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1. Introduction
When a shear wave propagates near vertically through a transversely isotropic medium with a horizontal 
axis of symmetry, it splits into two quasi-shear waves with orthogonal polarization orientations and differ-
ent wave speeds (Ando, 1980). Shear wave splitting (SWS) is a direct manifestation of azimuthal anisotropy 
which can be quantified by the polarization orientation of the fast wave (fast orientation or φ) and the 
arrival time difference between the fast and slow waves (splitting time or δt). Laboratory and observational 
studies suggest that azimuthal anisotropy developed in the upper continental crust can generally be divided 
into two categories based on its formation mechanism. The first is stress-induced anisotropy from prefer-
entially aligned fluid-filled microcracks that are mostly parallel to the maximum horizontal compressive 
stress direction (SHmax; Cao et al., 2019; Crampin & Booth, 1985; Crampin, 1987; Piccinini et al., 2006; 
Yang et al., 2011), and the second is structure-induced anisotropy that is mostly from fluid-filled fractures 
along fault zones (Cochran et al., 2020, 2003; Gao et al., 2019; Li et al., 2014; Zinke & Zoback, 2000), aligned 
terrane minerals (Okaya et al., 2016), and sedimentary layering (Audet, 2015). While it is a common practice 
in previous SWS studies to present station-averaged splitting parameters and interpret the measurements 
under the assumption that a single anisotropy-forming process dominates beneath a given station, some 
studies (e.g., Ando et al., 1980; Audoine et al., 2004; Graham et al., 2020; Zinke & Zoback, 2000) report in-
dividual measurements and explore spatial variations of the observed splitting parameters for the purpose 
of delineating the three-dimensional (3-D) distribution of anisotropic properties, a practice that is adopted 
in this study.

Owing to its high seismicity rate and structural complexity, the San Jacinto Fault Zone (SJFZ) of southern 
California, which is a constituent of the San Andreas fault system and is composed of the Buck Ridge Fault 
(BRF) and Clark Fault (CF) in the study area (Figure 1), is an ideal natural laboratory for applying the 

Abstract To discern spatial and explore possible existence of temporal variations of upper crustal 
anisotropy in an ∼15 km section of the San Jacinto Fault Zone (SJFZ) that is composed of the Buck 
Ridge and Clark faults in southern California, we conduct a systematic shear wave splitting investigation 
using local S-wave data recorded by three broadband seismic stations located near the surface expression 
of the SJFZ. An automatic data selection and splitting measurement procedure is first applied, and the 
resulting splitting measurements are then manually screened to ensure reliability of the results. Strong 
spatial variations in crustal anisotropy are revealed by 1,694 pairs of splitting parameters (fast polarization 
orientation and splitting delay time), as reflected by the dependence of the resulting splitting parameters 
on the location and geometry of the raypaths. For raypaths traveling through the fault zones, the fast 
orientations are dominantly WNW-ESE which is parallel to the faults and may be attributed to fluid-filled 
fractures in the fault zones. For non-fault-zone crossing raypaths, the fast orientations are dominantly 
N–S which are consistent with the orientation of the regional maximum compressive stress. A three-
dimensional model of upper crustal anisotropy is constructed based on the observations. An increase in 
the raypath length normalized splitting times is observed after the 03/11/2013 M4.7 earthquake, which 
is probably attributable to changes in the spatial distribution of earthquakes before and after the M4.7 
earthquake rather than reflecting temporal changes of upper crustal anisotropy.
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SWS technique to investigate the spatial distribution and possible temporal variation of crustal anisotropy 
in the seismogenic zone associated with active strike slip faults (Mizuno et al., 2005). Both the BRF and 
CF are right-lateral strike-slip faults dipping toward the NNE (Figure 1b; Ross et al., 2017; Sharp, 1967), 
with a strike of about 115° (WNW-ESE) counted clockwise from the North and a GPS-determined slipping 
rate of 10–16 mm/year for the CF (Tymofyeyeva & Fialko, 2018) and 3.4–4 mm/year for the BRF (Onder-
donk et al., 2015). The direction of SHmax determined by earthquake focal mechanisms is N–S (Heidbach 
et al., 2018). The main seismogenic zone for the CF has a depth range of 4–15 km, while that for the BRF is 
about 5–12 km (Figure 1b). In the study area, the two largest earthquakes over the past 20 years occurred on 
06/12/2005 and 03/11/2013, with magnitudes of 5.2 and 4.7, respectively, both along the BRF (Figure 1a). 
By analyzing the seismicity distribution and focal mechanism solutions, Ross et al. (2017) observe a broad 
damage zone on the top 5 km of the BRF and CF. At the depth of 8–16 km, a complex active zone that 
consists of mixed strike-slip and normal fault in the area between the BRF and CF is also observed. They 
assume that the broad damage zone on the top 5 km is dominantly associated with the ongoing regional 
deformation, and the deeper structures are mainly caused by ductile deformation.

Li and Peng (2017) measure SWS parameters at more than 400 stations in southern California. At Station 
TRO which is the only station in our study area measured by Li and Peng (2017), a WNW-ESE station av-
eraged fast orientation and a station averaged splitting time of 0.109 s are obtained. Li et al. (2015) report 
SWS parameters at four stations in the study area (Figure 1), including ALCY, DW10, TRO (which are used 
in the current study), and SROS (which is not used in the current study due to a limited number of reliable 
observations). The station averaged fast orientations are N–S, N–S, and WNW-ESE, and the splitting times 
are 0.103 s, 0.079 s, and 0.078 s for stations ALCY, DW10, and TRO, respectively. They attribute the N–S 
fast orientations to SHmax, and the WNW-ESE fast orientations to fault-parallel fractures. Boness and Zo-
back (2006) measure SWS at 86 stations in California with no stations in our study area, and report mostly 
N–S fast orientations in the general area and propose that the N–S oriented SHmax is mostly responsible 
for the observed upper crustal anisotropy in the off-fault regions. Results from previous investigations in 
the study area are mostly presented as station-averaged splitting parameters under the assumption that the 
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Figure 1. (a) Distribution of seismic stations (black triangles), major faults (black solid lines), and earthquakes that occurred from 1/1/1981 to 12/31/2017 (red 
dots) relocated by the Southern California Earthquake Data Center (https://scedc.caltech.edu/). The rose diagram shows the distribution of the orientation of 
the maximum horizontal compressive stress in the mapped area (Heidbach et al., 2018). The green star in the middle and the purple star in the upper left corner 
represent the epicenters of M4.7 and M5.2 earthquakes, respectively. The inset map of southern California shows the study area as a red rectangle inside the 
blue circle. (b) Cross section view for earthquakes (red dots) between the two blue lines in (a) projected to profile AB (dashed line in (a)). The fault planes (black 
lines) are based on Ross et al. (2017). BRF: Buck Ridge Fault. CF: Clark Fault.
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source of anisotropy is directly beneath the stations. As demonstrated below and by numerous previous 
studies conducted elsewhere (e.g., Graham et al., 2020; Zinke & Zoback, 2000), considering the geometry of 
the raypath can provide critical additional information regarding the anisotropy structure and crustal stress 
field for the study area.

In addition to spatial variations of the splitting parameters, temporal variations have been observed in 
some previous SWS studies. Such variations have been mostly attributed to temporal variations in ani-
sotropy-forming processes, including increased magma pressure which can affect the stress orientations 
(Miller & Savage, 2001; Volti & Crampin, 2003), localized stress changes (Gao & Crampin, 2003, 2004; Hi-
ramatsu et al., 2010), and stress and rock physical property changes associated with earthquakes (e.g., Cao 
et al., 2019; Crampin et al., 1990; Gao et al., 1998; Kaviris et al., 2017; Lucente et al., 2010). However, spa-
tial variations of the splitting parameters could be erroneously interpreted as temporal variations owing to 
changes in the location of the seismic sources (Liu et al., 2008b; Peng & Ben-Zion, 2005). In this study we 
take the advantage of the recent availability of a relocated earthquake catalog produced by the Southern 
California Data Center and the high quality waveform data to explore the 3-D spatial and possible temporal 
variations of upper crustal anisotropy in the vicinity of the CF and BRF branches of the SJFZ in southern 
California.

2. Data and Methods
The seismic data used in this study were recorded by three stations (ALCY, TRO, and DW10) over the period 
of 2002–2017 (Figures 1 and 2) and were obtained from the Incorporated Research Institutions for Seismol-
ogy (IRIS) Data Management Center. The relocated earthquake catalog was obtained from the Southern 
California Earthquake Data Center (https://scedc.caltech.edu/), which contains 22,622 magnitude ≥−0.3 
earthquakes in the mapped area of Figure 1a for the period of 1/1/1981–12/31/2017. For the shear wave 
splitting analysis, a total of 11,184 magnitude ≥−0.3 earthquakes occurred during 2002–2017 were used. 
Station DW10 is situated inside the CF zone and provided data from 2012 to 2017; ALCY is located at the 
surface expression of the BRF and the recording period is nearly the same as DW10; and TRO is about 2 km 
northeast of the BRF, and recorded waveform data from 2002 to 2017 (Figures 1a and 2). To minimize the 
distortion of the free surface on the direct S-wave waveforms, only events in the S-wave window, which is 
dependent on the velocity structure beneath the study area, but can be approximately defined by a maxi-
mum incident angle of about 35° (Booth & Crampin, 1985), were used in the study.
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Figure 2. Magnitude −0.3 and greater earthquakes that occurred in the study area. The recording period of each of the 
three stations is shown at the top of the plot.

https://scedc.caltech.edu/
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The original seismograms were bandpass filtered using corner frequencies of 0.5 and 10 Hz. An automatic 
data selection procedure was then applied to reject events with an S-wave signal-to-noise ratio (SNR) less 
than 3.0 on the filtered radial component. The procedure for measuring shear wave splitpleating param-
eters is described in details in Liu and Gao (2013) and is based on the criterion of minimizing the lesser 
of the two eigenvalues of the covariance matrix of the seismograms after the correction for anisotropy 
(Silver & Chan, 1991). The optimal pair of splitting parameters corresponds to the maximum linearity in 
the corrected fast and slow components. In addition to the optimal pair of splitting parameters, the pro-
cedure also searches for the optimal azimuth along which the pre-splitting shear wave is polarized (Silver 
& Chan, 1991). To provide a visual display for evaluating the uniqueness of the optimal pair of splitting 
parameters, the procedure corrects the horizontal components based on both the optimal pair of splitting 
parameters and the optimal azimuth to produce a contour map of the remaining energy on the corrected 
“transverse” component (see plots in the bottom row of Figure 3). Note that the “transverse” orientation 
referred here is the orientation that is orthogonal to the optimal azimuth of pre-splitting polarization which 
is usually different from the orientation of the great circle arc. For ensuring the quality and reliability of the 
automatically obtained results, all the splitting measurements were manually screened to adjust the limits 
of the time window used for splitting analysis to only include robust direct S-wave arrivals. Additionally, the 
ranking determined by the automatic process (Liu et al., 2008a)  was adjusted for some of the measurements 
based on the quality of the signal, linearity of the corrected particle motion pattern, as well as the strength 
and uniqueness of the minimum energy value point on the contour map of the corrected transverse com-
ponent (Figure 3).

3. Results
A total of 1,694 pairs of well-defined splitting parameters, including 530 for ALCY, 926 for DW10, and 238 
for TRO were obtained (Table S1). To illustrate the 3-D distribution of crustal anisotropy, in Figure 4, we plot 
the splitting parameters at the stations (which is the most commonly used approach in previous studies), 
the mid-points between the stations and epicenters, and at the epicenters. Additionally, results from each 
of the stations are displayed separately in Figure 5, where the splitting times are normalized by the length 
of the raypath.

The fast orientations observed at the two fault zone stations, ALCY and DW10, are dominantly N–S, 
while those at the off-fault station (TRO) are mostly WNW-ESE (Figure 4). The average splitting times are 
0.12 ± 0.04, 0.05 ± 0.03, and 0.05 ± 0.03 s for stations ALCY, DW10, and TRO, respectively, and the corre-
sponding raypath length normalized splitting times (NSTs) are 13.55 ± 6.91, 4.77 ± 2.48, and 3.98 ± 2.40 
ms/km, respectively. Note that the value after the plus/minus sign represents one standard deviation of the 
sample.

3.1. ALCY

The majority of the events recorded by Station ALCY on and to the SW of the BRF possess N–S fast orien-
tations, and those to the NE of the BRF demonstrate fault-parallel fast orientations (Figure 5d). The latter 
group of events have larger NST values than those in the former group, with the largest NST values directly 
beneath the station (Figure 5f). The splitting times observed at ALCY are the greatest among all the three 
stations (Figure 5e). The circular mean of the 530 fast orientation measurements is −15.64 ± 24.45°, and the 
mean splitting time is 0.12 ± 0.04 s. Li et al. (2015) report a station dominant fast orientation of 2.5° and a 
mean splitting time of 0.103 ± 0.061 s, which are comparable with our results.

3.2. DW10

Station DW10 has the most SWS measurements (926) which are dominated by N–S fast orientations (Fig-
ure 5g), with a circular mean of −4.14 ± 32.58° and a mean splitting time of 0.05 ± 0.03 s. The fast orien-
tations observed from events to the NE of the CF are mostly N–S, while the prevailing fast orientations of 
events to the SW of the CF are fault-parallel (Figure 5g). No obvious spatial variations of the NST values are 
observed at this station (Figure 5i). For this station, Li et al. (2015) obtained a station dominant fast orien-
tation of 17° and a mean splitting time of 0.079 ± 0.068 s.
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3.3. TRO

The fast orientations observed at Station TRO are dominantly fault-parallel (Figure 5a) with a circular mean 
of −45.09 ± 23.90°, which is comparable to the station dominant result of −67° reported in Li et al. (2015). 
The splitting times range from 0.01 to 0.13 s with an average value of 0.05 ± 0.03 s, and the NSTs range from 
0.64 to 14.69 ms/km with an average value of 3.98 ± 2.40 ms/km. Both the total splitting times and the NSTs 
from events located to the NE of the BRF are larger than those observed from events to the SW side of the 
fault (Figures 5b and 5c).
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Figure 3. Examples of splitting analysis from three seismic stations (a, b, and c). For each column, from the top to the bottom: original and transverse 
components, unshifted and shifted fast and slow components, particle motion patterns, and corrected transverse energy contour map. The solid white circle 
represents the optimal pairs of splitting parameters which correspond to the minimum energy on the corrected component with an orientation that is 
orthogonal to the pre-splitting polarization direction of the shear wave. DT: splitting time.
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Figure 4. Results of shear wave splitting analysis for stations TRO (blue symbols), ALCY (red), and DW10 (green) 
plotted at (a) the stations, (b) the middle points between the epicenters and stations, and (c) the epicenters. The 
orientation of bars reflects the fast orientation, and the length of the bars is proportional to the splitting time. The 
stations are represented by the open triangles.
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4. Discussion
4.1. Three-Dimensional Variations of Upper Crustal Anisotropy

Most previous SWS studies in the study area use station averaged (or station dominant) local S-waves split-
ting parameters to investigate the spatial distributions of anisotropy characteristics, a practice that is inca-
pable of revealing possible raypath dependent splitting parameters associated with the 3-D heterogeneity 
of crustal anisotropy. Additionally, in areas with strong anisotropy heterogeneities like the study area, the 
individual splitting parameters observed at a given station may vary as a function of the azimuth and focal 
depth of the events (Figure 5), as observed by numerous previous studies (e.g., Graham et al., 2020; Zinke 
& Zoback, 2000). Consequently, the station averaged splitting parameters may be biased toward measure-
ments in the most populous event clusters, possibly resulting in misleading implications of the actual aniso-
tropy structure. In this study, on the basis of previously determined fault geometry (Ross et al., 2017) and by 
taking the advantage of the large number of high quality measurements, we build a 3-D anisotropy model 
(Figure 6) that fits the majority of the splitting measurements. Major characteristics of the model include: 
(1) in the vicinity of the two fault zones, the observed shear wave splitting is dominated by structurally 
induced anisotropy with a fault-parallel fast orientation; (2) anisotropy in areas outside the fault zones is 
stress induced with a nearly N–S fast orientation that is parallel to SHmax (Zhang & Schwartz, 1994); (3) 
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Figure 5. Resulting splitting parameters for stations TRO (a, b, and c), ALCY (d, e, and f), and DW10 (g, h, and i) plotted at the epicenters. The left panel shows 
the fast orientations and splitting times, with the color of bars representing the focal depth. The middle and right columns show the total splitting times and 
raypath length normalized splitting times, respectively, which were produced by spatially smoothing the measurements and masking the areas without data. 
The stations are represented by the red triangles.
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the anisotropy strength for both structurally and stress induced anisot-
ropy decreases with depth due to increasing lithostatic pressure (Lin & 
Schmandt, 2014; Nur & Simmons, 1969; Parisi et al., 2018). In the fol-
lowing we attempt to validate the model by comparing the predicted and 
observed splitting parameters for each of the stations, under the approx-
imation that the two types of anisotropy are nearly orthogonal to each 
other in the study area. For a raypath traveling through two regions of 
anisotropy with non-parallel and non-orthogonal fast orientations, the 
observed splitting parameters vary as a function of the back azimuth of 
the raypaths, with a 90° periodicity (Silver & Savage,  1994). When the 
two fast orientations are 90° apart from each other, the resulting splitting 
time is the difference between the individual splitting times of the two 
layers, and the fast orientation is the same as that of the layer with the 
larger splitting time (Pastori et al., 2019; Silver & Savage, 1994). If the two 
fast orientations are close but are not exactly orthogonal to each other, 
such as the scenario for the study area where the stress-induced fast ori-
entation is nearly N–S and the fault zones have an average orientation of 
about 115o clockwise from the North, the aforementioned relationships 
between the observed splitting parameters and those of the individual 
layers still hold for most of the back-azimuths. Note that the 115° fault 
strike was calculated using the coordinates of the two ends of the BRF 
in the area mapped in Figure 1, and local variations of the strike can be 
observed. In particular, some segments of the faults, such as the portion 
near Station ALCY of the BRF and the portion near Station DW10 of the 
CF, are more E–W oriented than the rest of the faults.

4.1.1. Station ALCY

Events that occurred in the area to the SW of the BRF mainly display 
SHmax parallel N–S fast orientations, which can be explained by the fact 
that a large portion of the raypath do not travel through the fault zones 
(Figure 7b) but through the SHmax controlled anisotropic region between 
the BRF and CF. In contrast, raypaths from events located to the NE of 
the BRF are mostly in the fault zone, leading to the observed fault-paral-
lel fast orientations. Relative to the other two stations, the shear waves 
recorded by ALCY only travel through one type of medium, which, when 
combined with the anticipated greater degree of anisotropy near the BRF, 
may explain the large splitting times (Figures 5e and 5f).

4.1.2. Station DW10

For events that occurred between the BRF and CF, the raypaths arrived at Station DW10 mostly traveled 
through the medium affected by SHmax, leading to the observed N–S fast orientations (Figures 5g and 7c). 
On the other hand, raypaths from events located to the SW of the CF are mostly in the fault zone and there-
fore the splitting measurements from these events are dominated by fault parallel fast orientations.

4.1.3. Station TRO

The raypaths of the events located to the NE of the surface expression of the NNE-dipping BRF mainly 
travel through the structurally induced anisotropic medium controlled by the strike slip fault, resulting in 
the observed dominantly fault parallel fast orientations (Figures 5 and 7a). Raypaths from events located 
to the SW of the BRF travel through a deep layer dominated by stress induced anisotropy with a low an-
isotropy strength and arrive at the station after traveling through a shallow layer possessing structurally 
induced anisotropy with a stronger anisotropy strength. Because the fast orientations of the stress induced 
and structurally induced anisotropies are approximately orthogonal to each other and the latter has a great-
er strength, the fast orientations are dominantly fault parallel, as observed. The partial cancellation of the 
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Figure 6. A schematic model showing the three-dimensional distribution 
of anisotropic properties. Areas shaded in orange are dominated by fault-
parallel (WNW-ESE) fast orientations. Anisotropy in the rest of the area 
has a N–S (SHmax parallel) fast orientation and a strength that decreases 
with depth (indicated by the orientation and length of the double-headed 
arrows, respectively). Black dots are events shown in Figure 1b, red dots 
are events used for shear wave splitting analysis, and the green star is the 
location of the M4.7 earthquake projected to Profile AB in Figure 1a.
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splitting times can also explain the greater splitting times observed in the area NE of the BRF relative to the 
SW side (Figures 5b and 5c).

4.2. Apparent Temporal Variations of Splitting Parameters

We next explore possible temporal variations of the splitting parameters, which, if present, could indicate 
changes in the orientation and strength of crustal stress related to an array of important tectonic processes 
such as magma movement and earthquake preparation (e.g., Cao et al., 2019; Gao & Crampin, 2003, 2004; 
Miller & Savage, 2001; Volti & Crampin, 2003). Figure 8 shows the apparent temporal variations of the 
NSTs and the fast orientations observed at the three stations for a 6-year period starting from 2012. Among 
the possible changes, the most significant one is the NST values observed at ALCY before and after the 
03/11/2013 M4.7 earthquake, from ∼5 ms/km before the earthquake to ∼20 ms/km afterward (Figure 8c). 
An increase in the NST values with a smaller magnitude is also observed at Station TRO (Figure 8a). Over 
the several years following the M4.7 Earthquake, the NST values for both stations decreased gradually and 
eventually reached the pre-earthquake level. Such a variation, if it is real, could imply the development and 
healing of fractures associated with the M4.7 earthquake.

To assess whether the apparent temporal variations of the splitting parameters are caused by temporal 
changes of the locations of the earthquakes (Liu et al., 2008b; Peng & Ben-Zion, 2005), in Figure 9 we plot 
the splitting parameters in a 1-year time window before and after the M4.7 earthquake. Before the earth-
quake, the splitting measurements obtained at Station ALCY are mostly from events located to the SW of 
the BRF (Figure 9c). The focal depths of the events are mostly greater than 10 km. Immediately after the 
earthquake, the splitting measurements obtained at this station are mostly from shallower events (which 
are dominantly aftershocks of the M4.7 main shock) located on or to the NE of the BRF (Figure 9d). Because 
the total splitting times for the two groups of events are approximately the same (Figure 5e), the shallower 
events following the M4.7 main shock resulted in larger NSTs. Therefore, the apparent large increase in the 
NSTs after the M4.7 earthquake observed at ALCY (Figure 8c) is mostly caused by the change of earthquake 
locations and focal depths. For Station TRO, although such a feature is not as obvious due to the fewer 
number of measurements (Figures 9a and 9b), it is clear that the observed apparent NST variation at this 
station is also the result of spatial changes of event locations after the M4.7 earthquake. Some events with 
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Figure 7. Cross-section views of the schematic model shown in Figure 6 for stations (a) TRO, (b) ALCY, and (c) DW10. Dots are events with SWS 
measurements, and the colors of the dots indicate the fast orientations.
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large NSTs occurred in the area to the NE of the BRF in the 1-year window after the M4.7 earthquake (Fig-
ure 9b), while almost all the measurements for the pre-earthquake 1-year window were located to the SW 
of the fault (Figure 9a).

5. Conclusions
Systematic spatial variations of upper crustal anisotropy are observed by utilizing 1,694 pairs of splitting 
parameters using shear waves from local earthquakes recorded by three stations situated in the vicinity 
of the BRF and CF. The vast majority of the fast orientations are either WNW-ESE which is parallel to 
the strike of the faults, or N–S which aligns with the orientation of the maximum horizontal compressive 
stress. The observed spatial variations of the fast orientations and the splitting times can be satisfactorily 
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Figure 8. Temporal variations of the observed NSTs (left column) and fast orientations (right column) for Station (a) and (b) TRO, (c) and (d) ALCY, and (e) 
and (f) DW10. The red dots are individual measurements, and the blue dots with error bars are averaged measurements in 0.1-year windows. The red arrow 
indicates the M4.7 earthquake. NSTs, normalized splitting times.
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explained by a 3-D model which is composed of a zone of fracture-controlled anisotropy adjacent to the 
faults, and areas of regional stress affected anisotropy away from the fault zones. The strength of both types 
of anisotropy decreases with depth. Temporal variations of the splitting parameters are observed at two of 
the stations, which are mostly caused by temporal variations of the earthquake foci rather than reflecting 
temporal changes of anisotropy characteristics. The study demonstrates the feasibility of using a large num-
ber of splitting measurements to delineate spatial and possible temporal variations in crustal anisotropy and 
associated geodynamic processes.

Data Availability Statement
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