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Time History Extrapolation for FDTD Modeling of Shielding 
Enclosure Designs and EM1 Antenna Geometries 

X. Luo, M. Li and J. L. Drewniak 
Electromagnetic Compatibility Laboratory 

Department of Electrical Engineering 
University of Missouri at Rolla 

Rolla, MO 65409 

Abstract: The GPOF(Generalized Pencil-Of-Function) method 
was used to extrapolate the time response from FDTD sim- 
ulations of EM1 problems by approximating the time history 
as a sum of complex exponentials. This method can signif- 
icantly shorten the FDTD program execution time. However, 
various difficulties can arise from parameterization during data- 
processing. The GPOF is applied to, and studied for, two rele- 
vant EM1 problems, enclosure design and EM1 antenna model- 
ing. The merits of GPOF in modeling shielding enclosures and 
EM1 antennas is evaluated through several examples. 

I. INTRODUCTION 

A significant advantage of the FDTD method in simulating EM1 
problems is that a wide frequency range can be computed si- 
multaneously. Usually, a field value, current or voltage on a 
structure or scattered field at a point in space that result from 
an exciting pulse are recorded in time. The total computation 
duration depends on the time it takes the field to reach steady 
state or achieve a late-time history. If the problem space is a 
high- or moderate- Q resonant geometry, where the field dissi- 
pation is slow, the number of time steps required for a response 
sequence to produce a complete frequency band without distor- 
tion or loss of information will be large. 

Time-domain solutions of an EM1 problem ( E or H field, 
voltage, current) using FDTD modeling are ultimately utilized 
in computing physical parameters such as impedance and S- 
parameters, which are defined in frequency domain. Typically, 
the time history from the FDTD data are transformed into the 
frequency domain with an FFT. However, for long time histo- 
ries the memory required, and storage and processing can be 
prohibitive on top of a long FDTD computation time. Other 
techniques have been developed for extrapolating a time-history 
from only a short segment of the original FDTD time record. 
Many of these approaches, for example, MUSIC [l], SI [2], 
Prony [3] and Pencil of Function (POF) [4] are well-known as 
signal-processing techniques that originally found their useful 
application in target identification [5], spectral estimation, and 
digital filtering [6]. Recently, Prony’s method and the Pencil 
of Function have been recognized as two powerful techniques to 
estimate parameters of exponentially damped sinusoidal signals 
contaminated by noise. The Generalized Pencil Of Function 
(GPOF) is a refined version of POF [8]. 

Prony’s method has been found accurate for extracting poles 
and residues from given equally spaced transient data. How- 
ever, it is notorious for its extreme sensitivity to noise [9] [lo]. 
Approaches have been investigated to minimize the sensitivity in 

Prony’s method through optimizing the sampling scheme [ll]. 
The noise sensitivity of the GPOF method has also been studied 
based on a simplified sequence consisting of computer-generated 
numerical samples of fewer than three modes and typical Gaus- 
sian white noise [8]. Prony’s method has been combined with 
FDTD to analyze microwave integrate circuits [3]. GPOF has 
recently been used for extracting poles from limited MOM data 
to give a stable long time history from the original unstable so- 
lution 1121. This application indicates that  GPOF works fairly 
well for a data sequence with fewer than ten modes. 

Prony’s method employs a polynomial approach and is much 
older than the the Generalized Pencil Of Function. The GPOF 
method uses a one-step process to solve a nonlinear equation 
through the solution of a generalized eigenvalue problem, as 
opposed to two steps, as with Prony and POF. Further, both 
Prony’s method and GPOF can be implemented in terms of 
matrix equation, and GPOF results in general much better con- 
ditioned matrix. 

This paper presents a study of time-history extrapolation using 
GPOF for EM1 antenna and enclosure geometries. The GPOF 
method is reviewed within the scope of its application to FDTD. 
Guidelines for choosing the parameters are discussed based on 
a real-time FDTD history. Finally, numerical examples are pre- 
sented to show the effectiveness of GPOF in modeling geome- 
tries relevant to EM1 applications. 

11. GPOF OVERVIEW 

A brief review of the GPOF method is presented here for the 
purpose of defining the parameters that are discussed in the nu- 
merical examples. A detailed mathematical development can be 
found in references [7] and [8]. Briefly, the problem to be solved 
is: given a time response I(t) from an FDTD simulation (cur- 
rent, voltage, or field), it is assumed that I(t) can be expressed 
as 

M 

I ( t )  = Ai& 

with parameters 

M :  number of poles, or modes 
Ai: residues or complex amplitude 
Si = ai + j w ;  : poles 
a,: damping factors 
w,: angular frequencies 
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6t: FDTD sampling interval. 
the best estimated of M ,  Ai and Si is desired. The most dif- 
ficult part of this problem is finding the Zi. After the Z, are 
determined, Ai is found by solving a matrix equation [8). 

Suppose z ( j ) ,  j = 1 , 2 , 3 ,  ..P is a sequence of data from an FDTD 
simulation with up to P time steps. A sampling window of size 
.Ar < P steps is chosen, and a time decimation factor of d is 
used the beginning at the j = ni time step. The purpose of 
the sampling window will be demonstrated later in this section. 
The new sampled sequence is 

yk = z(ni + k x d) ,  k = 0 ,2 ,  ... N - 1, (3) 

which consists of N points covering the original sequence from 
z(ni) to z(ni + k x N ) .  The reduced segment over the window 
N is 

A data matrix [Y] based on input vector yk is defined as 

(4) 

( 5 )  

YN-l  J ( N - L ) x ( L + l )  L YN-L-1 YN-L “ ‘  

and two further additional matrices [YI] and [Yz] defined simply 
from [Y] by deleting the first column, and last column, respec- 
tively, are 

where L is an initial guess for M ,  M 5 N ,  and M 5 N - L. 
L must be less than N in all matrices [Y], [Yl] and [Yz]. In an 
ideal case, when the data matrix [Y] contains signals that can 
be expanded in M modes, there will be only M independent 
vectors associated with the matrix [Y], the remaining L - M 
vectors of the matrix [Y] will be dependent. It can be shown 
that if yk satisfies the Eq. (4), then 2; can be solved as an 
eigenvalue problem [8], namely 

Eq.(8) can be solved only if the rank of the matrix M ,  is 
known. In the above discussion, since the matrix [Y] con- 
tains all information in segment z(ni) ... z(ni + N x dn), it has 

been assumed that the same Eq.(4) will fit the late history 
z(ni + N x dn) ... z ( P ) ,  when almost all components die down. 
But this is an approximation because the early time history con- 
tains components, or “noise” that will vanish in the late time 
history. Therefore, information about the speed at which these 
components are damped, as well as how small damped magni- 
tude should be, must be reflected in the data matrices [YI] and 
[Yz], so that finally it can be quantified in the damping factors 
ai, the real part of S,. Singular Value Decomposition (SVD) is 
utilized to compensate for the “noise” in the early time history 
and determine M .  SVD of the matrix [Y]  can be represented 
by ~ 3 1  

(9) 

where “H” denotes the conjugate transpose of a matrix. [U] 
and [V are unitary matrices that composed of eigenvectors of 
[Y][Y]’ and [Y]”[Y]. The A; , i = 1 ,2 ,  ... L are singular values 
of [Y] in decreasing order. The range of X physically represents 
the “noise” level relative to the signal level, or, mathematically, 
how close the noisy matrix is to singular. The closer [Y] is to 
singular, the more difficult it is to adequately determine [YI-’. 

The ratios of the singular values over the maximum singular 
value are calculated 

(10) 1 u,i = 2 , 3  ,... M - l , M  
Amla, 

where U and M characterize the distribution of singular values. 
If the ratio below some specified Q is too small, then the L - 
M small singular values correspond to noise are not used to 
estimate the late time history. As a result, only the M singular 
values sufficiently large to satisfy Eq.(lO) are used. The final 
step is to reconstruct the matrix Y1 and Y2 from the M large 
singular values, substitute in Eq.(8) and solve for the Zi, i = 
1 , 2  ,... M - 1 , M .  

111. A STUDY OF INPUT PARAMETERS 

There are two issues that must be addressed before applying 
GPOF to an FDTD time history. First is the selection of the 
segment of the FDTD time history to be used for the estima- 
tion. The segment should cover a significant fraction of an 
FDTD time history exhibiting its damping and oscillating na- 
ture. The other requirement is that the original FDTD record 
must undergo some decimation. To meet the FDTD stability 
condition [14], the FDTD sampling is more dense than needed 
to  apply the GPOF method. In general, a sampling window 
with a decimation factor is put on the original FDTD early 
time history to give the input data for the GPOF extrapolation 
procedure. 

The GPOF method is evaluated here based on accuracy and sta- 
bility. The newly-constructed time history based on the GPOF 
estimation procedure is desired to be the same as the original 
FDTD time sequence. Then, in frequency domain, their FFT 
spectrum should also be the same. Comparison can be done on 
a point-by-point basis of the old and new data. Another way 
of assessing the accuracy is to introduce a signal to noise ratio, 
which is defined here as 
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(11) 
x ( n e w  - old)’ 

c ( O W  ’ S N R ( d B )  = 10 log,, 

J 

2700 0.4044 14 yes 26.5 
2600 0.488 19 yes 26.7 
2500 0.5672 17 yes 26.6 
2400 0.6032 17 yes 28 

whereas ‘hew” denotes the newly constructed time history by 
GPOF, and “old” denotes the original FDTD time history. 
Summation starts from z(ni)  to z(P). The SNR is used herein 
to compare the accuracy of the GPOF method applied to the 
FDTD time history resulting from modeling different EM1 ge- 
ometries. The SNR is a more global check of time-domain curve 
fitting. Stability is ensured for the ai all negative. A solution 
with any positive CY is usually discarded independent of the SNR. 
Further, solutions with poor SNR, such as < 10 d B  are also dis- 
carded. 

The algorithm was implemented with input parameters of the 
width and location of the sampling window, L the size of the 
data matrix and the criteria U. While the above process to 
achieve accuracy and stability appears straightforward, in prac- 
tice, choosing the input parameters in order to obtain a good 
solution can be arduous. A parametric study of GPOF for EM1 
applications is discussed below. 

The time history for the current at the feed point of a driven 
shielding enclosure geometry is used for conducting the para- 
metric study. This sequence is essential in computing delivered 
power to a real cavity, and is supported by experimental re- 
sults [15]. In Table I, n; is the initial sampling time step used 
in GPOF, Ps is the maximum current value in the sampling 
sequence y(k), and Pm is the peak value of the original time 
history. The ratio is indicative of the position of the sampling 
window relative to the complete time history, and also the de- 
gree of damping. The decimation factor d indicates the sam- 
pling interval of the original FDTD time sequence. The value 
of d and U are kept constant for all the tabulated results. In 
each case, poles and residues are estimated. If any damping 
factors are positive, the solution is labeled as unstable. The 
SNR is calculated from z(ni) to the latest time history z (P) .  
M is the number of terms after noise deleting, as represented 
in Eq.(l). L is the estimation of number of terms before noise- 
deleting and was 80 in all cases. When the sampling window is 
moved backward from late time history to early time history, A4 
varies randomly within the range of 14 - 24. When n; > 2300 
steps and Ps/Pm < 0.5, a stable solution with good accuracy 
results. The accuracy of the solution in terms of an acceptable 
SNR is assessed from a point by point comparison of the time 
domain results for the original FDTD sequence and the GPOF 
extrapolated sequence. If the sampling window is located too 
early in the time sequence, so that ni < 2300 and Ps/Pm > 0.5, 
the extrapolation is more likely to be unstable. Even for the 
few stable solutions within this region, the accuracy is usually 
poor. The sampling window ( N = 250 , d = 10 ) is unsuitable 
for ni < 2300 and Ps/Pm > 0.5. 

The condition number of the matrix [Y] is the ratio of the largest 
singular value and the smallest singular value 

U 

2300 0.6032 
2200 0.6032 
2000 0.6032 

The tolerance of the matrix [Y] is defined as the inverse of the 
condition number 

(13) 
1 

cond 
r = -  

L 
17 no 27.8 
12 yes 29.1 
8 ves -0.8 

TABLE I 
The Influence of Sampling Time Start on Stability and 

Accuracy (u = 3.0e - 5 ,  d = l o s t e p s ,  N = 250 points) 

1000 I 0.9243 I 19 I no I -399 

Figure 1 shows the tolerance of the matrix [Y] as a function 
of the decimation factor d when the sampling window starts at 
n, = 1000. When d = 1, which means the FDTD simulation 
data is used directly without any sampling, the condition num- 
ber is a maximum 2 x 10’ and the tolerance is the minimum. 
This makes solving Eq.(4) for poles most difficult. T increases 
rapidly as sampling interval increases to 10. The larger the T ,  

the easier to solve the equation. r slow down after d > 20. 
But r did not go up steady , especially when d changes slightly 
within 2 - 5 steps. 

A 12e-06 ; 

Sampling Interval ( time steps ) 

Figure 1. Tolerance of the matrix [Y] as a function 
of the decimation factor d ( N  = 300, n; = 1000, 
L = 0.45 x N )  

M will be affected by d in a fashion similar to r due to the 
inherent connection between U and cond. A suitable value of d 
for all cases studied falls in the range of 11 - 24, during which a 
large vale of r reached. A larger d may not necessarily improve 
the estimation. For example, a t  d = 43, 7 = 4.0 x even 
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lower than when d = 20. Moreover, we’ll need more early time 
history for a longer sampling window than a shorter one. 

The above discussion illustrates that different sampling window 
result in a different condition number on the same FDTD time 
history. In general, the solution for the poles Zi and M can 
be quite sensitive to small variations in the sampling window 
or its location in the early time history. However there does 
exist a range of n; for which a stable and accurate solution for 
this particular enclosure problem is expected. In general, the 
sampling window should be put in the position so that the ratio 
P,/P,,, < 0.5. The decimation factor d should be in the range 
of 11-24 to achieve a well-conditioned matrix and a moderate 
window size. 

The value of L limits the number of columns in [Y]. Different 
values of L from NI2 to N/3 was used and the resulting M 
was estimated. The stability and accuracy while varying L was 
investigated. The results in Table I1 indicated that if the ratio 
of L/N is close to 0.5, an unstable solution can result. A stable 
solution resulted for L /N  < 0.45. The value of M ,  may, in 
general, be different for a number of stable solution, depending 
on the initial choice of L. 

98 20 

TABLE I1 
The Influence of the Initial Number of Poles (L) on Stability 

( N  = 200, U = 3.0e - 5 ,  d = 10 s t eps ,  ni = 2800) 

no 

Initial No. of Terms (L) I Actual No. of Terms I Stability 
99 I 18 I no 

97 20 I no 
96 19 no 

The effect of U was also investigated and the results are tabu- 
lated in Table 111. A U that is too large will result in a poor SNR. 
while U too small will lead to instability. Choosing a proper U ,  in 
this particular example within the order of magnitude of 
is a delicate balance between stability and accuracy. Moreover, 
a suitable value of U can vary by 1-2 orders of magnitude for 
different n; or d. 

93 

IV. APPLICATION OF GPOF 

21 

Application of the GPOF method to FDTD time histories from 
numerical EM1 modeling was the focus of this study. In par- 
ticular, two distinct choices of problems, PCB EM1 antenna 
modeling in open regions, and shielding enclosure geometries 
are of concern. 

FDTD time history 
O W  

ux) sm 
Time Step 

*m 

Figure 2. (a) A typical FDTD time response from 
EM1 geometries, and, (b)the Gaussian excitation 
pulse. 

H 89 22 I yes 
88 17 I Yes 
85 I 13 I ves 

TABLE I11 
Effect of U on accuracy and stability ( N  = 200, d = 10 s t eps ,  

L = 80, ni = 4000) 

A typical slowly-dissipating time response consisting of a short 
excitation interval and a long dissipating interval of more than 
20,000 steps is shown in Figure 2a. A sinusoidally - modulated 
Gaussian pulse shown in Figure 2b was used as the excitation 
voltage source in all examples [15]. An FFT was employed to 
obtain the frequency-domain response. 

Figure 3 shows two relevant EM1 structures from which the 
FDTD simulation data were obtained and time extrapolated 
with GPOF. Swept frequency measurements have also been 
made for these structures to compare with the FDTD simu- 
lations and GPOF result. 

The time- and frequency-domain current a t  the feed point 
of a PCB-type dipole antenna geometry illustrated in Figure 
3b computed over 5000 FDTD time steps is shown in Figure 
4. The current sequence was utilized in computing the input 
impedance. The input impedance of the EM1 antenna geome- 
try is needed for use with source models in order to estimate the 
common-mode current on the cable and the resulting radiated 
EMI. For example, modeling coupling of high-speed digital sig- 
nal to 110 lines requires the EM1 antenna input impedance [16]. 

Sampling for the GPOF extrapolation of 100 data points began 
at the 100th time step with a decimation factor of 5 .  The loca- 
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GPOF 
FDTD - 

Jco3 rm m xm ua 5w bm 7w em OM 
Time Steps 

2.41 

I Ocm - Figure 4. A comparison of FDTD and G P O F  results 
from an EM1 antenna geometry in  the time do- 
main (upper),  and the frequency domain (lower). 

F igure  3. EM1 geometries utilized for FDTD simula- 
tion, (a) shielding enclosure, and, (b) PCB-type 
dipole antenna. 

tion of the window is chosen so that P, /P ,  < 0.5. The decima- 
tion factor d was chosen smaller than 10 simply because given an 
extrapolation as good as d = l l ,  but with a much smaller window 
size. As a result, only the f i s t  600 time steps are required for 
implementing the GPOF extrapolation. The criteria for singu- 
lar value elimination, U ,  in the GPOF method was 8 x and 
L the data matrix size was 40. The resulting number of expo- 
nentials in the expansion Sampling Eq.(4) was M=8. The stable 
solution had a signal-to-noise ratio (SNR) of 80 dB within the 
reconstruction region, which shows a high accuracy of GPOF 
extrapolation for this problem. A comparison of the original 
FDTD and the GPOF extrapolated data in both the time- and 
frequency-domain is shown in Figure 3. GPOF saves 70% in 
computation time while maintaining very high accuracy. The 
time sequence dissipates relatively quickly making it possible to 
choose parameters more liberally than those for the enclosure 
data of Table I. 

FDTD and GPOF results for the current at the feed point of a 
shielding enclosure geometry axe shown in Figure 5. The cur- 
rent was recorded for 20,000 FDTD time steps. Sampling for 
the GPOF extrapolation began at time step n=150 and pro- 
ceeded at intervals of 15 steps for 400 data points of input. 
The U was 8 x and L the size of data matrix was 160. 
After computation of the GPOF algorithm, the number of ex- 
ponential terms was 42. Guidelines suggested by Table I and 
Figure 1 are followed for choosing input parameters. However, 
the GPOF solution was obtained by carefully adjusting the 0 
and the sampling window. For example, five values of U were 
tried between and before a suitable value was found. 
N was increased to capture the slowly damped features char- 
acteristic of a nearly closed region problem. The decimation 
must adequately represent the oscillating sequence, as well as 
to accommodate a better conditioned matrix. More than five 

different combinations of B and sampling window were explored 
until a stable solution with a moderate accuracy of 28 dB (SNR) 
was achieved. Figure 5 illustrates both the time- and frequency- 
domain comparison of FDTD and GPOF results. There is a 
slight magnitude discrepancy in the time response that yields a 
small deviation at the magnitude of the high-Q resonance in the 
frequency spectrum. The latter is a result of the resonant cav- 
ity geometry. However, GPOF is still beneficial for this problem 
considering 20,000 FDTD steps were reduced to 6150 time steps 
using GPOF with acceptable accuracy. 

1 .  - FDTD ’ 1 
GPOF 
issm tom0 l P S m  2omo 

-5605 
1 M m  

Time S ~ W S  

FDTD , GPOF 
- 

g “L 

i 

0-02 0 1  0 6  O B  1 0  1.2 
Frequency (GHz) 

2oobotfi 
Figure 5.  The comparison between FDTD and GPOF 

constructed current response from shielding en- 
closure geometry in (Upper)  time domain and 
(Bot tom)  frequency domain. 

In another similar cavity structure, the time- and frequency- 
domain far-field response was recorded for 17,000 FDTD time 
steps and is shown in Figure 6. Sampling for the GPOF method 
began at the 2000th step with N = 200 data points and a sam- 

1176 



I - FDTD I 

I S M  IlDm 1l5W Inm 
.IC15 

lop0 

Time Steps 

Figure  6. A comparison between FDTD and GPOF 
far-field time responses from a cavi ty  geometry in  
the t i m e  domain (upper) ,  and frequency domain 
(domain). 

pling interval of 10 was used. The guidelines suggested by Table 
I and Figure 1 were followed. However: since this sequence was 
more rapidly oscillating in time, the competing demands of in- 
creasing d to get a smaller condition number, and decreasing d 
to capture the oscillations to strive for accuracy is severe. The 
criteria for singular value elimination U was reduced to 8 x lo-’ 
to give more tolerance for stability. -4s indicated previously, a 
larger U helps for stability but also degrades accuracy and re- 
duces M .  Only 15 exponentials terms were obtained from the 
GPOF algorithm. The SNR is only 7 dB, indicating poor accu- 
racy. However this was the only stable solution of more than 20 
attempts with different combinations of input parameters. Fur- 
thermore, the sensitivity of stability and accuracy to the input 
parameters was very high for this problem. The discrepancy 
between the reconstructed GPOF time history and the FDTD 
simulation is significant as shown in Figure 6. 

V. CONCLUSIONS 

The application of GPOF in FDTD modeling of EM1 antenna 
geometry is promising due to its relatively low-Q. Specifying the 
input parameters n;, U ,  N and L for the open region problem is 
relatively straightforward. Achieving an accurate extrapolation 
is not particularly sensitive to the inputs. A significant amount 
of computation time can be saved by applying GPOF to these 
open region problems. In the shielding enclosure geometry, how- 
ever, the advantage of the GPOF method varies on case by case 
basis. Guidelines can help to increase the possibility of reach- 
ing stable and acceptable solution, but only to a limited degree. 
Difficulties in balancing a stable solution with acceptable accu- 
racy can arise in high-Q resonant structures with closely spaced 
frequency. 
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