written as an ODE after one differentiation.

x′ = f (x) − b(x)

(
∂g

∂x
b(x)

)−1
∂g

∂x
f (x) ≡ F0(x) (29)

The stabilized form of this equation is written as

x′ = F0(x) − 
S(x)g(x) (30)

where the real valued stabilization factor 
 is greater than zero
and the function S(x) meets the requirement that (∂g/∂x)S(x) be
symmetric positive definite and also that it have positive (non-zero)
eigenvalues. Some choices for S(x) are

S(x) = b(x)

(
∂g

∂x
b(x)

)−1

(31)

S(x) = ∂g

∂x

T
(

∂g

∂x

∂g

∂x

T
)−1

(32)

S (x) = ∂g

∂x

T

(33)

Eq. (31) is the classic Baumgarte stabilization, whereas Eqs.
(32) and (33) were proposed by Chin (1995).  In the case of the
first two, (∂g/∂x)S(x) is simply the identity matrix, and trivially
meets requirements of symmetric positive definiteness and posi-
tive eigenvalues. However, using Eq. (33) requires that (∂g/∂x) have
full rank.

To numerically implement the stabilization techniques, the ODE
in Eq. (30) can be considered, or alternatively, an index-1 system
defined by

x′ = F0 (x) (34a)

0 = ∂g

∂x
(f (x) + b(x)y) + 
S(x)

∂g

∂x
g(x) (34b)

Eq. (34b) is obtained by differentiating the algebraic constraint
0 = g(x), substituting in Eq. (30), and noting that (∂g/∂x)F0(x) = 0.
The need for requiring that (∂g/∂x)S(x) be symmetric positive def-
inite and have positive eigenvalues becomes clear when (34b) is
rewritten as

dg

dt
= −
S(x)

∂g

∂x
g(x) (35)
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and the derivative of the Lyapunov function L(x) = (1/2)gT (x)g(x)
over Eq. (29) is evaluated. It can then be shown that this derivative
is negative in a region around x, and consequently that the invari-
ant manifold defined by g(x) = 0 is asymptotically stable. (See Chin
(1995) for further details.)

For the reactive flash being considered here, stabilization of Eqs.
(31) and (33) were tested at the steady state solutions. With 
 = 1
in all cases, both the index-1 and ODE formulation predicted the
identical stability profile shown in Fig. 1, eliminating all previous
errors caused by the zero-valued eigenvalue. Both stabilizations
were seen to greatly improve the condition number of the jaco-
bian matrix. At a stable point close to the lower turning point, the
unstabilized jacobian had a condition number of 1.38 × 1011 and a
determinant of 2.90 × 10−21. With 
 = 1, Eq. (31) reduced the con-
dition number to 9.29 × 106 and Eq. (33) reduced it to 7.31 × 107.
The same stabilizations increased the determinant to 2.55 × 10−11

and 2.00 × 10−10, respectively, effectively increasing the rank of the
jacobian matrix from 3 to 4.

Values of 
 from 0.1 to 1 × 105 were tested. In the case of sta-
bilization Eq. (31), all values of 
 in this range were successful for

both the index-1 and ODE representations and for the numerical
and analytical jacobians. For stabilization Eq. (33) used with the
index-1 formulation, values of 
 in the range [0.1, 1 × 105] were
also successful. However, for the ODE formulation, the predicted
stability was calculated to extend very slightly beyond the upper
turning point when 
 was greater than 1000. Fig. 5 shows the
calculated stability profile using 
 = 5000 and with the jacobian
evaluated using central differences with ε = 10−10. It can be seen
by comparing Figs. 5 and 4 that while the results are considerably
more accurate, the choice of 
 cannot be entirely arbitrary. A simple
algorithm to determine a suitable value for 
 is as follows:

(a) Generate stabilized path with initial value of 
0 = 1.0
(b) Re-generate the same path with 
0/4 and 4
0.
(c) If the predicted stability profiles are not identical, set 
0 = 2
0

and return to step (a). Otherwise, accept 
0 as an appropriate
choice.

4. An alternative generalized index reduction

When considering an adiabatic, constant pressure flash with an
isomerization reaction A → B, Rodriguez et al. (2001) obtained an
expression for the dynamic evolution of the vapor fraction � by
exploiting the fact that the liquid (and vapor) mole fractions could
be written as a function of temperature alone. This technique can
be generalized to the n component, r reaction system defined by
Eqs. (6)–(8) by first noting that xn−1 can be written as a function of
T, P, x1.xn−2. Therefore, at constant pressure, the time derivative of

xn−1 can be written as

dxn−1

dt
= ∂xn−1

∂x1

dx1

dt
+ ∂xn−1

∂x2

dx2

dt
+ · · · + ∂xn−1

∂xn−2

dxn−2

dt
+ ∂xn−1

∂T

dT

dt
(36)

Substituting Eqs. (6) and (7) into (36), first noting that Raoult’s
law dictates that

∂xn−1

∂xj
= Kn − Kj

Kn−1 − Kn
(37)

∂xn−1

∂T
=

(Kn−1 − Kn)(−(dKn/dT) +∑i=1
n−2((dKn/dT) − (dKi/dT)))

(Kn−1 − Kn)2

−
(1 − Kn +

∑i=1
n−2xi(Kn − Ki))((dKn−1/dT) − (dKn/dT))

(Kn−1 − Kn)2
(38)

allows the following equation to be generated, which is solved to
obtain an expression for �

1
�

⎛
⎝zn−1 − xn−1 − �(Kn−1xn−1 − xn−1) − �

⎛
⎝xn−1

r∑
j=1

vT,jrj −
r∑

j=1

vi,jrj

⎞
⎠
⎞
⎠

= ∂xn−1

∂x1

1
�

⎛
⎝z1 − x1 − �(K1x1 − x1) − �

⎛
⎝x1

r∑
j=1

vT,jrj −
r∑

j=1

v1,jrj

⎞
⎠
⎞
⎠+ · · ·

+ ∂xn−1

∂xn−2

1
�

⎛
⎝zn−2 − xn−2 − �(Kn−2xn−1 − xn−2) − �

⎛
⎝xn−2

r∑
j=1

vT,jrj −
r∑

j=1

vn−2,jrj

⎞
⎠
⎞
⎠

+ ∂xn−1

∂T

1
�Cp

⎛
⎝
⎛
⎝hfeed + q − hliq − hliq�

r∑
j=1

vT,jrj

⎞
⎠+ �

�Cp
(hliq − hvap)

⎞
⎠

(39)

When applied to the ethylene glycol reactive flash example, the
resulting system is an ODE in three variables, xA, xB and T. (For all
index-reductions carried out here, a valuable error check is avail-
able by comparing the vapor fraction of the original system and the
one solved for during the system reduction. In all cases tested here,
they were found to be identical to at least 10 digits of accuracy.)
The dimension of this ODE is appropriate for the original index-2
system and it is unnecessary to discard any eigenvalues when using
it to check stability.

Figs. 6 and 7 show the predicted stability profile generated when
the path is tracked with the same variables as in the previous
section and with the jacobian evaluated with the central differ-
ence formula using ε values of 10−6 and 10−8. As can be seen in
these graphs, the resulting stability profile inaccurately extends
the region of stability beyond the lower turning point. When the
jacobian is determined analytically (again requiring considerable
effort), the correct stability profile is generated. It is interesting to
note that in regions where the numerically generated jacobian with
ε = 10−8 incorrectly predicted stability, the maximum relative error
in the jacobian was less than 2 × 10−8. As with the index reduction
in the previous section, the resulting jacobian was very badly con-
ditioned. Unfortunately, the stabilizations used previously do not
apply to this index reduction.

Numerical evidence of the instability of steady states with a
positive real eigenvalue is provided when the orbit of the index-2
system is tracked using APMonitor (Hedengren, 2012). Fig. 8 con-
tains the dynamic profile generated from the three steady states at
� = 500 when feed rate is suddenly increased so that the time con-
stant is reduced to 480. As expected, the upper and lower steady
states move to the corresponding steady states nearby, whereas
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Fig. 5. (a and b) ODE formulation. Jacobian via central difference with ε = 10−10. Sta-
bilization using Eq. (33) with 
 = 5000. Temperature curve shows that the predicted
set  of stable solutions incorrectly moves beyond turning point at this large value of
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Fig. 6. ODE generated by ‘Rodriguez’ index reduction. Jacobian via central difference
formula with ε = 10−6.
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Fig. 7. ODE generated by ‘Rodriguez’ index reduction. Jacobian via central difference
formula with ε = 10−8.
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Fig. 8. (a and b) Dynamic evolution of reactive flash from steady states at � = 500 to
new steady state at � = 480.

the middle steady state falls to the lower steady state on a dif-
ferent segment of the bifurcation path. This middle solution was
incorrectly predicted by index reduction methods to be stable in
Figs. 6 and 7.

5. Reactive distillation example

Direct evaluation of system stability for a larger reactive
distillation model can be demonstrated with an idealized three-
component reactive distillation model presented by Luyben and
Yu (2008).  The reversible reaction under consideration was
A + B � C.

The base case column consisted of 16 total stages, including the
reboiler and condenser. As the desired product C was the heaviest
of the three, the column was operated at infinite reflux, essentially
reducing the degrees of freedom for column operation to 1. The
reaction was  confined to occur in stages 2–10 only (with condenser
labeled as stage 1) by specifying the molar holdup as 1000 mol
on these stages and zero elsewhere. Reaction rate on each stage
is given by

rj = kfwdxAxB − krevxC

kfwd = 6.73624 × 1015 exp

(
− 30

RgTj

)

krev = 3.18051 × 1020 exp

(
− 40

RgTj

) (40)

The reaction rate equation above requires that the equilibrium
constant Keq, has a value of 20.0 at T = 366 K. The activation ener-
gies of the forward and reverse reactions are 30 and 40 kcal/mol,
respectively and the heat of reaction is −10 kcal/mol.
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Table 2
Data used for reactive distillation model.

A B C

Antoine coeff. Aj(pSAT bar) = A − B/(T◦K) 12.34 11.65 10.96
Antoine coeff. Bj 3862 3862 3862
Heat of formation (kcal/mol) 0 0 −10
Heat of vaporization (kcal/mol) 6.944 6.944 6.944
Feed rate to column (mol/s) 12.63 12.82 0
Feed stage location 10 2 –
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Fig. 9. Steady state stability profile of reactive distillation model.

Feeds of component A and B are not quite equimolar, but set
at 12.63 mol/s and 12.82 mol/s, respectively. Vapor–liquid equilib-
rium is evaluated using Raoult’s law and the specific enthalpy is
calculated using Eqs. (17) and (18) with sensible heat neglected in
both the vapor and liquid phases. Table 2 contains the remaining
data used to determine a steady state for their base case.

The molar boilup required to obtain the stated target compo-
nent mole fraction of C of 0.98 was calculated to be 62.476 mol/s
(compared to a value of 62.03 given by Luyben & Yu (2008)). Fixing
the boilup at this rate, and solving the set of nonlinear equations
using a global Newton homotopy method resulted in two  additional
steady states being identified with mole fraction of component C
in the bottoms exit stream of 0.9806 and 0.9102.

To identify the stability of these steady states, the generalized
eigenvalues of the matrix pencil were evaluated at these steady
states. As the liquid heat capacity and the liquid holdup of the non-
reactive stages were both set to zero and the liquid holdup on the
reactive stages is constant, the only dynamic equations for this sys-
tem are the mass balances for components A and B on the reactive
stages. Using the standard MESH equations the dynamic represen-
tation of this column is an index-2 DAE containing 18 differential
equations and 126 algebraic constraints.

Fig. 9 shows the stability profile across a range of reboiler boilup
rates. The maximum real value of the generalized eigenvalues at
each steady state was seen to change sign at the turning point
on the upper segment of the graph, and remained negative on
the entire lower unconnected segment. This would suggest that
this theoretical column could fall from the desired high conversion
steady state to a stable lower conversion segment of the path if
the boilup rate was reduced below 62.44 mol/s. The stability of this
lower segment would eliminate the possibility of returning to the
high conversion steady state by simply increasing the boilup rate
again, but would instead require a reduction of the feed rate of both
A and B.

6. Conclusions

The most robust and accurate method to determine the sta-
bility of a steady state of an index-2 DAE in Hessenberg form is
to directly evaluate the generalized eigenvalues of the linearized

system. This can be carried out by steady state simulators with-
out the need for any dynamic modeling. This method was  applied
to specific reactive flash and reactive distillation problems to accu-
rately identify stable and unstable steady states. The equations pre-
sented to model reactive flash and reactive distillation problems are
in Hessenberg form regardless of the number of chemical species or
the number of chemical reactions or their stoichiometry. When an
index-2 DAE is reduced to an ODE by a single differentiation as in
Section 3, the resulting jacobian matrix will have a null eigenvalue
at every steady state with multiplicity of at least the dimension
of y (the implicit time varying variable). These null eigenvalues
must be accounted for when determining the stability of a steady
state. The ill-conditioning caused by the null eigenvalues can be
substantially improved by applying one of the stabilization meth-
ods described in Section 3.1. These stabilizations are not applicable
when the index reduction is obtained by alternative differentia-
tions such as that described in Section 4. While this index-reduction
does not necessarily have a null eigenvalue at a steady state, the
problems generated by badly conditioned jacobians still exist, with
even minor errors in this matrix resulting in incorrect stability
predictions.
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