
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Conferences on Recent Advances 
in Geotechnical Earthquake Engineering and 
Soil Dynamics 

2010 - Fifth International Conference on Recent 
Advances in Geotechnical Earthquake 

Engineering and Soil Dynamics 

27 May 2010, 7:30 pm - 9:00 pm 

A Practical Approach for Implementing the Probability of A Practical Approach for Implementing the Probability of 

Liquefaction in Performance Based Design Liquefaction in Performance Based Design 

Thomas Oommen 
Tufts University, Medford, MA 

Laurie G. Baise 
Tufts University, Medford, MA 

Follow this and additional works at: https://scholarsmine.mst.edu/icrageesd 

 Part of the Geotechnical Engineering Commons 

Recommended Citation Recommended Citation 
Oommen, Thomas and Baise, Laurie G., "A Practical Approach for Implementing the Probability of 
Liquefaction in Performance Based Design" (2010). International Conferences on Recent Advances in 
Geotechnical Earthquake Engineering and Soil Dynamics. 1. 
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session09/1 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Conferences on Recent Advances in Geotechnical Earthquake Engineering 
and Soil Dynamics by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. 
Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more 
information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/icrageesd
https://scholarsmine.mst.edu/icrageesd
https://scholarsmine.mst.edu/icrageesd
https://scholarsmine.mst.edu/icrageesd/05icrageesd
https://scholarsmine.mst.edu/icrageesd/05icrageesd
https://scholarsmine.mst.edu/icrageesd/05icrageesd
https://scholarsmine.mst.edu/icrageesd?utm_source=scholarsmine.mst.edu%2Ficrageesd%2F05icrageesd%2Fsession09%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/255?utm_source=scholarsmine.mst.edu%2Ficrageesd%2F05icrageesd%2Fsession09%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/icrageesd/05icrageesd/session09/1?utm_source=scholarsmine.mst.edu%2Ficrageesd%2F05icrageesd%2Fsession09%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scholarsmine@mst.edu


 

Paper No. 9.06  1 

 
 

A PRACTICAL APPROACH FOR IMPLEMENTING THE PROBABILITY OF 
LIQUEFACTION IN PERFORMANCE BASED DESIGN 

 
Thomas Oommen,  
Ph.D. Candidate,  
Department of Civil and Environmental Engineering,  
Tufts University, 113 Anderson Hall,  
Medford, MA 02155, USA.  
thomas.oommen@tufts.edu,  

    Tel: 215‐435‐0867. 

Laurie G. Baise, 
Associate Professor,  
Department of Civil and Environmental Engineering,  
Tufts University, 113 Anderson Hall,  
Medford, MA 02155, USA.  
laurie.baise@tufts.edu,     
Tel: 617‐627‐2211. 
 
 
 

ABSTRACT 
 

Empirical Liquefaction Models (ELMs) are the usual approach for predicting the occurrence of soil liquefaction. These ELMs are 
typically based on in situ index tests, such as the Standard Penetration Test (SPT) and Cone Penetration Test (CPT), and are broadly 
classified as deterministic and probabilistic models. The deterministic model provides a “yes/no” response to the question of whether 
or not a site will liquefy. However, Performance-Based Earthquake Engineering (PBEE) requires an estimate of the probability of 
liquefaction (PL) which is a quantitative and continuous measure of the severity of liquefaction. Probabilistic models are better suited 
for PBEE but are still not consistently used in routine engineering applications. This is primarily due to the limited guidance regarding 
which model to use, and the difficulty in interpreting the resulting probabilities. The practical implementation of a probabilistic model 
requires a threshold of liquefaction (THL). The researchers who have used probabilistic methods have either come up with subjective 
THL or have used the established deterministic curves to develop the THL. In this study, we compare the predictive performance of the 
various deterministic and probabilistic ELMs within a quantitative validation framework. We incorporate estimated costs associated 
with risk as well as with risk mitigation to interpret PL using precision and recall and to, compute the optimal THL using Precision-
Recall (P-R) cost curve. We also provide the P-R cost curves for the popular probabilistic model developed using Bayesian updating 
for SPT and CPT data by Cetin et al. (2004) and Moss et al. (2006) respectively. These curves should be immediately useful to a 
geotechnical engineer who needs to choose the optimal THL that incorporates the costs associated with the risk of liquefaction and the 
costs associated with mitigation.  
 
 
INTRODUCTION 
 
Soil liquefaction is the loss of shear strength induced by 
shaking, which can lead to various types of ground failures. 
Empirical Liquefaction Models (ELMs) have been developed 
for in situ index tests, such as Standard Penetration Test 
(SPT), Cone Penetration Test (CPT), and Shear Wave 
Velocity (Vs). These in situ data are used to estimate the 
potential for “triggering” or initiation of seismically induced 
liquefaction. Different classes of ELMs include: (1) 
deterministic (Seed and Idriss 1971; Seed et al. 1983; 
Robertson and Campanella 1985; Seed and De Alba 1986; 
Shibata and Teparaksa 1988; Goh 1994; Stark and Olson 
1995; Robertson and Wride 1998; Juang et al. 2000; Juang et 
al. 2003; Idriss and Boulanger 2006; Pal 2006; Hanna et al. 
2007; Goh and Goh 2007) and (2) probabilistic (Liao et al. 
1988; Toprak et al. 1999; Juang et al. 2002; Goh 2002; Cetin 

et al. 2002; Lai et al. 2004; Cetin et al. 2004; Moss et al. 
2006).  
 
Currently, the most widely used ELM for the assessment of 
liquefaction potential is the “simplified procedure,” 
recommended by Seed and Idriss (1971). Youd et al. (2001), 
Cetin et al. (2004), and Moss et al. (2006), provide recent 
updates to the method. In addition, Cetin et al. (2004) and 
Moss et al. (2006) have presented liquefaction models that use 
the Bayesian updating method for SPT and CPT data 
respectively. The recent work represents an update to the 
datasets combined with the use of the Bayesian updating 
method for probabilistic evaluation of liquefaction potential. 
Although there are several deterministic and probabilistic 
models to evaluate the liquefaction potential using SPT and 
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CPT data, most of these approaches neither provide a 
quantitative evaluation of the predictive performance nor 
critically compare with other approaches used in practice. As a 
result, the research community has not provided practitioners 
with objective quantifiable recommendations on which ELM 
to use for the evaluation of liquefaction potential.  
 
The deterministic method provides a “yes/no” response to the 
question of whether or not a site will liquefy. However, 
Performance-Based Earthquake Engineering (PBEE) requires 
an estimate of the probability of liquefaction (PL) rather than a 
deterministic (yes/no) estimate (Juang et al. 2008). PL is a 
quantitative and continuous measure of the severity of 
liquefaction.  Probabilistic methods were first introduced to 
liquefaction modeling in the late 1980’s by Liao et al. (1988). 
But such methods are still not consistently used in routine 
engineering applications. This is primarily due to the limited 
guidance regarding which model to use, and the difficulty in 
interpreting the resulting probabilities. The implementation of 
probabilistic methods requires a threshold of liquefaction 
(THL). The need for a THL arises because engineering 
decisions require the site to be classified as either liquefiable 
or non-liquefiable. Thus, a site where PL < THL is classified as 
non-liquefiable and a site where PL > THL is classified as 
liquefiable. Juang et al. (2002) provided a subjective THL and 
Cetin et al. (2004) and Moss et al. (2006) used deterministic 
curves to determine THL. However, the importance of the 
probabilistic approach warrants objective guidelines for the 
determination of THL.  
 
The primary goal of this study is to provide a critical, 
objective, and quantitative comparison of the predictive 
performance of the “simplified procedure” as presented by 
Youd et al. (2001) and the Bayesian updating method (Cetin et 
al. 2004; and Moss et al. 2006). We also provide a thorough 
and reproducible approach to interpret PL using precision and 
recall and to, compute the optimal THL that incorporates the 
costs associated with the risk of liquefaction and the costs 
associated with mitigation using a new metric that we 
developed called the Precision-Recall (P-R) cost curve. In the 
first section of the paper, we describe the data used for 
comparing the different ELMs. Then we introduce the model 
validation statistics, the different ELMs that we consider in 
this paper, and the objective method of identifying THL.   
 
 
DATA 
                                                                                                  
In this study, we use the SPT and CPT data compiled by Cetin 
et al. (2004) and Moss et al. (2006). These databases were 
created in three steps: (1) re-evaluation of the Seed et al. 
(1983) data to incorporate the new field case studies; (2) 
screen data to remove questionable observations; and (3) 
account for recent advances in SPT and CPT interpretation 
and evaluation of in situ Cyclic Stress Ratio (CSR).  
 
The SPT database has 196 field case histories of which 109 
are from liquefied sites and 87 are from non-liquefied sites. 
The CPT database has 182 case histories of which 139 are 

from liquefied sites and 43 are from non-liquefied sites. The 
ratio of liquefaction to non-liquefaction instances in the SPT 
database is 56:44, whereas, in the CPT database it is 76:24. 
Thus, the CPT database has higher class imbalance than the 
SPT database. The class imbalance is defined as the difference 
in the number of instances of occurrences of two different 
classes. Class imbalance is particularly important for 
comparing the performance of different models. Class 
imbalance issues for model validation are discussed later in 
this paper. 
 
 
METHODOLOGY 
 
We calculated the liquefaction potential for the SPT and CPT 
databases by using the “simplified procedure” (Youd et al. 
2001), and the Bayesian updating method (Cetin et al. 2004; 
Moss et al. 2006). The following subsections provide a brief 
description of the fundamental principles of these 
approaches/classifiers and the equations used. We validate and 
quantify the different deterministic classifiers by using overall 
accuracy, precision, recall (i.e., True Positive Rate (TPR)), 
and F-score. And for the probabilistic classifiers, we use 
Receiver Operating Characteristic (ROC) curves, and 
Precision-Recall (P-R) curves.  Then, we present a new 
objective method for combining the precision and recall with 
cost curves to determine the optimal THL triggering for 
probabilistic assessment of liquefaction potential.  
 
 
Model Validation 
 
Model development (i.e., model “training”) should be 
followed by a model validation to assess predictive capability. 
The models that we consider in this paper were trained on the 
complete datasets so we have to validate these classifiers on 
the same dataset used for model development. As a result, the 
validation statistics for these methods will likely overestimate 
the prediction accuracy of the models. In an ideal situation, we 
would have a both a training and testing dataset. 
 
For deterministic models, useful validation statistics include: 
overall accuracy, precision, recall, and F-score. These metrics 
are all computed from elements of the confusion matrix.  A 
confusion matrix is a table used to evaluate the performance of 
a classifier. It is a matrix of the observed versus the predicted 
classes, with the observed classes in columns and the 
predicted classes in rows as shown in Table 1. The diagonal 
elements (where the row index equals the column index) 
include the frequencies of correctly classified instances and 
non-diagonal elements include the frequencies of 
misclassifications.  
 
The overall accuracy is a measure of the percentage of 
correctly classified instances  
 

(1) 
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where the True Positive (TP) is the sum of instances of 
liquefaction correctly predicted, the True Negative (TN) is the 
sum of instances of non-liquefaction correctly predicted, the 
False Positive (FP) is the sum of instances of non-liquefaction 
classified as liquefaction, and the False Negative (FN) is the 
sum of instances of liquefaction classified as non-liquefaction. 
Overall accuracy is a common validation statistic that is used 
and an accuracy of 0.75 means that 75% of the data have been 
correctly classified. However, it doesn’t mean that the 75% of 
each class (e.g., liquefaction and non-liquefaction class) has 
been correctly predicted. Therefore, the evaluation of the 
predictive capability based on the overall accuracy alone can 
be misleading when class imbalance exists (e.g., for the CPT 
dataset 76% of the data are liquefaction instances and 24% are 
non-liquefaction instances). 
 
 
Table 1: Confusion matrix, presenting the observed classes in 

rows and the predicted classes in columns where TP is the 
true positive, TN is the true negative, FP is the false positive, 

and FN is the false negative. 

 

   
Observed 

Yes  No 

Pr
ed
ic
te
d 

Yes  TP  FP 

No  FN  TN 
 
Precision and recall are common metrics applied separately to 
each class in the dataset. This is particularly valuable when the 
class imbalance in the dataset is significant. Precision 
measures the accuracy of the predictions for a single class, 
whereas recall measures accuracy of predictions only 
considering predicted values. 
  

 (2) 

 

 
(3) 

In the context of liquefaction potential assessment, a precision 
of 1.0 for the liquefaction class means that every case that is 
predicted as liquefaction experienced liquefaction, but this 
does not account for instances of observed/actual liquefaction 
that are misclassified. Analogously, a recall of 1.0 means that 
every instance of observed liquefaction is predicted correctly 
by the model, but this does not account for instances of 
observed non-liquefaction that are misclassified. An inverse 
relationship exists between precision and recall: it is possible 
to increase one at the expense of the other.  

  
The F-score is a measure that combines the precision and 
recall value to a single evaluation metric. The F-score is the 
weighted harmonic mean of the precision and recall 
 

 (4) 
 
where β is a measure of the importance of recall to precision 
and can be defined by the user for a specific project.  
 
In order to evaluate a probabilistic classifier, we must choose a 
probability threshold value that marks the liquefaction/non-
liquefaction boundary to apply deterministic metrics such as 
given in equations 1 through 4. When a probability threshold 
is defined, the subsequent validation is specific to that 
threshold value. Therefore, for the comprehensive evaluation 
of a probabilistic classifier we use P-R and ROC curves. P-R 
and ROC curves provide a measure of the classification 
performance for the complete spectrum of probability 
thresholds (i.e., “operating conditions”). The P-R and ROC 
curves are developed by calculating the precision, the recall, 
and the False Positive Rate (FPR) by varying the threshold 
from 0 to 1. The FPR is 
 

(5) 
 
Thus, any point on either the P-R or ROC curve corresponds 
to a specific threshold. Fig. 1 presents a basic ROC curve, 
where the dashed line is the idealized best possible ROC 
curve. The area under the ROC curve (AUC) is a scalar 
measure that quantifies the accuracy of the probabilistic 
classifier. The AUC varies from 1.0 (perfect accuracy) to 0. 
Randomly selecting a class produces the diagonal line 
connecting (0, 0) and (1, 1) (shown as dotted diagonal line 
Fig. 1). This gives AUC=0.5, thus it is unrealistic for a 
classifier to have an AUC less than 0.5. 
 
Fig. 2 presents a basic P-R curve. The dashed line represents 
the best P-R curve with point A marking the best performance. 
Unlike ROC curves, P-R curves are sensitive to the influence 
of sampling bias in a dataset. Sampling bias is the 
misrepresentation of a class in the samples compared to the 
actual ratio of occurrences in the population. Often class 
imbalance and sampling bias are misrepresented and it is 
important to understand that they represent two distinct issues. 
Example, if the true population of the data has a class ratio of 
80:20 and a sample has a class ratio of 50:50, then the sample 
has no class imbalance but it has a sampling bias because the 
proportion of the classes in the sample is different from the 
original population. Oommen et al. (2009a) have demonstrated 
that sampling bias can significantly influence model 
development and performance. 
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Fig. 1: Receiver Operating Characteristic (ROC) curve 

illustrating its basic elements. The dashed line indicates a 
near perfect probability prediction whereas, the dotted line 
indicates predictions which result from random guessing. 

 Simplified Procedure (Youd et al. 2001) 
 
Following the disastrous earthquakes in Alaska and in Nigata, 
Japan in 1969, Seed and Idriss (1971) developed the 
“simplified procedure” which uses empirical evaluations of 
field observations for estimating liquefaction potential. A 
series of publications revised the procedure (Seed and Idriss 
1971; Seed et al. 1983; Youd et al. 2001). Youd et al. (2001) 
state that the periodic modifications have improved the 
“simplified procedure”, however, these improvements are not 
quantified and hence remain unknown for practicing 
engineers.  
 
The evaluation of liquefaction potential using the “simplified 
procedure” requires estimation of two variables: (1) the 
seismic demand on a soil layer, expressed in terms of the 
cyclic stress ratio (CSR); and (2) the capacity of the soil to 
resist liquefaction expressed in terms of the cyclic resistance 
ratio (CRR). The latter variable depends upon the type of in 
situ measurement (i.e. SPT or CPT). CSR is 
 

 (6) 
 
where  = peak horizontal acceleration at the ground 
surface generated by the earthquake;  = acceleration of 
gravity;  and  are total and effective vertical overburden 
stresses, respectively; and  = stress reduction coefficient 
 

 
 

(7)

where z = depth beneath ground surface in meters. 
 

 
Fig. 2: Precision-Recall (P-R) curve illustrating its basic 
elements. The dashed line represents the best P-R curve. 

 
The CRR for fines contents <0.05 is the basic penetration 
criterion for the “simplified procedure” and is referred to as 
the clean sand base curve, calculated for a magnitude of 7.5 

(8
) 

 

(9
) 

 
where = CRR for SPT, =CRR for CPT,  

 = corrected SPT blow count and is <30,  = 
clean sand cone penetration resistance normalized to 
approximately 100 kPa. Finally, liquefaction hazard is 
estimated in terms of Factor of Safety (FS) against 
liquefaction by scaling the CRR to the appropriate magnitude 
and is given as  
 

 (10) 
 
where MSF = magnitude scaling factor.  
 
 
Bayesian Updating Method  
 
Cetin et al. (2004) and Moss et al. (2006) formulated the 
Bayesian updating method for the probabilistic evaluation of 
liquefaction potential using SPT and CPT data, respectively. 
The development of a limit state model for the initiation of 
soil liquefaction using the Bayesian approach begins with the 
selection of a mathematical model. The general form of the 
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limit state function is g = g(x, θ) + ε, where x = the set of 
predictive variables; θ = the set of unknown model parameters 
and ε = the random model correction term to account for the 
influences of the missing variables and possible incorrect 
model forms. The limit state function assumes that the 
liquefaction potential is completely explained by the set of 
predictive variables and the model corrections ε are normally 
distributed with zero mean and standard deviation of .  
 
The limit state function together with the field case histories 
are used to develop the likelihood function.  If the ith term in 
the field case history is a liquefaction case g (xi, θ) + εi ≤ 0 and 
conversely if the ith term in the field case history is a non-
liquefaction case g (xi, θ) + εi > 0. Thus, the likelihood 
function can be expressed as 
 

(1
1)

 
where Wliq and Wnonliq is a correction term to account for the 
class imbalance in the field case history database due to the 
disproportionate number of liquefied vs. non-liquefied field 
instances. In order to determine the unknown model 
parameters θ, the multifold integrals over the Bayesian kernel 
evaluate the likelihood function and the prior distributions of 
the model parameters.  
 
The Bayesian updating method formulation to calculate the PL 
using SPT data is presented in Eq. 19 of Cetin et al. (2004). 
For a deterministic assessment, Cetin et al. (2004) recommend 
using a PL value of >0.15 as liquefiable otherwise all 
remaining as non-liquefiable. For the CPT data, the Bayesian 
formulation for the PL is presented in Eq. 20 of Moss et al. 
(2006). For the deterministic analysis Moss et al. (2006) 
provide similar recommendations for the probability values as 
in Cetin et al. (2004).  
 
 
Thresholds for Liquefaction Triggering 
 
  In this section we present a new approach by 
combining project cost information with the precision and 
recall (P-R curve) to determine the optimal THL triggering. 
Here we assume that for a given project, the expected 
misclassification cost for the FP (CFP) and the cost for the FN 
(CFN) are known. The P-R cost curve is a tool that practicing 
engineers can use to find the optimal THL triggering for a 
given project and to determine the uncertainty associated with 
that decision. Figure 3 presents a typical P-R cost curve, 
which consists of two plots. Figure 3a illustrates the choice of 
the threshold vs. precision and recall. For a given probabilistic 
approach, Fig. 3a is developed by varying the threshold from 0 
to 1 and calculating the corresponding precision and recall 
values for each of these thresholds. Figure 3b presents the 
optimal THL vs. the ratio of the CFP (CFP = cost of predicting a 
true non-liquefaction instance as liquefaction) to the CFN (CFN 
= cost of predicting a true liquefaction instance as non-
liquefaction) abbreviated as CR. The optimal THL is 
approximated by minimizing the cost 

 

 (18)
 
where i= entire range of threshold from 0 to 1, FPi and FNi are 
number of false positive and false negative values 
corresponding to i,  assuming that CFN = 1, 
and the index j takes on the range of the values of CR under 
consideration. We used a range of CR from 0 to 1.2 (i.e. CFP = 
0 to CFP = 1.2 X CFN). In practice, the CFP and CFN can be 
computed based on the Performance Based Earthquake 
Engineering (PBEE) recommended decision variables such as 
dollar losses, downtime and deaths sometimes referred to as 
the three D’s (Krawinkler, 2004). 

 
Fig. 3: P-R cost curve used to determine the optimal threshold 

of liquefaction (THL) triggering for probabilistic evaluation 
(a) precision and recall vs. threshold (b) cost ratio vs. optimal 

THL. 

 
RESULTS AND DISCUSSION 
 
Performance of Deterministic Approaches 
 
Using the validation statistics described above, we evaluated 
the predictive performance of the deterministic approaches for 
the assessment of liquefaction potential based on the SPT and 
CPT data. For the deterministic case, Cetin et al. (2004) and 
Moss et al. (2006) use assigned THL values (0.15) in their 
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probabilistic analysis. Table 2 presents the comparison of the 
SPT based Youd et al. (2001), and the Cetin et al. (2004) 
approaches. Comparing the overall accuracy for both the 
approaches, it is evident that the Cetin et al. 2004 has higher 
overall accuracy. Since the SPT database has a class 
imbalance of 56:44 (liquefaction: non-liquefaction), the 
overall accuracy alone cannot be used as an indicator of the 
predictive performance of the approaches. Therefore, 
liquefaction and non-liquefaction classes are analyzed 
separately using recall, precision and F-score.  
 

Table 2: Various estimates of the predictive performance of 
the SPT based deterministic models: (1) overall accuracy 

(O.A), and (2) recall, precision, and F-score for both 
liquefaction and non-liquefaction occurrences. 

Cetin et al. 2004 Dataset 

Approach Youd et al. 2001 Cetin et al. 2004 

Overall Accuracy 0.826 0.831 

L
iq

ue
fa

ct
io

n Recall 0.816 0.789 

Precision 0.864 0.895 

F-score 0.839 0.839 

N
on

-l
iq

ue
fa

ct
io

n Recall 0.839 0.885 

Precision 0.784 0.77 

F-score 0.811 0.823 

 
In the case of the liquefaction class, we see that the Youd et al. 
(2001) model has the highest recall whereas, the Cetin et al. 
(2004) model has the highest precision. However, when we 
compute the F-score, which is the harmonic mean of precision 
and recall using equal weights for both, we see that both Cetin 
et al. (2004) and Youd et al. (2001) have similar F-score 
values with the latter being slightly higher. 
 
In the case of the non-liquefaction class, we observe that the 
Cetin et al. (2004) model has the highest recall, whereas the 
Youd et al. (2001) has the highest precision.  In addition, a 
comparison of the F-scores indicates that the Cetin et al. 
(2004) and Youd et al. (2001) have comparable F-score values 
for the non-liquefaction case with the former having slightly 
better performance.  
 
From Table 2, we observe using the F-score measure that both 
Youd et al. (2001) and Cetin et al. (2004) approaches have 
similar predictive performance for the liquefaction and non-
liquefaction instances. However, it is important to note that 
although the Cetin et al. (2004) approach has slightly 

improved predictive capability compared to the Youd et al. 
(2001) in the non-liquefaction case, it has a lower predictive 
performance in the liquefaction case. 
 
Table 3 presents the comparison of the CPT based approaches 
from Youd et al. (2001), and Moss et al. (2006). Comparing 
the overall accuracy for both the approaches, we see that the 
Moss et al. (2006) has higher overall accuracy than Youd et al. 
(2001). However, the CPT database has greater class 
imbalance (76:24, liquefaction: non-liquefaction) than the SPT 
database. Hence again, the overall accuracy alone cannot be 
used as an indicator to compare the predictive performance.  
 

Table 3: Various estimates of the predictive performance of 
the CPT based deterministic models: (1) overall accuracy 

(O.A), and (2) recall, precision, and F-score for both 
liquefaction and non-liquefaction occurrences. 

Moss et al. 2006 Dataset 

Approach Youd et al. 2001 Moss et al. 2006 

Overall Accuracy 0.846 0.879 

L
iq

ue
fa

ct
io

n Recall 0.877 0.985 

Precision 0.917 0.872 

F-score 0.897 0.925 

N
on

-l
iq

ue
fa

ct
io

n Recall 0.744 0.534 

Precision 0.653 0.92 

F-score 0.695 0.676 

 
Analyzing the predictive performance based on the individual 
classes (liquefaction and non-liquefaction) using precision, 
recall and F-score, we observe that for the liquefaction class, 
the Moss et al. (2006) approach has the highest recall whereas 
the Youd et al. (2001) approach has the highest precision. A 
comparison of the F-score measures shows that Moss et al. 
(2006) has improved predictive performance for the 
liquefaction class over Youd et al. 2001.  
 
In the case of non-liquefaction instances, Youd et al. (2001) 
has the highest recall and Moss et al. (2006) has the best 
precision. Comparing both the approaches for non-liquefaction 
instances using F-score it is evident Youd et al. (2001) has an 
improved predictive capability than Moss et al. (2006).  
 
It is noted from Tables 2 and 3 that the difference between the 
precision and recall values are higher for the CPT data 
compared to the SPT. Oommen et al. (2009a) has 
demonstrated that such a large difference in the precision and 
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recall values indicates that the dataset has high sampling bias 
and the predicted probabilities have large deviations from the 
actual probabilities. 
  
 
Performance of Probabilistic Approaches 
 
 We analyzed the predictive performance of the 
probabilistic evaluation of liquefaction potential using ROC 
and P-R curves. Figures 4 and 5 present the evaluation of the 
SPT and CPT based probabilistic approaches using ROC and 
P-R curves, respectively. We observe both the Cetin et al. 
(2004) and the Moss et al. (2006) approaches as having similar 
predictive performance with the latter having slightly 
improved AUC for both liquefaction and non-liquefaction 
instances. Figure 5 shows the P-R curve for the liquefaction 
case as falling closer to the (1, 1) point than for the non-
liquefaction case. This indicates that both probabilistic 
approaches have better predictive capability for the 
liquefaction instances compared to the non-liquefaction 
instances. The difference in the predictive performance 
between liquefaction and non-liquefaction has increased for 
Moss et al. (2006) approach compared to the Cetin et al. 
(2004). This difference in the predictive performance is 
indicative of the sampling bias in the SPT and CPT dataset. As 
the sampling bias is increased from the SPT to CPT dataset the 
predictive performance of the minority class is decreased. This 
clearly indicates that model development using the Bayesian 
updating method (Cetin et al. 2004; Moss et al. 2006) is 
sensitive to the sampling bias in the dataset. 
 
Comparing the probabilistic approaches based on the SPT and 
CPT datasets, we conclude that considering both liquefaction 
and non-liquefaction instances the SPT based probabilistic 
approaches have a slight advantage over the CPT based 
probabilistic approaches. 
 
 
 Choice of the Optimal Threshold of Liquefaction 
 
In this section we use the P-R cost curves to determine the 
optimal THL. Figures 6 and 7 present the P-R cost curves for 
the SPT and CPT based datasets. In Figs. 6 and 7, plot a 
presents the optimal THL vs. the ratio of the CFP to the CFN for 
a given project (CR) and plot b represents the precision and 
recall for the liquefaction case using the “Bayesian updating” 
probabilistic approach. For the deterministic evaluation, the 
recommended THL using “Bayesian updating” is 0.15 for both 

 
 
Fig. 4: ROC curve for the Moss et al. (2006) and Cetin et al. 
(2004) probabilistic approaches based on the SPT dataset. 

 
the SPT and CPT datasets (Cetin et al. 2004; Moss et al. 
2006).  In the case of SPT (Fig. 6), a THL of 0.15 corresponds 
to a  using the Cetin et al. (2004) approach, which 
implies that the CFN = CFP (cost of predicting a true 
liquefaction instance as non-liquefaction = cost of predicting a 
true non-liquefaction instance as liquefaction).  Whereas, in 
the case of CPT (Fig. 7), a THL of 0.15 corresponds to a 

 using the Moss et al. (2006) approach, which 
implies that the CFN = 0.6 times the CFP. We also observe from 
Fig. 6 that using any THL value in the range of 0.05 to 0.60 
will have same cost as using the 0.15 recommended by Cetin 
et al. (2004). 
 
 
Case Study on the Applicability of P-R Cost Curve 
                                                                                                   
In the case of new projects/buildings, the geotechnical 
engineer must present the level of liquefaction risk, so that the 
owner/investor can decide whether or not to make the 
investment, or to increase the level of investment to improve 
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its seismic performance and thus decrease the level of 
potential losses. 

 
Fig. 5: P-R curve for the Moss et al. (2006) and Cetin et al. 
(2004) probabilistic approaches based on the SPT dataset. 

Considering five hypothetical cases (H-1, H-2, H-3, H-4, and 
H-5), we illustrate how the P-R cost curve can be used by a 
geotechnical engineer in practice for determining the optimal 
THL for probabilistic assessment, and thereby quantitatively 
account for the costs associated with that decision. For the 
above hypothetical cases we calculated the CR (the ratio of the 
CFP to the CFN). The CFP is equivalent to the cost of making the 
mistake of classifying a site that wouldn’t liquefy as 
liquefiable. This includes the extra cost that is incurred on the 
project for site remediation, design, and construction. The CFN 
is equivalent to the cost of making the mistake of classifying a 
site that would liquefy as nonliquefiable. This includes the 
cost of the building, the cost of lives and the cost of downtime, 
which includes the time, cost, and the business that was lost 
during the time to fix the building in the event of liquefaction.  
In the case of H-1, H-2, H-3, H-4, and H-5 we assume that the 
CFP = $35 million, whereas the CFN = $50 million. Thus the 
resulting CR is equal to 
 
   
 

We also assume that the PL
 for the cases H-1, H-2, H-3, H-4, 

and H-5 are 0.20, 0.25, 0.40, 0.60, and 0.30 respectively, 
calculated using the Bayesian updating method (Moss et al. 
2006) with CPT data. From Fig. 7a or Table 5 we observe that 
the optimal threshold for CR = 0.7 using Bayesian updating 
method (Moss et al. 2006) with CPT data is 0.308, which 
means a PL value > 0.308 should be classified as liquefiable. 

 
Fig. 6: P-R cost curve for the Cetin et al. (2004) probabilistic 

approach based on the SPT dataset. 

Tables 4 and 5 summarize the results illustrated in Figs. 6 and 
7. 
  
Table 4: P-R cost curve summarized for the Cetin et al. (2004) 
approach based on the SPT dataset. 

Cost Ratio 
(CR) Range 

Cetin et al., 2004 
Optimal 

Threshold 
Precision Recall 

0 < CR < 0.11 0.002 0.692 0.99 
0.11 < CR < 1 0.049 0.781 0.981 

> 1.0 0.596 0.923 0.77 
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Table 5: P-R cost curve summarized for the Moss et al. (2006) 
approach based on the CPT dataset. 

Cost Ratio 
(CR) Range 

Moss et al., 2006 
Optimal 

Threshold 
Precision Recall 

0 < CR < 0.6 0.072 0.868 1 
CR > 0.6 0.308 0.894 0.978 

 

 
Fig. 7: P-R cost curve for the Moss et al. (2006) probabilistic 

approach based on the CPT dataset. 

  
Therefore, since H-1, H-2, and H-5 have PL value < than 
0.308, they are classified as non-liquefiable, whereas H-3 and 
H-4 have PL value > than 0.308, and they are classified as 
liquefiable. The P-R curve (Fig. 7b) helps us to determine how 
confident we can be with this decision that they are non-
liquefiable or liquefiable. We observe from Fig. 7b that the 
precision and recall values corresponding to the PL for each 
case are H-1 (precision = 0.883, recall = 0.985), H-2 
(precision = 0.883, recall = 0.978), H-3 (precision = 0.897, 
recall = 0.942), H-4 (precision = 0.920, recall = 0.913), and H-
5 (precision = 0.894, recall = 0.978). Recall gives the chance 
that concluding the site will not liquefy is wrong. And 

precision gives the chance that concluding the site will liquefy 
is wrong. 
In the case of H-1, a recall = 0.985 means that there is 1.5% 
chance for the decision that the site will not liquefy is wrong. 
We observe that although H-2 and H-3 had different PL values 
(0.25 and .30), both cases have the same recall values, or in 
other words, both cases have 2.2% chance that concluding the 
site will not liquefy is wrong. In the case of H-3, a precision = 
0.89 means that there is 11% chance that concluding the site 
will liquefy is wrong. Similarly, in the case of H-4, a precision 
= 0.92 means that there is 8% chance that concluding the site 
will liquefy is wrong. 
 
 
CONCLUSIONS  
 
In this study, we have critically compared the deterministic 
and probabilistic ELMs based on SPT and CPT data to 
provide an objective and quantitative validation framework to 
evaluate the predictive performance and to inform the use of 
ELMs. For the deterministic ELMs we compared (1) the 
“simplified procedure”, and (2) Bayesian updating method, 
whereas for the probabilistic ELMs we compared the (1) Cetin 
et al. (2004), and (2) Moss et al. (2006) Bayesian updating 
methods. We also presented a new optimization approach for 
choosing the optimal THL for implementation of the 
probabilistic assessment of liquefaction, which minimizes the 
overall costs associated with a particular project design.   
  
By comparing multiple liquefaction models for both SPT and 
CPT data with validation metrics that are commonly used in 
statistics yet are uncommon in the geotechnical literature, we 
have illustrated that the predictive capabilities are comparable 
in general. However, each model has distinct advantages or 
disadvantages in terms of precision or recall for the different 
classes. These validation metrics will better inform 
geotechnical users and allow them to choose the method and 
optimal THL (for probabilistic methods) that best suits a 
particular project. The following specific conclusions arise 
from the model validation results in this study: 
 For the deterministic evaluation of liquefaction 

potential using SPT data, the “simplified procedure” 
has a slightly better predictive capability than the 
Bayesian updating method for the liquefaction class, 
whereas, the latter has a better predictive capability for 
the non-liquefaction class based on an overall metric 
termed the F-score.  

 For the deterministic evaluation of CPT data, the 
Bayesian updating method has a better predictive 
capability than the “simplified procedure” for the 
liquefaction class, and vice versa for the non-
liquefaction class.  

 The probabilistic evaluation of the liquefaction 
potential indicates comparable performance for both 
Cetin et al. (2004), and Moss et al. (2006) with the 
latter having slightly improved AUC.  

 The P-R cost curve is an efficient and objective 
approach to determine the optimal THL and the 
associated risks associated with the decision in the case 



 

Paper No. 9.06  10 

of probabilistic evaluation. Practicing geotechnical 
engineers can use tables 4 and 5 to determine the 
optimal THL when they evaluate the PL based on the 
Bayesian updating methods (Cetin et al. 2004; Moss et 
al. 2006).  

 
Perhaps the most important implication of this study is that the 
recent improvements in liquefaction models have only 
marginally improved their prediction accuracy. Thus future 
efforts should instead be focused on strategic data collection to 
enhance model performance and reduce sampling bias and 
class imbalance.  
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