
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Chemical and Biochemical Engineering Faculty 
Research & Creative Works 

Linda and Bipin Doshi Department of Chemical 
and Biochemical Engineering 

15 Jan 2014 

Environmental Stress Cracking of Glassy Polymers Environmental Stress Cracking of Glassy Polymers 

Parthasakha Neogi 
Missouri University of Science and Technology, neogi@mst.edu 

Gholamreza Zahedi 

Follow this and additional works at: https://scholarsmine.mst.edu/che_bioeng_facwork 

 Part of the Biochemical and Biomolecular Engineering Commons 

Recommended Citation Recommended Citation 
P. Neogi and G. Zahedi, "Environmental Stress Cracking of Glassy Polymers," Industrial and Engineering 
Chemistry Research, vol. 53, no. 2, pp. 672 - 677, American Chemical Society, Jan 2014. 
The definitive version is available at https://doi.org/10.1021/ie403201a 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Chemical and Biochemical Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/che_bioeng_facwork
https://scholarsmine.mst.edu/che_bioeng_facwork
https://scholarsmine.mst.edu/che_bioeng
https://scholarsmine.mst.edu/che_bioeng
https://scholarsmine.mst.edu/che_bioeng_facwork?utm_source=scholarsmine.mst.edu%2Fche_bioeng_facwork%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/241?utm_source=scholarsmine.mst.edu%2Fche_bioeng_facwork%2F1922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1021/ie403201a
mailto:scholarsmine@mst.edu


Environmental Stress Cracking of Glassy Polymers
Parthasakha Neogi* and Gholamreza Zahedi

Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States

ABSTRACT: When a glassy polymer is exposed to an organic solvent, it can crack spontaneously or fail more readily under
extension. This is environmental stress cracking. When the solvent diffuses into the polymer, stresses develop because of swelling
of the polymer. In addition, fluctuations give rise to stresses, because of the variation in surface tension from changes in the
surface concentration of the solute, which is the Marangoni effect. A linear stability analysis is performed to show that such a
system is unstable to infinitesimal disturbances. Large tensile stresses arise locally, leading to failures, which will be observed in
the interfacial region of the solid. In particular, the unstable disturbances of smaller wavelengths grow faster. This is consistent
with the observation that the microscopic cracks that emanate from the surface are more profuse in cracks that are more closely
spaced as seen in experiments.

■ INTRODUCTION

When a solid polymer is exposed to a vapor or a liquid, it can
crack spontaneously or fail at low extension. In most cases, the
polymer is glassy and the fluid is a solvent for polymer. One
example is shown in Figure 1. Commercial poly(methyl
methacrylate) (PMMA) was dipped into liquid acetone for a
short period and then dried and kept on a filter paper
overnight. The result was severe cracking, and the phenomenon
is the most common case of environmental stress cracking.1,2 A
look at the failures shows that it has a characteristic length scale
associated with the distance between visible cracks that are not
fully random. There are actually two sets of cracks, one for each
surface. If the cracks emanate from the surface, then the density
of the cracks on the surface becomes very important in the
failure of the material,3 where such cracks do not have to be
deep. Thus, a high density of surface cracks could also explain
the easier material failure upon extension.4 Environmental
stress cracking constitutes a way in which polymeric materials
get compromised and limit their use. The recent review by
Robeson5 shows that environmental stress cracking has
remained an important problem; it discusses the preventive
methods used and new types of environmental stress cracking
encountered particularly on new polymers. However, not much
in quantification has been added beyond Bernier and
Kambour’s4 correlation with solubility parameters. Use of
stresses in understanding sorption in polymer membranes is
not new. The basic scheme is available in Larche ́ and Cahn6

and has been developed or adapted variously to study
anomalous sorption in glassy polymers.7−13

From the point of view of visualizing the phenomenon,
Kambour14 suggested that, when a solute enters the polymer,
the stress concentration at the interface between swollen and
unswollen polymer increases, causing the cracks. Most
suggested mechanisms on environmental stress cracking rely
on the match between the solubility parameters of the polymer
and the fluid.4,15−18 That is, Bernier and Kambour4 plotted the
ease of failure for a fixed polymer treated with various liquids, in
the form of extension at which failure takes place ε versus the
solubility parameter δ. They observed ε to have a minimum in
δ. Some researchers have integrated the mechanics of crack

growth to the solubility parameters.19,20 Yet others have related
the crack growth to diffusion of the fluid molecules into the
polymer.21 No quantitative model exists that couples stresses to
the mass-transfer process.
The mechanism that couples the effects of surface tension to

stresses that are generated spontaneously is given below. It is
known that the surface tension is a function of local
concentration and can give rise to interfacial instability, called
the Marangoni instability. Existing problems deal with liquid-
fluid systems.22 The mechanism has been extended here to
cover fluid−solid systems. When the system is unstable, large
stresses can be generated locally and lead to failure. Thus, the
effects of surface tension have been added to the existing
coupled problem between mass transfer and stress.6 The
dynamics of solids is well-known and much of the details,
where they follow the work of Kolsky,23 have been omitted.

Base Case. The constitutive equation is the Kelvin or Vogt
model. The key difference introduced by Larche ́ and Cahn6 is
that the strain tensor is given by

= +E E Em c (1)

where Em is the mechanical part of the deformation and Ec is
the deformation due to the chemical part and is generally taken
to be isotropic:

= trE E I
1
3

( )c c
(2)

where the trace tr(Ec) = ΔVc/V0, where ΔVc is the change in
volume due to swelling and V0 is a reference volume. The trace
is usually set to ω(c − c0), where ω is a constant. Furthermore,
setting the reference state as that of the dry polymer leads to ωc
only where c is the concentration of the solute. It is the form Em

= E − Ec that is used in the constitutive equation to obtain
stress, which is then used in the momentum balance equation.
The strain, in terms of deformation u, is given as
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= ∇ + ∇E u u
1
2

[ ( ) ]T
(3)

and eventually the momentum balance equation becomes

ρ λ λ μ μ

λ λ μ μ ω
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∇ + ∇ ∇·

− + ∂
∂

+ + ∂
∂

∇

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

t t t

t t
c

u
u u u( ) [ ( )]

2
3

v v

v v

0
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(4)

where the Lame ́ constants λ and μ were defined as follows:

λ =
+ −

vE
v v(1 )(1 2 )

and

μ =
+
E

v2(1 2 )

where E is the Young’s modulus and ν is the Poisson’s ratio.
Furthermore, μv is the bulk shear viscosity (μv = η) and λv = κ −
(2/3)η, given that κ is the bulk dilatational viscosity.
A conservation of species equation in the solid is also needed,

in the form

∂
∂

+ ·∇ = ∇· ∇c
t

c D cv ( )s (5)

where the velocity v = ∂u/∂t and the diffusivity in the solid (Ds)
is strongly concentration-dependent.

We need boundary conditions, and that is where the effects
of surface tension comes in.22 Kolsky23 provides the solution to
eq 4 (less the concentration effects) in the form of waves that
do not show instability in the form of growing stresses. We feel
that the introduction of the surface tension into the problem
will do so. It is this solution that is considered in the next
section.
Figure 2 shows the interface given by z = 0 and the

coordinate system with solid (s) on one side and fluid (f) on
the other. The fluid can be a solution containing the solute or
the solute in pure form. Interest here lies in the very short time
following the initial contact. The concentration of the solute in
the bulk fluid is cb or cb

0 if pure. The solution to the mass-
transfer problem is straightforward and leads to a flux N:

π π= + +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥c N

t
D Kk K

t
D

1 1
(0)i

b
f s (6)

where the boundary condition at the solid/liquid interface is

= −N k Kc c( )i i is (7)

where 1/ki is the interfacial mass-transfer resistance. If 1/ki = 0,
then local equilibrium takes place at the interface as K is the
equilibrium partition coefficient. Equation 6 also applies when
the fluid phase is pure, in which case, the left-hand side
becomes cb

0 and Df is set to infinity.
Stability Analysis. The effect of fluctuations is now

considered. These fluctuations occur in all quantities and are
related to each other through conservation equations and

Figure 1. Photograph of commercial poly(methyl methacrylate) (PMMA) contacted with acetone, leading to failure. The scratches on the surface
were made to determine if the cracks on the surface had any depth (they apparently do not). Besides the visible cracks, the surfaces contain many
more microscopic cracks. The width of the sample is 3.1 mm.

Figure 2. The coordinate system and the nature of the key forces at the surface.
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boundary conditions. Fluctuations are assumed to change
rapidly and take place over small length scales such that the
base case described above remains unchanged. All fluctuations
that are very small and allow linearization are confined to the
interfacial region and decay in the interiors. The linear
differential equations that result are solved in a straightforward
manner. Consider first the fluctuations in concentration. The
diffusivity in the fluid is assumed to be large, thus diffusion will
restore any fluctuation in concentration to the base value cb and
is omitted from consideration. The fluctuating quantities will be
denoted by primes. Hence, cs = cs̅ + cs′ and eq 7 becomes

′ = − ′ = − ′ −
∂ ̅
∂

· ′N k Kc c k c k
c
z

z( )i i i i ib s s
s

(8)

where z′ is the new position of the interface. Equation 5 is
similarly perturbed and simplified with a diffusivity

= αD D e c
s 0

s (9)

as is the boundary condition that ucs·n − n·Ds∇cs = N, where n
is the unit normal to the interface.
We carry out the perturbations along with the assumed

solution in the form

′ = χ βc a z( )e ei y t
s (10)

′ = χ βu b z( )e ez
i y t

(11)

where i = √−1 and z′ = uz′ at z = 0, and we obtain, from eq 5,
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s
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where primes denote differentiation with z. It is assumed that
the fluctuations change spatially much faster than the base
quantities; hence, the derivatives of cs̅ in z are treated as
constants. The solution is substituted into the boundary
condition described by eq 8, which becomes

β α
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2
(13)

An additional simplification of setting eαc = 1 has been made at
the very end of the calculations to arrive at the above two
equations.
As a preview, we note that the final goal is to determine β. If

the rate of growth β is positive, then the system is unstable to
very small disturbances, as those will grow with time. If it is
negative, then the system is stable. χ, which is the wavenumber
of disturbance, is given as χ = 2π/(wavelength of the
disturbance).
The momentum equation (eq 4) is solved by taking

divergence and curl to get two differential equations for
dilation and shear,22 which are taken, respectively, to be

Φ = χ βde ei x t (14)

Ψ = χ βf e ei x t
(15)

where d and f are unknown functions of z. These equations are
solved and substituted in the boundary conditions below.

The two key boundary conditions are of normal stress
balance
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and the shear stress and stress balance is

σ μ μ γ′ = + ∂
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(17)

where γ is the surface tension, which multiplies the approximate
form of curvature suitable for small displacements and γc = ∂γ/
∂c (which is assumed to be a constant), is usually negative. Both
eqs 16 and 17 are evaluated at z = 0 and the surface tension and
mass-transfer terms have been introduced for the first time in
the problem of surface waves discussed by Kolsky.23

Solution. The resulting problem is very large and some
simplifications are sought to enable us to interpret the results
more closely. One of them is ∂cs̅/∂z and ∂

2cs̅/∂z
2 are neglected

and λv and μv are set to zero. The results obtained hold only for
short times and do not contain any damping effects since the
viscosities have been removed. The solutions to the differential
equations lead to

= −a A e qz
2 (18)

= +− −d A Ae enz qz
3 4 (19)

= −f A e mz
1 (20)

and

χ= ′ −b d i f (21)

where A1, A2, and A3 remain unknown and A4 = ΛA2, where

ω
β β

Λ ≈
+D s
(2/3)

( / ) (8/3)( / )0
2 2

with s2 = E/ρ. In addition,
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n
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2
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m
( )v

2 2
2

The result, when using the boundary conditions, can be written
as

̲ = ̲aA 0 (22)

where a is a 3 × 3 matrix and A̲ is a column vector of A1, A2,
and A3. For the solution to be nontrivial, the determinant of a
must vanish. This leads to

=adet( ) 0 (23)

which gives us the dispersion equation of β(χ).
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The issue is now to calculate the value of β. The usual
practice is to nondimensionalize the dispersion equation and
solve for dimensionless β as a function of dimensionless χ.
However, there are many parameters (dimensionless groups) in
the system that make it very difficult to interpret numerical
results. Another procedure is to set β = 0 and calculate the
value of χm for this marginal stability case. However, the
dispersion equation contains imaginary terms, hence χm will be
complex, making it again difficult to analyze the result. It is
possible to show that there are two very disparate length scales
(or time scales). One of these arises from the slow diffusivity
D0, and the other results from the fast speed of sound s; hence,
q is approximated as q ≈ (β/D0)

1/2 and Λ has also been
approximated. These are all the approximations that can be
made. It becomes important to scan wavelengths from the large
wavelength to the small wavelength. Numerical results and
what they predict are discussed next.

■ RESULTS AND DISCUSSION
We assume a diffusivity of D0 ≈ 10−6 cm2/s,24 E ≈ 3 × 109 N/
m2, and ν = 1/3 for glassy polymers,25,26 with a density of ρ ≈
0.8 g/cm3. These values lead to an estimate of s ≈ 1.87 × 105

cm/s and LD = (8/3)1/2D0/s ≈ 5.3 × 10−12 cm. Taking γ ≈ 30
mN/m27 gives Lγ = γ/E ≈ 1.07 × 10−9 cm. If a low
concentration on the surface is ∼100 mM, then csi with a
molecular weight of 70 is 7 × 10−3 g/cm3, and with ω ≈ 0.62 in
mass units,28 ωcsi ≈ 4.34 × 10−3. A value of γ ≈ 30 mN/m has
been used to calculate Lγ above, but γ for the solid−liquid
system, a value of γ ≈ 5 mN/m is used to calculate
dimensionless p = γccsi/γ = Δγ/γ, using a value of Δγ ≈ −1
mN/m. Thus, p ≈ −0.2. Finally, we assume a value of ki ≈ 10
m/s, which is a very large quantity.29

Since χ is the wavenumber of the disturbance, it should range
from 1 cm−1 to 108 cm−1, with corresponding wavelengths of
6.3 cm to 6.3 × 10−8 cm, such that the sample size is not
exceeded nor are molecular dimensions crossed. For a given χ,
we have looked for those values of dimensionless β of κ = (8/
3)1/2 β/(χs), where Re(κ) > 0 using Matlab. Only one such
value (and sometimes none) could be found, as shown in
Figure 3. The wavenumber χ where β ∝ κχ is the largest, is
∼87 000 cm−1, leading to a wavelength of 110 nm, which is less
than the wavelength of visible light, although disturbances of
larger wavelengths, which are of importance from a practical
point of view, are also shown to be unstable but grow very
slowly. The trend that the disturbances of small wavelengths
grow faster, is clear.
When the strength of the surface tension gradient p ≈

−0.033 is decreased by a factor of 6, the rate of growth
decreases by 5 orders of magnitude (compare Figures 3 and 4).
It should be mentioned that Figure 4 involves a lower value of
ki ≈ 1 cm/s which should increase the rate of growth of
instability as large ki tends to suppress fluctuations in surface
concentrations. Nevertheless, this feature is overshadowed by a
decrease in the magnitude of p. We find that p and ∂γ/∂c = γc
are required to be negative for the instability to take place and
vanishes when they reach zero.
Now, however, the swelling introduced by the solute

generates compressive stresses,8 as can be ascertained by the
negative stress. Such a stress can cause buckling of the interface.
Although we have not investigated this mode of instability, we
have ascertained that, when ω = 0, there is no swelling and
Marangoni instability still takes place. In fact, it has been shown
that, with swelling, stresses can be actually relieved,9 because

the lowered Young’s modulus, which is due to the presence of
the solute, allows much larger deformations without raising the
stress.
The regions to the right in Figures 3 and 4 have no solutions.

This is the stabilizing influence of surface tension which,
however, is not very effective, because γ is so low and E is so
large. Disturbances of large χ (small wavelengths) greatly
increase the interfacial area and the surface free energy, and the
surface tension acts to eliminate these disturbances. If we look
at γ/E, its gives us a representative length scale over which
these two forces balance each other: ∼10−9−10−8 cm. This is
the wavelength below which the system should be stable. We
find the system to be well-stabilized above this value (∼10−5 or
2 × 10−5 cm, below which no unstable solutions could be
found). On the other side, the disturbances of χ in the 1−100
cm−1 range, where effects are visible to the naked eye, are also
unstable, but their rates of growth are very small for both cases.
Experimental observation that the cases where the gap

between adjacent cracks is the smallest (<1 mm) is most

Figure 3. The rate of growth β is proportional to κχ, the real part of
which has been plotted against the wavenumber χ. There is only one
such root for κ, where the real part is positive. For many values of χ,
there is no such root. The region on the right-hand side shown here
has no such roots. Here, p = −0.2 and ki/D0 = 109 cm−1.

Figure 4. Similar to Figure 3, the real part of κχ has been plotted
against χ. Here, p = −0.033 and ki/D0 = 106 cm−1.
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profuse, is reported in the Appendix. The cause of instability is
that the tangential stresses in eq 17 cannot be balanced. This is
shown schematically in Figure 2. Looking at forces shown
there, it is obvious that there are regions of tensile stresses, and
materials fail more readily in tension, leading to cracks. The
distance between adjacent cracks will be the wavelength used
here. Now, as seen in Figures 3 and 4, the fastest growing
wavelengths will be the smallest ones (110 nm in Figure 3). If
we look at a relatively large unstable wavelengths, then two
adjacent cracks will be separated by this large distance.
However, the disturbances of smaller wavelengths will give
rise to many cracks in between making the first pair
undetectable. But no intervening cracks are expected in a pair
of cracks separated by the fastest growth wavelength, that is, the
smallest wavelength. Consequently, if we measure the distances
between adjacent cracks, then these distances will be biased
toward small ones, as seen in the Appendix.
The coupling between mass and momentum persists in eq

13, even when ki is infinite, provided no additional assumptions
are made. With this coupling and the Marangoni effect,
instability is expected, although it has not been pursued here. It
is also possible to suggest that the case considered here also
includes the case where the solute is available in the form of a
solution and not a pure phase. Using local equilibrium for
simplicity, eq 7 is replaced with

= −⎜ ⎟
⎛
⎝

⎞
⎠N k c

c
K

i
L b

s

(24)

where kL is the mass-transfer coefficient on the fluid side and K
is a partition coefficient. Furthermore,

′ = − ′ −
∂ ̅
∂

· ′
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟N

k
K

c
k
K

c
z

z
z z

L
s

0

L s

0 (25)

By comparison with N′ preceding eq 8, we can substitute ki
with kL/K in all the results that follow.
Bernier and Kambour’s4 plot in critical extension ε versus

solubility parameter δ shows a minimum as mentioned earlier,
however, the minimum is asymmetric. The environmental
stress cracking disappears when δ falls below the minimum by
1.5 cal1/2 cm2/3 but survives for ∼10 above this minimum. The
surface tension of a mixture for a very simple system21 can be
written as γ ≈ x1γ1 + xPγp, where x is the mole fraction,
subscript 1 represents the penetrant, and p represents the
polymer. Consequently, ∂γ/∂c ∝ (γ1 − γp). It points to the
dissymmetry mentioned earlier as only negative values of γ1 −
γp gives rise to the environmental stress cracking. There are
many theories that relate the surface tension to the solubility
parameter, common one being γ ∝ δ2 which can be used to
show that ∂γ/∂c ∝ (δ1 − δp) assuming that the two δ values are
not too far apart and using Taylor’s expansion. Now, δ1 − δp to
the first approximation is proportional to the square root of the
Flory−Huggins polymer-penetrant interaction parameter.
Gent17 showed that Bernier and Kambour’s ε correlated quite
well with Flory−Huggins parameter, which has also been
verified by Mai.18 At δ1 = δp, we have a good solvent and in
addition leads to γ1 = γp, and zero ∂γ/∂c. Hansen15 has
observed that good solvents are not good cracking agents, and
in our model no cracking will occur in this case. We also point
out that the relationships established here will see significant
modification or even overridden if the fact that glasses are
nonequilibrium system is considered, and if the facts that one
or both components can be polar and the sizes of the two

molecules quite disparate. Data, however, support the idea that
the basic model is close.

■ CONCLUSIONS
Marangoni instability arises when a glassy polymer is contacted
with a fluid that dissolves in the solid (such as a solvent for the
polymer). The phenomenon in solids, instead of flow as in
liquids, leads to cracking which is known to be far quicker than
the dissolution process. The distance between adjacent cracks is
favored to be small.

■ APPENDIX
A thin plate of commercial poly(methyl methacrylate)
(PMMA) was machined at one end, as shown in Figure A1.

After machining, it was checked under a microscope to see if
cracks appeared. There were no small cracks but a few samples
were chipped and had to be rejected. Only the vertical edge was
left untouched; however, wax was applied on the other faces at
this end. Acetone (or butyl acetate) was deposited on the ledge,
such that the vertical surface was directly exposed. All other
surfaces were waxed. The surface was viewed from the top

Figure A1. Schematic depiction of the experimental setup. The liquid
drop is acetone and can contact only the vertical face of the ledge of
the PMMA plate ∼2 mm thick.

Figure A2. Number densities of the distribution are shown for two
samples. The number of cases with adjacent cracks at separation (in
mm) shown on the x-axis: (a) acetone and (b) butyl acetate.
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under a microscope after a day. The edge was profuse with
cracks that were microscopic. The distances between two
adjacent cracks were measured, where all such distances below
1 mm were lumped together. The distribution for two samples
are shown in Figure A2. The preponderance of very small crack
separation is obvious. Qualitatively, at a level visible to the
naked eye, both acetone and butyl acetate showed large cracks
that were separated at distances greater than those shown in
Figure A2. The fact that, with so many cracks, the material will
fail more readily under tension, is obvious.
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